Urban gardening is popular in many cities. However, many urban soils are contaminated and pose risks to human health. This study was conducted in a highly publicized urban garden in Brooklyn, NY with elevated Pb and As levels. Our objectives were to: (1) assess the nature and extent of Pb and As contamination at this site; (2) evaluate the effectiveness of amendments on reducing the bioaccessibility and phytoavailability of Pb and As in soil; and (3) assess the potential exposure of children to Pb and As through direct and indirect exposure pathways. Field surveys of the site revealed that contamination was highly concentrated in one area of the garden associated with fruit tree production. Field plots were established in this area, with three different treatments (bone meal, compost, sulfur) and an unamended control. Bioaccessibility of Pb was significantly reduced by all three treatments compared to the control (33%): bone meal (24%), compost (23%), sulfur (24%). In this study, As bioaccessibility remained high (80–93%) with or without treatments. We found that the effectiveness of soil remediation with amendments is variable and often limited, and contaminated sites can still pose a significant risk to urban gardeners. The results of a simple assessment model suggested that Pb and As exposure was mostly from soil and dust ingestion, rather than vegetable consumption. This work is unique in that it evaluates actual elevated levels of contamination, in actively gardened urban soils, in a highly visible public context. It fills important gaps between basic research and analysis of human exposure to toxic trace metals that can be a constraint on a highly beneficial activity. © 2020