Perspective towards a gasoline-property-first approach exhibiting octane hyperboosting based on isoolefinic hydrocarbons

Shortage in the production a high-octane gasoline is the key issues in the petroleum refineries. To overcome on this problem, isoolefinic hydrocarbons are suggested as prospective candidates as gasoline additives, due to their high antiknocking properties. The current research paper aims to propose the perspective towards a gasoline -property-first approach exhibiting octane hyperboosting based on isoolefinic hydrocarbons into low-octane gasoline components. Test methods on isoolefinic hydrocarbons samples, i.e., isooctene and isohexene into base motor fuel were investigated. The results reported that ultimate concentrations of isooctene and isohexene were at 50 wt%. Besides, Motor octane number (MON) blends from primary reference fuels (PRF-70) and isoolefinic hydrocarbons changed nonlinearly. The results reported that MON's blends were higher than MON's pure isohexene and isooctene. The recent discovery can be called as octane hyperboosting. Likewise, the current discovery can propose an unexplored aspect of autoignition kinetics research for gasoline mixtures. This may provide a new mechanism for remarkable increasing gasoline octane rating, which is necessary for increasing combustion performance in internal combustion engines. This phenomenon can be explained by the kinetics of formation primary radical by either monomolecular cleavage of C[sbnd]H/C[sbnd]C bond, or cleavage under the action of an oxygen biradical. Isooctene enters into the formation of a primary hydrocarbon radical at a rate that is more than 28 times higher than those of n-heptane and isooctane. Therefore, a decrease in the content of isooctene to 50% reduced the rate of primary reactions by almost 2 times. © 2022 Elsevier Ltd

Authors
Ershov M.A.1 , Savelenko V.D.1, 3 , Makhova U.A.1 , Kapustin V.M. 1, 2 , Abdellatief T.M.M.1, 5 , Karpov N.V.4 , Dutlov E.V.4 , Borisanov D.V.1, 4
Journal
Publisher
Elsevier Ltd
Language
English
Status
Published
Number
124016
Volume
321
Year
2022
Organizations
  • 1 Department of Oil Refining Technology, Faculty of Chemical and Environmental Engineering, Gubkin Russian State University of Oil and Gas (National Research University), Moscow, 119991, Russian Federation
  • 2 Academy of Engineering, Peoples’ Friendship University of Russia (RUDN University), Moscow, 115419, Russian Federation
  • 3 New Technologies Watch Center (NTWC LLC), Moscow, 117546, Russian Federation
  • 4 Slavneft-YANOS PJSC, Moscow, 150023, Russian Federation
  • 5 Department of Chemical Engineering, Faculty of Engineering, Minia University, EL-Minia, 61519, Egypt
Keywords
Gasoline; Internal combustion engine; Isoolefinic hydrocarbons; Octane hyperboosting; Octane number; Oxidation stability
Date of creation
06.07.2022
Date of change
06.07.2022
Short link
https://repository.rudn.ru/en/records/article/record/83545/
Share

Other records