The effects of green and chemically-synthesized copper oxide nanoparticles on the production and gene expression of morphinan alkaloids in Oriental poppy

AbstractOriental poppy (Papaver orientale L.) belonging to the Papaveraceae family, has the capacity to synthesize a wide range of benzylisoquinoline alkaloids (BIAs). This experiment was conducted to investigate the effects of green and chemical copper oxide nanoparticles (CuO NPs) elicitors on oxidative stress and the BIAs biosynthesis pathway in the cell suspension culture of P. orientale. This research shows that both green and chemical CuO NPs at concentrations of 20 mg/L and 40 mg/L, induce oxidative stress in the cell suspension of P. orientale by increasing the production of H2O2 and the activity of antioxidant enzymes. The comparison of treatments revealed that utilizing a lower concentration of CuO NPs (20 mg/L) and extending the duration of cell suspension incubation (up to 48 h) play a more influential role in inducing the expression of the BIAs biosynthesis pathway genes (PsWRKY, TYDC, SalSyn, SalR, SalAT, T6ODM, COR and CODM) and increasing the production of morphinan alkaloids (thebaine, codeine, and morphine). The overarching results indicate that the concentration of CuO NPs and the duration of cell treatment have a more significant impact than the nature of CuO NPs in inducing oxidative stress and stimulating the expression of the BIAs pathway genes.

Authors
Khaldari Iman1 , Naghavi M.R. 1, 2 , Motamedi Elaheh3 , Zargar Meisam 2
Publisher
Nature Publishing Group
Number of issue
1
Language
English
Pages
6000
Status
Published
Volume
14
Year
2024
Organizations
  • 1 University of Tehran
  • 2 Agrarian Technological Institute, RUDN University
  • 3 Agricultural Biotechnology Research Institute of Iran (ABRII)
Keywords
biotechnology; molecular biology; Plant sciences; Papaver orientale; copper oxide nanoparticles; alkaloids; elicitor; gene expression; science; humanities and social sciences; multidisciplinary
Date of creation
01.07.2024
Date of change
01.07.2024
Short link
https://repository.rudn.ru/en/records/article/record/111764/
Share

Other records