Эта-инвариант эллиптических краевых задач с параметром

В работе исследуется эта-инвариант эллиптических краевых задач с параметром и его основные свойства. Используя подход Мельроуза, мы определяем эта-инвариант как регуляризацию числа вращения семейства. При этом регуляризация следа включает получение асимптотики следа композиций обратимых краевых задач с параметром при больших значениях параметра. Получение асимптотики использует аппарат псевдодифференциальных краевых задач и опирается на сведение краевых задач с параметром к краевым задачам без параметра.

Eta-invariant of elliptic parameter-dependent boundary-value problems

In this paper, we study the eta-invariant of elliptic parameter-dependent boundary value problems and its main properties. Using Melrose’s approach, we de ne the eta-invariant as a regularization of the winding number of the family. In this case, the regularization of the trace requires obtaining the asymptotics of the trace of compositions of invertible parameter-dependent boundary value problems for large values of the parameter. Obtaining the asymptotics uses the apparatus of pseudodifferential boundary value problems and is based on the reduction of parameter-dependent boundary value problems to boundary value problems with no parameter.

Издательство
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Номер выпуска
4
Язык
Русский
Страницы
599-620
Статус
Опубликовано
Том
69
Год
2023
Организации
  • 1 Российский университет дружбы народов
Ключевые слова
эта-инвариант; эллиптическая краевая задача с параметром; псевдодифференциальная краевая задача; оператор Буте де Монвеля; регуляризованный след; eta-invariant; elliptic parameter-dependent boundary value problem; pseudodifferential boundary value problem; Boutet de Monvel operator; regularized trace
Цитировать
Поделиться

Другие записи

Джурджевак А., Ширикян А.Р.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 69. 2023. С. 588-598
Россовский Л.Е., Товсултанов А.А.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Том 69. 2023. С. 697-711