Алгоритмы интерпретации просодических признаков речи при ее обработке низкоскоростными кодеками

В рамках решения задачи определения языка аудиосообщения на основе просодического подхода предложены два алгоритма интерпретации просодических признаков речи и методика их использования – алгоритм на основе широких фонетических категорий и алгоритм на основе кросскорреляционной функции от мелодики речевого сигнала и последовательности кратковременных энергий. Проводится экспериментальная оценка алгоритмов. В качестве решающего правила используются нейронные сети.

Algorithms for interpretation of prosodic features in low-bitrate speech processing

We study the language identification problem using prosodic features. Prosodic features such as melody, rhythm, timbre and others are difficult to formalize mathematically. Two algorithms for a complex description of prosodic features are proposed in the paper. The first is based on the broad phonetic categories, and the second is based on the cross-correlation of the speech melody and the short-term energy sequence. The fundamental frequency was estimated by MELP algorithm. The performance of the proposed algorithms was evaluated experimentally on a database of speech recordings obtained from Internet and therefore encoded by low-bitrate vocoders. The database includes ten different languages. The proposed algorithms provide a feature description and a multi-layer neural network was used as a language classifier. Both algorithms show satisfactory classification performance, but the broad phonetic categories approach performs slightly better than the cross-correlation function. These algorithms can be applied to a speech signal processed by low-bitrate vocoders without decoding to the original signal.

Авторы
Бессонов М.А. 1 , Фархадов М.П.2
Издательство
Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А.Трапезникова Российской академии наук
Номер выпуска
66
Язык
Русский
Страницы
6-24
Статус
Опубликовано
Год
2017
Организации
  • 1 Российский университет дружбы народов
  • 2 Институт проблем управления им. В. А. Трапезникова РАН
Ключевые слова
language identification; neural networks; speech prosodic features; broad phonetic categories; идентификация языка; нейронные сети; просодические признаки речи; широкие фонетические категории
Цитировать
Поделиться

Другие записи

Браксаторис Мартин, Ондрейчик Михал
Россия, Европа и Азия в контексте историко-культурного взаимодействия. Издательство "Знание-М". 2017. С. 41-46