Contrasting effects of maize litter and litter-derived biochar on the temperature sensitivity of paddy soil organic matter decomposition

Organic matter input regulates the rate and temperature sensitivity (expressed as Q10) of soil organic matter (SOM) decomposition by changing microbial composition and activities. It remains unclear how the incorporation of litter-made biochar instead of litter affects the Q10 of SOM decomposition. Using a unique combination of two-and three-source partitioning methods (isotopic discrimination between C3/C4 pathways and 14C labeling), we investigated: (1) how maize litter versus litter-made biochar (of C4 origin) addition influenced the Q10 of SOM (C3 origin) under 10°C warming, and (2) how the litter or biochar amendments affected the Q10 of 14C-labeled fresh organic matter (FOM) after long-term incubation. Compared with biochar addition, litter increased the rates and Q10 of mass-specific respiration, SOM and FOM decomposition, as well as the contents of SOM-derived dissolved organic C (DOC) and total phospholipid fatty acids (PLFA). Litter-amended soils have much higher activities (Vmax) of β-glucosidase, N-acetyl-β-glucosaminidase, and leucine aminopeptidase, suggesting larger enzyme pools than in soils with biochar. The Q10 of enzyme Vmax (1.6–2.0) and Km (1.2–1.4) were similar between litter-and biochar-amended soils, and remained stable with warming. However, warming reduced microbial biomass (PLFA) and enzyme activity (Vmax), suggesting decreased enzyme production associated with smaller microbial biomass or faster enzyme turnover at higher temperatures. Reductions in PLFA content and enzyme Vmax due to warming were larger in litter-amended soils (by 31%) than in the control and biochar-amended soils (by 4–11%), implying the active litter-feeding microorganisms have a smaller degree of heat tolerance than the inactive microorganisms under biochar amendments. The reduction in enzyme activity (Vmax) by warming was lower in soils with biochar than in the control soil. Our modeling suggested that the higher Q10 in litter-amended soils was mainly caused by faster C loss under warming, linked to reductions in microbial biomass and growth efficiency, rather than the slightly increased SOM-originated substrate availability (DOC). Overall, using straw-made biochar instead of straw per se as a soil amendment lowers the Q10 of SOM and FOM by making microbial communities and enzyme pools more temperature-tolerant, and consequently reduces SOM losses under warming. Copyright © 2022 Cui, Ge, Nie, Kuzyakov, Alharbi, Fang and Deng.

Authors
Cui J. , Ge T. , Nie M. , Kuzyakov Y. , Alharbi S. , Fang C. , Deng Z.
Publisher
Frontiers Media S.A.
Language
English
Status
Published
Number
1008744
Volume
13
Year
2022
Organizations
  • 1 School of Life Sciences, Nantong University, Nantong, China
  • 2 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Ecology and Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
  • 3 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
  • 4 Jiangsu Provincial Key Laboratory for Bioresources of Coastal Saline Soils, Jiangsu Coastal Biological Agriculture Synthetic Innovation Center, Yancheng Teachers’ University, Yancheng, China
  • 5 Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
  • 6 Agro-Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 7 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
Keywords
biochar; enzyme Michaelis–Menten kinetics; phospholipid fatty acid; priming effects; three-source partitioning; warming
Share

Other records

Liang J., Gamarra J.G.P., Picard N., Zhou M., Pijanowski B., Jacobs D.F., Reich P.B., Crowther T.W., Nabuurs G.-J., De-Miguel S., Fang J., Woodall C.W., Svenning J.-C., Jucker T., Bastin J.-F., Wiser S.K., Slik F., Hérault B., Alberti G., Keppel G., Hengeveld G.M., Ibisch P.L., Silva C.A., Ter Steege H., Peri P.L., Coomes D.A., Searle E.B., Von Gadow K., Jaroszewicz B., Abbasi A.O., Abegg M., Yao Y.C.A., Aguirre-Gutiérrez J., Zambrano A.M.A., Altman J., Alvarez-Dávila E., Álvarez-González J.G., Alves L.F., Amani B.H.K., Amani C.A., Ammer C., Ilondea B.A., Antón-Fernández C., Avitabile V., Aymard G.A., Azihou A.F., Baard J.A., Baker T.R., Balazy R., Bastian M.L., Batumike R., Bauters M., Beeckman H., Benu N.M.H., Bitariho R., Boeckx P., Bogaert J., Bongers F., Bouriaud O., Brancalion P.H.S., Brandl S., Brearley F.Q., Briseno-Reyes J., Broadbent E.N., Bruelheide H., Bulte E., Catlin A.C., Cazzolla Gatti R., César R.G., Chen H.Y.H., Chisholm C., Cienciala E., Colletta G.D., Corral-Rivas J.J., Cuchietti A., Cuni-Sanchez A., Dar J.A., Dayanandan S., De Haulleville T., Decuyper M., Delabye S., Derroire G., DeVries B., Diisi J., Do T.V., Dolezal J., Dourdain A., Durrheim G.P., Obiang N.L.E., Ewango C.E.N., Eyre T.J., Fayle T.M., Feunang L.F.N., Finér L., Fischer M., Fridman J., Frizzera L., De Gasper A.L., Gianelle D., Glick H.B., Gonzalez-Elizondo M.S., Gorenstein L., Habonayo R., Hardy O.J., Harris D.J., Hector A., Hemp A., Herold M., Hillers A., Hubau W., Ibanez T., Imai N., Imani G., Jagodzinski A.M., Janecek S., Johannsen V.K., Joly C.A., Jumbam B., Kabelong B.L.P.R., Kahsay G.A., Karminov V., Kartawinata K., Kassi J.N., Kearsley E., Kennard D.K., Kepfer-Rojas S., Khan M.L., Kigomo J.N., Kim H.S., Klauberg C., Klomberg Y., Korjus H., Kothandaraman S., Kraxner F., Kumar A., Kuswandi R., Lang M., Lawes M.J., Leite R.V., Lentner G., Lewis S.L., Libalah M.B., Lisingo J., López-Serrano P.M., Lu H., Lukina N.V., Lykke A.M., Maicher V., Maitner B.S., Marcon E., Marshall A.R., Martin E.H., Martynenko O., Mbayu F.M., Mbuvi M.T.E., Meave J.A., Merow C., Miscicki S., Moreno V.S., Morera A., Mukul S.A., Müller J.C., Murdjoko A., Nava-Miranda M.G., Ndive L.E., Neldner V.J., Nevenic R.V., Nforbelie L.N., Ngoh M.L., N’Guessan A.E., Ngugi M.R., Ngute A.S.K., Njila E.N.N., Nyako M.C., Ochuodho T.O., Oleksyn J., Paquette A., Parfenova E.I., Park M., Parren M., Parthasarathy N., Pfautsch S., Phillips O.L., Piedade M.T.F., Piotto D., Pollastrini M., Poorter L., Poulsen J.R., Poulsen A.D., Pretzsch H., Rodeghiero M., Rolim S.G., Rovero F., Rutishauser E., Sagheb-Talebi K., Saikia P., Sainge M.N., Salas-Eljatib C., Salis A., Schall P., Schepaschenko D., Scherer-Lorenzen M., Schmid B., Schöngart J., Šebeň V., Sellan G., Selvi F., Serra-Diaz J.M., Sheil D., Shvidenko A.Z., Sist P., Souza A.F., Stereńczak K.J., Sullivan M.J.P., Sundarapandian S., Svoboda M., Swaine M.D., Targhetta N., Tchebakova N., Trethowan L.A., Tropek R., Mukendi J.T., Umunay P.M., Usoltsev V.A., Vaglio Laurin G., Valentini R., Valladares F., Van der Plas F., Vega-Nieva D.J., Verbeeck H., Viana H., Vibrans A.C., Vieira S.A., Vleminckx J., Waite C.E., Wang H.-F., Wasingya E.K., Wekesa C., Westerlund B., Wittmann F., Wortel V., Zawiła-Niedźwiecki T., Zhang C., Zhao X., Zhu J., Zhu X., Zhu Z.-X., Zo-Bi I.C., Hui C.
NATURE ECOLOGY & EVOLUTION. NATURE PORTFOLIO. Vol. 6. 2022. P. 1423-1437