The global challenge for the mining sector is the problem of “decarbonization” of coal mining. The modeling of emission flows of coalmine methane is stipulated by the need to prove the environmental effect of the implemented technological changes. For longwall geotechnology, the dynamics of methane concentration in the gas–air mixture extracted by the degassing system reflects the complex relationship between emission and geomechanical processes in the rock mass. In this regard, the aim of the work was to improve the methods for assessing the steps of caving the main roof when mining gas-coal seams. The method of work consisted of processing experimental data (smoothing—Loess, three-dimensional interpolation, regression—the method of least squares) to obtain reliable response functions in three-dimensional space. When developing algorithms in the Python language, the Vi Improved text editor was used. Graphical representation of the results was carried out in “Gnuplot”. As a result of modeling, it was found that the increase in the span of the main roof from 83 to 220 m (S = 1340–1120 m) in the distance range of 120 m in front of the stoping face line and up to 50 m behind it (L = −120–50 m) leads to an alternating cyclicity of local extrema of the dynamics of methane release, according to a polynomial dependence. This fact is a consequence of the implementation of deformation-wave processes in geo-environments, which produce cyclic nonlinearities in the nature of the aero-gas regime of mine methane emissions into anthropogenically disturbed rock masses. In addition, the influence of the situational geomechanical conditions of the excavation area in the goaf was clarified. This makes it possible to reliably identify the caving steps of the main roof.