Evaluation of Changes Induced in the Probiotic Escherichia coli M17 Following Recurrent Exposure to Antimicrobials

Introduction: It is already well known that the exposure of certain bacteria, pathogenic or not, to antimicrobials is likely to increase their virulence and induce the development of direct or cross resistance to antimicrobials, but there is almost no information available regarding probiotics. Aim: To assess the changes induced in susceptibility to antibiotics, biofilm formation, growth rate and relative pathogenicity in the probiotic Escherichia coli M17 (EC-M17) after long exposure to antimicrobials namely ampicillin, kanamycin, cefazolin and silver nanoparticles (AgNPs). Methods: After determining the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the 4 antimicrobials above-mentioned by the microdilution method, EC-M17 was exposed to increasing subinhibitory doses ranging from MIC/8 to MIC for 8 days. The susceptibility to antibiotics of the mutants obtained was assessed by the Kirby Bauer disc diffusion method, biofilm formation by the Congo red agar method and with crystal violet bacterial attachment assay, and relative pathogenicity was assessed using a Galleria melonella waxworm model. Results: Exposure to antimicrobials induces noticeable changes in EC-M17. The highest adaptation to antimicrobials was observed on AgNPs with 8-fold increase in MIC and 16-fold increase in MBC of AgNPs. EC-M17 exposed to ampicillin, kanamycin and silver nanoparticles became resistant to ampicillin, ceftazidime, ceftazidime/clavulanate and tetracycline while exposure to cefazolin induced a significant decrease in sensitivity to tetracycline and ampicillin and resistance to ceftazidime/clavulanate and ceftazidime. The strain exposed to ampicillin was the only one to produce more biofilm than the control strain and except the EC-M17 exposed to cefazolin, all other EC-M17 strains were more pathogenic on G. melonella model than the control. Conclusion: Data in this investigation suggest that repeated exposure of the probiotic EC-M17 to antimicrobials may induce changes in antimicrobials susceptibility, biofilm formation, growth rate, and relative pathogenicity. Therefore, as far as possible, the probiotic E. coli M17 should not be used in combination with antibiotics and further investigations are required to expand similar work on more probiotics in order to avoid resistance build-up which might be transmitted by horizontal transfer.

Publisher
SCIENCEDOMAIN INT
Number of issue
29B
Language
English
Pages
158-167
Status
Published
Volume
33
Year
2021
Keywords
Escherichia coli M17; susceptibility to antibiotics; biofilm formation; growth rate; motility and pathogenicity
Date of creation
20.07.2021
Date of change
20.07.2021
Short link
https://repository.rudn.ru/en/records/article/record/74612/
Share

Other records