The compact eighth-order of approximation difference schemes for fourth-order differential equation

Local and nonlocal boundary value problems (LNBVPs) related to fourth-order differential equations (FODEs) were explored. To tackle these problems numerically, we introduce novel compact four-step difference schemes(DSs) that achieve eighth-order of approximation. These DSs are derived from a novel Taylor series expansion involving five points. The theoretical foundations of these DSs are validated through extensive numerical experiments, demonstrating their effectiveness and precision.

Authors
Ashyralyev A. 1, 2, 3 , Ibrahim I.M.4, 5
Publisher
KARAGANDA STATE UNIV
Number of issue
4
Language
English
Pages
18-30
Status
Published
Year
2024
Organizations
  • 1 Bahcesehir University
  • 2 Peoples Friendship University Russia
  • 3 Institute of Mathematics and Mathematical Modeling
  • 4 Akre University for Applied Science
  • 5 Near East University
Keywords
Taylor’s decomposition on five points(TDFP); LNBVPs; Dss; approximation; numerical experiment

Other records

Ананьева Н.Д., Иващенко К.В., Урабова С.А., Васенев В.И., Долгих А.В., Горбачева А.Ю., Довлетярова Э.А.
Почвоведение. Федеральное государственное унитарное предприятие Академический научно-издательский, производственно-полиграфический и книгораспространительский центр Наука. 2024. P. 1890-1905