К вычислению вероятностных характеристик СМО ограниченной ёмкости со случайными требованиями к ресурсам

Для современных сетей связи характерен высокий уровень роста мобильного трафика данных. Устойчивые тенденции роста нагрузки в беспроводных сетях ускоряют развитие технологий и переход к сетям нового поколения (5G). Планируемые улучшения позволят в несколько раз увеличить пропускную способность каналов связи и позволят устройствам одновременно поддерживать как соединения сотой связи, так и, например, подключение к Wi-Fi сетям, возможна передача данных от устройства к устройству напрямую (device-to-device, D2D). В условиях вынужденной гетерогенности сетей связи предлагается отказаться от традиционной «парной» ассоциации восходящего (ВК) и нисходящего (НК) каналов и разделять их при условии гарантии необходимого уровня качества. Разделение ресурсов в современных гетерогенных сетях предлагается моделировать в виде системы массового обслуживания (СМО) со случайными требованиями. Подобные модели к анализу показателей качества в беспроводных сетях ранее не применялись. Исследуется многолинейная СМО с различными классами заявок, где каждой поступившей заявке выделяется некоторый вектор случайных требований к ресурсам. Было доказано, что при объединении потоков заявок различных классов в один поток со средневзвешенным требованием стационарные вероятности не зависят от порядка поступления заявок, а зависят от их общего числа в системе и объёма занимаемых ресурсов. Получен более простой вид формул для вероятности блокировки и среднего объёма занятых ресурсов, однако аналитические формулы требуют вычисления n-кратных свёрток для всех возможных наборов векторов занимаемых ресурсов, где n - количество заявок в системе. Был разработан эффективный алгоритм вычисления нормировочной константы, с помощью которой получены рекуррентные формулы для стационарных вероятностей и основных вероятностных характеристик СМО.

About Probability Characteristics Evaluation in Queuing System with Limited Resources and Random Requirements

Mobile data traffic increases on everyday basis for the last decade and is going to keep this trend in the near future. Exponential growth of data traffic in wireless networks accelerates the development of new technologies and the transition to 5G networks. The ongoing improvements will allow to increase the channels throughput and will allow devices to simultaneously support both cellular and Wi-Fi networks, and even allow direct device-to-device (D2D) connection without any base station involved. Evolving heterogeneous networks promise more efficient radio resources usage by a macro cell traffic offloading to the small cells and uplink and downlink decoupling (DUDe). A resource-sharing model in heterogeneous networks is for the first time proposed to be analyzed in terms of queuing system with random requirements. We suggest a multiserver queuing network with limited resources where each class of customers requires a random vector of resources to be served. It has been proved that stationary probabilities of the system with aggregated flow of customers with mean-weighted requirement are equal to the stationary probabilities of the suggested system. The analytical method for the key probability characteristics evaluation requires calculating all k-fold convolutions for each set of vectors requirements. We propose a recurrent computation algorithm for normalization constant evaluation and efficient formulas for blocking probability, mean volume and variance of the occupied resources.

Publisher
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Number of issue
3
Language
Russian
Pages
209-216
Status
Published
Volume
25
Year
2017
Organizations
  • 1 Peoples Friendship University of Russia
Keywords
ресурсная СМО; ограниченная ёмкость; требования случайного объёма; нормировочная константа; вероятностные характеристики; рекуррентный алгоритм; гетерогенная сеть; queuing system with limited resources; random requirements; recurrent algorithm; probability characteristics; normalization constant; heterogeneous networks
Share

Other records

Кулябов Д.С.
RUDN Journal of Mathematics, Information Sciences and Physics. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 25. 2017. P. 81-90