Previously published evidences highlighted the effect of transglutaminase (TG, EC 2.3.2.13) activation on the reduction of the in vitro adhesive and invasive behaviour of murine B16-F10 melanoma cells, as well as in vivo. Here, we investigated the influence of spermidine (SPD) incorporation by TG into basement membrane components i.e. laminin (LN) or Matrigel (MG), on the adhesion and invasion of B16-F10 melanoma cells by these TG/SPD-modified substrates. The adhesion assays showed that cell binding to the TG/SPD-modified LN was reduced by 30%, when compared to untreated LN, whereas the reduction obtained using TG/SPD-modified MG was 35%. Similarly, tumor cell invasion by the Boyden chamber system through TG/SPD modified LN or MG was respectively reduced by 45%, and by 69%. Evaluation of matrix metalloproteinase (gelatinases MMP-2 and MMP-9) activities by gel-zymography showed that MMP-2 activity was unaffected, while MMP-9 activity was reduced by about 32% using TG/SPD-modified substrate. These results strongly suggest that the observed antiinvasive effect of TG activation in the host may be ascribed to the covalent incorporation of polyamines, which led to the post-translational modification of some components of the cell basement membrane. This modification may interfere with the metastatic property of melanoma cells, affecting the proteolytic activity necessary for their migration and invasion activities. © 2007 Springer-Verlag.