Influence of Mathematical Model Parameters on Plasma Transfer in a Helical Magnetic Field

The paper presents the results of mathematical modeling of plasma transfer in a helical magnetic field using new experimental data obtained at the SMOLA trap created at the Budker Institute of Nuclear Physics of the Siberian Branch of the Russian Academy of Sciences. Plasma is confined in the trap by transmitting a pulse of magnetic field with helical symmetry to the rotating plasma. The mathematical model is based on a stationary plasma transfer equation in the axially symmetric formulation. The distribution of the concentration of the substance obtained by numerical simulation confirmed the confinement effect obtained in the experiment. The dependences of the integral characteristics of the substance on the depth of magnetic field corrugation and on plasma diffusion and potential are obtained. The numerical implementations of the model by the relaxation method and by the Seidel method are compared

Authors
Lazareva G.G. 1 , Oksogoeva I.P. 1 , Sudnikov A.V.2
Publisher
Pleiades journals
Number of issue
4
Language
English
Pages
750-759
Status
Published
Volume
17
Year
2023
Organizations
  • 1 RUDN University
  • 2 Budker Institute of Nuclear Physics
Keywords
mathematical modeling; transfer equation; elical magnetic field
Date of creation
01.07.2024
Date of change
01.07.2024
Short link
https://repository.rudn.ru/en/records/article/record/110789/
Share

Other records