SHARP ESTIMATES FOR THE GRADIENT OF SOLUTIONS TO THE HEAT EQUATION

Various sharp pointwise estimates for the gradient of solutions to the heat equation are obtained. The Dirichlet and Neumann conditions are prescribed on the boundary of a half-space. All data belong to the Lebesgue space Lp. Derivation of the coefficients is based on solving certain optimization problems with respect to a vector parameter inside of an integral over the unit sphere.

Authors
KRESIN G.1 , MAZ'YA V. 2, 3
Publisher
Федеральное государственное унитарное предприятие Академический научно-издательский, производственно-полиграфический и книгораспространительский центр Наука
Number of issue
3
Language
English
Pages
136-153
Status
Published
Volume
31
Year
2019
Organizations
  • 1 Ariel University
  • 2 University of Liverpool, Linkoping University
  • 3 RUDN University
Keywords
heat equation; sharp pointwise estimates for the gradient; first and second boundary value problems
Date of creation
20.02.2020
Date of change
20.02.2020
Short link
https://repository.rudn.ru/en/records/article/record/59769/
Share

Other records