Stable Schwarzschild stars as black-hole mimickers

The Schwarzschild star is an ultracompact object beyond the Buchdahl limit, which has Schwarzschild geometry outside its surface and positive pressure in the external layer which vanishes at the surface. Recently, it has been shown that the Schwarzschild star is stable against spherically symmetric perturbations. Here we study arbitrary axial nonspherical perturbations and show that the observable quasinormal modes can be as close to the Schwarzschild limit as one wishes, what makes the Schwarzschild star a very good mimicker of a black hole. The decaying time-domain profiles prove that the Schwarzschild star is stable against nonspherical perturbations as well. Another peculiar feature is the absence of echoes at the end of the ringdown. Instead we observe a nonoscillating mode which might belong to the class of algebraically special modes. At asymptotically late times, Schwarzschildian power-law tails dominate in the signal. © 2019 American Physical Society.

Authors
Konoplya R.A. 1, 2 , Posada C.1 , Stuchlík Z.1 , Zhidenko A.1, 3
Number of issue
4
Language
English
Status
Published
Number
044027
Volume
100
Year
2019
Organizations
  • 1 Institute of Physics, Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo nám. 13, Opava, CZ-746 01, Czech Republic
  • 2 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
  • 3 Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal Do ABC (UFABC), Rua Abolição, Santo André, SP, CEP: 09210-180, Brazil
Date of creation
24.12.2019
Date of change
24.12.2019
Short link
https://repository.rudn.ru/en/records/article/record/55096/
Share

Other records