General parametrization of black holes: The only parameters that matter

The general parametrization of a black-hole spacetime in arbitrary metric theories of gravity includes an infinite set of parameters. It is natural to suppose that essential astrophysically observable quantities, such as quasinormal modes, parameters of shadow, electromagnetic radiation and accreting matter in the vicinity of a black hole, must depend mostly on a few of these parameters. Starting from the parametrization for spherically symmetric configurations in the form of an infinite continued fraction, we suggest a compact representation of the asymptotically flat spherically symmetric and slowly rotating black holes in terms of only three and four parameters respectively. A subclass of arbitrarily rotating black holes belonging to the Carter family can also be parametrized by only four parameters. This approximate representation of a black-hole metric should allow one to describe physical observables in the region of strong gravity. © 2020 American Physical Society.

Authors
Konoplya R.A. 1, 2 , Zhidenko A.3
Number of issue
12
Language
English
Status
Published
Number
124004
Volume
101
Year
2020
Organizations
  • 1 Institute of Physics, Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Opava, CZ-746 01, Czech Republic
  • 2 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
  • 3 Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal Do ABC (UFABC), Rua Abolição, Santo André, SP, CEP: 09210-180, Brazil
Share

Other records