Detection of cardiac arrhythmia based on the analysis of electrocardiogram using deep learning models

The use of computer algorithms for detecting cardiac rhythm disturbance in humans based on an electrocardiogram is studied. For this purpose, the MIT-BIH Physionet database was used, which contains five classes of different types of cardiac rhythm. We propose an electrocardiogram classifier model, which is an ensemble of convolutional (CNN) and recurrent deep neural networks with LSTM unit. The results of performed computer experiments show that the proposed model successfully classifies cardiac arrhythmia with an overall accuracy of 99.37%. The computer system developed can be efficient to detect cardiac arrhythmia at an early stage.

Authors
Shchetinin Eugene.Yu.1 , Sevastyanov L.A. 2, 3 , Demidova A.V. 3 , Blinkov Y.A. 3, 4
Publisher
Институт проблем управления им. В.А. Трапезникова РАН
Language
English
Pages
41-47
Status
Published
Year
2021
Organizations
  • 1 Financial University under the Government of the Russian Federation
  • 2 Joint Institute for Nuclear Research
  • 3 Peoples' Friendship University of Russia (RUDN University)
  • 4 Saratov State University
Keywords
arrhythmia; electrocardiogram; Deep Neural Networks; cnn; lstm; MIT-BIH
Share

Other records

Свинцов А.П., Федюк Р.С., Абд Н.А.
Известия высших учебных заведений. Строительство. Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин). 2021. P. 88-108