This research presents a comparative analysis of several deep learning models for time series forecasting on Solana cryptocurrency data, using the Darts library. The study evaluates the performance of six models, Block RNN, N-BEATS, N-HiTS, RNN, TCN, and TFT, using both empirical and quantitative. The Block RNN model demonstrated the best overall performance, achieving the lowest error rates, while N-BEATS and TCN closely followed. N-HiTS and TFT models struggled with higher complexity and the relatively small dataset, leading to poor performance. However, further training of the N-BEATS model resulted in significant improvements, demonstrating its potential in capturing long-term trends in volatile cryptocurrency markets. This study provides valuable insights for selecting deep learning models suited to forecasting in such dynamic environments.
В статье рассматривается сравнительный анализ нескольких моделей глубокого обучения для прогнозирования временных рядов на данных криптовалюты Solana с использованием библиотеки Darts. Исследование оценивает точность прогнозирования шести моделей: Block RNN, N-BEATS, N-HiTS, RNN, TCN и TFT, используя как эмпирический, так и количественный подход. Модель Block RNN продемонстрировала наилучшую общую точность, достигнув наименьших показателей ошибок, за ней следовали N-BEATS и TCN. Модели N-HiTS и TFT оказались менее точными из-за их высокой сложности и относительно небольшого объема данных. Однако дальнейшее обучение модели N-BEATS привело к значительным улучшениям, продемонстрировав её потенциал в улавливании долгосрочных трендов на волатильных криптовалютных рынках. Это исследование предоставляет ценные рекомендации по выбору моделей глубокого обучения для прогнозирования в таких динамичных условиях.