The classical problem of the interaction of charged particles is considered in the framework of the concept of short-range interaction. Difficulties in the mathematical description of short-range interaction are discussed, for which it is necessary to combine two models, a nonlinear dynamic system describing the motion of particles in a field, and a boundary value problem for a hyperbolic equation or Maxwell’s equations describing the field. Attention is paid to the averaging procedure, that is, the transition from the positions of particles and their velocities to the charge and current densities. The problem is shown to contain several parameters; when they tend to zero in a strictly defined order, the model turns into the classical many-body problem. According to the Galerkin method, the problem is reduced to a dynamic system in which the equations describing the dynamics of particles, are added to the equations describing the oscillations of a field in a box. This problem is a simplification, different from that leading to classical mechanics. It is proposed to be considered as the simplest mathematical model describing the many-body problem with short-range interaction. This model consists of the equations of motion for particles, supplemented with equations that describe the natural oscillations of the field in the box. The results of the first computer experiments with this short-range interaction model are presented. It is shown that this model is rich in conservation laws.
В статье рассматривается классическая задача о взаимодействии заряженных частиц в рамках представления о близкодействии. Обсуждаются трудности математического описания близкодействия, для чего необходимо объединение двух моделей - нелинейной динамической системы, описывающей движение частиц в поле, и краевой задачи для гиперболического уравнения или уравнений Максвелла, описывающих поле. Уделено внимание процедуре осреднения, то есть перехода от положений частиц и их скоростей к плотностям заряда и тока. Показано, что задача содержит несколько параметров, при стремлении которых к нулю в строго определённом порядке рассматриваемая модель переходит в классическую задачу многих тел. По методу Галёркина эта задача сведена к динамической системе, в которой к уравнениям, описывающим динамику частиц, добавляются уравнения, описывающие колебания поля в ящике. Эта задача представляет собой упрощение, отличное от того, которое ведёт к классической механике. Её предлагается рассматривать как простейшую математическую модель, описывающую задачу многих тел с близкодействием. Эта модель состоит из уравнений движения частиц, к которым добавлены уравнения, описывающие собственные колебания поля в ящике. Представлены результаты первых компьютерных экспериментов с этой моделью близкодействия. Показано, что модель богата законами сохранения.