Об эллиптичности операторов со скручиваниями

Рассматриваются нелокальные краевые задачи, в которых основной оператор и операторы граничных условий включают дифференциальные операторы и операторы скручивания. Дано определение траекторных символов для этого класса краевых задач. Показано, что эллиптические задачи определяют фредгольмовы операторы в соответствующих пространствах Соболева. Дано условие эллиптичности таких нелокальных краевых задач.

On ellipticity of operators with shear mappings

The nonlocal boundary value problems are considered, in which the main operator and the operators in the boundary conditions include the differential operators and twisting operators. The de nition of the trajectory symbols for this class of problems is given. We show that the elliptic problems de ne the Fredholm operators in the corresponding Sobolev spaces. The ellipticity condition of such nonlocal boundary value problem is given.

Authors
Publisher
Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН)
Number of issue
4
Language
Russian
Pages
565-577
Status
Published
Volume
69
Year
2023
Organizations
  • 1 People's Friendship University of Russia (RUDN University)
Keywords
эллиптичность; оператор скручивания; фредгольмов оператор; траекторный символ; нелокальная краевая задача; ellipticity; twisting operator; Fredholm operator; trajectory symbol; nonlocal boundaryvalue problem
Share

Other records

Djurdjevac A., Shirikyan A.R.
Современная математика. Фундаментальные направления. Федеральное государственное автономное образовательное учреждение высшего образования Российский университет дружбы народов (РУДН). Vol. 69. 2023. P. 588-598