Urolithiasis has become increasingly prevalent, leading to higher disability-adjusted life years and deaths. Various stone classification systems have been developed to enhance the understanding of lithogenesis, aid urologists in treatment decisions, and predict recurrence risk. The aim of this manuscript is to provide an overview of different stone classification criteria. Two authors conducted a review of literature on studies relating to the classification of urolithiasis. A narrative synthesis for analysis of the studies was used. Stones can be categorized based on anatomical position, size, medical imaging features, risk of recurrence, etiology, composition, and morphoconstitutional analysis. The first three mentioned offer a straightforward approach to stone classification, directly influencing treatment recommendations. With the routine use of CT imaging before treatment, precise details like anatomical location, stone dimensions, and Hounsfield Units can be easily determined, aiding treatment planning. In contrast, classifying stones based on risk of recurrence and etiology is more complex due to dependencies on multiple variables, including stone composition and morphology. A classification system based on morphoconstitutional analysis, which combines morphological stone appearance and chemical composition, has demonstrated its value. It allows for the rapid identification of crystalline phase principles, the detection of crystalline conversion processes, the determination of etiopathogenesis, the recognition of lithogenic processes, the assessment of crystal formation speed, related recurrence rates, and guidance for selecting appropriate treatment modalities. Recognizing that no single classification system can comprehensively cover all aspects, the integration of all classification approaches is essential for tailoring urolithiasis patient-specific management.