Analytic and algebraic indices of elliptic operators associated with discrete groups of quantized canonical transformations

We consider elliptic operators associated with discrete groups of quantized canonical transformations. In order to be able to apply results from algebraic index theory, we define the localized algebraic index of the complete symbol of an elliptic operator. With the help of a calculus of semiclassical quantized canonical transformations, a version of Egorov's theorem and a theorem on trace asymptotics for semiclassical Fourier integral operators we show that the localized analytic index and the localized algebraic index coincide. As a corollary, we express the Fredholm index in terms of the algebraic index for a wide class of groups, in particular, for finite extensions of Abelian groups. © 2019 Elsevier Inc.

Authors
Publisher
Academic Press Inc.
Number of issue
5
Language
English
Status
Published
Number
108400
Volume
278
Year
2020
Organizations
  • 1 Peoples' Friendship University of Russia (RUDN University), Russian Federation
  • 2 Leibniz Universität Hannover, Germany
Keywords
Algebraic index; Elliptic operator; Fredholm index; Semiclassical Fourier integral operator
Share

Other records