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THE SEARCH FOR THE EXOTIC – SUBFACTORS AND
CONFORMAL FIELD THEORIES

D. E. Evans, Terry Gannon

Key words: subfactors, conformal field theory

AMS Mathematics Subject Classification: 46L37, 81T40

Abstract. We look at the construction of conformal field theories and their mod-
ular invariants via tools from subfactor theory.

1 Introduction

There is a hierachy or pyramid of understanding:
— conformal field theory;
— statistical mechanical models;
— subfactors, vertex operator algebras and twisted 𝐾-theory;
— modular tensor categories, pre-projective algebras, Calabi-Yau algebras . . .

The most basic algebraic structure here, namely that of a modular tensor category,
may arise from subfactors, vertex operator algebras or twisted equivariant 𝐾-theory
which in turn may give rise to statistical mechanical models which at criticality
may produce conformal invariant field theories. That is to say, two-dimensional
conformal field theories can be understood from the vantage point of conformal
nets of subfactors or vertex operator algebras. In this paper we focus on the former
setting, using von Neumann algebras of operators to understand modular invariant
partition functions in statistical mechanics and conformal field theory. Our primary
interest here is the search for integrable models or solvable models beyond what
one can construct from loop groups and quantum groups or orbifolds from finite
groups and related constructions like coset theories. For this purpose, subfactors
are convenient. However, an alternative 𝐾-theoretic approach based on the twisted
equivariant 𝐾-theoretic description of Verlinde algebras by [23] has been proposed
by us in [13,14,16].

1.1 Operator algebras

Let us start with the basics of analytic and measure theoretic objects of operator
algebras, i.e. with some fundamental examples of 𝐶*-algebras and von Neumann
algebras. We will begin with a fundamental example of an operator algebra –
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tensor powers of 2 × 2 matrices:
⨂︀𝑛𝑀2 ≃𝑀2𝑛 ≃ 𝐸𝑛𝑑(

⨂︀𝑛C2). We can complete
this under the embedding 𝑥→ 𝑥⊗ 1 in the norm topology to get a meaning for the
infinite tensor product, called the Pauli algebra:

⨂︀∞𝑀2 ≃𝑀2∞ .
To get some idea of the algebra, suppose we compute dimensions of projections

𝑒 = 𝑒* = 𝑒2 using the trace: dim(e) = trace(e)/trace(1) ∈ {0, 1
2n ,

2
2n ,

3
2n . . . , 1} .

Here we have really normalized the trace to be 1 on the identity operator so that
the possible values are these dyadic rationals. They generate the semigroup of
positive dyadic rationals N[1/2] and hence taking the Grothendieck completion the
group of dyadic rationals Z[1/2]. This is the 𝐾-group of this operator algebra,
namely 𝐾0(⊗N𝑀2) . If we repeated this exercise with 3 × 3 matrices we would
get the triadic rationals and so the two algebras are very different – they are not
isomorphic.

What we are interested in though are von Neumann algebras, which are not
only closed in the norm topology but in the weak operator topology. Suppose we
complete this infinite tensor product in a different way. First represent the finite
tensors on a Hilbert space. This can be done by turning the matrices into a Hilbert
space using the trace as an inner product 𝐻2 =𝑀2 , ⟨𝑥, 𝑦⟩ = tr 𝑦*𝑥/tr 1 and letting
the algebra act on itself by left multiplication so that ⊗𝑛𝑀2 ⊂ 𝐸𝑛𝑑(⊗𝑛𝐻2). Using
the normalized trace, this is compatible as we increase 𝑛. We can then take the
weak completion and get a different algebra 𝑅 = ⊗∞𝑀2 ⊂ 𝐸𝑛𝑑(⊗∞𝐻2). If we
compute the 𝐾-group using the dimensions of projections, we find that the gaps
get filled in in the dyadic rationals picture and we get the real numbers 𝐾0(𝑅) ≃ R.
Remarkably, an isomorphic algebra is obtained from 3 × 3 matrices.

To get our definitions set up – factors are von Neumann algebras which cannot
be split as a sum. This is the same as having trivial centre 𝑅′ ∩ 𝑅 = C, if 𝑅′

denotes the commutant, or requiring all non-zero representations to be faithful.
Factors are of three kinds. First are those of type I, the matrices and their infinite
dimensional counterpart of bounded linear operators on a Hilbert space. We are
only going to be concerned with hyperfinite factors [11], i.e. ones which can be
approximated by matrices – as naturally occurs in statistical mechanical transfer
matrix constructions. There is an unique hyperfinite factor which has a finite trace,
the hyperfinite type II1 𝑅 constructed above, and if the algebra is not type I and
has an infinite trace the algebra is type II∞ and is isomorphic to 𝑅⊗𝐵(𝐻). If the
factor has no trace at all then the algebra is type III. Consequently, we have:

I : 𝑀𝑛 , 𝐵(𝐻) ; II : 𝑅, 𝑅⊗𝐵(𝐻) ; III
Indeed, all hyperfinite factors have been classified by Connes [11] with the III1
case completed by Haagerup [27]. One construction of type III hyperfinite is to
repeat the above construction of 𝑅 with 𝐻𝑗

2 = 𝑀2 , ⟨𝑥, 𝑦⟩𝑗 = tr (𝑒−𝐻𝑗𝑦*𝑥)/tr 𝑒−𝐻𝑗

and then complete ⊗𝑛𝑗=1𝐻
𝑗
2 with sufficiently non trivial Hamiltonians 𝐻𝑗 . In the
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conformal field theory picture, type III (nets of) factors naturally arise from loop
group representations.

1.2 Subfactors

A subfactor is an inclusion 𝑁 ⊂ 𝑀 of one factor in another. Suppose to begin
with that 𝑀 is the hyperfinite II1 factor, then by Connes [11] a subfactor is either
a matrix algebra or (the case we are interested in) the hyperfinite II1 and so iso-
morphic to 𝑀 by 𝜌 : 𝑁 → 𝑀. The larger algebra is a left module over the smaller
one, and if this module is finitely generated and projective this yields an element
of [𝑁𝑀 ] ∈ 𝐾0(𝑁) ≃ R. This is precisely when the Jones index [𝑁,𝑀 ] is finite and
equals this 𝐾-theoretic element [𝑁𝑀 ]. The fundamental result of Jones [31] is that
this index value is surprisingly constrained to be in {4𝑐𝑜𝑠2(𝜋/𝑛)} ∪ [4,∞).

We can extend the inclusion 𝑁 ⊂ 𝑀 either upwards or downwards to a tower
and a tunnel. There is a conjugate endomorphism 𝜌 on 𝑀 so that 𝜌𝜌 ⪰ 𝑖𝑑𝑀 just as
for group representations or inverses of group elements. That allows us to continue
the inclusion downwards. In the opposite direction we can extend upwards using a
bi-module description or using a projection 𝑒 of 𝑀 onto 𝑁 and adjoin:

· · · ⊂ 𝜌𝜌𝑀 ⊂ 𝜌𝑀 ⊂𝑀 ⊂ ⟨𝑀, 𝑒⟩ =𝑀 ⊗𝑁 𝑀 ⊂𝑀 ⊗𝑁 𝑀 ⊗𝑁 𝑀 ⊂ · · ·

← tunnel tower →
The sequence of projections 𝑒𝑗 constructed in this way describe a Temperley-

Lieb algebra. We then have a doubly-infinite sequence of inclusions of factors:
𝑀𝑘 ⊂𝑀𝑙 , 𝑘 6 𝑙 , and in the finite index case, the relative commutants (𝑀𝑘)

′ ∩𝑀𝑙

are all finite dimensional and thus are sums of matrix algebras.

𝑁 ′ ∩𝑀𝑘 ⊂ 𝑁 ′ ∩𝑀𝑘+1 → 𝐴

∪ ∪ ∪
𝑀 ′ ∩𝑀𝑘 ⊂ 𝑀 ′ ∩𝑀𝑘+1 → 𝐵

(1)

An embedding between finite dimensional algebras , e.g. 𝑁 ′∩𝑀𝑘 ⊂ 𝑁 ′∩𝑀𝑘+1 ,
gives rise to a multiplicity graph. However due to periodicity 𝑀𝑘 ⊂𝑀𝑙 ≃𝑀𝑘+2 ⊂
𝑀𝑙+2, which is related to Pontryagin duality, only two bi-partite graphs really arise,
called the principal and dual principal graphs, which adjoin as in the example of
Figure 1 (i). There is however more information in the square by comparing two
ways of embedding 𝑀 ′ ∩𝑀𝑘 ⊂ 𝑁 ′ ∩𝑀𝑘+1. This is given by a connection in the
terminology of Ocneanu [36], (see also [18]), an assignment of a complex number to
each square whose edges are labelled by those of the two graphs. This is related
to Boltzmann weights of statistical mechanical models with local configurations
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on the diamond of Figure 1 (ii). If we start with arbitrary graphs and try to
set up subfactors by using the model of (1) with squares of finite dimensional
approximations, we would need some integrability as in the Yang-Baxter equation
of Figure 1 (iii) to ensure that the subfactor 𝐵 ⊂ 𝐴 constructed in this way has
the original graphs as their principal graphs. For example, 𝐸7 does not appear in
this way as a principal graph, and if we try to build up a subfactor from it in the
natural way, then the principal graphs will both be 𝐷10.

Figure 1. (i) Principal graphs examples (ii) Boltzmann diamond (iii) Yang-Baxter eqn

We can think of these relative commutants via decomposing endomorphisms or
bimodules into irreducibles

(𝜌𝜌𝜌𝜌 · · ·𝑀)′ ∩𝑀 ≃ 𝐸𝑛𝑑𝑁 (𝑀 ⊗𝑁 · · · ⊗𝑁 𝑀)𝑁 𝑜𝑟𝑀 .

Going from one stage to the next is via multiplication by the fundamental
object 𝜌 or 𝑀 in the endomorphism or bi-module descriptions respectively. This is
illustrated in the Bratteli diagram examples of Figure 2, where the irreducibles 𝜌𝑖
appear as one decomposes higher and higher powers of 𝜌 and 𝜌.

2ρ	


1	


ρ	
 ρ 	


ρρ	


ρρρ	


ρ1 	


ρ3 	


1	


1	
−	


−	


3ρ1	
ρρρρ	
−	


ρ2 	


−	
 2 1	


M2 

C  

C  

C  

C 

C 

M3 

C  

M2 

Figure 2. (i) Decomposing irreducibles (ii) Bratteli diagram

To give some concrete examples, suppose a finite group 𝐺 acts outerly on a
hyperfinite factor 𝑅. We can form the inclusion 𝑅𝐺 ⊂ 𝑅 of fixed points which
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has the inclusion 𝑅 ⊂ 𝑅 o 𝐺 as the natural extension. We can iterate using dual
actions, and the principal graphs in the case of the symmetric group 𝑆3 is precisely
as in Figure 1 (i). The upper vertices are labelled by group elements 𝑔 ∈ 𝐺 and the
lower ones by group representations 𝜋 ∈ �̂�, with multiplicity dim(𝜋).

There are of course two groups of cardinality 4, but at the integer index 4 we
can construct examples, indeed all index 4 examples, via tensoring with 2 × 2
matrices and the natural adjoint 𝑆𝑈(2) group action. Taking the inclusion 𝑅 =
⊗N𝑀2 ⊂ 𝑅 ⊗ 𝑀2, the larger algebra is clearly 4 copies of the smaller as an 𝑅
module and so the index is 4. The tower is the obvious one 𝑅 = ⊗N𝑀2 ⊂ 𝑅⊗𝑀2 ⊂
𝑅 ⊗𝑀2 ⊗𝑀2 ⊂ 𝑅 ⊗𝑀2 ⊗𝑀2 ⊗𝑀2 ⊂ · · · with the relative commutants being
finite dimensional tensors of two by two matrices. Taking fixed point actions
under the product adjoint action of say 𝐺 = 𝑆𝑈(2) the tower is C = 𝑀𝐺

2 ⊂
(𝑀2⊗𝑀2)

𝐺 ⊂ (𝑀2⊗𝑀2⊗𝑀2)
𝐺 ⊂ · · · . The relative commutants are just the fixed

point algebras (⊗𝑛𝑀2)
𝐺 generated through Weyl duality by transposition matrices

in 𝐸𝑛𝑑(C2⊗C2⊗ · · ·⊗C2) or a representation of the symmetric group. The eigen-
projections of these transpositions are precisely the Temperley-Lieb projections at
index 4. Comparing with the template of Figure 2, the graphs drawn there are
precisely what appears for this 𝑆𝑈(2) example, and the irreducibles 𝜌𝑖 of 𝑆𝑈(2)
are the natural labelling. Deforming the action of 𝑆𝑈(2) to a quantum group
reduces the index and yields certain representations of a Hecke algebra and related
integrability or braid group Yang-Baxter type relations as in Figure 1 (iii).

At index four there is a classification of subfactors by affine ADE diagrams
corresponding to subgroups of 𝑆𝑈(2) and twisted by cohomology. In the deformed
case, with indices less than 4, there is an ADE classification but 𝐸7 and 𝐷𝑜𝑑𝑑 do not
appear. There is an analogous story for 𝑆𝑈(3), with subgroups of 𝑆𝑈(3) providing
index 9 subfactors though the corresponding subfactors of index less than 9 are
not so closely related. Figure 4, an embellishment of an atlas of [34] summarizes
the possible values of indices but also maps other classifying graphs, namely the
nimrep graphs of modular invariants which we will come to shortly.

The classification between 4 and 5 was recently completed by Izumi, Jones,
Morrisson, Penneys, Peters [30,35] following the fundamental work of Haagerup [28].
At index 5 there are certain group-like subactors but between 4 and 5 there are only
10 finite depth subfactors. The first is that of Haagerup [28] at index (5 +

√
13)/2

and its dual, followed by that of Asaeda-Haagerup and its dual with index value
a root of some cubic, the extended Haagerup (5 +

√
17)/2 and its dual whose

existence was shown in [28]. The conformal embedding subfactor of 𝑆𝑈(2)10 in
𝑆𝑂(5)1 has principal graph the star shaped graph 3311 (where 𝑛1𝑛2 . . . 𝑛𝑚 has 𝑚
arms of length 𝑛1, 𝑛2, . . . 𝑛𝑚) of index 3 +

√
3 and its dual. Finally there is the

self dual Izumi subfactor 2221 of index (5 +
√
21)/2 and its opposite.
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Figure 3. Principal and dual principal graphs for the Haagerup subfactor

The Haagerup subfactor is the first finite depth subfactor of index bigger than
4. It can be regarded as a deformation of the symmetric group 𝑆3, with even
vertices satisfying the non-commutative fusion rules: 𝛼3 = 1 , 𝜌𝛼 = 𝛼2𝜌 , 𝜌2 =
1 + 𝜌+ 𝜌𝛼+ 𝜌𝛼2. The statistical dimension 𝑑𝜌 = [𝑀,𝜌𝑀 ]1/2 satisfies the rela-
tion 𝑑2𝜌 = 1 + 3𝑑𝜌 and so 𝑑𝜌 = (3 +

√
13)/2. The index 𝑑2𝜅 = 𝑑𝜌 + 1 of the

Haagerup subfactor 𝜅𝑀 ⊂𝑀 is then (5 +
√
13)/2. There are currently three ways

to construct this subfactor. One is by bare hands – Haagerup constructed basically
6j-symbols or Boltzmann weights. Izumi showed the existence of this subfactor by
constructing endomorphisms on Cuntz algebras satisfying these fusion rules [29].
More recently [5] found the Haagerup subfactor by constructing the planar alge-
bra or relative commutants. Izumi [29] put the Haagerup in a potential series
of subfactors for the graphs 33...3 (2𝑛 + 1 arms) and an abelian group of order
2𝑛 + 1, and established existence and uniqueness for Z3 and Z5. We showed [15]
that there are (respectively) 1, 2, 0 subfactors of Izumi type Z7, Z9 and Z2

3, and
found strong numerical evidence for at least 2, 1, 1, 1, 2 subfactors of Izumi type
Z11,Z13,Z15,Z17,Z19 . We are confident there will be at least one subfactor of Izumi
type, for the cyclic group Z2𝑛+1 (any 𝑛), and more than one whenever 4𝑛2+4𝑛+5
is composite. More recently [17], we generalised Izumi’s framework, weakening his
equations and allowing solutions for even order abelian groups. In particular, we
have constructed new subfactors at indices 3 +

√
5 and 4 +

√
10 and with graphs

3333 and 333333, and expect these to again fall into an infinite series.
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Figure 4. Plotting the 𝑆𝑈(𝑛)-supertransitivity and the norm squared of the
𝑆𝑈(𝑛) 𝑁 -𝑀 nimrep graphs 𝐺𝜌, 𝑛 = 2, 3
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2 Statistical Mechanical models at criticality

We are not only interested in subfactors but braided systems – in the type III
setting with systems of endomorphism reproducing the Verlinde fusion ring. Before
we indulge in the mathematical aspects of this, let us see how conformal field
theories naturally throw up such structures, beginning with statistical mechanical
models at criticality.

We can look in detail at the case of the Ising model which will exhibit many of the
features we wish to highlight. Take the nearest neighbour Ising hamiltonian on the
configuration space 𝒫 = {±}Z2 , 𝐻(𝜎) = Σ𝛼,𝛽𝐽𝜎𝛼𝜎𝛽 for 𝜎 ∈ 𝒫. Then the partition
function decomposes as 𝑍 = Σ𝜎𝑒𝑥𝑝(−𝐻(𝜎)) = Σ Π Boltzmann weights for a
Boltzmann weight involving local interactions on a plaquette. We can compute this
by first taking the partition function 𝑇𝜁𝜂 of a column, with boundary distributions
𝜁, 𝜂. This can be computed using vertical and horizontal interactions in the nearest
neighbour Hamiltonian:

𝑇 = 𝑉 1/2𝑊 𝑉 1/2 = 𝑒−ℋ

Here 𝑉 = 𝑒𝑥𝑝𝐾Σ𝜎𝑥𝑗 𝜎
𝑥
𝑗+1 and 𝑊 = 𝑒𝑥𝑝𝐿*Σ𝜎𝑧𝑗 are the partition functions or trans-

fer matrices for interactions along columns and rows respectively, in terms of Pauli
matrices, where 𝜎𝑥 is the diagonal matrix with ±1 eigenvalues with eigenvectors
|±⟩, and 𝜎𝑧 interchanges these vectors, and 𝐾 and 𝐾* are temperature dependant
interaction constants. At zero temperature 𝐾* is zero and 𝑇 = 𝑉 has a degen-
erate 2-dimensional largest eigenspace, whilst at infinite temperature 𝐾 vanishes
and 𝑇 = 𝑊 has a non-degenerate largest eigenspace spanned. To relate this to
the operator algebraic approach to the phase transition and subsequent algebraic
conformal field theory, it is slicker to work with a half lattice Z× N, but see [18]
for a discussion of the full lattice. Then by this transfer matrix formalism, the
classical one-dimensional lattice model is understood via a two-dimensional non-
commutative quantum model 𝐶{+,−}Z×N = ⊗Z×N(C2) → 𝑀2 ⊗𝑀2 ⊗ · · · where
classicial expectation values are computed via quantum ones 𝜇(𝐹 ) = 𝜑𝜇(𝐹𝛽) with
time development 𝛼𝑡 given by the quantum Hamiltonian ℋ = log 𝑇 ,
𝛼𝑡 = 𝑇 𝑖𝑡( )𝑇−𝑖𝑡 = 𝐴𝑑 𝑒𝑖ℋ𝑡. Equilibrium states in the classical model correspond to
ground states in the quantum model. At zero temperature, there are two extremal
states given by 𝜑+0 = ⊗Z𝜔+ 𝜑−0 = ⊗Z𝜔−; and at infinite temperature 𝜑+∞ = ⊗Z𝜔.
Here 𝜔±𝐴 = ⟨𝐴±,±⟩ are the vector states on 𝑀2 for the ± eigenspaces of 𝜎𝑥 and 𝑤
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is the vector state for the equi-distribution (|+⟩+ |−⟩)/
√
2, the largest eigenspace

for 𝜎𝑧. What interests us here is that the Kramers-Wannier high temperature - low
temperature duality, which interchanges the roles of 𝑉 and 𝑊 , relates the ground
states at infinite and zero temperature 𝜑+0 = 𝜑∞𝜈 if 𝜈 is the automorphism which
switches 𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 ↔ 𝜎𝑧𝑗 . More precisely, define 𝜈𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 = 𝜎𝑧𝑗+1 and 𝜈𝜎𝑧𝑗 = 𝜎𝑥𝑗 𝜎

𝑥
𝑗+1.

Here 𝜈 is only defined on the even part of the Pauli algebra, if we grade 𝜎𝑥 as
odd and 𝜎𝑧 as even. Squaring 𝜈2 is not the identity but a shift, the restriction of
𝜎𝛾𝑗 → 𝜎𝛾𝑗+1 to the even Pauli algebra. We can extend 𝜈 to the whole Pauli algebra
by defining a Jordan-Wigner formulation it to be 𝜈𝜎𝑥𝑗 = 𝜎𝑧1𝜎

𝑧
2 · · ·𝜎𝑧𝑗 , but 𝜈2 is no

longer the shift. To understand the key role of 𝜈 it is convenient to extend to a
larger ambient algebra which is infinite with no trace - a Cuntz algebra 𝒪2 which
is the semi-direct product of the Pauli algebra by the shift ⊗N𝑀2oN. The algebra
𝒪2 is generated by two isometries 𝑠+, 𝑠− with orthogonal ranges summing to the
identity, 𝑠+𝑠*+ + 𝑠−𝑠

*
− = 1 . The Pauli algebra is naturally contained in the Cuntz

algebra, e.g. 𝑠+𝑠*+, 𝑠−𝑠*−, 𝑠−𝑠*+, 𝑠+𝑠*− form a copy of the matrix units of 𝑀2.
This formalism enables amongst other things one to handle non-rectangular

transfer matrices algebraically with for example 𝑠+ on the right below:

We can extend 𝜈 to the Cuntz algebra with 𝜈(𝑠+ ± 𝑠−) =
√
2(𝑠+𝑠±𝑠

*
± + 𝑠−𝑠∓𝑠

*
∓)

with the property on generators 𝜈2(𝑠𝜎) = 𝑠+𝑠𝜎𝑠
*
+ + 𝑠−𝑠−𝜎𝑠

*
− , and hence for any

𝑥 ∈ 𝒪2 we get 𝜈2(𝑥) = 𝑠+𝑥𝑠
*
++𝑠−𝛼𝑥𝑠

*
− if 𝛼 denotes the automorphism of 𝒪2 which

interchanges + and −, i.e. 𝑠+ ↔ 𝑠− . What this means is that we can decompose
the underlying Hilbert space 𝒦 on which 𝒪2 acts by 𝒦 = 𝑠+𝒦+ 𝑠−𝒦 so that 𝜈2(𝑥)
is represented as in Figure 5.(i), i.e. 𝜈2 = 𝑖𝑑+ 𝛼. We are naturally led to systems
of endomorphisms on infinite algebras (type III if completed appropriately) with
fusion rules represented by Figure 5.(ii) so that vertices represent endomorphisms
and edges multiplication by the fundamental generator 𝜈.

Figure 5: (i) 𝜈2 = 1 + 𝛼 (ii) Ising endomorphisms

Taking lattice models, periodic in one direction, leads to cylinders with bound-
ary conditions, and then a torus with defect lines.



The Search for the Exotic – Subfactors and Conformal Field Theories 17

Figure 6: (i) lattice model (ii) cylinder with boundary conditions (iii) torus with defects

In the continuum limit we may expect to get a field theory with a partition function
𝑍 which decomposes as relative to some underlying symmetry (the underlying
vertex operator algebra):

𝑍 = tr 𝑒2𝜋𝑖𝜏(𝐿0−𝑐/24)𝑒−2𝜋𝑖𝜏(𝐿0−𝑐/24) =
∑︁

𝑍𝜆𝜇𝜒𝜆(𝜏)𝜒𝜇(𝜏)
*,

where 𝜒𝜆 = tr 𝑞𝐿0−𝑐/24 , 𝑞 = 𝑒2𝜋𝑖𝜏 , are the characters corresponding to irreducible
𝜆. It was argued by Cardy that the parition function is invariant under re-
parameterisations of the torus: 𝑍(𝜏) = 𝑍((𝑎𝜏 + 𝑏)/(𝑐𝜏 + 𝑑)). Since typically the
characters themselves transform linearly under the action of 𝑆𝐿(2,Z), a modu-
lar invariant gives rise to a matrix of multiplicities 𝑍𝜆𝜇 ∈ {0, 1, 2, . . .}, satisfying
𝑍 = [𝑍𝜆𝜇] ∈ 𝑆𝐿(2,Z)′ and 𝑍00 = 1 , where 0 denotes the vacuum.

In the case of the two-dimensional Ising model, there are three irreducibles
corresponding to the vertices of the 𝐴3 Dynkin diagram of Figure 5 (ii), with ±
labelling the end points and ∙ the internal vertex. The transfer matrix formalism
allows a description in terms of fermion operators 𝑔𝑎 : 𝑎 ∈ N − 1/2 𝑜𝑟 N with
half integer or integer labels and corresponding Hamiltonians and characters: 𝐿0 =
Σ𝑟∈N−1/2𝑟𝑔

*
𝑟𝑔𝑟 → 𝜒± , 𝐿0 = Σ𝑛∈N𝑛𝑔

*
𝑛𝑔𝑛 → 𝜒∙ . The half integer Hamiltonian is

reducible according to a parity with corresponding characters:

𝜒+ ± 𝜒_ = 𝑞−1/48Π𝑛∈N(1± 𝑞𝑛−1/2) , 𝜒∙ = 𝑞1/24Π𝑛∈N(1 + 𝑞𝑛)

The corresponding action of 𝑆𝐿(2,Z) is given by:

𝜏 → −1/𝜏 𝑆 =
1

2

⎛⎝ 1
√
2 1√

2 0 −
√
2

1 −
√
2 1

⎞⎠
𝜏 → 𝜏 + 1 𝑇 = diag(𝑒−𝜋𝑖/24, 𝑒−𝜋𝑖/12, 𝑒−𝜋𝑖23/24)

What we need are braided systems of endomorphisms – not necessarily commu-
tative but which commute up to an adjustment which can be chosen to satisfy the
Yang-Baxter or braid relations and braiding fusion relations. Crossings represent
intertwiners, from which one can form 𝑆 and 𝑇 matrices as scalar intertwiners from
the Hopf link and a twist.
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There are two principal sources of examples. The first arises from loop groups,
e.g. that of 𝑆𝑈(𝑛), developed by Wassermann and his students [42]. Restricting to
loops concentrated on an interval 𝐼 ⊂ 𝑆1 (proper, i.e. 𝐼 ̸= 𝑆1 and non-empty), the
corresponding subgroup denoted by 𝐿𝐼𝑆𝑈(𝑛) = {𝑓 ∈ 𝐿𝑆𝑈(𝑛) : 𝑓(𝑧) = 1 , 𝑧 /∈ 𝐼},
one finds that in each positive energy representation 𝜋𝜆 we obtain hyperfinite type
III1 subfactors 𝜋𝜆(𝐿𝐼𝑆𝑈(𝑛))′′ ⊂ 𝜋𝜆(𝐿𝐼c𝑆𝑈(𝑛))′ , where 𝐼c denotes the comple-
mentary interval [42]. In the vacuum representation, labelled by 𝜆 = 0, we have
Haag duality in that the inclusion collapses to a single factor 𝑁(𝐼) = 𝑁(𝐼). More
generally, the inclusion can be read as providing an endomorphism 𝜆 of the local
algebra 𝑁(𝐼) such that the inclusion 𝜋𝜆(𝐿𝐼𝑆𝑈(𝑛))′′ ⊂ 𝜋𝜆(𝐿𝐼c𝑆𝑈(𝑛))′ is isomorphic
to 𝜆(𝑁(𝐼)) ⊂ 𝑁(𝐼). In this way we obtain systems of endomorphisms – which are
braided from locality considerations where to compare two endomorphisms on the
same interval we move one away to another disjoint interval, where commutativity
holds, and then back again.

The second class comes from taking the double of systems of endomorphisms
which themselves may not be braided nor even commutative, such as the quantum
double of a finite group, Haagerup subfactor etc. If 𝑁𝒳𝑁 denotes a system of en-
domorphisms on a type III factor, then there is a subfactor 𝜄 : 𝐴 ⊂ 𝑁⊗𝑁𝑜𝑝𝑝, whose
canonical endomorphism �̄�𝜄 is expressible as Σ𝜆∈𝒳𝜆⊗𝜆𝑜𝑝𝑝, with a non-degenerately
braided system of endomorphisms on 𝐴. Thus doubles naturally come with braided
inclusions.

2.1 Subfactor framework for modular invariants and RCFT

To understand modular invariants of the form
∑︀
𝑍𝜆𝜇𝜒𝜆𝜒

*
𝜇, let us first consider the

obvious one: the diagonal invariant
∑︀
𝜒𝜆𝜒

*
𝜆 or more generally

∑︀
𝜒𝜏𝜒

*
𝜎𝜏 for suitable

permutations 𝜎 of the irreducibles. In some sense, made precise in [7], every modular
invariant is of this form in some extended system. In subfactor language, the factor
𝑁 which carries the Verlinde algebra 𝒜 as a system of endomorphims is embedded
in a larger von Neumann algebra with a system ℬ of endomorphisms. When we
restrict to the smaller system, 𝜎-restriction on characters 𝜒𝜏 =

∑︀
𝑏𝜏𝜆𝜒𝜆 should be

interpreted as 𝜎𝜏 =
∑︀
𝑏𝜏𝜆𝜆 as endomorphisms. In particular this will certainly

mean that 𝑁𝑀𝑁 thought of as an endomorphism decomposes as a sum of 𝜆’s.
Moreover the diagonal modular invariant for the ambient ℬ system decomposes as

𝑍 =
∑︀
𝜒𝜏𝜒

*
𝜎𝜏 =

∑︀
(
∑︀
𝑏𝜏𝜆𝜒𝜆) (

∑︀
𝑏𝜎𝜏 𝜆𝜒𝜆)

* =
∑︁

𝑍𝜆𝜇 𝜒𝜆𝜒
*
𝜇

to yield a possibly non-trivial 𝑍𝜆𝜇 =
∑︀
𝑏𝜏𝜆𝑏𝜎𝜏 𝜇.

However, in practice we will not be given the ambient extended system ℬ but
instead will start with an inclusion 𝑁 ⊂ 𝑀 such that 𝑁𝑀𝑁 decomposes as a sum
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of 𝜆’s in 𝒜. In such a situation we can induce the system on 𝑁 to systems on 𝑀 .
Using the braiding and its opposite we get two ways of getting endomorphisms on
𝑀 , namely 𝛼± : 𝜆 −→ 𝛼±

𝜆 . What is important is their intersection.

When we decompose 𝛼+𝜆, 𝛼−𝜇 into irreducibles, we count the number of common
sectors and get a multiplicity 𝑍𝜆𝜇 = ⟨𝛼+

𝜆 , 𝛼
−
𝜇 ⟩. The resulting

∑︀
𝑍𝜆𝜇𝜒𝜆𝜒

*
𝜇 is a

modular invariant. By associativity, we can regard the multiplication of the 𝑁 -
𝑁 system on itself as a representation of the Verlinde algebra 𝜆𝜇 =

∑︀
𝜈 𝑁

𝜈
𝜆𝜇𝜈 by

commuting matrices 𝑁𝜆 = [𝑁𝜈
𝜆𝜇]𝜇𝜈 .

Such a family of commuting matrices can be straightforwardly diagonalised:
𝑁𝜆 =

∑︀
𝜅 𝑆𝜆𝜅/𝑆0𝜅|𝑆𝜅⟩⟨𝑆𝜅| . What is not straightforward is that the diagonalising

matrix is the same as the 𝑆 matrix in the representation of 𝑆𝐿(2,Z).
We can form a system of 𝑁 -𝑀 sectors 𝑁𝒳𝑀 from 𝜄𝜆, where 𝜆 ∈ 𝑁𝒳𝑁 and

𝜄 : 𝑁 ⊂𝑀 . Now, multiplication of 𝑁 -𝑁 on 𝑁 -𝑀 gives a nimrep – a representation
of the Verlinde algebra by positive integer matrices 𝐺𝜆 = [𝐺𝑏𝜆𝑎]𝑎𝑏. These can
likewise be diagonalised: 𝐺𝜆 =

∑︀
𝜅 𝑆𝜆𝜅/𝑆0𝜅|𝜓𝜅⟩⟨𝜓𝜅| , with spectrum 𝜎(𝐺𝜆) =

{𝑆𝜆𝜇/𝑆0𝜆 : multiplicity 𝑍𝜆𝜆} coinciding precisely with the diagonal part of the
modular invariant. In the case of 𝑆𝑈(2) modular invariants, this is the conceptual
explanation of the 𝐴𝐷𝐸 classification of Capelli-Itzykson-Zuber [10]. All 𝑆𝑈(2) [10]
and 𝑆𝑈(3) [25] modular invariants can be realised by subfactors following work of
Ocneanu, Feng-Xu, Böckenhauer, Evans, Kawahigashi and Pugh. We refer to the
review article [21] for precise references.

The map of Figure 4 describes a map of nimrep index values, i.e. the squares
of the norms of nimrep generators 𝜆 =fundamental weight, for 𝑆𝑈(2) (roman) and
𝑆𝑈(3) (script). The 𝑆𝑈(𝑛)-supertransitivity measures how far the nimrep graph
remains alike to the identity nimrep graph before diverging following Jones [32] in
the bi-partite or 𝑆𝑈(2) case, with a precise definition in the review [21].
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The larger family 𝑀𝒳𝑀 of 𝑀 -𝑀 sectors is obtained from the irreducibles of 𝜄𝜆𝜄 and
co-incides with those generated by the images of the two inductions by decomposing
𝛼+
𝜆 𝛼

−
𝜈 when the braiding is non-degenerate. Remarkably, this can be identified with

the nimrep graph for the (usually non-normalized) modular invariant 𝑍𝑍* .
In the cases we are interested in, the factor 𝑁 is obtained as a local factor

𝑁 = 𝑁(𝐼∘) of a conformally covariant quantum field theoretical net of factors
{𝑁(𝐼)} indexed by proper intervals 𝐼 ⊂ R on the real line arising from current
algebras defined in terms of local loop group representations, and the 𝑁 -𝑁 system
is obtained as restrictions of Doplicher-Haag-Roberts morphisms (cf. [26]) to 𝑁 .
Taking two copies of such a net and placing the real axes on the light cone, then
this defines a local conformal net {𝐴(𝒪)}, indexed by double cones 𝒪 on two-
dimensional Minkowski space (cf. [40] for such constructions). A braided subfactor
𝑁 ⊂ 𝑀 , determining in turn two subfactors 𝑁 ⊂ 𝑀± obeying chiral locality, will
provide two local nets of subfactors {𝑁(𝐼) ⊂𝑀±(𝐼)}. Arranging𝑀+(𝐼) and𝑀−(𝐽)
on the two light cone axes defines a local net of subfactors {𝐴(𝒪) ⊂ 𝐴ext(𝒪)} in
Minkowski space. The embedding 𝑀+ ⊗ 𝑀op

− ⊂ 𝐵 gives rise to another net of
subfactors {𝐴ext(𝒪) ⊂ 𝐵(𝒪)}, where the conformal net {𝐵(𝒪)} satisfies locality.
As shown in [40], there exist a local conformal two-dimensional quantum field theory
such that the coupling matrix 𝑍 describes its restriction to the tensor products of
its chiral building blocks 𝑁(𝐼). There are chiral extensions 𝑁(𝐼) ⊂ 𝑀+(𝐼) and
𝑁(𝐼) ⊂ 𝑀−(𝐼) for left and right chiral nets which are indeed maximal and should
be regarded as the subfactor version of left- and right maximal extensions of the
chiral algebra.

2.2 Exotic possibilities

The most natural place to look for exotic possibilities of subfactors and hence of
conformal field theories is with the Haagerup subfactor and its siblings. However to
get braided systems we need to take the doubles. The upper part of Fig. 7 shows
the double of the even part of the principal graph Δ of the Haagerup subfactor,
computed by Izumi, and the lower part comes from the double of the even part of
the dual principal graph, computed in [15].

This was the first time the dual graph was computed – using the theory of
modular invariants for the double which as we have noted come equipped with
canonical braided inclusions and hence canonical modular invariants. These should
be compared with the corresponding objects for the doubles of the symmetric group
and its dual. Note how we can recover the graph and dual graph for 𝑆3 from this
diagram by tracing from the vacuum sector on the bottom to the top, and vice
versa respectively.
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Figure 7: Dual principal graphs of the double of the Haagerup subfactor

Figure 8: Dual principal graphs of the double of the 𝑆3 subfactor

The Haagerup modular data was computed by Izumi [29], with 𝑇 being the diag-
onal matrix diag(1, 1, 1, 1, 𝜉3, 𝜉3, 𝜉

6
13, 𝜉

−2
13 , 𝜉

2
13, 𝜉

5
13, 𝜉

−6
13 , 𝜉

−5
13 ) . His 𝑆 matrix though
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was obscure and involved a complicated rational function in 𝑒2𝜋ß/13 and (1 +

ß
√︀
5 + 2

√
13)/(1+

√
13). We derived an explicit simple description for the 𝑆 matrix:

𝑆 =
1

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥 1− 𝑥 1 1 1 1 𝑦 𝑦 𝑦 𝑦 𝑦 𝑦
1− 𝑥 𝑥 1 1 1 1 −𝑦 −𝑦 −𝑦 −𝑦 −𝑦 −𝑦
1 1 2 −1 −1 −1 0 0 0 0 0 0
1 1 −1 2 −1 −1 0 0 0 0 0 0
1 1 −1 −1 −1 2 0 0 0 0 0 0
1 1 −1 −1 2 −1 0 0 0 0 0 0
𝑦 −𝑦 0 0 0 0 𝑐(1) 𝑐(2) 𝑐(3) 𝑐(4) 𝑐(5) 𝑐(6)
𝑦 −𝑦 0 0 0 0 𝑐(2) 𝑐(4) 𝑐(6) 𝑐(5) 𝑐(3) 𝑐(1)
𝑦 −𝑦 0 0 0 0 𝑐(3) 𝑐(6) 𝑐(4) 𝑐(1) 𝑐(2) 𝑐(5)
𝑦 −𝑦 0 0 0 0 𝑐(4) 𝑐(5) 𝑐(1) 𝑐(3) 𝑐(6) 𝑐(2)
𝑦 −𝑦 0 0 0 0 𝑐(5) 𝑐(3) 𝑐(2) 𝑐(6) 𝑐(1) 𝑐(4)
𝑦 −𝑦 0 0 0 0 𝑐(6) 𝑐(1) 𝑐(5) 𝑐(2) 𝑐(4) 𝑐(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

for 𝑥 = (13 − 3
√
13)/26, 𝑦 = 3/

√
13 and 𝑐(𝑗) = −2𝑦 cos(2𝜋𝑗/13). That this

bears some relation with the double of 𝑆3 may not be surprising given the relations
between the Haagerup fusion rules and those of 𝑆3 and ̂︀𝑆3. There is however also
a striking relationship with the affine algebra modular data 𝐵6,2 which has central
charge 𝑐 = 12, and 10 primaries. The 𝑇 -matrix is diag(−1,−1;−ß, ß;−𝜉6𝑙213 ), while
the 𝑆-matrix is [33]

𝑆 =
1

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦/2 𝑦/2 3/2 3/2 𝑦 𝑦 𝑦 𝑦 𝑦 𝑦
𝑦/2 𝑦/2 −3/2 −3/2 𝑦 𝑦 𝑦 𝑦 𝑦 𝑦
3/2 −3/2 3/2 −3/2 0 0 0 0 0 0
3/2 −3/2 −3/2 3/2 0 0 0 0 0 0
𝑦 𝑦 0 0 −𝑐(1) −𝑐(2) −𝑐(3) −𝑐(4) −𝑐(5) −𝑐(6)
𝑦 𝑦 0 0 −𝑐(2) −𝑐(4) −𝑐(6) −𝑐(5) −𝑐(3) −𝑐(1)
𝑦 𝑦 0 0 −𝑐(3) −𝑐(6) −𝑐(4) −𝑐(1) −𝑐(2) −𝑐(5)
𝑦 𝑦 0 0 −𝑐(4) −𝑐(5) −𝑐(1) −𝑐(3) −𝑐(6) −𝑐(2)
𝑦 𝑦 0 0 −𝑐(5) −𝑐(3) −𝑐(2) −𝑐(6) −𝑐(1) −𝑐(4)
𝑦 𝑦 0 0 −𝑐(6) −𝑐(1) −𝑐(5) −𝑐(2) −𝑐(4) −𝑐(3)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑦 and 𝑐(𝑗) is as before. Ignoring the first 4 primaries, the only difference
with the Haagerup modular data are some signs.

The question then arises as to whether there is a corresponding conformal field
theory. Some evidence in support of this is that characters 𝜒𝜆(𝜏) (with nonnegative
integer coefficients) which transform among themselves according to this 𝑆𝐿(2,Z)
representation were found following the procedures developed by [3].
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HIDDEN SYMMETRIES IN INTEGRABLE DYNAMICAL
SYSTEMS

A. T. Fomenko
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AMS Mathematics Subject Classification: 11B39

Abstract. In case of integrable Hamiltonian dynamical systems with two de-
grees of freedom (restricted, for simplicity, on 3-dimesional isoenergy surface 𝑄)
the author in collaboration with H.Zieschang discovered an important invariant.
The invariant is called “marked molecule” 𝑊 * and is some graph with specific ver-
tices (“atoms”) and numerical marks on its edges. Two such systems are said to be
Liouville equivalent if their phase spaces are foliated in the same way into Liouville
tori (tori are the closures of integral trajectories).

1 Introduction

It is well known that many systems of differential equations that appear in physics,
geometry, and mechanics and describe quite different phenomena, turn out never-
theless to be closely connected and sometimes can be transformed one to another by
some diffeomorphism (or homeomorphism). But the recognition of such “equivalent
systems” is needed in some topological invariants. In case of integrable Hamilton-
ian dynamical systems with two degrees of freedom (restricted, for simplicity, on
3-dimesional isoenergy surface 𝑄) such invariant was discovered by the author in
collaboration with H.Zieschang. Integrability means that in some sense the dynam-
ical system has “hidden symmetries”. The invariant is called “marked molecule”
𝑊 * and is some graph with specific vertices (“atoms”) and numerical marks on its
edges. Two such systems are said to be Liouville equivalent if their phase spaces are
foliated in the same way into Liouville tori (tori are the closures of integral trajecto-
ries). The molecule 𝑊 * can be naturally considered as a portrait of the integrable
Hamiltonian system. The basic theorem of this theory is as follows (A.T.Fomenko,
H.Zieschang).

Theorem 1. Let (𝑣,𝑄) and (𝑣′, 𝑄′) be two integrable systems, and let 𝑊 * and
𝑊 *’ be the corresponding marked molecules. Then the systems 𝑣 and 𝑣′ are Liouville
equivalent if and only if the molecules 𝑊 * and 𝑊 *′ coincide.
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Let us recall here the result by A.V.Bolsinov and A.T.Fomenko: well known
Jacobi problem (geodesic flow on 2-ellipsoid) and the Euler case (in the dynamics
of rigid body motion) 1) are Liouville equivalent, 2) are topologically (continuosly)
orbitally conjugate, but 3) are not (in general case) smoothly orbitally conjugate.

Recently a new results were obtained in the problem of calculation of these topo-
logical invariants and classification of many concrete integrable systems up to their
equivalence. It was discovered that many well known integrable systems (which
usually are considered as “different”) are Liouville equivalent on some isoenergy 3-
surfaces. These results are based on the recent topological analysis of integrable
systems, which was done by A.A.Oshemkov, P.V.Morozov, A.Yu.Moskvin, Zotiev
D.B., D.G.Hagigatdust B.G., H.Horshidi.

2 Morse functions and 2-atoms as the description of bifurcations.
Simple atoms and molecules

Consider a smooth function 𝑓(𝑥) on a smooth manifold 𝑋𝑛, and let 𝑥1, . . . , 𝑥𝑛 be
a smooth regular coordinates in a neighborhood of a point 𝑝 ∈ 𝑋𝑛. The point 𝑝 is

Figure 1. General approach of Morse theory
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called critical for the fucntion 𝑓 if the differential

𝑑𝑓 = Σ
𝜕𝑓

𝜕𝑥𝑖
𝑑𝑥𝑖

vanishes at the point 𝑝.
The critical point is called 𝑛𝑜𝑛− 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 if the second differential

𝑑2𝑓 = Σ
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
𝑑𝑥𝑖𝑑𝑥𝑗

is non-degenerate at this point (See Fig. 1). There are three possible types of non-
degenerate critical points for functions on two-dimensional surfaces: maximum,
minimum, and saddle (See Fig. 2)

Figure 2. Types of critical points Figure 3. Small perturbation of a
function

A smooth function is called a Morse function if all its critical points are non-
degenerate. The following important statement holds: the Morse functions are
everywhere dense in the space of all smooth functions on a smooth manifold.

By 𝑐 we shall denote critical values of 𝑓 , i.e. those in whose preimage there is
at least one critical point. By arbitrary small perturbation, one can do so that, on
every critical level 𝑐 (i.e., on the set of x’s for which 𝑓(𝑥) = 𝑐), there is exactly
one critical point. In other words, the critical points which occur in the same level
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can be moved to close but different levels (See Fig. 3). If each critical level 𝑓−1(𝑐)
contains exactly one critical point, then 𝑓 is called simple Morse function.

Let 𝑓 be a Morse function on a compact smooth manifold 𝑋𝑛. For any 𝑎 ∈ R
consider the level surface 𝑓−1(𝑎) and its connected components, which will be called
fibers. As a result, on the manifold there appears the structure of a foliation with
singularities. By declaring each fiber to be a point and introducing the natural
quotient topology in the space Γof fibers, we obtain some quotient space. It can be
considered as the base of the foliation. For Morse function, the space Γ is a finite
graph. The graph is called the Reeb graph of the Morse function 𝑓 on manifold
𝑋𝑛. Consider, for instance, the two-dimensional torus in R3 embedded as shown in
Fig. 4, and take the natural height function to be a Morse function on the torus.

Figure 4. Reeb graphs for height functions Figure 5. Atom 𝐴

Then its Reeb graph has the form, shown next to the torus in the same figure.
In addition in Fig. 4 one can see another example of Morse function (again a height
function) on the sphere with two handles and its Reeb graph.

It is a natural problem to give the classification of Morse functions on two-
dimensional surfaces up to the fiber equivalence. To solve it, at first we need
to study the local question, namely, to describe the local topological structure of
singular fibers.

We begin with the informal definition. An atom is defined to be the topological
type of a two-dimensional Morse singularity. In other words, this is the topological
type of singular fiber of the foliation defined on a two-dimensional surface by a
Morse function. More precisely, we can reformulate this as follows.

Definition 1. An atom is a neighborhood 𝑃 2 of a critical fiber (which is defined
by inequality 𝑐− 𝜖 6 𝑓(𝑥) 6 𝑐+ 𝜖 for sufficiently small 𝜖), foliated into level lines of
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𝑓 and considered up to the fiber equivalence. In other words, an atom is the germ
of the foliation on a singular fiber.

The atom 𝑃 2 is called simple, if the Morse function 𝑓 in the pair (𝑃 2, 𝑓) is simple.
The other atoms are called complicated. The complexity of an atom is a number of
critical points on its critical level 𝑓(𝑥) = 𝑐. The atom is called orientable (oriented)
or non-orientable depending on whether the surface 𝑃 2 is orientable (oriented) or
non-orientable.

First consider a non-singular level line which is close to a local maximum point.
This line ia s circle. As the regular value tends to the local maximum, the circle
shrinks into a point (Fig. 5). Let us represent this evolution and the bifurcation
in the following conventional, but quite visual manner. Every regular level line (a
circle) we represent as one point which is located on the level 𝑎 (Fig. 5). As 𝑎
changes, this point moves running through a segment. At the moment, when the
value of the function becomes critical (equal to 𝑐), a circle has shrunk into a point.
Denote this event by the letter 𝐴 with a segment going out of it. This segment is
directed downwards. In the case of minimum we proceed the similar way (Fig. 5).

If 𝑐 is a critical saddle value, then the singular level line looks like a figure eight
curve. As 𝑎 tends to 𝑐, two circles are getting closer and, finally, touch at a point.
After this, the level line bifurcation happens and, instead of two, we obtain just one
circle. This process is also shown in Fig. 6 and Fig. 7.

Figure 6. Atom 𝐵. Level curves of a
function 𝑓 are shown

Figure 7. Level line transformation

Let 𝑓 be a simple Morse function on a compact closed surface 𝑋2 (orientable or
non-orientable). Consider Reeb graph Γ. The vertices of Γ correspond to critical
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fibers of 𝑓 . Let us replace these vertices by corresponding atoms (either 𝐴, or 𝐵,
or �̃�, which is non-orientable version of 𝐵). The graph obtained is called a simple
molecule 𝑊 . In fact, the notion of the simple molecule does not differ yet from that
of the Reeb graph. However, for complicated Morse functions the molecule 𝑊 will
carry more information than the Reeb graph Γ.

A minimal simple Morse function on the pretzel, i.e., on the sphere with two
handles, is realized as the height function on the embedding of the pretzel, presented
in Fig. 8. The corresponding simple molecule is also shown here.

Figure 8. Minimal simple Morse function on the pretzel and its simple molecule

3 Complicated atoms and molecules

Recall that atom is called complicated if critical connected level surface of function
𝑓 contains several critical points. Such objects naturally arise in many problems in
geometry and physics (See Fig. 9).

We give now a simple example. Suppose that a finite group 𝐺 acts smoothly
on a surface 𝑋2, and let 𝑓 be a 𝐺−invariant Morse function. Then, as a rule, such
function will be complicated.Indeed, if, for instance, the orbit of a critical point 𝑥
belongs entirely to a connected component of the level line {𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡}, then
this level contains several critical points. An example is shown in Fig. 10.

Of course, a small perturbation can make the function into a simple one by mov-
ing critical points into different levels. However, this destroys the Z5−symmetry, as
is seen from Fig. 11. Thus, in the problems that require studying symmetries of dif-
ferent kinds, one has to investigate complicated Morse functions as an independent
object.
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Figure 9. Complicated Morse functions

Figure 10. Complicated Morse functions as functions of symmetries

Figure 11. Perturbation leads to the loss of symmetry
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It is convenient to denote every atom (𝑃 2,𝐾) by some letter with number
of incoming and outgoing edges. The end of each edge corresponds to a certain
boundary circle of the surface 𝑃 . It is important to emphasize that, generally
speaking, the ends of an atom (𝑃,𝐾) are not equivalent, because the boundary
circles of the surface 𝑃 are not equivalent in the sense that not every two of them
can be matched by a homeomorphism of the pair (𝑃,𝐾) onto itself. Some atoms
of low complexity (both orientable and non-orientable) are listed in Fig. 12. In the
same table one can see the corresponding pairs of 𝑓−graphs, as well as the surface
𝑃 obtained from 𝑃 by gluing discs to all of its boundary circles.

4 Integrable Hamiltonian systems with two degrees of freedom

Consider symplectic manifold 𝑀2𝑛 with closed non-degenerate skewsymmetric two-
form 𝜔. It defines on the space of smooth functions on 𝑀2𝑛 Poisson bracket

{𝑓, 𝑔} = 𝜔−1(𝑑𝑓, 𝑑𝑔).

This operation is bilinear, skewsymmetric and satisfies the Jacobi identity. The sys-
tem of ordinary differential equations defined by vector field 𝑣 is called Hamiltonian
system if there exists such function 𝐻 (called Hamiltonian) that for any function 𝑔
on 𝑀2𝑛 the equality holds

𝑣(𝑔) = {𝑔,𝐻}.

We denote 𝑣 = sgrad𝐻. It’s easy to see that the function 𝑓 is an integral of the flow
𝑣 iff {𝑓,𝐻} = 0. The Hamiltonian system is called integrable if its Hamiltonian 𝐻
is “symmetrical”, i.e., has the sufficient number of integrals.

The system is integrable in Liouville sense if there exists exactly 𝑛 functionally
independent commuting integrals 𝑓1, . . . , 𝑓𝑛. They define the so called Liouville
foliation (See Fig. 13). The Liouville theorem states, that if the regular (i.e. 𝑓𝑖 are
functionally independent on it) common level surface of these functions is compact,
then it is a torus 𝑇𝑛. The solution (integral trajectory) in general case determines
almost periodic motion on this torus.

This class of Hamiltonian systems contains many important examples from
physics an classical mechanics: the different cases of motion of rigid body (Euler
case, Lagrange top), geodesic flow on ellipsoid, interaction of the material points,
located on the line or on the circle 𝑆1. The classification of such systems is a very
difficult task. It turns out, however, that in case of 𝑛 = 2 the full classification
exists.

Consider a symplectic manifold 𝑀4 with an integrable Hamiltonian system 𝑣 =
sgrad𝐻; let 𝑄3

ℎ be a non singular compact connected isoenergy 3-surface in 𝑀4.
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Figure 12. Several atoms of low-complexity
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Figure 13. The two-dimensional cross-section of Liouville foliation in three-dimensional
invariant submonifold around singular leaf

Let 𝑓 be an additional integral of the system 𝑣 that is independent of 𝐻. We denote
its restriction to 𝑄3

ℎ by the same letter 𝑓 . It is assumed to be a Bott function on
𝑄3
ℎ. Our aim is to investigate the topology of the Liouville foliation on 𝑄3

ℎ defined
by the given integrable system. Its non-singular leaves are Liouville tori, and the
singular ones correspond to critical levels of the integral 𝑓 on 𝑄3

ℎ.
Now consider a topologically stable integrable system with Bott integral 𝑓 on

an isoenergy 3−surface 𝑄3
ℎ and take some singular leaf 𝐿 of the corresponding Liou-

ville foliation on 𝑄3
ℎ. Consider a neighborhood of this leaf, i.e., a three-dimensional

manifold 𝑈(𝐿) with the Liouville foliation structure and fixed orientation. By anal-
ogy with the two-dimensional case, as neighborhood 𝑈(𝐿), we take the connected
component of the set 𝑐 − 𝜖 6 𝑓(𝑥) 6 𝑐 + 𝜖 that contains the singular leaf 𝐿 (same
as in previous section 𝑓(𝐿) = 𝑐 is a critical value of 𝑓). Such an object is naturally
called a 3−atom. However, from the formal viewpoint, we have to be more careful.
We shall assume two such 3−manifolds 𝑈(𝐿) and 𝑈 ′(𝐿) with the structure of the
Liouville foliation to be fiberwise equivalent if
1) there exists a diffeomorphism between them that maps the leaves of the first
Liouville foliation into those of the second one,
2) this diffeomorphism preserves both the orientation on 3−manifolds and the ori-
entation on the critical circles defined by the Hamiltonian flows.

Definition 2. The equivalence class of the three-dimensional manifold 𝑈(𝐿) is
called a 3−atom. The number of critical circles in the 3−atom is called its atomic
weight or complexity.

Consider 3−atom 𝑈(𝐿) with the structure of a Seifert fibration on it. Let

𝜋 : 𝑈(𝐿)→ 𝑃 2
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denote its projection onto a two-dimensional bas 𝑃 2 with the embedded graph
𝐾 = 𝜋(𝐿). Let us mark those points on the base 𝑃 2, into which the singular fibers
of the Seifert fibration (i.e., the fibers of type (2,1)) are projected. Recall that the
base 𝑃 2 has a canonical orientation. The point is that an orientation is already
fixed on 𝑈(𝐿), as well as on the fibers of the Seifert fibration. It is clear that, as a
result, we obtain some oriented 2-atom (𝑃 2,𝐾).

Theorem 2 (Fomenko). Under the projection 𝜋 : 𝑈(𝐿) → 𝑃 2, the 3−atom
𝑈(𝐿) turns into the 2-atom (𝑃 2,𝐾), and moreover, the singular fibers of the Seifert
fibration on the 3−atom are in one-to-one correspondence with the star-vertices of
the 2−atom. This correspondence between 2−atoms and 3−atoms is bijection.

The example of 3-atom is shown in the Fig. 14.

Figure 14. 3-atom 𝐴 Figure 15. 3-atom 𝐵 Figure 16. 3-atom 𝐵*

Let us describe 3−atom 𝐴 (See fig. 14). This 3−atom is presented as a solid
torus foliated into concentric tori, shrinking into the axis of the solid torus. In
other words, the 3−atom 𝐴 is the direct product of a circle and a disc foliated into
concentric circles. From the viewpoint of the corresponding dynamical system, 𝐴
is a neighborhood of a stable periodic orbit. The examples of saddle 3-atoms are
presented in the Fig.15 and Fig.16.

Now we make more precise the definition of the Liouville equivalence for inte-
grable Hamiltonian systems. From now on, we shall assume that two Liouville folia-
tions are Liouville equivalent if and only if there exists a diffeomorphism that sends
the leaves of the first foliation to those of the second one and satisfies two conditions
related to the orientation. Namely it preserves the orientation of 3−manifolds 𝑄3

ℎ

and 𝑄′3
ℎ, and moreover, it also preserves the orientation on the critical circles given

by the Hamiltonian flows. The molecule 𝑊 contains a lot of essential information
on the structure of the Liouville foliation on 𝑄3

ℎ. However, this information is not
quite complete. Indeed, the molecule of the form 𝐴 — 𝐴, for example, informs
us that the manifold 𝑄3

ℎ is glued from two solid tori foliated into concentric tori
in a natural way. However, it does not tell us how this gluing is made, and what
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three-dimensional manifold is obtained as a result. Therefore, we have to add some
additional information to the molecule 𝑊 , namely, the rules that clarify how to
glue the isoenergy surface 𝑄3

ℎ from individual 3−atoms. As it was discovered by
A.T.Fomenko and H.Zieschang, the molecule 𝑊 , which corresponds to integrable
Hamiltonian system, can be endowed by some numerical marks in such a way, that
these marked molecules 𝑊 * will classify such a systems up to Liouville equiva-
lence. In short, the marked molecule 𝑊 * is molecule 𝑊 , equipped with three sets
of numbers 𝑟𝑖, 𝜖𝑖 and 𝑛𝑘 called marks.

Theorem 3. Two integrable systems (𝑣,𝑄3
ℎ) and (𝑣′, 𝑄′3

ℎ) are Liouville equiv-
alent if and only if their marked molecule 𝑊 * and 𝑊 *′ coincide.

The marks can not be chosed orbitrary, as there are several important conditions
on them. Any marked molecule 𝑊 * with marks, which satisfy these conditions, is
called abstract marked molecule.

Theorem 4. Any abstract marked molecule 𝑊 * is realized as a marked molecul
of some integrable Hamiltonian system.

Corollary. 1) There exist a one-to-one correspondence between the Liouville
equivalence classes of integrable systems and marked molecules. In particular, the
set of Liouville equivalence classes of integrable systems is discrete (countable) and
has no continuous parameters.
2) There exists an enumeration algorithm for marked molecules (i.e. classes of
integrable systems)
3) There exists an algorithm for comparison of marked molecules, i.e., the algorithm
that gives answer to the question whether two integrable systems corresponding to
given molecule are Liouville equivalent or not.

The table shown in the Fig. 17 represents, for example, the marked molecules
calculated for well known integrable Zhukovskii case in the dynamics of rigid body
in 3-dimensional Euclidean space.

5 Jacobi problem and Euler case

Consider an ellipsoid 𝑋 in three-dimensional Euclidean space given by

𝑥2

𝑎
+
𝑦2

𝑏
+
𝑧2

𝑐
= 1,

where 𝑎 < 𝑏 < 𝑐.
The geodesic flow on the ellipsoid is a Hamiltonian system on the cotangent

bundle 𝑇 *𝑋 with standard symplectic structure. The Hamiltonian of this system
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Figure 17. Zhukovskii case
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is
𝐻(𝑞, 𝑝) =

1

2

∑︁
𝑖,𝑗

𝑔𝑖𝑗(𝑞)𝑝𝑖𝑝𝑗 =
1

2
|𝑝|2,

where 𝑔𝑖𝑗(𝑞) is the induced Riemannian metric on the ellipsoid 𝑋, and (𝑞, 𝑝) ∈ 𝑇 *𝑋,
𝑞 ∈ 𝑋, ∈ 𝑇 *

𝑞𝑋. The isoenergy surface 𝑄3 = {2𝐻 = |𝑝|2 = 1} in this case is a 𝑆1-
fibration over 𝑋 (unit covector bundle). The geodesic flow on the ellipsoid admits
an additional integral

𝑓𝐽 = 𝑎𝑏𝑐
(︁𝑥2
𝑎2

+
𝑦2

𝑏2
+
𝑧2

𝑐2

)︁(︁ �̇�2
𝑎

+
�̇�2

𝑏
+
�̇�2

𝑐

)︁
.

Here (�̇�, �̇�, �̇�) is a tangent vector to a geodesic (we identify tangent and cotangent
vectors in the usual way).

The second system (Euler case) is given by the standard Euler-Poisson equations
and describes the motion of a rigid body fixed at its center of mass:

𝑑𝐾

𝑑𝑡
= [𝐾,Ω],

𝑑𝛾

𝑑𝑡
= [𝛾,Ω].

Here vector 𝐾 = (𝑠1, 𝑠2, 𝑠3) is a kinetic momentum vector of the body, Ω =
(𝐴𝑠1, 𝐵𝑠2, 𝐶𝑠3) is its angular velocity vector, 𝛾 = (𝑟1, 𝑟2, 𝑟3) is the unit vertical
vector (the coordinates of these vectors are written in the orthonormal basis which
is fixed in the body and whose axes coincide with the principal axes of inertia). The
parameters 𝐴,𝐵,𝐶 of the problem are the inverse of the principal moments of in-
ertia of the rigid body. We suppose they are all different 𝐴 < 𝐵 < 𝐶. By 𝑣𝐽(𝑎, 𝑏, 𝑐)
and 𝑣𝐸(𝐴,𝐵,𝐶) we denote the restrictions of the Jacobi and Euler systems to their
isoenergy surface 𝑄𝐽 = {2𝐻𝐽 = 1} and 𝑄𝐸 = {2𝐻𝐸 = 1} respectively, where 𝐻𝐽

and 𝐻𝐸 are the Hamiltonians of the Jacobi problem and the Euler case indicated
above. Thus we have two dynamical systems on diffeomorphic isoenergy three-
dimensional manifolds. We want to find out whether these systems are similar in
some sense. In particular, are they orbitally equivalent? If yes, then topologically or
smoothly? The following theorems were proved by A.V.Bolsinov and A.T.Fomenko.

Theorem 5. The Liouville foliation related to the Hamiltonian systems
𝑣𝐽(𝑎, 𝑏, 𝑐) and 𝑣𝐸(𝐴,𝐵,𝐶) on isoenergy surfaces are diffeomorhic. In other words,
the Jacobi problem and the Euler case are Liouville equivalent.

Recall that the 𝑡−molecule is obtained from the usual marked molecule 𝑊 * by
adding the rotation vectors on all of its edges and the Λ−invariant on atoms. It
turns out that there are no other orbital invariant for the Euler and Jacobi systems
besides the 𝑡−molecule.
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Theorem 6. The Jacobi problem (geodesic flow on the ellipsoid) and the Euler
case (in rigid body dynamics) are topologically orbitally equivalent in the following
exact sense. For any rigid body there exists an ellipsoid (and vice versa, for any
ellipsoid there exists a “rigid body”) such that the corresponding systems 𝑣𝐽(𝑎, 𝑏, 𝑐)
and 𝑣𝐸(𝐴,𝐵,𝐶) are topologically orbitally equivalent. The parameters 𝑎, 𝑏, 𝑐 and
𝐴,𝐵,𝐶 related to equivalent systems are uniquely defined up to proportionality.

Discussing the equivalence of the Euler and Jacobi problems, we can ask another
question: can they be topologically conjugate for some values of their parameters?
In other words, does there exist a homeomorphism between isoenergy surfaces which
sends one Hamiltonian flow to the other and preserves parametrization on integral
curves?

Theorem 7. The geodesic flow on any ellipsoid (different from the sphere),
restricted to its constant energy three-dimensional manifold, is not topologically con-
jugate to any system of the Euler case. In other words, for any values of parameters
𝑎, 𝑏, 𝑐 and 𝐴,𝐵,𝐶 (except for 𝑎 = 𝑏 = 𝑐 and 𝐴 = 𝐵 = 𝐶) the systems 𝑣𝐽(𝑎, 𝑏, 𝑐)
and 𝑣𝐸(𝐴,𝐵,𝐶) are not topologically conjugate.

Theorem 8 (P. V. Morozov) 1) The dynamical systems known as Euler case,
Clebsch case and Steklov case in the rigid-body dynamics in 3-space are Liouville
equivalent for sufficiently large values of energy (i.e. energy integral).
2) If the value of area integral 𝑔 is sufficiently large, than Steklov case and Clebsch
case are Liouville equivalent (as systems on four-dimensional symplectic manifolds)
to Euler case with non-zero value of area integral.

Theorem 9 (N.V. Korovina) Let us consider dynamical systems of Lagrange
case and Euler case for zero value of area integral:
1) Let us recall that Lagrange case is characterized by the parameter 𝛽 and the
smooth function 𝑉 (𝑥) called a potential. Then for sufficiently large value ℎ of
energy 𝐻, the Lagrange system of the isoenergy 3-surface 𝑄 = {𝐻 = ℎ = 𝑐𝑜𝑛𝑠𝑡} is
orbitally equivalent to the Euler system, corresponding to some value of parameter
𝐺(𝛽), where 𝐺 determines the Euler system.
2) Let us consider Euler system with parameter 𝐺. Then for any value 𝛽 > 0 and for
sufficiently large value ℎ of energy 𝐻 there exist potentials 𝑉 (𝑥) such that Lagrange
system with parameters 𝛽 and 𝑉 (𝑥) (on the isoenergy three-dimensional level surface
𝐻 = ℎ = 𝑐𝑜𝑛𝑠𝑡) is orbitally equivalent to Euler system with parameter 𝐺.
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Abstract. We survey some basic problems of Schrödinger, Klein-Gordon and wave
equations in the framework of general scattering theory. The following topics are
treated under suitable decay and/or snallness conditions on the perturbation term:
Growth estimates of generalized eigenfunctions, Resolvent estimates, Scattering
theory, Smoothing properties and Strichartz estimates. Due to our formulation of
the weighted energy method, some topics are naturally extended to time-dependent
and/or non-selfadjoint perturbations.

1 Introduction

This article will summarize with some addendum and modification the following 4
works which remain to the author as a personal history of particitation in ISAAC:
[13] (August 2001, Berlin), [14] (July 2005, Catania), [15] (August 2007, Ankara),
[16] (July 2009, London).

In S3 an inverse scattering problem of [13] is generalized to wave equations
with both “dissipation” and potential terms. We give a reconstruction procedure of
both coefficients from the scattering amplitude with a fixed energy. In S6 and S7
are respectively treated scattering and Strichartz estimates for Schrd̈inger, Klein-
Gordon and wave equations under time dependent small perturbations. We did not
enter into the Strichartz estimates in [15] and excluded Klein-Gordon equayions
there. Moreover, in S5 decay-nondecay properties of solutions in 𝐿2 are illustrated
to dissipative Schrödinger evolution equations.

2 Selfadjoint magnetic Schrödinger operators

Let Ω be an exterior domain in R𝑛 with smooth compact boundary 𝜕Ω (the case
Ω = R𝑛 is not excluded). We consider in Ω the Schrödinger operator

𝐿𝑢 = −
𝑛∑︁
𝑗=1

{𝜕𝑗 + 𝑖𝑏𝑗(𝑥)}2 𝑢+ 𝑐(𝑥)𝑢, (1)
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where 𝑏𝑗(𝑥) are real valued 𝐶1-function of 𝑥 ∈ R𝑛 and 𝑐(𝑥) is a real valued con-
tinuous function of 𝑥 ∈ R𝑛∖{0}. 𝑏(𝑥) = (𝑏1(𝑥), · · · , 𝑏𝑛(𝑥)) represents a magnetic
potential. Thus the magnetic field is defined by its rotation ∇× 𝑏(𝑥). The external
potential 𝑐(𝑥) may have a singularity like 𝑂(|𝑥|−2) at 𝑥 = 0 when Ω = R𝑛.

In the following we put ∇𝑏 = ∇ + 𝑏(𝑥), Δ𝑏 = ∇𝑏 · ∇𝑏, 𝑟 = |𝑥|, �̃� = 𝑥/𝑟 and
𝜕𝑟 = �̃� · ∇. The inner product and norm of the Hilbert space 𝐿2 = 𝐿2(Ω) are
defined by

(𝑓, 𝑔) =

∫︁
𝑓(𝑥)𝑔(𝑥)𝑑𝑥 and ‖𝑓‖ =

√︀
(𝑓, 𝑓).

Here we specify by
∫︁
𝑑𝑥 the integration over Ω. For function 𝜇 = 𝜉(𝑟) > 0 let 𝐿2

𝜇

be the weighted 𝐿2-space with norm ‖𝑓‖2𝜇 =

∫︁
𝜇(𝑟)|𝑓(𝑥)|2𝑑𝑥 <∞.

We assume

(𝐴1) ∃𝑐∞(𝑥) ∈ 𝐿∞ such that 𝑐(𝑥)− 𝑐∞(𝑥) >
𝛽

𝑟2
with 𝛽 > −(𝑛− 2)2

4
.

Theorem 1. Under (𝐴1) let 𝐿 be defined by{︃
𝐿𝑢 = −Δ𝑏𝑢+ 𝑐(𝑥)𝑢for𝑢 ∈ 𝒟(𝐿),

𝒟(𝐿) =
{︀
𝑢 ∈ 𝐿2 ∩𝐻2

loc(Ω∖{0}); (−Δ𝑏 + 𝑐)𝑢, 𝑟−1𝑢 ∈ 𝐿2, 𝑢|𝜕Ω = 0
}︀
.

(2)

Then it gives a lower semibounded selfadjoint operator in 𝐿2.

The essential spectrum 𝜎𝑒(𝐿) of 𝐿 is included in the half line [0,∞) if 𝑐(𝑥)→ 0
as |𝑥| → ∞. To investigate further properties of the essential spectrum we first
consider the homogeneous equation

−Δ𝑏𝑢+ 𝑐(𝑥)𝑢− 𝜆𝑢 = 0, 𝜆 > 0, (3)

with 𝑏(𝑥) and 𝑐(𝑥) satisfying the additional condition

(𝐴2) max

{︂
|∇ × 𝑏(𝑥)|, |𝑐(𝑥)|

}︂
6 𝜇(𝑟), 𝑟 = |𝑥| > ∃𝑅0,

where 𝜇 = 𝜇(𝑟) is a smooth, positive, non-increasing 𝐿1-function of 𝑟 ∈ R+ =
(0,∞).
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Theorem 2. Under (𝐴1), (𝐴2) let 𝑢 ∈ 𝐻2
loc(Ω∖{0}) solves (2.1). If the support

of 𝑢 is not compact, then

lim inf
𝑡→∞

∫︁
𝑆𝑡

|�̃� · 𝜗(𝑥,±
√
𝜆)|2𝑑𝑆 ̸= 0,

where 𝜗(𝑥, 𝜅) = ∇𝑏𝑢+ �̃�

(︂
𝑛− 1

2𝑟
− 𝑖𝜅

)︂
𝑢 for 𝜅 ∈ C.

If we additionary require the following (𝐴2.2), the unique continuation property
holds and non-existence of positive eigenvalues results from this theorem.
(𝐴3) ∇𝑏𝑗(𝑥) (𝑗 = 1, · · · , 𝑛) and 𝑐(𝑥) are locally Hölder continuous.

By contradiction, Theorem 2 directly shows the following assertion.

Theorem 3. Assume (𝐴1), (𝐴2) with 𝜇 satisfying also

∞∫︁
𝑟

𝜇(𝑠)𝑑𝑠 > 𝑟𝜇(𝑟) for 𝑟 > 𝑅0, (4)

and (𝐴3). Then for any 0 < 𝑎 < 𝑏 < ∞, the resolvent 𝑅(𝜅2) ∈ ℬ(𝐿2
𝜇−1 , 𝐿

2
𝜇)

restricted in 𝜅 ∈ 𝐾± = {𝜅; 𝑎 6 ±Re𝜅 6 𝑏, 0 < Im𝜅 6 1} is continuously extended
to 𝐾± ∪ [𝑎, 𝑏] as an operator from 𝐿2

𝜇−1 to 𝐿2
𝜇. Thus, the positive spectrum of 𝐿 is

absolutely continuous with respect to the Lebesgue measure.

𝐶(1 + 𝑟)−1−𝛿 and 𝐶(1 + 𝑟)−1[log(1 + 𝑟)]−1−𝛿 (𝐶 > 0, 0 < 𝛿 < 1) are typical
examples of 𝜇 satisfying (4). These examples also satisfy (26) given later.

Cf., Kalf et ar. [8] for Theorem 1. Theorem 2 is a real generalization of Rellich
[20] (cf. Kato [9]). A more general oscillating long-range potential is treated in [14]
(also Jäger-Rejto [8]). Theorem 3 states the principle of limiting absorption, the
proof of which is originated by Eidus [8].

3 Spectral representations and scattering

The Fourier transform 𝑓(𝜉) = (2𝜋)−𝑛/2
∫︁
𝑒−𝑖𝑥·𝜉𝑓(𝑥)𝑑𝑥 determines the spectral rep-

resentation of 𝐿0. Namely, put

[𝐹0(𝜎)𝑓 ](𝜔) = 𝜎(𝑛−1)/2𝑓(𝜎𝜔), 𝜔 ∈ 𝑆𝑛−1,

[𝐹 *
0 (𝜎)ℎ](𝑥) = 𝜎(𝑛−1)/2(2𝜋)−𝑛/2

∫︁
𝑆𝑛−1

𝑒𝑖𝜎𝑥·𝜔ℎ(𝜔)𝑑𝑆𝜔, ℎ ∈ 𝐿2(𝑆𝑛−1).
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Then [𝐹0𝑓 ](𝜎, 𝜔) = [𝐹0(𝜎)𝑓 ](𝜔) gives a unitary operator from 𝐿2(R𝑛) to 𝐿2(R+ ×
𝑆𝑛−1) and its adjoint 𝐹 *

0 is given by

[𝐹 *
0 ℎ](𝑥) =

∞∫︁
0

[𝐹 *
0 (𝜎)ℎ(𝜎, ·)](𝑥)𝑑𝜎 for ℎ(𝜎, 𝜔) ∈ 𝐿2(R+ × 𝑆𝑛−1).

In this section we require

(𝐴4) max

{︂
|𝑏(𝑥)|, |∇𝑏(𝑥)|, |𝑐(𝑥)|

}︂
6 𝜇(𝑟), 𝑟 = |𝑥| > ∃𝑅0 > 0.

The decay condition on 𝑏(𝑥) itself is used to compare 𝐿 with free Lapalacian
−Δ in 𝐿2(R𝑛). Let 𝑗(𝑟) be a 𝐶∞-function of 𝑟 > 0 such that 𝑗(𝑟) = 0 (𝑟 < 𝑅0)
and = 1 (𝑟 > 𝑅0 + 1), and define the operator 𝐽 : 𝐿2(R𝑛) → 𝐿2 = 𝐿2(Ω) and its
adjoint 𝐽* by

[𝐽𝑓 ](𝑥) = 𝑗(𝑟)𝑓(𝑥), 𝑥 ∈ Ω,

[𝐽*𝑔](𝑥) = 𝑗(𝑟)𝑔(𝑥) (𝑥 ∈ Ω) and = 0 (𝑥 ∈ R𝑛∖Ω).

Let 𝑅0(𝜅
2) = (𝐿0 − 𝜅2)−1. Then we have the following resolvent equation

𝑅(𝜅2)𝐽 = {𝐽 −𝑅(𝜅2)𝑉 }𝑅0(𝜅
2), 𝑉 = 𝐿𝐽 − 𝐽𝐿0,

𝐽*𝑅(𝜅2) = 𝑅0(𝜅
2){𝐽* − 𝑉 *𝑅(𝜅2)}, 𝑉 * = 𝐽*𝐿− 𝐿0𝐽

*.

For each 𝜎 ∈ R+, we define

𝐹±(𝜎) = 𝐹0(𝜎){𝐽* − 𝑉 *𝑅(𝜎2 ± 𝑖0)},

𝐹 *
±(𝜎) = {𝐽 −𝑅(𝜎2 ∓ 𝑖0)𝑉 }𝐹 *

0 (𝜎).

Theorem 4. Assume (𝐴1), (𝐴3) and (𝐴4). Then the operator

[𝐹±𝑓 ](𝜎, 𝜔) = [𝐹 (±𝜎)𝑓 ](𝜔), (𝜎, 𝜔) ∈ R+ × 𝑆𝑛−1.

is extended to a unitary operator from {𝐼 − 𝑃}𝐿2 onto 𝐿2(R+ × 𝑆𝑛−1):

𝐹 *
±𝐹± = 𝐼 − 𝑃 in 𝐿2 (𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠),

𝐹±𝐹
*
± = 𝐼 in 𝐿2(R+ × 𝑆𝑛−1) (𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦),

where 𝑃 is the orthogonal projection onto the eigenspace of 𝐿.

We define the operators 𝑈± and 𝒮 by 𝑈± = 𝐹 *
±𝐹0, 𝑆 = 𝑈*

+𝑈− = 𝐹 *
0𝐹+𝐹

*
−𝐹0.
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Proposition 1. 𝑈± : 𝐿2(R𝑛) → (𝐼 − 𝑃 )𝐿2(Ω) are unitary operators which
intertwine 𝐿0 and 𝐿:

𝐿𝑈±𝑓 = 𝑈±𝐿0𝑓, 𝑓 ∈ 𝒟(𝐿0).

𝒮 is a unitary operator in 𝐿2(R𝑛) which commutes with 𝐿0.

Now, consider the Schrödinger evolution operators 𝑒−𝑖𝑡𝐿 and 𝑒−𝑖𝑡𝐿0 . Theorem
4 implies that for 𝑓 ∈ (𝐼 − 𝑃 )𝐿2(Ω) and 𝑓0 ∈ 𝐿2(R𝑛), 𝑒−𝑖𝑡𝐿𝑓 = 𝐹±𝑒

−𝑖𝜎2𝑡𝐹±𝑓 ,
𝑒−𝑖𝑡𝐿0𝑓0 = 𝐹0𝑒

−𝑖𝜎2𝑡𝐹0𝑓0.

Theorem 5. Assume (𝐴1), (𝐴3) and (𝐴4). Then the M𝜑ller wave operator
exists and coincides with 𝑈±:

𝑠− lim
𝑡→±∞

𝑒𝑖𝑡𝐿𝐽𝑒−𝑖𝑡𝐿0 = 𝑈±.

Thus, 𝑆 = 𝑈*
+𝑈− defines the M𝜑ller scattering operator, the representation of which

in the momentum space 𝐿2(R+ × 𝑆𝑛−1) is given by

𝐹0𝑆𝐹
*
0 = 𝐼 − 𝑇 , [𝑇𝑓 ](𝜎, 𝜔) =

1

2𝜎
[𝐹+(𝜎)𝑉 𝐹

*
0 𝑓(𝜎, ·)](𝜔).

The kernel of 𝑇 is called the scattering amplitude.

A survey of classical stationary approach on short-range scattering is given
above. We can find a detailed description e.g. in Mochizuki [12].

4 Inverse scattering for small nonselfadjoint perturbation of wave
equations

We consider the wave equation of the form

𝑤𝑡𝑡 + 𝑏(𝑥)𝑤𝑡 −Δ𝑤 + 𝑐(𝑥)𝑤 = 0, (𝑥, 𝑡) ∈ R𝑛 ×R, (5)

where 𝑛 > 3 and 𝑏(𝑥) and 𝑐(𝑥) are real, continuous functions satisfying

(𝐴5) |𝑏(𝑥)| 6 𝜖0𝜇(𝑟),
𝛽

𝑟2
< 𝑐(𝑥) 6 𝜇(𝑟)

with 𝜖0 > 0 (small) and 𝛽 > −(𝑛− 2)2

4
. 𝜇(𝑟) is a positive 𝐿1-function satisfying (5).

We rewrite (5) in the form

𝑖𝜕𝑡𝑢 = Λ𝑢 ≡ Λ0𝑢+ 𝑉 𝑢, 𝑢 = {𝑤,𝑤𝑡};
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Λ0 = 𝑖

(︃
0 1

Δ 0

)︃
and 𝑉 = −𝑖

(︃
0 0

𝑐(𝑥) 𝑏(𝑥)

)︃
.

Let ℋ𝐸 = �̇�1 × 𝐿2 be the Hilbert space with energy norm

‖𝑓‖2𝐸 =
1

2

{︀
‖∇𝑓1‖2 + ‖𝑓2‖2

}︀
, 𝑓 = {𝑓1, 𝑓2}.

Λ0 is selfadjoint in ℋ𝐸 , and its spectral representation is determined by

ℱ0(𝜆) =
1

2
𝐹0(|𝜆|)

(︃
1 𝑖𝜆−1

−𝑖𝜆 1

)︃
(𝜆 ̸= 0).

The spectral representation of Λ is then given by

ℱ±(𝜆) = ℱ0(𝜆){𝐼 − 𝑉ℛ(𝜆± 𝑖0)}, ℱ (*)
± (𝜆) = {𝐼 −ℛ(𝜆∓ 𝑖0)𝑉 }ℱ*

0 (𝜆),

where ℛ(𝜁) is the resolvent of Λ. Since the coefficient 𝑏(𝑥) of nonselfadjoint part is
small, ℛ(𝜁) ∈ ℬ(ℋ𝐸,𝜇−1 ,ℋ𝐸,𝜇) is extended continuously to 𝜁 = 𝜆±𝑖0 (𝜆 ∈ R∖{0}).

Proposition 2. There exists the strong limit

𝒲± = 𝑠− lim
𝑡→±∞

𝑒𝑖𝑡Λ𝑒−𝑖𝑡Λ0 .

It is expressed as 𝒲± = ℱ (*)
± ℱ0, and defines a bijection in ℋ𝐸 . The scattering

operator exists and is given by

𝒮 =𝒲−1
+ 𝒲− = ℱ*

0ℱ
(*)−1
+ ℱ (*)

− ℱ0.

The last assertion gives us ℱ0(𝐼−𝒮)ℱ*
0 = ℱ+(ℱ (*)

+ −ℱ
(*)
− ). Thus the scattering

amplitude 𝒜(𝜆) with energy 𝜆 ̸= 0 is expressed as

2𝜋𝑖𝒜(𝜆) ≡ ℱ0(𝜆){𝐼 − 𝒮(𝜆)}ℱ*
0 =

𝜋𝑖

2
𝑇 (𝜆)

(︃
1 𝑖𝜆−1

−𝑖𝜆 1

)︃
,

where 𝑇 (𝜆) is the scaler amplitude given by

𝑇 (𝜆) = 𝜆−1𝐹0(|𝜆|){1 + 𝑞(·, 𝜆)𝑅(𝜆2 − 𝑖0, 𝜆)}𝑞(·, 𝜆)𝐹 *
0 (|𝜆|)

with 𝑅(𝜁2, 𝛼) = (−Δ+ 𝑐− 𝑖𝛼𝑏− 𝜁2)−1 and 𝑞(𝑥, 𝛼) = 𝑐− 𝑖𝛼𝑏.
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𝑇 (𝜆) is an integral operator on 𝑆𝑛−1 with kernel

𝑎(𝜆, 𝜔, 𝜔′) = (2𝜋)−𝑛𝜆𝑛−2

[︂∫︁
𝑒−𝑖𝜆(𝜔−𝜔

′)·𝑥𝑞(𝑥, 𝜆)𝑑𝑥+

+

∫︁
𝑒−𝑖𝜆𝜔·𝑥𝑞(𝑥, 𝜆)𝑅(𝜆2 − 𝑖0, 𝜆)){𝑞(·, 𝜆)𝑒𝑖𝜆𝜗′·}(𝑥)𝑑𝑥

]︂
. (6)

Our aim is to derive the reconstruction procedure of 𝑏(𝑥) and 𝑐(𝑥) from this
𝑎(𝜆, 𝜔, 𝜔′).

The following result is well known as the high energy Born approximation.

Theorem 6. In case 𝑏(𝑥) ≡ 0, if we further require 𝑐(𝑥) ∈ 𝐿1(R𝑛), then for
any 𝜉 ∈ R𝑛 we can choose 𝜔(𝜆), 𝜔′(𝜆) ∈ 𝑆𝑛−1 to satisfy 𝜆{𝜔(𝜆)− 𝜔′(𝜆)} = 𝜉 and

lim
𝜆→∞

(2𝜋)𝑛𝜆−𝑛+2𝑎(𝜆, 𝜔(𝜆), 𝜔′(𝜆)) =

∫︁
𝑒−𝑖𝜉·𝑥𝑐(𝑥)𝑑𝑥.

In case 𝑏(𝑥) ̸≡ 0, however, ‖𝑅(𝜆2 − 𝑖0, 𝜆)‖𝐿2
𝜇−1 ,𝐿

2
𝜇

does not in general decay as

|𝜆| → ∞. To fill up, we restrict 𝑏(𝑥), 𝑐(𝑥) to exponentially decreasing functions,
and introduce the so called nonphysical Faddeev resolvent ([5]).

Let 𝑘 ∈ R𝑛, 𝛾 ∈ 𝑆𝑛−1, 𝜖 > 0. We simply write 𝜁2 = 𝜁 · 𝜁 for 𝜁 ∈ C𝑛, and both
the resolvent and its kernel by 𝑅0(𝜅

2). Then since

𝑅0((𝑘 + 𝑖𝜖𝛾)2) = (2𝜋)−𝑛
∫︁

𝑒𝑖(𝑥−𝑦)·𝜉

𝜉2 − 𝑘2 + 𝜖2 − 2𝑖𝜖𝛾 · 𝑘
𝑑𝜉,

choosing 𝛾 to satisfy 𝑡 = 𝛾 · 𝑘 > 0 and putting 𝜉 = 𝜂 + 𝑡𝛾, we have

= (2𝜋)−𝑛
∫︁

𝑒𝑖(𝑥−𝑦)·(𝜂+𝑡𝛾)

𝜂2 + 2𝑡𝛾 · 𝜂 − (𝑘2 − 𝜖2 − 𝑡2)− 2𝑖𝜖𝛾 · 𝑘
𝑑𝜂.

We let 𝜖→ +0 and define the Faddeev unperturbed resolvent depending on 𝛾 by

𝑅𝛾,0(𝑘
2, 𝑡) = 𝑒𝑖𝑡𝛾·𝑥𝐺𝛾,0((𝑘 − 𝑡𝛾)2, 𝑡)𝑒−𝑖𝑡𝛾·𝑥,

𝐺𝛾,0(𝜎
2, 𝑡) = (2𝜋)−𝑛

∫︁
𝑒𝑖(𝑥−𝑦)·𝜂

𝜂2 + 2𝑡𝛾 · 𝜂 − 𝜎2 − 𝑖0
𝑑𝜂. (7)

Lemma 1. (see Isozaki [6]) Let Φ𝛾(𝑡) = 𝜒(𝛾 · 𝜗 > 𝑡/𝜆) (defining function of
𝜗 ∈ 𝑆𝑛−1). Then

𝑅𝛾,0(𝜆, 𝑡) = 𝑅0((𝜆+ 𝑖0)2)− 2𝜋𝐹0(𝜆)
*Φ𝛾(𝑡)𝐹0(𝜆).
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Lemma 2. (see Weder [21]) In the expression of 𝐺𝛾,0(𝜎2, 𝑡) we replace 𝑡 by
𝑧 ∈ C+. Then

(𝑖) 𝐺𝛾,0(𝜎
2, 𝑧) is continuou in {|𝜎|, 𝛾} ∈ R+ × 𝑆𝑛−1 and analytic in 𝑧 ∈ C+.

(𝑖𝑖) ∀𝜖0 > 0, ∃𝐶 > 0 such that

‖𝐺𝛾,0(𝜎2, 𝑧)‖ℬ(𝐿2
𝜇−1 ,𝐿

2
𝜇)
6 𝐶(|𝜎|+ |𝑧|)−1 for |𝜎|+ |𝑧| > 𝜖0.

For 𝑎 ∈ R letℋ𝑎 = {𝑓 ; 𝑒𝑎|𝑥|𝑓(𝑥) ∈ 𝐿2}, and for 𝜖 > 0 let 𝐷𝜖 = {𝑧 ∈ C+; |Re𝑧| <
𝜖/2}.

Lemma 3. (see Eskin-Ralston [4]) There exists an operator 𝑈𝛾,0(𝜆2, 𝑧) satis-
fying the following properties.

(𝑖) ∀𝛿 > 0, ∃𝜖 > 0 such that 𝑈𝛾,0(𝜆2, 𝑧) ∈ ℬ(ℋ𝛿,ℋ𝛿−1) and is analytic in
𝑧 ∈ 𝐷𝜖.

(𝑖𝑖) As 𝑧 → 𝑡 ∈ (−𝜖/2, 𝜖/2) 𝑈𝛾,0(𝜆2, 𝑧) has a boundary value 𝐺𝛾,0(𝜆2 − 𝑡2, 𝑡),
and 𝑈𝛾,0(𝜆2, 𝑖𝜏) = 𝐺𝛾,0(𝜆

2 + 𝜏2, 𝑖𝜏) for 𝜏 > 0.

The perturbed Faddeev resolvent is defined for a.e. 𝑡 ∈ (−𝜖/2, 𝜖/2) as follows.

𝑅𝛾(𝜆, 𝑡) = {𝐼 −𝑅𝛾,0(𝜆, 𝑡)(𝑐− 𝑖𝜆𝑏)}−1𝑅𝛾,0(𝜆, 𝑡).

Then 𝑈𝛾(𝜆, 𝑡) = 𝑒−𝑖𝑡𝛾·𝑥𝑅𝛾(𝜆, 𝑡)𝑒
𝑖𝑡𝛾·𝑥 has a unique meromorphic continuation on 𝐷𝜖

and
‖𝑈𝛾(𝜆, 𝑖𝜏)‖𝐵(𝐿2

𝜇,𝐿
2
𝜇−1 )
6 𝐶/𝜏 for large 𝜏. (8)

Theorem 7. Assume (𝐴5) and also

(𝐴6) 𝑏(𝑥), 𝑐(𝑥) = 𝑂(𝑒−𝛿0|𝑥|) (|𝑥| → ∞) for some 𝛿0 > 0.

Then 𝑎(𝜆, 𝜔, 𝜔′) with a fixed energy 𝜆 ̸= 0 uniquely determines 𝑏(𝑥) and 𝑐(𝑥).

Proof. In (6) we replace 𝑅(𝜆2 − 𝑖0, 𝜆) by the Faddeev resolvent 𝑅𝛾(𝜆, 𝑡), and
define the kernel of Faddeev scattering amplitude

𝑎𝛾(𝜆, 𝜗, 𝜗
′; 𝑡) = (2𝜋)−𝑛𝜆𝑛−1

[︂∫︁
𝑒−𝑖𝜆(𝜗−𝜗

′)·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑑𝑥+

+𝜆

∫︁
𝑒−𝑖𝜆𝜗·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑅𝛾(𝜆, 𝑡){(𝜆−1𝑐− 𝑖𝑏)𝑒𝑖𝜆𝜗′·}(𝑥)𝑑𝑥

]︂
. (9)

Lemma 1 implies that this expression is rewritten by use of the physical scattering
amplitude (6).
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We choose 𝜔, 𝜔′ ∈ 𝑆𝑛−1 to satisfy 𝜔 · 𝛾 = 𝜔′ · 𝛾 = 0 and put

𝜆𝜗 =
√︀
𝜆2 − 𝑡2𝜔 + 𝑡𝛾, 𝜆𝜗′ =

√︀
𝜆2 − 𝑡2𝜔′ + 𝑡𝛾.

Then (9) is reduced to

(2𝜋)𝑛𝜆−𝑛+1𝑎𝛾(𝜆, 𝜗, 𝜗
′; 𝑡) =

∫︁
𝑒−𝑖

√
𝜆2−𝑡2(𝜔−𝜔′)·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑑𝑥+

+𝜆

∫︁
𝑒−𝑖

√
𝜆2−𝑡2𝜔·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑈𝛾(𝜆, 𝑡){(𝜆−1𝑐− 𝑖𝑏)𝑒𝑖

√
𝜆2−𝑡2𝜔′·}(𝑥)𝑑𝑥.

The analytic continuation makes possible to replace 𝑡 by 𝑖𝜏 in this equation. It
then follows from (8) that

(2𝜋)𝑛𝜆−𝑛+1𝑎𝛾(𝜆, 𝜗, 𝜗
′; 𝑖𝜏) ≃

∫︁
𝑒−𝑖

√
𝜆2+𝜏2(𝜔−𝜔′)·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑑𝑥 (10)

as 𝜏 →∞. For any 𝜉 ∈ R𝑛 we choose 𝛾, 𝜂 ∈ 𝑆𝑛−1 to satisfy 𝜉 · 𝛾 = 𝜉 · 𝜂 = 𝛾 · 𝜂 = 0,
and put

𝜔(𝜏) =
(︀
1− |𝜉|2/4𝜏2

)︀1/2
𝜂 + 𝜉/2𝜏, 𝜔′(𝜏) =

(︀
1− |𝜉|2/4𝜏2

)︀1/2
𝜂 − 𝜉/2𝜏.

Then 𝜔(𝜏), 𝜔′(𝜏) ∈ 𝑆𝑛−1 and√︀
𝜆2 + 𝜏2(𝜔(𝜏)− 𝜔′(𝜏)) =

√︀
(𝜆/𝜏)2 + 1𝜉 ≃ 𝜉(𝜏 →∞).

Thus, from (10) it is concluded that

lim
𝜏→∞

(2𝜋)𝑛𝜆−𝑛+1𝑎𝛾(𝜆, 𝜗(𝜏), 𝜗
′(𝜏); 𝑖𝜏) =

∫︁
𝑒−𝑖𝜉·𝑥{𝜆−1𝑐(𝑥)− 𝑖𝑏(𝑥)}𝑑𝑥. �

5 Uniform resolvent estimates and smoothing properties

We return to the magnetic Schrödinger operator (1). In the following we restrict
ourselves to the case 𝑛 > 3 and R𝑛∖Ω being empty or starshaped with respect to
the origin 𝑥 = 0.

Theorem 8. (𝑖) Assume that

(𝐴7) max{|∇ × 𝑏(𝑥)|, |𝑐(𝑥)|} 6 𝜖0𝑟−2, in Ω.
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Then there exists 𝐶1 > 0 such that 𝑢 = 𝑅(𝜅2)𝑓 satisfies∫︁
1

𝑟2
|𝑢|2𝑑𝑥 6 𝐶2

1

∫︁
𝑟2|𝑓 |2𝑑𝑥 for each𝜅 ∈ Π±.

(𝑖𝑖) Assume that

(𝐴8) max{|∇ × 𝑏(𝑥)|, |𝑐(𝑥)|} 6 𝜖0min{𝜇(𝑟), 𝑟−2}, in Ω,

where 𝜇(𝑟) is a smooth, positive, non-incleasing 𝐿1-function of 𝑟 ∈ R+. Then there
exists 𝐶2 > 0 such that for each 𝜅 ∈ Π±,∫︁ {︂

𝜇(|∇𝑏𝑢|2 + |𝜅𝑢|2)− 𝜇′
𝑛− 1

2𝑟
|𝑢|2
}︂
𝑑𝑥 6 𝐶2

2

∫︁
max{𝜇−1, 𝑟2}|𝑓 |2𝑑𝑥.

As a corollary of Theorem 8 we are able to obtain space-time weighted estimates
(smoothing properties) for the Schrödinger, and relativistic Schrödinger evolution
equations

𝑖𝜕𝑡𝑢+ 𝐿𝑢 = 0, 𝑢(0) = 𝑓 ∈ 𝐿2, (11)

𝑖𝜕𝑡𝑢+
√︀
𝐿+𝑚2𝑢 = 0 (𝑚 > 0), 𝑢(0) = 𝑓 ∈ 𝐿2, (12)

For an interval 𝐼 ⊂ R and a Banach space 𝑋, we denote by 𝐿𝑝𝑡 (𝐼,𝑋) the space
of 𝑋-valued 𝐿𝑝-functions of 𝑡, and simply write 𝐿𝑝𝑡𝑋 for 𝐿𝑝(R, 𝑋).

Theorem 9. (𝑖) Under (𝐴7) we have for ℎ(𝑡) ∈ 𝐿2
𝑡𝐿

2
𝑟2, and 𝑓 ∈ 𝐿2,

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒−𝑖(𝑡−𝜏)𝐿ℎ(𝜏)𝑑𝜏

⃦⃦⃦⃦
𝐿2
𝑡𝐿

2
𝑟−2

6 𝐶1‖ℎ‖𝐿2
𝑡𝐿

2
𝑟2
, (13)

‖𝑒𝑖𝑡𝐿𝑓‖𝐿2
𝑡𝐿

2
𝑟−2
6
√︀
2𝐶1‖𝑓‖. (14)

(𝑖𝑖) Under (𝐴8) put �̃�(𝑟) = min{𝑟−2, 𝜇(𝑟)}. Then we have for 𝑔 ∈ 𝐿2,

‖𝑒𝑖𝑡
√
𝐿+𝑚2

𝑔‖𝐿2
𝑡𝐿

2
�̃�
6
√︀
𝑚𝐶1 + 𝐶2‖𝑔‖. (15)

The above two theorems are the main part of [4].
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6 Deacy-nondecay problems for time dependent complex potential

Consider the Schrödinger evolution equation in 𝐿2(R𝑛),

𝑖𝜕𝑡𝑢−Δ𝑢+ 𝑐1(𝑥, 𝑡)𝑢 = 0, 𝑢(𝑥, 0) = 𝑓(𝑥), (16)

where 𝑐1(𝑥, 𝑡) = 𝑐(1 + 𝑡)−𝛼(1 + 𝑟)−𝛽 with some 𝑐 ∈ C and 𝛼, 𝛽 > 0. We denote by
𝑈(𝑡, 𝑠) the evolution operator which mapps solutons at time 𝑠 to those at time 𝑡.

Theorem 10. (𝑖) (𝐿2 decay) If Im𝑐 > 0 and 𝛼+ 𝛽 6 1, then

‖𝑢(𝑡)‖2 > 𝐶𝜙(𝑡)−1
{︁
‖
√︀
𝜙(𝑟)𝑓‖2 + ‖𝑓‖2𝐻1

}︁
; 𝜙(𝜎) =

𝜎∫︁
0

(1 + 𝑠)−𝛼−𝛽𝑑𝑠.

(𝑖𝑖) (𝐿2 nondecay) If Im𝑐 > 0 and 𝛼+ 𝛽 > 1, then for each 𝑓 ∈ 𝐿2 ∩ 𝐿𝑞, ∃𝑠0 > 0
such that for ∀𝑠 > 𝑠0,

𝑈(𝑡, 𝑠)𝑒−𝑖Δ𝑠𝑓 ̸→ 0 as 𝑡→∞.

(𝑖𝑖𝑖) (existence of the scattering states) If c > 0 and 𝛼+
𝛽

2
> 1, then for any 𝑠 > 0

and 𝑓 ∈ 𝐿2, ∃𝑓0 ∈ 𝐿2 such that

lim
𝑡→∞
‖𝑈(𝑡, 𝑠)𝑓 − 𝑒−𝑖(𝑡−𝑠)Δ𝑓0‖ = 0.

See Mochizuki-Motai [17] for details. Similar properties are also proved for wave
equations (e.g., Mochizuki-Nakazawa [18]).

Assertions (𝑖) and (𝑖𝑖𝑖) hold for a more general equation with free Laplacian −Δ
replaced by the magnetic Schrödinger operator 𝐿 satisfying (𝐴7). In fact, under
conditions of (𝑖𝑖𝑖), 𝑐1(𝑥, 𝑡) satisfies

|𝑐1(𝑥, 𝑡)| 6 |𝑐|
{︂
2− 𝛽
2

(1 + 𝑡)−2𝛼/(2−𝛽) +
𝛽

2
(1 + 𝑟)−2

}︂
.

Here without loss of generality we have assumed 𝛼+𝛽 6 2. Since (1+ 𝑡)−2𝛼/(2−𝛽) ∈
𝐿1(R+), Theorem 8 (𝑖) is applied to generalize the result.
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7 Scattering for time dependent perturbations

Let ℋ be a Hilbert space with innerproduct (·, ·) and norm ‖ · ‖, and consider in ℋ
the evolution equation

𝑖𝜕𝑡𝑢+ Λ0𝑢+ 𝑉 (𝑡)𝑢 = 0, 𝑢(𝑠) = 𝑓 ∈ ℋ, (17)

with initial time 𝑠 ∈ R, where Λ0 is a selfadjoint operator in ℋ with dense domain
𝒟(Λ0) and 𝑉 (𝑡) is a Λ0-bounded operator which depends continuously on 𝑡 ∈ R.
Let 𝑒𝑖𝑡Λ0 be the unitary group inℋ which represents the solution of the free equation
𝑖𝜕𝑡𝑢0+Λ0𝑢0 = 0. Then the perturbed problem (17) reduces to the integral equation

𝑢(𝑡, 𝑠) = 𝑒𝑖(𝑡−𝑠)Λ0𝑓 +

𝑡∫︁
𝑠

𝑒𝑖(𝑡−𝜏)Λ0𝑉 (𝜏)𝑢(𝜏, 𝑠)𝑑𝜏. (18)

(𝐻1) There exist a Banach space 𝑋 and 𝐶3 > 0 such that

‖𝑒𝑖(𝑡−𝑠)Λ0𝑓0‖𝐿2
𝑡𝑋
6 𝐶4‖𝑓0‖ for any (𝑠, 𝑓0) ∈ R×ℋ.

Further, there exist a positive 𝜂(𝑡) ∈ 𝐿1(R) and small 𝜖0 > 0 such that

|(𝑉 (𝑡)𝑢, 𝑣)| 6 𝜂(𝑡)‖𝑢‖‖𝑣‖+ 𝜖0‖𝑢‖𝑋‖𝑣‖𝑋 .

(𝐻2) (18) has a unique solution 𝑢(𝑡, 𝑠) = 𝑈(𝑡, 𝑠)𝑓 ∈ 𝐶(R,ℋ), which also satisfies

‖𝑈(𝑡, 𝑠)𝑓‖𝐿2
𝑡𝑋
6 𝐶4‖𝑓‖,

where 𝐶4 > 0 is independent of (𝑠, 𝑓) ∈ R×ℋ.

Theorem 11. Assume (𝐻1) and (𝐻2) with 𝜖0 satisfying 𝜖0𝐶3𝐶4 < 1. Then we
have (𝑖) {𝑈(𝑡, 𝑠)}𝑡,𝑠∈R is a family of uniformly bounded operators. (𝑖𝑖) For every
𝑠 ∈ R± = {𝑡 : ±𝑡 > 0}, there exits the strong limit

𝑍±(𝑠) = 𝑠− lim
𝑡→±∞

𝑒𝑖(−𝑡+𝑠)Λ0𝑈(𝑡, 𝑠).

(𝑖𝑖𝑖) The operator 𝑍± = 𝑍±(0) satisfies

𝑤 − lim
𝑠→±∞

𝑍±𝑈(0, 𝑠)𝑒𝑖𝑠Λ0 = 𝐼 (𝑤𝑒𝑎𝑘 𝑙𝑖𝑚𝑖𝑡).

(𝑖𝑣) If 𝜖 can be chosen smaller to satisfy 𝐶3𝐶6𝜖0 < 1, then 𝑍± : ℋ −→ ℋ is a
bijection on ℋ. Moreover, the scattering operator 𝑆 = 𝑍+(𝑍−)−1 is also a bijection.
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A typical example is the Schrödinger equation

𝑖𝜕𝑡𝑢+ 𝐿𝑢+ 𝑐1(𝑥, 𝑡)𝑢 = 0, 𝑢|𝑡=𝑠 = 𝑓 ∈ 𝐿2, (19)

where 𝐿 is the selfadjoint operator in S7 and 𝑐1(𝑥, 𝑡) is a complex function satisfyng

(𝐴9) |𝑐1(𝑥, 𝑡)| 6 𝜂(𝑡) + 𝜖0𝑟
−2, with small 𝜖0 > 0.

We choose ℋ = 𝐿2(Ω), Λ0 = 𝐿, 𝑉 (𝑡) = 𝑐1(𝑠, 𝑡) and 𝑋 = 𝐿2
𝑟−2 . Then (𝐻1) is

obvious from (13) and (𝐴9). To verify (𝐻2), put 𝑌 (𝐼) = 𝐿∞
𝑡 (𝐼;𝐿2) ∩ 𝐿2

𝑡 (𝐼;𝐿
2
𝑟−2).

Then by use of (12) we have

Proposition 3. For 𝐼+,𝑠 = (𝑠, 𝑇 ) (𝑠 < 𝑇 6∞) or 𝐼−,𝑠 = (𝑇, 𝑠) (−∞ 6 𝑇 < 𝑠)
let

Φ±,𝑠𝑣(𝑡) =

𝑡∫︁
𝑠

𝑒𝑖(𝑡−𝜏)𝐿𝑐1(𝜏)𝑣(𝜏)𝑑𝜏, 𝑣(𝑡) ∈ 𝑌 (𝐼±,𝑠).

Then we have ‖Φ±,𝑠𝑣‖𝑌 (𝐼±,𝑠) 6 𝐶5‖𝑣‖𝑌 (𝐼±,𝑠) for some 𝐶5 = 𝐶5(𝐶3, 𝜂, 𝜖0) > 0.

We choose |𝑇 − 𝑠| so small or |𝑠| so large, and 𝜖0 so small that 𝐶5 < 1. Then
this lemma guarantees the solvability of (19) in 𝑌 (𝐼±,𝑠) and we have

‖𝑈(𝑡, 𝑠)𝑓‖𝑌 (𝐼±,𝑠) 6 𝐶6‖𝑓‖, 𝐶6 =
1 +
√
2𝐶3

1− 𝐶5
.

Note that R is covered by a finite number 2𝑁 of such 𝐼±,𝑠. Then we see that (19)
with 𝑠 = 0 has a unique global solution satisfying (𝐻2):

‖𝑈(𝑡, 0)𝑓‖𝐿∞
𝑡 𝐿2 + ‖𝑈(𝑡, 0)𝑓‖𝐿2

𝑡𝐿
2
𝑟−2
6 𝐶7‖𝑓‖, 𝐶7 = 2

𝑁∑︁
𝑘=1

𝐶𝑘6 . (20)

As we see, the inhomogeneous smoothing property (13) plays an important role
to establish the scattering theory for time dependent perturbation. As for Klein-
Gordon equations, we have the homogeneous smoothing property (15). However,
it is insufficient to develop the scattering theory. So, we restrict ourselves to the
simpler problem in the whole R𝑛:

𝜕2𝑡𝑤 −Δ𝑤 +𝑚2𝑤 +

𝑛∑︁
𝑗=1

𝑏𝑗(𝑥, 𝑡)𝜕𝑗𝑤 + 𝑏0(𝑥, 𝑡)𝜕𝑡𝑤 + 𝑐(𝑥, 𝑡)𝑤 = 0, (21)

𝑤|𝑡=𝑠 = 𝑓1(𝑥), 𝜕𝑡|𝑡=𝑠 = 𝑓2(𝑥).
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Here 𝑚 > 0, 𝑏𝑗(𝑥, 𝑡) (𝑗 = 0, 1, · · · , 𝑛) and 𝑐(𝑥, 𝑡) are complex functions satisfying

(𝐴10) max{|𝑏𝑗(𝑥, 𝑡)|,𝑚−1|𝑐(𝑥, 𝑡)|} 6 𝜂(𝑡) + 𝜖0�̃�(𝑟), �̃� = min{𝜇(𝑟), 𝑟−2}.

Let ℋ𝐸 and 𝑋𝐸 be the spaces with norms

‖{𝑓1, 𝑓2}‖2𝐸 =
1

2

∫︁
{|∇𝑓1|2 +𝑚2|𝑓1|2 + |𝑓2|2}𝑑𝑥 <∞,

‖𝑓‖2𝑋𝐸
=

1

2

{︀
‖∇𝑓1‖2𝑋 +𝑚2‖𝑓1‖2𝑋 + ‖𝑓2‖2𝑋

}︀
<∞,

where 𝑋 = 𝐿2
�̃�. Then as an evolution equation in ℋ𝐸, (21) is rewritten to the

integral equation

𝑢(𝑡, 𝑠) = 𝑒𝑖(𝑡−𝑠)Λ0𝑓 +

𝑡∫︁
𝑠

𝑒𝑖(𝑡−𝜏)Λ0𝑉 (𝜏)𝑢(𝜏, 𝑠)𝑑𝜏, 𝑓 = {𝑓1, 𝑓2} ∈ ℋ𝐸 ; (22)

Λ0 = 𝑖

(︃
0 1

Δ−𝑚2 0

)︃
and 𝑉 (𝑡) = −𝑖

(︃
0 0

𝑏(𝑥, 𝑡) · ∇+ 𝑐(𝑥, 𝑡) 𝑏0(𝑥, 𝑡)

)︃
.

For 𝜅 ∈ C∖R, let 𝑅0𝑚(𝜅
2) = (−Δ +𝑚2 − 𝜅2)−1. Then the resolvent of Λ0 is

given by

ℛ0(𝜅) =

(︃
−𝜅 𝑖

𝑖(Δ−𝑚2) −𝜅

)︃
𝑅0𝑚(𝜅

2)

and hence, we have for 𝑓 , 𝑔 ∈ 𝑋 ′
𝐸 ,

|(ℛ0(𝜅)𝑓, 𝑔)𝐸 | 6
𝑛∑︁
𝑗=1

{︀
‖𝜅𝑅0𝑚(𝜅

2)𝜕𝑗𝑓1‖𝑋 + ‖𝜕𝑗𝑅0𝑚(𝜅
2)𝑓2‖𝑋

}︀
‖𝜕𝑗𝑔1‖𝑋′+

+𝑚2
{︀
‖𝜅𝑅0𝑚(𝜅

2)𝑓1‖𝑋 + ‖𝑅0𝑚(𝜅
2)𝑓2‖𝑋

}︀
‖𝑔1‖𝑋′+

+

{︂ 𝑛∑︁
𝑗=1

‖𝜕𝑗𝑅0𝑚(𝜅
2)𝜕𝑗𝑓1‖𝑋 +𝑚2‖𝑅0𝑚(𝜅

2)𝑓1‖𝑋 + ‖𝜅𝑅0𝑚(𝜅
2)𝑓2‖𝑋

}︂
‖𝑔2‖𝑋′ .

Both inequalities of Theorem 8 imply that

‖∇𝑅0𝑚(𝜅
2)ℎ‖2𝑋 + (1 + |

√︀
𝜅2 −𝑚2|2)‖𝑅0𝑚(𝜅

2)ℎ‖2𝑋 6 𝐶‖ℎ‖2𝑋′
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for any ℎ ∈ 𝑋 ′ and 𝜅2 in the resolvent set of −Δ + 𝑚2. Thus, we conclude the
existence of suitable 𝐶8 > 0 verifying

|(ℛ0(𝜅)𝑓, 𝑔)𝐸 | 6 𝐶8‖𝑓‖𝑋′
𝐸
‖𝑔‖𝑋′

𝐸
, (23)

or equivalently, we obtain the inhomogeneous smoothing property

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒𝑖(𝑡−𝜏)Λ0ℎ(𝜏)𝑑𝜏

⃦⃦⃦⃦
𝐿2
𝑡𝑋𝐸

6 𝐶8‖ℎ‖𝐿2𝑋′
𝐸
.

Then as in the case of the Schrödinger equation, this and the smallness assumption
(𝐴10) show the unique existence of solutions to (21) with 𝑠 = 0 satisfying

‖𝑈(𝑡, 0)𝑓‖𝐿∞
𝑡 ℋ𝐸

+ ‖𝑈(𝑡, 0)𝑓‖𝐿2
𝑡𝑋𝐸
6 𝐶9‖𝑓‖𝐸 . (24)

The above treatment is possible also in the mass less case 𝑚 = 0 if 𝑛 > 4. How-
ever, more general results in exterior domain, including the 3-dimensional problem,
are guaranteed if we apply weighted energy methods. We consider in Ω the wave
equation (21) with 𝑚 = 0 and the initial-boundary conditions

𝑤|𝑡=𝑠 = 𝑓1(𝑥), 𝑤𝑡|𝑡=𝑠 = 𝑓2(𝑥), 𝑤|𝜕Ω = 0, (25)

where 𝑏𝑗(𝑥, 𝑡) (𝑗 = 0, 1, · · · , 𝑛) and 𝑐(𝑥, 𝑡) are real functions satisfying

(𝐴11) max

{︂
|𝑏𝑗(𝑥, 𝑡)|,

2𝑟

𝑛− 2
|𝑐(𝑥, 𝑡)|

}︂
6 𝜂(𝑡) + 𝜖0𝜇(𝑟).

Here 𝜇(𝑟) ∈ 𝐿1(R) is chosen to satisfy also

𝜇(𝑟) > 0, 𝜇′(𝑟) 6 0, 𝜇′(𝑟)2 6 2𝜇(𝑟)𝜇′′(𝑟). (26)

We choose 𝑚 = 0, �̃�(𝑟) = 𝜇(𝑟) and 𝑓1 (the first component) verifying the zero
boundary condition 𝑓1|𝜕Ω = 0 in the definition of ℋ𝐸 and 𝑋𝐸 . Then (𝐴11) and
the following proposition verify both (𝐻1) and (𝐻2) since the unique existence of
solution in 𝐶(R;ℋ𝐸) is evident,

Proposition 4. Under (𝐴11) with sufficiently small 𝜖0 > 0, let 𝑢(𝑡) =
{𝑤(𝑡), 𝑤𝑡(𝑡)} be the solution of (21) with 𝑚 = 0 and (25). Then

‖𝑢(𝑡)‖𝐸 6 𝐶10‖𝑓‖𝐸 , 𝑓 = {𝑓1, 𝑓2},
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1

2

𝑡∫︁
𝑠

∫︁
Ω

{︂
𝜇(|∇𝑤|2 + 𝑤2

𝑡 )− 𝜇′
𝑛− 1

2𝑟
𝑤2

}︂
𝑑𝑥𝑑𝜏 6 𝐶2

11‖𝑢‖2𝐸 ,

where 𝐶10 > 0 and 𝐶11 > 0 are independent of (𝑠, 𝑓) ∈ R×ℋ𝐸 .

For the proof of Theorem 11 and Proposition 4 see [15]. Shrödinger equations
(16) with 𝑐1(𝑥, 𝑡) ∈ 𝐿𝜈𝑡𝐿𝑟 (0 < 1/𝑟 6 2/𝑛, 1/𝜈 = 1−𝑛/2𝑟) and the above wave equa-
tions are studied there as examples. But Klein-Gordon equations are not treated
there.

8 Strichartz estimates

In the rest of this article we discuss the so called Strichartz estimates. As will be
seen, Strichartz estimates of free equations and smoothig properites of perturbed
solutions (i.e., (𝐻2)) lead us to the Strichartz estimates for pertubed equations.

First consider Schrödinger equations in R𝑛. Let 𝑝 > 2, 𝑞 be the admissible

exponents
2

𝑝
+
𝑛

𝑞
=
𝑛

2
. Then as is well known, there exists a constant 𝐶 > 0 such

that
‖𝑒−𝑖𝑡Δ𝑓(𝑥)‖𝐿𝑝

𝑡𝐿
𝑞 6 𝐶‖𝑓‖𝐿2 . (27)

More precislely, the end poit estimate is given by

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒−𝑖(𝑡−𝑠)Δℎ(𝑥, 𝑠)𝑑𝑠

⃦⃦⃦⃦
𝐿2
𝑡𝐿

2𝑛/(𝑛−2),2

6 𝐶‖ℎ‖𝐿2
𝑡𝐿

2𝑛/(𝑛+2),2 , (28)

where 𝐿𝛼,𝛽 are Lorentz spaces.

Theorem 12. Under (𝐴9) with 𝜂(𝑡) ≡ 0, let 𝑢(𝑡) ∈ 𝐶(R;𝐿2) be the solution of
(16). Then for any admissible exponents 𝑝, 𝑞 there exists 𝐶 > 0 such that

‖𝑢‖𝐿𝑝
𝑡𝐿

𝑞 6 𝐶‖𝑓‖𝐿2 , ∀𝑓 ∈ 𝐿2.

Proof. All we need to check is 𝐹 = 𝑐𝑢 ∈ 𝐿2
𝑡𝐿

2𝑛/(𝑛+2),2. However, from (20) we
have 𝑟−1𝑢 ∈ 𝐿2

𝑡𝐿
2
𝑥, while by assumption 𝑟𝑐1(·, 𝑡) ∈ 𝐿𝑛,∞. Thus, (28) and O’Neil’s

inequality ([19]) imply

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒−𝑖(𝑡−𝑠)Δ𝑐1(𝑠)𝑢(𝑠)𝑑𝑠

⃦⃦⃦⃦
𝐿2
𝑡𝐿

2𝑛/(𝑛−2),2

6 𝐶‖𝑐1𝑢‖𝐿2
𝑡𝐿

2𝑛/(𝑛+2),2 6
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6 𝐶‖𝑟𝑐1‖𝐿𝑛,∞‖𝑟−1𝑢‖𝐿2
𝑡𝐿

2 6 𝐶‖𝑓‖𝐿2 .

This and (27) prove the Strichartz estimate at the end point:

‖𝑢‖𝐿2
𝑡𝐿

2𝑛/(𝑛−2),2 6 𝐶‖𝑓‖𝐿2 .

Interpolatng between this and the uniform boundedness (cf. also (20)) ‖𝑢‖𝐿∞
𝑡 𝐿2 6

𝐶‖𝑓‖, one obtains the full range of the estimates in Theorem 12. �
Next, the solution 𝑤(𝑡) of the Klein-Gordon equation (21) satisfies

𝑤(𝑡) = �̇� (𝑡)𝑓1 +𝑊 (𝑡)𝑓2 +

𝑡∫︁
0

𝑊 (𝑡− 𝑠)[𝑉 (𝑠)𝑢(𝑠)]2𝑑𝑠, (29)

where 𝑊 (𝑡) =
√
−Δ+𝑚2−1

sin(𝑡
√
−Δ+𝑚2) with 𝑚 > 0 and

[𝑉 (𝑡)𝑢(𝑡)]2 = 𝑏0(𝑥, 𝑡)𝑤𝑡 + 𝑏(𝑥, 𝑡) · ∇𝑤 + 𝑐(𝑥, 𝑡)𝑤.

Let 𝑝, 𝑞 be any admissible exponents of Schrödinger equations, and 𝛾 =
1

𝑝
+

1

2
− 1

𝑞
. Then the following estimate holds for the free solution (see e.g.,

D’Ancona-Fanelli [2]).

‖𝑒𝑖𝑡
√
−Δ+𝑚2

𝑔‖𝐿𝑝
𝑡𝐻

−𝛾
𝑞
6 𝐶‖𝑔‖𝐿2 . (30)

The following is the well known Christ-Kisherev lemma ([1]).

Lemma 4. Let 𝑋, 𝑌 be Banach spaces and let 𝑇𝑓(𝑡) =

∞∫︁
0

𝐾(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠

be a bounded operator from 𝐿𝛼(R;𝑋) to 𝐿𝛽(R;𝑌 ). If 𝛼 < 𝛽, then

𝑇𝑓(𝑡) =

𝑡∫︁
0

𝐾(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠 is also a bounded operator, and we have ‖𝑇‖ 6

𝐶(𝛼, 𝛽)‖𝑇‖.

Theorem 13. Under (𝐴10) with 𝜂(𝑡) ≡ 0, let 𝑤(𝑡) ∈ 𝐶1(R;𝐻1) be the solution
of (29). Then for any Schrödinger admissible exponents 𝑝, 𝑞 satisfying also 𝑝 > 2,
there exists 𝐶 > 0 such that

‖
√︀
−Δ+𝑚2𝑤‖𝐿𝑝

𝑡𝐿
𝑞 + ‖𝑤𝑡‖𝐿𝑝

𝑡𝐿
𝑞 6 𝐶{‖𝑓1‖𝐻𝛾 + ‖𝑓2‖𝐻𝛾−1}.
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Proof. Let ℎ(𝑡) ∈ 𝐿2
𝑡𝐿

2
�̃�. Then it follows from (28) and the above lemma that

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒𝑖(𝑡−𝑠)
√
−Δ+𝑚2

ℎ(𝑠)𝑑𝑠

⃦⃦⃦⃦
𝐿𝑝
𝑡𝐻

−𝛾
𝑝

6 𝐶

⃦⃦⃦⃦ ∞∫︁
0

𝑒−𝑖𝑠
√
−Δ+𝑚2

ℎ(𝑠)𝑑𝑠

⃦⃦⃦⃦
𝐿2

6 𝐶‖ℎ‖𝐿2
𝑡𝐿

2
�̃�−1

.

In the last inequality we have applied the dual fomula of (15) of Theorem 9. Put
ℎ(𝑡) = [𝑉 (𝑡)𝑢]2. Then as is seen in (24) ‖[𝑉 (𝑡)𝑢]2‖𝐿2

𝑡𝐿
2
�̃�−1
6 𝐶‖𝑓‖𝐸 . Combining

these inequalities and (30), we conclude the assertion. �

Finally, we consider the solution 𝑤(𝑡) of the wave equation (23) with 0-boundary
condition requiring R𝑛∖Ω is convex. Let 𝑝 > 2, 𝑞 be any admissible exponents of

wave equations satisfying
2

𝑝
+
𝑛− 1

𝑞
=
𝑛− 1

2
(𝑞 ̸= ∞), and 𝛾 =

1

𝑝
+

1

2
− 1

𝑞
. Then

the following estimate is known to hold (see e.g., Metacalfe [10]).

‖𝑒𝑖𝑡
√
−Δ𝐷𝑔‖𝐿𝑝

𝑡𝐻
−𝛾
𝑞
6 𝐶‖𝑔‖𝐿2 . (31)

Theorem 14. Under (𝐴11) with 𝜂(𝑡) ≡ 0, let 𝑤(𝑡) ∈ 𝐶1(R; �̇�1) be the solu-
tion of (29) with 𝑊 (𝑡) =

√
−Δ𝐷

−1
sin(𝑡
√
−Δ𝐷). Then for any wave admissible

exponents 𝑝, 𝑞 satisfying also 𝑝 > 2, there exists 𝐶 > 0 such that

‖
√︀
−Δ𝐷𝑤‖𝐿𝑝

𝑡𝐿
𝑞 + ‖𝑤𝑡‖𝐿𝑝

𝑡𝐿
𝑞 6 𝐶{‖𝑓1‖�̇�𝛾 + ‖𝑓2‖�̇�𝛾−1}.

Proof. With (31) we can follow the above argument to obtain

⃦⃦⃦⃦ 𝑡∫︁
0

𝑒𝑖(𝑡−𝑠)
√
−Δ𝐷 [𝑉 (𝑠)𝑢(𝑠)]2𝑑𝑠

⃦⃦⃦⃦
𝐿𝑝
𝑡 (�̇�

−𝛾
𝑞 )

6

6 𝐶‖{|𝜕𝑡𝑤|+ |∇𝑤|+ 𝑟−1|𝑤|}‖𝐿2
𝑡 (𝐿

2
𝑥,�̃�)
6 𝐶‖𝑓‖𝐸 . (32)

In the last inequality we have used Proposition 4 and the Hardy inequality. Com-
bining (31) and (32) we conclude the assertion. �
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SMOOTHING ESTIMATES OF AN INVARIANT FORM

Michael Ruzhansky, Mitsuru Sugimoto

Key words: smoothing estimate, dispersive equation

AMS Mathematics Subject Classification: 35Q35, 35Q40

Abstract. For operators 𝑎(𝐷𝑥) of order 𝑚 satisfying the dispersiveness ∇𝑎(𝜉) ̸= 0,
the smoothing estimate⃦⃦⃦

⟨𝑥⟩−𝑠|𝐷𝑥|(𝑚−1)/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
(𝑠 > 1/2)

is well known, while it is known to fail for general non-dispersive operators. We
suggest a form⃦⃦⃦

⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
(𝑠 > 1/2)

which is equivalent to the usual estimate in the dispersive case and also invariant
under canonical transformations for the operator 𝑎(𝐷𝑥). It does continue to hold
for a variety of non-dispersive operators 𝑎(𝐷𝑥), where ∇𝑎(𝜉) may become zero on
some set.

1 Introduction

This survey article is a collection of results and arguments from author’s papers [9]
and [10]. Let us consider the following Cauchy problem to Schrödinger equation:{︃

(𝑖𝜕𝑡 −△𝑥)𝑢(𝑡, 𝑥) = 0

𝑢(0, 𝑥) = 𝜙(𝑥) ∈ 𝐿2(R𝑛).

By Plancherel’s theorem, the solution 𝑢(𝑡, 𝑥) = 𝑒𝑖𝑡△𝑥𝜙(𝑥) preserves the 𝐿2-norm of
the initial data 𝜙, that is, we have ‖𝑢(𝑡, ·)‖𝐿2(R𝑛

𝑥)
= ‖𝜙‖𝐿2(R𝑛) for any fixed time

𝑡 ∈ R. But if we integrate the solution in 𝑡, we get an extra gain of regurality of
order 1/2 in 𝑥:⃦⃦⃦

⟨𝑥⟩−𝑠|𝐷𝑥|1/2𝑢
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛) (𝑠 > 1/2),
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where ⟨𝑥⟩ =
√︀

1 + |𝑥|2. This type of estimate is called smoothing estimate, and its
local version was first proved by Sjörin [11], Constantin & Saut [4], and Vega [12].
The global version was proved by Kenig, Ponce, &, Vega 1991 (𝑛 = 1), Ben-Artzi
& Klainerman 1992 (𝑛 > 3), and Chihara 2002 (𝑛 > 2).

Historically, such smoothing estimates was first shown to Korteweg-de Vries
equation {︃

𝜕𝑡𝑢+ 𝜕3𝑥𝑢+ 𝑢𝜕𝑥𝑢 = 0,

𝑢(0, 𝑥) = 𝜙(𝑥) ∈ 𝐿2(R)

and Kato [6] proved that the solution 𝑢 = 𝑢(𝑡, 𝑥) (𝑡, 𝑥 ∈ R) satisfies

𝑇∫︁
−𝑇

𝑅∫︁
−𝑅

|𝜕𝑥𝑢(𝑥, 𝑡)|2 𝑑𝑥𝑑𝑡 6 𝑐(𝑇,𝑅, ‖𝜙‖𝐿2).

The purpose of this article is to present a similar kind of smoothing estimate
for more general equation (𝑖𝜕𝑡 + 𝑎(𝐷𝑥))𝑢(𝑡, 𝑥) = 0 which corresponds to principal
parts of many important equations from physics:

— 𝑎(𝜉) = |𝜉|2 · · · Schrödinger

𝑖𝜕𝑡𝑢−Δ𝑥𝑢 = 0

— 𝑎(𝜉) =
√︀
|𝜉|2 + 1 · · · Relativistic Schrödinger

𝑖𝜕𝑡𝑢+
√︀
−Δ𝑥 + 1𝑢 = 0

— 𝑎(𝜉) = 𝜉3 (𝑛 = 1) · · · Korteweg-de Vries (shallow water wave)

𝜕𝑡𝑢+ 𝜕3𝑥𝑢+ 𝑢𝜕𝑥𝑢 = 0

— 𝑎(𝜉) = |𝜉|𝜉 (𝑛 = 1) · · · Benjamin-Ono (deep water wave)

𝜕𝑡𝑢− 𝜕𝑥|𝐷𝑥|𝑢+ 𝑢𝜕𝑥𝑢 = 0

— 𝑎(𝜉) = 𝜉21 − 𝜉22 (𝑛 = 2) · · · Davey-Stewartson (shallow water wave of 2D){︃
𝑖𝜕𝑡𝑢− 𝜕2𝑥𝑢+ 𝜕2𝑦𝑢 = 𝑐1|𝑢|2𝑢+ 𝑐2𝑢𝜕𝑥𝑣

𝜕2𝑥𝑣 − 𝜕2𝑦𝑣 = 𝜕𝑥|𝑢|2

— 𝑎(𝜉) = 𝜉31 + 𝜉32 , 𝜉
3
1 + 3𝜉22 , 𝜉

2
1 + 𝜉1𝜉

2
2 · · · Shrira (deep water wave of 2D)
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— 𝑎(𝜉) = quadratic form (𝑛 > 3) · · · Zakharov-Schulman (interaction of sound
wave and low amplitudes high frequency wave)

We investigate smoothing estimates for them by using new methods of comparison
and canonical transfrom which are quite strong to this problem. It works not only
for all the dispersive equations (that is, the case ∇𝑎 ̸= 0) but also for some non-
dispersive equations, and induces smoothing estimates of an invariant form.

2 Smoothing estimate for dispersive equations

We consider smoothing estimates for solutions 𝑢(𝑡, 𝑥) = 𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥) to general
equations {︃

(𝑖𝜕𝑡 + 𝑎(𝐷𝑥))𝑢(𝑡, 𝑥) = 0

𝑢(0, 𝑥) = 𝜙(𝑥) ∈ 𝐿2(R𝑛).

Let 𝑎𝑚(𝜉) be the principal term of 𝑎(𝜉) satisfiing

𝑎𝑚(𝜉) ∈ 𝐶∞(R𝑛 ∖ 0), real-valued, 𝑎𝑚(𝜆𝜉) = 𝜆𝑚𝑎𝑚(𝜉) (𝜆 > 0, 𝜉 ̸= 0),

and we assume that 𝑎(𝜉) is dispersive in the following sense:
(H) 𝑎(𝜉) = 𝑎𝑚(𝜉), ∇𝑎𝑚(𝜉) ̸= 0 (𝜉 ̸= 0),

otherwise

(L) 𝑎(𝜉) ∈ 𝐶∞(R𝑛), ∇𝑎𝑚(𝜉) ̸= 0 (𝜉 ̸= 0), ∇𝑎(𝜉) ̸= 0 (𝜉 ∈ R𝑛),

|𝜕𝛼(𝑎(𝜉)− 𝑎𝑚(𝜉))| 6 𝐶⟨𝜉⟩𝑚−1−|𝛼| (|𝜉| > 1).

Example 1. 𝑎(𝜉) = 𝜉31 + · · ·+ 𝜉3𝑛 + 𝜉1 satisfies (L).

The dispersiveness means that classical orbit, that is, the solution of{︃
�̇�(𝑡) = (∇𝑎)(𝜉(𝑡)), 𝜉(𝑡) = 0

𝑥(0) = 0, 𝜉(0) = 𝑘,

does not stop, and the singularity of 𝑢(𝑡, 𝑥) = 𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥) travels to the infinity
along this orbit. Hence we can expect the smoothing, and indeed we have

Theorem 1. Assume (H) or (L). Suppose 𝑚 > 0 and 𝑠 > 1/2. Then we have⃦⃦⃦
⟨𝑥⟩−𝑠|𝐷𝑥|(𝑚−1)/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛).
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Remark 1. Any polynomial 𝑎(𝜉) which satisfies the estimate in Theorem 1 has
to be dispersive, that is ∇𝑎𝑚(𝜉) ̸= 0 (𝜉 ̸= 0) (Hoshiro [5]).

Remark 2. Chihara [3] proved Theorem 1 with the case (H) and 𝑚 > 1.

3 Usual and new methods of the approach

The following are equivalent to each other:
∙ Smoothing estimate⃦⃦

𝐴𝑒−𝑖𝑡Δ𝑥𝜙(𝑥)
⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
where 𝐴 = 𝐴(𝑋,𝐷𝑥),

∙ Restriction estimatê⃦⃦⃦︂𝐴*𝑓 |𝑆𝑛−1
𝜌

⃦⃦⃦
𝐿2(𝑆𝑛−1

𝜌 )
6 𝐶
√
𝜌‖𝑓‖𝐿2(R𝑛), where 𝑆𝑛−1

𝜌 = {𝜉; |𝜉| = 𝜌}, (𝜌 > 0),

∙ Resolvent estimate

sup
Im 𝜁>0

|(𝑅(𝜁)𝐴*𝑓,𝐴*𝑓)| 6 𝐶‖𝑓‖2𝐿2(R𝑛), where 𝑅(𝜁) = (−△− 𝜁)−1.

Most of the literature so far use the above equivalence to show smoothing estimates
for dispersive equations by showing restriction or resolvent estimates instead. But
here we develop completely different methods

1. Comparison principle · · · comparison of the symbol implies the comparison
of estimate,

2. Canonical Transformation · · · shift an equation to another simple one
(Egorov’s theorem),

and use them to show smoothing estimates for both dispersive and non-dispersive
equations. We will explain them in due order.

4 Comparison Principle

Here we list theorems showing that the comparison principle is surely true.

Theorem 2 (1D case). Let 𝑓, 𝑔 ∈ 𝐶1(R) be real-valued and strictly monotone.
If 𝜎, 𝜏 ∈ 𝐶0(R) satisfy

|𝜎(𝜉)|
|𝑓 ′(𝜉)|1/2

6 𝐴
|𝜏(𝜉)|
|𝑔′(𝜉)|1/2
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then we have

‖𝜎(𝐷𝑥)𝑒
𝑖𝑡𝑓(𝐷𝑥)𝜙(𝑥)‖𝐿2(R𝑡) 6 𝐴‖𝜏(𝐷𝑥)𝑒

𝑖𝑡𝑔(𝐷𝑥)𝜙(𝑥)‖𝐿2(R𝑡)

for all 𝑥 ∈ R.

Theorem 3 (2D case). Let 𝑓(𝜉, 𝜂), 𝑔(𝜉, 𝜂) ∈ 𝐶1(R2) be real-valued and
strictly monotone in 𝜉 ∈ R for each fixed 𝜂 ∈ R. If 𝜎, 𝜏 ∈ 𝐶0(R2) satisfy

|𝜎(𝜉, 𝜂)|
|𝑓𝜉(𝜉, 𝜂)|1/2

6 𝐴
|𝜏(𝜉, 𝜂)|
|𝑔𝜉(𝜉, 𝜂)|1/2

then we have⃦⃦⃦
𝜎(𝐷𝑥, 𝐷𝑦)𝑒

𝑖𝑡𝑓(𝐷𝑥,𝐷𝑦)𝜙(𝑥, 𝑦)
⃦⃦⃦
𝐿2(R𝑡×R𝑦)

6 𝐴‖𝜏(𝐷𝑥, 𝐷𝑦)𝑒
𝑖𝑡𝑔(𝐷𝑥,𝐷𝑦)𝜙(𝑥, 𝑦)‖𝐿2(R𝑡×R𝑦)

for all 𝑥 ∈ R.

Theorem 4 (Radially Symmetric case). Let 𝑓, 𝑔 ∈ 𝐶1(R+) be real-valued
and strictly monotone. If 𝜎, 𝜏 ∈ 𝐶0(R+) satisfy

|𝜎(𝜌)|
|𝑓 ′(𝜌)|1/2

6 𝐴
|𝜏(𝜌)|
|𝑔′(𝜌)|1/2

then we have

‖𝜎(|𝐷𝑥|)𝑒𝑖𝑡𝑓(|𝐷𝑥|)𝜙(𝑥)‖𝐿2(R𝑡) 6 𝐴‖𝜏(|𝐷𝑥|)𝑒𝑖𝑡𝑔(|𝐷𝑥|)𝜙(𝑥)‖𝐿2(R𝑡)

for all 𝑥 ∈ R𝑛.

5 Low dimensional model estimates

By the comparison principal, we can show the equivalence of low dimensional esti-
mates of various type:

In the 1D case, we have (𝑙,𝑚 > 0).

√
𝑚
⃦⃦⃦
|𝐷𝑥|(𝑚−1)/2𝑒𝑖𝑡|𝐷𝑥|𝑚𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡)

=
√
𝑙
⃦⃦⃦
|𝐷𝑥|(𝑙−1)/2𝑒𝑖𝑡|𝐷𝑥|𝑙𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡)

(1)

for all 𝑥 ∈ R. Here supp ̂︀𝜙 ⊂ [0,+∞) or (−∞, 0]. In the 2D case, we have (𝑙,𝑚 > 0)⃦⃦⃦
|𝐷𝑦|(𝑚−1)/2𝑒𝑖𝑡𝐷𝑥|𝐷𝑦 |𝑚−1

𝜙(𝑥, 𝑦)
⃦⃦⃦
𝐿2(R𝑡×R𝑦)

=
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=
⃦⃦⃦
|𝐷𝑦|(𝑙−1)/2𝑒𝑖𝑡𝐷𝑥|𝐷𝑦 |𝑙−1𝜙(𝑥,𝑦)

⃦⃦⃦
𝐿2(R𝑡×R𝑦)

(2)

for all 𝑥 ∈ R. On the other hand, in 1D case, we have trivially⃦⃦
𝑒𝑖𝑡𝐷𝑥𝜙(𝑥)

⃦⃦
𝐿2(R𝑡)

= ‖𝜙(𝑥+ 𝑡)‖𝐿2(R𝑥)
= ‖𝜙‖𝐿2(R𝑥)

(3)

for all 𝑥 ∈ R. Using the equality (3), the right hand sides of (1) and (2) with 𝑙 = 1
can be estimated, and we have for all 𝑥 ∈ R:
∙ 1D Case ⃦⃦⃦

|𝐷𝑥|(𝑚−1)/2𝑒𝑖𝑡|𝐷𝑥|𝑚𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡)

6 𝐶‖𝜙‖𝐿2(R𝑥)
,

∙ 2D Case⃦⃦⃦
|𝐷𝑦|(𝑚−1)/2𝑒𝑖𝑡𝐷𝑥|𝐷𝑦 |𝑚−1

𝜙(𝑥, 𝑦)
⃦⃦⃦
𝐿2(R𝑡×R𝑦)

6 𝐶‖𝜙‖𝐿2(R2
𝑥,𝑦)

.

Remark 3. In the case 𝑚 = 2, these estimates were proved by Kenig, Ponce
& Vega [7] (1D case) and Linares & Ponce [8] (2D case).

The following is a straightforward consequence from these estimates:

Proposition 1. Suppose 𝑚 > 0 and 𝑠 > 1/2. Then for 𝑛 > 1 we have⃦⃦⃦
⟨𝑥⟩−𝑠|𝐷𝑛|(𝑚−1)/2𝑒𝑖𝑡|𝐷𝑛|𝑚𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)

and for 𝑛 > 2 we have⃦⃦⃦
⟨𝑥⟩−𝑠|𝐷𝑛|(𝑚−1)/2𝑒𝑖𝑡𝐷1|𝐷𝑛|𝑚−1

𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
,

where 𝐷𝑥 = (𝐷1, . . . , 𝐷𝑛).

6 Canonical Transformation

For the change of variable 𝜓 : R𝑛 ∖ 0 → R𝑛 ∖ 0 satisfying 𝜓(𝜆𝜉) = 𝜆𝜓(𝜉) for all
𝜆 > 0 and 𝜉 ∈ R𝑛 ∖ 0, we set

𝐼𝑢(𝑥) = 𝐹−1[(𝐹𝑢)(𝜓(𝜉))](𝑥)
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Then we have the relation

𝑎(𝐷𝑥) · 𝐼 = 𝐼 · 𝜎(𝐷𝑥), 𝑎(𝜉) = (𝜎 ∘ 𝜓)(𝜉).

By using this transform, the equation

{︃
(𝑖𝜕𝑡 + 𝑎(𝐷𝑥))𝑢(𝑡, 𝑥) = 0

𝑢(0, 𝑥) = 𝜙(𝑥) ∈ 𝐿2(R𝑛)

can be transformed to {︃
(𝑖𝜕𝑡 + 𝜎(𝐷𝑥)) 𝑣(𝑡, 𝑥) = 0

𝑣(0, 𝑥) = 𝑔(𝑥) ∈ 𝐿2(R𝑛).

The canonical transformation is bounded on the weighted space 𝐿2
𝑘(R

𝑛) defined by

‖𝑓‖𝐿2
𝑘(R

𝑛) =

(︂∫︁ ⃒⃒⃒
⟨𝑥⟩𝑘𝑓(𝑥)

⃒⃒⃒2
𝑑𝑥

)︂1/2

.

Indeed we have

Theorem 5. 𝐼 is 𝐿2
𝑘(R

𝑛)-bounded for |𝑘| < 𝑛/2.

7 Reduction of smoothing estimates to model estimates

On account of the boundedness result (Theorem 5), smoothing estimates for dis-
persive equations (Theorem 1) can be reduced to low dimensional model estimates
(Proposition 1) by the canonical transformation if we find a homogeneous change
of variable 𝜓 such that

𝑎(𝜉) = (𝜎 ∘ 𝜓)(𝜉), 𝜎(𝐷) = |𝐷𝑛|𝑚 or 𝜎(𝐷) = 𝐷1|𝐷𝑛|𝑚−1.

We show how to select such 𝜓 under the assumption (H). The argument for the
case (L) is similar. By microlocalization and rotation, we may assume that the
initial data 𝜙 satisfies supp𝜙 ⊂ Γ, where Γ ⊂ R𝑛 ∖ 0 is a sufficiently small conic
neighborhood of 𝑒𝑛 = (0, . . . 0, 1). Furthermore, we have Euler’s identity

𝑎(𝜉) = 𝑎𝑚(𝜉) =
1

𝑚
𝜉 · ∇𝑎(𝜉),

and the dispersiveness ∇𝑎(𝑒𝑛) ̸= 0 implies the following two cases:
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(I) 𝜕𝑛𝑎(𝑒𝑛) ̸= 0 · · · (elliptic). By Euler’s identity, we have 𝑎(𝑒𝑛) ̸= 0. Hence, in
this case, we may assume 𝑎(𝜉) > 0 (𝜉 ∈ Γ), 𝜕𝑛𝑎(𝑒𝑛) ̸= 0

(II) 𝜕𝑛𝑎(𝑒𝑛) = 0 · · · (non-elliptic). By assumption ∇𝑎(𝑒𝑛) ̸= 0, there exits 𝑗 ̸= 𝑛
such that 𝜕𝑗𝑎(𝑒𝑛) ̸= 0. Hence, in this case, we may assume 𝜕1𝑎(𝑒𝑛) ̸= 0.

In the elliptic case (I), we take

𝜎(𝜂) = |𝜂𝑛|𝑚, 𝜓(𝜉) = (𝜉1, . . . , 𝜉𝑛−1, 𝑎(𝜉)
1/𝑚).

Then we have 𝑎(𝜉) = (𝜎 ∘ 𝜓)(𝜉), and 𝜓 is surely a change of variables on Γ since

det 𝜕𝜓(𝑒𝑛) =

⃒⃒⃒⃒
⃒𝐸𝑛−1 0

* 1
𝑚𝑎(𝑒𝑛)

1/𝑚−1𝜕𝑛𝑎(𝑒𝑛)

⃒⃒⃒⃒
⃒ ̸= 0

where 𝐸𝑛−1 is the identity matrix. In the non- elliptic case (II), we take

𝜎(𝜂) = 𝜂1|𝜂𝑛|𝑚−1, 𝜓(𝜉) =

(︂
𝑎(𝜉)

|𝜉𝑛|𝑚−1
, 𝜉2, . . . , 𝜉𝑛

)︂
.

Then we have again 𝑎(𝜉) = (𝜎 ∘ 𝜓)(𝜉) and

det 𝜕𝜓(𝑒𝑛) =

⃒⃒⃒⃒
⃒𝜕1𝑎(𝑒𝑛) *

0 𝐸𝑛−1

⃒⃒⃒⃒
⃒ ̸= 0.

8 Non-dispersive case

What happens if the equation does not satisfy the dispersiveness assumption
∇𝑎(𝜉) ̸= 0 (𝜉 ∈ R𝑛)? Although we cannot have smoothing estimates (see Re-
mark 1), such case appears naturally in the physics. For example, let us consider a
coupled system of Schrödinger equations

𝑖𝜕𝑡𝑣 = Δ𝑥𝑣 + 𝑏(𝐷𝑥)𝑤, 𝑖𝜕𝑡𝑤 = Δ𝑥𝑤 + 𝑐(𝐷𝑥)𝑣

which represents a linearized model of wave packets with two modes. Assume that
this system is diagonalized and regard it as a single equations for the eigenvalues:

𝑎(𝜉) = −|𝜉|2 ±
√︀
𝑏(𝜉)𝑐(𝜉).
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Then there could exist points 𝜉 such that ∇𝑎(𝜉) = 0 because of the lower order
terms 𝑏(𝜉), 𝑐(𝜉). Another interesting examples are Shrira equations:

𝑎(𝜉) = 𝜉31 + 𝜉32 , 𝜉31 + 3𝜉22 , 𝜉21 + 𝜉1𝜉
2
2 .

Although 𝑎(𝜉) = 𝜉31+𝜉
3
2 satisfies assumption (H), 𝑎(𝜉) = 𝜉31+3𝜉22 and 𝑎(𝜉) = 𝜉21+𝜉1𝜉

2
2

do not satisfy assumption (L) because ∇𝑎(0) = 0.
We suggest an estimate which we expect to have for non-dispersive equations:⃦⃦⃦

⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
(𝑠 > 1/2) (4)

and let us call it invariant estimate. This estimate has a number of advantages:

— in the dispersive case ∇𝑎(𝜉) ̸= 0, it is equivalent to Theorem 1;
— it is invariant under canonical transformations for the operator 𝑎(𝐷𝑥);
— it does continue to hold for a variety of non-dispersive operators 𝑎(𝐷𝑥), where
∇𝑎(𝜉) may become zero on some set and when the usual estimate fails;

— it does take into account zeros of the gradient ∇𝑎(𝜉), which is also responsible
for the interface between dispersive and non-dispersive zone (e.g. how quickly
the gradient vanishes).

9 Secondary comparison

By using comparison principle again to the smoothing estimates obtained from the
comparison principle, we can have new estimates. This is a powerful tool to induce
the invariant estimates (4) for non-dispersive equations.

For example, we have just obtained the estimate⃦⃦⃦
⟨𝑥⟩−𝑠|𝐷𝑥|(𝑚−1)/2𝑒𝑖𝑡|𝐷𝑥|𝑚𝜙

⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)

(Theorem 1 with 𝑎(𝜉) = |𝜉|𝑚) from comparison principle and canonical transforma-
tion. If we set 𝑔(𝜌) = 𝜌𝑚, 𝜏(𝜌) = 𝜌(𝑚−1)/2, then we have |𝜏(𝜌)|/|𝑔′(𝜌)|1/2 = 1/

√
𝑚.

Hence by the comparison result again for radially symmetric case (Theorem 4), we
have

Theorem 6. Suppose 𝑠 > 1/2. Let 𝑓 ∈ 𝐶1(R+) be real-valued and strictly
monotone. If 𝜎 ∈ 𝐶0(R+) satisfy

|𝜎(𝜌)| 6 𝐴|𝑓 ′(𝜌)|1/2,
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then we have

‖⟨𝑥⟩−𝑠𝜎(|𝐷𝑥|)𝑒𝑖𝑡𝑓(|𝐷𝑥|)𝜙(𝑥)‖𝐿2(R𝑡×R𝑛
𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
.

From this secondary comparison, we obtain immediately the following invariant
estimate since a radial function 𝑎(𝜉) = 𝑓(|𝜉|) always satisfies |∇𝑎(𝜉)| = |𝑓 ′(|𝜉|)|.

Theorem 7. Suppose 𝑠 > 1/2. Let 𝑎(𝜉) = 𝑓(|𝜉|) and 𝑓 ∈ 𝐶𝜔(R+) be real-
valued. Then we have⃦⃦⃦

⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
.

Example 2. 𝑎(𝜉) = (|𝜉|2 − 1)2 is non-dispersive because

∇𝑎(𝜉) = 4(|𝜉|2 − 1)𝜉 = 0

if |𝜉| = 0, 1. But we have the invariant estimate by Theorem 7.

For non-radially symmetric case, we compare again to the low dimensional model
estimates (Proposition 1) and obtain

Theorem 8 (1D secondary comparison). Suppose 𝑠 > 1/2. Let 𝑓 ∈ 𝐶1(R)
be real-valued and strictly monotone. If 𝜎 ∈ 𝐶0(R) satisfies

|𝜎(𝜉)| 6 𝐴|𝑓 ′(𝜉)|1/2,

then we have

‖⟨𝑥⟩−𝑠𝜎(𝐷𝑥)𝑒
𝑖𝑡𝑓(𝐷𝑥)𝜙(𝑥)‖𝐿2(R𝑡×R𝑥) 6 𝐴𝐶‖𝜙(𝑥)‖𝐿2(R𝑥).

Theorem 9 (2D secondary comparison). Suppose 𝑠 > 1/2. Let 𝑓 ∈
𝐶1(R2) be real-valued and 𝑓(𝜉, 𝜂) be strictly monotone in 𝜉 ∈ R for every fixed
𝜂 ∈ R. If 𝜎 ∈ 𝐶0(R2) satisfies

|𝜎(𝜉, 𝜂)| 6 𝐴|𝜕𝑓/𝜕𝜉(𝜉, 𝜂)|1/2,

then we have⃦⃦⃦
⟨𝑥⟩−𝑠𝜎(𝐷𝑥, 𝐷𝑦)𝑒

𝑖𝑡𝑓(𝐷𝑥,𝐷𝑦)𝜙(𝑥, 𝑦)
⃦⃦⃦
𝐿2(R𝑡×R2

𝑥,𝑦)
6 𝐴𝐶‖𝜙(𝑥, 𝑦)‖𝐿2(R2

𝑥,𝑦)
.

Example 3. By using secondary comparison for non-radially symmetric case,
we have invariant estimates for Shrira equations. In fact, for 𝑎(𝜉) = 𝜉31 + 3𝜉22 , we
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have by 1D secondary comparison (Theorem 8)⃦⃦⃦
⟨𝑥1⟩−𝑠|𝐷1|𝑒𝑖𝑡𝐷

3
1𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)
,⃦⃦⃦

⟨𝑥2⟩−𝑠|𝐷2|1/2𝑒𝑖𝑡3𝐷
2
2𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)

for 𝑠 > 1/2. Hence by ⟨𝑥⟩−𝑠 6 ⟨𝑥𝑘⟩−𝑠 (𝑘 = 1, 2) we have⃦⃦⃦
⟨𝑥⟩−𝑠

(︁
|𝐷1|+ |𝐷2|1/2

)︁
𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)

and hence have⃦⃦⃦
⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)
.

For 𝑎(𝜉) = 𝜉21 + 𝜉1𝜉
2
2 , we have by 2D secondary comparison (Theorem 9)⃦⃦⃦

⟨𝑥1⟩−𝑠|2𝐷1 +𝐷2
2|1/2𝑒𝑖𝑡𝑎(𝐷1, 𝐷2)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)
,⃦⃦⃦

⟨𝑥2⟩−𝑠|𝐷1𝐷2|1/2𝑒𝑖𝑡𝑎(𝐷1, 𝐷2)𝜙(𝑥)
⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)
,

for 𝑠 > 1/2, hence we have similarly⃦⃦⃦
⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R2

𝑥)
6 𝐶‖𝜙‖𝐿2(R2

𝑥)
.

10 Non-dispersive case controlled by Hessian

We will show that in the non-dispersive situation the rank of ∇2𝑎(𝜉) still has a
responsibility for smoothing properties.

First let us consider the case when dispersiveness (L) is true only for large 𝜉:

(L′) |∇𝑎(𝜉)| > 𝐶⟨𝜉⟩𝑚−1 (|𝜉| ≫ 1),

|𝜕𝛼(𝑎(𝜉)− 𝑎𝑚(𝜉))| 6 𝐶⟨𝜉⟩𝑚−1−|𝛼| (|𝜉| ≫ 1).

Theorem 10. Suppose 𝑛 > 1, 𝑚 > 1, and 𝑠 > 1/2. Let 𝑎 ∈ 𝐶∞(R𝑛) be
real-valued and assume that it has finitely many critical points. Assume (L′) and

∇𝑎(𝜉) = 0 ⇒ det∇2𝑎(𝜉) ̸= 0.



Smoothing Estimates of an Invariant Form 73

Then we have⃦⃦⃦
⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
.

Example 4. 𝑎(𝜉) = 𝜉41 + · · ·+ 𝜉4𝑛 + |𝜉|2 satisfies assumptions in Theorem 10.

We outline the proof of Theorem 10. For the region where∇𝑎(𝜉) ̸= 0, we can use
a smoothing estimate for dispersive equations. Near the points 𝜉 where ∇𝑎(𝜉) = 0,
there exists a change of variable 𝜓 by Morse’s lemma such that 𝑎(𝜉) = (𝜎 ∘ 𝜓)(𝜉)
where 𝜎(𝜂) is a non-degenerate quadratic form, and satisfies dispersiveness (H).
Hence the estimate can be reduced to the dispersive case by the method of canonical
transformation.

Next we consider the case when 𝑎(𝜉) is homogeneous (of oder 𝑚). Then, by
Euler’s identity, we have

∇𝑎(𝜉) = 1

𝑚− 1
𝜉∇2𝑎(𝜉) (𝜉 ̸= 0),

hence
∇𝑎(𝜉) = 0 ⇒ det∇2𝑎(𝜉) = 0 (𝜉 ̸= 0).

Therefore assumption in Theorem 10 does not make any sense in this case, but we
can have the following result if we use the idea of canonical transform again:

Theorem 11. Suppose 𝑛 > 2 and 𝑠 > 1/2. Let 𝑎 ∈ 𝐶∞(R𝑛 ∖ 0) be real-valued
and satisfy 𝑎(𝜆𝜉) = 𝜆2𝑎(𝜉) (𝜆 > 0, 𝜉 ̸= 0). Assume that

∇𝑎(𝜉) = 0 ⇒ rank∇2𝑎(𝜉) = 𝑛− 1 (𝜉 ̸= 0).

Then we have⃦⃦⃦
⟨𝑥⟩−𝑠|∇𝑎(𝐷𝑥)|1/2𝑒𝑖𝑡𝑎(𝐷𝑥)𝜙(𝑥)

⃦⃦⃦
𝐿2(R𝑡×R𝑛

𝑥)
6 𝐶‖𝜙‖𝐿2(R𝑛

𝑥)
.

Example 5. 𝑎(𝜉) =
𝜉21𝜉

2
2

𝜉21 + 𝜉22
+ 𝜉23 + · · ·+ 𝜉2𝑛 satisfies the assumptions in Theo-

rem 2. In the case 𝑛 = 2, this is an illustration of a smoothing estimate for the
Cauchy problem for an equation like

𝑖𝜕𝑡𝑢+𝐷2
1𝐷

2
2Δ

−1𝑢 = 0.

(A mixture of Davey-Stewartson and Benjamin-Ono type equations).
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11 Summary

Finally we summarize what is explained in this article in a diagram below. Note
that all the results of smoothing estimates here is derived from just the translation
invariance of Lebesgue measure:

∙ Trivial estimate ‖𝜙(𝑥+ 𝑡)‖𝐿2(R𝑡)
= ‖𝜙‖𝐿2(R𝑥)

⇓ (comparison principle)

∙ Low dimensional model estimates (Proposition 1)

⇓ (canonical transform)

∙ Smoothing estimates for dispersive equations (Theorem 1)

⇓ (secondary comparison & canonical transform)

∙ Invariant estimates for non-dispersive equations at least for

* radially symmetric 𝑎(𝜉) = 𝑓(|𝜉|), 𝑓 ∈ 𝐶𝜔(R+),

* Shrira equation 𝑎(𝜉) = 𝜉31 + 3𝜉22 , 𝜉
2
1 + 𝜉1𝜉

2
2 ,

* non-dispersive 𝑎(𝜉) controlled by its Hessian.
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Poincaré Anal. Non Linéaire 10 (1993), 523–548.

9. M. Ruzhansky and M. Sugimoto, Smoothing properties of evolution equations
via canonical transforms and comparison principle, to appear in Proc. London
Math. Soc.

10. M. Ruzhansky and M. Sugimoto, Smoothing properties of non-dispersive equa-
tions, preprint.
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I. Complex and Hypercomplex Analysis
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I.1. Complex Variables and Potential Theory

(Sessions organizers: T. Aliyev, M. Lanza de Cristoforis, S. Plaksa, P. Tamrazov )
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ANALYTIC FUNCTIONS OF VECTOR ARGUMENT AND
PARTIALLY-CONFORMAL MAPPINGS IN MULTIDIMENSIONAL

COMPLEX SPACES

A. K. Bakhtin

Key words: module and argument of multidimensional complex space, analogue
of Riemann mapping theorem, holomorphic functions

AMS Mathematics Subject Classification: 517.55

Abstract. In the paper we propose an approach to the construction of analog
ordinary complex analysis in the case of arbitrary multidimensional complex spaces.

1. Space C𝑛. Let N,R,C be sets of natural, real and complex numbers,
respectively. Let C be a Riemann sphere (extended complex plane).

It is well known [1–3] that a complex space C𝑛 is a linear vector space over the
complex numbers with the Hermitian product

(Z ·W) =
𝑛∑︁
𝑘=1

𝑧𝑘𝑤𝑘, (1)

where Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛, W = {𝑤𝑘}𝑛𝑘=1 ∈ C𝑛.
2. Algebra C𝑛. Binary operation acting from C𝑛 × C𝑛 in C𝑛 by the rule

Z ·W = {𝑧𝑘𝑤𝑘}𝑛𝑘=1, (2)

where Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛, W = {𝑤𝑘}𝑛𝑘=1 ∈ C𝑛, is called vector multiplication of
elements C𝑛.

This operation is converted C𝑛 into a commutative, associative algebra [7, 8]
with unit 1 = (1, 1, ..., 1)⏟  ⏞  

𝑛−раз

∈ C𝑛.

Reversible with respect to defined operation of multiplication are precisely ele-
ments Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛 in which 𝑧𝑘 ̸= 0 for all 𝑘 = 1, 𝑛.

Inverse to such elements Z ∈ C𝑛 are the elements Z−1 = {𝑧−1
𝑘 }

𝑛
𝑘=1 ∈ C𝑛, since

Z · Z−1 = Z−1 · Z = 1.
The set Θ of all elements 𝑎 = {𝑎𝑘}𝑛𝑘=1 ∈ C𝑛, in which at least one coordinate

𝑎𝑘 = 0, is called the set of non-invertible elements 𝑎 ∈ C𝑛. The set Θ is an ideal in
C𝑛. When 𝑛 = 1 equation (2) gives usual multiplication of complex numbers.
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It is well known (see [7, p. 138; 8, p. 345]) that multiplication (2) can imagine
C𝑛 as a direct sum of 𝑛 copies of the algebra complex numbers C. The structure
of the vector space C𝑛 is fully consistent with the structure of the algebra C𝑛.

We’ll give several definitions of transforming algebra C𝑛 into an algebra with
properties similar to the ordinary algebra of complex numbers.

3. Conjugation. In algebra of complex numbers C a concept of complex
conjugate number is an important concept. We will present the same object in the
algebra C𝑛.

Each element W = {𝑤𝑘}𝑛𝑘=1 ∈ C𝑛 we associate with vector-conjugate element
W = {𝑤𝑘}𝑛𝑘=1 ∈ C𝑛, where 𝑤𝑘 denote complex conjugate number 𝑤𝑘 in usual sense.

Obtained correspondence gives an automorphism C𝑛 which leaves fixed space
R𝑛 ⊂ C𝑛. When 𝑛 = 1 vector-conjugate number coincides with the complex conju-
gate one.

4. Module (vector). In algebra C one of the most important concept is the
concept of a module of complex number. The following definition gives an analogue
of this concept in C𝑛. Let R𝑛+ = 𝑅+ × 𝑅+ × . . . × 𝑅+, 𝑅+ = [0,+∞) (see [2, p.
16]).

Vector |Z| := {|𝑧𝑘|}𝑛𝑘=1 ∈ R𝑛+ is called a vector modulus of any element Z =
{𝑧𝑘}𝑛𝑘=1 ∈ C𝑛.

The operation of passing to the vector module defines the mapping C𝑛 in R𝑛+.
This mapping is used in complex analysis, in particular, to obtain Reinhart domains
in C𝑛 (see [2]).

It is important that for any Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛, we have equality

Z · Z = |Z|2 = |Z|2.

5. Vector norm. Vector X = {𝑥𝑘}𝑛𝑘=1 ∈ R𝑛 is called nonnegative (strictly
positive) and we will write X > O (X > O), if 𝑥𝑘 > 0 for all 𝑘 = 1, 𝑛 (𝑥𝑘 > 0 at
least one 𝑘 = 1, 𝑛), O = (0, 0, . . . 0)⏟  ⏞  

𝑛−reps

.

We say that the vector X = {𝑥𝑘}𝑛𝑘=1 ∈ R𝑛 is more or equal (strictly more) a
vector Y = {𝑦𝑘}𝑛𝑘=1 ∈ R𝑛, if X− Y > O (X− Y > O).

These definitions for 𝑛 = 1 coincide with those defined on the real line.
If 𝑛 > 1 then situation is quite different from the case 𝑛 = 1, for example

vector O = (0, 0, . . . 0)⏟  ⏞  
𝑛−reps

is more than or equal all vectors whose coordinates are all

non-positive and is less than or equal all vectors from R𝑛+.
Others vectors R𝑛 in which coordinates have different signs with the vector O

is not comparable in the sense of these definitions.
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Vector space Y is called vector normed space if each 𝑦 ∈ Y is associated with a
nonnegative vector ‖𝑦‖ ∈ R𝑛+, 𝑛 ∈ N, satisfying the conditions:

1) ‖𝑦‖ > O, moreover ‖𝑦‖ = O⇐⇒ 𝑦 = 0Y, (0Y is a zero of space Y);
2) ‖𝛾𝑦‖ = |𝛾|‖𝑦‖, ∀𝑦 ∈ Y, ∀𝛾 ∈ C;
3) ‖𝑦1 + 𝑦2‖ 6 ‖𝑦1‖+ ‖𝑦2‖, ∀𝑦1, 𝑦2 ∈ Y.
Similarly, we can introduce the concept of vector metric. Introduced concept of

vector module of element Z ∈ C𝑛 satisfies the last definition.
Thus, vector module is vector norm in the algebra C𝑛 : ‖·‖ = |·|. Then the open

unit ball in the algebra C𝑛 is the open unit polydisk ‖𝑧‖ < 1, (1 = (1, 1, . . . 1)⏟  ⏞  
𝑛−reps

),

and the unit sphere is 𝑛 – dimensional torus T𝑛 = {Z ∈ C𝑛 : ‖Z‖ = 1}.
It is very important that
a) |Z1 · Z2| = ‖Z1 · Z2‖ = ‖Z1‖‖Z2‖ = |Z1||Z2|, ∀Z1,Z2 ∈ C𝑛;
b) |1| = ‖1‖ = 1, (1 = (1, 1, . . . , 1)).

6. Vector argument 𝑎 ∈ C𝑛. Vector argument of 𝑛-dimensional complex
numbers A = {𝑎𝑘}𝑛𝑘=1 ∈ C𝑛∖Θ is 𝑛 – dimensional real vector, defined by

Arg A = {Arg 𝑎𝑘}𝑛𝑘=1.

7. Representation 𝑛 – dimensional complex number in vector – carte-
sian form. Let Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛. Then

Z = {𝑧𝑘}𝑛𝑘=1 = {Re 𝑧𝑘 + 𝑖Im 𝑧𝑘}𝑛𝑘=1 = {Re 𝑧𝑘}𝑛𝑘=1 + {𝑖Im 𝑧𝑘}𝑛𝑘=1 =

= {Re 𝑧𝑘}𝑛𝑘=1 + 𝑖{Im 𝑧𝑘}𝑛𝑘=1 = ReZ+ 𝑖ImZ = 𝑋 + 𝑖𝑌 =

= {𝑥𝑘}𝑛𝑘=1 + 𝑖{𝑦𝑘}𝑛𝑘=1 ∈ R𝑛 + 𝑖R𝑛,

where 𝑋 = ReZ = {Re 𝑧𝑘}𝑛𝑘=1 = {𝑥𝑘}𝑛𝑘=1, 𝑌 = ImZ = {Im 𝑧𝑘}𝑛𝑘=1 = {𝑦𝑘}𝑛𝑘=1.
That is C𝑛 = R𝑛 + 𝑖R𝑛.

8. Presentation 𝑛–dimensional complex numbers in vector–polar
form. Using the above definitions, we obtain the following chain of equalities:

Z =

⎛⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2
...
𝑧𝑛

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
|𝑧1|𝑒𝑖𝛼1

|𝑧2|𝑒𝑖𝛼2

...
|𝑧𝑛|𝑒𝑖𝛼𝑛

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
|𝑧1|
|𝑧2|
...
|𝑧𝑛|

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
𝑒𝑖𝛼1

𝑒𝑖𝛼2

...
𝑒𝑖𝛼𝑛

⎞⎟⎟⎟⎟⎟⎠ =
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= |Z|

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
cos𝛼1

cos𝛼2

...
cos𝛼𝑛

⎞⎟⎟⎟⎟⎟⎠+ 𝑖

⎛⎜⎜⎜⎜⎜⎝
sin𝛼1

sin𝛼2

...
sin𝛼𝑛

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ = |Z| [cosArg Z+ 𝑖 sinArg Z] =

= |Z|𝑒𝑖Arg Z = |Z| exp 𝑖Arg Z,

where

cos𝛽 =

⎛⎜⎜⎜⎜⎜⎝
cos𝛽1

cos𝛽2
...

cos𝛽𝑛

⎞⎟⎟⎟⎟⎟⎠ , sin𝛽 =

⎛⎜⎜⎜⎜⎜⎝
sin𝛽1

sin𝛽2
...

sin𝛽𝑛

⎞⎟⎟⎟⎟⎟⎠ ,

exp 𝑖𝛽 =

⎛⎜⎜⎜⎜⎜⎝
exp 𝑖𝛽1

exp 𝑖𝛽2
...

exp 𝑖𝛽𝑛

⎞⎟⎟⎟⎟⎟⎠ , 𝛽 =

⎛⎜⎜⎜⎜⎜⎝
𝛽1

𝛽2
...
𝛽𝑛

⎞⎟⎟⎟⎟⎟⎠ ∈ R𝑛, Z =

⎛⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2
...
𝑧𝑛

⎞⎟⎟⎟⎟⎟⎠ ∈ C𝑛.

Similarly, lnZ, Z = {𝑧𝑘}𝑛𝑘=1 ∈ C𝑛 ∖Θ

lnZ = ln |Z|+ 𝑖Arg Z =

⎛⎜⎜⎜⎜⎝
ln |𝑧1|+ 𝑖Arg 𝑧1

ln |𝑧2|+ 𝑖Arg 𝑧2

. . . . . . . . . . . . . . . . .

ln |𝑧𝑛|+ 𝑖Arg 𝑧𝑛

⎞⎟⎟⎟⎟⎠ .

Moreover, for any complex function 𝐹 (𝑧) that is regular in domains
(𝐵1, 𝐵2, . . . , 𝐵𝑛), 𝐵𝑘 ∈ C, 𝑘 = 1, 𝑛 we define continuation of this function to the
holomorphic mapping of domain B = 𝐵1 ×𝐵2 × . . .×𝐵𝑛 by the following rule

F(W) =

⎛⎜⎜⎜⎜⎝
𝐹 (𝑊1)

𝐹 (𝑊2)

. . .

𝐹 (𝑊𝑛)

⎞⎟⎟⎟⎟⎠ , W ∈ B.
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9. Compactification C𝑛. By definition C𝑛 = (C× C× . . .× C⏟  ⏞  
𝑛−reps

). Consider the

compactification of the space C𝑛, further so-called space of function theory (see, for
example [1–3]) C𝑛 = (C× C× . . .× C)⏟  ⏞  

𝑛−reps

. It is clear that C1 = C, C1
= C.

Infinite points C𝑛 are points which have at least one infinite coordinate. The
set of all infinite points has complex dimension 𝑛− 1.

Topology in C𝑛 is introduced as in Cartesian product of topological spaces. In
this topology C𝑛 is compact (see [1–3]).

10. Polycylindrical Riemann mapping theorem in C𝑛. Domain 𝐵 ⊂ C
is called the domain of hyperbolic type, if 𝜕𝐵 is a connected set containing more
than one point.

Domain B = 𝐵1 ×𝐵2 × . . .×𝐵𝑛 ⊂ C𝑛, where each domain 𝐵𝑘 ⊂ C, 𝑘 = 1, 𝑛 is
a domain of hyperbolic type, is called polycylindrical domain of hyperbolic type.

Directly from the classical Riemann theorem about mapping simply connected
domain of hyperbolic type onto the unit circle (see [6]) implies the following result.

Riemann theorem (polycylindrical). Any polycylindrical domain B ⊂ C𝑛

of hyperbolic type is biholomorphic equivalent to the unit polydisc U𝑛 = {W ∈ C𝑛 :
‖W‖ < 1}. This equivalence is realized by family of biholomorphic maps, which
depends on 3 · 𝑛 real parameters.

Let B = 𝐵1 × 𝐵2 × . . . × 𝐵𝑛 be a domain indicated in the Riemann theorem
A = {𝑎𝑘}𝑛𝑘=1 ∈ B, 𝑎𝑘 ∈ 𝐵𝑘, 𝑘 = 1, 𝑛 and 𝑤𝑘 = 𝑓𝑘(𝑧𝑘) be holomorphic function in
𝐵𝑘, which univalent and conformally maps the domain 𝐵𝑘, 𝑘 = 1, 𝑛 onto the unit
circle |𝑤𝑘| < 1 such that 𝑓(𝑎𝑘) = 0, 𝑓 ′(𝑎𝑘) > 0. Then a biholomorphic mapping

FB(Z) =

⎛⎜⎜⎜⎜⎝
𝑓1(𝑧1)

𝑓2(𝑧2)

. . .

𝑓𝑛(𝑧𝑛)

⎞⎟⎟⎟⎟⎠ , F′
B(Z) =

⎛⎜⎜⎜⎜⎝
𝑓 ′1
𝑓 ′2
. . .

𝑓 ′𝑛

⎞⎟⎟⎟⎟⎠ ,

satisfies conditions of normalization

FB(A) = O, F′
B(A) =

⎛⎜⎜⎜⎜⎝
𝑓 ′1(𝑎1)

𝑓 ′2(𝑎2)

. . .

𝑓 ′𝑛(𝑎𝑛)

⎞⎟⎟⎟⎟⎠ > O
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and it will be unique mapping onto the unit circle. So, in algebra C𝑛 norm is defined
by equality ‖Z‖ := |Z|. Metric (vector) in C𝑛 is given by usual way: 𝜌(Z1,Z2) =
‖Z1 − Z2‖.

This (vector) norm and metric is polycylindrical.
Convergence with respect to polycylindrical norm is given by the relation

Z𝑝 −→
𝑝→∞

0⇐⇒ ‖Z𝑝‖ −→
𝑝→∞

O = (0, 0, . . . 0)⏟  ⏞  
𝑛−reps

⇐⇒ |𝑧(𝑘)𝑝 | −→
𝑝→∞

0 ∀𝑘 = 1, 𝑛.

11. Differentiability. Consider domain D ⊂ C𝑛 and mapping F :
D −→ C𝑚, F = {𝑓𝑘(𝑧1, . . . , 𝑧𝑛)}𝑚𝑘=1. Let 𝑓𝑘 = 𝑈 (𝑘)(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) +

𝑖𝑉 (𝑘)(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛) is a real functions which are differentiable everywhere
in domain D if 𝑘 = 1,𝑚, 𝑛,𝑚 ∈ N.

Consider Jacobi matrix of mapping F, as a differentiable mapping of domain
D ⊂ R2𝑛 in R2𝑚 (matrix 2𝑚× 2𝑛)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑈
(1)
𝑥1 . . . 𝑈

(1)
𝑥𝑛 | 𝑈

(1)
𝑦1 . . . 𝑈

(1)
𝑦𝑛

. . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . .

... {UX}
... |

... {UY}
...

. . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . .

𝑈
(𝑚)
𝑥1 . . . 𝑈

(𝑚)
𝑥𝑛 | 𝑈

(𝑚)
𝑦1 . . . 𝑈

(𝑚)
𝑦𝑛

−−− −−− −−− | − −− −−− −−−

𝑉
(1)
𝑥1 . . . 𝑉

(1)
𝑥𝑛 | 𝑉

(1)
𝑦1 . . . 𝑉

(1)
𝑦𝑛

. . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . .

... {VX}
... |

... {VY}
...

. . . . . . . . . . . . . . . . . . . . . . . | . . . . . . . . . . . . . . . . . . . . . . . .

𝑉
(𝑚)
𝑥1 . . . 𝑉

(𝑚)
𝑥𝑛 | 𝑉

(𝑚)
𝑦1 . . . 𝑉

(𝑚)
𝑦𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where 𝑈 (𝑘)
𝑥𝑗 = 𝜕

𝜕𝑥𝑗
𝑈𝑘, 𝑉

(𝑘)
𝑥𝑗 = 𝜕

𝜕𝑥𝑗
𝑉𝑘, 𝑘 = 1,𝑚, 𝑗 = 1, 𝑛.

Hatched lines divide Jacobian matrix (3) into four rectangular matrix of order
𝑚 × 𝑛, denoted by UX, UY, VX, VY, where F = ReF + 𝑖ImF = U + 𝑖V, Z =
ReZ+ 𝑖ImZ = X+ 𝑖Y.

Then the matrix (3) can be represented as follows(︃
UX UY

VX VY

)︃
.
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Then the Cauchy-Riemann conditions for the mapping F can be written as{︃
UX = VY,

UY = −VX.
(4)

Taking into account (4), well-known definition of holomorphic mapping (see
[1–5]) can be represented as follows.

Real and differentiable map F : D −→ C𝑚 in D (as a map from R2𝑛 to R2𝑚)
which satisfies the matrix equation (4) everywhere in D is called holomorphic in D.

For 𝑛 ∈ N and 𝑚 = 1 we obtain definition of holomorphic curve in domain
D ⊂ C𝑛. In the case 𝑛 = 1, 𝑚 ∈ N, we obtain definition a holomorphic curve.

It is known [1–3] that a holomorphic map F : D −→ C𝑚, D ⊂ C𝑛 is called
biholomorphic if it has an inverse mapping which is holomorphic in domain F(D).

12. Application. In connection with polycylindrical Riemann mapping the-
orem, we consider polycylindrical analog of class 𝑆 from the theory of univalent
functions (see, for example [6]).

Class S(𝑛) is the set of all biholomorphic maps of the unit polydisc U𝑛 = {Z ∈

C𝑛 : ‖Z‖ < 1} of the form F(Z) =

⎛⎜⎜⎜⎜⎝
𝑓1(𝑧1)

𝑓2(𝑧2)

. . .

𝑓𝑛(𝑧𝑛)

⎞⎟⎟⎟⎟⎠, where Z =

⎛⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2
...
𝑧𝑛

⎞⎟⎟⎟⎟⎟⎠ ∈ U𝑛, 𝑓𝑘 ∈ 𝑆,

𝑘 = 1, 𝑛.
It is clear that for Z ∈ U𝑛(𝑟) := {‖Z‖ 6 𝑟 < 1}, 𝑟 = {𝑟𝑘}𝑛𝑘=1, 0 < 𝑟𝑘 < 1,

𝑘 = 1, 𝑛 series convergent absolutely and uniformly

F(Z) =
∞∑︁
𝑘=1

A𝑘Z𝑘 =
∑︁

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎
(1)
𝑘

𝑎
(2)
𝑘

...

𝑎
(𝑛)
𝑘

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
𝑧1

𝑧2
...
𝑧𝑛

⎞⎟⎟⎟⎟⎟⎠
𝑘

=

⎛⎜⎜⎜⎜⎜⎜⎝

∑︀
𝑎
(1)
𝑘 𝑧𝑘1∑︀
𝑎
(2)
𝑘 𝑧𝑘2
...∑︀
𝑎
(𝑛)
𝑘 𝑧𝑘𝑛

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑓1(𝑧1)

𝑓2(𝑧2)

. . .

𝑓𝑛(𝑧𝑛)

⎞⎟⎟⎟⎟⎠ .

Theorem 1. For any mapping F ∈ S(𝑛) we have inequality

‖Z‖
(1 + ‖Z‖)2

6 ‖F(Z)‖ 6 ‖Z‖
(1− ‖Z‖)2

,

where ‖Z‖ = 𝑟 = {|𝑧𝑘|}𝑛𝑘=1 = {|𝑟𝑘|} ∈ R𝑛+, 0 6 𝑟𝑘 < 1, 𝑘 = 1, 𝑛.
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Theorem 2. For any mapping F ∈ S(𝑛) we have inequality

‖1− Z‖
(1 + ‖Z‖)3

6 ‖F′(Z)‖ 6 ‖1 + Z‖
(1− ‖Z‖)3

,

where ‖Z‖ = 𝑟 = {|𝑧𝑘|}𝑛𝑘=1 = {|𝑟𝑘|} ∈ R𝑛+, 0 6 𝑟𝑘 < 1, 𝑘 = 1, 𝑛.
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Abstract. The theory of multiplicative functions and Prym differentials for
the case of special characters on a compact Riemann surface has found numerous
applications in geometrical theory of function of complex variable, analytic number
theory and equations of mathematical physics. In [5] we begun the construction
of a general theory of multiplicative functions and Prym differentials on a compact
Riemann surface for arbitrary characters. In this article some new properties of
spaces of meromorphic Prym differentials on variable compact Riemann surfaces
and for variable characters are obtained.

1 Introduction

Let 𝐹 be a fixed compact oriented Riemann surface of genus 𝑔 > 2 with framing
{𝑎𝑘, 𝑏𝑘}𝑔𝑘=1 in first fundamental group 𝜋1(𝐹 ). Let 𝐹0 be Riemann surface with a
fixed complex analytic structure on 𝐹.

By the uniformization theorem there is a finitely generated Fuchsian group Γ
of the first kind acting on the unit disk 𝑈 = {𝑧 ∈ C : |𝑧| < 1} such that 𝑈/Γ is
conformally equivalent to 𝐹0. The group Γ has the representation

Γ =

⟨
𝐴1, 𝐴2, . . . , 𝐴𝑔, 𝐵1, . . . , 𝐵𝑔 :

𝑔∏︁
𝑗=1

𝐴𝑗𝐵𝑗𝐴
−1
𝑗 𝐵−1

𝑗 = 1

⟩
.

Each complex analytic structure on 𝐹 can be defined by Beltrami differential
𝜇 on 𝐹0, that is by an expression 𝜇(𝑧)𝑑𝑧𝑑𝑧 which does not depend on the choice of
local parameters on 𝐹0, where 𝜇(𝑧) is a complex function on 𝐹0 and ‖𝜇‖𝐿∞(𝐹0) =
esssup|𝜇(𝑧)| < 1. Such structure on 𝐹 will be denoted by 𝐹𝜇.

Let 𝑀(𝐹 ) be the set of all complex analytic structures on 𝐹 with 𝐶∞-topology
on 𝐹0, and let Diff0(𝐹 ) be the group of orientation preserving diffeomorphisms for
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surface 𝐹, which consist of all diffeomorphisms homotopic to identity diffeomor-
phism on 𝐹0. The action of the group Diff0(𝐹 ) on 𝑀(𝐹 ) is defined by the rule
𝜇→ 𝑓*𝜇. Then Teichmueller space T𝑔(𝐹 ) is a quotient space 𝑀(𝐹 )/Diff0(𝐹 ).

Since the mapping 𝑈 → 𝐹0 = 𝑈/Γ is a local diffeomorphism, every Bel-
trami differential 𝜇 on 𝐹0 lifts to a Γ−differential Beltrami 𝜇 on U, that is
𝜇 ∈ 𝐿∞(𝑈), |𝜇‖∞ = esssup|𝜇(𝑧)| < 1 and 𝜇(𝑇𝑧)𝑇 ′(𝑧)/𝑇 ′(𝑧) = 𝜇(𝑧), 𝑧 ∈ 𝑈 , 𝑇 ∈ Γ.

For the extension of the Γ-differential 𝜇 from 𝑈 to C, equal to 0, on C∖𝑈, there is
an unique quasiconformal homeomorphism 𝑤𝜇 : C→ C with fixed points +1, −1, 𝑖
satisfying the Beltrami equation 𝑤𝑧 = 𝜇(𝑧)𝑤𝑧. The mapping 𝑇 → 𝑇𝜇 = 𝑤𝜇𝑇 (𝑤𝜇)−1

defines an isomorphism of the group Γ to the quasifuchsian group Γ𝜇 = 𝑤𝜇Γ(𝑤𝜇)−1.

The classical results of L. Ahlfors, L. Bers [6] and other authors state, that:
1) T𝑔(𝐹 ) is a complex analytic manifold of dimension 3𝑔 − 3 for 𝑔 > 2; 2) T𝑔(𝐹 )
has unique complex analytic structure such that the natural mapping Φ :𝑀(𝐹 )→
𝑀(𝐹 )/𝐷𝑖𝑓𝑓0(𝐹 ) = T𝑔(𝐹 ) is holomorphic and local sections of Φ are holomorphic;
3) elements of Γ𝜇 are holomorphic with respect to [𝜇]. It is natural, that the choice
of generators {𝑎𝑘, 𝑏𝑘}𝑔𝑘=1 for 𝜋1(𝐹 ) is equivalent to the choice of the systems of
generators {𝑎𝑘(𝜇), 𝑏𝑘(𝜇)}𝑔𝑘=1 for 𝜋1(𝐹𝜇) and {𝐴𝜇𝑗 , 𝐵

𝜇
𝑗 }

𝑔
𝑗=1 for Γ𝜇 for every [𝜇] in T𝑔.

Universal Jacobi variety of genus 𝑔 is a bundle space over T𝑔, whose fibre over
[𝜇] ∈ T𝑔 is a Jacobian 𝐽(𝐹𝜇) for 𝐹𝜇 [8].

In the article [7] L. Bers has constructed the holomorphic forms 𝜁1[𝜇] =
𝜁1([𝜇], 𝜉)𝑑𝜉, . . . , 𝜁𝑔[𝜇] = 𝜁𝑔([𝜇], 𝜉)𝑑𝜉. These forms are liftings to 𝑤𝜇(𝑈) of holomor-
phic abelian differentials 𝜁1[𝜇], . . . , 𝜁𝑔[𝜇] on 𝐹𝜇, which give canonical basis on 𝐹𝜇,
dual to canonical homotopic basis {𝑎𝑘(𝜇), 𝑏𝑘(𝜇)}𝑔𝑘=1 on 𝐹𝜇. This basis holomorphi-
cally depends on module [𝜇] of framed compact Riemann surface 𝐹𝜇. Moreover,
the matrix of 𝑏−periods Ω(𝜇) = (𝜋𝑗𝑘[𝜇])

𝑔
𝑗,𝑘=1 on 𝐹𝜇 consists of complex numbers

𝜋𝑗𝑘[𝜇] =
𝐵𝜇

𝑘 (𝜉)∫︀
𝜉

𝜁𝑗([𝜇], 𝑤)𝑑𝑤, 𝜉 ∈ 𝑤𝜇(𝑈) and holomorphically depends on [𝜇].

For any fixed [𝜇] ∈ T𝑔 and 𝜉0 ∈ 𝑤𝜇(𝑈) we define classical Jacobi mapping

𝜙 : 𝑤𝜇(𝑈)→ C𝑔 by the rule: 𝜙𝑗(𝜉) =
𝜉∫︀
𝜉0

𝜁𝑗([𝜇], 𝑤)𝑑𝑤, 𝑗 = 1, . . . , 𝑔. Then 𝜙 induces

a fiberwise holomorphic embedding from 𝐹𝜇 to 𝐽(𝐹𝜇).
Next, for every natural number 𝑛 > 1 there exists a bundle space over T𝑔, whose

fibre over [𝜇] ∈ T𝑔 is a space of all effective divisors of degree 𝑛 on compact Riemann
surface 𝐹𝜇. Holomorphic sections of this bundle define on every 𝐹𝜇 an effective
divisor 𝐷𝜇 of degree 𝑛, which holomorphically depends on [𝜇]. Also, there exists a
holomorphic mapping 𝜙𝑛 from this bundle to the universal Jacobi bundle, 𝑛 > 1,
whose restriction to fibres is the extension of classical Jacobi mapping 𝜙 : 𝐹𝜇 →
𝐽(𝐹𝜇). It is well known that for 𝑛 = 𝑔 the mapping 𝜙 : 𝐹𝑔[𝜇]∖𝐹 1

𝑔 [𝜇]→𝑊𝑔[𝜇]∖𝑊 1
𝑔 [𝜇]
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is an analytic isomorphism, where 𝐹𝑔[𝜇] is a 𝑔−multiple symmetric product of
the surface 𝐹𝜇, and that the complex dimension of 𝑊 1

𝑔 [𝜇] = 𝜙(𝐹 1
𝑔 [𝜇]) is at most

𝑔 − 2 [3]. The local holomorphic sections of these bundles over the neighbourhood
𝑈([𝜇0]) ⊂ T𝑔 may be obtained (for every 𝑛 > 1) from local holomorphic C. Earl’s
sections for Φ :𝑀(𝐹 )→ T𝑔 over 𝑈([𝜇0]) [8].

A character 𝜌 for 𝐹𝜇 is an arbitrary homomorphism 𝜌 : (𝜋1(𝐹𝜇), ·) →
(C*, ·),C* = C ∖ {0}. The character is uniquely defined by an ordered collection
(𝜌(𝑎1(𝜇)), 𝜌(𝑏1(𝜇)), . . . , 𝜌(𝑎𝑔(𝜇)), 𝜌(𝑏𝑔(𝜇))) ∈ (C*)2𝑔.

Definition 1. A meromorphic function 𝑓 on 𝑤𝜇(𝑈) such that 𝑓(𝑇𝑧) =
𝜌(𝑇 )𝑓(𝑧), 𝑧 ∈ 𝑤𝜇(𝑈), 𝑇 ∈ Γ𝜇 is called a multiplicative function 𝑓 on 𝐹𝜇 for
character 𝜌

Definition 2. A differential 𝜑 = 𝜑(𝑧)𝑑𝑧𝑚, such that 𝜑(𝑇𝑧)(𝑇 ′𝑧)𝑚 =
𝜌(𝑇 )𝜑(𝑧), 𝑧 ∈ 𝑈, 𝑇 ∈ Γ, 𝜌 : Γ → C*, is called a Prym 𝑚−differential with respect
to the Fuchsian group Γ for 𝜌, or (𝜌,𝑚)-differential.

A character 𝜌 for multiplicative function 𝑓0 without zeros and poles on 𝐹𝜇 has

the form 𝜌(𝑎𝑘(𝜇)) = exp 2𝜋𝑖𝑐𝑘([𝜇], 𝜌), 𝜌(𝑏𝑘(𝜇)) = exp(2𝜋𝑖
𝑔∑︀
𝑗=1

𝑐𝑗([𝜇], 𝜌)𝜋𝑗𝑘([𝜇])), 𝑘 =

1, . . . , 𝑔. Such characters 𝜌 we call unessential, and a function 𝑓0 with such charac-
ter is called an unit. A character, which is not unessential, will be called essential
on 𝜋1(𝐹𝜇). Denote by 𝐻𝑜𝑚(Γ,C*) the of group all characters on Γ with natu-
ral product operation. Unessential characters form a subgroup 𝐿𝑔 of the group
𝐻𝑜𝑚(Γ,C*).

Lemma 1 (see [5]). Each holomorphic principal 𝐻𝑜𝑚(Γ,C*)−bundle 𝐸 is
biholomorphically isomorphic to the trivial bundle T𝑔(𝐹 )×𝐻𝑜𝑚(Γ,C*) over T𝑔(𝐹 ).

Definition 3. A Prym differential 𝜑 of class 𝐶1 on 𝐹 = 𝑈/Γ for 𝜌 is called
multiplicatively exact, if 𝜑 = 𝑑𝑓(𝑧) and 𝑓(𝑇𝑧) = 𝜌(𝑇 )𝑓(𝑧), 𝑇 ∈ Γ, 𝑧 ∈ 𝑈, that is 𝑓
is a multiplicative function on 𝐹 of class 𝐶2 for 𝜌.

A divisor on 𝐹𝜇 is a formal product 𝐷 = 𝑃𝑛1
1 . . . 𝑃𝑛𝑘

𝑘 , 𝑃𝑗 ∈ 𝐹𝜇, 𝑛𝑗 ∈ Z, 𝑗 =
1, . . . , 𝑘. We have the following theorem.

Theorem (the Riemann-Roch theorem for characters [3]). Let 𝐹 be a compact
Riemann surface of genus 𝑔 > 1. Then for any divisor 𝐷 on 𝐹 and a for any
character 𝜌 the equality 𝑟𝜌(𝐷−1) = deg𝐷 − 𝑔 + 1 + 𝑖𝜌−1(𝐷) is true.

Theorem (H. Abel theorem for characters [3]). Let 𝐷 be a divisor on a
marked variable compact Riemann surface [𝐹𝜇, {𝑎1(𝜇), . . . , 𝑎𝑔(𝜇), 𝑏1(𝜇), . . . , 𝑏𝑔(𝜇)}]
of genus 𝑔 > 1 and let 𝜌 be a character on 𝜋1(𝐹𝜇). Then 𝐷 is
a divisor of a multiplicative function 𝑓 on 𝐹𝜇 for the character 𝜌 ⇔

deg𝐷 = 0 and 𝜙(𝐷) = 1
2𝜋𝑖

𝑔∑︀
𝑗=1

log 𝜌(𝑏(𝜇)𝑗)𝑒
(𝑗)[𝜇] − 1

2𝜋𝑖

𝑔∑︀
𝑗=1

log 𝜌(𝑎𝑗(𝜇))𝜋
(𝑗)[𝜇](=

𝜓(𝜌, [𝜇])) in C𝑔 modulo integer lattice 𝐿(𝐹𝜇), which is generated by columns
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𝑒(1)[𝜇], . . . , 𝑒(𝑔)[𝜇], 𝜋(1)[𝜇], . . . , 𝜋(𝑔)[𝜇] of the matrix of 𝑎(𝜇), 𝑏(𝜇)−periods on 𝐹𝜇,
where 𝜙[𝜇] is Jacobi mapping from 𝐹𝜇 in Jacobi variety 𝐽(𝐹𝜇).

2 Divisors of Prym differentials on a compact Riemann surface

Theorem 1. 1) For any essential character 𝜌, a point 𝑄1 ∈ 𝐹𝜇, natural number
𝑞 > 1, and unessential character 𝜌, point 𝑄1 ∈ 𝐹𝜇, natural number 𝑞 > 1 there
exists an elementary (𝜌, 𝑞)−differential 𝜏𝜌,𝑞;𝑄1 of third kind with unique simple pole
𝑄1 = 𝑄1[𝜇] on 𝐹𝜇, locally holomorphic with respect to 𝜌 and [𝜇];

2) For every unessential character 𝜌, and every point 𝑄1 ∈ 𝐹𝜇 for 𝑞 = 1 there
does not exist an elementary (𝜌, 1)−differential 𝜏𝜌;𝑄1 of third kind with unique simple
pole 𝑄1 on 𝐹𝜇.

Proof. 1) If 𝜌 is an essential character and 𝑞 = 1, then by Riemann-Roch
theorem for characters we have the equality 𝑖𝜌(

1
𝑄1

) = −1 + 𝑔 + 1 + 𝑟𝜌−1(𝑄1),

𝑖𝜌(
1
𝑄1

) = 𝑔 and 𝑖𝜌(1) = 𝑔 − 1. Hence 𝑖𝜌( 1
𝑄1

) = 𝑖𝜌(1) + 1. Thus there exists a Prym
differential 𝜏𝜌;𝑄1 for 𝜌 on 𝐹𝜇 with unique pole 𝑄1 of exactly first order.

If 𝜌 is an arbitrary character and 𝑞 > 1, then by Riemann-Roch theorem for
(𝜌, 𝑞)-differentials [5] we have 𝑖𝜌,𝑞(𝐷) = (2𝑞 − 1)(𝑔 − 1) − deg𝐷 + 𝑟((𝑓)𝑍

𝑞−1

𝐷 ) and
𝑖𝜌,𝑞(1) = (2𝑞−1)(𝑔−1), where 𝑓 — multiplicative function for 𝜌 and 𝑍 — canonical
class of abelian differentials on 𝐹𝜇. Hence 𝑖𝜌,𝑞( 1

𝑄1
) = 𝑖𝜌,𝑞(1) + 1 + 𝑟((𝑓)𝑍𝑞−1𝑄1).

Thus we have the equality 𝑖𝜌,𝑞( 1
𝑄1

) = 𝑖𝜌,𝑞(1) + 1, since deg((𝑓)𝑍𝑞−1𝑄1) = 0 + (𝑞 −
1)(2𝑔 − 2) + 1 > 0. Therefore there exists a (𝜌, 𝑞)−differential 𝜏𝜌,𝑞;𝑄1 for 𝜌 on 𝐹𝜇
with unique pole 𝑄1 of exactly first order.

Let us construct such differentials which are locally holomorphic with respect
to 𝜌 and [𝜇] :

a) Such (𝜌, 𝑞)-differential 𝜏𝜌,𝑞;𝑄1 may be defined by 𝜏𝜌,𝑞;𝑄1 = 𝑓𝜔𝑞0, where 𝑓 is a
multiplicative function for essential character 𝜌 on 𝐹𝜇, 𝑞 > 1 and 𝜔0 — a holomorphic
abelian differential on 𝐹𝜇. Divisor (𝜏𝜌,𝑞;𝑄1) =

𝑅1...𝑅𝑁
(𝜔0)𝑞𝑄1

(𝜔0)
𝑞, where 𝑁 = 𝑞(2𝑔−2)+1

and point 𝑄1 does not belong to divisor (𝜔0). Hence we have an equality

𝜙(𝑅1 . . . 𝑅𝑔) = −2𝐾𝑞 + 𝜙(𝑄1)− 𝜙(𝑅𝑔+1 . . . 𝑅𝑁 ) + 𝜓(𝜌) = 𝑎 (*)

in the Jacobi variety 𝐽(𝐹𝜇) for 𝐹𝜇;
b) In the case 𝜌 = 1 or when 𝜌 is an unessential character for 𝑞 > 1 we find such

differential in the form 𝜏𝜌,𝑞;𝑄1 = 𝑓0𝑓1𝜔
𝑞
0, where 𝑓1 is a single-valued meromorphic

function with divisor (𝑓1) = 𝑅1...𝑅𝑁
(𝜔0)𝑞𝑄1

and 𝑓0 is a multiplicative unit for 𝜌 on 𝐹𝜇.

Here 𝜓(𝜌) = 0 and by Abel’s theorem we have equality

𝜙(𝑅1 . . . 𝑅𝑔) = −2𝐾𝑞 + 𝜙(𝑄1)− 𝜙(𝑅𝑔+1 . . . 𝑅𝑁 ) = 𝑎. (**)
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Under these conditions in both cases a) and b) we have unequalities𝑁−𝑔 > 𝑔−1
and dim𝑊 1

𝑔 6 𝑔−2. By slightly moving the divisors 𝑅𝑔+1 . . . 𝑅𝑁 we can make sure
that a does not belong to 𝑊 1

𝑔 and the equations (*) and (**) have unique solutions
𝑅1 . . . 𝑅𝑔 in Jacobi variety.

Chosing a section, which is locally holomorphic with respect to [𝜇] and 𝜌 divi-
sors 𝑅𝑔+1 . . . 𝑅𝑁 over T𝑔, we obtain a divisor 𝑅1 . . . 𝑅𝑔 (as an unique solution of
these equations in 𝐽(𝐹𝜇)) which also holomorphically depend, on 𝜌 and [𝜇]. More-
over slightly moving divisors 𝑅𝑔+1 . . . 𝑅𝑁 we may make sure, that the point 𝑄1 is
different from the points 𝑅1, . . . , 𝑅𝑁 .

2) If there exists a differential 𝜏𝜌;𝑄1 for unessential character 𝜌 with residue
𝑟𝑒𝑠𝑄1𝜏𝜌;𝑄1 = 𝑐𝑄1 ̸= 0 for some its branch, then 𝑓−1

0 𝜏𝜌;𝑄1 is an abelian differential
with unique simple pole in 𝑄1 and 𝑓0 is a multiplicative unit for 𝜌 on 𝐹𝜇. By residue
theorem 𝑓−1

0 ( ̃︀𝑄1)𝑐𝑄1 = 0, where ̃︀𝑄1 ̸= 𝑄1. Contradiction.
This statement also follows from the Riemann-Roch theorem since 𝑖𝜌(𝑄−1

1 ) =
𝑔 = 𝑖𝜌(1) for unessential character 𝜌. In fact, 0 = 𝑟𝜌−1(𝑄1) = deg( 1

𝑄1
) − 𝑔 + 1 +

𝑖𝜌(
1
𝑄1

) = −1− 𝑔 + 1 + 𝑖𝜌(
1
𝑄1

). Theorem 1 is proven.
It is clear, that a (𝜌,𝑚)−differential 𝜔 has an unique divisor 𝐷 = (𝜔) obtained

from his zero and poles, with regard to multiplicity, on 𝐹 of genus 𝑔 > 2, and
deg𝐷 = (2𝑔− 2)𝑚, 𝑚 > 1. Let us find, if the given divisor 𝐷 on 𝐹 of genus 𝑔 > 2,
deg𝐷 = (2𝑔 − 2)𝑚, would define a (𝜌,𝑚)−differential 𝜔 up to the multiplication
by a non-zero constant on 𝐹.

It is well known from [5], that any divisor 𝐷 on 𝐹 of genus 𝑔 > 2 and of degree
(2𝑔−2)𝑚, 𝑔 > 1, 𝑚 > 1 is a divisor for unique (up to the multiplication by nonzero
constant) (𝜌,𝑚)−differential, which belong to uniquely normalized character 𝜌.

Theorem 2. Let 𝐷 be a divisor, deg𝐷 = (2𝑔 − 2)𝑚, 𝑚 > 0, on a compact
Riemann surface 𝐹 genus of 𝑔 > 2, then:

1) if there exist two differentials 𝜔1 and 𝜔2, (𝜔1) = (𝜔2) = 𝐷, for the same
character 𝜌, then 𝜔1 = 𝑐𝜔2, where 𝑐 = 𝑐𝑜𝑛𝑠𝑡 ̸= 0 on 𝐹 ;

2) if there exist two differentials 𝜔1 and 𝜔2, (𝜔1) = (𝜔2) = 𝐷, for two different
characters 𝜌1 and 𝜌2, 𝜌1 ̸= 𝜌2, then 𝜔1 = 𝜔2𝑔, where 𝑔 is a multiplicative units for
an unessential character 𝜌0 on 𝐹, where 𝜌1 = 𝜌2𝜌0;

3) if there exist two differentials 𝜔1 and 𝜔2, (𝜔1) = (𝜔2) = 𝐷, for normalized
characters 𝜌1 and 𝜌2, then 𝜌1 = 𝜌2 and 𝜔1 = 𝑐𝜔2, where 𝑐 = 𝑐𝑜𝑛𝑠𝑡 ̸= 0 on 𝐹.

Proof. 1) Let us consider the ratio 𝑔 = 𝜔1
𝜔2
. The divisor (𝑔) = 1 and the

character 𝜌
𝜌 = 1, therefore 𝑔 = 𝑐 ̸= 0 on 𝐹, since 𝑔 is a single-valued analytic

function on 𝐹 ;
2) Also examine 𝑔 = 𝜔1

𝜔2
. For this function (𝑔) = 1, and its character 𝜌0 = 𝜌1

𝜌2
must be unessential. Hence, 𝜔1 = 𝜔2𝑔, where 𝑔 is a multiplicative unit for 𝜌0;
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3) Again consider 𝑔 = 𝜔1
𝜔2
. For this function (𝑔) = 1, therefore its character

𝜌0 =
𝜌1
𝜌2

must be unessential. Then 𝜌0 is simultaneously unessential and normalized.
By the theorem [2], 𝜌0 ≡ 1. Therefore 𝜌1 = 𝜌2 and by the statement 1) we have
𝜔1 = 𝑐𝜔2, 𝑐 ̸= 0 on 𝐹. Theorem 2 is proven.

Denote by Ω𝜌(
1

𝑄1...𝑄𝑠
;𝐹𝜇) the space of meromorphic Prym differential for 𝜌 with

poles of the order at most one in the points 𝑄1, . . . , 𝑄𝑠, 𝑠 > 2, and Ω𝑒,𝜌(1;𝐹𝜇) be
the subspace of multiplicatively exact holomorphic differentials for 𝜌, where the
divisor 𝑄1 . . . 𝑄𝑠 on 𝐹𝜇 is viewed as a global real-analytic Earle’s section [8] for the
bundle of effective divisors of degree 𝑠 over Teichmueller spaces T𝑔 [5].

Introduce the collections of differentials, which represent cosets for our quotient
space for essential characters

̃︀𝜁1, . . . , ̃︀𝜁𝑔−1, ̃︀𝜏𝜌;𝑄2𝑄1 , . . . , ̃︀𝜏𝜌;𝑄𝑠𝑄1 , ̃︀𝜏𝜌;𝑄1 . (1)

Theorem 3. The vector bundle 𝐸 =
⋃︀
[𝜇],𝜌

Ω𝜌(
1

𝑄1...𝑄𝑠
;𝐹𝜇)/Ω𝑒,𝜌(1;𝐹𝜇) over T𝑔 ×

(𝐻𝑜𝑚(Γ,C*) ∖ 𝐿𝑔) is a holomorphic vector bundle of rank 𝑔 + 𝑠 − 1. In this case
the collection (1) of cosets of differentials is a basis of local holomorphic sections
for this vector bundle, where 𝑠 > 1, 𝑔 > 1.

Proof. Let 𝜌 be an essential character. Consider the space Ω𝑒,𝜌(1;𝐹𝜇). Sup-
pose, that there exist 𝜔 ̸= 0, 𝜔 ∈ Ω𝑒,𝜌(1;𝐹𝜇), then 𝜔 = 𝑑𝑓 - holomorphic multiplica-
tively exact differential for 𝜌. Consequently 𝑓 is a global holomorphic multiplicative
function for essential character 𝜌. It is known, that 𝑑𝑒𝑔(𝑓) = 0 therefore 𝑓 is a mul-
tiplicative unit for 𝜌, and 𝜌 is a unessential. We obtain contradiction. Therefore
Ω𝑒,𝜌(1;𝐹𝜇) = {0}.

Thus,

dimCΩ𝜌(
1

𝑄1 · · ·𝑄𝑠
;𝐹𝜇)/Ω𝑒,𝜌(1;𝐹𝜇) = dimCΩ𝜌(

1

𝑄1 · · ·𝑄𝑠
;𝐹𝜇) = 𝑔 + 𝑠− 1.

By the Theorem 2.1, for essential character 𝜌 we have 𝑔+𝑠−1 linear independent
differentials ̃︀𝜁1, . . . , ̃︀𝜁𝑔−1, ̃︀𝜏𝜌;𝑄2𝑄1 , . . . , ̃︀𝜏𝜌;𝑄𝑠𝑄1 , ̃︀𝜏𝜌;𝑄1 .

In fact, if there a exist linear combination form with non-zero coefficients

𝑐1̃︀𝜁1 + . . .+ 𝑐𝑔−1
̃︀𝜁𝑔−1 + 𝑐

′
1̃︀𝜏𝜌;𝑄1 + 𝑐

′
2̃︀𝜏𝜌;𝑄2𝑄1 + . . .+ 𝑐

′
𝑠̃︀𝜏𝜌;𝑄𝑠𝑄1 = 𝑑𝑓,

where 𝑑𝑓 is holomorphic multiplicatively exact Prym differential for 𝜌, then the
coefficients 𝑐′2 = . . . = 𝑐

′
𝑠 = 0, since points 𝑄2, . . . , 𝑄𝑠 are not singularity points for

the right side. Next 𝑐′1 = 0, since in the opposite case the function 𝑓 is not a local
single-valued in the punctured neighbourhood of the point 𝑄1, that contradicts to



92 The 8th Congress of the ISAAC — 2011

the condition 𝜌(𝛾1) = 1, where 𝛾1 is loop around the point 𝑄1. We obtain equality
𝑐1̃︀𝜁1+ . . .+ 𝑐𝑔−1

̃︀𝜁𝑔−1 = 𝑑𝑓. In this case 𝑑𝑓 = 0, and coefficients 𝑐1 = . . . = 𝑐𝑔−1 = 0.
Theorem 3 is proven.

Corollary 1. On compact Riemann surface 𝐹𝜇 of genus 𝑔 > 2 for the first
holomorphic de Rham cohomology group 𝐻1

ℎ𝑜𝑙,𝜌(𝐹𝜇) = Ω𝜌(1;𝐹𝜇)/Ω𝑒,𝜌(1;𝐹𝜇) the
characters satisfy 𝑑𝑖𝑚C𝐻

1
ℎ𝑜𝑙,𝜌(𝐹𝜇) = 𝑔 − 1, if𝑟ℎ𝑜 ̸= 1.

For these quotient spaces on 𝐹𝜇 :
for any unessential character 𝜌0 ̸= 1, 𝜌0(𝑎𝑘) ̸= 1, the cosets of differentials

[𝑓0𝜁1], . . . , [̂𝑓0𝜁𝑘], . . . , [𝑓0𝜁𝑔] form a basis, which locally holomorphically depend of
[𝜇] and 𝜌;

for an essential character 𝜌 the cosets of differentials [̃︀𝜁1], . . . , [̃︀𝜁𝑔−1] form a basis,
which locally holomorphically depend on [𝜇] and 𝜌, where ̃︀𝜁1, . . . , ̃︀𝜁𝑔−1 is a basis
of holomorphic differentials in the space Ω𝜌(1;𝐹𝜇), which locally holomorphically
depend of [𝜇] and 𝜌.
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Abstract. We consider an analogue of the Schwartz integral in a commutative
Banach algebra associated with the biharmonic equation.

1 Introduction

We say that an associative commutative two-dimensional algebra B with the unit 1
over the field of complex numbers C is biharmonic if in B there exists a biharmonic
basis, i.e a bases {𝑒1, 𝑒2} satisfying the conditions

(𝑒21 + 𝑒22)
2 = 0, 𝑒21 + 𝑒22 ̸= 0. (1)

V. F. Kovalev and I. P. Mel’nichenko [1] found a multiplication table for a bi-
harmonic basis {𝑒1, 𝑒2}:

𝑒1 = 1, 𝑒22 = 𝑒1 + 2𝑖𝑒2, (2)

where 𝑖 is the imaginary complex unit. In the paper [2] I. P. Mel’nichenko proved
that there exists the unique biharmonic algebra B with a non-biharmonic basis
{1, 𝜌} for which 𝜌 = 2𝑒1+2𝑖𝑒2 and 𝜌2 = 0, and he constructed all biharmonic bases
in B.

Consider a biharmonic plane 𝜇 := {𝜁 = 𝑥 𝑒1 + 𝑦 𝑒2 : 𝑥, 𝑦 ∈ R} which is a linear
span of the elements 𝑒1, 𝑒2 of the biharmonic basis (2) over the field of real numbers
R. With a domain 𝐷 of the Cartesian plane 𝑥𝑂𝑦 we associate the congruent domain
𝐷𝜁 := {𝜁 = 𝑥𝑒1 + 𝑦𝑒2 : (𝑥, 𝑦) ∈ 𝐷} in the biharmonic plane 𝜇. In what follows,
𝜁 = 𝑥 𝑒1 + 𝑦 𝑒2 and 𝑥, 𝑦 ∈ R.

Inasmuch as divisors of zero don’t belong to the biharmonic plane, one can
define the derivative Φ′(𝜁) of function Φ : 𝐷𝜁 −→ B in the same way as in the
complex plane: Φ′(𝜁) := lim

ℎ→0, ℎ∈𝜇

(︀
Φ(𝜁 + ℎ) − Φ(𝜁)

)︀
ℎ−1. We say that a function

Φ : 𝐷𝜁 −→ B is monogenic in a domain 𝐷𝜁 if the derivative Φ′(𝜁) exists in every
point 𝜁 ∈ 𝐷𝜁 .
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It is established in the paper [1] that a function Φ : 𝐷𝜁 −→ B is monogenic in
a domain 𝐷𝜁 if and only if the following Cauchy–Riemann condition is satisfied

𝜕Φ(𝜁)

𝜕𝑦
=
𝜕Φ(𝜁)

𝜕𝑥
𝑒2.

It is proved in the paper [1] that a function Φ(𝜁) having derivatives till fourth
order in 𝐷𝜁 satisfies the two-dimensional biharmonic equation

(Δ2)
2𝑈(𝑥, 𝑦) :=

(︂
𝜕4

𝜕𝑥4
+ 2

𝜕4

𝜕𝑥2𝜕𝑦2
+

𝜕4

𝜕𝑦4

)︂
𝑈(𝑥, 𝑦) = 0 (3)

in the domain 𝐷 owing to the relations (1) and (Δ2)
2Φ(𝜁) = Φ(4)(𝜁) (𝑒21 + 𝑒22)

2.
Therefore, every component 𝑈𝑘 : 𝐷 −→ R, 𝑘 = 1, 4, of the expansion

Φ(𝜁) = 𝑈1(𝑥, 𝑦) 𝑒1 + 𝑈2(𝑥, 𝑦) 𝑖𝑒1 + 𝑈3(𝑥, 𝑦) 𝑒2 + 𝑈4(𝑥, 𝑦) 𝑖𝑒2 (4)

satisfies also the equation (3), i.e. 𝑈𝑘 is a biharmonic function in the domain 𝐷.
It is proved in the paper [3] that a monogenic function Φ : 𝐷𝜁 −→ B has

derivatives Φ(𝑛)(𝜁) of all orders in the domain 𝐷𝜁 and, consequently, satisfies the
two-dimensional biharmonic equation (3). In the paper [3] it was also proved such a
fact that every biharmomic function 𝑈1(𝑥, 𝑦) in a bounded simply connected domain
𝐷 is the first component of the expansion (4) of monogenic function Φ : 𝐷𝜁 −→ B
determined in an explicit form.

Basic analytic properties of monogenic functions in a biharmonic plane are sim-
ilar to properties of holomorphic functions of the complex variable. More exactly,
analogues of the Cauchy integral theorem and integral formula, the Morera theo-
rem, the uniqueness theorem, the Taylor and Laurent expansions are established in
the paper [4].

Having an intention to reduce boundary problems for monogenic functions to
integral equations, we study boundary properties of certain integral representations
of monogenic functions.

2 Biharmonic Schwartz integral for a half-plane

Let a function 𝑢 : R −→ R be continuous and there exists a finite limit

𝑢(∞) := lim
𝑡→∞

𝑢(𝑡) . (5)
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Under assumptions that the modulus of continuity

𝜔R(𝑢, 𝜀) = sup
𝜏1,𝜏2∈R:|𝜏1−𝜏2|6𝜀

|𝑢(𝜏1)− 𝑢(𝜏2)|

and the local centered (with respect to the infinitely remote point) modulus of
continuity

𝜔R,∞(𝑢, 𝜀) = sup
𝜏∈R:|𝜏 |>1/𝜀

|𝑢(𝜏)− 𝑢(∞)|

of the function 𝑢 satisfy the Dini conditions

1∫︁
0

𝜔R(𝑢, 𝜂)

𝜂
𝑑 𝜂 <∞, (6)

1∫︁
0

𝜔R,∞(𝑢, 𝜂)

𝜂
𝑑 𝜂 <∞, (7)

consider the biharmonic Schwartz integral for the half-plane Π+ := {𝜁 = 𝑥𝑒1+𝑦𝑒2 :
𝑦 > 0} defined by the equality:

𝑆Π+ [𝑢](𝜁) ≡ 1

𝜋𝑖

+∞∫︁
−∞

𝑢(𝑡)(1 + 𝑡𝜁)

(𝑡2 + 1)
(𝑡− 𝜁)−1 𝑑𝑡 ∀ 𝜁 ∈ Π+. (8)

Here and in what follows, all integrals along the real axis are understood in the
sense of their Cauchy principal values, i.e.

+∞∫︁
−∞

𝑔(𝑡, ·) 𝑑𝑡 := lim
𝑁→+∞

𝑁∫︁
−𝑁

𝑔(𝑡, ·) 𝑑𝑡,

+∞∫︁
−∞

𝑔(𝑡, ·)
𝑡− 𝜉

𝑑𝑡 := lim
𝑁→+∞

lim
𝜀→0+0

⎛⎜⎝ 𝜉−𝜀∫︁
−𝑁

+

𝑁∫︁
𝜉+𝜀

⎞⎟⎠ 𝑔(𝑡, ·)
𝑡− 𝜉

𝑑𝑡 , 𝜉 ∈ R .
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The function 𝑆Π+ [𝑢](𝜁) is the principal extension (see [5, p. 165]) into the
half-plane Π+ of the complex Schwartz integral

𝑆[𝑢](𝑧) :=
1

𝜋𝑖

+∞∫︁
−∞

𝑢(𝑡)(1 + 𝑡𝑧)

(𝑡2 + 1)(𝑡− 𝑧)
𝑑𝑡 ,

which determines a holomorphic function in the half-plane {𝑧 = 𝑥+ 𝑖𝑦 : 𝑦 > 0} of
the complex plane C with the given boundary values 𝑢(𝑡) of real part on the real
line R. Furthermore, the equality

𝑆Π+ [𝑢](𝜁) = 𝑆[𝑢](𝑧)− 𝑦

2𝜋
𝜌

∞∫︁
−∞

𝑢(𝑡)

(𝑡− 𝑧)2
𝑑 𝑡 ∀ 𝜁 = 𝑥𝑒1 + 𝑒2𝑦 ∈ Π+ (9)

holds, where 𝑧 = 𝑥+ 𝑖𝑦 as well as in what follows.

We use the euclidian norm ‖𝑎‖ :=
√︀
|𝑧1|2 + |𝑧2|2 in the algebra B, where 𝑎 =

𝑧1𝑒1 + 𝑧2𝑒2 and 𝑧1, 𝑧2 ∈ C.

The following theorem presents sufficient conditions for the existence of bound-
ary values of the biharmonic Schwartz integral on the extended real line R ∪ {∞}.

Theorem 1. If a function 𝑢 : R −→ R has the finite limit (5) and the condition
(6) is satisfied, then the equality

lim
𝜁→𝜉, 𝜁∈Π+

𝑆Π+ [𝑢](𝜁) = 𝑢(𝜉) +
1

𝜋𝑖

∞∫︁
−∞

𝑢(𝑡)

𝑡2 + 1

1 + 𝑡𝜉

𝑡− 𝜉
𝑑𝑡 ∀ 𝜉 ∈ R (10)

is fulfilled. If, in addition, the function 𝑢 satisfies the condition (7), then

lim
‖𝜁‖→∞, 𝜁∈Π+

𝑆Π+ [𝑢](𝜁) = 𝑢(∞)− 1

𝜋𝑖

∞∫︁
−∞

𝑢(𝑡)
𝑡

𝑡2 + 1
𝑑𝑡. (11)

Proof. In order to prove the equality (10) we use the expression (9) of the
biharmonic Schwartz integral. The second summand in the right-hand part of
equality (9) tends to zero with 𝜁 → 𝜉 ∈ R. This statement follows from the
equalities
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𝑦

∞∫︁
−∞

𝑢(𝑡)

(𝑡− 𝑧)2
𝑑 𝑡 = 𝑦

∞∫︁
−∞

𝑢(𝑡)− 𝑢(𝑥)
(𝑡− 𝑧)2

𝑑 𝑡 = 𝑦

𝑥+2|𝑦|∫︁
𝑥−2|𝑦|

𝑢(𝑡)− 𝑢(𝑥)
(𝑡− 𝑧)2

𝑑𝑡+

+ 𝑦

⎛⎜⎝ 𝑥−2|𝑦|∫︁
−∞

+

∞∫︁
𝑥+2|𝑦|

⎞⎟⎠ 𝑢(𝑡)− 𝑢(𝑥)
(𝑡− 𝑧)2

𝑑𝑡 =: 𝐼1 + 𝐼2

and the relations

|𝐼1| 6 |𝑦|
𝑥+2|𝑦|∫︁
𝑥−2|𝑦|

|𝑢(𝑡)− 𝑢(𝑥)|
𝑦2

𝑑𝑡 6 4𝜔R(𝑢, 2|𝑦|)→ 0, 𝑧 → 𝜉 ,

|𝐼2| 6 |𝑦|

⎛⎜⎝ 𝑥−2|𝑦|∫︁
−∞

+

∞∫︁
𝑥+2|𝑦|

⎞⎟⎠ |𝑢(𝑡)− 𝑢(𝑥)||𝑡− 𝑥|2
𝑑𝑡 6 2|𝑦|

∞∫︁
2|𝑦|

𝜔R(𝑢, 𝜂)

𝜂2
𝑑𝜂 → 0, 𝑧 → 𝜉 .

By virtue of the condition (6), the Schwartz integral 𝑆[𝑢](𝑧) has limiting values
on the real line (it follows, for example, from an appropriate result of the paper [6]
for the Cauchy type integral), hence

𝑆[𝑢](𝑧)→ 𝑢(𝜉) +
1

𝜋𝑖

∞∫︁
−∞

𝑢(𝑡)

𝑡2 + 1

1 + 𝑡𝜉

𝑡− 𝜉
𝑑𝑡 , 𝑧 = 𝑥+ 𝑖𝑦 → 𝜉 ∈ R, 𝑦 > 0 .

Thus, the equality (10) is proved.
In order to prove the equality (11) with using the change of variables 𝑡 = −1/𝑡1,

𝑧 = −1/𝑧1 (see., for example, [7, p. 36]) we rewrite the relation (9) in the form

𝑆Π+ [𝑢](𝜁) = 𝑆[𝑣](𝑧1)−
1

2𝜋

𝑧1
𝑧1
𝜌 Im 𝑧1

∞∫︁
−∞

𝑣(𝑡1)

(𝑡1 − 𝑧1)2
𝑑 𝑡1 , (12)

where 𝑣(𝑡1) := 𝑢(−1/𝑡) and 𝑧1 := Re 𝑧1 − 𝑖 Im 𝑧1. By virtue of Lemma 1 of the
paper [8], the function 𝑣 satisfies a condition of the form (6). Therefore, the equality
(11) can be obtained from the equality (12) by passing to the limit when 𝑧1 → 0,
Im 𝑧1 > 0 by analogy with the proof of the equality (10). The theorem is proved.

It follows from Theorem 1 that under assumptions of this theorem the function

Φ(𝜁) = 𝑆Π+ [𝑢](𝜁)
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is a monogenic function in Π+ for which boundary values on R of the first component
𝑈1 of the expansion (4) are equal to the function 𝑢, i.e.

𝑈1(𝜉, 0) = 𝑢(𝜉) ∀ 𝜉 ∈ R . (13)

Let us note that a monogenic function Φ : Π+ −→ B satisfying the boundary
condition (13) is not unique. It is obviously that the function

Φ(𝜁) = 𝑆Π+ [𝑢](𝜁) + 𝑆Π+ [𝑢1](𝜁) 𝑒2

satisfies also the condition (13) if the functions 𝑢1 satisfies the same conditions as
the function 𝑢 in Theorem 1.

Thus, to find the unique monogenic function Φ satisfying the boundary condition
(13) it is necessary to require a fulfilment of some additional conditions for the
function Φ. Some statements of boundary value problems for monogenic functions
are discussed in the paper [9].
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Abstract. In the previous paper [3], a concept of hyperfunction is introduced on
a fractal boundary 𝐶 on the unit circle in the complex plane and hyperfunction
solutions for functions of 𝐿2(𝐶, 𝑑𝜇) are constructed by use of wavelet expansion
theorem of Schauder type. Here 𝜇 is the Hausdorff measure on 𝐶. In this paper
a description of hyperfunctions by holomorphic line bundle is proposed. Then a
unified theory of hyperfunctions on the fractal boundary can be obtained.

1 Introduction

We can find many results for the boundary value problem on a domain in C. One
of the most important results is stated by Caratheodory theorem [1]. Also we have
several methods for the problems. Here we state two important methods which
have different characters:One is the most popular method by use of complex/real
analysis. On the other hand we have a method of the theory of hyperfunction due to
Prof. Sato which can describe a wide class of functions as a gap of two holomorphic
functions on the inside and the outside of a domain [4]. This theory is described in
terms of cohomology theory and its analysis is called algebraic analysis.

In the previous paper [3], we have given a method of a description of hyperfunc-
tion solution to the boundary value problem on a fractal set of circle type. There
we have obtained complete descriptions only in the case of fractal sets of Cantor
type. But we can not obtain satisfactory results for other cases.

In this paper we shall associate a holomorphic line bundle for a given boundary
value and we can describe hyperfunctions for general circular fractal sets in a unified
manner. Main results will be given in Section 4.

The basic idea of this paper can be stated in Propositions 5 and 6. The first
proposition supplies a bridge from fractal geometry to complex analysis and the
second proposition gives a possibiliy to the introduction of the theory of hyperfunc-
tions to fractal geometry. In the final section we make comments on the possibilities
in the generalization of our method of the the theory of hyperfunctions to more gen-
eral fractal boundaries and the boundary value problems (see Propositions 7, 8).



Hyperfunctions on Fractal Boundaries (II) (Holomorphic Line Bundle) 101

By these observations we may expect to compare the both methods for boundary
value problems.

2 Circular self similar fractal set

We introduce a concept of circuler fractal set and give its classification. Here we
restrict ourselves only to a fractal set which is defined by a system of self similar
contraction mappings {𝜎𝑗 : 𝑗 = 1, 2, · · · , 𝑁} from a compact set 𝐾0 to itself.
Namely there exist positive numbers {𝜆𝑖 (0 < 𝜆𝑖 < 1)} satisfying the conditions:
𝑑(𝜎𝑖(𝑥), 𝜎𝑖(𝑦)) = 𝜆𝑖𝑑(𝑥, 𝑦) (𝑖 = 1, 2, · · · , 𝑁). We always assume the the separation

condition: 𝜎𝑖(
∘
𝐾0) ∩ 𝜎𝑗(

∘
𝐾0) = 𝜙 (𝑖 ̸= 𝑗), where

∘
𝐾0 is the open kernel of 𝐾0. Then

we obtain self similar fractal set [2]: 𝐾 = ∩∞𝑛=1𝐾𝑛, where 𝐾𝑛 = ∪𝑁𝑗=1𝜎𝑗(𝐾𝑛−1). We
notice that this condition does not restrict fractal sets to those of separable sets.

Some basic facts on self similar fractal set [2]: (1) We can calculate the
Hausdorff dimension 𝐷(= 𝑑𝑖𝑚𝐻𝐾) by the following formula:

∑︀𝑁
𝑗=1 𝜆

𝐷
𝑗 = 1. (2)

The Borel algebra is generated by {𝐾𝑗𝑛···𝑗1},𝐾𝑗𝑛···𝑗1 = 𝜎𝑗𝑛 ∘ · · · ∘ 𝜎𝑗1(𝐾). (3)The
Hausdorff measure 𝜇 is given by 𝜇(𝐾𝑗𝑛···𝑗1) = 𝜆𝐷𝑗𝑛𝜆

𝐷
𝑗𝑛−1

...𝜆𝐷𝑗1 . The Hilbert space of
𝐿2-functions with respect to this measure is denoted by 𝐿2(𝐾, 𝑑𝜇).

Definition 1 (Circular self similar fractal set)
A self similar fractal set 𝐶 on 𝑆1 which is generated by a system of self similar

contractions 𝜎𝑖 : 𝑆1 ↦→ 𝑆1 (𝑗 = 1, 2, .., 𝑁) is called circular self similar fractal set.
Here 𝑆1 = {𝑧 ∈ C||𝑧| = 1}.

We can classify circular fractal sets into three families:
(1) Circular fractal set is called of 𝐶𝑎𝑛𝑡𝑜𝑟 𝑡𝑦𝑝𝑒 when 𝜎𝑖(𝑆1)∩𝜎𝑗(𝑆1) = 𝜙 (𝑖 ̸= 𝑗)

for any different pair 𝑖 and 𝑗.
(2) Circular fractal set is called of 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝐶𝑎𝑛𝑡𝑜𝑟 𝑡𝑦𝑝𝑒 when 𝜎𝑖(𝑆1)∩𝜎𝑗(𝑆1) = 𝜙

(𝑖 ̸= 𝑗) holds for some pair 𝑖 and 𝑗 and 𝜎𝑖′(𝑆1)∩𝜎𝑗′(𝑆1) ̸= 𝜙(𝑖′ ̸= 𝑗′) holds for some
other pair 𝑖′ and 𝑗′.

(3) Circular fractal set is called of 𝐶𝑖𝑟𝑐𝑙𝑒 𝑡𝑦𝑝𝑒 when there exists a sequence
1, 2, .., 𝑁 satisfying 𝜎𝑖(𝑆

1) ∩ 𝜎𝑖+1(𝑆
1) ̸= 𝜙 for each 𝑖 = 1, 2, ..., 𝑁 − 1. 𝜎𝑁 (𝑆

1) ∩
𝜎1(𝑆

1) ̸= 𝜙.

Examples: We give examples of three families:⎧⎪⎨⎪⎩
(1)𝜎1(𝜗) =

1
6𝜗, 𝜎2(𝜗) =

1
6𝜗+ 2𝜋

3 , 𝜎3(𝜗) =
1
6𝜗+ 4𝜋

3

(2)𝜎1(𝜗) =
1
3𝜗, 𝜎2(𝜗) =

1
6𝜗+ 2𝜋

3 , 𝜎3(𝜗) =
1
6𝜗+ 4𝜋

3

(3)𝜎1(𝜗) =
1
6𝜗, 𝜎2(𝜗) =

1
3𝜗+ 2𝜋

3 , 𝜎3(𝜗) =
1
2𝜗+ 𝜋

(1)
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In [3], we have already treated the first family. The main concern of this paper
is to treat fractal sets of the second and third families by use of holomorphic line
bundle.

3 Holomorphic line bundle

We introduce a new concept of (inductive limit of) holomorphic line bundle on a
fractal set.

(I)Neighborhood system of fractal set. We take a circular fractal set 𝐶
on 𝑆1 which is generated by contractions 𝜎𝑗 : 𝑆1 ↦→ 𝑆1 (𝑗 = 1, 2, .., 𝑁). Choosing
neighborhoods 𝑈𝑗 (𝑗 = 1, 2, ., 𝑁) of 𝜎𝑗(𝑆1) in C, we put 𝑈𝐼 = 𝑈𝑖𝑛,𝑖𝑛−1,..,𝑖1(𝐼 =
(𝑖𝑛, 𝑖𝑛−1, .., 𝑖1)), where 𝑈𝑖𝑛···𝑖1 = 𝜎𝑖𝑛 ∘ · · · ∘ 𝜎𝑖2(𝑈𝑖1). Here we have use the holomor-
phic extensions of 𝜎𝑗(𝑗 = 1, 2, ..𝑁) and used the same notation. Putting |𝐼| = 𝑛,we
call 𝑈 (𝑛) = {𝑈𝐼 ||𝐼| = 𝑛} neighborhood system 𝐶 of degree 𝑛. We notice the follow-
ing facts: (i) ∩∞𝑛=1𝑈

𝑛 = 𝐶. (ii)𝑈𝑛+1 ⊂ 𝑈𝑛 with the inclusions 𝜄𝑛+1 : 𝑈
𝑛+1 ⊂ 𝑈𝑛.

We call a system 𝒩 (𝐶) = {𝑈 (𝑛) : 𝑛 = 1.2...} 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑜𝑓 𝐶.
(II) Hyperfunction on a fractal boundary.
Choosing a neighborhood system 𝒩 )(𝒞), we make the following definition:
Definition 2 (Hyperfunction on fractal set)
For 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇), a sequence of holomorphic functions {𝐹 (+)

𝑛 } (resp. {𝐹 (−)
𝑛 })

on 𝑈𝑛 ∩D (resp 𝑈𝑛 ∩W), where D is the open unit disc and W = C{D, is called
ℎ𝑦𝑝𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛of 𝑓 , if 𝑓 = 𝑙𝑖𝑚(𝐹

(+)
𝑛 −𝐹 (−)

𝑛 ),where we take the inductive limit with
respect to {𝜄𝑛}. We call the right side of (1) the 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓 .

Remark. We notice that we can find hyperfunction boundary values for ele-
ments in the wider class of functions. Here we restrict ourselves to only 𝐿2(𝐶, 𝑑𝜇)
because of the use of wavelet expansion of Schauder type (See section 5).

(III) Holomorphic line bundle on neighborhood system. We choose an
element 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇). We choose a neighborhood 𝑈𝐼 of degree 𝑛 in 𝒩 (𝐶). We
assume that we can find a system of boundary values {𝐹 (+)

𝐼 },{𝐹 (−)
𝐼 } of 𝑓 on each

componet 𝑈𝐼 respectively.
Definition 3 (Holomorphic line bundle on fractal set)
(1) Making the quotient 𝜙𝐼,𝐽 (+) = 𝐹

(+)
𝐼 /𝐹

(+)
𝐽 on 𝑈𝐼∩𝑈𝐽 (̸= 𝜙), where 𝐼, 𝐽 ∈ 𝑈𝑛,

we can define a holomorphic line bundle on 𝑈 (𝑛) which is denoted by 𝐸(+)
𝑛 . Making

the inductive limit, we can define a holomorphic line bundle of the boundary value
𝑓 :𝐸(+)(𝑓) = 𝑙𝑖𝑚𝐸

(+)
𝑛 . Also we can define the line budle 𝐸(−)

𝑛 (𝑓). (2) A system
of functions 𝜓 = {𝜓𝐼}, where 𝜓𝐼 is a function on 𝑈𝐼 , is called a section of 𝐸(+)

𝑛

when 𝜓(+)
𝐼 = 𝜙𝐼,𝐽

(+)𝜓
(+)
𝐽 on 𝑈𝐼 ∩ 𝑈𝐽( ̸= 𝜙). Also we can define sections of the line
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bundle 𝐸(−)
𝑛 . Hence we see that {𝐹 (+)

𝐼 } and {𝐹 (−)
𝐼 } are sections of 𝐸(+)

𝑛 and 𝐸(−)
𝑛

respectively.

4 Main Theorem

Main Theorem. Let 𝐶 be a self similar fractal set on 𝑆1 which is generated by
a system of self similar contractions 𝜎𝑗 : 𝑆1 ↦→ 𝑆1 (𝑗 = 1, 2, .., 𝑁). Then we can
find a neighborhood system 𝒩 (𝐶) so that we can obtain the following results on
𝑈𝑖𝑛,𝑖𝑛−1,..,𝑖1(= 𝑈𝐼) ∈ 𝒩 (𝐶):

(I) Putting 𝐽𝑖𝑛,𝑖𝑛−1,..,𝑖1(𝑧) = 𝜎𝑖𝑛
* ∘ 𝜎𝑖𝑛−1

* ∘ ... ∘ 𝜎𝑖1*(𝐽0) for 𝑧 ∈ 𝑈𝑖𝑛,𝑖𝑛−1,..,𝑖1

(otherwise 0), by use of the Jukovski function:

𝐽0(𝑧) = −
1

2

(︂
𝑧 +

1

𝑧

)︂
+ 1, (2)

we have a system of Schauder basis of 𝐿2(𝐶, 𝑑𝜇) and obtain the following wavelet
expansion: For 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇), we have

𝑓 = 𝑎0𝐽0 +
∞∑︁
𝑛=1

𝑁∑︁
𝑗1

· · ·
𝑁∑︁
𝑗𝑛

𝑎𝑗𝑛···𝑗1𝐽𝑗𝑛···𝑗1 . (3)

(II) For 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇), we make holomorphic line bundles 𝐸(+)
𝑛 and 𝐸(−)

𝑛 . Then
we can find sections of both line bundles {𝐹 (+)

𝐼 } and {𝐹 (+)
𝐼 } so that we can describe

the solution of the boundary value problem for 𝑓 : 𝑓 = 𝑙𝑖𝑚(𝐹
(+)
𝑛 − 𝐹 (−)

𝑛 ).

Remark. In the case where 𝐶 is of Cantor type, since 𝑈𝐼 ∩𝑈𝐽 = 𝜙 for any pair
of different 𝐼 and 𝐽 , we can find a hyperfunction solution for 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇) without
making the holomorphic line bundle. Hence we see that the use of the concept of
line bundle is essential for the classes of partial Cantor type and those of circular
fractal sets.

5 Wavelet expansion on a self similar fractal set on the interval

We recall basic facts on the wavelet expansion of Schauder type on a fractal set
in 𝐼(= [0, 1]) [3]. We take a self similar fractal set 𝐶 on 𝐼 which is defined by
contractions:𝜎𝑗 (𝑗 = 1, 2, ..,𝑀). We choose a non-negative continuous function 𝐺0

on 𝐼 which is positive except on the boundary: 𝐺0(0) = 𝐺0(1) = 0. It is called
𝑏𝑎𝑠𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. We choose a base function 𝐺0 on 𝐼. For an integer 𝑚, putting
𝐺𝑗𝑚···𝑗1(𝑥) = 𝜅𝑗𝑚···𝑗1𝐺0(𝜎

−1
𝑗1
∘ · · · ∘ 𝜎−1

𝑗𝑚
(𝑥)) (𝑥 ∈ 𝐶𝑗𝑚···𝑗1), otherwise 0, where
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𝜅𝑗𝑚···𝑗1 are normalization constants: (𝐺𝑗𝑛,··· ,𝑗1 , 𝐺𝑗𝑛,··· ,𝑗1) = 1. where 𝜅𝑗𝑚···𝑗1 are
normalization constants: (𝐺𝑗𝑛,··· ,𝑗1 , 𝐺𝑗𝑛,··· ,𝑗1) = 1. Here the inner product is that
of the Hilbert space 𝐿2(𝐶, 𝑑𝜇). In the following we make the orthonormalization
of these basis by the following condition: (𝐺𝑖𝑛,··· ,𝑖1 , 𝐺𝑗𝑚,··· ,𝑗1)* = 0(𝑛 ̸= 𝑚) which
we call the 𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑛𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡. The space endowed with the inner
product is denoted by 𝐿2

*(𝐶, 𝑑𝜇). Then we have the following theorem.
Theorem 4 (Wavelet expansion on self similar fractal set on interval).

Let 𝐶 be a self similar fractal set which is defined by contractions 𝜎𝑗 (𝑗 = 1, 2, .., 𝑁)
on the interval 𝐼 and let 𝐺0 be a base function on 𝐼. Then we have the following
assertions:

(1) The system {𝐺0, 𝐺𝑗𝑚···𝑗1} constitute a system of orthonormal basis of
𝐿2
*(𝐶, 𝑑𝜇).

(2) We have a wavelet expansion of 𝑆𝑐ℎ𝑎𝑢𝑑𝑒𝑟 𝑡𝑦𝑝𝑒:For 𝑓 ∈ 𝐿2(𝐶, 𝑑𝜇), we have

𝑓 = 𝑎0𝐺0 +
∞∑︁
𝑛=1

𝑁∑︁
𝑗1

· · ·
𝑁∑︁
𝑗𝑛

𝑎𝑗𝑛···𝑗1𝐺𝑗𝑛···𝑗1 , (4)

where 𝑎0 = (𝑓,𝐺0)* and 𝑎𝑗𝑛···𝑗1 = (𝑓,𝐺𝑗𝑛···𝑗1)*.

6 Proof of Main Theorem

We prove the assertion (I). Taking Theorem 4 into account, it is enough to prove
the following proposition.

Proposition 5. (1) The Jukowski function (2), which is a rational function
gives a rise to a base function on 𝑆1 by the restriction: 𝐽(𝑧) = −𝑐𝑜𝑠𝜗+ 1(𝑧 = 𝑒𝑖𝜗)
satisfying 𝐽(𝑒𝑖𝜋) = 𝐽(𝑒−𝑖𝜋) = 0. (2) We can generate a system of basis of Schauder
type {𝐽𝑖𝑛,𝑖𝑛−1,..,𝑖1(𝑧)} on 𝑆1.

Next we proceed to the proof of (II). We prove the following proposition.
Proposition 6. For 𝐽𝑗𝑛,𝑗𝑛−1,..,𝑗1 , we have holomorphic functions 𝐹 (+)

𝑗𝑛,𝑗𝑛−1,..,𝑗1
on

D and 𝐹 (−)
𝑗𝑛,𝑗𝑛−1,..,𝑗1

on W such that 𝐽𝑗𝑛,𝑗𝑛−1,..,𝑗1 = 𝐹
(+)
𝑗𝑛,𝑗𝑛−1,..,𝑗1

− 𝐹 (−)
𝑗𝑛,𝑗𝑛−1,..,𝑗1

.
Proof. In order to make our idea clear, we prove the assertion in the case of

𝑛 = 1 at first. We have a hyperfunction solution for the function 𝐽(𝑧):In fact,
putting 𝐹 (+)

𝑖𝑛,𝑖𝑛−1,..,𝑖1
(𝑧) = −𝜎𝑖𝑛* ∘ 𝜎𝑖𝑛−1

* ∘ ... ∘ 𝜎𝑖1*(12𝑧) on D, 𝐹
(−)
𝑖𝑛,𝑖𝑛−1,..,𝑖1

(𝑧) = 𝜎𝑖𝑛
* ∘

𝜎𝑖𝑛−1
* ∘ ... ∘ 𝜎𝑖1*( 1

2𝑧 − 1) on W.
Next we prove the assertion (II). We choose a neighborhood system 𝒩 (𝐶).

Making holomorphic extensions of 𝐹 (+)
𝐽 and 𝐹 (−)

𝐽 on 𝑈𝐽 , we introduce a holomorphic
line bundle by 𝜙

(+)
𝐼,𝐽 = 𝐹

(+)
𝐼 /𝐹

(+)
𝐽 for 𝑈𝐼 ∩ 𝑈𝐽 (̸= 𝜙). By use of the discussions in

Section 3, we see that the both functions make sections and we see the following
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assertion: 𝑓 = 𝑙𝑖𝑚𝐹𝑛, where 𝐹𝑛 = 𝐹
(+)
𝑛 − 𝐹 (−)

𝑛 , by use of the property (i) in (I),
section 3.

7 Applications to boundary value problem on fractal boundary

We suggest possibilites of the method of hyperfunctions to the boundary value
problem for the case of fractal boundary [3]. We consider a simply connected
domain 𝐷 with a fractal boundary 𝜕𝐷. Here we are concerned with the following
problem.

We make comments on the generalizations of our method to more general bound-
aries and to the boundary value problem [3]. We consider a simply connected do-
main 𝐷 with a fractal boundary 𝜕𝐷. At first we notice that we can generalize our
results to the boudary by use of the Riemann mapping theorem. For example we
can discuss the theory of hyperfunctions on polygons or Julia set by use of Schwarz-
Christoffel mapping or Böttcher mapping. Then we can find base functions which
are deformations of the Jukowski function. Especially for the closed Koch curve and
Sierpinski Gasket we can expect to have their explict forms. Our paper supplies
the very beginning to this field. This will be performed in the near furture. Next
we are concerned with the following boundary value problem for hyperfunction.

Boundary value problem for hyperfunction
For a given 𝑓 ∈ 𝐿2(𝜕𝐷, 𝑑𝜇), can we find two globally defined holomorphic

functions 𝐹+(𝑈 ∩𝐷) and 𝐹−(𝑈 ∩𝐷𝑐
) for some neighborhood 𝑈 of 𝜕𝐷 such that

𝑓 = 𝐹+ − 𝐹− on 𝜕𝐷?
We state some results concerning this problem without proofs.
(I) If the holomorphic line bundle is trivial, i.e., 𝜙𝐼,𝐽 = 1 holds for any non-

empty intersection 𝑈𝐼 ∩ 𝑈𝐽 , then hyperfunction solution can be obtained by Main
theorem.

(II) We introduce the following condition and discuss the solution of the prob-
lem.

Definition 7 (Painlevé continuation data)
The data {𝜎𝑗(𝑗 = 1, 2, .., 𝑁)} is called 𝑃𝑎𝑖𝑛𝑙𝑒𝑣é 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎, if their

holomorphic extensions constitute a complete set of a holomorphic covering 𝜏 :
𝐷 ↦→ 𝐷.

In order to describe the solutions, we have to introduce a concept of symmetric
functions. We call function 𝑓 in (3) 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 when 𝑎𝑗𝑛,𝑗𝑛−1,..,𝑗1 are permutation
invariant for any integer 𝑛. We denote the space of symmetric functions in 𝐿2(𝐶, 𝑑𝜇)
by 𝐿2

𝑆(𝐶, 𝑑𝜇). Then we can prove the following proposition.
Proposition 8. If Painlev𝑒 continuation data {𝜎𝑗(𝑗 = 1, 2, .., 𝑁)} are given,

we can solve the hyperfunction solutions for symmetric functions of 𝐿2
𝑆(𝐶, 𝑑𝜇).
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(III) In the case of 𝜏 : 𝐷 ↦→ 𝐷 is a one-to-one covering, we see that 𝜏 gives
a dynamical system of the fractal set. Hence we can treat Weierstrasse function
and a filled Julia doamin by this method [3]. In the case where 𝜏 is a piecewise
holomorphic mapping arising from a holomorphic properly finite covering, we can
obtain more complicate functions as solutions. This will be discussed elsewhere.
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LAPLACIANS ON THE PLANE LATTICE
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Abstract. In [1] and [3], we have given several computer simulations of iteration
dynamical systems of discrete Laplacians. We may say that we can simulate body
construction processes and evolutions quite well, especially in the time evolutions
of extinct animals. In this paper, we simulate the design patterns of butterfly wings
by this simulator. Then we make evolution models by this simulator and compare
the results with those in evolutionary developmental biology.

1 Introduction: Iteration dynamical system of discrete Laplacian

We choose the plane lattice which is generated by two families of lines which are
orthonormal each other. We identify a lattice point with a cell obtained by the
lattice structure. We call a set of cells which are attached with the reference cell
neighborhood. We call neighborhood even (or odd) if the number of the cells is
even (resp. odd). We give several examples. Some of them are well known [1]:

We take the space 𝐹 of 0,1 valued functions on the plane lattice. Choosing a
neighborhood 𝑈𝑝, we define the discrte Lapalcian operation as follows:

Δ𝑈𝑝𝑓(𝑝) =
∑︁
𝑞∈𝑈𝑝

(𝑓(𝑞)− 𝑓(𝑝)). (1)

For an initial function 𝑓0 ∈ 𝐹 , we consider the dynamical system:

{𝑓𝑛}, 𝑓𝑛 = Δ𝑈𝑓𝑛−1 (𝑛 = 1, 2, ...). (2)
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We name the dynamical system following a given neighborhood, for example,
for Moore neighborhood we call it the Moore dynamical system.

2 Computer simulation

Choosing sources and neighborhoods, we can realize a wide class of phenomena by
these iteration dynamical systems. Here we call a cell 𝑄 source of the dynamical
system {𝑓𝑛} when 𝑓𝑛(𝑄) = 1 for any step 𝑛. We give several examples.

(1) Crystals of water [1].
We can make crystals of water under suitable conditions. We can realize them

choosing the hexagonal neighborhood quite well. We may expect to make its math-
ematical theory based on the discrete Lapalcian.

(2) Evolution of extinct animals [4].
We present a computer simulation of echinoderm, one of extinct animals. The

left side is the real deta given by Sepkoski [6] and the right side is a computer
simulation by use of Moore neighborhood with a single source. We can observe a
suprising hit. The reason for the well fitting is still not clarified till now.

(3) Design patterns [3].
We can produce many kinds of design patterns including carpets and embroiders

etc. We can make differences between european and japanese designs.
(4) Flower patterns [3].
We can show the possibilities of realizations of flower designs by use of our

dynamical systems. This will be performed in near furture.



Evolution Models for Butterfly Design Patterns by Iteration Dynam . . . 109

(5) Design patterns of butterfly wings.
We demonstrate simulations of design patterns of butterfly wings. The details

of the realizations will be given in the remained part of this paper.

3 Fundamental operations in evolutionary developmental biology

We recall some basic facts on operations of body constructions in evolutionary
developmental biology [2]. Main operations constitute two basic operations:

(1) Tool kit operations. The tool kits supply a mechanism of body construc-
tion step by step. We can observe a fractal structure in the body constructions
(Fig. 7).

(2) Switch mechanism. The varity in body constructions arises from the
switch mechanism. We know that the tool kit itself has not so big differences
between higher developed life things and primitive ones. The big difference comes
from the switch mechanism. In DNA level, the body construction is determined
by the on and off operations of the switchs. Prof. Carol has discovered that the
eye pattarns of butterfly wings and the difference of the size in the forewings and
hindwings arises by this mechanism (Fig. 8) [2].
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4 Evolution model in butterfly design pattern by iteration dynam-
ical system of discrete Laplacian

In this section we shall find the corresponding operations in our dynamical systems
and expect to construct evolution models by these dynamical systems:

(I) The tool kit of our dynamical systems: Our dynamical systems are
determined by the choices of (1) Neighborhoods and (2)Souces. Setting these tools,
we can simulate the body constructions. This corresponds to the fractal structure
of operations in life things. In fact, we can simulate many structures in generating
bigger cells from smaller ones (Fig. 9).

(II) The switch mechanism: We prepare two candidate operators: (1) The
change of neighborhoods, (2) Separation of diffusions by certain walls (in simulations
it is indicated by dark color). Then we see that spot patterns are deformed into eye
patterns or the tail patterns with long tails or those with several numbers of tails
by the separations (Fig.10, Fig.14).

5 Realization I (Border type design and Spot design)

Here we realize patterns of spot type and border type. For both cases we choose
the diagonal Neumann neighborhood. We begin with a setting of "standard type",
which might be expected to be the most primitive one which might appear in
the early stage of the evolution. We deform the standard source to symmetric or
asymmetric sources. Then we can obtain designs which are different in the forewings
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and hindwings:We obtain border type designs for symmetric neighborhoods and
spot type designs for asymmetric neighborhoods respectively (Fig. 11).

Making the pattern fittings we can realize the both kinds of designs.

We notice that discocellar spots are clearlly realized, just changing the sources.



112 The 8th Congress of the ISAAC — 2011

6 Realization II (Tail design)

We give computer simulations of tail designs. We can show that the differences in
tails can be obtained separating the diffusion effects by the choices of walls. For
each case we choose Neumann neighborhood (Fig. 13).

We can find another sequence of patterns of tail type choosing different seeds
and deformations. Without detail description of deformations, we state the results.
We notice that we can realize long tails quite well (Fig. 14).

We want to make comparisons of realization methods between our method and
Turing pattern method. The Turing pattern method can realize the design patterns
quite well. But it does not concern the shape of wings, for example, the difference
in forewings and hindwings and those in long and short tails.

7 Realization III (Eye pattern designs)

We treat realization of eye patterns. This is just in progress. We give only three
simulations. We want to notice that we can make eye patterns quite easily. We do
not know whether the Turing pattern method can realize the eye patterns or not.

8 Conclusions and discussions)

We have simulated design patterns of butterfly wings by use of iteration dynamical
systems systematically. We state the results and make some discussions.
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(1) We have done the simulations of the spot pattern, border pattern, tail pat-
tern and eye patterns.

(2) We have observed that our dynamical systems have not only the structure of
tool-kits but also switch mechanisms in evolutions. Hence we may expect to realize
evolutions by our systems.

(3) We make the comparisons between our method and Turing pattern methods
[5]. We know that the Turing methods can realize butterfly wing patterns well. We
notice that their realization can be obtained as the stable states. Our realizations
are obtained just controlling the steps by hand.This is one of the week points of
our simulations. This defect should be conquered in near furtutre. Here we want
to state the merit of use of our method. We have never seen the realization of eye
patterns by the Turing pattern method. It concern only the design patterns and
but not the shape of wings, for example, tails. At present we have a lot of knowledes
on evolutionary developing biology and it suggest us that we should proceed to the
realization of the body construction itself. These are future problems.

(4) We propose two problems. (i) The most interesting problem is to choose
evolution models comparing the real evolutions in the nature and find the mecha-
nism of evolutions. Also we may have interests in making the tree structure of our
evolution models and comparing the real tree of that obtained by use of mitochon-
dria and others. (ii) Finally we want to state the reason why we have proposed
this topics in this section. B.Riemann developed the theory of complex analysis
from electrodynamics. In our simulations we can find a new field of discrete com-
plex anaysis. We wish this paper will open the door to the new field of complex
analysis.
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Abstract. For each 𝛼 > −1 and 𝛽 > 0, we consider the space 𝑁 log𝛽𝑁(B) of
holomorphic functions on the unit ball B in the 𝑛-dimensional complex Euclidean
space which these holomorphic functions 𝑓 satisfy the condition

‖𝑓‖𝛽 =

∫︁
B

𝜙𝛽(log(1 + |𝑓(𝑧)|)) 𝑑𝑉𝛼(𝑧) <∞,

where 𝜙𝛽(𝑥) = 𝑥{log(𝛾𝛽 + 𝑥)}𝛽 for 𝑥 ∈ [0,∞) and 𝛾𝛽 = max{𝑒, 𝑒𝛽}. This space
𝑁 log𝛽𝑁(B) is a complete metric space with respect to the translation-invariant
metric 𝑑𝛽(𝑓, 𝑔) = ‖𝑓−𝑔‖𝛽 . In this note we will characterize injective and surjective
linear isometries of this space.

1 Introduction

Throughout this note, let B denote the open unit ball in the 𝑛-dimensional complex
Euclidean space C𝑛 and 𝑑𝑉𝑛 the Lebesgue measure on C𝑛. Let 𝐻(B) denote the
space of all holomorphic functions on B. For each 𝛼 > −1 we put 𝑑𝑉𝛼(𝑧) =
𝑐𝛼,𝑛(1− |𝑧|2)𝛼𝑑𝑉𝑛(𝑧) where 𝑐𝛼,𝑛 is a normalization constant.

Take an arbitrary 𝛽 > 0 and consider the function 𝜙𝛽(𝑥) = 𝑥{log(𝛾𝛽 + 𝑥)}𝛽 for
𝑥 ∈ [0,∞) where 𝛾𝛽 = 𝑒 if 0 < 𝛽 < 1 and 𝛾𝛽 = 𝑒𝛽 if 𝛽 > 1. Then 𝜙𝛽(𝑥) is strictly
increasing and convex downward on [0,∞) and 𝜙𝛽(log(1+ 𝑥)) is strictly increasing
and convex upward on [0,∞) (see [1]).

The Bergman-type Zygmund 𝐹 -algebra on B is defined as

𝑁 log𝛽𝑁(B) =

⎧⎨⎩𝑓 ∈ 𝐻(B) :

∫︁
B

𝜙𝛽(log(1 + |𝑓(𝑧)|)) 𝑑𝑉𝛼(𝑧) <∞

⎫⎬⎭ .

Since the function 𝜙𝛽(log(1 + 𝑥)) satisfies

𝜙𝛽(log(1 + 𝑥)) 6 (log 𝛾𝛽)
𝛽𝑥 (1)
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for 𝑥 ∈ [0,∞), we see that the space 𝑁 log𝛽𝑁(B) contains the weighted Bergman
space 𝐴1(B, 𝑑𝑉𝛼). The limiting case 𝛼 → −1 for this space has been studied by
O.M. Eminyan [1]. The quasi-norm ‖𝑓‖𝛽 on these spaces 𝑁 log𝛽𝑁(B) is defined by

‖𝑓‖𝛽 =

∫︁
B

𝜙𝛽(log(1 + |𝑓(𝑧)|)) 𝑑𝑉𝛼(𝑧).

Since this quasi-norm satisfies the triangle inequality, 𝑑𝛽(𝑓, 𝑔) = ‖𝑓 − 𝑔‖𝛽 defines a
translation-invariant metric on 𝑁 log𝛽𝑁(B). By the same argument in [1], we see
that 𝑁 log𝛽𝑁(B) is not only an 𝐹 -space in the sense of Banach with respect to 𝑑𝛽
but also a topological algebra.

The studies on linear isometries of holomorphic function spaces have been stud-
ied since the 1960s. For the Hardy space 𝐻𝑝 (0 < 𝑝 6∞, 𝑝 ̸= 2) on the unit disc,
D. deLeeuw, W. Rudin and J. Wermer [7] (𝑝 = 1,∞) and F. Forelli [3] (1 6 𝑝 <∞)
characterized the linear isometries. For the details on these studies, we can also
refer to the monograph [2]. For the several variables case, Forelli [4] and Rudin [8]
have determined the injective and/or surjective isometries of 𝐻𝑝. For the weighted
Bergman spaces 𝐴𝑝(B, 𝑑𝑉𝛼) (0 < 𝑝 < ∞, 𝑝 ̸= 2), the isometries was completely
characterized in a sequence of papers by C. J. Kolaski [5,6]. By these works we see
that the isometries on these holomorphic function spaces are described as weighted
composition operators defined by Ψ𝐶Φ(𝑓) = Ψ · (𝑓 ∘Φ) for some holomorphic func-
tion Ψ and holomorphic self-map Φ of the unit ball, which is one of the reasons
why these operators have been investigated so much recently in the settings of the
unit ball. The Smirnov class 𝑁* and the Privalov space 𝑁𝑝 (1 < 𝑝 < ∞) which
are contained in the Nevanlinna class 𝑁 are 𝐹 -spaces with respect to a suitable
metric on them. K. Stephenson [9] and A. V. Subbotin [10] have studied linear
isometries of these spaces. Their works showed that the injective isometries are
weighted composition operators induced by some inner functions and inner maps
of B whose radial limit maps satisfy a measure-preserving property.

The purpose of this note is to investigate a linear isometry of the space
𝑁 log𝛽𝑁(B). Recently, the author [11] have characterized the injective and sur-
jective isometry for the case 𝛼 → −1. By some modifications of proofs in [11] and
an application of the result by C.J. Kolaski, we can get an analogous result for the
case 𝛼 > −1.

2 Linear isometries on 𝑁 log𝛽𝑁(B)

In order to prove main result, we need some lemmas. From now on, till the end of
this note, we fix 𝛼 > −1 and 𝛽 > 0.
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Lemma 1. Every 𝑓 ∈ 𝑁 log𝛽𝑁(B) satisfies lim𝑟→1 ‖𝑓 − 𝑓𝑟‖𝛽 = 0.

Proof. Take an 𝑓 ∈ 𝑁 log𝛽𝑁(B) and 𝜀 > 0. Then we can choose an 𝑟0 ∈ (0, 1)
such that ∫︁

B∖𝑟0B

𝜙𝛽(log(1 + |𝑓(𝑧)|))𝑑𝑉𝛼(𝑧) <
𝜀

3
.

Since 𝜙𝛽(log(1 + |𝑓(𝑧)|)) is a positive plurisubharmonic function in B, we have∫︁
𝜕B

𝜙𝛽(log(1 + |𝑓(𝑟𝑡𝜁)|))𝑑𝜎(𝜁) 6
∫︁
𝜕B

𝜙𝛽(log(1 + |𝑓(𝑡𝜁)|))𝑑𝜎(𝜁),

for any 𝑟, 𝑡 ∈ (0, 1). Here 𝑑𝜎 is the normalized Lebesgue measure on the boundary
𝜕B of B. This inequality implies that∫︁

B∖𝑟0B

𝜙𝛽(log(1 + |𝑓𝑟(𝑧)|))𝑑𝑉𝛼(𝑧) 6
∫︁

B∖𝑟0B

𝜙𝛽(log(1 + |𝑓(𝑧)|))𝑑𝑉𝛼(𝑧) <
𝜀

3
, (2)

for any 𝑟 ∈ (0, 1).

Now we choose an 𝜀0 > 0 such that 𝜙𝛽(log(1 + 𝜀0)) = 𝜀/3. By the continuity
of 𝑓 on the compact subset 𝑟0B, we see that there exists a 𝛿 ∈ (0, 1) such that if
𝑧, 𝑤 ∈ 𝑟0B with |𝑧−𝑤| < 𝛿, then |𝑓(𝑧)− 𝑓(𝑤)| < 𝜀0. Set 𝑟1 = 1− 𝛿. If 𝑟1 < 𝑟 < 1,
then ∫︁

𝑟0B

𝜙𝛽(log(1 + |𝑓𝑟(𝑧)− 𝑓(𝑧)|))𝑑𝑉𝛼(𝑧) 6 𝜙𝛽(log(1 + 𝜀0)) =
𝜀

3
. (3)

By (2) and (3), we obtain

‖𝑓𝑟 − 𝑓‖𝛽 =

⎛⎜⎝∫︁
𝑟0B

+

∫︁
B∖𝑟0B

⎞⎟⎠𝜙𝛽(log(1 + |𝑓𝑟(𝑧)− 𝑓(𝑧)|))𝑑𝑉𝛼(𝑧) 6

6
∫︁
𝑟0B

𝜙𝛽(log(1 + |𝑓𝑟(𝑧)− 𝑓(𝑧)|))𝑑𝑉𝛼(𝑧)+

+

∫︁
B∖𝑟0B

{𝜙𝛽(log(1 + |𝑓𝑟(𝑧)|)) + 𝜙𝛽(log(1 + |𝑓(𝑧)|))} 𝑑𝑉𝛼(𝑧) <
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀.

This completes the proof.
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Lemma 2. If 𝑇 is a linear isometry of 𝑁 log𝛽𝑁(B), then the restriction of 𝑇
to 𝐴1(B, 𝑑𝑉𝛼) is also a linear isometry of 𝐴1(B, 𝑑𝑉𝛼) into 𝐴1(B, 𝑑𝑉𝛼).

Proof. Take an 𝑓 ∈ 𝐴1(B, 𝑑𝑉𝛼) and put 𝑔 = 𝑇𝑓 . For each positive integer 𝑚 we
have 𝑔/𝑚 = 𝑇 (𝑓/𝑚), and so we obtain∫︁

B

𝜙𝛽

(︂
log

(︂
1 +
|𝑓 |
𝑚

)︂)︂
𝑑𝑉𝛼 =

∫︁
B

𝜙𝛽

(︂
log

(︂
1 +
|𝑔|
𝑚

)︂)︂
𝑑𝑉𝛼. (4)

By the inequality (1), we have

𝑚𝜙𝛽

(︂
log

(︂
1 +
|𝑓 |
𝑚

)︂)︂
6 (log 𝛾𝛽)

𝛽|𝑓 | on B.

By the definition of 𝜙𝛽(𝑥) we see that

lim
𝑚→∞

𝑚𝜙𝛽

(︂
log

(︂
1 +
|𝑓 |
𝑚

)︂)︂
= (log 𝛾𝛽)

𝛽|𝑓 | on B.

The Lebesgue dominated convergence theorem gives

lim
𝑚→∞

∫︁
B

𝑚𝜙𝛽

(︂
log

(︂
1 +
|𝑓 |
𝑚

)︂)︂
𝑑𝑉𝛼 = (log 𝛾𝛽)

𝛽

∫︁
B

|𝑓 | 𝑑𝑉𝛼. (5)

Combining this with (4), Fatou’s lemma show that 𝑔 is in 𝐴1(B, 𝑑𝑉𝛼). By applying
the Lebesgue dominated convergence theorem once again, we have

lim
𝑚→∞

∫︁
B

𝑚𝜙𝛽

(︂
log

(︂
1 +
|𝑔|
𝑚

)︂)︂
𝑑𝑉𝛼 = (log 𝛾𝛽)

𝛽

∫︁
B

|𝑔| 𝑑𝑉𝛼. (6)

By (4), (5) and (6), we see that 𝑇 is a linear isometry of 𝐴1(B, 𝑑𝑉𝛼).

Lemma 3. There exist a bounded continuous function 𝜗𝛽 on [0,∞) and a
positive constant 𝐾𝛽 such that

𝜙𝛽(log(1 + 𝑥)) = (log 𝛾𝛽)
𝛽𝑥−𝐾𝛽𝑥

2 + 𝑥3𝜗𝛽(𝑥) for 𝑥 ∈ [0,∞).

Proof. See [11].

Theorem 1. Every linear isometry 𝑇 of 𝑁 log𝛽𝑁(B) into itself is of the form
𝑇𝑓 = 𝑐(𝑓 ∘ Φ) for all 𝑓 ∈ 𝑁 log𝛽𝑁(B), where 𝑐 is a complex number with |𝑐| = 1
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and Φ is a holomorphic self-map of B such that
∫︀
B(ℎ ∘ Φ)𝑑𝑉𝛼 =

∫︀
B ℎ𝑑𝑉𝛼 for every

bounded Borel function ℎ in B.

Proof. Assume that 𝑇 is a linear isometry of 𝑁 log𝛽𝑁(B). Since 𝑇 is also
isometry of 𝐴1(B, 𝑑𝑉𝛼) by Lemma 2, Kolaski’s theorem ( [6, Theorem 1]) implies
that 𝑇𝑓 = 𝑔(𝑓 ∘ Φ) for every 𝑓 ∈ 𝐴1(B, 𝑑𝑉𝛼), where 𝑔 = 𝑇1 ∈ 𝐴1(B, 𝑑𝑉𝛼) and Φ is
a holomorphic self-map of B which satisfies∫︁

B

(ℎ ∘ Φ)|𝑔|𝑑𝑉𝛼 =

∫︁
B

ℎ𝑑𝑉𝛼 (7)

for every bounded Borel function ℎ in B.

Fix an 𝑓 ∈ 𝑁 log𝛽𝑁(B) and consider dilated functions {𝑓𝑟}0<𝑟<1 of 𝑓 . Since
𝑓𝑟 ∈ 𝐶(B) ∩𝐻(B), and so 𝑓𝑟 ∈ 𝐴1(B, 𝑑𝑉𝛼), we have 𝑇 (𝑓𝑟)(𝑧) = 𝑔(𝑧) · 𝑓(𝑟Φ(𝑧)) for
all 𝑟 ∈ (0, 1) and 𝑧 ∈ B. On the other hand, by Lemma 1, we have

lim
𝑟→1
‖𝑇𝑓 − 𝑇 (𝑓𝑟)‖𝛽 = lim

𝑟→1
‖𝑓 − 𝑓𝑟‖𝛽 = 0.

Note that the convergence in 𝑁 log𝛽𝑁(B) implies the uniform convergence on com-
pact subsets of B. So we have that

𝑇𝑓 = lim
𝑟→1

𝑇 (𝑓𝑟) = lim
𝑟→1

𝑔 · (𝑓𝑟 ∘ Φ) = 𝑔 · (𝑓 ∘ Φ) in B.

Next we will prove that 𝑔 is a constant 𝑐 with |𝑐| = 1. Since 𝑔 = 𝑇1 ∈ 𝐴1(B, 𝑑𝑉𝛼)
and 𝑉𝛼(B) = 1, Hölder’s inequality shows that

1 = ‖1‖𝐴1 = ‖𝑔‖𝐴1 6 ‖𝑔‖𝐴2 .

Since ‖ tg ‖𝐴1 = 𝑡 and ‖ tg ‖𝛽 = 𝜙𝛽(log(1+ 𝑡)) for any 𝑡 > 0, it follows from Lemma
3 that∫︁
B

{︀
𝐾𝛽| tg |2 − | tg |3𝜗𝛽(| tg |)

}︀
𝑑𝑉𝛼 = (log 𝛾𝛽)

𝛽𝑡− 𝜙𝛽(log(1 + 𝑡)) = 𝐾𝛽𝑡
2 − 𝑡3𝜗𝛽(𝑡),

and so we have ∫︁
B

{︀
𝐾𝛽|𝑔|2 − 𝑡|𝑔|3𝜗𝛽(| tg |)

}︀
𝑑𝑉𝛼 = 𝐾𝛽 − 𝑡𝜗𝛽(𝑡).



120 The 8th Congress of the ISAAC — 2011

Also Lemma 3 gives that

𝐾𝛽|𝑔|2 − 𝑡|𝑔|3𝜗𝛽(| tg |) = {(log 𝛾𝛽)𝛽| tg | − 𝜙𝛽(log(1 + | tg |))}/𝑡2 > 0.

By the application of Fatou’s lemma, we obtain that∫︁
B

𝐾𝛽|𝑔|2𝑑𝑉𝛼 6 lim inf
𝑡→0

{𝐾𝛽 − 𝑡𝜗𝛽(𝑡)} = 𝐾𝛽.

Thus we have ‖𝑔‖𝐴2 6 1 and ‖𝑔‖𝐴1 = ‖𝑔‖𝐴2 = 1. This implies that |𝑔| = 1 in B.
Since 𝑔 ∈ 𝐻(B), 𝑔 ≡ 𝑐 in B where 𝑐 is a complex number with |𝑐| = 1. Combining
this with (7), we have the desired property of Φ.

Conversely, if 𝑇 is a mapping of the form described in the statement of the
present theorem, it is easily shown that 𝑇 is a linear isometry of 𝑁 log𝛽𝑁(B) into
itself. We accomplished the proof.

As a corollary of the above theorem, we can get the characterization for the
surjective linear isometry of 𝑁 log𝛽𝑁(B).

Corollary. A linear isometry 𝑇 of 𝑁 log𝛽𝑁(B) is surjective if and only if
𝑇𝑓 = 𝑐(𝑓 ∘ 𝒰) for all 𝑓 ∈ 𝑁 log𝛽𝑁(B), where 𝑐 is a complex number with |𝑐| = 1
and 𝒰 is a unitary transformation on C𝑛.

Proof. Let 𝑇 be a surjective linear isometry of 𝑁 log𝛽𝑁(B). Then, by Theorem
1, there exists a complex number 𝑐 with |𝑐| = 1 and a holomorphic self-map Φ of
B with

∫︀
B(ℎ ∘ Φ)𝑑𝑉𝛼 =

∫︀
B ℎ𝑑𝑉𝛼 for every bounded Borel function ℎ in B such that

𝑇𝑓 = 𝑐(𝑓 ∘Φ) for all 𝑓 ∈ 𝑁 log𝛽𝑁(B). The property
∫︀
B(ℎ ∘Φ)𝑑𝑉𝛼 =

∫︀
B ℎ𝑑𝑉𝛼 yields

Φ(0) = 0. Since the inverse 𝑇−1 of 𝑇 is also a surjective isometry of 𝑁 log𝛽𝑁(B),
it follows that Φ is biholomorphic. Hence Φ is a unitary operator on C𝑛.
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MATHEMATICAL MODELING FOR THE PURPOSE OF
ANTI-REFLECTIVE OPTICAL SYSTEMS
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Abstract. The article is devoted to the mathematical modeling of electro-
magnetic fields in layered media. A solution is given for a classical anti-reflective
task (with a fixed frequency) at normal plane wave incidence on two-layered sys-
tem.

1 Introduction

Between two semi-spaces with substance parameters 𝜀0, 𝜇0 and 𝜀3, 𝜇3 let there be
located two flat magnetodielectric layers with the thickness of ℎ𝑖 and substance
𝜀𝑖, 𝜇𝑖, 𝑖 = 1, 2.

If in the layered system there exists a flat electromagnetic field "parallel" to
plane 𝑌 𝑂𝑍 which changes in time according to the law 𝑒−𝑖𝜔 𝑡, then the Maxwell
equations are as follows:

𝐸′ = 𝑖𝜔𝜇𝐻 (1)

𝐻 ′ = 𝑖𝜔𝜇𝐸

Solving system (1), we get 𝑈 ≡ 𝐸 𝑉 ≡ 𝐻:(︃
𝑈

𝑉

)︃
= 𝐶0

(︃
1

𝑝

)︃
𝑒𝑖𝜔𝑛(𝑥−𝑥0) + 𝐶1

(︃
1

−𝑝

)︃
𝑒−𝑖𝜔𝑛(𝑥−𝑥0); 𝑝 =

√︂
𝜀

𝜇
, 𝑛 =

√
𝜀𝜇.

The conditions of electromagnetic field components continuity on each plane of
discontinuity of physical parameters of the medium lead to a system of transitions
from one layer to another:(︃

1 1

𝑝0 −𝑝0

)︃(︃
𝐶

(0)
0

𝐶
(0)
1

)︃
=

(︃
𝑒−𝑖𝜈1𝜔 𝑒𝑖𝜈1𝜔

𝑝1𝑒
−𝑖𝜈1𝜔 −𝑝1𝑒𝑖𝜈1𝜔

)︃(︃
𝐶

(1)
0

𝐶
(1)
1

)︃
(︃

1 1

𝑝1 −𝑝1

)︃(︃
𝐶

(1)
0

𝐶
(1)
1

)︃
=

(︃
𝑒−𝑖𝜈2𝜔 𝑒𝑖𝜈2𝜔

𝑝1𝑒
−𝑖𝜈2𝜔 −𝑝1𝑒𝑖𝜈2𝜔

)︃(︃
𝐶

(2)
0

𝐶
(2)
1

)︃
(2)
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(︃
1 1

𝑝2 −𝑝2

)︃(︃
𝐶

(2)
0

𝐶
(2)
1

)︃
=

(︃
1 1

𝑝3 −𝑝3

)︃(︃
𝐶

(3)
0

𝐶
(3)
1

)︃

In system (2) there are 6 equations and 8 unknown quantities.
Due to the structure of the system, its solution depends on two arbitrary con-

stants.
Let one of them equal zero 𝐶(3)

1 = 0, which presupposes the absence of reflection
at +∞.

We discard the second one, having done a normalization of the previous wave:
𝐶

(3)
0 = 1.

In transition from the left semi-space to the right one for the un-known quantities
𝐶

(𝑗)
𝑘 , 𝑘 = 0, 1; 𝑗 = 0, 1, 2, 3 the following identity is just:

𝑝0

(︂⃒⃒⃒
𝐶

(0)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2)︂
= 𝑝1

(︂⃒⃒⃒
𝐶

(1)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(1)
1

⃒⃒⃒2)︂
= · · · = 𝑝3

(︂⃒⃒⃒
𝐶

(3)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(3)
1

⃒⃒⃒2)︂
(3)

Choosing the first and last expressions from (3), we receive:⃒⃒⃒
𝐶

(0)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
= Θ, where Θ =

𝑝3
𝑝0
. (4)

Let us rewrite (4) in the following form:

1−

⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
0

⃒⃒⃒2 =
Θ⃒⃒⃒

𝐶
(0)
0

⃒⃒⃒2 . (*)

Let us introduce the designations:

R(𝜔) =

⃒⃒⃒
𝐶

(0)
1 (𝜔)

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
0 (𝜔)

⃒⃒⃒2— energy reflection ratio;

T(𝜔) =
Θ⃒⃒⃒

𝐶
(0)
0 (𝜔)

⃒⃒⃒2— energy transmission ratio.

Then the ratio (*) can be recorded in the form of the law of energy conservation:

R(𝜔) +T(𝜔) = 1.
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Let us consider the solution of the task of the best anti-reflective of a two-layer
system with a fixed frequency 𝜔0.

R(𝜔0)
−→
𝑝, �⃗� min

Due to (4) the functions
⃒⃒⃒
𝐶

(0)
0 (𝜔)

⃒⃒⃒2
and

⃒⃒⃒
𝐶

(0)
1 (𝜔)

⃒⃒⃒2
have extremums of equivalent

meaning in appropriate points.
That is why the function R(𝜔) will have extremums of equivalent meaning in

the same points, thus the task of anti-reflection is the following:⃒⃒⃒
𝐶

(0)
1 (𝜔)

⃒⃒⃒2 −→
𝑝, �⃗� min

For a two-layered surface the function
⃒⃒⃒
𝐶

(0)
1 (𝜔)

⃒⃒⃒2
can be recorded in the form:

F𝑝1,𝑝2(𝑡1, 𝑡2) = (𝛼0x1x2 − 𝛼3y1y2)
2 + (𝛼1x1y2 + 𝛼2y1x2)

2 (5)

and depending on the value of 𝜈1 and 𝜈2 is quasi-periodic per 𝜔, which presupposes
𝑡1 = 𝜈1𝜔, 𝑡2 = 𝜈2𝜔 and xi = cos 𝑡𝑖,yi = sin 𝑡𝑖, 𝑖 = 1, 2,

𝛼0 =
1

2
(1−Θ) , 𝛼1 =

1

2
(𝜗1𝜗2 − 𝜗3)

𝛼2 =
1

2
(𝜗1 − 𝜗2𝜗3) , 𝛼3 =

1

2
(𝜗2 − 𝜗1𝜗3)

𝜗1 =
𝑝1
𝑝0
, 𝜗2 =

𝑝2
𝑝1
, 𝜗3 =

𝑝3
𝑝2
, Θ =

𝑝3
𝑝0

The functional behavior of F𝑝1,𝑝2(𝑡1, 𝑡2) depends substantially on the parameters
P = (𝑝1, 𝑝2).

Meanwhile the parameter space 𝒫 = {P}, (𝑝1 > 0, 𝑝2 > 0) is divided into
several areas, limited by divergent un-limited quadratic curves (parabolas, hyper-
bolas) in a way that the functional behavior of F𝑝1,𝑝2(𝑡1, 𝑡2) changes qualitatively
in transition from one area to another.

An exponential change of variables (𝑝1, 𝑝2)→ (𝑠1, 𝑠2):

𝜗1 = Θ𝑠1+
1
2 , 𝜗3 = Θ𝑠2− 1

2 , 𝜗2 = Θ𝑠2−𝑠1

allows to straighten the limits of the above-mentioned areas.
In the coordinates (𝑠1, 𝑠2) all the important areas for an analysis of function

F𝑝1,𝑝2(𝑡1, 𝑡2) are limited by straight lines as shown on fig. 1.
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Function F𝑝1,𝑝2(𝑡1, 𝑡2) zeros are the solutions to the system equations:

𝛼0x1x2 − 𝛼3y1y2 = 0, 𝛼1x1y2 + 𝛼2y1x2 = 0. (6)

The solutions equations (6) exist then and only then, when:{︃
𝛼3
𝛼0
> 0

𝛼1
𝛼2
< 0

or

{︃
𝛼3
𝛼0
< 0

𝛼1
𝛼2
> 0.

(7)

Figure 1. Parameter space 𝑠1, 𝑠2

On fig. 1: 𝑡1 = arctan

√︂
−𝛼0𝛼1

𝛼2𝛼3
; 𝑡2 = arctan

√︂
−𝛼0𝛼2

𝛼1𝛼3
. Four triangular areas

on space 𝑠1, 𝑠2 that solve inequalities (7) are shaded diagonally on fig.1.
For every point of (𝑠1, 𝑠2) from these areas the function F𝑝1,𝑝2(𝑡1, 𝑡2) possesses

in the above-mentioned pair of square function period points (𝑡1, 𝑡2), which matches
the parameters of task (𝑠1, 𝑠2), the value of null.

After the fixation of parameters (𝑝1, 𝑝2) the values of parameters (𝜈1, 𝜈2) can be
sought for each of the solutions (𝑡1, 𝑡2) of system (6) using the following formulas:

𝜈1 =
|𝑡1|
𝜔0

; 𝜈2 =
|𝑡2|
𝜔0

.
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Figure 2. Three serial function F𝑝1,𝑝2(𝑡1, 𝑡2) level lines

Fig. 2 illustrates the sections of function F𝑝1,𝑝2(𝑡1, 𝑡2) with planes parallel to
plane 𝑡1, 𝑡2 at the levels 0 (function F zeros), 𝛼2

3, 𝛼2
0.

Three angular areas on fig. 2, cross shaded, determine those values of parameters
(𝑠1, 𝑠2) in which anti-reflection is impossible for any frequency 𝜔0 of the spectrum
(0,+∞).

Non-shaded areas determine those values of parameters (𝑠1, 𝑠2), in which the
anti-reflective task for the fixed frequency 𝜔0 can be solved in the same way as
it is done above. But for each of these areas only a level of anti-reflection that
corresponds to the least coefficient 𝛼2

𝑗 ̸= 0 of the area from function F𝑝1,𝑝2(𝑡1, 𝑡2)

definition (5) can be achieved.
The map of function F𝑝1,𝑝2(𝑡1, 𝑡2) properties, shown on fig. 1, is also extremely

useful in research and resolution of anti-reflective tasks of other formulations.
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THE ANTI-REFLECTIVE COATING FOR THE OBLIQUE
INCIDENCE OF LIGHT
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Abstract. We consider an oblique incidence of light on the system of one anti-
reflective coating.

1 Description of the mathematical model

Let us consider the propagation of classical electromagnetic waves in a medium that
obeys Maxwell’s equations: ⎧⎪⎪⎨⎪⎪⎩

rot �⃗� = −𝜕�⃗�
𝜕𝑡

rot �⃗� =
𝜕�⃗�

𝜕𝑡
+ �⃗�

and material equations of the simplest form:⎧⎪⎪⎨⎪⎪⎩
�⃗� = 𝜇�⃗�

�⃗� = 𝜀�⃗�

�⃗� = 0⃗

.

Here 𝜀 and 𝜇 are own for each of the mediums, and �⃗� = 0̄ indicates the absence
of currents, that is, we restrict ourselves to insulators. At the material boundaries
assume the continuity of the tangential components of vectors �⃗� and �⃗�.

We are interested only harmonic solutions, that is, having the form �⃗� = �⃗�𝑟 ·𝑒−𝑖𝜔𝑡
and �⃗� = �⃗�𝑟 ·𝑒−𝑖𝜔𝑡, where functions �⃗�𝑟 and �⃗�𝑟 depend only on spatial coordinates,
but not on time. Substituting them into equations, and omitting the index 𝑟,
transforming, we obtain: {︃

rot �⃗� = 𝑖𝜔𝜇�⃗�

rot �⃗� = −𝑖𝜔𝜀�⃗�
(1)

In the task of the minimization of reflection we consider a system of optical
mediums. The mediums are the two half-spaces with the flat anti-reflective layers
between them. In this study, we restrict ourselves to only one anti-reflective layer
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thickness 𝑑. We assume that the environment in a half-space 𝑥 < 0 with the number
0 has the characteristics 𝜀0, 𝜇0, the layer 0 < 𝑥 < 𝑑 number 1 – the values 𝜀1, 𝜇1,
and 𝑥 > 𝑑 – with the number 2 values 𝜀2, 𝜇2. We also set 𝜀 = 𝜀1, 𝜇 = 𝜇1.

Figure 1. The choise of the coordinate axes

We choose the coordinate axes (see Fig. 1) to OX axis is directed along the nor-
mal to the layers (all layers are parallel to the boundary plane YOZ), the deviation
of the incident wave at normal incidence angle 𝛽 = 𝛽0 will let the plane XOY, and
the shift in the axis OZ field does not change. Moreover, all the layers are located
in the half-space 𝑥 ≥ 0, and the boundary of the first layer coincides with the plane
𝑥 = 0.

In the case of oblique incidence of light the wave propagation problem is divided
into two independent tasks, which differ in the polarization of the incident wave:

TE-wave (⊥): �⃗� = (0, 0, 𝐸𝑧), �⃗� = (𝐻𝑥, 𝐻𝑦, 0) .

TM-wave (//): �⃗� = (𝐸𝑥, 𝐸𝑦, 0), �⃗� = (0, 0, 𝐻𝑧).
Substituting in (1), we obtain the following differential equations:
TE-wave:

rot �⃗� =

⃒⃒⃒⃒
⃒⃒⃒⃒ i j k

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0 0 𝐸𝑧

⃒⃒⃒⃒
⃒⃒⃒⃒ = i

𝜕𝐸𝑧
𝜕𝑦
− j

𝜕𝐸𝑧
𝜕𝑥

= 𝑖𝜔𝜇 (i𝐻𝑥 + j𝐻𝑦) = 𝑖𝜔𝜇�⃗�;
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rot �⃗� =

⃒⃒⃒⃒
⃒⃒⃒⃒ i j k

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐻𝑥 𝐻𝑦 0

⃒⃒⃒⃒
⃒⃒⃒⃒ = k

(︂
𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻𝑥

𝜕𝑦

)︂
= 𝑖𝜔𝜀 · k𝐸𝑧 = 𝑖𝜔𝜀�⃗�

We find: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝐸𝑧
𝜕𝑦

= 𝑖𝜔𝜇𝐻𝑥

𝜕𝐸𝑧
𝜕𝑥

= −𝑖𝜔𝜇𝐻𝑦

𝜕𝐻𝑥

𝜕𝑦
− 𝜕𝐻𝑦

𝜕𝑥
= 𝑖𝜔𝜀 · 𝐸𝑧

(2)

Next, we transform:
𝜕2𝐸𝑧
𝜕𝑦2

= 𝑖𝜔𝜇
𝜕𝐻𝑥

𝜕𝑦

𝜕2𝐸𝑧
𝜕𝑥2

= −𝑖𝜔𝜇𝜕𝐻𝑦

𝜕𝑥

Adds:
𝜕2𝐸𝑧
𝜕𝑦2

+
𝜕2𝐸𝑧
𝜕𝑥2

= 𝑖𝜔𝜇

(︂
𝜕𝐻𝑥

𝜕𝑦
− 𝜕𝐻𝑦

𝜕𝑥

)︂
Substituting, we obtain the Helmholtz equation:

𝜕2𝐸𝑧
𝜕𝑦2

+
𝜕2𝐸𝑧
𝜕𝑥2

= −𝜔2𝜀𝜇𝐸𝑧 = −𝜔2𝑛2𝐸𝑧

We use the method of separation of variables:

𝐸𝑧 = 𝑓 (𝑥) · 𝑔 (𝑦)

𝑓 (𝑥) · 𝑔′′𝑦𝑦 (𝑦) + 𝑓 ′′𝑥𝑥 (𝑥) · 𝑔 (𝑦) = −𝜔2𝜀𝜇 · 𝑓 (𝑥) 𝑔 (𝑦)

or
𝑔′′𝑦𝑦 (𝑦)

𝑔 (𝑦)
+
𝑓 ′′𝑥𝑥 (𝑥)

𝑓 (𝑥)
= −𝜔2𝑛2

i.e.
𝑔′′𝑦𝑦 (𝑦)

𝑔 (𝑦)
= −𝑓

′′
𝑥𝑥 (𝑥)

𝑓 (𝑥)
− 𝜔2𝑛2
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Since the left side is a function only of 𝑦, and the right only of 𝑥, they are
constant, which is denoted by 𝜔2𝛾2:

𝑔′′𝑦𝑦 (𝑦)

𝑔 (𝑦)
= −𝑓

′′
𝑥𝑥 (𝑥)

𝑓 (𝑥)
− 𝜔2𝑛2 = 𝜔2𝛾2,

whence it is clear that: 𝑔 (𝑦) = 𝑔0𝑒
±𝜔𝛾𝑦.

Given (2), we obtain the form of solutions:⎧⎪⎪⎨⎪⎪⎩
𝐸𝑧 = 𝐴 (𝑥) · 𝑒𝑖𝜔𝛾𝑦

𝐻𝑦 = 𝐵 (𝑥) · 𝑒𝑖𝜔𝛾𝑦

𝐻𝑥 = 𝐶 (𝑥) · 𝑒𝑖𝜔𝛾𝑦

Substituting into (2) and setting 𝐸𝑧 (𝑥, 0, 0) = 𝐸 (𝑥) and 𝐻𝑦 (𝑥, 0, 0) = 𝐻 (𝑥),
transforming we obtain:(︃

𝐸

𝐻

)︃′

=

(︃
0 𝑖𝜔𝜇

𝑖𝜔𝜀 cos2 𝛽 0

)︃(︃
𝐸

𝐻

)︃

The characteristic polynomial:

|𝐴− 𝜆𝐸| =

⃒⃒⃒⃒
⃒ −𝜆 𝑖𝜔𝜇

𝑖𝜔𝜀 cos2 𝛽 −𝜆

⃒⃒⃒⃒
⃒ = 𝜆2 + 𝜔2𝜀𝜇 cos2 𝛽

roots: 𝜆1,2 = ±𝑖𝜔
√
𝜀𝜇 cos𝛽 general solution:(︃

𝐸

𝐻

)︃
= 𝐶0

(︃
1
∨
𝑝

)︃
𝑒𝑖𝜔

∨
𝑛(𝑥−𝑥0) + 𝐶1

(︃
1

−
∨
𝑝

)︃
𝑒−𝑖𝜔

∨
𝑛(𝑥−𝑥0)

where:
𝑛 =
√
𝜀𝜇; 𝑝 =

√︂
𝜀

𝜇
,

∨
𝑛 = 𝑛 cos𝛽;

∨
𝑝 = 𝑝 cos𝛽

TM-wave:

Similarly to the case of TE, we obtain:(︃
𝐸

𝐻

)︃′

=

(︃
0 𝑖𝜔𝜇 cos2 𝛽

𝑖𝜔𝜀 0

)︃(︃
𝐸

𝐻

)︃
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The characteristic polynomial:

|𝐴− 𝜆𝐸| =

⃒⃒⃒⃒
⃒ −𝜆 𝑖𝜔𝜇 cos2 𝛽

𝑖𝜔𝜀 −𝜆

⃒⃒⃒⃒
⃒ = 𝜆2 + 𝜔2𝜀𝜇 cos2 𝛽

roots: 𝜆1,2 = ±𝑖𝜔
√
𝜀𝜇 cos𝛽 general solution:(︃

𝐸

𝐻

)︃
= 𝐶0

(︃
1

𝑞

)︃
𝑒𝑖𝜔

∨
𝑛(𝑥−𝑥0) + 𝐶1

(︃
1

−𝑞

)︃
𝑒−𝑖𝜔

∨
𝑛(𝑥−𝑥0)

where:
𝑛 =
√
𝜀𝜇; 𝑝 =

√︂
𝜀

𝜇
,

∨
𝑛 = 𝑛 cos𝛽; 𝑞 =

𝑝

cos𝛽
.

Let the plane separates the mediums 𝑗 and 𝑗 + 1. Matching the solutions at
interfaces is provided by Snell’s law:

𝑛0 sin𝛽0 = 𝑛1 sin𝛽1 = 𝑛2 sin𝛽2,

which is obtained by additional study of the system (2), and the condition of con-
tinuity of the tangential component of the field:{︃

𝐸(𝑗)
𝜏 (𝑎𝑗 − 0) = 𝐸(𝑗+1)

𝜏 (𝑎𝑗 + 0)

𝐻(𝑗)
𝜏 (𝑎𝑗 − 0) = 𝐻(𝑗+1)

𝜏 (𝑎𝑗 + 0)

For TE-wave:(︃
𝐸(𝑗)

𝐻(𝑗)

)︃
= 𝐶

(𝑗)
0

(︃
1

𝑝(𝑗) · cos𝛽𝑗

)︃
𝑒𝑖𝜔𝑛

(𝑗)(𝑥−𝑥0) cos𝛽𝑗+

+𝐶
(𝑗)
1

(︃
1

−𝑝(𝑗) · cos𝛽𝑗

)︃
𝑒−𝑖𝜔𝑛

(𝑗)(𝑥−𝑥0) cos𝛽𝑗 ,

If 𝑥 = 𝑎𝑗 , we have:

𝑀+
𝑗

(︃
𝐶

(𝑗)
0

𝐶
(𝑗)
1

)︃
=𝑀−

𝑗+1

(︃
𝐶

(𝑗+1)
0

𝐶
(𝑗+1)
1

)︃
,

where

𝑀+
𝑗 =

(︃
1 1

𝑝(𝑗) · cos𝛽𝑗 −𝑝(𝑗) · cos𝛽𝑗

)︃
,
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and

𝑀−
𝑗+1 =

(︃
1 1

𝑝(𝑗+1) · cos𝛽𝑗 −𝑝(𝑗+1) · cos𝛽𝑗

)︃
.

When passing through the layer thickness 𝑑1 variation of the field provides a
matrix:

𝑀−
𝑗 = 𝑒−𝑖𝜔𝑛1𝑑1 cos𝛽1 ·𝑀+

𝑗

that leads to the relation:(︃
𝐶

(0)
0

𝐶
(0)
1

)︃
= 𝑃1

(︃
𝐶

(1)
0

𝐶
(1)
1

)︃
= 𝑃1𝑃2

(︃
𝐶

(2)
0

𝐶
(2)
1

)︃
,

where the superscripts in parentheses indicate number of medium and

𝑃𝑗 =
(︁
𝑀+
𝑗+1

)︁−1
𝑀−
𝑗 .

We introduce the following notation:

𝜗 =
𝑝2
𝑝0

; 𝜗1 =
𝑝1
𝑝0

; 𝜗2 =
𝑝2
𝑝1

ℎ =
cos𝛽2
cos𝛽

; ℎ1 =
cos𝛽1
cos𝛽

; ℎ2 =
cos𝛽2
cos𝛽1

and 𝜈 = 𝜈1 = 𝑛1𝑑 and 𝜈2 = 0 .

Let 𝐶(2)
0 = 1, and 𝐶(2)

1 = 0.

TE-wave:

𝑃𝑗 =
1

2

(︃
(1 + 𝜗𝑗ℎ𝑗) (1− 𝜗𝑗ℎ𝑗)
(1− 𝜗𝑗ℎ𝑗) (1 + 𝜗𝑗ℎ𝑗)

)︃(︃
𝑒−𝑖𝜔 𝜈𝑗 cos𝛽𝑗 0

0 𝑒𝑖𝜔 𝜈𝑗 cos𝛽𝑗

)︃

where 𝑗 = 1, 2.

TM-wave:

𝑃𝑗 =
1

2

⎛⎝ (︁
1 +

𝜗𝑗
ℎ𝑗

)︁ (︁
1− 𝜗𝑗

ℎ𝑗

)︁(︁
1− 𝜗𝑗

ℎ𝑗

)︁ (︁
1 +

𝜗𝑗
ℎ𝑗

)︁ ⎞⎠(︃ 𝑒−𝑖𝜔𝜈𝑗 cos𝛽𝑗 0

0 𝑒𝑖𝜔 𝜈𝑗 cos𝛽𝑗

)︃
,

where 𝑗 = 1, 2,
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Noting the important fact: 𝑃 *
𝑗 𝐽𝑃𝑗 =

∨
𝜗𝑗𝐽 , where 𝐽 =

(︃
1 0

0 −1

)︃
, we have:

(︁
𝐶

(𝑗+1)
0 𝐶

(𝑗+1)
1

)︁
𝑃 *
𝑗 𝐽𝑃𝑗

(︃
𝐶

(𝑗+1)
0

𝐶
(𝑗+1)
1

)︃
=

∨
𝜗𝑗𝐽,

where
∨
𝜗𝑗 =

∨
𝑝𝑗+1

∨
𝑝𝑗

taking into account (︃
𝐶

(𝑗)
0

𝐶
(𝑗)
1

)︃
= 𝑃𝑗+1

(︃
𝐶

(𝑗+1)
0

𝐶
(𝑗+1)
1

)︃
also (︁

𝐶
(𝑗)
0 𝐶

(𝑗)
1

)︁
𝐽

(︃
𝐶

(𝑗)
0

𝐶
(𝑗)
1

)︃
=

∨
𝜗𝑗𝐽

we have:
∨
𝑝𝑗

(︂⃒⃒⃒
𝐶

(𝑗)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(𝑗)
1

⃒⃒⃒2)︂
=

∨
𝑝𝑘

(︂⃒⃒⃒
𝐶

(𝑘)
0

⃒⃒⃒2
−
⃒⃒⃒
𝐶

(𝑘)
1

⃒⃒⃒2)︂
, for all 𝑗 and 𝑘. Then

we find: ⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
= 𝛼2

0 cos
2 𝑡* + 𝛼2

1 sin
2 𝑡*,

where
TE-wave:

∨
𝜗 = 𝜗ℎ; 𝛼⊥

0 = 1
2 (1− 𝜗ℎ) ; 𝛼⊥

1 = 1
2 (𝜗2ℎ2 − 𝜗1ℎ1)

TM-wave:
∨
𝜗 = 𝜗

ℎ ; 𝛼//0 = 1
2

(︀
1− 𝜗

ℎ

)︀
; 𝛼//1 = 1

2

(︁
𝜗2
ℎ2
− 𝜗1

ℎ1

)︁
and 𝜈 = 𝑛1𝑑, 𝑡 = 𝜈𝜔; 𝑡* = 𝑡 cos𝛽1 = 𝜔𝑑

√︁
𝑛21 − 𝑛20 sin2 𝛽 .

2. The problem of best uniform anti-reflective effect in a range of
frequencies [Ω1,Ω2] at a constant angle of incidence.

The energy reflection coefficient be the quantity:

𝑅 =

⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
0

⃒⃒⃒2 =

⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
+

∨
𝜗𝑗

.

The task: by selecting a values of 𝑝 and 𝜈 minimize the functional:

max
𝜔∈[Ω1,Ω2]

𝑅 (𝜔) (3)
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We can establish that the problem reduces to the problem of minimizing the
easier functional:

max
𝜔∈[Ω1,Ω2]

⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
(4)

Indeed, the expression⃒⃒⃒
𝐶

(0)
1 (𝜔1)

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
1 (𝜔1)

⃒⃒⃒2
+

∨
𝜗𝑗

<

⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2
⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2
+

∨
𝜗𝑗

is equivalent to⃒⃒⃒
𝐶

(0)
1 (𝜔1)

⃒⃒⃒2 ⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2
+
⃒⃒⃒
𝐶

(0)
1 (𝜔1)

⃒⃒⃒2 ∨
𝜗𝑗 <

⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2 ⃒⃒⃒
𝐶

(0)
1 (𝜔1)

⃒⃒⃒2
+
⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2 ∨
𝜗𝑗

since the denominators are positive.
Cancelling terms and factors, we have⃒⃒⃒

𝐶
(0)
1 (𝜔1)

⃒⃒⃒2
<
⃒⃒⃒
𝐶

(0)
1 (𝜔2)

⃒⃒⃒2
.

Theorem 1. 1. For any value of parameter 𝑝 from the range [𝑝0, 𝑝2] there is
a finite amount of values 𝜈 at which the functional max

𝜔∈[Ω1,Ω2]
𝑅 (𝜔) has a local

minimum.
2. For any 𝑝 ∈ [𝑝0, 𝑝2] the points of minimum values of the functional

max
𝜔∈[Ω1,Ω2]

𝑅 (𝜔) are strictly in order of magnitude, whereby there is always a

single global minimum which is reached when
∨
𝜈 = 𝜋

Ω1+Ω2
, where

∨
𝜈 = 𝜈 cos𝛽1 .

3. The global minimum of functional max
𝜔∈[Ω1,Ω2]

𝑅 (𝜔) will be the best of possible

when
∨
𝑝 =

√︁
∨
𝑝0

∨
𝑝2 .

Proof. Using the previously noticed property will be in place (3) use (4).⃒⃒⃒
𝐶

(0)
1

⃒⃒⃒2
= 𝛼2

0 cos
2 𝑡* + 𝛼2

1 sin
2 𝑡*

Select the areas in which the condition of enlightenment :

𝛼2
0 cos 𝑡* + 𝛼2

1 sin 𝑡* < 𝛼2
0
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is satisfied for 𝑡*, then we obtain:(︀
𝛼2
0 − 𝛼2

1

)︀
sin2 𝑡* > 0

Now do we get: 1∘. sin2 𝑡* ̸= 0 , i.e. 𝑡* ̸= 𝑘𝜋, 𝑘 = 0, 1, 2 . . .

2∘.
(︀
𝛼2
0 − 𝛼2

1

)︀
> 0

Given that 𝜗1𝜗2 = 𝜗 and ℎ1ℎ2 = ℎ we get:

I. (⊥):
(︀
𝛼⊥
0

)︀2
>
(︀
𝛼⊥
1

)︀2
(1− 𝜗ℎ)2 > (𝜗2ℎ2 − 𝜗1ℎ1)2 ,

or (︀
1− 𝜗21ℎ21

)︀ (︀
1− 𝜗22ℎ22

)︀
> 0

II. (//):
(︁
𝛼
//
0

)︁2
>
(︁
𝛼
//
1

)︁2
(︂
1− 𝜗

ℎ

)︂2

>

(︂
𝜗2
ℎ2
− 𝜗1
ℎ1

)︂2

,

or (︂
1− 𝜗21

ℎ21

)︂(︂
1− 𝜗22

ℎ22

)︂
> 0

The condition of enlightenment will be satisfied in whole range of frequencies
[Ω1,Ω2] if and only if:

𝑘𝜋
∨
𝜈
< Ω1 < Ω2 <

(𝑘 + 1)𝜋
∨
𝜈

or
𝑘𝜋

Ω1
<

∨
𝜈 <

(𝑘 + 1)𝜋

Ω2

whence
Ω2

Ω1
< 1 +

1

𝑘
.

It is easy to notice an increase in the functional (4) with growth 𝑘.
The best antireflective effect obtained when 𝛼2

1 = 0, i.e.

∨
𝑝 =

√︁
∨
𝑝0

∨
𝑝2
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INCREASING SMOOTHNESS PROPERTY OF SOLUTIONS TO
MIXED HYPERBOLIC PROBLEMS ON THE PLANE

N. A. Lyulko

Key words: First-order hyperbolic systems in two variables 𝑥, 𝑡, wave equation,
initial-boundary problems, increasing smoothness of the solutions.
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Abstract. The initial-boundary problems for first-order hyperbolic systems and
for the wave equation are considered in the half-strip Π = {(𝑥, 𝑡) : 0 < 𝑥 < 1,
𝑡 > 0}. Boundary conditions which guarantee the increasing of smoothness of the
solutions to problems under consideration as 𝑡 grows are formulated.

1 Introduction

Mixed problems for hyperbolic systems in two independent variables arise in the
mathematical modeling of physical and chemical processes in connection with the
phenomena of warm-and mass-transfer. An extensive literature (see the references
in [1]– [5]) is devoted to studying the qualitative properties of solutions to these
problems (existence of global (in 𝑡) solutions, existence of periodic solutions, propa-
gation of discontinuities, bifurcation of solutions, stability of solutions, fredholmness
for linear hyperbolic periodic-Dirichlet problems and so on). This article is a survey
of the results established by the author, concerning the increasing smoothness prop-
erty of solutions to some mixed problems for hyperbolic systems in two variables
𝑥, 𝑡. Full proofs of the results stated below one can found in the references to this
article.

It is well-known that the smoothness of solutions to the Cauchy problem for the
simplest hyperbolic system of two equations with constant coefficients

𝑢𝑡 + 𝑢𝑥 = 𝑎𝑢+ 𝑏𝑣, 𝑣𝑡 − 𝑣𝑥 = 𝑐𝑢+ 𝑑𝑣,

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑣|𝑡=0 = 𝑣0(𝑥)

and for the wave equation

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 0, 𝑢|𝑡=0 = 𝑢0(𝑥), 𝑢𝑡|𝑡=0 = 𝑢1(𝑥)

This work has received financial support from the Russian Foundation for Basic Research
(Project 09-01-00221), Presidium of the Russian Academy of Sciences (Program N0 2, Project
121), the Russian Federal Agency for Education (Project 2.1.1.4918).
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is not higher than the smoothness of the initial data. If the point 𝑥 = 𝑥0 is the
jump discontinuity of the initial data, this discontinuity propagates along both
characteristics 𝑡 = 𝑥− 𝑥0 and 𝑡 = −𝑥+ 𝑥0 of these problems and will exist at any
time 𝑡 > 0.

In this work we consider the well-posed initial-boundary value problems for first-
order hyperbolic systems and for the wave equation in the half-strip Π = {(𝑥, 𝑡) :
0 < 𝑥 < 1, 𝑡 > 0}. We formulate the boundary conditions which guarantee the
increasing smoothness property of the solutions to problems under consideration as
𝑡 grows.

Henceforth, the containment of 𝐹 (𝑥, 𝑡) in 𝐶𝑘,𝑚𝑥,𝑡 (Π̄) is understood as follows:
𝐹 (𝑥, 𝑡) ∈ 𝐶𝑘,𝑚𝑥,𝑡 (Π̄𝑇 ) for any 𝑇 > 0, where Π̄𝑇 = {(𝑥, 𝑡) : 0 6 𝑥 6 1, 0 6 𝑡 6 𝑇}.
We denote by 𝐾 and 𝐴 the constants depending on the coefficients of problem and
independent of 𝑡 and 𝑈0(𝑥).

2 Mixed problems for hyperbolic systems

In the half-strip Π = {(𝑥, 𝑡) : 0 < 𝑥 < 1, 𝑡 > 0} we consider the following problem:

𝑈𝑡 − 𝐿𝒜𝑈 = 𝐹 (𝑥, 𝑡), (𝑥, 𝑡) ∈ Π, (1)

𝐼0𝑈(0, 𝑡) + 𝐼1𝑈(1, 𝑡) = 0, 𝑈(𝑥, 0) = 𝑈0(𝑥). (2)

Here 𝑈(𝑥, 𝑡) is an 𝑛-dimensional column-vector of unknown functions, 𝐹 (𝑥, 𝑡) is the
𝑛-dimensional vector of right hand part.

𝐿𝒜𝑈 = −𝒦(𝑥)𝑈𝑥 +𝒜(𝑥)𝑈, 𝒜(𝑥) = (𝑎𝑖𝑗(𝑥))𝑖,𝑗=1,...,𝑛,

𝒦(𝑥) is the diagonal matrix with entries 𝑘𝑖(𝑥) ̸= 𝑘𝑗(𝑥) (𝑖 ̸= 𝑗), the first 𝑝 of them
are positive, and the rest 𝑛− 𝑝 of them are negative, moreover 1 6 𝑝 < 𝑛, 𝑛 > 2.

The boundary conditions are reflection boundary conditions, i.e.

𝐼0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . 0 𝛼1,𝑝+1 . 𝛼1,𝑛

. . . . . .

0 . 1 𝛼𝑝,𝑝+1 . 𝛼𝑝,𝑛

0 0 0 0 0 0

. . . . . .

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝐼1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

. . . . . .

0 0 0 0 0 0

𝛽𝑝+1,1 . 𝛽𝑝+1,𝑝 1 . 0

. . . . . .

𝛽𝑛,1 . 𝛽𝑛,𝑝 0 . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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In [1] the question of well-posedness of problem (1), (2) in spaces of continu-
ous, continuously differentiable and integrable functions is investigated. Let 𝒜(𝑥),
𝒦(𝑥), 𝑈0(𝑥) ∈ 𝐶1[0, 1], 𝐹 (𝑥, 𝑡) ∈ 𝐶1,0

𝑥,𝑡 (Π̄), then one can see that the continuously
differentiable function 𝑈(𝑥, 𝑡) is a classical solution of the problem if and only if it
is a solution of integral system, resulting from (1) by integrating along the corre-
sponding chsrscteristics. A necessary condition for the differentiability of a solution
in the half-strip Π is the fulfillment of the zero-order compatibility conditions

𝐼0𝑈0(0) + 𝐼1𝑈0(1) = 0 (3)

and the first-order compatibility conditions

𝐼0𝑈1(0) + 𝐼1𝑈1(1) = 0, where 𝑈1(𝑥) = 𝐿𝒜𝑈0(𝑥) + 𝐹 (𝑥, 0). (4)

Theorem 1 (see [1]). 𝒜(𝑥), 𝒦(𝑥) ∈ 𝐶1[0, 1], 𝐹 (𝑥, 𝑡) ∈ 𝐶1,0
𝑥,𝑡 (Π̄) and the initial

data 𝑈0(𝑥) ∈ 𝐶1[0, 1] satisfies the compatibility conditions (3), (4). Then problem
(1), (2) has a unique continuously differentiable solution 𝑈(𝑥, 𝑡) in the half-strip Π;
moreover, for 𝑡 > 0 it satisfies the estimate

||𝑈(𝑥, 𝑡)||𝐶1[0,1] 6 𝐾𝑒
𝐴𝑡

(︂
||𝑈0||𝐶1[0,1] + max

06𝜏6𝑡
||𝐹 (𝑥, 𝜏)||𝐶1[0,1]

)︂
.

In [6] the notion of piecewise smooth solution (PSS) of problem (1), (2) was
introduced by the author. This solution is a solution of corresponding integral
system if 𝒜(𝑥), 𝑈0(𝑥), 𝒦(𝑥) ∈ 𝐶1[0, 1], 𝐹 (𝑥, 𝑡) ∈ 𝐶1,0

𝑥,𝑡 (Π̄). If the compatibility
conditions (3), (4) are not fulfilled, then PSS 𝑈(𝑥, 𝑡) of problem and its derivatives
are discontinuous on the set of characteristics of system (1) which is not more then
countable. At the points where the derivatives exist, the function 𝑈(𝑥, 𝑡) satisfies
system (1). If the compatibility conditions (3), (4) are fulfilled, then the piecewise
smooth solution is a classical solution of problem (1), (2).

Definition 1. We say that problem (1), (2) possesses the increasing smoothness
property up to the order 𝑘 if there exists a number 𝑇 (𝑘) > 0 such that every PSS
𝑈(𝑥, 𝑡) to problem (1), (2) is 𝑘 times continuously differentiable for 𝑡 > 𝑇 (𝑘).

In other words, problem (1), (2) possesses the increasing smoothness property
up to order 𝑘 if there exist such numbers 𝑇 (0), 𝑇 (1),. . . ,𝑇 (𝑘),.. that for any function
𝑈0(𝑥) ∈ 𝐶1[0, 1] PSS 𝑈(𝑥, 𝑡) becomes continuous for 𝑡 > 𝑇 (0), it becomes contin-
uously differentiable for 𝑡 > 𝑇 (1) and becomes 𝑘-times continuously differentiable
for 𝑡 > 𝑇 (𝑘).
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In [6] a class of the so-called 𝐵-regular boundary conditions was described. The
mentioned conditions are necessary and sufficient for linear homogeneous problem
(1), (2) to possess the increasing smoothness property up to the order 𝑘, which is
determined by the smoothness of the matrices 𝒦(𝑥) and 𝒜(𝑥) and does not depend
on the smoothness of the initial data.

We consider the diagonal matrix

𝒯 (𝑥, 𝜆) = (𝑒𝜆𝒯𝑗(𝑥)+ℬ𝑗(𝑥)𝛿𝑖𝑗)𝑖,𝑗=1,...,𝑛,

where

𝒯𝑗(𝑥) =
𝑥∫︁

0

−1
𝑘𝑗(𝜉)

𝑑𝜉, ℬ𝑗(𝑥) =
𝑥∫︁

0

𝑎𝑗𝑗(𝜉)

𝑘𝑗(𝜉)
𝑑𝜉,

𝛿𝑖𝑗 is the Kronecker symbol, 𝜆 is a complex parameter, and introduce the expression
𝑋(𝜆) = 𝐼0 + 𝐼1𝒯 (1, 𝜆). We have that

det𝑋(𝜆) = 𝑒
𝜆

𝑛∑︀
𝑖=𝑝+1

𝒯𝑖+
𝑛∑︀

𝑖=𝑝+1
ℬ𝑖

Δ(𝜆),

where 𝒯𝑖 = 𝒯𝑖(1), ℬ𝑖 = ℬ𝑖(1), 𝑖 = 1, . . . , 𝑛,

Δ(𝜆) = 1 +
𝑀∑︁
𝑘=1

𝐸𝑘𝑒
−𝜆𝛽𝑘 . (5)

Here 𝐸𝑘 are real numbers determined by entries of the matrices 𝐼0 and 𝐼1 and
numbers ℬ𝑖; numbers 0<𝛽1<. . .<𝛽𝑀 are determined via 𝒯𝑖; 𝑖 = 1, . . . , 𝑛.

Definition 2. Boundary conditions (2) for problem (1) are called B-regular if
𝐸𝑘 = 0 (𝑘 = 1, . . . ,𝑀) in (5), i.e. Δ(𝜆) ≡ 1.

Theorem 2 (see [6]). Let 𝐹 (𝑥, 𝑡) ≡ 0, 𝒜(𝑥), 𝒦(𝑥) ∈ 𝐶𝑘+2[0, 1]. Then B–
regularity of boundary conditions (2) is the necessary and sufficient condition for
problem (1), (2) to possess the increasing smoothness property of PSS 𝑈(𝑥, 𝑡) up to
the order 𝑘 for arbitrary initial data 𝑈0(𝑥) ∈ 𝐶1[0, 1]; 𝑘 = 0, 1, . . .. The solution
𝑈(𝑥, 𝑡) for 𝑡 > 𝑇 (𝑘) satisfies the estimate

‖𝐷𝛼,𝛽
𝑥,𝑡 𝑈(𝑥, 𝑡)‖𝐶[0,1] 6 𝐾(𝑡)‖𝑈0(𝑥)‖𝐿2[0,1], (6)

where 𝛼 + 𝛽 6 𝑘, the constant 𝐾(𝑡) is independent of the initial data and depends
on the coefficients of the problem and 𝑡.
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The proof of this theorem is based on a study for |𝜆| → ∞ asymptotic properties
of function �̃�(𝑥, 𝜆) =

∫︀∞
0 𝑈(𝑥, 𝑡)𝑒−𝜆𝑡 𝑑𝑡, which is the Laplace transform of solution

𝑈(𝑥, 𝑡) to the original problem. A similar approach to problems with reflection
boundary conditions was used earlier in [7, 8].

Let‘s designate the operator 𝐿𝐴 : 𝐿2(0, 1)→ 𝐿2(0, 1),

𝐿𝐴𝑌 = 𝐿𝒜𝑌, 𝐷(𝐿𝐴) = {𝑌 ∈𝑊 1
2 (0, ) : 𝐼0𝑌 (0) + 𝐼1𝑌 (1) = 0}.

The spectrum of this operator consists only of eigenvalues, which can have only
infinity as their limit point. We‘ll call these eigenvalues the eigenvalues of hyperbolic
problem (1), (2). We should point out that the increasing smoothness property of
the linear problems depends on the behaviuor of eigenvalues of these problems in
infinity.

If conditions of the theorem 1 are fulfilled, then we obtain the following presen-
tation for �̃�(𝑥, 𝜆) in the domain of its analyticity by |𝜆| → ∞:

�̃�(𝑥, 𝜆) =
𝑘+1∑︁
𝑛=1

�̃�𝑛(𝑥, 𝜆)

𝜆𝑛
+
�̃�𝑘+2(𝑥, 𝜆)

𝜆𝑘+2
, |𝑈𝑘+2(𝑥, 𝜆)| 6 𝐾. (7)

Due to the smoothness of coefficients 𝒜(𝑥) and 𝒦(𝑥), the inverse Laplace transform
of the last summand in (7) is 𝑘 times differentiable function by 𝑡 for 𝑡 > 0.

We consider the inverse Laplace transform of the main part of the asymptotic
of function �̃�(𝑥, 𝜆), i.e of the first summand �̃�1(𝑥,𝜆)

𝜆 in (7). The function �̃�1(𝑥, 𝜆)

is the sum of the following expressions
𝑒𝜆𝜙(𝑥)𝜓(𝑥)

Δ(𝜆)
, where 𝜙(𝑥), 𝜓(𝑥) are smooth

functions and for 𝜙(𝑥) inequality −𝑇 (0) 6 𝜙(𝑥) 6 0 is valid, 𝑇 (0) > 0; Δ(𝜆) - is
either the Dirichlet polynomial or its square.

The reasoning to foolow is based on the well-known formula taken from Laplace
transform theory

1

2𝜋𝑖

𝑎+𝑖∞∫︁
𝑎−𝑖∞

𝑒𝜆(𝑡−𝜏)

𝜆
𝑑𝜆 =

{︃
1, 𝑡 > 𝜏,

0, 𝑡 < 𝜏,

𝑎 > 0. Two situations are possible.
1. If Δ(𝜆) ̸≡ 1, then an infinite number of eigenvalues of the problem lie in the

strip parallel to the imaginary axis. If |𝜆| → ∞, these eigenvalues tend to the roots
of the Dirichlet polynomial Δ(𝜆). In this case �̃�1(𝑥, 𝜆) is meromorphic in 𝜆 function.
If the zero-order compatibility conditions for the initial data are not fulfilled, the
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inverse Laplace transform of the first summand in (7) has discontinuities on the
infinite number of characteristic lines of the system (1). Moreover, the number of
such characteristic lines is infinite on every set Π ∖ {[0, 1] × [0, 𝑡]}, 𝑡 > 0. Really,
this exspression

1

Δ(𝜆)
=

∞∑︁
𝑘=1

𝐷𝑘𝑒
−𝜆𝑑𝑘 , 0 = 𝑑1 < 𝑑2 < . . . < 𝑑𝑘 < . . . , 𝑑𝑘 →∞,

is the Dirichlet series. Therefore the inverse Laplace transform of �̃�1(𝑥, 𝜆) is a
function discontinuous on curves 𝑡+ 𝜙(𝑥)− 𝑑𝑘 = 0, 𝑘 = 1, 2, . . ., because

1

2𝜋𝑖

𝑎+𝑖∞∫︁
𝑎−𝑖∞

𝑒𝜆(𝑡+𝜙(𝑥))𝜓(𝑥)

𝜆
=

1

2𝜋𝑖

𝑎+𝑖∞∫︁
𝑎−𝑖∞

∞∑︁
𝑘=1

𝐷𝑘
𝑒𝜆(𝑡+𝜙(𝑥)−𝑑𝑘)𝜓(𝑥)

𝜆
𝑑𝜆.

2. If Δ(𝜆) ≡ 1, then the following estimate is true for eigenvalues 𝜆 of the
problem under consideration as |𝜆| → ∞:

𝑅𝑒𝜆 6 −𝑞 ln |𝐼𝑚𝜆|, 𝑞 > 0.

In this case �̃�1(𝑥, 𝜆) is entire in 𝜆 function of the exponential type. The inverse
Laplace transform of the first summand in (7) is infinitely differentiable by 𝑡 function
for 𝑡 > 𝑇 (0), since it is the sum of such expressions

1

2𝜋𝑖

𝑎+𝑖∞∫︁
𝑎−𝑖∞

𝑒𝜆(𝑡+𝜙(𝑥))𝜓(𝑥)

𝜆
𝑑𝜆 = 𝜓(𝑥), 𝑡 > 𝑇 (0).

So, in case of B-regular conditions it is proved that there is such a number
𝑇 (𝑘) > 0 that the inverse Laplace transform of the first summand (of the whole
sum) in (7) is infinitely differentiable by 𝑡 function for large 𝑡 > 𝑇 (𝑘). The inverse
Laplace transform of function �̃�(𝑥, 𝜆) is the PSS 𝑈(𝑥, 𝑡) to the original homogeneous
problem, which satisfies the differential system (1) a.e. in Π. Consequently, if
𝑡 > 𝑇 (𝑘), the function 𝑈(𝑥, 𝑡) is 𝑘-times differentiable.

We note that for the system of two equations

𝑢𝑡 + 𝑘1(𝑥)𝑢𝑥 = 𝑎(𝑥)𝑢+ 𝑏(𝑥)𝑣, 𝑣𝑡 − 𝑘2(𝑥)𝑣𝑥 = 𝑐(𝑥)𝑢+ 𝑑(𝑥)𝑣,

𝑢|𝑥=0 = 𝛼𝑣|𝑥=0, 𝑣|𝑥=1 = 𝛽𝑢|𝑥=1,

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑣|𝑡=0 = 𝑣0(𝑥),
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boundary conditions are B-regular if and only if 𝛼𝛽 = 0.
It is shown in [9] that the increasing smoothness property also takes place for

nonhomogeneous linear problem (1), (2) and some nonlinear hyperbolic systems as
well.

The boundary conditions with time delay

m∑︁
𝑘=0

(𝐴𝑘𝑈(0, 𝑡− 𝜏𝑘) +𝐵𝑘𝑈(1, 𝑡− 𝜏𝑘)) +
m∑︁
𝑘=1

⎛⎝ 𝜏𝑘∫︁
0

∑︁
𝑟=0,1

Φ𝑟𝑘(𝜉)𝑈(𝑟, 𝑡− 𝜉) 𝑑𝜉

⎞⎠ = 0,

(8)
for linear problem (1) was considered in [10]. The delay times 𝜏𝑘 in (8) are fixed
real numbers: 0 = 𝜏0 < 𝜏1 < . . . < 𝜏m, m > 0. 𝐴𝑘 and 𝐵𝑘 are 𝑛× 𝑛 real matrices,
𝑘 = 0, 1, . . . ,m. The entries of matrices Φ𝑟𝑘(𝜉) are the smooth functions on the
corresponding intervals [0, 𝜏𝑘] (𝑟 = 0, 1; 𝑘 = 1, . . . ,m). The initial data �̄�(𝑥, 𝑡) is
given on the set Γ

𝑈(𝑥, 𝑡)|Γ = �̄�(𝑥, 𝑡), (9)

which guarantees the well-posedness of the initial-boundary value problem.
In [10] the existence of classical solution to (1), (8), (9) in the half-strip Π

is proved. In [11] a class of the so-called P-regular boundary conditions (8) was
described, for which the corresponding homogeneous linear problem (1), (8), (9)
possesses the increasing smoothness property.

3 Mixed problems for wave equation

The above results for hyperbolic systems allow to define a class of boundary con-
ditions given on the lateral sides of Π for the wave equation. These conditions are
necessary and sufficient conditions for every solution of

𝑢𝑡𝑡 − 𝑎2𝑢𝑥𝑥 = 𝑓(𝑥, 𝑡) (𝑥, 𝑡) ∈ Π, (𝑎 > 0),

𝑢|𝑡=0 = 𝑢0(𝑥), 𝑢𝑡|𝑡=0 = 𝑢1(𝑥)
(10)

to be a function of 𝐶𝑘[0, 1] as 𝑡 grows, if 𝑢0(𝑥) ∈ 𝐶3[0, 1], 𝑢1(𝑥) ∈ 𝐶2[0, 1], 𝑓(𝑥, 𝑡) ∈
𝐶∞(Π), where 𝑘 is an arbitrary natural number [12].

For the wave equation (10) on the lateral sides of Π we set the boundary con-
ditions

𝑢𝑡 − 𝛼(𝑢𝑡 − 𝑎𝑢𝑥)|𝑥=1 = 0, 𝑢𝑡 − 𝑎𝑢𝑥 − 𝛽𝑢|𝑥=0 = 0 (11)

or
𝑢𝑡 − 𝛼(𝑢𝑡 + 𝑎𝑢𝑥)|𝑥=0 = 0, 𝑢𝑡 + 𝑎𝑢𝑥 − 𝛽𝑢|𝑥=1 = 0. (12)
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Theorem 3. Let 𝑓(𝑥, 𝑡) be 𝑘+2 times continuously differentiable in Π function;
𝑘 > 0. Then 𝛼𝛽 = 0 is the necessary and sufficient condition for problems (10),
(11) and (10), (12) to possess the increasing smoothness property of PSS 𝑢(𝑥, 𝑡)
up to the order 𝑘 for arbitrary initial data 𝑢0(𝑥) ∈ 𝐶3[0, 1], 𝑢1(𝑥) ∈ 𝐶2[0, 1]. The
solution 𝑢(𝑥, 𝑡) for 𝑡 > 𝑇 (𝑘) satisfies the estimate

‖𝐷𝛼,𝛽
𝑥,𝑡 𝑢(𝑥, 𝑡)‖𝐶[0,1] 6 𝐾(𝑡)(max(‖𝑢0(𝑥)‖𝑊 1

2 (0,1)
, ‖𝑢1(𝑥)‖𝐿2(0,1))+

+ ||𝑓(𝑥, 𝑡)||𝐶𝑘([0,1]×[0,𝑡])),

where 𝛼+ 𝛽 6 𝑘, the constant 𝐾(𝑡) is independent of 𝑢0, 𝑢1, 𝑓 and depends on the
coefficients of the problem and 𝑡.

More complete review of the author’s results on this topic can be found in [13].
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Abstract. Digitization problem and numerical solution for convolution equations
(including Calderon- Zygmund operators) are considered. In contrast to projection
methods one suggests to use the fast Fourier transform. It permits to obtain a
theoretical basis for such approximation and serious prospects concerning the time
of calculations. The last is essentially actual for large dimensions. Test examples
are considered, some illustrations are given.

1 Discrete Singular Operators

Let’s consider multidimensional singular integral equation

𝑎𝑢(𝑥) +

∫︁
𝑅𝑚

𝐾(𝑥, 𝑥− 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑣(𝑥), 𝑥 ∈ 𝑅𝑚 (1)

where 𝐾(𝑥, 𝑦) is Calderon-Zygmund kernel, i.e. the function defined and differen-
tiable on �̇�𝑚 × (𝑅𝑚∖{0}), with the following properties:

1) 𝐾(𝑥, 𝑡𝑦) = 𝑡−𝑚𝐾(𝑥, 𝑦), ∀𝑥 ∈ �̇�𝑚, ∀𝑡 > 0;

2)

∫︁
𝑆𝑚−1

𝐾(𝑥, 𝜔)𝑑𝜔 = 0, ∀𝑥 ∈ �̇�𝑚;

�̇�𝑚 is compactification of 𝑅𝑚, 𝑆𝑚−1 denotes the unit sphere in 𝑅𝑚. Solvability
theory for such equations is established sufficiently [1,2]. We stop here on simplest
discrete variant of such equation, namely, the kernel 𝐾(𝑥, 𝑦) doesn’t depend on
pole 𝑥, and integral is over whole-space 𝑅𝑚 or half-space𝑅𝑚+ = {𝑥 ∈ 𝑅𝑚:𝑥 =
(𝑥1, . . . , 𝑥𝑚), 𝑥𝑚 > 0}

(𝐾𝑢)(𝑥) ≡ 𝑎𝑢(𝑥) +
∫︁
𝑅𝑚

𝐾(𝑥− 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑣(𝑥), 𝑥 ∈ 𝑅𝑚. (2)
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We set 𝐾(0) = 0, and write the discrete equation (see also [6])

𝑎𝑢ℎ𝑑(�̃�) +
∑︁
𝑦∈𝑍𝑚

ℎ

𝐾(�̃�− 𝑦)𝑢ℎ𝑑(𝑦)ℎ𝑚 = 𝑣ℎ𝑑 (�̃�), �̃� ∈ 𝑍𝑚ℎ , (3)

where 𝑍𝑚ℎ is integer lattice (mod h) in 𝑚-dimensional space 𝑅𝑚.

Theorem 1. The equations (2) and (3) are solvable at the same time for arbi-
trary right-hand side 𝑣(𝑥) ∈ 𝐿2(𝑅

𝑚), 𝑣ℎ𝑑 (�̃�) ∈ 𝐿2(𝑍
𝑚
ℎ ).

Let’s denote 𝑍𝑚ℎ,+ = {�̃� ∈ 𝑍𝑚ℎ :�̃� = (�̃�1, . . . , �̃�𝑚)�̃�𝑚 > 0}, 𝑣ℎ𝑑 ∈ 𝐿2(𝑍
𝑚
ℎ,+).

The symbol of operator

𝐾ℎ
𝑑 : 𝑢

ℎ
𝑑(�̃�) ↦→ 𝑎𝑢ℎ𝑑(�̃�) +

∑︁
𝑦∈𝑍𝑚

ℎ

𝐾(�̃�− 𝑦)𝑢ℎ𝑑(�̃�)ℎ𝑚, �̃� ∈ 𝑍𝑚ℎ ,

is called the function 𝜎ℎ(𝜉) = 𝑎+ 𝜎′ℎ(𝜉) defined on [−ℎ−1𝜋, ℎ−1𝜋]𝑚:

𝜎′ℎ(𝜉) = lim
𝑁→∞

∑︁
𝑦∈𝑄𝑁

𝐾(𝑦)𝑒𝑖𝑦·𝜉ℎ𝑚. (4)

If we define a projector 𝑃ℎ,+ by formula

(𝑃ℎ,+𝑢
ℎ
𝑑)(�̃�) =

{︃
𝑢ℎ𝑑(�̃�), �̃� ∈ 𝑍𝑚ℎ,+
0, �̃� /∈ 𝑍𝑚ℎ,+

,

then the equation (3) can be rewritten in operator form

𝑃ℎ,+𝐾
ℎ
𝑑𝑢

ℎ
𝑑,+(𝑦) = 𝑣ℎ𝑑,+(𝑦) (5)

where 𝑣ℎ𝑑,+ ∈ 𝐿2(𝑍
𝑚
ℎ,+), and the solution 𝑢ℎ𝑑,+ is sought in the space 𝐿2(𝑍

𝑚
ℎ,+).

Formally, the equation

𝑎𝑢(𝑥) +

∫︁
𝑅𝑚

+

𝐾(𝑥− 𝑦)𝑢(𝑦)𝑑𝑦 = 𝑣(𝑥), 𝑥 ∈ 𝑅𝑚+ (6)

in the space 𝐿2(𝑅
𝑚
+ ) corresponds to equation (5) in the space 𝐿2(𝑍

𝑚
+ ) under ℎ→ 0.

It is proved (see result below) the unique solvability of the equation (6) implies
unique solvability of the equation (5) for ℎ > 0.
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The equation (5) from solvability point of view is equivalent to solvability of
so-called paired equation

(𝐾ℎ
𝑑𝑃ℎ,+ + 𝐼𝑃ℎ,−)𝑈ℎ = 𝑉ℎ (7)

in the space 𝐿2(𝑍
𝑚
ℎ ), where 𝑃ℎ,− is analogous projector on 𝑍𝑚ℎ,− = {�̃� ∈ 𝑍𝑚ℎ :x̃ =

(x̃1, . . . ,x̃m),x̃m < 0}, I is identity operator in 𝐿2(𝑍
𝑚
ℎ ).

The discrete Fourier transform can be applied to the equation (7), and it is re-
duced to one-dimensional singular integral equation with Hilbert kernel on variable
𝜉𝑚 under fixed 𝜉′ = (𝜉1, . . . , 𝜉𝑚−1):

1− 𝜎ℎ(𝜉′, 𝜉𝑚)
2

�̃�ℎ(𝜉) +
1 + 𝜎ℎ(𝜉

′, 𝜉𝑚)

4𝜋

𝜋ℎ−1∫︁
−𝜋ℎ−1

cot
𝜉𝑚 − 𝑡

2
�̃�ℎ(𝑡)𝑑𝑡 = 𝑣ℎ(𝜉), (8)

where the sign “˜” denotes multi-variable discrete Fourier transform.
It was shown such singular integral equation closely related to Riemann problem

for a strip [5], and its solvability description is fully determined by index of its
symbol 𝜎ℎ(𝜉′, 𝜉𝑚) on variable 𝜉𝑚. This index doesn’t depend on ℎ, 𝜉′, and coincides
with the index 𝜎(𝜉) on variable 𝜉𝑚 [2, 7].

Theorem 2. Equations (5) and (6) are solvable at the same time for arbitrary
right-hand side 𝑣(𝑥) ∈ 𝐿2(𝑅

𝑚
+ ), 𝑣ℎ𝑑,+(�̃�) ∈ 𝐿2(𝑍

𝑚
ℎ,+).

2 Finite-Dimensional Approximation

To obtain good finite dimensional approximation for (7) we need to choice such
finite dimensional approximation instead of infinite system of linear algebraic equa-
tions that this finite system of linear algebraic equations is like (in its properties)
generating infinite system.

The authors sure that more applicable variant is so-called cyclic convolution.
Such convolutions are used widely in the theory of digital signal processing [?,4,8],
and, it seems, this point reflects the fact that infinite signal (in time or in space) is
impossible for human sensors.

Briefly our point of view using cyclic convolution one can explain by the follow-
ing scheme. Applying the discrete Fourier transform to discrete kernel transforms
it to periodic function. The inverse Fourier transform maps periodic function to
the function of discrete variable. If we denote 𝐾𝑁 (𝑥) the truncated kernel 𝐾(𝑥)
periodically extended on whole 𝑅𝑚, then applying the standard Fourier transform
leads to the function of discrete argument (Fourier coefficients). Under large 𝑁
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the distance between lattice points (on which the function of discrete argument is
defined) will be small, and as a limit it will be zero. If now we take discrete approx-
imation for periodic kernel 𝐾𝑁 (𝑥), construct cyclic convolution and apply discrete
Fourier transform, then as a result we obtain a product of two discrete (and finite
valued) functions.

In our point of view this approximation is more convenient than [3] at least from
computational point of view because it permits to use fast Fourier transform. The
simplest numerical experiments with test-function exp(−|𝑥|2) gives good approxi-
mation immediately.

Figure 1
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I.5. Clifford and Quaternionic Analysis

(Sessions organizers: S. Bernstein, I. Sabadini, F. Sommen)
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DIFFERENTIAL ALGEBRA OF BIQUATERNIONS. DIRAC
EQUATION AND ITS GENERALIZED SOLUTIONS

L. A. Alexeyeva

Key words: biquaternion, bigradient, Dirac equation, generalized solution,
KGFSh-equation, scalar potential, spinor, harmonic spinor, 𝜔-spinor.

AMS Mathematics Subject Classification: 81Q05P

Abstract. The equation of quantum mechanics – Dirac equation is researched
and its generalized solutions are constructed in biquaternionic form by using scalar
potentials. The one equation for scalar potential has been built (KGFSh-equation)
which unite the two known equations of quantum mechanics: Klein-Gordon-Fock
and Schrodinger equations. The nonstationary, steady-state and harmonic on time
scalar potentials and generated by them spinors and spinors fields are defined in
biquaternionic representation.

1 Biquaternions, mutual bigradients and biwave equation

The biquaternions space B is the space of hypercomplex numbers, which are pre-
sented in Hamilton form as B = {F = 𝑓+𝐹}, where 𝑓 is complex number (𝑧 ∈ C ),
𝐹 is three dimensional vector with complex components : 𝐹 = 𝐹1𝑒1 +𝐹2𝑒2 +𝐹3𝑒3,
𝑒1, 𝑒2, 𝑒3 are the basis vectors of Cartesian coordinate system in 𝑅3 (hereinafter
always scalar part of biquaternion (Bq.) we mark small letter, but vector part of
Bq. with the same name capital).

B is linear space with addition (+):

𝑎F+ 𝑏G = 𝑎(𝑓 + 𝐹 ) + 𝑏(𝑔 +𝐺) = (𝑎𝑓 + 𝑏𝑔) + (𝑎𝐹 + 𝑏𝐺), ∀𝑎, 𝑏 ∈ C ,

and known operation of quaternionic multiplication (∘):

F ∘G = (𝑓 + 𝐹 ) ∘ (𝑔 +𝐺) = 𝑓𝑔 − (𝐹,𝐺) + 𝑓𝐺+ 𝑔𝐹 + [𝐹,𝐺].

Here (𝐹,𝐺) =
3∑︀
𝑗=1

𝐹𝑗𝐺𝑗 is usual scalar product 𝐹 and 𝐺, [𝐹,𝐺] =
3∑︀
𝑗=1

𝜀𝑗𝑘𝑙𝐹𝑗𝐺𝑘𝑒𝑙 is

their vector product, 𝜀𝑗𝑘𝑙 is Levi–Civita symbol.
Biquaternions algebra is not commutative: F ∘G−G ∘ F = 2 [𝐹,𝐺], but asso-

ciative: F ∘G ∘H = (F ∘G) ∘H = F ∘ (G ∘H) .
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Definitions. Bq. F− = 𝑓 − 𝐹 we name mutual Bq. for F = 𝑓 + 𝐹.
The complex conjugate to F is F̄ = 𝑓 +𝐹 (upper line marks conjugate complex

number). Bq. F* = F̄− = 𝑓 − 𝐹 we name conjugate to F.
Scalar product of Bqs. is bilinear operation: (F1,F2) = 𝑓1𝑓2 + (𝐹1, 𝐹2) .

The norm of F is real scalar value ‖F‖ =
√︁(︀

F, F̄
)︀

=
√︁
𝑓 · 𝑓 +

(︀
𝐹, 𝐹

)︀
=√︁

|𝑓 |2 + ‖𝐹‖2.

The pseudonorma of F is the value ⟨F⟩ =
√︁
𝑓 · 𝑓 −

(︀
𝐹, 𝐹

)︀
=
√︁
|𝑓 |2 − ‖𝐹‖2.

The Bq. F−1 is inverse to F if F−1 ∘ F = F ∘ F−1 = 1.
It’s easy to prove the theorem [1].

Theorem 1. If (F,F) ̸= 0 then F−1 = F−/(F,F). Bilinear equations: F∘G =
B and G ∘ F = B have the unique solution G = F−1 ∘ B and G = B ∘ F−1

accordingly.

We will consider the functional space of biquaternions on Minkovskiy space M:
B(M) = {F = 𝑓(𝜏, 𝑥) + 𝐹 (𝜏, 𝑥)}, where 𝑓 and 𝐹 are complex generalized functions
and vector-functions on M.

The convolution of biquaternions has the form:

A(𝜏, 𝑥)*B(𝜏, 𝑥) = 𝑎*𝑏−
3∑︁

𝑖,𝑗,𝑙=1

(𝐴𝑗 *𝐵𝑗)+(𝑎 *𝐵𝑗) 𝑒𝑗+(𝑏 *𝐴𝑗) 𝑒𝑗+𝜀𝑖𝑗𝑙 (𝐴𝑖 *𝐵𝑗) 𝑒𝑙,

where parenthetically there are usual convolutions of generalized functions [1]. It’s
easy to see that here the two operation of quaternionic multiplication and convolu-
tion are united.

Mutual bigradients are the differential operators of type [3]: ∇+ = 𝜕𝜏 + 𝑖∇,
∇− = 𝜕𝜏 − 𝑖∇, where ∇ = 𝑔𝑟𝑎𝑑. Their action on B(M) is defined as

∇±F = (𝜕𝜏 ± 𝑖∇) ∘ (𝑓 + 𝐹 ) = (𝜕𝜏𝑓 ∓ 𝑖 (∇, 𝐹 )± 𝑖∇𝑓 ± 𝜕𝜏𝐹 ± 𝑖[∇, 𝐹 ].

Here (∇, 𝐹 ) = div𝐹, [∇, 𝐹 ] = rot𝐹 .
Their superposition possesses the remarkable property:

∇− (︀∇+F
)︀
= ∇+

(︀
∇−F

)︀
=
(︀
∇− ∘ ∇+

)︀
F = �F, (1)

where � is classic wave operator: � = 𝜕2

𝜕𝜏2
−Δ, Δ is Laplace operator.

Using this property it’s easy to solve the differential equations of the type:

∇±B = (𝜕𝜏 𝑏∓ 𝑖div𝐵) + 𝜕𝜏𝐵 ± 𝑖grad𝑏± 𝑖 rot𝐵 = G(𝜏, 𝑥). (2)
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We name equation (2) the biwave equation (from biquaternionic wave equation).
Its solutions and property of invariance for Lorentz transformations are considered
in detail in the paper [3].

2 Bigradients and Dirac matrixes

Biwave Eq. (2) may be written in matrix form:

3∑︁
𝑗=0

𝐷
±
𝑚𝑗𝑏𝑗 = 𝑔𝑚, 𝑚, 𝑗 = 0, 1, 2, 3 (3)

where 𝑏0 = 𝑏, 𝑔0 = 𝑔, 𝑏𝑗 = 𝐵𝑗 , 𝑔𝑗 = 𝐺𝑗 , 𝑗 = 1, 2, 3; and 𝐷±
𝑚𝑗 are components of

matrix 𝐷±, which have the form:

𝐷+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝜏 −𝑖𝜕1 −𝑖𝜕2 −𝑖𝜕3
𝑖𝜕1 𝜕𝜏 −𝑖𝜕3 𝑖𝜕2

𝑖𝜕2 𝑖𝜕3 𝜕𝜏 −𝑖𝜕1
𝑖𝜕3 −𝑖𝜕2 𝑖𝜕1 𝜕𝜏

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 𝐷− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝜏 𝑖𝜕1 𝑖𝜕2 𝑖𝜕3

−𝑖𝜕1 𝜕𝜏 𝑖𝜕3 −𝑖𝜕2
−𝑖𝜕2 −𝑖𝜕3 𝜕𝜏 𝑖𝜕1

−𝑖𝜕3 𝑖𝜕2 −𝑖𝜕1 𝜕𝜏

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

It’s easy to check, that

3∑︁
𝑗=0

𝐷𝑚𝑗𝐷𝑗𝑙 = 𝛿𝑚𝑙�, 𝑗,𝑚, 𝑙 = 0, 1, 2, 3 (5)

where 𝛿𝑚𝑙 is the Kronecker symbol.

We shall show that (4) are the differential matrix Dirac operator, which possess

such property [4]. For this we present them in matrix form: 𝐷 =
3∑︀
𝑗=0

𝐷𝑗𝜕𝑗 , where,

as follow from (4), matrix 𝐷𝑗 has have such components: 𝐷0 = 𝐼 is unit matrix,

𝐷1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 −𝑖 0 0

𝑖 0 0 0

0 0 0 𝑖

0 0 −𝑖 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 𝐷2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 −𝑖 0

0 0 0 𝑖

𝑖 0 0 0

0 −𝑖 0 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , 𝐷3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 0 0 −𝑖
0 0 −𝑖 0

0 𝑖 0 0

𝑖 0 0 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (6)
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These are 4-dimensional unitary Dirac matrixes. Their property (5) has have simple
for calculation biquaternionic form:

∇∓∇± ≡ ∇∓ ∘ ∇± = �. (7)

This property of mutual bigradients allows easy to build the solutions of the
some equations of electrodynamics and quantum mechanics, which possible to write
in such biquaternionic form. In particular the system of Maxwell equations for
electro-magnetic field can be written in form of the one biwave equation [3, 5].

3 Biquaternionic form of Dirac equation and KGFSh-equation

Let consider the differential biquaternionic equation:

D±
𝑚B ≡

(︀
∇± +𝑚

)︀
∘ B = F, 𝑚 ∈ C . (8)

Under (5)–(6), this Eq. may be named as generalized Dirac equation in biquater-
nionic form, and differential operators D+

𝑚 = ∇+ + 𝑚, D−
𝑚 = ∇− + 𝑚 we name

bigradiental representation of Dirac matrix operators.
It’easy to show that their superposition possesses the very useful property

D+
𝑚D

−
𝑚 = D−

𝑚D
+
𝑚 = �+𝑚2 + 2𝑚𝜕𝜏 , D+

𝑖𝑚D
−
𝑖𝑚 = �−𝑚2 + 2𝑖𝑚𝜕𝜏 . (9)

Theorem 2. Solutions of generalized Dirac Eq. (8) are Bqs. of the type

B = B0 +D∓
𝑚 (𝜓* F) , (10)

where B0(𝜏, 𝑥) is a solution of Dirac Eq. D±
𝑚B

0 = 0, 𝜓(𝜏, 𝑥) is a fundamental
solution of Eq.

�𝜓 +𝑚2𝜓 + 2𝑚𝜕𝜏𝜓 = 𝛿(𝜏)𝛿(𝑥). (11)

If 𝑚 = 𝑖𝜌, 𝐼𝑚𝜌 = 0, then 𝜓 is a solution of the Eq.

�𝜓 − 𝜌2𝜓 + 2𝑖𝜌 𝜕𝜏𝜓 = 𝛿(𝜏)𝛿(𝑥). (12)

Here the left part of Eq. (12) contains the Klein-Gordon-Fock operator (�−𝜌2),
and Schrodinger operator (△+ 2𝑖𝜌𝜕𝜏 ). By this cause we name

�𝑢+ 2𝑚𝜕𝜏𝑢+𝑚2𝑢 = 𝑓(𝜏, 𝑥) (13)

as Klein–Gordon–Fock–Schrodinger equation (KGFSh-equation) .
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It is interesting that appearance of the additional member (2𝑚𝜕𝜏𝑢) in the
KGFSh-equation essentially simplifies its fundamental solutions in comparison with
fundamental solution of KGF-equation, which was constructed by Vladimirov V.S.
(see [6]).

4 Generalized solutions of KGFSh-equation. Scalar potentials

Using Fourier transform on 𝜏 in Eq. (11) we get Helmholtz equation{︀
Δ− 𝑘2

}︀
𝐹𝜏 [𝜓](𝜔, 𝑥) + 𝛿(𝑥) = 0, 𝑘 = 𝑖𝜔 −𝑚.

Its fundamental solutions are well known [1]:

𝐹𝜏 [𝜓] =
1

4𝜋 ‖𝑥‖

(︁
𝑎𝑒(𝑖𝜔−𝑚)‖𝑥‖ + (1− 𝑎)𝑒−(𝑖𝜔−𝑚)‖𝑥‖

)︁
.

Using inverse Fourier transform we obtain the solution of Eq. (11).

Theorem 3. Fundamental solution of KGFSh-equation (11) is

𝜓 =
1

4𝜋 ‖𝑥‖

(︁
𝑎 𝑒−𝑚‖𝑥‖𝛿(𝜏 − ‖𝑥‖) + (1− 𝑎)𝛿(𝜏 + ‖𝑥‖)𝑒𝑚‖𝑥‖

)︁
+ 𝜓0, ∀𝑎 ∈ C

where 𝛿(𝜏±‖𝑥‖) is the simple layers on the cones ‖𝑥‖ = ∓|𝜏 |, 𝜓0(𝜏, 𝑥) is a solution
of uniform Eq.(𝑏𝑦 𝑓 = 0).

In particular, the function 𝜓 = 𝑒−𝑖𝜌‖𝑥‖

4𝜋‖𝑥‖ 𝛿(𝜏 − ‖𝑥‖) is fundamental solution for
𝑚 = 𝑖𝜌. It’s interesting that here the density of simple layer on cone is fundamental
solution of Helmholtz Eq. with wave number 𝜌.

General solutions of Eq. (13) have the form: 𝑢 = 𝑓 * 𝜓𝑚 + 𝑢0, where 𝑢0(𝜏, 𝑥) is
a solution of uniform KGFSh-Eq.

�𝑢+𝑚2𝑢+ 2𝑚𝜕𝜏𝑢 = 0. (14)

In space of Fourier transforms we obtain from here(︁
‖𝜉‖2 − (𝜔 + 𝑖𝑚)2

)︁
𝑢*(𝜔, 𝜉) = 0, (15)

where 𝑢*(𝜔, 𝜉) = 𝐹𝜔,𝜉 [𝑢(𝜏, 𝑥)] is full Fourier transform on 𝜏, 𝑥.
If Re𝑚 ̸= 0, then ‖𝜉‖2 − (𝜔 + 𝑖𝑚)2 ̸= 0 for ∀𝜉 ∈ 𝑅3. In this case this equation

has only trivial zero decision: 𝑢* = 0.
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However under purely imaginary 𝑚 = 𝑖𝜌 Eq. (15) has an uncountable ensemble
of the decisions:

𝑢*(𝜔, 𝜉) = 𝜙(𝜔, 𝜉)𝛿
(︁
‖𝜉‖2 − (𝜔 − 𝜌)2

)︁
. (16)

Here 𝜙(𝜔, 𝜉) is arbitrary given function on the cones ‖𝜉‖ = |𝜔 − 𝜌|.
By calculating its original we get (by 𝜏 > 0)

𝑢(𝜏, 𝑥) =
1

(2𝜋)4

∞∫︁
−∞

𝑑𝜔

∫︁
‖𝜉‖=|𝜔−𝜌|

𝜙(𝜔, 𝜉) exp (−𝑖(𝜉, 𝑥)− 𝑖𝜔𝜏) 𝑑𝑆(𝜉) =

=
𝑒−𝑖𝜌𝜏

(2𝜋)4

∫︁
𝑅3

{︁
𝜙(𝜌+ ‖𝜉‖ , 𝜉)𝑒−𝑖‖𝜉‖𝜏 − 𝜙(𝜌− ‖𝜉‖ , 𝜉)𝑒𝑖‖𝜉‖𝜏

}︁
exp (−𝑖(𝜉, 𝑥)) 𝑑𝑉 (𝜉),

where 𝑑𝑉 (𝜉) = 𝑑𝜉1𝑑𝜉2𝑑𝜉3, 𝑑𝑆(𝜉) is differential of surfaces area of the sphere of the
radius, specified under sign corresponding to integral. Thence, on the strength of
randomness 𝜙, the theorem follows.

Theorem 4. If Re𝑚 ̸= 0, then Eq .(14) has only single zero decision. But if
Re𝑚 = 0, 𝑚 = 𝑖𝜌, decisions exist and they can be presented in the form

𝜓0(𝜏, 𝑥) = 𝑒−𝑖𝜌𝜏
∫︁
𝑅3

𝜙(𝜉) exp (𝑖 ((𝜉, 𝑥)± ‖𝜉‖ 𝜏)) 𝑑𝑉 (𝜉), ∀𝜙(𝜉) ∈ 𝐿1(𝑅
3), (17)

or in the manner of a sum of such decisions.

5 Generalized solutions of Dirac equation. Biquaternionic repre-
sentation of spinors fields

We shall consider biquaternionic decisions of the uniform Dirac equation(︀
∇± + 𝑖𝜌

)︀
Sp = 0, Re𝜌 = 0. (18)

In quantum mechanics they are named spinors [4, 7].

Theorem 5. The solutions of Dirac equation (18) may be presented so:

Sp = D∓
𝑖𝜌 (𝜓0 *C(𝜏, 𝑥)) = Ψ∓

0 *C(𝜏, 𝑥), (19)

Ψ∓
0 =

(︀
∇∓ + 𝑖𝜌

)︀
𝜓0 = 𝑖𝜌𝜓0 + 𝜕𝜏𝜓0 ∓ 𝑖 grad𝜓0.
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Here 𝜓0 is a solution of uniform Eq. (14), C is arbitrary biquaternion, for which
such convolutions exist, or in the manner of amounts of the such decisions.

Proof. If Sp is equal to (19) then

D±
𝑚Sp = D±

𝑚D
∓
𝑚 (𝜓0 *C) =

(︀
�𝜓0 + 2𝑚𝜕𝜏𝜓0 +𝑚2𝜓0

)︀
*C = 0, 𝑚 = 𝑖𝜌.

Inversely, if Sp is the solution of Eq. (18) then
(︀
�+ 2𝑚𝜕𝜏 +𝑚2

)︀
Sp = D∓

𝑚D
±
𝑚Sp =

D∓
𝑚0 = 0. I.e. scalar part and components of the vector part Sp are decisions of

uniform KGFSH-equations. Consequently, Sp is possible to present in the manner
of amounts of the decisions of the type (19).

As the spinor (19) contains scalar-vector field C(𝜏, 𝑥) and scalar potential 𝜓0,
it may be named 𝜓0-spinor of C -field. �

6 Harmonic scalar potentials of spinors

Let consider formula (17) where two plane harmonic waves stand under integral,
which are also the solutions of uniform Eq. (14):

𝜙±
𝜉 (𝜏, 𝑥) = exp (𝑖 ((𝜉, 𝑥)− 𝜌𝜏 ± ‖𝜉‖ 𝜏)) , (20)

Wave vector 𝜉 defines the direction of wave motion, wave length 𝜆 = 2𝜋/ ‖𝜉‖ ,
frequency 𝜔 = |𝜌± ‖𝜉‖| , period 𝑇 = 2𝜋/ |𝜌± ‖𝜉‖|, phase velocities 𝑉 = 1± 𝜌

‖𝜉‖ .
If ‖𝜉‖ → ∞ then 𝜔 → ∞, and 𝑉 → 1 ± 0. Ff ‖𝜉‖ → |𝜌| then 𝑉 → 1; 0,

𝜔 → 𝜋
𝜌 ; ∞ accordingly. Generated by these waves spinors have the form:(︀

∇∓ + 𝑖𝜌
)︀
𝜙±
𝜉 (𝜏, 𝑥) = ± (𝑖 ‖𝜉‖+ 𝜉)𝜙±

𝜉 .

Definition. Harmonic spinors are named spinors of type

Sp±
𝜉 =

exp (𝑖 ((𝜉, 𝑥)− 𝜌𝜏 ± ‖𝜉‖ 𝜏))√
2

(︂
𝑖+

𝜉

‖𝜉‖

)︂
,
⃦⃦⃦
Sp±

𝜉

⃦⃦⃦
= 1,

⟨
Sp±

𝜉

⟩
= 0.

Harmonic spinor C-field is the spinor Sp = C(𝜏, 𝑥) * Sp±
𝜉 (𝜏, 𝑥).

Theorem 6. Spinor C-field can be presented in the form:

Sp = C(𝜏, 𝑥) *
∫︁
𝑅3

𝜙(𝜉)Sp±
𝜉 (𝜏, 𝑥)𝑑𝑉 (𝜉),

where 𝜙(𝜉) ∈ 𝐿1(𝑅
3), or in the manner of linear combination of like spinor fields.
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7 Harmonic vibrations and static solutions of Dirac equation

In the case of stationary harmonic vibration with constant frequency 𝜔: B =
B(𝑥)𝑒−𝑖𝜔𝜏 (right part of (9) has the like form). Then the complex amplitude satisfies
to Eq.: (︁

∇±
𝜔 + 𝜌

)︁
B(𝑥) = F(𝑥). (21)

The solutions of uniform Eq. (21) are named 𝜔-spinors and are designated Sp𝜔.
𝜔-bigradients are operators ∇±

𝜔 = 𝜔 ± ∇. They possess useful property:
(∇±

𝜔 + 𝜌) ∘ (∇∓
𝜔 + 𝜌) = (𝜔 + 𝜌)2 +Δ. Using it the next theorem has been proved.

Theorem 7. Solution of Eq. (21) can be presented as

B =
(︀
∇∓
𝜔 + 𝜌

)︀
∘ (𝜒* F) + Sp𝜔,

Sp𝜔(𝑥) = C(𝑥) *
∫︁

‖e‖=1

𝑝(e)Ψ𝜔
0 (𝑥, e)𝑑𝑆(e), ∀𝑝(e) ∈ 𝐿1(𝑆𝑝e).

Ψ𝜔
0 (𝑥, e) =

1

𝑘
√
2

(︀
∇∓
𝜔 + 𝜌

)︀
𝑒−𝑖𝑘(e,𝑥) =

1

𝑘
√
2
(𝜔 + 𝜌± 𝑖𝑘e) 𝑒−𝑖𝑘(e,𝑥),

𝜒 = −𝑎𝑒
𝑖𝑘‖𝑥‖

4𝜋 ‖𝑥‖
− (1− 𝑎)𝑒−𝑖𝑘‖𝑥‖

4𝜋 ‖𝑥‖
, 𝑘 = |𝜔 + 𝜌| ≠ 0, ∀𝑎,

C(𝑥) is arbitrary Bq., admissive this convolution, 𝑆𝑝e = {e ∈ 𝑅3 : ‖e‖ = 1}.

Here we introduced harmonic 𝜔 − e spinor Ψ𝜔
0 (𝑥, e): ‖Ψ𝜔

0 ‖ = 1, ⟨Ψ𝜔
0 ⟩ = 0,

vector e defines its direction, 𝑘 = |𝜔 + 𝜌| is its wave number.
Static spinors are obtained for 𝜔 = 0. Formulae of theorem 7 herewith save

the type as 𝑘 = |𝜌| ≠ 0.

For 𝑚 = 0 generalized Dirac equation (for D+
0 ) are equivalent to system of

Maxwell equation and all these solutions gives its generalized solutions [2, 5].
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Abstract. The principal topic of this paper is the analysis of matrix algebras from
the positions of computer arithmetic.

1 Introduction

We consider the algebra of matrixes over the field of real numbers 𝑅 here. The basic
acceptance is given onto the matrix analog of modular arithmetic as a basis for par-
allelizing of matrixes algebra operations [1] and logarithmetic of finite field 𝐺𝐹 (𝑝) as
a basis of modular computations [2, 3]. Multiple applications of the hypercomplex
numbers [4] in the practice and theory of BINS — board inertial navigate systems
[5] are known. It’s observed that computer data processing differ substantially de-
pending on the type of their presentation. Complex numbers and quaternions form
the significant class of hypercomplex numbers. Methods of computations paralleliz-
ing by means of modular arithmetic in the complex numbers domain are studied in
the book [6], in the domain of quaternions — in the book [7]. Subsequent propaga-
tion of modular arithmetic onto the computations in finite- dimensional algebras is
regulated by theorems of G. Frobenius and D. Wedderbarn [8].

Frobenius theorem. Arbitrary associative algebra with division is isomorphic
to one of three algebras or field of real numbers (𝑅) or field of complex numbers
(𝐶) or field of quaternions (𝑄𝑛𝑢).

Wedderbarn theorem. All simple associative algebras over field 𝐾 — this is
exactly all complete matrix algebras with elements from associative algebra with
division over 𝐾 [9].

According to the mentioned theorems, computations in the class of simple asso-
ciative algebras are reduced to the computations in the following matrix algebras:

a) in algebra of matrixes over 𝑅 (with elements — real numbers);
b) in algebra of matrixes over 𝐶 (with elements — complex numbers);
c) in algebra of matrixes over 𝑄𝜈 (with elements — quaternions).
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All computations are based on the Archimedes axiom here. Let’s consider the
case 𝐾 = 𝑅 below. Matrix computations construct on the hierarchy of linear alge-
bra operations. The scalar multiplication of vectors is one of the basic operations
of linear algebra consisting from scalar operations of summing and multiplication:
multiplication of matrix onto vector is conducted by means of scalar multiplications;
multiplication of matrixes is reduced to the set of multiplications of matrixes onto
vector. All these operations may be described in algorithmic form. The stylized
version of Matlab language is used for the writing of algorithms.

2 Archimedes forming of matrix algebra 𝑀𝑛(𝑍) on scalar modulus
(coordinate-wise method)

The action of Archimedes axiom in the matrix algebra 𝑀𝑛(𝑅) of size 𝑛 over field
𝑅 is defined as Archimedes forming. The following proposition reveals the essence
of Archimedes forming in 𝑀𝑛(𝑅).

Proposition 1. ∀𝐴 = (𝑎𝑖𝑗) ∈𝑀𝑛(𝑅)

𝐴 = [𝐴] + 𝜕(𝐴), (1)

where [𝐴] := ([𝑎𝑖𝑗 ]), 𝜕(𝐴) := 𝜕(𝑎𝑖𝑗); [𝑎𝑖𝑗 ] — integer part of number 𝑎𝑖𝑗 ; 𝜕(𝑎𝑖𝑗)
— fractional part of number 𝑎𝑖𝑗 . Really let’s apply Archimedes identity for every
element 𝑎𝑖𝑗 = [𝑎𝑖𝑗 ]+𝜕(𝑎𝑖𝑗), ∀(𝑖, 𝑗). Then we’ll obtain (1) according to the definition
of sum of matrixes. The relation (1) in the matrixes algebra 𝑀𝑛(𝑅) is the analog
of Archimedes identity in the field 𝑅.

Proposition 2. ∀𝐴,𝐵 ∈𝑀𝑛(𝑅) the following equalities are valid
(𝜇1) [𝐴+𝐵] = [𝐴] + [𝐵] + [𝜕(𝐴) + 𝜕(𝐵)]

(𝜇2) 𝜕(𝐴+𝐵) = 𝜕(𝜕(𝐴) + 𝜕(𝐵))

(𝜇3) [𝐴𝐵] = [𝐴][𝐵] + [𝜕(𝐴)[𝐵] + [𝐴]𝜕(𝐵) + 𝜕(𝐴)𝜕(𝐵)]

(𝜇4) 𝜕(𝐴𝐵) = 𝜕(𝜕(𝐴)[𝐵] + [𝐴]𝜕(𝐵) + 𝜕(𝐴)𝜕(𝐵))

(𝜇5) If 𝐴 ∈ 𝑀𝑛([0, 1]), then [𝐴] = 0, 𝜕(𝐴) = 𝐴; if 𝐴 ∈ 𝑀𝑛(𝑍), then [𝐴] = 𝐴
and 𝜕(𝐴) = 0.

From here it follows in particular: ∀𝐴 ∈ 𝑀𝑛(𝑅) : [𝜕(𝐴)] = 0, 𝜕([𝐴]) = 0,
[[𝐴] = 𝐴], 𝜕(𝜕(𝐴)) = 𝜕(𝐴).

(𝜇6) If 𝐴 ∈𝑀𝑛(𝑍), then ∀𝐵 ∈𝑀𝑛(𝑅), 𝜕(𝐴𝐵) = 𝜕(𝐴𝜕(𝐵)).

The proof of (𝜇6) follows immediately from (𝜇4) and from the remark that
according equality (𝜇4) the following equalities take place 𝜕(𝐴) = 0 and [𝐴] = 𝐴.
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Proposition 3 (Euclidian theorem over 𝑀𝑛(𝑍)). For arbitrary matrix
𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑛(𝑍) and arbitrary 𝑚 ∈ 𝑁(𝑚 ̸= 0, 1) the following equality is
valid 𝐴 = [𝐴𝑚 ]𝑚+ |𝐴|𝑚, where

[︀
𝐴
𝑚

]︀
= ([𝑎𝑖𝑗/𝑚]), |𝐴|𝑚 = (|𝑎𝑖𝑗 |𝑚), ∀𝑖, 𝑗.

Conclusion. So the modular arithmetic of ring 𝑍 by means of Archimedes
format arises to the level of modular arithmetic of matrixes ring 𝑀𝑛(𝑍).

We’ll refer on matrixes elements under detailed writing of algorithm according
to Fortran rules: 𝐴(𝑖, 𝑗).

The following propositions are valid:
(𝜈1) ∀𝐴,𝐵 ∈ 𝑀𝑛(𝑍) and ∀𝑚 ∈ 𝑁(𝑚 ̸= 0, 1) the following equalities take place

|𝐴 ± 𝐵|𝑚 = ||𝐴|𝑚 ± |𝐵|𝑚|𝑚, |𝐴𝐵|𝑚 = ||𝐴|𝑚|𝐵|𝑚|𝑚, |𝐴 * 𝐵|𝑚 = ||𝐴|𝑚 * |𝐵|𝑚|𝑚,
where * — operation of tensor multiplication.

(𝜈2) Function 𝑦 = |𝑥|𝑚 defined on 𝑀𝑛(𝑍) homomorphly maps the ring 𝑀𝑛(𝑍)
into the ring 𝑀𝑛(𝑍𝑚).

(𝜈3) CTR (Chinese theorem on residues): let’s 𝑝1, 𝑝2, ..., 𝑝𝑠 - pairwise prime
natural numbers and 𝑃 = 𝑝1𝑝2...𝑝𝑠, 𝑃𝑖 = 𝑃/𝑝𝑖 (1 6 𝑖 6 𝑟). Then arbitrary matrix

𝑋 ∈𝑀𝑛(𝑍𝑝) represents by unique way in the form: 𝑋 =

⃒⃒⃒⃒
𝑟∑︀

𝑘=1

⃒⃒
|𝑋|𝑝𝑘𝑃

−1
𝑘

⃒⃒
𝑝𝑘
𝑃𝑘

⃒⃒⃒⃒
𝑝

.

3 Modular arithmetic

The modular arithmetic is the basis for parallerizing of the matrix algebra oper-
ations as it was mentioned before. The modular arithmetic allows to remove the
problem of speed loss under the arithmetic computations what attracts it in the
most cases of intensive computations problems. But the problem of the “overhead”
reduction on the realization of modular operations exists. These expedintures are
caused by fact that arithmetic operation *(𝑖.𝑒.+,−, 𝑥) over residues 𝑥, 𝑦𝑚𝑜𝑑𝑚, as
over integer numbers may lead to the result of the operation 𝑥 * 𝑦 out the range
𝑍𝑚 and then the correction of the result became necessary, i.e. taking the residue
from the number 𝑥 * 𝑦 on 𝑚𝑜𝑑𝑚|𝑥 * 𝑦|𝑝. The operation of taking the residue |𝑥 * 𝑦|𝑝
is expressed by formula: |𝑥 * 𝑦|𝑝 = 𝑥 * 𝑦 −

[︁
𝑥*𝑦
𝑝

]︁
𝑝. Technically the realization of

operation by this scheme demands the fulfilment of four actions what lead to ad-
ditional expenditures in the connection with the incommensurability of modulo 𝑝
with the degree of two. Algorithms of matrix computations contain big number of
multiplication operations in most cases what lead to big time expenditures if You
use traditional approach for the realization of modular operations. Let’s show that
logcomputations in the finite field 𝐺𝐹 (𝑝) open new perspectives for modular com-
putations. Let’s consider the discrete logarithm over field 𝐺𝐹 (𝑝) from the known
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scheme suggested in the beginning of nineteenth century in the Gauss and Jakobi
works.

Definition 1. Let’s 𝑤 — generator element of field 𝐺𝐹 (𝑝). The discrete log-
arithm on the basis 𝑤 over 𝐺𝐹 (𝑝) is called the function of argument 𝑥 (𝑥 ∈ 𝑍),
prescribed by formula: lg𝑤 |𝑥|𝑝 = 𝜆𝑝𝛿(|𝑥|𝑝) + 𝑖𝑛𝑑𝑤|𝑥|𝑝𝛿(|𝑥|𝑝), where |𝑥|𝑝 — residue
of number 𝑥 𝑚𝑜𝑑(𝑝); 𝛿(|𝑥|𝑝) — Dirac function; 𝛿(|𝑥|𝑝) - Dirac cofunction, i.e.
𝛿(|𝑥|𝑝) = 1 − 𝛿(|𝑥|𝑝); 𝑖𝑛𝑑𝑤|𝑥|𝑝 — index of the residue |𝑥|𝑝;𝜆𝑝 — symbol which
is not the element of the ring 𝑍𝑝−1.

Let’s assume 𝜆𝑝 = 2𝑡 − 1. The technology of this selection is caused by the
following: if 𝑝 — t-bit number i.e. 2𝑡−1 < 𝑝 < 2𝑡, then it’s appropriate to use 𝑡 -bit
binary notation of the number 2𝑡 − 1; in the role of the symbol 𝜆𝑝; the inequality
𝑝 6 2𝑡 − 1 is valid since 𝑝 — prime. Thus the number 2𝑡 − 1 isn’t a symbol
representative the element of ring 𝑍𝑝−1 for every prime 𝑝 > 3. All values of the
function 𝑦 = lg𝑤 |𝑥|𝑝 are different and are described by 𝑡 — bit binary code for this
𝜆𝑝 selection.

The set 𝐽𝑝 = 0, 1, 2, ..., 𝑝− 2, 𝜆𝑝 is the range of values of discrete logarithm (1).
The characteristic points from 𝐺𝐹 (𝑝) of the mapping lg𝑤 : 𝐺𝐹 (𝑝) → 𝐽𝑝 for all 𝑝
and arbitrary selection of 𝑤 are the points 0, 1, 𝑤, 𝑝− 1; they maps into the points
of the set 𝐽𝑝 : 𝜆𝑝, 0, 1, 𝑝−1

2 .

The logarithmic function maps finite field 𝐺𝐹 (𝑝) bijective onto 𝐽𝑝 by construc-
tion. Thus the structure of finite field isomorphic to the structure of field 𝐺𝐹 (𝑝)
generates on 𝐽𝑝. This proposition serves as basis for the formation of logarithmetic
over field 𝐺𝐹 (𝑝).

Let’s consider the corresponding component-wise operations
lg𝑤 |𝑥1𝑥2|𝑝; lg𝑤 |𝑥1 + 𝑥2|𝑝 in detail. Let’s denote 𝛼 = lg𝑤 |𝑎|𝑝, 𝛽 = lg𝑤 |𝑏|𝑝,
then

𝛼� 𝛽 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2𝑡 − 1, if 𝛿
(︀
𝛼−

(︀
2𝑡 − 1

)︀)︀
∧ 𝛿
(︀
𝛽 −

(︀
2𝑡 − 1

)︀)︀
∨ 𝛿
[︂
|𝛽 − 𝛼|𝑝−1 −

𝑝− 1

2

]︂
= 1;

𝛼, if 𝛿
(︀
𝛼−

(︀
2𝑡 − 1

)︀)︀
∧ 𝛿
(︀
𝛽 −

(︀
2𝑡 − 1

)︀)︀
= 1;

𝛽, if 𝛿
(︀
𝛼−

(︀
2𝑡 − 1

)︀)︀
∧ 𝛿
(︀
𝛽 −

(︀
2𝑡 − 1

)︀)︀
= 1;

|𝛼+ 𝐽𝑤(|𝛽 − 𝛼|𝑝−1)|𝑝−1 , otherwise,

where 𝐽𝑤(|𝑢|𝑝−1) = lg𝑤 |1 + 𝑤|𝑢|𝑝−1 |𝑝 — Jacobi logfunction.

𝛼� 𝛽 =

{︃
2𝑡−1, if 𝛿(𝛼− (2𝑡 − 1)) ∨ 𝛿

(︀
𝛽 − (2𝑡 − 1)

)︀
= 1;

|𝛼+ 𝛽|𝑝−1, otherwise.
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The immediate computation of Jacobi logarithm values has complexity of dis-
crete logarithm. The tabular realization of Jacobi logarithm is restricted by the
quantity of digits of base modulus 𝑝 Galua field 𝐺𝐹 (𝑝) from above by virtue of
technical limitations on admissible volume of used tables. It’s written about the
reduction of Jacobi table’s volume under the necessity in the work [10].

Let’s consider the basic operations of matrix computations in terms of modular
arithmetic in the frames of this paper.

1. Scalar vector multiplication. It’s necessary to compute 𝑐 = 𝑥𝑇 𝑦 on vectors
𝑥, 𝑦 ∈ 𝑉𝑛(𝑍𝑚).

The problem of determination of scalar vector multiplication in the logarith-
metics basis reduces to the problem of Gauss logarithm from 𝑁 variables find-

ing. Let’s denote it as 𝐺(𝑧1, 𝑧2, ..., 𝑧𝑁 ) = lg𝑤

⃒⃒⃒⃒
𝑁∑︀
𝑖=1

𝑤|𝑍𝑖|𝑝−1

⃒⃒⃒⃒
𝑝

, where |𝑧𝑖|𝑝−1 =

|log𝑤 |𝑥𝑖|𝑝 + log𝑤 |𝑦𝑖|𝑝|𝑝−1. The methods of Gauss logarithm computation and
proper technical solutions are described in [11] in detail. The complexity of that
algorithm — 𝑂(𝑛) (volume of performance depends linear from the vectors dimen-
sion).

2. External multiplication. It’s necesssary to compute 𝑐 = 𝑥𝑦𝑇 on vectors
𝑥, 𝑦 ∈ 𝑉𝑛(𝑍𝑚).

The problem is reduced to the evaluation of additive operation of modular log-
arithmetic: log𝑤 |𝑐𝑖𝑗 |𝑝−1 = | log𝑤 |𝑥𝑖|𝑝 + log𝑤 |𝑦𝑗 |𝑝|𝑝−1.

3. Saxpy. This algorithm computs 𝑧 = 𝑎𝑥 + 𝑦 by vectors 𝑥, 𝑦 ∈ 𝑉𝑛(𝑍𝑚) and
scalar 𝑎 ∈ 𝑍𝑚.

It’s necessary to conduct the calculations by scheme:

log𝑤 |𝑧𝑖|𝑝−1 =
⃒⃒⃒
|log𝑤 |𝛼|𝑝 + log𝑤 |𝑥𝑖|𝑝|𝑝−1 +

+ log𝑤

(︁
1 + 𝑤|log𝑤 |𝑦𝑖|−| log𝑤 |𝛼|𝑝+log𝑤 |𝑥𝑖|𝑝|𝑝−1|𝑝−1

)︁⃒⃒⃒
𝑝−1

.

The complexity of saxpy has the same order 𝑂(𝑛). Its difference consists in the
fact that it returns not a scalar but a vector.

Let’s consider 𝐴 ∈ 𝑀𝑛(𝑍𝑚), it’s necessary to compute the multiplication
𝑧 = 𝐴𝑥, where 𝑥 ∈ 𝑉𝑛(𝑍𝑚). The standard method of computation consists in

consecutive calculation of scalar multiplications: 𝑧𝑖 =

⃒⃒⃒⃒
⃒ 𝑛∑︀𝑗=1

𝑎𝑖𝑗𝑥𝑗

⃒⃒⃒⃒
⃒
𝑚

.

Let’s consider the modification of matrix by external multiplication: 𝐴 :=
𝐴 + 𝑥𝑦𝑇 , 𝐴 ∈ 𝑀𝑛(𝑍𝑚), 𝑥, 𝑦 ∈ 𝑉𝑛(𝑍𝑚). The matrix modification by external
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multiplication take big place in traditional formulations of many important ma-
trix algorithms, it’s possible to reformulate the most of them so that the operation
gaxpy: |𝑧|𝑚 = |𝑦 +𝐴𝑥|𝑚 became dominant.

4. Gaxpy. The algorithm computs |𝑧|𝑚 = |𝑦+𝐴𝑥|𝑚 by means of 𝑥, 𝑦 ∈ 𝑉𝑛(𝑍𝑚)
and 𝐴 ∈𝑀𝑛(𝑍𝑚).

𝑧 = 𝑦;

for 𝑗 = 1 : 𝑛

|𝑧|𝑚 = |𝑧 + |𝑥(𝑗)𝐴(:, 𝑗)|𝑚|𝑚
end

So the sum is accumulated in vector 𝑧 which value is renewed by the sequence of
saxpy operations.

The corresponding technical realizations were elaborated on the basis of consid-
ered algorithms. The input dates were taken by 16 bit digits, vectors were taken
of size 𝑛 = 10. The structure synthesis was conducted by means of SCAD Synop-
sys synplify in the basis PLIS Altera Stratix II EP2S15F484C3. The simulation
and verification of Verilog projects were conducted by means of ModelSim Mentor
Graphics. The speed of scheme is defined by the time frequency, the realization
complexity is measured by the number of adaptive logic blocks of taular types. The
results of the numerical experiment are adduced in table 1.

Table 1
Apparatus and time expenditures on matrix operations

Scalar multiplication External multiplication saxpy
MHz ALUT MHz ALUT MHz ALUT

BNS 168 387 500 1 290 33
RNS 375 314 500 21 385 68
RLNS 437 325 500 25 452 75

Proposition 4 (on polyadic expansion). Any matrix 𝑋 ∈ 𝑀𝑛(𝑍𝑃 ), where
𝑃 = 𝑝1𝑝2...𝑝𝑛, is decomposable in polyadic series by unique way

(𝜈4) 𝑋 = 𝐴1 + 𝑎2𝑝1 + 𝐴3𝑝1𝑝2 + ... + 𝐴𝑟𝑝1...𝑝𝑟−1, where 𝐴1 = [𝑋]𝑝1 , 𝐴𝑘 =⃦⃦⃦
𝑥

𝑝1...𝑝𝑘−1

⃦⃦⃦
𝑝𝑘

, 2 6 𝑘 6 𝑟.

All nonmodular operations of modular arithmetic have corresponding matrix
interpretation. So the modular arithmetic became the effective tool of parallelizing
of matrix computations over 𝑅.
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The results of synthesis of described algorithms show that the logarithmetics
may be used succesfully for the efficiency rise of modular computations realization
under the solution of matrix algebra problems with the respect to the significant
simplification of multiplication operation.
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Abstract. Let 𝐶ℓ0,𝑛 be the (universal) Clifford algebra generated by 𝑒1, ..., 𝑒𝑛 sat-
isfying 𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = −2𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, ..., 𝑛. The modified 𝑘−Dirac operator is intro-
duced by 𝑀𝑘𝑓 = 𝐷𝑓 + 𝑘𝑥−1

𝑛 𝑄′𝑓 , where ′ is the main involution and 𝑄𝑓 is given by
the decomposition 𝑓 (𝑥) = 𝑃𝑓 (𝑥)+𝑄𝑓 (𝑥) 𝑒𝑛 with 𝑃𝑓 (𝑥) and 𝑄𝑓 (𝑥) in 𝐶ℓ0,𝑛−1. A
continuously differentiable function 𝑓 is called 𝑘-hypermonogenic, if 𝑥𝑛𝑀𝑘𝑓 (𝑥) = 0.
Note that 0-hypermonogenic are monogenic and 𝑛−1-hypermonogenic functions are
hypermonogenic defined by H. Leutwiler and the author. The function |𝑥|𝑘−𝑛+1 𝑥−1

is 𝑘-hypermonogenic. Hypermonogenic functions are related to harmonic func-
tions with respect to the Riemannian metric 𝑑𝑠2 = 𝑥

2𝑘/(1−𝑛)
𝑛

(︀
𝑑𝑥20 + ...+ 𝑑𝑥2𝑛

)︀
. We

present the mean value property for 𝑘-hypermonogenic functions and related re-
sults. Earlier the mean value properties has been proved for hypermonogenic func-
tions. The kea idea is to transform functions to the eigenfunctions of the Laplace
Beltrami-operator of Poincare upper half space model.

1 Introduction

We consider generalized holomorphic functions in the upper half space

R𝑛+1
+ = {(𝑥0, ..., 𝑥𝑛) | 𝑥𝑖 ∈ R,𝑥𝑛 > 0}

related to the Riemannian metric 𝑑𝑠2 = 𝑥
− 2𝑘

𝑛−1
𝑛

(︀
𝑑𝑥20 + ...+ 𝑑𝑥2𝑛

)︀
. The Laplace-

Beltrami operator with respect to this metric is △𝑘𝑓 = 𝑥
2𝑘

𝑛−1
𝑛

(︁
△𝑓 − 𝑘𝑥𝑛 𝜕𝑓

𝜕𝑥𝑛

)︁
.

When 𝑘 = 𝑛 − 1 the metric is the hyperbolic metric of the Poincare upper half
space model and solutions of the Laplace-Beltrami operator are hyperbolic harmonic
functions. In I992 Heinz Leutwiler noticed in [11] and [12] that the power function
𝑥𝑚 (𝑚 ∈ N0), calculated using Clifford algebras, is a conjugate gradient of a hy-

perbolic harmonic function with respect to the hyperbolic metric 𝑑𝑠2 = 𝑥−2
𝑛

𝑛∑︀
𝑖=0

𝑑𝑥2𝑖

The modified Dirac operator 𝑀 and hypermonogenic functions in this case were
introduced by H. Leutwiler and the author in [5]. An introduction to theory is given
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in [6]. A Cauchy-type formula for hypermonogenic functions was proved in [4]. The
main idea in the proof was 𝑘−hypermonogenic functions, introduced in [2].

In this paper we prove the mean value properties for 𝑘-hypermonogenic func-
tions. For hypermonogenic and hyperbolic harmonic functions they were proved
in [7, 9] and the special case by H. Leutwiler in [13] with different methods. New
results are based on deeper understanding of the interplay between different met-
rics and Laplaced-Beltrami operators connected to them. The key idea for dealing
with solutions of △𝑘𝑓 = 0 is to consider them as transformed eigenfunctions of
the hyperbolic Laplace operator △𝑛−1. The invariance properties of the hyperbolic
metric are important. The results have also connections the Weinstein equation

Δ𝑢− 𝑘

𝑥𝑛

𝜕𝑢

𝜕𝑥𝑛
+

ℓ

𝑥2𝑛
𝑢 = 0 (1)

on the upper half space R𝑛+ for ℓ 6 (𝑘+1)2/4. In the future work we shall study more
applications of mean value properties for example Maximum modulus theorem.

We review the main notations and concepts. Denote by 𝐶ℓ0,𝑛 the universal real
Clifford algebra generated by 𝑒1, ..., 𝑒𝑛 satisfying the relation 𝑒𝑖𝑒𝑗 + 𝑒𝑗𝑒𝑖 = −2𝛿𝑖𝑗 ,
where 𝛿𝑖𝑗 is the usual Kronecker delta. An element 𝑥 = 𝑥0 + 𝑥1𝑒1 + ... + 𝑥𝑛𝑒𝑛 for
𝑥0, ..., 𝑥𝑛 ∈ R is called a paravectors. The set R𝑛+1 is identified with the real vector
space of paravectors.

We use several common involutions. The main involution is the mapping 𝑎→ 𝑎′

defined by 𝑒′𝑖 = −𝑒𝑖 for 𝑖 = 1, ..., 𝑛 and extended to the total algebra by linearity
and the product rule (𝑎𝑏)′ = 𝑎′𝑏′. Similarly the reversion is the mapping 𝑎 → 𝑎*

defined by 𝑒′𝑖 = −𝑒𝑖 for 𝑖 = 1, ..., 𝑛 and extended to the total algebra by linearity
and the product rule (𝑎𝑏)* = 𝑏*𝑎*. The conjugation is the mapping 𝑎→ 𝑎 defined
by 𝑎 = (𝑎′)* = (𝑎*)′ .

We recall that any element 𝑤 in 𝐶ℓ0,𝑛 may be written as 𝑤 =
∑︀

𝜈⊂{1,...,𝑛}
𝑎𝜈𝑒𝜈 ,

where 𝑎𝜈 is real and 𝑒∅ = 1 and 𝑒𝜈 = 𝑒𝜈1 ..𝑒𝜈𝑘 if 1 6 𝜈1 < 𝜈2 < ... < 𝜈𝑘 6 𝑛. The
norm of 𝑤 is defined by |𝑤|2 =

∑︀
𝑎2𝜈 . We also use a simple way to generalize real

and imaginary parts of complex numbers to the Clifford algebra 𝐶ℓ0,𝑛. Since any
element 𝑎 ∈ 𝐶ℓ0,𝑛 may be uniquely decomposed as 𝑎 = 𝑏 + 𝑐𝑒𝑛 for 𝑏, 𝑐 ∈ 𝐶ℓ0,𝑛−1

(the Clifford algebra generated by 𝑒1, ..., 𝑒𝑛−1) we define the mappings 𝑃 : 𝐶ℓ0,𝑛 →
𝐶ℓ0,𝑛−1 and 𝑄 : 𝐶ℓ0,𝑛 → 𝐶ℓ0,𝑛−1 by 𝑃𝑎 = 𝑏 and 𝑄𝑎 = 𝑐 (see [5]) In order to
compute the 𝑃 - and 𝑄- parts we define the involution 𝑎 → ̂︀𝑎 by 𝑒𝑖 = (−1)𝛿𝑖𝑛 𝑒𝑖
for 𝑖 = 1, ..., 𝑛 and extend it to the total algebra by linearity and the product rulê︀𝑎𝑏 = ̂︀𝑎̂︀𝑏. Then we obtain the formulas

𝑃𝑎 =
1

2
(𝑎+ ̂︀𝑎) , (2)
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𝑄𝑎 = −1

2
(𝑎− ̂︀𝑎) 𝑒𝑛. (3)

We consider functions 𝑓 : Ω → 𝐶ℓ0,𝑛, defined on an open subset Ω of R𝑛+1,
and assume that their components are continuously differentiable. The left Dirac

operator and the right Dirac operator in 𝐶ℓ0,𝑛 are defined by 𝐷𝑙𝑓 =
𝑛∑︀
𝑖=0

𝑒𝑖
𝜕𝑓
𝜕𝑥𝑖

and 𝐷𝑟𝑓 =
𝑛∑︀
𝑖=0

𝜕𝑓
𝜕𝑥𝑖
𝑒𝑖. Their conjugate operators 𝐷𝑙 and 𝐷𝑟 are introduced by

𝐷𝑙𝑓 =
𝑛∑︀
𝑖=0

𝑒𝑖
𝜕𝑓
𝜕𝑥𝑖

and 𝐷𝑟𝑓 =
𝑛∑︀
𝑖=0

𝜕𝑓
𝜕𝑥𝑖
𝑒𝑖.

The modified Dirac operators 𝑀 𝑙
𝑘, 𝑀

𝑙
𝑘, 𝑀 𝑟

𝑘 and 𝑀 𝑟
𝑘 are introduced in the upper

half space R𝑛+1
+ =

{︀
(𝑥0, ..., 𝑥𝑛) ∈ R𝑛+1 | 𝑥𝑛 > 0

}︀
in [5] and [3] by

𝑀 𝑙
𝑘𝑓 (𝑥) = 𝐷𝑙𝑓 (𝑥) + 𝑘

𝑄′𝑓

𝑥𝑛
, 𝑀 𝑟

𝑘𝑓 (𝑥) = 𝐷𝑟𝑓 (𝑥) + 𝑘
𝑄𝑓

𝑥𝑛
,

𝑀
𝑙
𝑘𝑓 (𝑥) = 𝐷𝑙𝑓 (𝑥)− 𝑘

𝑄′𝑓

𝑥𝑛
, 𝑀

𝑟
𝑘𝑓 (𝑥) = 𝐷𝑟𝑓 (𝑥) + 𝑘

𝜕𝑄𝑓

𝜕𝑥𝑛
(𝑥) .

where (𝑄𝑓)′ = 𝑄′𝑓. The operator 𝑀 𝑙
𝑛−1 is also denoted briefly by 𝑀 .

Definition 1. Let Ω ⊂ R𝑛+1 be open. A function 𝑓 : Ω → 𝐶ℓ0,𝑛 is called
left 𝑘-hypermonogenic, if 𝑓 ∈ 𝒞1 (Ω) and 𝑥𝑛𝑀

𝑙
𝑘𝑓 (𝑥) = 0 for any 𝑥 ∈ Ω. The

right 𝑘-hypermonogenic functions are defined similarly. The (𝑛− 1)−left hy-
permonogenic functions are called hypermonogenic functions. A twice contin-
uously differentiable function 𝑓 : Ω → 𝐶ℓ0,𝑛 is called 𝑘-hyperbolic harmonic if
𝑀

𝑙
𝑘𝑀

𝑙
𝑘𝑓 = 0.

We recall that 𝑘−hypermonogenic functions form a right 𝐶ℓ0,𝑛−1-module in
an open subset Ω of R𝑛+1 (see [2]). Moreover the set of 𝑘-hyperbolic harmonic
functions in an open subset Ω of R𝑛+1 is a left and right 𝐶ℓ0,𝑛−1-module in Ω
(see [2]).

The operator 𝑀𝑛−1 decomposes the hyperbolic Laplace operator △𝑛−1𝑓 =

𝑥2𝑛△𝑓 − (𝑛− 1)𝑥𝑛
𝜕𝑓
𝜕𝑥𝑛

for 𝐶ℓ0,𝑛−1-valued functions. The general decomposition
result is the following.

Proposition 1 (see [2]). Let 𝑓 : Ω → 𝐶ℓ0,𝑛 be twice continuously differen-
tiable. Then

𝑀𝑘𝑀𝑘𝑓 =𝑀𝑘𝑀𝑘𝑓 = △𝑓 − 𝑘

𝑥𝑛

𝜕𝑓

𝜕𝑥𝑛
+ 𝑘

𝑄𝑓

𝑥2𝑛
𝑒𝑛.



172 The 8th Congress of the ISAAC — 2011

A similar characterization of 𝑘-hypermonogenic functions as complex holomor-
phic function is stated next.

Theorem 1 (see [2]). Let 𝑓 : Ω → 𝐶ℓ0,𝑛 be twice continuously differentiable.
Then 𝑓 is 𝑘-hypermonogenic if and only if 𝑓 and 𝑥𝑓 are 𝑘-hyperbolic harmonic
functions.

There is an important relation between 𝑘- and −𝑘-hypermonogenic functions.

Theorem 2 (see [3]). Let Ω be an open subset of R𝑛+1∖{𝑥𝑛 = 0} and 𝑓 : Ω→
𝐶ℓ0,𝑛 be a 𝒞1 (Ω, 𝐶ℓ𝑛) function. A function 𝑓 : Ω → 𝐶ℓ𝑛 is 𝑘-hypermonogenic if
and only if the function 𝑥−𝑘𝑛 𝑓𝑒𝑛 is −𝑘-hypermonogenic.

2 Mean value properties

The key idea for proving mean value properties is a relation between 𝑘-hyperbolic
harmonic functions and eigenfunctions of the Laplace-Beltrami equation of the
Poincaré upper half plane, stated as follows.

Lemma 1. Let Ω be an open set contained in R𝑛+1
+ . A function 𝑓 : Ω→ 𝐶ℓ0,𝑛

is 𝑘-hyperbolic harmonic if and only if the function 𝑔 (𝑥) = 𝑥
𝑛−𝑘−1

2
𝑛 𝑓 (𝑥) satisfies the

following system of equations

△𝑃𝑔 − 𝑛− 1

𝑥𝑛

𝜕𝑃𝑔

𝜕𝑥𝑛
+

1

4

(︁
𝑛2 − (𝑘 + 1)2

)︁ 𝑃𝑔
𝑥2𝑛

= 0, (4)

△𝑄𝑔 − 𝑛− 1

𝑥𝑛

𝜕𝑄𝑔

𝜕𝑥𝑛
+

1

4

(︁
𝑛2 − (𝑘 − 1)2

)︁ 𝑄𝑔
𝑥2𝑛

= 0. (5)

Proof of the result is just simple computations. Note that in the case 𝑘 = 0 we
obtain the following corollary.

Corollary 1. Let Ω be an open set contained in R𝑛+1
+ . A function 𝑓 : Ω →

𝐶ℓ0,𝑛 is harmonic if and only if the function 𝑔 (𝑥) = 𝑥
𝑛−1
2

𝑛 𝑓 (𝑥) satisfies the equation

△𝑔 − 𝑛− 1

𝑥𝑛

𝜕𝑔

𝜕𝑥𝑛
+

1

4

(︀
𝑛2 − 1

)︀ 𝑔

𝑥2𝑛
= 0. (6)

The preceding equations are important, since the hyperbolic Laplace is invari-
ant under the Möbius transformations mapping the upper half space onto itself.
We also use an idea to consider 𝑘-hyperbolic harmonic functions as transformed
eigenfunctions of the hyperbolic Laplace operator. In addition to the equation
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on the upper half space, we also need their models on the unit ball, denoted by
𝐵𝑛+1 =

{︀
𝑥 ∈ R𝑛+1 | |𝑥| < 1

}︀
. The surface area of 𝐵𝑛+1 is denoted by 𝜔𝑛. We

recall that the fundamental isometry 𝑇 : 𝐵𝑛+1 → R𝑛+1
+ between the upper half

plane and the unit ball is induced by 𝑇 (𝑦) = (𝑦 + 𝑒𝑛) (𝑒𝑛𝑦 + 1)−1. Moreover we
have 𝑃𝑇 (𝑦) = 2𝑃𝑦|𝑦 − 𝑒𝑛|−2 and 𝑄𝑇 (𝑦) =

(︀
1− |𝑦|2

)︀
|𝑦 − 𝑒𝑛|−2. Note also that

𝑦 = 𝑇−1 (𝑥) = (𝑥− 𝑒𝑛) (−𝑒𝑛𝑥+ 1)−1 and |𝑦| = |𝑥− 𝑒𝑛|
|𝑥+ 𝑒𝑛|

= tanh
𝑑ℎ (𝑥, 𝑒𝑛)

2

where 𝑑ℎ (𝑥, 𝑒𝑛) is the hypeerbolic distance given by the metric 𝑑𝑠2 =
𝑥2𝑛
(︀
𝑑𝑥20 + ...+ 𝑑𝑥2𝑛

)︀
.

Applying (see [1, p. 20]), we obtain the model of our equation for 𝐶ℓ0,𝑛-valued
𝑘-hyperbolic harmonic functions in the unit ball as follows.

Proposition 2. Let Ω be an open set contained in R𝑛+1
+ . If a function 𝑢 : Ω→

𝐶ℓ0,𝑛 is 𝑘-hyperbolic then the function

𝑣 (𝑦) =
|𝑦 − 𝑒𝑛|1−𝑛+𝑘

(1− |𝑦|2)
1−𝑛+𝑘

2

𝑢 (𝑇 (𝑦))

satisfies the equation

△𝑣 + 2 (𝑛− 1)

1− |𝑦|2
𝑛∑︁
𝑖=0

𝑦𝑖
𝜕𝑣

𝜕𝑦𝑖
+
𝑛2 − (𝑘 + 1)2(︁

1− |𝑦|2
)︁2 𝑃𝑣 +

𝑛2 − (𝑘 − 1)2(︁
1− |𝑦|2

)︁2 𝑄𝑣𝑒𝑛 = 0 (7)

on Φ−1 (Ω) ⊂ 𝐵𝑛+1. Conversely, if the function 𝑣 : 𝑇−1 (Ω) → R satisfies the

equation (7) then the function 𝑢 (𝑥) = 𝑥
𝑛−𝑘−1

2
𝑛 𝑣

(︀
𝑇−1 (𝑥)

)︀
is 𝑘-hyperbolic in Ω.

Applying the previous proposition and [1, p.24] we obtain an important solution
in terms of hypergeometric functions, defined by

2𝐹1 (𝑎, 𝑏; 𝑐;𝑥) =
∞∑︁
𝑚=0

(𝑎)𝑚 (𝑏)𝑚
(𝑐)𝑚

𝑥𝑚

𝑚!
.

.

Theorem 3. Let 𝑛 ∈ N and 𝑘 ∈ R . Denote by 𝜎𝑒 the Euclidean surface
measure of 𝐵𝑛+1. The function

𝜇𝑛,𝑘 (𝑟ℎ) =
(︁
cosh

𝑟ℎ
2

)︁−(𝑛+|𝑘+1|) 1

𝜔𝑛

∫︁
𝜕𝐵𝑛+1

𝑑𝜎𝑒(𝑦)⃒⃒
tanh 𝑟ℎ

2 𝑒𝑛 − 𝑦
⃒⃒𝑛+|𝑘+1| =
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=
1

𝑒
𝑛+|𝑘+1|

2
𝑟ℎ

2𝐹1

(︃
𝑛+|𝑘+1|

2
,
𝑛

2
;𝑛; 1− 𝑒−2𝑟ℎ

)︃
.

is a unique eigenfunction of the hyperbolic Laplace △ℎ corresponding to the eigen-
value 1

4

(︁
(𝑘 + 1)2 − 𝑛2

)︁
depending only on the hyperbolic distance 𝑟ℎ = 𝑑ℎ (𝑥, 𝑒𝑛)

in R𝑛+1
+ and satisfying 𝜇𝑛,𝑘 (0) = 1. Moreover the function 𝑥

1−𝑛+𝑘
2

𝑛 𝜇𝑛,𝑘 (𝑟ℎ) is 𝑘-
hyperbolic.

Proof. Applying [1] we infer that there exists a unique solution 𝑢 : 𝐵𝑛+1 → R
of (7) depending only on the radius and satisfying 𝑢 (0) = 1 given by

𝑢 (𝑟) = (1− 𝑟2)
1
2
(𝑛+|𝑘+1|) 1

𝜔𝑛

∫︁
𝜕𝐵𝑛+1

𝑑𝜎𝑒(𝑦)

|𝑟𝑒𝑛 − 𝑦|𝑛+|𝑘+1| .

Applying [4] we infer the equality

∫︁
𝜕𝐵𝑛+1

𝑑𝜎(𝑦)

|𝑦 − 𝑟𝑒𝑛|2𝑠
= 2𝑛𝜔𝑛−1

∞∫︁
0

𝑡𝑛−1

(1 + 𝑡2)𝑛−𝑠((1 + 𝑟)2 + (1− 𝑟)2𝑡2)𝑠
𝑑𝑡 =

= (1 + 𝑟)−2𝑠2𝑛𝜔𝑛−1

∞∫︁
0

𝑡𝑛−1

(1 + 𝑡2)𝑛−𝑠
(︁
1 + (1−𝑟)2

(1+𝑟)2
𝑡2
)︁𝑠𝑑𝑡

where 𝜔𝑛−1 is a surface area of 𝑛−dimensional unit ball 𝐵𝑛Hence we have

∞∫︁
0

𝑡𝑛−1

(1 + 𝑡2)𝑛−𝑠
(︁
1 + (1−𝑟)2

(1+𝑟)2
𝑡2
)︁𝑠𝑑𝑡 = 1

2
𝐵
(︁𝑛
2
,
𝑛

2

)︁
2𝐹1

(︂
𝑠,
𝑛

2
;𝑛; 1− (1− 𝑟)2

(1 + 𝑟)2

)︂
.

where

𝐵
(︁𝑛
2
,
𝑛

2

)︁
=

1∫︁
0

𝑡
𝑛
2
−1(1− 𝑡)

𝑛
2
−1𝑑𝑡 =

√
𝜋Γ
(︀
𝑛
2

)︀
2𝑛−1Γ

(︀
𝑛+1
2

)︀ =
𝜔𝑛

2𝑛−1𝜔𝑛−1

and therefore

𝑢 (𝑟) = (1− 𝑟2)
1
2
(𝑛+|𝑘+1|) 1

𝜔𝑛

∫︁
𝜕𝐵𝑛+1

𝑑𝜎𝑒(𝑦)

|𝑟𝑒𝑛 − 𝑦|𝑛+|𝑘+1| =
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=

(︂
1− 𝑟
1 + 𝑟

)︂ 1
2
(𝑛+|𝑘+1|)

𝐹1

(︂
𝑛+ |𝑘 + 1|

2
,
𝑛

2
;𝑛; 1− 𝑒−2𝑟ℎ

)︂
=

=
1

𝑒
𝑛+|𝑘+1|

2
𝑟ℎ

2𝐹1

(︃
𝑛+|𝑘+1|

2
,
𝑛

2
;𝑛, 1− 𝑒−2𝑟ℎ

)︃
.

Since 𝑟 = tanh 𝑟ℎ
2 we just simplify

(1− 𝑟)2

(1 + 𝑟)2
=

(︂
cosh 𝑟ℎ

2 − sinh 𝑟ℎ
2

cosh 𝑟ℎ
2 + sinh 𝑟ℎ

2

)︂2

= 𝑒−2𝑟ℎ .

Hence we obtain the function

𝜇𝑛,𝑘 (𝑟ℎ) =
1

𝑒
𝑛+|𝑘+1|

2
𝑟ℎ

2𝐹1

(︃
𝑛+|𝑘+1|

2
,
𝑛

2
;𝑛, 1− 𝑒−2𝑟ℎ

)︃
.

The mean value property for eigenfunctions of the Laplace operator, stated next,
is verified in [10].

Theorem 4. Let 𝑈 ⊂ R𝑛+1
+ be open. If 𝑓 : 𝑈 → R satisfies the equation (4)

then
𝑓(𝑎) =

1

𝜔𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑅ℎ)

𝑓(𝑥)𝑑𝜎ℎ(𝑥)

for all hyperbolic balls satisfying 𝐵ℎ (𝑎, 𝑟ℎ) ⊂ 𝑈 , where 𝜎ℎ is the hyperbolic surface
measure given by 𝑑𝜎ℎ = 𝑑𝜎𝑒

𝑥𝑛𝑛
.

Using Lemma 1 we obtain the following mean value property.

Theorem 5. If 𝑓 : 𝑈 → R is 𝑘-hyperbolic harmonic then

𝑓 (𝑎) =
𝑎

1−𝑛+𝑘
2

𝑛

𝜔𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑟ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑓 (𝑥) 𝑑𝜎ℎ(𝑥)

for all hyperbolic balls satisfying 𝐵ℎ (𝑎, 𝑟ℎ) ⊂ 𝑈 .

Theorem 6. If 𝑓 : 𝑈 → 𝐶ℓ0,𝑛−1 is 𝑘-hyperbolic harmonic then

𝑓 (𝑎) =
𝑎

1−𝑛+𝑘
2

𝑛

𝜎𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑟ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑓 (𝑥) 𝑑𝜎ℎ(𝑥)
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for all hyperbolic balls satisfying 𝐵ℎ (𝑎, 𝑟ℎ) ⊂ 𝑈 .

Proof. We may apply Theorem 5 for all components of 𝑓𝜈 where 𝜈 ⊂
{0, ..., 𝑛− 1}, since they are real 𝑘-hyperbolic harmonic. Then multiplying with
𝑒𝜈 and summing the equations we obtain

𝑓 (𝑎) =
∑︁

𝜈⊂{0,...,𝑛−1}

𝑓𝜈 (𝑎) 𝑒𝜈 =

=
∑︁

𝜈⊂{0,...,𝑛−1}

𝑎
1−𝑛+𝑘

2
𝑛

𝜎𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑅ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 (𝑃𝑓)𝜈 (𝑥) 𝑒𝜈𝑑𝜎ℎ(𝑥) =

=
𝑎

1−𝑛+𝑘
2

𝑛

𝜎𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑟ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑃𝑓 (𝑥) 𝑑𝜎ℎ(𝑥),

completing the proof. �

If 𝑓 is 𝑘-hypermonogenic functions then using Proposition 1 we infer that 𝑃𝑓
is 𝐶ℓ0,𝑛−1-valued 𝑘-hyperbolic harmonic function. Applying the previous result we
conclude.

Theorem 7. If 𝑓 : 𝑈 → 𝐶ℓ0,𝑛 is 𝑘-hypermonogenic then

𝑃𝑓 (𝑎) =
𝑎

1−𝑛+𝑘
2

𝑛

𝜎𝑛 sinh
𝑛 𝑅ℎ𝜇𝑛,𝑘 (𝑅ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑅ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑃𝑓 (𝑥) 𝑑𝜎ℎ(𝑥)

for all hyperbolic balls satisfying 𝐵ℎ (𝑎,𝑅ℎ) ⊂ 𝑈 .

Corollary 2.

𝜇𝑛,𝑘 (𝑟ℎ) =
1

𝜎𝑛 sinh
𝑛 𝑟ℎ

∫︁
𝜕𝐵ℎ(𝑒𝑛,𝑟ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑑𝜎ℎ(𝑥) =

=
1

𝜎𝑛 sinh
𝑛 𝑟ℎ

∫︁
𝜕𝐵(cosh 𝑟ℎ, sin 𝑟ℎ)

𝑥
−𝑛+𝑘+1

2
𝑛 𝑑𝜎𝑒(𝑥).

If we apply the preceding theorem for 𝑥𝑓 we obtain the mean value property
for the 𝑄-part as follows.
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Theorem 8. If 𝑓 : 𝑈 → 𝐶ℓ0,𝑛 is 𝑘-hypermonogenic then

𝑄𝑓 (𝑎) =
𝑎

1−𝑛+𝑘
2

𝑛

𝜔𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑟ℎ)

−𝑥
𝑛−𝑘−1

2
𝑛 𝑃 ′

(︂
𝑥− 𝑃𝑎
𝑎𝑛

𝑓 (𝑥)

)︂
𝑑𝜎ℎ(𝑥) =

=
𝑎

1−𝑛+𝑘
2

𝑛

𝜔𝑛 sinh
𝑛 𝑟ℎ𝜇𝑛,𝑘 (𝑟ℎ)

∫︁
𝜕𝐵ℎ(𝑎,𝑅ℎ)

𝑥
𝑛−𝑘−1

2
𝑛 𝑄

(︂
𝑒𝑛
𝑥− 𝑃𝑎
𝑎𝑛

𝑓 (𝑥)

)︂
𝑑𝜎ℎ(𝑥)

for all hyperbolic balls satisfying 𝐵ℎ (𝑎,𝑅ℎ) ⊂ 𝑈 .

Proof. Assume that 𝑓 is 𝑘-hypermonogenic. Then by virtue of Theorem 1 the
function 𝑥𝑓 is also 𝑘-hyperbolic harmonic. Since 𝑘-hyperbolic functions are left
and right 𝐶ℓ0,𝑛−1 module we note that 𝑃𝑎

𝑎𝑛
𝑓 is also 𝑘−hyperbolic harmonic. Hence

𝑥−𝑃𝑎
𝑎𝑛

𝑓 (𝑥) is 𝑘-hyperbolic harmonic and 𝑃
(︁
𝑎−𝑃𝑎
𝑎𝑛

𝑓 (𝑎)
)︁
= −𝑄′𝑓 (𝑎) . Consequently

the result follows from the previous theorem. �

Combining the last two theorems we obtain the mean value property for the
𝑘-hypermonogenic functions.

Theorem 9. If 𝑓 : 𝑈 → 𝐶ℓ0,𝑛 is 𝑘-hypermonogenic and 𝐵ℎ (𝑎, 𝑟ℎ) ⊂ 𝑈

𝑓 (𝑎) = 𝐶

∫︁
𝜕𝐵ℎ(𝑎,𝑟ℎ)

𝑥
𝑛−𝑘−1

2
𝑛

(︁
𝑒𝑛 (𝑥− 𝑎) 𝑓 (𝑥) + 𝑒𝑛 (̂︀𝑥− 𝑎) 𝑓 (𝑥))︁ 𝑑𝜎ℎ(𝑥).

for all hyperbolic balls satisfying 𝐵ℎ (𝑎,𝑅ℎ) ⊂ 𝑈 , where 𝐶 = 𝑎
𝑘−𝑛−1

2
𝑛

𝜔𝑛 sinh𝑛 𝑟ℎ𝜇𝑛,𝑘(𝑟ℎ)
.

Proof. Assume that 𝑓 is 𝑘-hypermonogenic. Since 𝑓 (𝑥) = −𝑒𝑛𝑎𝑛𝑒𝑛𝑓 (𝑥) /𝑎𝑛
and 𝑓 (𝑥) = −𝑒𝑛𝑎𝑛𝑒𝑛𝑓 (𝑥)/𝑎𝑛, applying the previous theorems and properties (2)
and (3) we obtain the final formula. �

References
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Boston, 2000, 287–302.

6. S.-L. Eriksson and H. Leutwiler. Hyperbolic Function Theory, Adv. appl.
Clifford alg. 17 (2007), 437–450.

7. S-L. Eriksson and H. Leutwiler. Hyperbolic harmonic functions anf their func-
tion theory, in Potential theory and Stochatics in Albac, Theta 2009 (85–100).

8. S.-L. Eriksson, and H. Orelma. A Hyperbolic Interpretation of Cauchy-Type
Kernels in Hyperbolic Function Theory, In Trends in Mathematics, Birkhauser
Verlag Basel/Switzerland (2010), 43-59.

9. S.-L. Erikssonand H. Orelma. A Mean-Value Theorem for Some Eigenfunctions
of the Laplace-Beltrami Operator on the Upper-Half Space, To Appear in Ann.
Acad. Sci. Fenn. 36 (1) (2011), 101-110.

10. S.-L. Eriksson and H. Orelma. Mean value properties for the Weinstein equa-
tion using the hyperbolic metric. Submitted for a publication.

11. H. Leutwiler. Modified Clifford analysis, Complex Variables 17 (1992), 153–
171.

12. H. Leutwiler. Modified quaternionic analysis in 𝑅3 , Complex Variables 20
(1992), 19–51.

13. H. Leutwiler. Quaternionic analysis in 𝑅3 versus its hyperbolic modification.
In F. Brackx et al.(eds.) Clifford Analysis and its Applications, Kluwer, Dor-
drecht 2001, 193–211.

S.-L. Eriksson
Tampere University of Technology, Department of Mathematics, P.O.Box 553, FI-33101
Tampere, Finland, Sirkka-Liisa.Eriksson@tut.fi



Slice Regularity in Several Variables 179

SLICE REGULARITY IN SEVERAL VARIABLES

R. Ghiloni, A. Perotti

Key words: Functions of hypercomplex variables; Quaternions; Octonions; Clif-
ford algebras

AMS Mathematics Subject Classification: 30G35; 32A30; 17D05

Abstract. We introduce a class of slice regular functions of several variables on
a real alternative algebra. In the quaternionic case, several variables have been
considered recently by Colombo, Sabadini and Struppa [1]. Our approach to the
definition of slice functions, which is based on the concept of stem functions, is the
same as the one adopted by these authors. However, the condition of regularity
is different, and allows to include in our class, in particular, the family of ordered
polynomials in several variables. We prove some basic properties and results of slice
and slice regular functions and give examples to illustrate this function theory.

1 Introduction

The theory of power series and more generally of slice regular functions of one
variable in a real alternative algebra is now fairly developed. It was introduced
firstly for functions of one quaternionic variable by Gentili and Struppa in [3, 4].

A related theory, concerning slice monogenic functions on Clifford algebras, was
introduced by Colombo, Sabadini and Struppa in [2]. In [5] and [6], a new approach
to slice regularity, based on the concept of stem function, allowed to extend the
theory to any real alternative algebra 𝐴 of finite dimension.

In the present paper, we propose a possible generalization of the theory to several
variables in 𝐴. Our function theory includes, in particular, the class of (ordered)
polynomials in several variables. For 𝐴 = H, several variables have been studied
recently by Colombo, Sabadini and Struppa [1]. The approach via stem functions
is similar, but the definition of regularity is different, as we will see in Section 4.3.

After having given the basic definitions, we state some results which show the
richness of this function theory. We give a Cauchy integral formula and some of its
fundamental consequences, and we show that some results about the removability
of singularities, which are true for several complex variables, continue to hold in
our setting.
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2 The quadratic cone

Let 𝐴 be a finite-dimensional, alternative real algebra with identity with a fixed
R-linear antiinvolution. Define the trace 𝑡(𝑥) := 𝑥+ 𝑥𝑐 ∈ 𝐴 and the norm 𝑛(𝑥) :=
𝑥𝑥𝑐 ∈ 𝐴.

Definition 1. The quadratic cone of 𝐴 is the subset

𝒬𝐴 := R ∪ {𝑥 ∈ 𝐴 | 𝑡(𝑥) ∈ R, 𝑛(𝑥) ∈ R, 4𝑛(𝑥) > 𝑡(𝑥)2}.

The square roots of−1 in the algebra are the elements of S𝐴 := {𝐽 ∈ 𝒬𝐴 | 𝐽2 = −1}.

Examples
1. H and O with the usual conjugation (𝒬H = H and 𝒬O = O).
2. The real Clifford algebra 𝐶𝑙0,𝑛 = R𝑛 with Clifford conjugation. The quadratic

cone 𝒬𝑛 of R𝑛 is the real algebraic subset defined by 𝑥𝐾 = 0, 𝑥 · (𝑥𝑒𝐾) =
0 ∀𝑒𝐾 ̸= 1 such that 𝑒2𝐾 = 1. It contains the subspace of paravectors.

3. In R3, 𝒬𝐴 = {𝑥 ∈ R3 | 𝑥123 = 0, 𝑥1𝑥23 − 𝑥2𝑥13 + 𝑥3𝑥12 = 0}.
The algebras with 𝒬𝐴 = 𝐴 are only R, C, H and O with the usual conjugation

(cf. Frobenius–Zorn’s Theorem)

Proposition 1. Let Im (𝐴) := {𝑥 ∈ 𝐴 | 𝑥2 ∈ R, 𝑥 /∈ R ∖ {0}}. For every
𝑥 ∈ 𝒬𝐴, there exist unique elements 𝑥0 ∈ R, 𝑦 ∈ Im (𝐴) ∩ 𝒬𝐴 with 𝑡(𝑦) = 0, such
that 𝑥 = 𝑥0 + 𝑦. For 𝐽 ∈ S𝐴, let C𝐽 := ⟨1, 𝐽⟩ ≃ C be the subalgebra generated by
𝐽 . Then 𝒬𝐴 =

⋃︀
𝐽∈S𝐴 C𝐽 and C𝐼 ∩ C𝐽 = R for every 𝐼, 𝐽 ∈ S𝐴, 𝐼 ̸= ±𝐽 .

3 Slice regular functions: one variable

We recall some definitions from [5,6], where the slice regular functions of one variable
in 𝐴 were introduced. Let 𝐴⊗ C = 𝐴⊗R C be the complexified algebra.

Definition 2. Let 𝐷 ⊆ C. If a function 𝐹 : 𝐷 → 𝐴 ⊗ C is complex intrinsic,
i.e. 𝐹 (𝑧) = 𝐹 (𝑧) for every 𝑧 ∈ 𝐷 such that 𝑧 ∈ 𝐷, then 𝐹 is called a stem function
on 𝐷. Let Ω𝐷 := {𝑥 = 𝛼+ 𝛽𝐽 ∈ C𝐽 | 𝛼+ 𝑖𝛽 ∈ 𝐷, 𝐽 ∈ S𝐴} be a circular set in the
quadratic cone 𝒬𝐴. Any stem function 𝐹 = 𝐹1 + 𝑖𝐹2 : 𝐷 → 𝐴⊗C induces a (left)
slice function 𝑓 = ℐ(𝐹 ) : Ω𝐷 → 𝐴. If 𝑥 = 𝛼+ 𝛽𝐽 ∈ 𝐷𝐽 := Ω𝐷 ∩ C𝐽 , we set

𝑓(𝑥) := 𝐹1(𝑧) + 𝐽𝐹2(𝑧) (𝑧 = 𝛼+ 𝑖𝛽).

Definition 3 (see [5, 6]). A slice function is slice regular if its stem function
𝐹 is holomorphic. 𝒮ℛ(Ω𝐷) := {𝑓 ∈ 𝒮(Ω𝐷) | 𝑓 = ℐ(𝐹 ), 𝐹 holomorphic}.
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Examples
1. Polynomials 𝑝(𝑥) =

∑︀𝑚
𝑗=0 𝑥

𝑗𝑎𝑗 with right coefficients in 𝐴 are slice regular
functions on 𝒬𝐴.

2. Convergent power series
∑︀

𝑘 𝑥
𝑘𝑎𝑘 are slice regular functions on the intersection

of 𝒬𝐴 with a ball centered in the origin.
3. If 𝐴 = H and 𝐷 ∩ R ̸= ∅, then 𝑓 ∈ 𝒮ℛ(Ω𝐷) if and only if it is Cullen

regular [3, 4].
4. If 𝐴 = R𝑛, 𝑛 > 2, and 𝐷 ∩ R ̸= ∅, then 𝑓 ∈ 𝒮ℛ(Ω𝐷) if and only if the

restriction of 𝑓 to the paravectors is a slice monogenic function [2].

4 Slice regular functions: several variables

4.1 Stem functions and slice functions

Let 𝐷 be an open subset of C𝑛, invariant w.r.t. complex conjugation in every
variable 𝑧1, . . . , 𝑧𝑛.

Definition 4. Given a function 𝐹 : 𝐷 → 𝐴 ⊗ R𝑛, with 𝐹 =
∑︀

𝐾∈𝒫(𝑛) 𝑒𝐾𝐹𝐾 ,
we say that 𝐹 is Clifford-intrinsic if, for each 𝐾 ∈ 𝒫(𝑛), ℎ ∈ {1, . . . , 𝑛} and
𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ 𝐷, the components 𝐹𝐾 : 𝐷 → 𝐴 satisfy:

𝐹𝐾(𝑧1, . . . , 𝑧ℎ−1, 𝑧ℎ, 𝑧ℎ+1, . . . , 𝑧𝑛) =

{︃
𝐹𝐾(𝑧) if ℎ ̸∈ 𝐾

−𝐹𝐾(𝑧) if ℎ ∈ 𝐾

Definition 5. A continuous Clifford–intrinsic function is a stem function on 𝐷.

Define the (ordered) product
∏︀→
ℎ∈𝐻 𝑥ℎ of 𝑥ℎ1 , . . . , 𝑥ℎ𝑝 ∈ 𝐴 as

∏︀→
ℎ∈𝐻 𝑥ℎ :=

(· · · ((𝑥ℎ1𝑥ℎ2)𝑥ℎ3) · · · )𝑥ℎ𝑝 . Let Ω𝐷 be the circular subset of 𝒬𝑛𝐴 associated to the
open set 𝐷 ⊆ C𝑛:

Ω𝐷 = {𝑥 ∈ 𝒬𝑛𝐴 : 𝑥ℎ = 𝛼ℎ + 𝛽ℎ𝐽ℎ ∈ C𝐽 , 𝐽ℎ ∈ S𝐴, (𝛼1 + 𝑖𝛽1, . . . , 𝛼𝑛 + 𝑖𝛽𝑛) ∈ 𝐷}.

Definition 6. Given a stem function 𝐹 : 𝐷 → 𝐴 ⊗ R𝑛 with 𝐹 =∑︀
𝐾∈𝒫(𝑛) 𝑒𝐾𝐹𝐾 , we define the (left) slice function ℐ(𝐹 ) : Ω𝐷 → 𝐴 induced

by 𝐹 as follows ℐ(𝐹 )(𝑥) :=
∑︀

𝐾∈𝒫(𝑛) 𝐽𝐾𝐹𝐾(𝛼1 + 𝑖𝛽1, . . . , 𝛼𝑛 + 𝑖𝛽𝑛) for each
𝑥 = (𝑥1, . . . , 𝑥𝑛) = (𝛼1 + 𝐽1𝛽1, . . . , 𝛼𝑛 + 𝐽𝑛𝛽𝑛), where 𝐽𝐾 :=

∏︀→
𝑘∈𝐾 𝐽𝑘.

Examples
1. For each ℎ = 1, . . . , 𝑛, the coordinate function 𝑥ℎ is a slice function on 𝒬𝑛𝐴: if
𝑥ℎ = 𝛼ℎ + 𝐽ℎ𝛽ℎ, 𝑥ℎ is induced by the stem function 𝜁ℎ(𝑧) := 𝛼ℎ + 𝑒ℎ𝛽ℎ.
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2. For each ℓ ∈ N𝑛 and 𝑎 ∈ 𝐴, the stem function 𝜁ℓ11 (𝑧) · · · 𝜁ℓ𝑛𝑛 (𝑧)𝑎 :=
(𝛼1 + 𝑒1𝛽1)

ℓ1 · · · (𝛼𝑛 + 𝑒𝑛𝛽𝑛)
ℓ𝑛𝑎 induces the monomial slice function 𝑥ℓ𝑎 =

(
∏︀→
ℎ∈{1,...,𝑛} 𝑥

ℓℎ
ℎ )𝑎.

3. Let 𝐿 ⊂ N𝑛 and 𝑎ℓ ∈ 𝐴. Then the polynomial function from 𝒬𝑛𝐴 to 𝐴, sending
𝑥 into 𝑝(𝑥) =

∑︀
ℓ∈𝐿 𝑥

ℓ𝑎ℓ, is a slice function.
4. Convergent power series

∑︀
ℓ∈N𝑛 𝑥ℓ𝑎ℓ are slice functions on the intersection of

𝒬𝑛𝐴 with a product of balls centered in the origin.

Proposition 2 (Smoothness). Let 𝑓 = ℐ(𝐹 ) : Ω𝐷 → 𝐴 be a slice function.
The following statements hold:

1. If 𝐹 ∈ 𝐶0(𝐷,𝐴⊗ R𝑛), then 𝑓 ∈ 𝐶0(Ω𝐷, 𝐴).
2. Let 𝑠1 = 2𝑛(𝑠+ 1)− 1. If 𝐹 ∈ 𝐶𝑠1(𝐷,𝐴 ⊗ R𝑛) for some 𝑠 ∈ N* ∪ {∞}, then
𝑓 ∈ 𝐶𝑠(Ω𝐷, 𝐴).

3. If 𝐹 ∈ 𝐶𝜔(𝐷,𝐴⊗ R𝑛), then 𝑓 ∈ 𝐶𝜔(Ω𝐷, 𝐴).

Proposition 3 (Identity principle). Let 𝑓, 𝑔 : Ω𝐷 → 𝐴 be slice functions
and let 𝐼 ∈ S𝐴 such that 𝑓 = 𝑔 on Ω𝐷 ∩ (C𝐼)𝑛. Then 𝑓 = 𝑔 on the whole Ω𝐷.

4.2 Complex structures on R𝑛

Let us introduce some complex structures on R𝑛.
Definition 7. For each ℎ = 1, . . . , 𝑛, define the complex structure 𝒥ℎ on R𝑛 by

𝒥ℎ(𝑒𝐾) :=

{︃
−𝑒𝐾∖{ℎ} if ℎ ∈ 𝐾

𝑒𝐾∪{ℎ} if ℎ /∈ 𝐾
.

From the definition, it follows immediately that 𝒥 2
ℎ = −𝑖𝑑R𝑛 . In other words,

the endomorphisms 𝒥ℎ are complex structures on R𝑛. One can easily verify that 𝒥1
is the left multiplication by 𝑒1, 𝒥𝑛 is the right multiplication by 𝑒𝑛 and, for every
ℎ = 1, . . . , 𝑛, 𝒥ℎ coincides with the left multiplication by 𝑒ℎ on the complex plane
C𝑒ℎ = ⟨1, 𝑒ℎ⟩ of R𝑛.

Proposition 4. The complex structures 𝒥 are pairwise commuting and there-
fore they define commuting Cauchy-Riemann operators w.r.t. 𝒥ℎ:

𝜕ℎ𝐹 = 1
2

(︁
𝜕𝐹
𝜕𝛼ℎ
− 𝒥ℎ

(︁
𝜕𝐹
𝜕𝛽ℎ

)︁)︁
, 𝜕ℎ𝐹 = 1

2

(︁
𝜕𝐹
𝜕𝛼ℎ

+ 𝒥ℎ
(︁
𝜕𝐹
𝜕𝛽ℎ

)︁)︁
.

4.3 Slice regularity: several variables

Extend the complex structures 𝒥ℎ to 𝐴⊗R𝑛 by setting 𝒥ℎ(𝑎⊗ 𝑥) = 𝑎⊗𝒥ℎ(𝑥) for
every 𝑎 ∈ 𝐴, 𝑥 ∈ R𝑛.
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Definition 8. Let 𝐹 : 𝐷 → 𝐴⊗ R𝑛 be a 𝐶1 stem function and let 𝑓 = ℐ(𝐹 ) :
Ω𝐷 → 𝐴. 𝐹 is a holomorphic stem function if, for each ℎ = 1, . . . , 𝑛 and each
fixed 𝑧0 := (𝑧01 , . . . , 𝑧

0
𝑛) ∈ 𝐷, the function 𝐹 𝑧0ℎ : 𝐷ℎ → (𝐴 ⊗ R𝑛,𝒥ℎ) defined by

𝑧ℎ ↦→ 𝐹 (𝑧01 , . . . , 𝑧
0
ℎ−1, 𝑧ℎ, 𝑧

0
ℎ+1, . . . , 𝑧

0
𝑛) is holomorphic on a domain 𝐷ℎ ∋ 𝑧0ℎ of C or,

equivalently, if 𝜕ℎ𝐹 = 0 on 𝐷 for every ℎ = 1, . . . , 𝑛. If 𝐹 is holomorphic, then we
say that 𝑓 = ℐ(𝐹 ) is a slice regular function.

Remark 1. For 𝐴 = H, several variables have been considered recently by
Colombo, Sabadini and Struppa [1]. Slice functions defined via stem functions are
the same, but regularity is different (they use the complex structure 𝐿𝑒ℎ in the
place of 𝒥ℎ).

Examples
1. For each ℓ ∈ N𝑛 and 𝑎 ∈ 𝐴, the monomial slice function 𝑥ℓ𝑎 : 𝒬𝑛𝐴 → 𝐴 is

regular. Therefore every (ordered) polynomial function 𝑝(𝑥) =
∑︀

ℓ∈𝐿 𝑥
ℓ𝑎ℓ with

right coefficients in 𝐴 is slice regular.
2. Convergent power series

∑︀
ℓ∈N𝑛 𝑥ℓ𝑎ℓ are slice regular functions on the inter-

section of 𝒬𝑛𝐴 with a product of balls centered in the origin.

Proposition 5. Let 𝐹 =
∑︀

𝐾∈𝑃 (𝑛) 𝑒𝐾𝐹𝐾 : 𝐷 → 𝐴 ⊗ R𝑛 be a stem function
of class 𝐶1. Let 𝑓 = ℐ(𝐹 ) : Ω𝐷 → 𝐴. We denote by 𝑓𝐼 : Ω𝐷 ∩ (C𝐼)𝑛 → 𝐴 the
restriction of 𝑓 on Ω𝐷 ∩ (C𝐼)𝑛. The following assertions are equivalent:
(1) 𝑓 is slice regular.
(2) 𝜕𝐹𝐾

𝜕𝛼ℎ
=

𝜕𝐹𝐾∪{ℎ}
𝜕𝛽ℎ

, 𝜕𝐹𝐾
𝜕𝛽ℎ

= −𝜕𝐹𝐾∪{ℎ}
𝜕𝛼ℎ

for each 𝐾,ℎ with 𝐾 ̸∋ ℎ.
(3) There exists 𝐼 ∈ S𝐴 such that 𝑓𝐼 is holomorphic w.r.t. the complex structures

on (C𝐼)𝑛 and on 𝐴 defined by the left multiplication by 𝐼.
(3′) For every 𝐼 ∈ S𝐴, 𝑓𝐼 is holomorphic w.r.t. the complex structures on (C𝐼)𝑛

and on 𝐴 defined by the left multiplication by 𝐼.

4.4 Products and derivatives

Proposition 6. Let 𝐷 =
∏︀𝑛
ℎ=1𝐷ℎ. For each ℎ = 1, . . . , 𝑛, let 𝐹 ℎ : 𝐷ℎ →

𝐴 ⊗ C𝑒ℎ ⊆ 𝐴 ⊗ R𝑛 be a (one variable) stem function of class 𝐶1. Let 𝑎 ∈ 𝐴 and
𝐹 : 𝐷 → 𝐴 ⊗ R𝑛 defined by 𝐹 (𝑧1, . . . , 𝑧𝑛) =

(︁∏︀→
ℎ∈{1,...,𝑛} 𝐹

ℎ(𝑧ℎ)
)︁
𝑎. Then 𝐹 is a

stem function, holomorphic if every 𝐹 ℎ is holomorphic.

In general, the pointwise product of two slice functions is not a slice function.
However, the pointwise product of stem functions (in the algebra 𝐴⊗R𝑛) is still a
stem function.
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Definition 9. Let 𝑓 = ℐ(𝐹 ), 𝑔 = ℐ(𝐺) slice functions. The product of 𝑓 and 𝑔
is the slice function 𝑓 · 𝑔 := ℐ(𝐹𝐺).

Proposition 7. If 𝑓 , 𝑔 are slice regular and 𝐹 =
∑︀

𝐾∈𝒮 𝑒𝐾𝐹𝐾 , 𝐺 =∑︀
𝐻∈𝒮′ 𝑒𝐻𝐺𝐻 , with 𝐾 6 𝐻 for each 𝐾 ∈ 𝒮, 𝐻 ∈ 𝒮 ′, then 𝑓 · 𝑔 is slice regu-

lar.

Remark 2. The ordering of the variables is important for regularity: e.g. the
function 𝑥2 · 𝑥1 = ℐ(𝜁2𝜁1) is a slice function but it is not slice regular.

If 𝑓 = ℐ(𝐹 ) is a slice function, of class 𝐶1 on Ω𝐷, then the functions 𝜕ℎ𝐹 and
𝜕ℎ𝐹 are stem functions on 𝐷.

Definition 10. We set

𝜕𝑓
𝜕𝑥ℎ

:= ℐ (𝜕ℎ𝐹 ) , 𝜕𝑓
𝜕𝑥𝑐ℎ

:= ℐ
(︀
𝜕ℎ𝐹

)︀
, ℎ = 1, . . . , 𝑛.

These functions are continuous slice functions on Ω𝐷.

The slice function 𝑓 is slice regular if and only if 𝜕𝑓
𝜕𝑥𝑐ℎ

= 0 for every ℎ = 1, . . . , 𝑛.

If 𝑓 is slice regular, then also the derivatives 𝜕𝑓
𝜕𝑥ℎ

are slice regular (it follows from
the commutativity of the structures 𝒥ℎ).

4.5 Cauchy integral formula

We now show that slice regular functions satisfy a Cauchy integral formula. As
a consequence, we obtain that on a polydisc the class of slice regular functions
coincides with that of convergent ordered power series.

Definition 11. Let Δ𝑦(𝑥) = 𝑥2 − 𝑡(𝑦)𝑥 + 𝑛(𝑦) and Γ𝐴 := {(𝑥, 𝑦) ∈ 𝒬𝐴 ×
𝒬𝐴 | Δ𝑦(𝑥) ̸= 0}. We define the Cauchy kernel of 𝐴 as the 𝐶𝜔–function 𝐶𝐴 : Γ𝐴 →
𝐴, slice regular in 𝑥, given by

𝐶𝐴(𝑥, 𝑦) :=
(︀
Δ𝑦(𝑥)

)︀−1
(𝑦𝑐 − 𝑥).

Fix 𝐼 ∈ S𝐴 and, for each ℎ = 1, . . . , 𝑛, a bounded open subset 𝐸ℎ of C, whose
boundary is piecewise of class 𝐶1. Let 𝐸ℎ(𝐼) := Ω𝐸ℎ

∩ C𝐼 and let 𝜕𝐸ℎ(𝐼) be
the boundary of 𝐸ℎ(𝐼) in C𝐼 . Let 𝐸 := 𝐸1 × 𝐸2 × . . . × 𝐸𝑛 ⊂ C𝑛. Denote by
𝜕*𝐸(𝐼) the distinguished boundary 𝜕𝐸1(𝐼) × 𝜕𝐸2(𝐼) × · · · × 𝜕𝐸𝑛(𝐼) of 𝐸(𝐼) :=
𝐸1(𝐼)× 𝐸2(𝐼)× · · · × 𝐸𝑛(𝐼).
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Theorem 1 (Cauchy integral formula). If 𝑓 ∈ 𝒮ℛ(Ω𝐸 , 𝐴) ∩ 𝐶0(Ω𝐸 , 𝐴),
then

𝑓(𝑥) =
1

(2𝜋)𝑛

∫︁
𝜕*𝐸(𝐼)

𝐶𝐴(𝑥1, 𝜉1) · · ·𝐶𝐴(𝑥𝑛, 𝜉𝑛)𝑑𝜉1𝑑𝜉2 · · · 𝑑𝜉𝑛𝐼−𝑛𝑓(𝜉1, . . . , 𝜉𝑛)

for each 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ Ω𝐸 if 𝐴 is associative or for each 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
𝐸(𝐼) if 𝐴 is not–associative. In particular, 𝑓 is real analytic.

Suppose that there exists a norm ‖·‖𝐴 on𝐴 which induces the euclidean topology
on 𝐴 and such that ‖𝑥‖𝐴 =

√︀
𝛼2 + 𝛽2 for each 𝑥 = 𝛼 + 𝐽𝛽 ∈ 𝒬𝐴. Let 𝑟 =

(𝑟1, . . . , 𝑟𝑛) ∈ (R+)𝑛. Denote by 𝐵𝑟 the polydisc 𝐵(0, 𝑟1) × · · · × 𝐵(0, 𝑟𝑛) of C𝑛
and by 𝐵𝐴(𝑟) the polydisc {(𝑥1, . . . , 𝑥𝑛) ∈ 𝐴𝑛 | ‖𝑥1‖𝐴 < 𝑟1, . . . , ‖𝑥𝑛‖𝐴 < 𝑟𝑛} of 𝐴𝑛.
Note that 𝐵𝐴(𝑟) is an open neighborhood of 0 in 𝐴𝑛 and 𝐵𝐴(𝑟) ∩𝒬𝑛𝐴 = Ω𝐵𝑟 .

Corollary 1 (Ordered analyticity). Let 𝑓 ∈ 𝒮ℛ(Ω𝐵𝑟 , 𝐴) ∩ 𝐶0(Ω𝐵𝑟 , 𝐴).
Choose 𝐼 ∈ S𝐴 and, for each ℓ = (ℓ1, . . . , ℓ𝑛) ∈ N𝑛, define 𝑎ℓ ∈ 𝐴 by setting

𝑎ℓ := (2𝜋𝐼)−𝑛
∫︀
𝜕*𝐵𝑟(𝐼)

𝜉−ℓ1−1
1 · · · 𝜉−ℓ𝑛−1

𝑛 𝑑𝜉1 · · · 𝑑𝜉𝑛 𝑓(𝜉1, . . . , 𝜉𝑛).

Then the ordered power series
∑︀

ℓ=(ℓ1,...,ℓ𝑛)∈N𝑛 𝑥
ℓ1
1 · · ·𝑥ℓ𝑛𝑛 𝑎ℓ converges uniformly on

compact subsets of 𝐵𝐴(𝑟) and its sum is equal to 𝑓(𝑥) for each 𝑥 ∈ Ω𝐵𝑟 .

Corollary 2. On Ω𝐵𝑟 , the set of slice regular functions coincides with that of
convergent ordered power series.

Corollary 3 (Cauchy’s inequalities). Let 𝑓 ∈ 𝒮ℛ(Ω𝐵𝑟 , 𝐴) ∩ 𝐶0(Ω𝐵𝑟 , 𝐴)
and let 𝑀 > 0 be a constant such that sup𝑥∈𝜕*𝐵𝑟(𝐼) ‖𝑓(𝑥)‖𝐴 6𝑀 for some 𝐼 ∈ S𝐴.
Then there exists a constant 𝑁𝐴 (depending only on ‖ · ‖𝐴 ) such that, for each
ℓ = (ℓ1, . . . , ℓ𝑛) ∈ N𝑛, it holds: ‖𝜕ℓ𝑓(0)‖𝐴 6 𝑁𝐴 · 𝑀 · ℓ! · 𝑟−ℓ11 · · · 𝑟−ℓ𝑛𝑛 , where
𝜕ℓ := 𝜕ℓ1+...+ℓ𝑛/𝜕Re (𝑥1)

ℓ1 · · · 𝜕Re (𝑥𝑛)ℓ𝑛 .

4.6 Removability of singularities

Theorem 2 (Hartogs extension phenomenon). Let 𝐷′ ⊂ 𝐷 ⊂ C𝑛 open
with compact closure 𝐾 := 𝐷′ ⊂ 𝐷 such that 𝐷 ∖ 𝐾 is connected. If 𝑓 is a slice
regular function on Ω𝐷∖𝐾 = Ω𝐷 ∖ Ω𝐷′ , then it extends uniquely to a slice regular
function on the whole set Ω𝐷.

Theorem 3. Let Θ be a circular open subset of 𝐴𝑛, let 𝑍 = Ω𝑊 be a proper
closed subset of Θ with 𝑊 locally analytic in C𝑛 and let 𝑓 ∈ 𝒮ℛ(Θ∖𝑍,𝐴). Suppose
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that at least one of the following two condition holds: (1) 𝑓 is locally bounded in Θ,
(2) codim(𝑊 ) > 2. Then 𝑓 extends to a slice regular function on the whole Θ.
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CONCEPTS OF TRACE, DETERMINANT AND INVERSE OF
CLIFFORD ALGEBRA ELEMENTS
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Abstract. In our paper we consider the notion of determinant of Clifford algebra
elements. We present some formulas for determinant and inverse of Clifford algebra
elements. Also we consider the notion of trace of Clifford algebra elements that
relates to the notion of matrix trace. We use the generalization of the Pauli’s
theorem for 2 sets of elements that satisfy the main anticommutation conditions of
Clifford algebra.

1 Introduction

The notion of determinant of Clifford algebra elements was considered in [3]. In
our work we present some formulas for determinant and inverse of Clifford algebra
elements. Also we consider the notion of trace of Clifford algebra elements that
relates to the notion of matrix trace. We use the generalization of the Pauli’s
theorem for 2 sets of elements that satisfy the main anticommutation conditions of
Clifford algebra.

After writing this paper author found the article [4] on the subject that is close
to the subject of this paper. In particular, the article [4] contains the formulas that
are similar to the formulas for the determinant in this paper. However, note that
for the first time most of these formulas (𝑛 = 1, 2, 3) were introduced in [3].

2 Complex Clifford algebras and conjugations

Let 𝑝 and 𝑞 be nonnegative integers such that 𝑝+ 𝑞 = 𝑛 > 1. We consider complex
Clifford algebra 𝒞ℓ(𝑝, 𝑞). The construction of Clifford algebra 𝒞ℓ(𝑝, 𝑞) is discussed
in details in [2].

Generators 𝑒1, 𝑒2, . . . , 𝑒𝑛 satisfy the following conditions 𝑒𝑎𝑒𝑏 + 𝑒𝑏𝑒𝑎 = 2𝜂𝑎𝑏𝑒,
where 𝜂 = ||𝜂𝑎𝑏|| is the diagonal matrix whose diagonal contains 𝑝 elements equal
to +1 and 𝑞 elements equal to −1.
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The elements 𝑒𝑎1 . . . 𝑒𝑎𝑘 = 𝑒𝑎1...𝑎𝑘 , 1 6 𝑎1 < . . . 𝑎𝑘 6 𝑛, 𝑘 = 1, 2, . . . 𝑛
together with the identity element 𝑒 form a basis of Clifford algebra 𝒞ℓ(𝑝, 𝑞). The
number of basis elements equals to 2𝑛.

Any Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) can be written in the following form

𝑈 = 𝑢𝑒+ 𝑢𝑎𝑒
𝑎 +

∑︁
𝑎1<𝑎2

𝑢𝑎1𝑎2𝑒
𝑎1𝑎2 + . . .+ 𝑢1...𝑛𝑒

1...𝑛, (1)

where 𝑢, 𝑢𝑎, 𝑢𝑎1𝑎2 , . . . 𝑢1...𝑛 are complex constants.
We denote the vector subspaces spanned by the elements 𝑒𝑎1...𝑎𝑘 enumerated by

the ordered multi-indices of length 𝑘 by 𝒞ℓ𝑘(𝑝, 𝑞). The elements of the subspace

𝒞ℓ𝑘(𝑝, 𝑞) are denoted by
𝑘
𝑈 and called elements of rank 𝑘.

Clifford algebra 𝒞ℓ(𝑝, 𝑞) is a superalgebra, so we have even and odd subspaces
𝒞ℓEven(𝑝, 𝑞) = ⊕𝑘𝒞ℓ2𝑘(𝑝, 𝑞), 𝒞ℓOdd(𝑝, 𝑞) = ⊕𝑘𝒞ℓ2𝑘+1(𝑝, 𝑞) such that 𝒞ℓ(𝑝, 𝑞) =
𝒞ℓEven(𝑝, 𝑞)⊕ 𝒞ℓOdd(𝑝, 𝑞).

Let denote complex conjugation of matrix by
←−
𝐴 , transpose matrix by 𝐴𝑇 , Her-

mitian conjugate matrix (composition of these 2 operations) by 𝐴†.
Now let define some operations on Clifford algebra elements.

Complex conjugation. Operation of complex conjugation 𝑈 → �̄� acts in the
following way:

�̄� =←−𝑢 𝑒+←−𝑢𝑎𝑒𝑎 +
∑︁
𝑎1<𝑎2

←−−−𝑢𝑎1𝑎2𝑒
𝑎1𝑎2 +

∑︁
𝑎1<𝑎2<𝑎3

←−−−−𝑢𝑎1𝑎2𝑎3𝑒
𝑎1𝑎2𝑎3 + . . .

Reverse and grade involution. Let define operation reverse and grade involution
for 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) in the following way

𝑈∼ =

𝑛∑︁
𝑘=0

(−1)
𝑘(𝑘−1)

2
𝑘
𝑈, 𝑈f =

𝑛∑︁
𝑘=0

(−1)𝑘
𝑘
𝑈 .

Pseudo-Hermitian conjugation. Let define Pseudo-Hermitian conjugation as
composition of reverse and complex conjugation: 𝑈 ‡ = �̄�∼.

Hermitian conjugation. In [2] we consider operation of Hermitian conjugation.
We have the following formulas for these operation:

𝑈 † =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑒1...𝑝)−1𝑈 ‡𝑒1...𝑝, if 𝑝 - odd;
(𝑒1...𝑝)−1𝑈 ‡f𝑒1...𝑝, if 𝑝 - even;
(𝑒𝑝+1...𝑛)−1𝑈 ‡𝑒𝑝+1...𝑛, if 𝑞 - even;
(𝑒𝑝+1...𝑛)−1𝑈 ‡f𝑒𝑝+1...𝑛, if 𝑞 - odd.
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3 Matrix representations of Clifford algebra elements, recurrent
method.

Complex Clifford algebras 𝒞ℓ(𝑝, 𝑞) of dimension 𝑛 and different signatures (𝑝, 𝑞), 𝑝+
𝑞 = 𝑛 are isomorphic. Clifford algebras 𝒞ℓ(𝑝, 𝑞) are isomorphic to the matrix alge-
bras of complex matrices. In the case of even 𝑛 these matrices are of order 2

𝑛
2 . In

the case of odd 𝑛 these matrices are block diagonal of order 2
𝑛+1
2 with 2 blocks of

order 2
𝑛−1
2 .

Consider the following matrix representations of Clifford algebra elements.
Identity element 𝑒 of Clifford algebra 𝒞ℓ(𝑝, 𝑞) maps to identity matrix of corre-

sponding order: 𝑒→ 1.

For 𝒞ℓ(1, 0) element 𝑒1 maps to the following matrix 𝑒1 →

(︃
1 0

0 −1

)︃
. For

𝒞ℓ(2, 0) we have 𝑒1 →

(︃
1 0

0 −1

)︃
, 𝑒2 →

(︃
0 1

1 0

)︃
.

Further, suppose we have a matrix representation for 𝒞ℓ(2𝑘, 0), 𝑛 = 2𝑘:
𝑒1, . . . , 𝑒𝑛 → 𝛾1, . . . , 𝛾𝑛.

Then, for Clifford algebra 𝒞ℓ(2𝑘 + 1, 0) we have

𝑒𝑎 →

(︃
𝛾𝑎 0

0 −𝛾𝑎

)︃
, 𝑎 = 1, . . . , 𝑛, 𝑒𝑛+1 →

(︃
𝑖𝑘𝛾1 . . . 𝛾𝑛 0

0 −𝑖𝑘𝛾1 . . . 𝛾𝑛

)︃
.

For Clifford algebra 𝒞ℓ(2𝑘+2, 0) we have the same matrices for 𝑒𝑎, 𝑎 = 1, . . . , 𝑛+1

as in the previous case and for 𝑒𝑛+2 we have 𝑒𝑛+2 →

(︃
0 1

1 0

)︃
.

So, we have matrix representation for all Clifford algebras 𝒞ℓ(𝑛, 0). In the cases
of other signatures elements 𝑒𝑎, 𝑎 > 𝑝 maps to the same matrices as in signature
(𝑛, 0) but with multiplication by imaginary unit 𝑖.

4 Operation of trace of Clifford algebra elements

Consider complex Clifford algebra 𝒞ℓ(𝑝, 𝑞) and introduce the operation of trace of
Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) as the following operation of projection onto
subspace 𝒞ℓ0(𝑝, 𝑞):

Tr(𝑈) = ⟨𝑈⟩0|𝑒→1. (2)

For arbitrary element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) in the form (1) we have Tr(𝑢𝑒+ 𝑢𝑎𝑒
𝑎+ . . .) = 𝑢.



190 The 8th Congress of the ISAAC — 2011

Theorem 1. . Operation trace (2) of Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) has
the following properties:

1) Tr(𝑈 + 𝑉 ) = Tr(𝑈) + Tr(𝑉 ), Tr(𝛼𝑈) = 𝛼Tr(𝑈), ∀𝑈, 𝑉 ∈ 𝒞ℓ(𝑝, 𝑞), ∀𝛼 ∈ C,
2) Tr(𝑈𝑉 ) = Tr(𝑉 𝑈), Tr(𝑈𝑉𝑊 ) = Tr(𝑉𝑊𝑈) = Tr(𝑊𝑈𝑉 ), but, in general

Tr(𝑈𝑉𝑊 ) ̸= Tr(𝑈𝑊𝑉 ), ∀𝑈, 𝑉,𝑊 ∈ 𝒞ℓ(𝑝, 𝑞).
3) Tr(𝑈−1𝑉 𝑈) = Tr(𝑉 ) for all 𝑉 ∈ 𝒞ℓ(𝑝, 𝑞), 𝑈 ∈ 𝒞ℓ×(𝑝, 𝑞), where 𝒞ℓ×(𝑝, 𝑞) is

the set of all invertible Clifford algebra elements.
4) Tr(𝑈) = Tr(𝑈f) = Tr(𝑈∼) =

←−−−
Tr(𝑈) =

←−−−−
Tr(𝑈 ‡) =

←−−−−
Tr(𝑈 †).

There is a relation between operation trace Tr of Clifford algebra element 𝑈 ∈
𝒞ℓ(𝑝, 𝑞) and operation trace tr of quadratic matrix. To obtain this relation, at first,
we will prove the following statement.

Lemma 1. Consider recurrent matrix representation of Clifford algebra 𝒞ℓ(𝑝, 𝑞)
(see above). For this representation 𝑈 → 𝑈 we have

tr(𝑈) = 2[
𝑛+1
2

]Tr(𝑈), tr(𝑈f) = tr(𝑈).

Proof. Coefficient 2[
𝑛+1
2

] equals to the order of corresponding matrices. It is not
difficult to see that trace of almost all matrices that correspond to basis elements
equals to zero: tr(𝑒𝐴) = 0, where 𝐴 - any multi-index except empty. The only
exception is identity element 𝑒, which corresponds to the identity matrix. In this
case we have tr(𝑒) = 2[

𝑛+1
2

]. Further we use linearity of trace and obtain tr(𝑈) =

2[
𝑛+1
2

]𝑢 = 2[
𝑛+1
2

]Tr(𝑈). The second property is a simple consequence of the first
property, because tr(𝑈f) = 2[

𝑛+1
2

]Tr(𝑈f) = 2[
𝑛+1
2

]Tr(𝑈) = tr(𝑈). �

Theorem 2. Consider complex Clifford algebra 𝒞ℓ(𝑝, 𝑞). Then

Tr(𝑈) =
1

2[
𝑛+1
2

]
tr(𝛾(𝑈)), (3)

where 𝛾(𝑈) - any matrix representation of Clifford algebra 𝒞ℓ(𝑝, 𝑞) of minimal di-
mension. Moreover, this definition of trace (3) is equivalent to the definition (2).
New definition is well-defined because it doesn’t depend on the choice of matrix rep-
resentation.

Proof. This property proved in the previous statement for the recurrent matrix
representation. Let we have besides recurrent matrix representation 𝑈 = 𝑈 |𝑒𝑎→𝛾𝑎

another matrix representation 𝑈 = 𝑈 |𝑒𝑎→𝛽𝑎 . Then, by Pauli’s theorem in Clifford
algebra of even dimension 𝑛 there exists matrix 𝑇 such that 𝛽𝑎 = 𝑇−1𝛾𝑎𝑇, 𝑎 =
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1, . . . , 𝑛. Then, we have 𝑈 = 𝑇−1𝑈𝑇 and tr(𝑈) = tr(𝑇−1𝑈𝑇 ) = tr(𝑈). In the case
of odd 𝑛 we can have also another case (by Pauli’s theorem), when two sets of
matrices relate in the following way 𝛽𝑎 = −𝑇−1𝛾𝑎𝑇, 𝑎 = 1, . . . , 𝑛. In this case
we have 𝑈 = 𝑇−1𝑈f𝑇. From tr(𝑈f) = tr(𝑈) (see Lemma 1) we obtain tr(𝑈) =

tr(𝑇−1𝑈f𝑇 ) = tr(𝑈f) = tr(𝑈). �

5 Determinant of Clifford algebra elements

Determinant of Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) is a complex number

Det𝑈 = det(𝑈), (4)

which is a determinant of any matrix representation 𝑈 of minimal dimension.
Now we want to show that this definition is well-defined. Let prove the following

Lemma.

Lemma 2. Consider the recurrent matrix representation (see above) of Clifford
algebra 𝒞ℓ(𝑝, 𝑞). For this representation 𝑈 → 𝑈 we have

det(𝑈f) = det(𝑈).

Proof. In the case of Clifford algebra of even dimension 𝑛 we have
𝑈f = (𝑒1...𝑛)−1𝑈𝑒1...𝑛. So, we obtain det(𝑈f) = det((𝑒1...𝑛)−1𝑈𝑒1...𝑛) =

det((𝑒1...𝑛)−1)det(𝑈)det(𝑒1...𝑛) = det(𝑈).

In the case of Clifford algebra of odd dimension generators maps to the
block diagonal matrices and blocks are identical up to the sign: 𝑒𝑎 →(︃
𝛾𝑎 0

0 −𝛾𝑎

)︃
. It is not difficult to see that even part 𝑈Even of arbitrary ele-

ment 𝑈 = 𝑈Even + 𝑈Odd maps to the matrix with identical blocks, and odd
part 𝑈Odd of the element 𝑈 maps to the matrix with the blocks differing in

sign: 𝑈Even →

(︃
𝐴 0

0 𝐴

)︃
, 𝑈Odd →

(︃
𝐵 0

0 −𝐵

)︃
. Then we have 𝑈 →(︃

𝐴+𝐵 0

0 𝐴−𝐵

)︃
, 𝑈f →

(︃
𝐴−𝐵 0

0 𝐴+𝐵

)︃
and det(𝑈) = (𝐴 − 𝐵)(𝐴 +

𝐵) = det(𝑈f). �

Theorem 3. Definition (4) is well-defined, i.e. it doesn’t depend on the matrix
representation.
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Proof. Consider the recurrent matrix representation 𝑈 = 𝑈 |𝑒𝑎→𝛾𝑎 . The state-
ment for this representation proved in the previous lemma. Let we have another
matrix representation 𝑈 = 𝑈 |𝑒𝑎→𝛽𝑎 . Then, by Pauli’s theorem in Clifford algebra
of even dimension 𝑛 there exists a matrix 𝑇 such that 𝛽𝑎 = 𝑇−1𝛾𝑎𝑇, 𝑎 =
1, . . . , 𝑛. Then we have 𝑈 = 𝑇−1𝑈𝑇 and obtain det(𝑈) = det(𝑇−1𝑈𝑇 ) =

det(𝑇−1)det(𝑈)det(𝑇 ) = det(𝑈).

In the case of odd 𝑛, by Pauli’s theorem we also have another case, where 2
sets of matrices relate in the following way 𝛽𝑎 = −𝑇−1𝛾𝑎𝑇, 𝑎 = 1, . . . , 𝑛. In this
case we have 𝑈 = 𝑇−1𝑈f𝑇. From det(𝑈f) = det(𝑈) (see Lemma 2) we obtain
det(𝑈) = det(𝑇−1𝑈f𝑇 ) = det(𝑈f) = det(𝑈). �

Let formulate some properties of operation determinant of Clifford algebra ele-
ment.

Theorem 4. Operation determinant (4) of Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞)
has the following properties

1) Det(𝑈𝑉 ) = Det(𝑈)Det(𝑉 ), Det(𝛼𝑈) = 𝛼2[
𝑛+1
2 ]

Det(𝑈), ∀𝑈, 𝑉 ∈
𝒞ℓ(𝑝, 𝑞), ∀𝛼 ∈ C.

2) Arbitrary element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) is invertible if and only if Det𝑈 ̸= 0.
3) For any invertible element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) Det(𝑈−1) = (Det𝑈)−1.
4) Det(𝑈−1𝑉 𝑈) = Det(𝑉 ) ∀𝑉 ∈ 𝒞ℓ(𝑝, 𝑞), 𝑈 ∈ 𝒞ℓ×(𝑝, 𝑞), where 𝒞ℓ×(𝑝, 𝑞) is set

of all invertible Clifford algebra elements.

5) Det(𝑈) = Det(𝑈f) = Det(𝑈∼) =
←−−−−
Det(𝑈) =

←−−−−−
Det(𝑈 ‡) =

←−−−−−
Det(𝑈 †).

Definition (4) of determinant of Clifford algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞) is con-
nected with its matrix representation. We have shown that this definition doesn’t
depend on matrix representation. So, determinant is a function of complex coef-
ficients 𝑢𝑎1...𝑎𝑘 located before basis elements 𝑒𝑎1...𝑎𝑘 in (1). In the cases of small
dimensions 𝑛 6 5 we give expressions for determinant of Clifford algebra elements
that doesn’t relate to the matrix representation.

Now we need also 2 another operations of conjugations ▽, △:

(
0
𝑈 +

1
𝑈 +

2
𝑈 +

3
𝑈 +

4
𝑈 +

5
𝑈)▽ =

0
𝑈 +

1
𝑈 +

2
𝑈 +

3
𝑈 −

4
𝑈 −

5
𝑈, 𝑛 = 4, 5,

(
0
𝑈 +

1
𝑈 +

2
𝑈 +

3
𝑈 +

4
𝑈 +

5
𝑈)△ =

0
𝑈 +

1
𝑈 +

2
𝑈 +

3
𝑈 +

4
𝑈 −

5
𝑈, 𝑛 = 5.
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Theorem 5. We have the following formulas for the determinant of Clifford
algebra element 𝑈 ∈ 𝒞ℓ(𝑝, 𝑞):

Det𝑈 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑈, 𝑛 = 0;

𝑈𝑈f, 𝑛 = 1;

𝑈𝑈∼f, 𝑛 = 2;

𝑈𝑈∼𝑈f𝑈∼f = 𝑈𝑈∼f𝑈f𝑈∼, 𝑛 = 3;

𝑈𝑈∼(𝑈f𝑈∼f)▽ = 𝑈𝑈∼f(𝑈f𝑈∼)▽, 𝑛 = 4;

𝑈𝑈∼(𝑈f𝑈∼f)▽(𝑈𝑈∼(𝑈f𝑈∼f)▽)△, 𝑛 = 5.

(5)

Note, that these expressions are Clifford algebra elements of the rank 0. In this
case we identify them with the constants: 𝑢𝑒 ≡ 𝑢.

Proof. The proof is by direct calculation. �

Note, that properties from Theorem 4 for small dimensions also can be
proved with the formulas from Theorem 5. For example, in the case 𝑛 = 3
we have Det(𝑈𝑉 ) = 𝑈𝑉 (𝑈𝑉 )∼f(𝑈𝑉 )f(𝑈𝑉 )∼ = 𝑈𝑉 𝑉 ∼f𝑈∼f𝑈f𝑉 f𝑉 ∼𝑈∼ =
𝑈𝑈∼f𝑈f𝑈∼𝑉 𝑉 ∼f𝑉 f𝑉 ∼ = Det(𝑈)Det(𝑉 ). We used the fact that 𝑉 𝑉 ∼f and
𝑉 f𝑉 ∼ = (𝑉 𝑉 ∼f)∼ are in Clifford algebra center 𝒞ℓ0(𝑝, 𝑞)⊕𝒞ℓ3(𝑝, 𝑞) and commute
with all elements.

Theorem 5 give us explicit formulas for inverse in 𝒞ℓ(𝑝, 𝑞). We have the following
theorem.

Theorem 6. Let 𝑈 be invertible element of Clifford algebra 𝒞ℓ(𝑝, 𝑞). Then we
have the following expressions for 𝑈−1:

(𝑈)−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑒
𝑈 , 𝑛 = 0;
𝑈f

𝑈𝑈f , 𝑛 = 1;
𝑈∼f

𝑈𝑈∼f , 𝑛 = 2;
𝑈∼𝑈f𝑈∼f

𝑈𝑈∼𝑈f𝑈∼f = 𝑈∼f𝑈f𝑈∼

𝑈𝑈∼f𝑈f𝑈∼ , 𝑛 = 3;

𝑈∼(𝑈f𝑈∼f)▽

𝑈𝑈∼(𝑈f𝑈∼f)▽
= 𝑈∼f(𝑈f𝑈∼)▽

𝑈𝑈∼f(𝑈f𝑈∼)▽
, 𝑛 = 4;

𝑈∼(𝑈f𝑈∼f)▽(𝑈𝑈∼(𝑈f𝑈∼f)▽)△

𝑈𝑈∼(𝑈f𝑈∼f)▽(𝑈𝑈∼(𝑈f𝑈∼f)▽)△
, 𝑛 = 5.

(6)

Note, that in denominators we have Clifford algebra elements of the rank 0. We
identify them with the constants: 𝑢𝑒 ≡ 𝑢.

Proof. Statement follows from Theorem 5. �
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Note, that formulas for determinant in Theorem 5 are not unique. For example,
in the case of 𝑛 = 4 we can use the following formulas, but only for even and odd
Clifford algebra elements 𝑈 ∈ 𝒞ℓEven(𝑝, 𝑞) ∪ 𝒞ℓOdd(𝑝, 𝑞).

Consider operation +, that acts on the even elements such that it changes the
sign before the basis elements that anticommutes with 𝑒1. For example, elements
𝑒, 𝑒23, 𝑒24, 𝑒34 maps under + into themselves, and elements 𝑒12, 𝑒13, 𝑒14, 𝑒1234 change
the sign.

Theorem 7. Consider 𝒞ℓ(𝑝, 𝑞), 𝑛 = 𝑝 + 𝑞 = 4. Then for 𝑈 ∈ 𝒞ℓEven(𝑝, 𝑞) we
have Det𝑈 = 𝑈𝑈∼𝑈∼+𝑈+. For 𝑈 ∈ 𝒞ℓOdd(𝑝, 𝑞) we have Det𝑈 = 𝑈𝑈∼𝑈∼𝑈.

Proof. The proof is by direct calculation. �
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II.2. Integral Transforms and Reproducing
Kernels
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Abstract. We will observe that several results concerning Gabor frames, eu-
clidean Landau levels and displaced Fock states, can be translated to the setting of
polyanalytic Fock spaces. This will allow several observations. For instance, in the
higher Landau level eigenspaces and in displaced Fock states there is an analogue of
Perelomov results on completeness of systems of coherent states, which is equivalent
to the completeness of Gabor systems with Hermite functions. Another observation
is that the parameter 𝑚 in the weight function 𝑒−𝑚|𝑧|2 of polyanalytic Fock spaces
corresponds to the strengh of the magnetic field of the Schrödinger operator which
leads to the Landau Laplacian. We will motivate our presentation with an analogy
to a very simple multiplexing problem from signal analysis.

1 Introduction

The solutions of the Cauchy-Riemann equation

𝑑

𝑑𝑧
𝐹 (𝑧) =

1

2

(︂
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝜉

)︂
𝐹 (𝑥+ 𝑖𝜉) = 0,

known as analytic functions, provide one of the most well studied and useful ob-
jects in Mathematics. The analiticity restriction is so important that non-analytic
functions are often seen as “bad objects”and therefore not worthy of further study.
However, there are intermediate classes of non-analytic functions which posses sig-
nificant structure. They are called polyanalytic functions. A function 𝐹 (𝑧), defined
on a subset of C, is said to be polyanalytic of order 𝑛−1 if it satisfies the generalized
Cauchy-Riemann equations(︂

𝑑

𝑑𝑧

)︂𝑛
𝐹 (𝑧) =

1

2𝑛

(︂
𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝜉

)︂𝑛
𝐹 (𝑥+ 𝑖𝜉) = 0. (1)

The author wishes to thank Franz Luef and José Luis Romero for interesting discussions and
comments on early versions of this paper. Partially supported by the ESF activity “Harmonic and
Complex Analysis and its Applications”, by FCT project PTDC/MAT/114394/2009, and Austrian
Science Foundation (FWF) project “Frames and Harmonic Analysis”.
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This is equivalent to saying that 𝐹 (𝑧) is a polynomial of order 𝑛− 1 in 𝑧 with
analytic functions {𝜙𝑘(𝑧)}𝑛−1

𝑘=0 as coefficients:

𝐹 (𝑧) =

𝑛−1∑︁
𝑘=0

𝑧𝑘𝜙𝑘(𝑧) (2)

To gain insight from a simple example, we consider 𝐹 (𝑧) = 1 − |𝑧|2 = 1 − 𝑧𝑧
and observe that 𝑑

𝑑𝑧𝐹 (𝑧) = −𝑧, while
(︀
𝑑
𝑑𝑧

)︀2
𝐹 (𝑧) = 0. As a result, 𝐹 (𝑧) is not

analytic in 𝑧, but is polyanalytic with 𝑛 = 2. This simple example highlights one
of the reasons why the properties of polyanalytic functions can be rather intricated
when compared with those of analytic functions: they can vanish on closed curves
without vanishing identically, while analytic functions can not even vanish on a
accumulation set of the complex plane! Still, many properties of analytic func-
tions have found an extension to polyanalytic functions, often in a nontrivial form.
The function theoretical aspects of polyanalytic functions have been investigated
thoroughly, notably by the Russian school led by Balk [4]. More recently the sub-
ject gained a renewed interest within operator theory [5, 17]. Our investigations in
the topic were originally motivated by applications in signal analysis, in particular
by the results of Gröchenig and Lyubarskii on Gabor frames with Hermite func-
tions [10, 11] but soon it was clear that Hilbert spaces of polyanalytic functions lie
at the heart of several interesting mathematical topics and that they provide an
explicit representation of the eigenspaces of the Landau levels.

We have organized the paper as follows. We start with a section on the Hilbert
space theory of polyanalytic Fock spaces. The third section explains the connections
to the theory of Gabor frames with Hermite functions. We quote some applications
in Quantum Physics in section 4, namely the interpretation of the so-called true
polyanalytic Fock spaces as the eigenspaces of the Euclidean Landau Hamiltonian
with a constant magnetic field. In section 5 we take a close look to the reproduc-
ing kernels and some asymptotic results recently obtained in the study of random
matrices.

2 Fock spaces of polyanalytic functions

2.1 The orthogonal decomposition

Write ℒ2(C) to denote the Hilbert space equipped with the norm

‖𝐹‖2ℒ2(C) =

∫︁
C

|𝐹 (𝑧)|2 𝑒−𝜋|𝑧|
2

𝑑𝜇(𝑧),
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where 𝑑𝜇(𝑧) stands for area measure on C. If we require the elements of the space
to be analytic, we are lead to the Fock space ℱ2(C). Polyanalytic Fock spaces
F𝑛2 (C) arise in an analogous manner, by requiring its elements to be polyanalytic.
They seem to have been first considered by Balk [4, pag. 170] and, more recently,
by Vasilevski [17], who obtained the following decompositions in terms of spaces
ℱ𝑛2 (C) which he called true poly-Fock spaces:

F𝑛2 (C) = ℱ1
2 (C)⊕ ...⊕ℱ𝑛2 (C), ℒ2(C) =

∞⨁︁
𝑛=1

ℱ𝑛2 (C). (3)

We will use the following definition of ℱ𝑛2 (C) which is equivalent to the one given
by Vasilevski: a function 𝐹 belongs to the true polyanalytic Fock space ℱ𝑛+1

2 (C) if
‖𝐹‖ℒ2(C) <∞ and there exists an entire function 𝐻 such that

𝐹 (𝑧) =

(︂
𝜋𝑛

𝑛!

)︂ 1
2

𝑒𝜋|𝑧|
2
(︂
𝑑

𝑑𝑧

)︂𝑛 [︁
𝑒−𝜋|𝑧|

2

𝐻(𝑧)
]︁
. (4)

It is easy to verify that the spaces ℱ𝑛2 (C) are orthogonal using Green´s formula.

2.2 The multiplexing problem

Multiplexing is the transmission of several signals over a single channel, while al-
lowing the receiver to recover the original signals. The orthogonal decomposition
(3) can be used for this purpose, once we construct a map ℬ𝑛 sending an arbitrary
𝑓 ∈ 𝐿2(R) to the space ℱ𝑛2 (C). Then we can proceed as follows.

1. Given 𝑛 signals 𝑓1, . . . , 𝑓𝑛, with finite energy (𝑓𝑘 ∈ 𝐿2(R) for every 𝑘), process
each individual signal by evaluating ℬ𝑘𝑓𝑘. This encodes each signal into one
of the 𝑛 orthogonal spaces ℱ1(C), . . . ,ℱ𝑛(C).

2. Construct a new signal 𝐹 = Bf = ℬ1𝑓1 + ...+ ℬ𝑛𝑓𝑛 as a superposition of the
𝑛 processed signals.

3. Sample, transmit, or process 𝐹.
4. Let 𝑃 𝑘 denote the orthogonal projection from F𝑛2 (C) onto ℱ𝑘(C), then
𝑃 𝑘 (𝐹 ) = ℬ𝑘𝑓𝑘 by virtue of (3).

5. Finally, after inverting each of the transforms ℬ𝑘, we recover each component
𝑓𝑘 in its original form.

The combination of 𝑛 independent signals into a single signal B𝑛f and the
subsequent processing provides our multiplexing device. With two signals this can
be outlined in the following scheme.
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𝑓1 → ℬ𝑓1 ℬ𝑓1 → 𝑓1

↘ 𝑃 1 ↗
ℬ𝑓1 + ℬ2𝑓2 = Bf

↗ 𝑃 2 ↘
𝑓2 → ℬ2𝑓2 ℬ2𝑓2 → 𝑓2

We will use the above scheme as a source of ideas for our results. With some
poetic license, we may consider that we apply signal analysis to mathematics.

2.3 The polyanalytic Bargmann transform

The construction of the map ℬ𝑘 above can be done as follows. To map the first
signal 𝑓1 ∈ 𝐿2(R) to the space ℱ1

2 (C) = ℱ2(C) we can of course use the good old
Bargmann transform ℬ𝑓(𝑧) =

∫︀
R 𝑓(𝑡)𝑒

2𝜋𝑡𝑧−𝜋𝑧2−𝜋
2
𝑡2𝑑𝑡. The remaining signals are

mapped using

ℬ𝑘+1𝑓(𝑧) =

(︂
𝜋𝑘

𝑘!

)︂ 1
2

𝑒𝜋|𝑧|
2
(︂
𝑑

𝑑𝑧

)︂𝑘 [︁
𝑒−𝜋|𝑧|

2

ℬ𝑓(𝑧)
]︁

It can be proved that ℬ𝑘 : 𝐿2(R) → ℱ𝑘2 (C) is a Hilbert space isomorphism, by
observing that the Hermite functions are mapped to the orthogonal basis {𝑒𝑘,𝑚 :

𝑚 > 0} of ℱ𝑘2 (C), where 𝑒𝑘,𝑚(𝑧) =
(︀
𝜋𝑛

𝑛!

)︀ 1
2 𝑒𝜋|𝑧|

2 (︀ 𝑑
𝑑𝑧

)︀𝑘 [︁
𝑒−𝜋|𝑧|

2

𝑧𝑚
]︁
.

2.4 A polyanalytic Weierstrass function

In order to transmit the signal, we use the following analogue of the Whittaker-
Shannon-Kotel´nikov sampling theorem. Let 𝜎 be the Weierstrass sigma function
corresponding to Λ defined by

𝜎Λ(𝑧) = 𝑧
∏︁

𝜆∈Λ∖{0}

(︁
1− 𝑧

𝜆

)︁
𝑒

𝑧
𝜆
+ 𝑧2

2𝜆2 ,

To simplify our notations we will write the results in terms of the square lattice,
Λ = 𝛼(Z+ 𝑖Z) consisting of the points 𝜆 = 𝛼𝑙 + 𝑖𝛼𝑚, 𝑘,𝑚 ∈ Z, but most of what
we will say is also true for general lattices. To write down our explicit sampling
formulas, the following polyanalytic extension of the Weierstrass sigma function is
required:
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𝑆𝑛+1
Λ (𝑧) =

(︂
𝜋𝑛

𝑛!

)︂ 1
2

𝑒𝜋|𝑧|
2
(︂
𝑑

𝑑𝑧

)︂𝑛 [︃
𝑒−𝜋|𝑧|

2 (𝜎Λ(𝑧))
𝑛+1

𝑛!𝑧

]︃
.

Clearly, 𝑆1
Λ(𝑧) = 𝜎Λ(𝑧)/𝑧. Let 𝜎Λ∘(𝑧) be the Weierstrass sigma function associ-

ated to the adjoint lattice Λ∘ = 𝛼−1(Z + 𝑖Z) of Λ and consider the corresponding
“polyanalytic Weierstrass function” 𝑆𝑛Λ0(𝑧). With this terminology we have:

Theorem 1. If 𝛼2 < 1
𝑛+1 , then every 𝐹 ∈ F𝑛+1

2 (C) can be written as:

𝐹 (𝑧) =
∑︁

𝜆∈𝛼(Z+𝑖Z)

𝐹 (𝜆)𝑒𝜋𝜆𝑧−𝜋|𝜆|
2

S𝑛+1
Λ0 (𝑧 − 𝜆),

where S𝑛Λ0(𝑧) =
𝑛∑︀
𝑘=1

𝑆𝑘Λ0(𝑧).

Combining this with the decomposition (3) gives:

Corollary 1. If 𝛼2 < 1
𝑛+1 , every 𝐹 ∈ ℱ𝑛+1

2 (C) can be written as:

𝐹 (𝑧) =
∑︁

𝜆∈𝛼(Z+𝑖Z)

𝐹 (𝜆)𝑒𝜋𝜆𝑧−𝜋|𝜆|
2

𝑆𝑛+1
Λ0 (𝑧), (5)

3 The Gabor connection

3.1 The Gabor transform

The study of polyanalytic Fock spaces can be significantly enriched via a connection
to Gabor analysis. Recall that the Gabor transform of a function or distribution 𝑓
with respect to a window function 𝑔 is defined to be

𝑉𝑔𝑓(𝑥, 𝜉) =

∫︁
R

𝑓(𝑡)𝑔(𝑡− 𝑥)𝑒−2𝜋𝑖𝜉𝑡𝑑𝑡. (6)

Given a point 𝜆 = (𝜆1, 𝜆2) in phase-space R2, the corresponding time-frequency
shift is 𝜋𝜆𝑓(𝑡) = 𝑒2𝜋𝑖𝜆2𝑡𝑓(𝑡−𝜆1), 𝑡 ∈ R. If we choose the Gaussian function ℎ0(𝑡) =
2

1
4 𝑒−𝜋𝑡

2 as a window in (6), then a simple calculation shows that the Bargmann
transform is related to these special Gabor transforms as follows:

ℬ𝑓(𝑧) = 𝑒−𝑖𝜋𝑥𝜉+𝜋
|𝑧|2
2 𝑉ℎ0𝑓(𝑥,−𝜉). (7)
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With a bit more effort, we can choose the 𝑛𝑡ℎ Hermite function ℎ𝑛(𝑡) =

𝑐𝑛𝑒
𝜋𝑡2
(︀
𝑑
𝑑𝑡

)︀𝑛 (︁
𝑒−2𝜋𝑡2

)︁
as a special window in (6), and find a similar relation be-

tween Gabor transforms with Hermite functions and true polyanalytic Bargmann
transforms:n

ℬ𝑛+1𝑓(𝑧) = 𝑒−𝑖𝜋𝑥𝜉+
𝜋
2
|𝑧|2𝑉ℎ𝑛𝑓(𝑥,−𝜉). (8)

This formula connects polyanalytic Fock spaces with Gabor analysis. Using this
connection it was possible to prove results that seemed hopeless using only complex
variables. For instance, it was possible to prove that the sampling and interpolation
lattices of F𝑛2 (C) can be characterized by their density, something previously known
only for analytic functions.

3.2 Gabor expansions with Hermite functions

Let us see what Theorem 1 tells about Gabor expansions. From Corollary 1, if
𝛼2 < 1

𝑛+1 , then every 𝐹 ∈ ℱ2(C) can be written in the form (5). Now, applying the
inverse Bargmann transform and doing some calculations involving time-frequency
shifts and Fock shifts (see [2] for the details), one can see that this expansion is
exactly equivalent to the Gabor expansion of an 𝐿2(R) function. More precisely, if
𝛼2 < 1

𝑛+1 , every 𝑓 ∈ 𝐿2(R) admits the following representation as a Gabor series

𝑓(𝑡) =
∑︁
𝑙,𝑘∈Z

𝑐𝑘,𝑙𝑒
2𝜋𝑖𝛼𝑙𝑡ℎ𝑛(𝑡− 𝛼𝑘). (9)

This sort of expansions are have been used before for practical purposes, for in-
stance, in image analysis [8]. Their mathematical study (see [1, 2, 10–12]) exposed
a aesthetic blend of ideas from signal and complex analysis, leading to one of those
scarse examples in mathematics.

Stable Gabor expansions of the form (9) can be obtained from frame theory.
For a countable subset Λ ∈ R2, one says that the Gabor system 𝒢 (ℎ𝑛,Λ) = {𝜋𝜆ℎ𝑛 :
𝜆 ∈ Λ} is a Gabor frame or Weyl-Heisenberg frame in 𝐿2(R), whenever there exist
constants 𝐴,𝐵 > 0 such that, for all 𝑓 ∈ 𝐿2(R),

𝐴 ‖𝑓‖2𝐿2(R) 6
∑︁
𝜆∈Λ

⃒⃒⃒
⟨𝑓, 𝜋𝜆ℎ𝑛⟩𝐿2(R)

⃒⃒⃒2
6 𝐵 ‖𝑓‖2𝐿2(R) . (10)

The first proof of the sufficiency of the condition 𝛼2 < 1
𝑛+1 for the expansion (9)

is due to Gröchenig and Lyubarskii [10]. In the same paper, the authors provide
some evidence to support the conjecture that the condition may even be sharp
(it is known from a general result of Ramanathan and Steger [14] that 𝛼2 < 1 is
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necessary), a statement which would be surprising, since 𝛼2 < 1
𝑛+1 is exactly the

sampling rate necessary and sufficient for the expansion of 𝑛 functions using the
superframe (the superframe [11] is a vectorial version of frame which has be seen
to be equivalent to sampling in the polyanalytic space [1]). The following problem
seems to be quite hard.

Problem [10]. Find the exact range of 𝛼 such that 𝒢 (ℎ𝑛, 𝛼(Z+ 𝑖Z)) is a frame.
Recently, Lyubarskii and Nes [12] found that 𝛼2 = 3

5 >
1
2 is a sufficient condition

for the case 𝑛 = 1. They also proved that, if 𝛼2 = 1 − 1
𝑗 , no odd function in the

Feichtinger algebra [7] generates a Gabor frame. In [12], supported by their results
and by some numerical evidence, the authors formulated a conjecture.

Conjecture [12]. If 𝛼2 < 1 and 𝛼2 = 1− 1
𝑗 , then 𝒢 (ℎ1, 𝛼(Z+ 𝑖Z)) is a frame.

3.3 Sampling and Interpolation in F𝑛2 (C)

We say that a set Λ is a set of sampling for F𝑛2 (C) if there exist constants 𝐴,𝐵 > 0
such that, for all 𝐹 ∈ F𝑛2 (C),

𝐴 ‖𝐹‖2
F𝑛+1

2 (C) 6
∑︁
𝜆∈Λ
|𝐹 (𝜆)|2 𝑒−𝜋|𝜆|

2

6 𝐵 ‖𝐹‖2
F𝑛+1

2 (C) .

A set Λ is a set of interpolation for F𝑛2 (C) if for every sequence {𝑎𝑖(𝜆)} ∈ 𝑙2, we can
find a function 𝐹 ∈ F𝑛2 (C) such that 𝑒𝑖𝜋𝜆1𝜆2−

𝜋
2
|𝜆|2𝐹 (𝜆) = 𝑎𝑖(𝜆), for every 𝜆 ∈ Λ. The

sampling and interpolation lattices of F𝑛2 (C) can be characterized by their density.
For the square lattice the results are as follows.

Theorem 2. The lattice 𝛼(Z + 𝑖Z) is a set of sampling for F𝑛2 (C) if and only
if 𝛼2 < 1

𝑛+1 . and it is a set of interpolation for F𝑛2 (C) if and only if 𝛼2 > 1
𝑛+1 .

So far, nobody has been able to find a proof of these results using only complex
variables. The proof in [1] is based on the observation that, using the polyanalytic
Bargmann transform, the sampling problem can be transformed in a problem about
Gabor superframes with Hermite functions. Then, a remarkable structure result of
Gabor analysis, the so called Ron-Shen duality [15] transforms the problem in a
problem about Riesz sequences, which can be further transformed in a problem
about multiple interpolation in the Fock space which has been solved in [6]. The
dual of this argument proves the second theorem. The characterization of the
lattices yielding Gabor superframes with Hermite functions had been previously
obtained by Gröchenig and Lyubarskii in [11], using the Wexler-Rax orthogonality
relations.
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4 The Quantum connection

4.1 The Landau levels

The motion of a charged particle in a constant uniform magnetic field in R2 is
described by the Schrödinger operator

𝐻𝐵 = −1

4

(︁
(𝜕𝑥 + 𝑖𝐵𝑦)2 + (𝜕𝑦 − 𝑖𝐵𝑥)2

)︁
− 1

2

acting on 𝐿2
(︀
R2
)︀
. Here 𝐵 > 0 is the strength of the magnetic field. Writing

̃︁Δ𝑧 = 𝑒
𝐵
2
|𝑧|2𝐻𝐵𝑒

−𝐵
2
|𝑧|2

we obtain the following Laplacian on C

̃︁Δ𝑧 = −
𝑑

𝑑𝑧

𝑑

𝑑𝑧
+𝐵𝑧

𝑑

𝑑𝑧
. (11)

This Laplacian is positive and selfadjoint operator in the Hilbert space ℒ2(C) and
the set {𝑛, 𝑛 ∈ Z+} can be shown to be the pure point spectrum of ̃︁Δ𝑧 in ℒ2(C).
The eigenspaces of ̃︁Δ𝑧, are known as the Landau levels. In [3] the authors consider

𝐴2
𝑛,𝐵(C) = {𝐹 ∈ ℒ2(C) : Δ̃𝑧,𝐵𝐹 = 𝑛𝑓},

and obtain an orthogonal basis for the spaces 𝐴2
𝑛,𝐵. When 𝐵 = 𝜋 we can use the

results in [3] (comparing either the orthogonal basis or the reproducing kernels of
both spaces) to see that

𝐴2
𝑚,𝜋(C) = ℱ𝑛2 (C). (12)

Now, using the true polyanalytic transform, the results about Gabor frames with
Hermite function translate to sampling in true polyanalytic Fock: The lattice
𝛼(𝑍+ 𝑖𝑍) is a set of sampling for 𝐹𝑛2 (C) if and only 𝐺 (ℎ𝑛, 𝛼(Z+ 𝑖Z)) is a Gabor
frame. Thus, we conclude that, in particular, if 𝛼2 < 1

𝑛+1 , the subsystems of states
constituted by the lattice 𝛼(Z+ 𝑖Z) are complete in the Landau levels. Now, take
𝐵 = 1 and observe that ̃︁Δ𝑧 =

(︂
− 𝑑

𝑑𝑧
+ 𝑧

)︂(︂
𝑑

𝑑𝑧

)︂
.

This suggests us to consider the operators

a+ = − 𝑑

𝑑𝑧
+ 𝑧, a− =

𝑑

𝑑𝑧
,
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which are formally adjoint to each other and satisfy the commutation relations for
the quantum mechanic creation and annihilation operators. Vasilevski [17, Theorem
2.9] proved that the operators√︃

(𝑘 − 1)!

(𝑙 − 1)!

(︀
a+
)︀𝑙−𝑘 |ℱ𝑘

2 (C)
: ℱ𝑘2 (C)→ ℱ 𝑙2(C)√︃

(𝑘 − 1)!

(𝑙 − 1)!
a𝑙−𝑘|ℱ𝑘

2 (C)
: ℱ 𝑙2(C)→ ℱ𝑘2 (C)

are Hilbert spaces isomorphisms (and one is the inverse of the other). Given our
identification (12) we conclude that the operators 𝑎+ and 𝑎− are, respectively, the
raising and lowering operators between two different Landau levels.

4.2 Displaced Fock states

In [16], Wünsche derives a representation for the displaced Fock states |𝑧, 𝑛 >:

|𝑧, 𝑛 >= (−1)𝑛√
𝑛!

(︂
− 𝑑

𝑑𝑧
+ 𝑧

)︂𝑛
|𝑧 > . (13)

Observing that 𝑒|𝑧|
2 𝑑
𝑑𝑧

[︁
𝑒−|𝑧|2𝐹 (𝑧)

]︁
= 𝑑

𝑑𝑧𝐹 (𝑧) − 𝑧𝐹 (𝑧), one realizes that (13) is

essentially the map 𝑇 : ℱ2(C)→ ℱ𝑛+1
2 (C) such that

𝑇 : 𝐹 (𝑧)→ 𝑒𝜋|𝑧|
2
(︂
𝑑

𝑑𝑧

)︂𝑛 [︁
𝑒−𝜋|𝑧|

2

𝐹 (𝑧)
]︁
.

Thus, the displaced Fock states are also true polyanalytic Fock spaces. We
can now use Gröchenig and Lyubarskii result to show that if 𝛼2 < 1

𝑛+1 then the
subsystem of these coherent states constituted by the square lattice on the plane
is overcomplete. From Ramathan and Steeger general result [14], we know that if
𝛼2 > 1 they are not. This can be seen as analogues of Perelomov completeness
result [13] in the setting of displaced Fock states.

5 Reproducing kernels

The reproducing kernels of the polyanalytic Fock spaces have been computed using
several different methods: invariance properties of the Landau laplacian ̃︁Δ𝑧 [3],
composition of unitary operators [17], Gabor transforms with Hermite functions [2],
and the expansion in the kernel basis functions [8]. Nice formulas are obtained using
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the Laguerre polynomials

𝐿𝛼𝑘 (𝑥) =
𝑘∑︁
𝑖=0

(−1)𝑖
(︂
𝑘 + 𝛼

𝑘 − 𝑖

)︂
𝑥𝑖

𝑖!
.

The reproducing kernel of the space ℱ𝑛2 (C), 𝒦𝑛(𝑧, 𝑤), can be written as 𝒦𝑛(𝑧, 𝑤) =
𝜋𝐿0

𝑛−1(𝜋 |𝑧 − 𝑤|
2)𝑒𝜋𝑧𝑤. This gives the explicit formula for the orthogonal projection

𝑃𝑛 required at the step 5. in our theoretical multiplexing device of section 2:

(𝑃𝑛𝐹 )(𝑤) =

∫︁
C

𝐹 (𝑧)𝜋𝐿0
𝑛−1(𝜋 |𝑧 − 𝑤|

2)𝑒𝜋𝑧(𝑤−𝑧)𝑑𝜇(𝑧). (14)

The reproducing kernel of the space F𝑛2 (C) is denoted by K𝑛(𝑧, 𝑤). Using the for-

mula
𝑛−1∑︀
𝑘=0

𝐿𝛼𝑘 = 𝐿𝛼+1
𝑛−1, (3) gives K𝑛(𝑧, 𝑤) = 𝜋𝐿1

𝑛−1(𝜋 |𝑧 − 𝑤|
2)𝑒𝜋𝑧𝑤. In [8], a variant

of this setting is used in the investigation of the polyanalytic Ginibre ensemble. The
authors consider the space with reproducing kernel

K𝑛
𝑚(𝑧, 𝑤) = 𝑚𝐿1

𝑛−1(𝑚 |𝑧 − 𝑤|
2)𝑒𝑚𝑧𝑤

and 𝑃𝑜𝑙𝑚,𝑛,𝑘 = 𝑠𝑝𝑎𝑛{𝑧𝑗𝑧𝑙 : 0 6 𝑗 6 𝑘 − 1, 0 6 𝑙 6 𝑛− 1}.
Several interesting asymptotic results are obtained. For instance, denoting the

reproducing kernel of 𝑃𝑜𝑙𝑚,𝑛,𝑘 by K𝑛
𝑚,𝑘(𝑧, 𝑤), it is proved that, if 𝑧, 𝑤 ∈ D, when

𝑚, 𝑘 →∞ with |𝑚− 𝑘| bounded and 1− |𝑧𝑤| > 𝜏 > 0, then

K𝑛
𝑚,𝑘(𝑧, 𝑤) = K𝑛

𝑚(𝑧, 𝑤) +𝑂(𝑒−
1
2
𝑚𝜏2𝑒𝑚|𝑧𝑤|).

Remark. Comparing this set up with section 4.1, one recognizes the parameter
𝑚 as the strengh of the magnetic field 𝐵. Therefore, the physical interpretation of
the above limit 𝑚, 𝑘 →∞ consists of increasing the strength of the magnetic field
and simultaneously the number of independent states in the system.
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ON DECOMPOSITION THEOREM IN NUMERICAL INVERSION
PROBLEM OF LAPLACE INTEGRAL TRANSFORM
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Abstract. The different approaches for the decomposition of Laplace transforms
based on the Laguerre series expansions of the functions-originals are introduced.
The use of these decompositions in the theoretical sense is studied firstly for the
extension of operational calculus rules into other classes of the functions-originals.
Their use for the numerical inversion of Laplace integrals is studied secondly. The
fundamental connection of Laguerre polynomials with Laplace integral transform
was noticed in publications of outstanding mathematicians Widder D.V. [1], Tri-
comi F. [2], Bateman H. [3], Hille E. [4], Shohat J. [5], Pollard H. [6] and other
beginning from thirties years of last century. These works have attracted attention
of next generations of operational calculus investigators for a long time. The exten-
sive bibliography of studies in this direction exist diffused in different monographs
and papers at present. The decomposition of Laplace transforms is considered in
two aspects: in theoretical sense – construction of generalized operational calculus
on the basis of Euler principle of divergent series summing applied to Laguerre se-
ries; in applied sense – analysis of some technical methods of functions – originals
decompositions into the Laguerre series.

1 Euler principle of originals space completion of operational cal-
culus

Leonard Euler wrote in the book [7] “... Let’s consider the result of summing of
all terms as the sum of the series as usually. It’s undobtedly, that it’s possible to
obtain sums only for these infinite series, which are convergent and give results the
more closer to any definite value, the more biggest number of series are added...
We’ll assign the word “sum” the finite value different from ordinary. More precisely
we’ll assert that the sum of some infinite series is the finite expression from which
decomposition this series arises”.

The last sentence is the statement of famous Euler principle on summation of
divergent series.
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The “sum of the series” is the prime notion by Euler as the “series” is the sec-
ondary, derived. The picture is opposite in ordinary sense: the “series” is the initial,
and the “sum of the series” is secondary.

The similar scheme may be used under the construction of the operational cal-
culus. The transform of the original 𝑓(𝑡) is the function 𝐹 (𝑝) of complex variable
𝑝, obtained by the multiplication of the original 𝑓(𝑡) and 𝑒−𝑝𝑡 and integration by 𝑡
on the interval from 0 to∞ in the original sense of the operational calculus. There-
fore the original is the initial, and the transform is the secondary: the original
produces the transform. The analog of Euler principle in the operational calculus
assumes such procedure of the transforms space construction, that the transform is
the initial, and the original — secondary: transform produces the original.

Traditionally the function – transform 𝐹 (𝑝) is generated by the function – orig-
inal 𝑓(𝑡) accordingly the Laplace–Karson integral transform:

𝜙(𝑝) = 𝑝

∞∫︁
0

𝑒−𝑝𝑡𝑓(𝑡)𝑑𝑡. (1)

The question about the convergence of improper integral (1) arises in this case
inevitably. It is known [8], that sufficient and necessary condition of existence of
integral (1) in the domain Re 𝑝 > 𝜗0 for the function 𝑓(𝑡) summable on every
interval [0, 𝑇 ](𝑇 > 0) is the fulfilment of the condition 𝑒−𝜗0𝑡

∫︀ 𝑡
0 𝑓(𝑡)𝑑𝑡 → 0 for

𝑡 → ∞. It’s convenient to use the following notations for future presentation: a)
let’s replace the symbol of free parameter 𝑝 of integral (1) on 𝑧 according the formula
𝑧 = 1/𝑝, the integral (1) takes respectively the form

𝐹 (𝑧) =
1

𝑧

∞∫︁
0

𝑒−
𝑡
𝑧 𝑓(𝑡)𝑑𝑡, (2)

where 𝐹 (𝑧) = Φ(1/𝑧); b) let’s denote the relation between functions 𝑓(𝑡) and 𝐹 (𝑧),
defined by integral (2) on “𝑧” — language, by symbol

𝑓(𝑡)÷ 𝐹 (𝑧) (3)

and designate (3) as operational congruence.

Let’s condider the basic operational congruences. It’s not difficult to obtain the
validity of following equality
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1

𝑧

∞∫︁
0

𝑡𝑘

𝑘!
𝑒−

𝑡
𝑧 𝑑𝑡 = 𝑧𝑘 (Re 𝑧 > 0),

by means of integration by parts. The last equality means that the following
operational congruence

𝑡𝑘

𝑘!
÷ 𝑧𝑘, 𝑘 ∈ 𝑁. (4)

is valid.

In particular for the unitary Hevisaid function 𝐻(𝑡) the equality 𝐻(𝑡) ÷ 1 is
correct.

Further on the basis of (4) the operation congruence is valid

𝐿𝑛(𝑡)÷ (𝑧 − 1)𝑛, ∀𝑛 ∈ 𝑁, (5)

where 𝐿𝑛(𝑡) – Laguerre polynomial 𝐿𝑛(𝑡) =
𝑛∑︀
𝑘=0

(−1)𝑛−𝑘(𝑛𝑘)
𝑡𝑘

𝑘 . So if 𝑓(𝑡) has a

Laguerre expansion

𝑓(𝑡) =

∞∑︁
𝑛=0

𝑎𝑛𝐿𝑛(𝑡), (6)

convergent uniformly on every finite interval [0,T], then 𝑧-transform Laplace–
Karson appropriate it takes the form

𝐹 (𝑧) =

∞∑︁
𝑛=0

𝑎𝑛(𝑧 − 1)𝑛, (𝑧 ∈ 𝐶)

that means 𝐹 (𝑧) is an analytical in any vicinity of the point 𝑧 = 1. In this connection
if 𝐹 (𝑧) admits an analytical continuation into the point 𝑧 = 𝑎 ∈ 𝐶, then in the
vicinity of this point 𝐹 (𝑧) has the expansion

𝐹 (𝑧) =
∞∑︁
𝑛=0

𝑐𝑛(𝑧 − 𝑎)𝑛. (7)

It’s easy to see that the operational correspondence is valid

𝑎𝑛𝐿𝑛(𝑡/𝑎)÷ (𝑧 − 𝑎)𝑛. (8)
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The formal Laguerre series corresponds the transform 𝐹 (𝑧) according to (7) and
(8) in general

𝑓(𝑡) ∼
∞∑︁
𝑛=0

𝛼𝑛𝑐𝑛𝐿𝑛(𝑡/𝛼). (9)

Its coefficients satisfy the Cauchy-Hadamard condition because the convergence’s
radius of the series (7) differs from 0

lim
√︀
|𝑐𝑛| ≠∞. (10)

Let’s name the Laguerre series (9) with coefficients 𝑐𝑛 satisfying the Cauchy-
Hadamard condition, as generalized Laguerre series of the function 𝑓(𝑡), and denote
the population of all generalized Laguerre series of the function 𝑓(𝑡) as the symbol
𝑓(𝑡).

Let’s consider now the space 𝐿 of all possible generalized Laguerre series of the
type (9) (for different 𝛼). The space 𝐿* of all possible power series corresponds
to it. It’s obviously that the correlation (8) set up the one-to-one correspondence
between 𝐿 and 𝐿*. It’s possible to describe the Euler principle of the generalization
of transform’s and original’s notion by the following way now.

Let’s introduce the equivalence relation (𝑤) in the space 𝐿* by the following
rule: two power series 𝐹𝛼(𝑧) and 𝐹𝛽(𝑧) in the vicinities of the points 𝛼 and 𝛽
correspondingly will be considered in one equivalence class if they are the elements
of one analytic function 𝐹 (𝑧), i.e. the simple contour exists connecting points
𝑧 = 𝛼 and 𝑧 = 𝛽, along which the element 𝐹𝛼(𝑧) may be continued analytically
until 𝐹𝛽(𝑧).

The factor-space 𝐿*/𝑤 on indicated equivalence relation 𝑤 became equivalent
to the space of complete analytic functions of complex variable 𝑧 with which we
identify it as a result.

It’s clear that the equivalence relation in the space 𝐿* performs the the equiv-
alence relation 𝜆 in the space 𝐿 by the following rule: two generalized Laguerre
series 𝑓𝛼(𝑡) and 𝑓𝛽(𝑡) relate to one equivalency class if the power series 𝐹𝛼(𝑧) and
𝐹𝛽(𝑧) corresponding to them are equivalent in the meaning mentioned above. Let’s
denote the relevant factor-space of the generalized Laguerre series as symbol 𝐿/𝜆.

One-to-one correspondence takes the place according to the construction

𝐿/𝜆↔ 𝐿*/𝑤. (11)

Let’s name the equivalence classes on 𝐿, i.e. elements of the space 𝐿/𝜆 as generalized
originals and denote by symbol {𝑓(𝑡)} (briefly written as g.o.). Let’s name the
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space 𝐿/𝜆 as the space of generalized originals, and the space 𝐿*/𝑤 - as the space
of transforms.

According (11) every g.o. {𝑓(𝑡)} has one-to-one correspondence with the corre-
sponding transform 𝐹 (𝑡) written in the form {𝑓(𝑡)}÷𝐹 (𝑧). Therefore every operator
𝐴*, acting in the transform space 𝐿* corresponds to unique operator 𝐴, acting in
the space g.o. 𝐿.

This scheme allows firstly to be free from the limitations of Laplace trans-
forms convergence since not the original generates the transform, but the trans-
form (arbitrary analytical function) generates the original which may be not the
function in the general case. Secondly it allows to extend the operational rules
𝐴*𝐹 (𝑧)÷𝐴{𝑓(𝑡)} onto the operational correspondences 𝐹 (𝑧)÷ {𝑓(𝑡)}.

So one-to-one correspondence between 𝐿* and 𝐿 predetermines the space of
originals and various operational rules, the operation 𝐴* over the transform 𝐹 (𝑧)
forms the operation 𝐴 over the corresponding original in this case.

But it’s necessary to take into the account the following. Let’s remind that
domail 𝐺 is called as domain of the definition, and its boundary Γ — as natural
boundary of analytical function 𝐹 (𝑧), if it’s impossible to extend 𝐹 (𝑧) analytically
over the boundary of the domain 𝐺.

It’s known that 𝐹1(𝑧) =
∞∑︀
𝑘=0

𝑧𝑘! and 𝐹2(𝑧) =
∞∑︀
𝑘=0

(𝑧−2)2𝑘 have definition domains

correspondingly 𝐺1(|𝑧| < 1) and 𝐺2(|𝑧 − 2| < 1). Every from these transforms
generates g.o.

𝑓1(𝑡) =
∞∑︁
𝑘=0

𝑡𝑘

𝑘!

and

𝑓2(𝑡) =
∞∑︁
𝑘=0

22
𝑘
𝐿2𝑘(𝑡/2

2𝑘).

As 𝐺1(|𝑧|) ⌢ 𝐺2(|𝑧 − 2| < 1) = 0, then the operations of the type 𝐹1(𝑧) ÷ 𝐹2(𝑧)
and 𝐹1(𝑧)𝐹2(𝑧) lose the sense. Therefore, operations of summing and convolution
g.o. may be defined not for all g.o. as the space 𝑊 = 𝐿*

𝑤 and as the space Λ = 𝐿/𝜆
are not the rings. Let’s assume in the connection with this fact further that the
domains of definition of the considered transforms have nonempty domain of the
intersection. In particular the analytical functions with all complex 𝑧− plane with
the exception of some special points of this plane (singular points of the transform)
as a domain definition may be considred as the space of transforms.

The property of the linearity is valid under these assumptions also: if {𝑓(𝑡)} ÷
𝐹 (𝑧) and {𝑔(𝑡)} ÷𝐺(𝑧), then 𝛼{𝑓(𝑡)}+ 𝛽{𝑔(𝑡)} ÷ 𝛼𝐹 (𝑧) + 𝛽𝐺(𝑧) for all 𝛼, 𝛽 ∈ 𝑃 .
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Let’s denote g.o. corresponding the transform 𝛼𝐹 (𝑧) + 𝛽𝐺(𝑧) by symbol
{𝛼𝑓(𝑡) + 𝛽𝑔(𝑡)}. Then the following rules of the operations with braces in the
space of g.o. are valid:

{𝛼𝑓(𝑡)} = 𝛼{𝑓(𝑡)}

and
{𝛼𝑓(𝑡) + 𝛽𝑔(𝑡)} = 𝛼{𝑓(𝑡)}+ 𝛽{𝑔(𝑡)}.

Let’s consider g.o. {𝑓(𝑡)}. This function may be considered as a representative of
the equivalence classes {𝑓(𝑡)} if at least one Laguerre series exists in this equivalence
class with one-to-one function 𝑓(𝑡) associated by any regular kind (it’s possible for
example when Laguerre series converges to function 𝑓(𝑡) in one or other case) and
it’s possible to reject the brace in this case.

Example. Let’s 𝐹 (𝑧) = 𝑙𝑛𝑧 (principal branch of logarithm, chosen by the con-

dition −𝜋 6 arg𝑧 < 𝜋). The expansion is valid ln 𝑧 =
∞∑︀
𝑘=0

(−1)𝑘−1 (𝑧−1)𝑘

𝑘 , which

corresponds the expansion 𝑓(𝑡) =
∞∑︀
𝑘=0

(−1)𝑘−1 1
𝑘𝐿𝑘(𝑡) in the space of g.o.

It’s known that last Laguerre series converges for every 𝑡 > 0 to the sum equal
ln 𝑡+ 𝐶 (C – Euler constant). Therefore, {𝑓(𝑡)} = ln 𝑡+ 𝐶 and ln 𝑡+ 𝐶 ÷ ln 𝑧.

Remark 1. The uniqueness of the generalized original responding to the trans-
form 𝐹 (𝑧) is regarded some widely in the scope of the considered theory then it took
place in the classical operational calculus. So, g.o. {𝑓(𝑡)} responding to the multi-
function 𝐹 (𝑧) may consider different components corresponding different branches
of the function 𝐹 (𝑧). For example the original ln 𝑡+𝐶 corresponds to the principal
branch of the logarithm Ln 𝑧 and therefore the g.o. consisting from the components
of the type ln 𝑡+ 𝐶 + 2𝑘𝜋 corresponds to the function Ln 𝑧.

So the sampling from the equivalence class {𝑓(𝑡)} may be dependent from the
choice of transform branch 𝐹 (𝑡). This fact is important for the case of multifunction
transform.

It’s easy to show that the space of the functions-originals of the classical oper-
ational calculus is the part of the space of generalized originals. The action of all
operational rules of the classical operational calculus is extended into the space of
generalized originals on this basis.

2 Operational rules of the generalized operational calculus

Euler principle of the construction of the generalized operational calculus is formu-
lated shortly as "no from the original to transform (by means of Laplace–Karson



214 The 8th Congress of the ISAAC — 2011

integral transform), but as from the transform to the original (by means of the com-
parison of the transform 𝐹 (𝑧) – arbitrary complete analytical function, generalized
original {𝑓(𝑡)} – equivalence class of the generalized Laguerre series)".

Correspondingly it’s possible to prove the rules of the operational calculus ac-
cording the following scheme: if the operational relation is given 𝐹 (𝑧)÷{𝑓(𝑡|}, then
every operator 𝐴*, acting on the transform 𝐹 (𝑧) generates in the space of g.o. the
operator 𝐴, acting on g.o. 𝑓(𝑡).

Let’s mention the following rules without the proof. If 𝐹 (𝑧) ÷ 𝑓(𝑡), then the
following correct:

(𝑖1) 𝑧𝐹 (𝑧)÷
𝑡∫︁

0

{𝑓(𝑡)}𝑑𝜏 (integration g.o.)

(𝑖2) 𝐹 (𝑧)𝐺(𝑧)÷
𝑑

𝑑𝑡

𝑡∫︁
0

{𝑓(𝑡− 𝜏)}{𝑔(𝜏)}𝑑𝜏 (convolution g.o.)

(𝑖3)
𝑑

𝑑𝑧
𝐹 (𝑧)÷ 𝑑

𝑑𝑡
𝑡
𝑑

𝑑𝑡
{𝑓(𝑡)}.

Operator 𝐵 := 𝑑
𝑑𝑡 𝑡

𝑑
𝑑𝑡𝑓(𝑡) is connected closely with the Bessel equation and called

as Bessel operator.

Example. 𝐵 ln 𝑡 = 𝛿.

Really, ln 𝑧 − 𝐶 ÷ ln 𝑡. Therefore 𝐵 ln 𝑡÷ 1
𝑧 , but 1

𝑧 + 𝛿(𝑡).

(𝑖4) 𝑧
𝑑

𝑧
𝑧𝐹 (𝑧)÷ 𝑡{𝑓(𝑡)} (multiplication g.o. on t).(︂

𝑧
𝑑

𝑧
𝑧

)︂𝑛
𝐹 (𝑧)÷ 𝑡𝑛{𝑓(𝑡)}.

(𝑖5)
1

1− 𝜆𝑧
𝐹

(︂
𝑧

1− 𝜆𝑧

)︂
÷𝑒𝜆𝑡{𝑓(𝑡)} (decay theorem - multiplication g.o.on exponent).

If the integral exists then

(𝑖6)
1

𝑧
𝑧

𝑧∫︁
(0)

1

𝜉
𝐹 (𝜉)𝑑𝜉 +

{𝑓(𝑡)}
𝑡

(division g.o. on t).
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1

(𝑛− 1)!𝑧𝑛

𝑡∫︁
(0)

(𝑧 − 𝜉)𝑛−1𝐹 (𝜉)𝑑𝜉 +
{𝑓(𝑡)}
𝑡𝑛

, 𝑛 ∈ 𝑁.

(𝑖7)

𝑡∫︁
(0)

𝐹 (𝜉)𝑑𝜉 ÷
𝑡∫︁

0

𝑑𝜏

𝜏

𝜏∫︁
0

{𝑓(𝜉)}𝑑𝜉(𝐵 − integral g.o.)

(𝑖8) Derivatives g.o. and their transforms.

If the conclusion of the preceding rules has regular character (i.e. directly rely
on the definition of generalized Laguerre series), then the notion of g.j.derivative
demands preliminary definition.

It’s necessary to distinguish two types of derivatives as in the case of generalized
functions: g.o.derivative {𝑓(𝑡)} – written {𝑓 ′}(𝑡) and generalized derivative g.o.
{𝑓(𝑡)} – written 𝐷𝑡{𝑓(𝑡)}. It’s necessary to define these notions by means of action
on the transform 𝐹 (𝑧) g.o. {𝑓(𝑡)}.

Let’s turn our attention to the definition of the derivative. It’s given {𝑓(𝑡)} ÷
𝐹 (𝑧). Let’s the limit lim

𝑧→0
𝐹 (𝑧) = 𝐹 (0) exists. As according the rule of B-derivative

computation of g.o.
𝑑

𝑑𝑡
𝑡
𝑑

𝑑𝑡
𝑓(𝑡)÷ 𝐹 ′(𝑧),

then according to the integration rule

𝑡∫︁
0

(︂
𝑑

𝑑𝜏
𝜏
𝑑

𝑑𝜏

)︂
{𝑓(𝜏)}𝑑𝜏 ÷ 𝑧𝐹 ′(𝑧).

Further according to the division on 𝑡 rule

1

𝑡

𝑡∫︁
0

(︂
𝑑

𝑑𝜏
𝜏
𝑑

𝑑𝜏

)︂
{𝑓(𝜏)}𝑑𝜏 + 1

𝑧

𝑧∫︁
0

𝜉𝐹 ′(𝑧)

𝜉
𝑑𝜉.

But
1

𝑧

𝑧∫︁
0

𝜉𝐹 ′(𝑧)

𝜉
𝑑𝜉 =

1

𝑧

𝑧∫︁
0

𝐹 ′(𝑧)𝑑𝜉 =
𝐹 (𝑧)− 𝐹 (0)

𝑧
.

Let’s define the generalized original 1
𝑡

∫︀ 𝑡
0 𝐵{𝑓(𝜏)}𝑑𝜏 as the derivative of the gener-

alized original 𝑓(𝑡) and denote it by symbol 𝑓 ′(𝑡).
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It’s easy to show that for the cases with differentiable function 𝑓(𝑡) having finite
derivative in the point 𝑡 = 0

1

𝑡

𝑡∫︁
0

𝑑

𝑑𝜏
𝜏
𝑑

𝑑𝜏
𝑓(𝜏)𝑑𝜏 = 𝑓 ′(𝑡).

Let’s define the generalized derivative g.o. {𝑓(𝑡)}, given by transform 𝐹 (𝑧), as g.o.
corresponding the transform 𝐹 (𝑧)/𝑧, and denote by symbol

𝐷𝑡{𝑓(𝑡)} ÷
1

𝑧
𝐹 (𝑧).

So every g.o. is infinitely differentiable (in generalized sense).

The question on formulation of the derivatives of high order is connected with
the notion of the values g.o. in the point 𝑡 = +0. As it takes place in the theory of
generalized functions it’s impossible in the general case to introduce the notion of
the arbitrary g.o. in the arbitrary point 𝑡.

But basing on the Tauberian type theorems [9], which under some assumptions
on originals, connect the values of the transforms on the endpoints of the interval
[0,∞) with the values of the original on the endpoints of the interval [0,∞), it’s
appropriate to introduce the following definition. Let’s define the general value
g.o. 𝑓 in the points 𝑡 = +0 and 𝑡 = +∞ correspondingly the values of the trans-
form limits lim

𝑧→+∞
𝐹 (𝑧) and lim

𝑧→+∞
𝐹 (𝑧) (if they exist). These limits are considered

as g.o. values in given points in the case of Euler concept. We obtain by induc-
tion method using the definition of g.o. differentiation under the assumption that
𝐹 (0), 𝐹 ′(0), . . . , 𝐹 (𝑛−1)(0) exist

{𝑓𝑛(𝑡)} ÷ 1

𝑧𝑛

[︂
𝐹 (𝑧)− 𝐹 (0)− 𝑧

1!
𝐹 ′(0)− . . .− 𝑧𝑛−1

(𝑛− 1)!
𝐹 (𝑛−1)(0)

]︂
.

Hence it’s easy to establish the connection of the generalized derivative of 𝑛 − 𝑡ℎ
order g.o. {𝑓(𝑡)} with the derivative of 𝑛− 𝑡ℎ order g.o. {𝑓(𝑡)}

𝐷𝑛{𝑓(𝑡)} = {𝑓 (𝑛)(𝑡)}+ 𝐹 (0)𝛿(𝑛)(𝑡) +
𝐹 ′(0)

1!
𝛿(𝑛−1)(𝑡) + . . .+

𝐹 (𝑛−1)(0)

(𝑛− 1)!
𝛿(𝑡),

where 𝛿(𝑘)(𝑡) is 𝑘 − 𝑡ℎ generalized derivative of g.o. 𝛿(𝑡). Here 𝛿(𝑡) — generalized
original, corresponding to the transform 1

𝑧 , which is the generalized derivative of the
unit Hevisaid function 𝐻(𝑡). it’s easy to see the difference between the definitions of
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the derivative and generalized derivative of the generalized original on the following
example.

As 𝐻(𝑡) ÷ �̂�(𝑧) ≡ 1 then 𝑑
𝑑𝑡𝐻(𝑡) ÷ �̂�(𝑧)−�̂�(0)

𝑧 = 0, i.e. 𝐻 ′(𝑡) = 0, ∀𝑡 ∈ [0,∞).
But the generalized Hevisaid function is different from 0 :

𝐷𝑡𝐻(𝑡)÷ �̂�(𝑧))

𝑧
=

1

𝑧
, 𝑖.𝑒. 𝐷𝑡𝐻(𝑡) = 𝛿(𝑡).

Following four rules have symmetric form

(𝑖9) 𝑧
𝑚𝐹 (𝑚)(𝑧)÷ 𝑡𝑚𝐷𝑚{𝑓(𝑡)}.

(𝑖10) [𝑧
𝑛𝐹 (𝑧)](𝑛) ÷𝐷𝑚(𝑡𝑚{𝑓(𝑡)}).

(𝑖11) (𝑧
𝑑

𝑑𝑧
)𝑚𝐹 (𝑧)÷ (𝑡𝐷)𝑚{𝑓(𝑡)}.

(𝑖12)

(︂
𝑑

𝑑𝑧
𝑧

)︂𝑚
𝐹 (𝑧)÷ (𝐷𝑡)𝑚{𝑓(𝑡)}.

(𝑖13) 𝐹 (𝑧)𝑒
−𝜏/𝑧 ÷ {𝑓(𝑡− 𝜏)𝐻(𝑡− 𝜏)} (shift theorem).

(𝑖14)𝑓𝑜𝑟𝑎𝑙𝑙𝜆 ∈ 𝑅 : 𝐹 (𝜆𝑧)÷ {𝑓(𝜆𝑡)} (similarity theorem).

Remark 2. It’s possible to prove the relation (𝑖14) easily for 𝜆 > 𝑜 in the
traditional operational calculus. For the general case the shift theorem is arised
onto the level of generalized operational calculus for the arbitrary complex-valued
parameter 𝜆 with the conservation of all rules of the differentiation and integration
on parameter 𝜆, including Zhelezny lemma [10].

3 Harmonic analysis of Laguerre spectrum - numerical inversion
of Laplace transform

Let’s Fourier series is given

𝑔(𝑡) =
∞∑︁
𝑘=0

𝑎𝑘𝑡
𝑗𝑘𝑡. (12)

Obviously,
∀𝑠 ∈ 𝑍 𝑔(2𝜋𝑠+ 𝜏) = 𝑔(𝑡) for 0 6 𝜏 < 2𝜋. (13)
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Let’s assume 𝜏 := 2𝜋
𝑁 𝑚, 𝑚 ∈ 𝑍𝑁 . 𝑍𝑁 - ring of residues modulo 𝑁. Let’s calculate

the values of function 𝑔(𝜏) in points 𝜏 := 2𝜋
𝑁 𝑚, 𝑚 ∈ 𝑍𝑁 . Obviously,

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
=

∞∑︁
𝑘=0

𝑎𝑘𝑒
𝑗 2𝜋
𝑁

|𝑚𝑘|𝑁 . (14)

Here the residues of integer number 𝑟 on modulus 𝑁 is denoted by |𝑟|𝑁 . Let’s
represent the index of summing ”𝑘” of the series (14) in the form 𝑘 = 𝑡+𝑟𝑁, where
𝑟 ∈ 𝑁, 𝑡 = |𝑘|𝑁 ∈ 𝑍𝑁 . Then (14) transforms into the form

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
=
∑︁
𝑘+𝑟𝑁

𝑎𝑘+𝑟𝑁𝑒
𝑗 2𝜋
𝑁
𝑚𝑘

or

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
=
∑︁
𝑘∈𝑍𝑁

(︃ ∞∑︁
𝑟=0

𝑎𝑘+𝑟𝑁

)︃
𝑒𝑗

2𝜋
𝑁
𝑚𝑘, 𝑚 ∈ 𝑍𝑁 .

So the expansion (14) obtains the form of DTF (discrete Fourier transform with
the sampling equal 𝑁):

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
=
∑︁
𝑘∈𝑍𝑁

�̃�𝑘𝑒
𝑗 2𝜋
𝑁
𝑚𝑘, 𝑚 ∈ 𝑍𝑁 , (15)

where

�̃�𝑘 =
∞∑︁
𝑟=0

𝑎𝑘+𝑟𝑁 , 𝑘 ∈ 𝑍𝑁 . (16)

Converting DTF (15), we obtain

�̃�𝑘 =
1

𝑁

∑︁
𝑚∈𝑍𝑁

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
𝑒−𝑗

2𝜋
𝑁
𝑚𝑘, 𝑧 ∈ 𝑍𝑁 . (17)

The last expression transforms into the following form taking into the account (16)

𝑎𝑘 =
1

𝑁

∑︁
𝑚∈𝑍𝑁

𝑔

(︂
2𝜋

𝑁
𝑚

)︂
𝑒−𝑗

2𝜋
𝑁
𝑚𝑘 +Δ𝑘, (18)

where Δ𝑘 = − 1
𝑁

∞∑︀
𝑟=1

𝑎𝑘+𝑟𝑁 , 𝑧 ∈ 𝑍𝑁 .
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The formula (6) expresses the values of first 𝑁 coefficients of Fourier series over
the values of function 𝑔(𝑡) in the point 𝑖 = 2𝜋

𝑁 𝑚, 𝑚 ∈ 𝑍𝑁 with the error equal
value Δ𝑘.

Remarks.

1. Conclusion of the formula (8) assumes the fulfilment of conditions ensuring the
validity of all transforms with infinite series.

2. Let’s mention that the formula (6) is the particular interpretation of known
Poisson summing formula of the Fourier integral theory applicable to Fourier
series.

3. The precision of formula (8) depends from the value of the sampling 𝑁 and
decay velocity to zero of coefficients 𝑎𝑘(𝑘 →∞) of the series 𝑁.

4 Computation of Laguerre spectrum of the function-orginal given
by Laplace transform

Let’s the operational correspondence is given

𝑓(𝑡)÷ 𝐹 (𝑝), (Re 𝑝 > 𝛾 > 𝛾0), (19)

where 𝐹 (𝑝) – Laplace transform of function 𝑓(𝑡), and 𝛾0 – abscissa of absolute
convergence of Laplace integral. Let’s the condition for function 𝑓(𝑡) is valid

𝑒−𝛾ℎ𝑡𝑓(ℎ𝑡) ∈ 𝐿2(0,∞). (20)

Then the function 𝑒−2𝛾ℎ𝑡𝑓(2ℎ𝑡) decomposes into the orthogonal Laguerre series

𝑒−2ℎ𝑡𝑓(2ℎ𝑡) =

∞∑︁
𝑘=0

𝑎𝑘𝜙𝑘(2𝑡), (21)

where 𝜙𝑘(𝑡) – Laguerre function 𝜙𝑘(𝑡) = 𝑒−𝑡/2𝐿𝑛(𝑡) and 𝜙𝑘(𝑡) ÷
( 1
2
−𝑝)

𝑛

( 1
2
+𝑝)

𝑛+1 . The

series
1

2ℎ
𝐹

(︂
1

2𝑦
𝑝+ 𝛾

)︂
=

∞∑︁
𝑘=0

(︀
1
2 − 𝑝

)︀𝑘(︀
1
2 + 𝑝

)︀𝑘+1
(22)

corresponds to the Laguerre series in the space of the transforms or realizing the
conformal mapping of the half-plane Re 𝑝 > 0 into the circle |𝑧| < 1 by means of
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the function 𝑧 = 1−𝑝
1+𝑝 we rewrite the series (22) in the form

𝑔(𝑧) =
∞∑︁
𝑘=0

𝑎𝑘𝑧
𝑘, (23)

where
𝑔(𝑧) =

1

ℎ(1 + 𝑧)
𝐹

(︂
𝛾 +

1

2ℎ

1− 𝑧
1 + 𝑧

)︂
.

Therefore the problem of the computation of coefficients 𝑎𝑘 of expansion (31) re-
duces to the computation of coefficients 𝑎𝑘 of the power series (23) of function 𝑔(𝑧).
This comparatively simple method of the determination of Laguerre spectrum 𝑎𝑘 of
function-original by means of the decomposition of function-original 𝑔(𝑧) into the
power series (23) is used for the conclusion of big number of expansions of special
functions on Laguerre polynomials. It may be used also for the numerical calcula-
tion of the Laguerre spectrum of the function-original by means of the calculation
of the values of the transform 𝑔(𝑧) in the complex points 𝑧 on the circle |𝑧| = 1.
The theorem [11] has an esssential significance here. Let’s 𝑔(𝑧) ∈ 𝐻2 and 𝐿𝑛(𝑤, 𝑧)
is a polynomial of 𝑛 − 𝑡ℎ degree from 𝑧, interpolating function 𝑔(𝑧) in the roots
of 𝑛 + 1 − 𝑡ℎ degree from the unit. Then lim𝐿𝑛(𝑤, 𝑧) = 𝑔(𝑧), |𝑧| < 1, and the
tending to the limit is uniform on every closed set inside the contour 𝐶(|𝑧| = 1).

The computation of the coefficients 𝑎𝑘 of the series 𝑔(𝑒𝑖𝑡) =
∞∑︀
𝑘=0

𝑎𝑘𝑒
𝑖𝑘𝑡 as it was

shown above may be carried on by means of computation of function 𝑔(𝑒𝑖𝑡) values
in the points 𝑡 = 2𝜋

|𝑁𝑚| (𝑚 ∈ 𝑍𝑁 ).
These two facts open the ways for multiform application of harmonic analysis

for the numerical inversion of the Laplace integral transform.

References

1. D.V. Widder An application of Laguerre polynomials, Duke Math.J., 1 (1935),
N 2, 126–136.

2. F. Tricomi Transformazione de Laplace e polynomi di Laguerre, Rendiconti.,
Atti Accad. Naz. Linzci, 21 (1935), N 4, 232–239.

3. H. Bateman Two systems of polynomials for the solution of Laplace’s integral
equation, Duke Math. J., 2 (1936), N 3, 569–577.

4. E. Hille Bilinear formulas in the theory of the transformations of Laplace,
Composito Mathematics, 6 (1938), N 1.

5. J. Shochat Laguerre polynomials and the Laplace transforms, Duke Math. J.,
6 (1940), N 3, 615–626.



On Decomposition Theorem in Numerical Inversion Problem of . . . 221

6. H. Pollard Representation of an analytic function by Laguerre series, Annals.
Math., 48 (1947), N 2, 358–365.

7. L. Euler Differential calculus, “Gosizdat”, Moscow-Leningrad, (1949) [in Rus-
sian].

8. V.A. Ditkin To the theory of operational calculus, Doklady AN SSSR, 116,
(1957), N 1, 15–17 [in Russian].

9. G. Hardi Divergent series, “IL”, Moscow, 1951 [in Russian].
10. I. Mikusinski, R. Sikorski Elementary theory of generalized functions, vol.1,

“IL”, Moscow, 1959 [in Russian].
11. J.L. Walsh Interpolation and approximation by rational functions in complex

domain, “IL”, Moscow, 1961 [in Russian].

W. Amerbaev
Institute of Design Problems in Microelectronics, Russian Academy of Sciences,
Sovetskaya street, 3, Moscow-Zelenograd, Russia



222 The 8th Congress of the ISAAC — 2011

ON THE APPLICATION OF THE WIENER-TYPE TAUBERIAN
THEOREM TO THE HANKEL TRANSFORM

L. Ye. Britvina

Key words: Abelian and Tauberian theorems, integral transforms, Hankel trans-
forms, generalized function of slow growth; existence of quasi-asymptotics

AMS Mathematics Subject Classification: 46F12, 40E05, 44A15

Abstract. In this paper we consider the application of the Wiener-type Tauberian
theorem for generalized functions of slow growth to the Hankel integral transform
with the function 𝑗𝜈(𝜉) = 2𝜈(𝜉)−𝜈Γ(𝜈 + 1)𝐽𝜈(𝜉) in the kernel. Here 𝐽𝜈(𝜉) is the
Bessel function of the first kind of order 𝜈, 𝜈 > −1/2. Since the Hankel transform is
the Mellin convolution type transform then we can apply the general Wiener-type
Tauberian theorem in the spaces 𝑆𝑎,𝑀𝑏,𝑁,𝛿, where 𝑎 and 𝑀 characterize the behaviour
and smoothness of the test functions at infinity while 𝑏 and 𝑁 are the corresponding
characteristics in a neighbourhood of zero. These spaces was first introduced and
studied by Yu.N. Drozhzhinov and B.I. Zav’yalov. We consider some subspaces of
these spaces and obtain the quasi-asymptotic properties for the Hankel transform.

1 Introduction

In 1932 the well-known Tauberian theorem was proved by Norbert Wiener [1, 2].
This theorem in its multiplicative version can be stated as follows:

Let 𝑓(𝑡) ∈ 𝐿∞(0,+∞) and assume that 𝜙0(𝑡) ∈ 𝐿1(0,+∞) has Mellin transform

̂︀𝜙0(𝑥) =

+∞∫︁
0

𝑡−𝑖𝑥𝜙0(𝑡)𝑑 𝑡 ̸= 0 for all 𝑥 ∈ (−∞,+∞).

If the limit of the multiplicative convolution of 𝑓(𝑡) with 𝜙0(𝑡) exists:

lim
𝑘→+∞

∞∫︁
0

𝑓(𝑘𝑡)𝜙0(𝑡)𝑑 𝑡 = 𝑐,

then the corresponding limit exists for the convolution of 𝑓(𝑡) with any function
𝜙(𝑡) ∈ 𝐿1(0,+∞).

This investigation was partially supported by RFBR (grant 09-01-90710-mob_st).
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Wiener’s tauberian theorem plays an important role in harmonic analysis and
has numerous applications in several areas of mathematics (see, for example, [3–
6]). From the point of view of applications in modern mathematical physics, the
condition that the functions 𝑓 and 𝜙 belong to 𝐿∞ and 𝐿1, respectively, is very
restrictive.

In [7] Yu. N. Drozhzhinov and B. I. Zav’yalov proved a series of Wiener-type
theorems for generalized multiplicative convolutions in the spaces 𝑆𝑎,𝑀𝑏,𝑁,𝛿, where 𝑎
and 𝑀 characterize the behaviour and smoothness of the test functions at infinity
while 𝑏 and 𝑁 are the corresponding characteristics in a neighbourhood of zero.
These spaces was first introduced in [8] and was studied the basic properties of these
spaces and the Mellin transforms of their elements. Since the Hankel transform
is the Mellin convolution type transform then we can apply the results of these
researches and consider the quasi-asymptotic properties of Hankel transforms in
the subspaces of the spaces 𝑆𝑎,𝑀𝑏,𝑁,𝛿.

2 Definitions and notations

Let 𝑎 and 𝑏 be non-integers real numbers, 𝑎 > 𝑏. Let Π𝑎𝑏 be the strip

Π𝑎𝑏 = {𝑧 = 𝑥+ 𝑖𝑦 ∈ C : 𝑏 < 𝑦 < 𝑎, 𝑥 ∈ R}

and let Π𝑎𝑏 be its closure.
For non-integer 𝑥 < −1 we define the function <𝑥> = [−𝑥− 1], where [𝜉] is the

integer part of 𝜉.
If 𝜙(𝑡) has 𝑚 derivatives at zero, then its 𝑚th-order Taylor polynomial at zero

is denoted by

𝑇𝑚𝜙(𝑡) ≡ 𝑇
𝑚
𝜙 =

𝑚∑︁
ℓ=0

𝜙(ℓ)(0)

ℓ!
𝑡ℓ, 𝜙(ℓ)(0) =

𝑑ℓ

𝑑𝑡ℓ
𝜙(𝑡)

⃒⃒⃒⃒
𝑡

= 0.

Let 𝜌(𝑘) be a function that is positive and continuous for sufficiently large 𝑘.
Such a function is said to be regularly varying if

lim
𝑘→+∞

𝜌(𝑘𝑡)

𝜌(𝑘)
= 𝜓(𝑡),

where the convergence is uniform in 𝑡 on any compact set in (0,∞). It is obvious
that 𝜓(𝑡) = 𝑡𝛼 for some 𝛼. In this case 𝜌(𝑘) is called a regularly varying function
of order 𝛼 (see [9] for details). Regularly varying functions play the role of an
asymptotic scale.
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The standard Schwartz space of infinitely differentiable rapidly decreasing func-
tions is denoted as usual by 𝒮. The symbol 𝒮 ′ denotes the standard space of
temperate distributions. The space of temperate distributions whose supports are
contained in [0,+∞) is denoted by 𝒮 ′+. This space is conjugate to the space 𝒮+ of
functions 𝜙 that are infinitely differentiable on [0,+∞) and satisfy

max
|ℓ|6𝑚

sup
06𝑡<+∞

(1 + 𝑡𝑚)|𝜙(ℓ)(𝑡)| <∞, 𝑚 = 0, 1, . . . .

Here we will consider the space of even functions beloging to 𝒮+ which we denote
𝑒𝑣𝒮+ and the corresponding space of distributions is 𝑒𝑣𝒮 ′+.

Definition 1. An 𝑓(𝑡) ∈ 𝑒𝑣𝒮 ′+ is said to have quasi-asymptotics relative to 𝜌(𝑘)
at 𝜙(𝑡) if

lim
𝑘→+∞

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝜙(𝑡)) = const.

If the limit
lim
𝑘→∞

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝜙(𝑡)) = 𝑐𝜙

exists for any function 𝜙(𝑡) ∈ 𝑒𝑣𝒮+, then 𝑓(𝑡) is said to have quasi-asymptotics
relative to 𝜌(𝑘).

If 𝑐𝜙 = 0 for every 𝜙 ∈ 𝑒𝑣𝒮+, then 𝑓(𝑡) has the trivial quasi-asymptotics.
If

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝜙(𝑡)) = 𝑂(1) as 𝑘 → +∞ for any 𝜙(𝑡) ∈ 𝑒𝑣𝒮+,

then 𝑓(𝑡) is said to be quasi-asymptotically bounded relative to 𝜌(𝑘).

If 𝑓(𝑡) has quasi-asymptotics relative to 𝜌(𝑘), then 𝜌(𝑘) is a regularly varying
function of some order 𝛼 (see [7]).

3 The spaces of test function and distributions

Assume that 𝑀 and 𝑁 are non-negative integers, 𝑎 and 𝑏 are real non-integers as
before, 𝑏 < 𝑎 < −1, and let 𝛿 > 0. Assume further that 𝜙(𝑡) is a smooth function
defined on [0,+∞), and

𝜙(2ℓ−1)(0) = 0 for ℓ = 1, 2, . . . , 2ℓ− 1 6 𝑁.

Under these conditions we can assume there is a 𝛽 ∈ Z+ such that <𝑏> = 2𝛽 or
[−𝑏] = 2𝛽 + 1 is odd (𝑏 < −1).
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Let

𝑄𝑏,𝑁,𝛿 [𝜙] = max
ℓ6𝑁

𝛿∫︁
0

𝑡𝑏
⃒⃒⃒⃒
𝑡ℓ
𝑑ℓ

𝑑𝑡ℓ
{𝜙(𝑡)− 𝑇<𝑏>𝜙 (𝑡)}

⃒⃒⃒⃒
𝑑 𝑡, (1)

Further let

𝑉 𝑎,𝑀,𝛿 [𝜙] = max
ℓ6𝑀

+∞∫︁
𝛿

𝑡𝑎
⃒⃒⃒⃒
𝑡ℓ
𝑑ℓ

𝑑𝑡ℓ
𝜙(𝑡)

⃒⃒⃒⃒
𝑑 𝑡. (2)

Consider the norm

𝒫𝑎,𝑀𝑏,𝑁,𝛿[𝜙] = 𝑄𝑏,𝑁,𝛿[𝜙] + 𝑉 𝑎,𝑀,𝛿[𝜙] +

𝛽∑︁
ℓ=0

|𝜙(2ℓ)(0)|. (3)

The completion of the space of even functions infinitely differentiable on [0,+∞)
and rapidly decreasing together with all their derivatives (in this norm) is de-
noted by 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿. This space is a subspace of 𝒮𝑎,𝑀𝑏,𝑁,𝛿 introduced and studied by
Yu. N. Drozhzhinov and B. I. Zav’yalov in [8] (see also [7]).

Throughout the remainder of this paper we assume that 𝑀 6 𝑁 .

The functions 𝜙 ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿 can be described as follows:

𝜙(𝑡) = 𝑐0 +
𝑐2
2!
𝑡2 + · · ·+

𝑐2𝛽
(2𝛽)!

𝑡2𝛽 + 𝜓(𝑡),

where
𝑡𝑏|𝑡ℓ𝜓(ℓ)(𝑡)| ∈ 𝐿1(0, 𝛿), 0 6 ℓ 6 𝑁,

𝑡𝑎|𝑡ℓ𝜙(ℓ)(𝑡)| ∈ 𝐿1(𝛿 − 𝜀,+∞), 0 6 ℓ 6𝑀.

The 𝑐2ℓ, ℓ = 0, 1, . . . , 𝛽 are defined unambiguously. They are natural extensions
of the even derivatives at zero of functions that belong to 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿. Throughout the
rest of this paper we denote them by 𝜙(2ℓ)(0), that is 𝑐2ℓ = 𝜙(2ℓ)(0), ℓ = 0, 1, . . . , 𝛽.

The projective limit of 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿 with respect to 𝑀 and 𝑁 is denoted by 𝑒𝑣𝒮𝑎𝑏 .
The projective limit of these spaces with respect to 𝑎 and 𝑏 is the space 𝑒𝑣𝒮+,
whence

𝑒𝑣𝒮+ =
⋂︁
𝑎,𝑏∈R

𝑒𝑣𝒮𝑎𝑏 .
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On an analogue of the paper [7] we can consider different subspaces of 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿,

for example, 𝑒𝑣
0
𝒮𝑎,𝑀𝑏,𝑁,𝛿 and 𝑒𝑣𝒮

0

𝑎,𝑀
𝑏,𝑁,𝛿. But we do not consider these results here as we

do not use them for the formulation of the main theorems.
The corresponding spaces of distributions are defined to be the cojugate spaces

(spaces of continuous linear functionals). Conjugation is denoted by prime. For

example, 𝑓 ∈
(︁
𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿

)︁′
means that 𝑓 is a continuous linear functional on 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿.

We will write 𝑓 ∈
(︀
𝑒𝑣𝒮𝑎,𝑀

)︀′ if for some 𝜂 > 0 the functional 𝑓 belongs to(︁
𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝜂

)︁′
for any 𝑏 and 𝑁 . In a similar war, 𝑓 ∈ (𝑒𝑣𝒮𝑏,𝑁 )′ if for some 𝜂 > 0 the

functional 𝑓 belongs to
(︁
𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝜂

)︁′
for any 𝑎 and 𝑀 .

For 𝑎 > 𝑏 the Mellin transform of a test function 𝜙(𝑡) ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿 is defined by

ℳ[𝜙] ≡ ̂︀𝜙(𝑧) = +∞∫︁
0

𝑡−𝑖𝑧
[︀
𝜙(𝑡)− 𝑇<𝑦>𝜙 (𝑡)

]︀
𝑑 𝑡, 𝑧 = 𝑥+ 𝑖𝑦 ∈ Π

𝑎
𝑏 . (4)

This integral is well defined for 𝑏 6 𝑦 6 𝑎, with the possible exception of negative
integers 𝑦, that lie between 𝑎 and 𝑏, and defines an analytic function in Π𝑎𝑏 that can
have simple poles at the points 𝑧 = −𝑖𝑘, 𝑘 = 1, 2, . . . , cjntained in this strip. A
way from the poles (for example, in Π

𝑎
𝑏 ∩{|𝑥| > 1}) the function |̂︀𝜙(𝑧)| is bounded.

It is easy to verify that
(︀
𝑡 𝑑𝑑𝑡
)︀𝑝
𝜙 ∈ 𝒮𝑎,𝑀−𝑝

𝑏,𝑁−𝑝,𝛿 and

ℳ
[︂(︂
𝑡
𝑑

𝑑𝑡

)︂𝑝
𝜙(𝑡)

]︂
= (𝑖𝑧 − 1)𝑝 ̂︀𝜙(𝑧)

for any integer 𝑝 6 min{𝑁,𝑀}. Hence, |̂︀𝜙(𝑧)| decreases in Π
𝑎
𝑏 as |𝑧| → ∞ at least

as fast as |𝑧|−𝑝.
Since any function 𝜙(𝑡) ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿 belongs to 𝒮𝑎,𝑀𝑏,𝑁,𝛿 then all corresponding

results from the papers [7, 8] are valid in our case.

4 The main theorems

Let 𝑓 ∈
(︁
𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝜂

)︁′
and 𝜙 ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿. For large 𝑘 the expression (𝑓(𝑘𝑡), 𝜙(𝑡)) =

(1/𝑘)(𝑓(𝑡), 𝜙(𝑡/𝑘)) is well defined. Indeed, under the condition 𝑀 6 𝑁 for 𝑘𝛿 > 𝜂

we have 𝜙(𝑡/𝑘) ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝑘𝛿 ⊂ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿.
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Lemma. Let 𝑓 ∈
(︁
𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝜂

)︁′
and 𝜙 ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿, where 𝑀 6 𝑁 , 𝑏 < 𝑎 < −1.

Then

(𝑓(𝑘𝑡), 𝜙(𝑡)) =
𝑎∑︁
ℓ=0

1

𝑘ℓ+1

𝜙(ℓ)(0)

ℓ!

(︁
𝑓(𝑡), 𝑡ℓ

)︁
+ 𝑘𝑎𝑂(1), 𝑘 → +∞. (5)

The sum in this formula contains only even terms.

This lemma is proved similarly to Lemma 3 from [8].

Corollary. Assume that 𝜌(𝑘) is a regularly varying function of order 𝛼 6 𝑎 <
−1 and the hypotheses of Lemma are fulfilled. Assume that 𝑓(𝑡) to have quasi-
asymptotics relative to 𝜌(𝑘) at 𝜙(𝑡), and 𝜙(2ℓ)(0) ̸= 0 for all ℓ such that 2ℓ 6 <𝑎>.
Then

(𝑓(𝑡), 𝑡2ℓ) = 0 ∀ℓ ∈ Z+, 2ℓ 6 <𝑎>.

This corollary shows that the case when 𝛼 6 𝑎 is the most interesting in the
study of quasi-asymptotics.

Theorem 1. Let 𝜙0(𝑡) ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿, 𝑀 6 𝑁 , 𝑏 < 𝑎 < −1, 𝛿 > 0. Assume
that 𝜙0(𝑡) satisfies the following conditions. There is a non-integral number 𝛼0,
𝑏 6 𝛼0 6 𝑎, 𝐴 > 0, and 𝐵 > 0 such that

|̂︀𝜙0(𝑧)| >
𝐴

1 + |𝑧|𝐵
for 𝛼0 6 Im 𝑧 6 𝑎, (6)

where ̂︀𝜙0(𝑧) is the Mellin transform of 𝜙0(𝑡) (see (4)). Farther,

𝜙
(2ℓ)
0 (0) ̸= 0 ∀ℓ ∈ Z+, 2ℓ < <𝛼0>.

If there is the limit

lim
𝑘→∞

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝜙0(𝑡)) = const (7)

for a regularly varying function 𝜌(𝑘) of order 𝛼 > 𝛼0 and for any 𝑓(𝑡) ∈
(︁
𝑒𝑣𝒮𝑎1,𝑀𝑏,𝑁,𝜂

)︁′
,

where 𝑎 > 𝑎1 > 𝛼0, 𝜂 > 0, then 𝑓(𝑡) has quasi-asymptotics relative to 𝜌(𝑘), that is,

lim
𝑘→+∞

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝜙(𝑡)) = 𝑐𝜙, ∀𝜙 ∈ 𝑒𝑣𝑆+. (8)

Now we apply the above results to Hankel integral transform and formulate the
corresponding Tauberian theorem.
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The distributional study of Hankel transform was started by Zemanyan [10]
and continued by Altenburg [11]. These authors defined the Hankel transform of
distributions of slow growth. The modern researches of Hankel integral transform
and its convolution can be found in papers by Ja. J. Betancor and co-authors (see,
for example, [12,13]).

The Hankel integral transform is defined by [14]

ℎ𝜈(𝑓)(𝑠) =
(︀
𝑡2𝜈+1𝑓(𝑡), 𝑗𝜈(𝑠𝑡)

)︀
=
(︁
𝑓(𝑡), 𝑗𝜈(𝑠𝑡)

)︁
, 𝜈 > −1/2, (9)

where the function 𝑗𝜈(𝜉) is associated with the Bessel function 𝐽𝜈(𝜉) of the first
kind of order 𝜈

𝑗𝜈(𝜉) =
2𝜈Γ(𝜈 + 1)

(𝜉)𝜈
𝐽𝜈(𝜉) (10)

and it is the solution of the equation

𝑑2𝑦

𝑑𝑡2
+

2𝜈 + 1

𝑡

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0

under conditions 𝑦(0) = 1 and 𝑦′(0) = 0.

Using the following asymptotic estimate for 𝑗𝜈(𝜉) at 𝜉 → +∞

𝑗𝜈(𝜉) = const 𝜉−𝜈−1/2 cos(𝜉 − 𝜈𝜋

2
− 𝜋

4
) +𝑂(𝜉−𝜈−3/2) (11)

we contain if 𝜈 > −1/2 then 𝑗𝜈(𝜉) → 0 at 𝜉 → +∞. Hence, for all 𝜉 ∈ R+ the
function (10) is bounded and does not belong to 𝑒𝑣𝒮+. But ∀𝑏, 𝑀, 𝑁 such that
𝑀 < 𝑁 and for 𝑎 < 𝜈 −𝑀 − 1/2 the function 𝑗𝜈(𝜉) ∈ 𝑒𝑣𝒮𝑎,𝑀𝑏,𝑁,𝛿.

Hence for the Mellin transform of the function 𝑗𝜈(𝜉) the condition (6) holds so
the Theorem 1 is valid for the Hankel integral transform (9).

Theorem 2. Let 𝑀 < 𝑁 , 𝑏 < 𝑎 < 𝜈 −𝑀 − 1/2 < −1, 𝛿 > 0. Assume that

𝑓(𝑡) ∈
(︁
𝑒𝑣𝒮𝑎1,𝑀𝑏,𝑁,𝜂

)︁′
, where 𝑎 > 𝑎1 > 𝛼0, 𝜂 > 0 If there is the limit

lim
𝑘→∞

1

𝜌(𝑘)
(𝑓(𝑘𝑡), 𝑗𝜈(𝑠𝑡)) = const, 𝑠 ∈ R+ (12)

for a regularly varying function 𝜌(𝑘) of order 𝛼 > 𝛼0, then 𝑓(𝑡) has quasi-
asymptotics relative to 𝜌(𝑘).
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Abstract. We shall introduce applications of reproducing kernels to fractional
functions and convolution inequalities mostly based on our recent accepted two
papers in refs. [2, 3].

1 Fractional function interpretation within reproducing kernel
Hilbert spaces

Taking profit of reproducing kernel Hilbert spaces techniques [8, 9], in the present
work – which may be viewed as a survey paper – we are going to present a global
interpretation to the fractional function

𝑔

𝑓
(1)

concept for some very general functions 𝑔 and 𝑓 on a set 𝐸. In view of this,
associated with (1), we shall consider the related equation

𝑓1(𝑝)𝑓(𝑝) = 𝑔(𝑝) on 𝐸 (2)

for some functions 𝑓1 and 𝑔 on the set 𝐸. If the solution 𝑓1 of (5) on the set 𝐸
exists, then the solution 𝑓1 will give the meaning of the fractional function (1). So,
the problem may be transformed to the very general and popular equation (5). At
first, we observe that for an arbitrary function 𝑓(𝑝), there exist many reproducing
kernel Hilbert spaces containing the function 𝑓(𝑝); the simplest reproducing kernel

This work was supported in part by FEDER funds through COMPETE–Operational Pro-
gramme Factors of Competitiveness and by Portuguese funds through the Center for Research
and Development in Mathematics and Applications and the Portuguese Foundation for Sci-
ence and Technology (“FCT–Fundação para a Ciência e a Tecnologia”), within project PEst-
C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. The second
author is also supported in part by the Grant-in-Aid for the Scientific Research (C)(2)(No.
21540111) from the Japan Society for the Promotion Science.
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is given by 𝑓(𝑝)𝑓(𝑞) on 𝐸 × 𝐸. In general, a reproducing kernel Hilbert space
𝐻𝐾(𝐸) on 𝐸 admitting a reproducing kernel 𝐾(𝑝, 𝑞) on 𝐸 × 𝐸 is characterized
by the very natural property that any point evaluation 𝑓(𝑝) is a bounded linear
operator on 𝐻𝐾(𝐸) for any point 𝑝 ∈ 𝐸. So, we shall consider such a reproducing
kernel Hilbert space 𝐻𝐾1(𝐸) admitting a reproducing kernel 𝐾1(𝑝, 𝑞) containing
the functions 𝑓1(𝑝). Then, we note the very interesting fact that the products
𝑓1(𝑝)𝑓(𝑝) determine a natural reproducing kernel Hilbert space that is induced by
the reproducing kernel Hilbert space 𝐻𝐾1(𝐸) and by a second reproducing kernel
Hilbert space, say 𝐻𝐾(𝐸), containing the function 𝑓(𝑝). In fact, the space in
question is a reproducing kernel Hilbert space 𝐻𝐾1𝐾(𝐸) that is determined by the
product 𝐾1(𝑝, 𝑞)𝐾(𝑝, 𝑞) and, furthermore, we obtain the inequality

‖𝑓1𝑓‖𝐻𝐾1𝐾
(𝐸) 6 ‖𝑓1‖𝐻𝐾1

(𝐸)‖𝑓‖𝐻𝐾(𝐸). (3)

This important inequality means that for the linear operator 𝜙𝑓 (𝑓1) on 𝐻𝐾1(𝐸)
(for a fixed function 𝑓), defined by

𝜙𝑓 (𝑓1) = 𝑓1(𝑝)𝑓(𝑝), (4)

we obtain the inequality

‖𝜙𝑓 (𝑓1)‖𝐻𝐾1𝐾
(𝐸) 6 ‖𝑓1‖𝐻𝐾1

(𝐸)‖𝑓‖𝐻𝐾(𝐸).

This means that the mapping 𝜙𝑓 is a bounded operator from 𝐻𝐾1(𝐸) into
𝐻𝐾1𝐾(𝐸).

2 Reproducing kernel Hilbert spaces machinery and Tikhonov
regularization

Following refs. [8,9], we shall introduce a general theory for linear mappings in the
framework of Hilbert spaces.

Let ℋ be a Hilbert (possibly finite-dimensional) space. Let 𝐸 be an abstract
set and h be a Hilbert ℋ-valued function on 𝐸. Then, we shall consider the linear
transform

𝑓(𝑝) = (f ,h(𝑝))ℋ, f ∈ ℋ, (5)

from ℋ into the linear space ℱ(𝐸) comprising all the complex valued functions
on 𝐸. In order to investigate the linear mapping (6), we form a positive definite
quadratic form function 𝐾(𝑝, 𝑞) on 𝐸 × 𝐸 defined by

𝐾(𝑝, 𝑞) = (h(𝑞),h(𝑝))ℋ on 𝐸×𝐸. (6)
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Then, we obtain the following:
(I) The range of the linear mapping (6) by ℋ is characterized as the reproducing

kernel Hilbert space 𝐻𝐾(𝐸) admitting the reproducing kernel 𝐾(𝑝, 𝑞) whose
characterization is given by the following two properties: 𝐾(·, 𝑞) ∈ 𝐻𝐾(𝐸) for
any 𝑞 ∈ 𝐸 and, for any 𝑓 ∈ 𝐻𝐾(𝐸) and any 𝑝 ∈ 𝐸, (𝑓(·),𝐾(·.𝑝))𝐻𝐾(𝐸) = 𝑓(𝑝).

(II) In general, we have the inequality ‖𝑓‖𝐻𝐾(𝐸) 6 ‖f‖ℋ. Here, for any member 𝑓 of
𝐻𝐾(𝐸) there exists a uniquely determined f* ∈ ℋ satisfying 𝑓(𝑝) = (f*,h(𝑝))ℋ
on 𝐸 and

‖𝑓‖𝐻𝐾(𝐸) = ‖f*‖ℋ. (7)

For any two positive definite quadratic form functions 𝐾1(𝑝, 𝑞) and 𝐾2(𝑝, 𝑞) on
𝐸 × 𝐸, the usual product 𝐾(𝑝, 𝑞) = 𝐾1(𝑝, 𝑞)𝐾2(𝑝, 𝑞) is again a positive definite
quadratic form function on 𝐸. Then, the reproducing kernel Hilbert space 𝐻𝐾

admitting the kernel 𝐾(𝑝, 𝑞) is the restriction of the tensor product 𝐻𝐾1(𝐸) ⊗
𝐻𝐾2(𝐸) to the diagonal set:

Proposition 1. Let {𝑓 (1)𝑗 }𝑗 and {𝑓 (2)𝑗 }𝑗 be some complete orthonormal systems
in 𝐻𝐾1(𝐸) and 𝐻𝐾2(𝐸), respectively. Then, the reproducing kernel Hilbert space
𝐻𝐾 is comprised of all functions on 𝐸 which are represented as

𝑓(𝑝) =
∑︁
𝑖,𝑗

𝛼𝑖,𝑗𝑓
(1)
𝑖 (𝑝)𝑓

(2)
𝑗 (𝑝) on 𝐸,

∑︁
𝑖,𝑗

|𝛼𝑖,𝑗 |2 <∞, (8)

in the sense of absolutely convergence on 𝐸, and its norm in 𝐻𝐾 is given by

‖𝑓‖2𝐻𝐾
= min

∑︁
𝑖,𝑗

|𝛼𝑖,𝑗 |2

where {𝛼𝑖,𝑗} are considered to satisfy (10).

Next, let 𝐿 be any bounded linear operator from a reproducing kernel Hilbert
space 𝐻𝐾 into a Hilbert space ℋ. Then, for any member d of ℋ, the fundamental
and classical problem of computing

inf
𝑓∈𝐻𝐾

‖𝐿𝑓 − d‖ℋ (9)

is well-known as the best approximate mean square norm problem.

Proposition 2. For any member d of ℋ, there exists a function 𝑓 in 𝐻𝐾 sat-
isfying

inf
𝑓∈𝐻𝐾

‖𝐿𝑓 − d‖ℋ = ‖𝐿𝑓 − d‖ℋ (10)
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if and only if, for the reproducing kernel Hilbert space 𝐻𝑘 admitting the kernel
defined by 𝑘(𝑝, 𝑞) = (𝐿*𝐿𝐾(·, 𝑞), 𝐿*𝐿𝐾(·, 𝑝))𝐻𝐾

,

𝐿*d ∈ 𝐻𝑘. (11)

Moreover, when there exists a function 𝑓 satisfying (12), there exists a uniquely
determined function that minimizes the norms in𝐻𝐾 among the functions satisfying
the equality, and such function 𝑓d is represented as follows:

𝑓d(𝑝) = (𝐿*d, 𝐿*𝐿𝐾(·, 𝑝))𝐻𝑘
on 𝐸. (12)

The extremal function 𝑓d is the Moore-Penrose generalized inverse 𝐿†d of the
equation 𝐿𝑓 = d. The criteria (13) is involved and so the Moore-Penrose generalized
inverse 𝑓d is not so good when the data contain error or noises in some practical
cases. Therefore, to overcome this issue, we shall introduce the idea of the Tikhonov
regularization within our framework.

We set, for a small 𝜆 > 0,

𝐾𝐿(·, 𝑝;𝜆) =
1

𝐿*𝐿+ 𝜆𝐼
𝐾(·, 𝑝),

where 𝐿* denotes again the adjoint operator of 𝐿. Then, by introducing the inner
product

(𝑓, 𝑔)𝐻𝐾(𝐿;𝜆) = 𝜆(𝑓, 𝑔)𝐻𝐾
+ (𝐿𝑓, 𝐿𝑔)ℋ,

we construct the corresponding Hilbert space 𝐻𝐾(𝐿;𝜆) comprising all the functions
of 𝐻𝐾 . Furthermore, we directly obtain:

Proposition 3. The extremal function 𝑓d,𝜆(𝑝) in the Tikhonov regularization

inf
𝑓∈𝐻𝐾

{𝜆‖𝑓‖2𝐻𝐾
+ ‖d− 𝐿𝑓‖2ℋ}

exists. Additionally, there is a unique element for which the corresponding minimum
is attained and it is represented in terms of the kernel 𝐾𝐿(𝑝, 𝑞;𝜆) as follows:

𝑓d,𝜆(𝑝) = (d, 𝐿𝐾𝐿(·, 𝑝;𝜆))ℋ . (13)

Here, the kernel 𝐾𝐿(𝑝, 𝑞;𝜆) is the reproducing kernel for the Hilbert space 𝐻𝐾(𝐿;𝜆)

and it is determined as the unique solution ̃︀𝐾(𝑝, 𝑞;𝜆) of the equation

̃︀𝐾(𝑝, 𝑞;𝜆) +
1

𝜆
(𝐿 ̃︀𝐾𝑞, 𝐿𝐾𝑝)ℋ =

1

𝜆
𝐾(𝑝, 𝑞) (14)
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with ̃︀𝐾𝑞 = ̃︀𝐾(·, 𝑞;𝜆) ∈ 𝐻𝐾 for 𝑞 ∈ 𝐸, 𝐾𝑝 = 𝐾(·, 𝑝) ∈ 𝐻𝐾 for 𝑝 ∈ 𝐸.

The next proposition gives the inversion for errorness data.

Proposition 4. Suppose that 𝜆 : (0, 1)→ (0,∞) is a function of 𝛿 such that

lim
𝛿↓0

(︂
𝜆(𝛿) +

𝛿2

𝜆(𝛿)

)︂
= 0. (15)

Let 𝐷 : (0, 1)→ ℋ be a function such that ‖𝐷(𝛿)− d‖ℋ 6 𝛿 for all 𝛿 ∈ (0, 1). If d
is contained in the range set of the Moore–Penrose inverse, then we have

lim
𝛿↓0

𝑓𝐷(𝛿),𝜆(𝛿) = 𝑓d. (16)

When d contains error or noises we need its error estimate. For this error
estimate, we are able to invoke the next general result.

Proposition 5 (cf. ref. [1]). We have

|𝑓d,𝜆(𝑝)| 6
1√
2𝜆

√︀
𝐾(𝑝, 𝑝) ‖d‖ℋ.

3 General fractional functions

At first, we fix a reproducing kernel Hilbert space 𝐻𝐾(𝐸) containing the function
𝑓 . Next, we shall consider a reproducing kernel Hilbert space 𝐻𝐾1(𝐸) containing
the solutions 𝑓1. Then, the products 𝑓1𝑓 belong to the natural reproducing kernel
Hilbert space 𝐻𝐾1𝐾(𝐸) admitting the reproducing kernel 𝐾1(𝑝, 𝑞)𝐾(𝑝, 𝑞), and we
obtain the following inequality by Proposition 1:

‖𝑓1𝑓‖𝐻𝐾1𝐾
(𝐸) 6 ‖𝑓1‖𝐻𝐾1

(𝐸)‖𝑓‖𝐻𝐾(𝐸). (17)

That is, for fixed 𝑓 ∈ 𝐻𝐾(𝐸), the linear operator 𝜙𝑓 : 𝐻𝐾1(𝐸)→ 𝐻𝐾1𝐾(𝐸), given
by 𝜙𝑓 (𝑓1) = 𝑓1(𝑝)𝑓(𝑝), is bounded on 𝐻𝐾1(𝐸). So, we can consider the Tikhonov
functional, for any 𝑔 ∈ 𝐻𝐾1𝐾(𝐸):

inf
𝑓1∈𝐻𝐾1

(𝐸)

{︁
𝜆‖𝑓1‖2𝐻𝐾1

(𝐸) + ‖𝑔 − 𝜙𝑓 (𝑓1)‖
2
𝐻𝐾1𝐾

(𝐸)

}︁
.

The extremal function 𝑓1,𝜆 exists, it is unique and we have, if (5) has the Moore-
Penrose generalized inverse 𝑓1(𝑝), lim𝜆→0 𝑓1,𝜆(𝑝) = 𝑓1(𝑝) on 𝐸 uniformly on
where 𝐾1(𝑝, 𝑝) is bounded. Furthermore, its convergence is also in the sense of the
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norm of 𝐻𝐾1(𝐸). Sometimes, we can take 𝜆 = 0 and in this case we can represent
the Moore-Penrose generalized solution in some direct form.

So, at first, we can introduce the approximate fractional function by the extremal
function 𝑓1,𝜆 above whose existence is always ensured in the above situation. In
case that there exists the Moore–Penrose generalized inverse, we will call it the
generalized fractional function. We can examine the above properties by the theory
of reproducing kernels very well by the given propositions (cf. [2]).

We also would like to mention that even in the very difficult case of the nu-
merical and real inversion formula of the Laplace transform, in some case of (14),
Fujiwara [5,6] gave the solutions with 𝜆 = 10−400 and 600 digits precision. So, in
this method, we will be able to give the approximate fractional functions by using
Proposition 3, numerically for many cases containing the present situation.

4 Convolution norm inequalities

In order to state our recent results in ref. [3], we shall first introduce the relevant
function spaces ℱ(𝜌) which are dependent on non-negative and integrable functions
𝜌 on R. We will say that 𝐹 ∈ ℱ(𝜌) if and only if

∫︀
|𝐹 (𝑡)|2/𝜌(𝑡)𝑑𝑡 < ∞ on the

support of 𝜌, and 𝐹 = 0 on the outside of the support of 𝜌.
We will consider the usual convolution and will additionally introduce the fol-

lowing three types in the just presented spaces:

(𝐹1 *1 𝐹2)(𝑡) =

∫︁
R

𝐹1(𝜉)𝐹2(𝑡− 𝜉)𝑑𝜉, (𝐹1 *2 𝐹2)(𝑡) =

∫︁
R

𝐹1(𝜉)𝐹2(𝜉 − 𝑡)𝑑𝜉,

(𝐹1 *3 𝐹2)(𝑡) =

∫︁
R

𝐹1(𝜉)𝐹2(𝜉 + 𝑡)𝑑𝜉, (𝐹1 *4 𝐹2)(𝑡) =

∫︁
R

𝐹1(𝜉)𝐹2(−𝜉 − 𝑡)𝑑𝜉.

Then, from the Fourier integral transform and from the theory of reproducing
kernels, we can obtain, naturally the following inequality.

Theorem 1. The generalized convolution inequality∫︁
R

|((𝐹1) *1 (𝐹2) + (𝐹1) *2 (𝐹2) + (𝐹1) *3 (𝐹2) + (𝐹1) *4 (𝐹2))(𝑡)|2

(𝜌1 *1 𝜌2)(𝑡) + (𝜌1 *2 𝜌2)(𝑡) + (𝜌1 *3 𝜌2)(𝑡) + (𝜌1 *4 𝜌2)(𝑡)
𝑑𝑡 6

6 4

∫︁
R

|𝐹1(𝑡)|2

𝜌1(𝑡)
𝑑𝑡 ·

∫︁
R

|𝐹2(𝑡)|2

𝜌2(𝑡)
𝑑𝑡

holds true, for functions 𝐹𝑗 ∈ ℱ(𝜌𝑗), 𝑗 = 1, 2.
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This result for the usual convolution was expanded in various directions with
applications to inverse problems and partial differential equations through 𝐿𝑝 (𝑝 >
1) versions and converse inequalities. See, for example, refs. [3,7] and the references
therein.

We derived many and entirely new inequalities by applying the theory of repro-
ducing kernels. Some inequalities seem to be impossible to derive them if we do not
apply the theory of reproducing kernels. See, for typical examples, ref. [9]. Further-
more, the equality problems in the inequalities that determine the cases holding
the equalities are – in general – very difficult problems. See the deep theory of A.
Yamada in ref. [10].

We can see from the informal communication and the manuscript ref. [7] that
the authors were able to derive generalizations and many concrete applications to
the boundedness of various integral transforms and the estimates of the solutions
of integral equations that solved the equality problems, completely. However, it is
worth mentioning that our results gave basic contributions to their paper already
by creating entirely new type inequalities.

Theorem 1 gives a basic fundamental inequality for the induced convolution
integral equations.

In order to state an example, we shall consider the function spaces ℱ(𝜌𝑗), for
non-negative and integrable functions 𝜌𝑗 on R, 𝑗 = 1, 2, 3 – defined at the begin-
ning of the present section. For the space ℱ(𝜌1), we will impose more additional
assumptions due to the natural requests of our method. We assume that ℱ(𝜌1) is
the real-valued function space and the support of 𝜌1 is [𝑎, 𝑏) (−∞ < 𝑎 < 𝑏 6 +∞)
and on this interval, 𝜌1 is a positive continuous function.

We set Ω(𝑡; 𝜌) = 𝜌1*(2𝜋+ 𝜌2)+
∫︀
R 𝜌1(𝜉)𝜌3(𝜉+ 𝑡)𝑑𝜉, for the usual convolution *.

For any fixed 𝐹𝑗 ∈ ℱ(𝜌𝑗), 𝑗 = 2, 3 (so that 𝐹2±𝐹3 are not zero identically), we
consider the integral equation

2𝜋𝛼𝐹1(𝑡) +

∫︁
R

𝐹1(𝜉)𝐹2(𝑡− 𝜉)𝑑𝜉 +
∫︁
R

𝐹1(𝜉)𝐹3(𝑡+ 𝜉)𝑑𝜉 = ̃︀𝐺(𝑡), (18)

for any function ̃︀𝐺 satisfying
∫︀
R | ̃︀𝐺(𝜏)|2Ω(𝜏 ; 𝜌)−1𝑑𝜏 <∞. Then, by the convolution

inequality, we can apply Proposition 3 to this integral equation (cf. [4]).
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Abstract. In this paper, we define an integral operator as an operator-valued Feyn-
man integral over Wiener paths in abstract Wiener space. And then, we evaluate
the operator-valued Feynman integrals for various types of functions which are of in-
terest in quantum mechanics and Feynman integration theories, via the conditional
Feynman integral over Wiener paths in abstract Wiener space as a kernel.

1 Introduction

Let (ℋ,B,𝑚) be an abstract Wiener space [6]. In [5], the space 𝐶(B) of all ab-
stract Wiener space B-valued continuous paths defined on [0, 𝑡] was introduced and
Ryu [7] developed several properties on 𝐶0(B), the space of all paths 𝑥 in 𝐶(B)
with 𝑥(0) = 0. In [8], Yoo introduced the Banach algebra 𝒮 ′′B which is a class of
functions defined on 𝐶0(B) and corresponds to the Cameron and Storvick’s Banach
algebra 𝒮 ′′ in [1]. In that paper, he evaluated the analytic Feynman integrals of
functions in 𝒮 ′′B. In [3], Cho et. al. introduced a concept of analytic conditional
Feynman integral over Wiener paths in abstract Wiener space and derived a simple
formula for conditional Wiener integral over Wiener paths in abstract Wiener space,
which calculates directly conditional Wiener integrals in terms of ordinary Wiener
integrals.

In this paper, we prove that the operator-valued Feynman integrals on 𝐶0(B)
can be expressed in terms of analytic conditional Feynman integrals as kernels
using the simple formula in [3]. In particular, for a function 𝐹 defined on 𝐶0(B),
the operator-valued Feynman integral 𝐽𝑎𝑛𝑞 (𝐹 ) : 𝐿1(B) → 𝐿∞(B) can be obtained

This research was supported by Basic Science Research Program through the National Re-
search Foundation(NRF) of Korea funded by the Ministry of Education, Science and Technology
(2011-0004957).
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by using the formula

(𝐽𝑎𝑛𝑞 (𝐹 )𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂), (1)

where 𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋] is the analytic conditional Feynman integral of 𝐹 given 𝑋 and
𝑚𝑡1/2 is the probability distribution of 𝑋 on (B,ℬ(B)) for suitable conditioning
function 𝑋. Further, we show that for all 𝐹 in 𝒮 ′′B, 𝐽𝑎𝑛𝑞 (𝐹 ) is given by (1) and can
be interpreted as a bounded linear operator from 𝐿1(B) to 𝐿∞(B). And then, we
prove that for appropriate 𝜗, 𝐽𝑎𝑛𝑞 (𝐹 ) is given by (1), where 𝐹 s are the functions of
the forms

exp

{︂ 𝑡∫︁
0

𝜗(𝑠, 𝑥(𝑠))𝑑𝑠

}︂
and exp

{︂ 𝑡∫︁
0

𝜗(𝑠, 𝑥(𝑠))𝑑𝑠

}︂
𝜙(𝑥(𝑡))

which are of interest in Feynman integration theories and quantum mechanics.
Comparing with the definitions in [2], the definitions of the analytic conditional
Feynman integral and the operator-valued Feynman integral are different from them
in [2]. We also note that the concept of scale-invariant measurability is not assumed
in this paper.

2 Definitions over paths in abstract Wiener space

Let (ℋ,B,𝑚) be an abstract Wiener space [6]. Let {𝑒𝑗 : 𝑗 > 1} be a complete
orthonormal set in the real separable Hilbert space ℋ such that the 𝑒𝑗s are in B*,
the dual space of the real separable Banach space B. For each ℎ ∈ ℋ and 𝑦 ∈ B,
define the stochastic inner product (ℎ, 𝑦)∼ by

(ℎ, 𝑦)∼ =

⎧⎨⎩ lim𝑛→∞
𝑛∑︀
𝑗=1
⟨ℎ, 𝑒𝑗⟩(𝑦, 𝑒𝑗), if the limit exists;

0, otherwise,

where (·, ·) denotes the dual pairing between B and B* [4].
Let 𝐶(B) be the space of all B-valued continuous paths defined on [0, 𝑡] and let

𝐶0(B) be the space of all paths 𝑥 in 𝐶(B) with 𝑥(0) = 0. Then 𝐶(B) is a real
separable Banach space with the norm ‖𝑥‖𝐶(B) ≡ sup06𝑠6𝑡 ‖𝑥(𝑠)‖B and so is 𝐶0(B).
The minimal 𝜎-field making the mapping 𝑥 → 𝑥(𝑠) measurable is ℬ(𝐶0(B)), the
Borel 𝜎-algebra on 𝐶0(B). Further, Brownian motion in B induces a probability
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measure 𝑚B on (𝐶0(B),ℬ(𝐶0(B))) which is mean-zero Gaussian, where ℬ(𝐶0(B)) is
the Borel 𝜎-field on 𝐶0(B) [7].

Let 𝐹 : 𝐶0(B) → C be integrable and let 𝑋 be a random vector on 𝐶0(B)
assuming that the value space of 𝑋 is a normed space with the Borel 𝜎-algebra.
Then, we have the conditional expectation 𝐸[𝐹 |𝑋] of 𝐹 given 𝑋 from a well known
probability theory. Further, there exists a 𝑃𝑋 -integrable complex-valued function 𝜓
on the value space of 𝑋 such that 𝐸[𝐹 |𝑋](𝑥) = (𝜓∘𝑋)(𝑥) for a.e. 𝑥 ∈ 𝐶0(B), where
𝑃𝑋 is the probability distribution of 𝑋. The function 𝜓 is called the conditional
Wiener integral of 𝐹 given 𝑋 and it is also denoted by 𝐸[𝐹 |𝑋].

Let 𝜏 : 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 = 𝑡 be a partition of [0, 𝑡] and let 𝑥 be in 𝐶0(B).
Define the polygonal function [𝑥] of 𝑥 on [0, 𝑡] by

[𝑥](𝑠) =

𝑘∑︁
𝑗=1

𝜒(𝑡𝑗−1,𝑡𝑗 ](𝑠)

[︂
𝑥(𝑡𝑗−1) +

𝑠− 𝑡𝑗−1

𝑡𝑗 − 𝑡𝑗−1
(𝑥(𝑡𝑗)− 𝑥(𝑡𝑗−1))

]︂
, (2)

where 𝑠 ∈ [0, 𝑡]. For each �⃗� = (𝜂1, . . . , 𝜂𝑘) ∈ B𝑘, let [�⃗�] be the polygonal function of
�⃗� on [0, 𝑡] given by (2) with replacing 𝑥(𝑡𝑗) by 𝜂𝑗(𝜂0 = 0).

The following lemma is useful for the definition of conditional Feynman integral
over Wiener paths in abstract Wiener space. For the detailed proof, see [3].

Lemma 1. Let 𝐹 be defined and integrable on 𝐶0(B). Let 𝑋𝜏 : 𝐶0(B)→ B𝑘 be
a random variable given by 𝑋𝜏 (𝑥) = (𝑥(𝑡1), . . . , 𝑥(𝑡𝑘)). Then we have

𝐸[𝐹 |𝑋𝜏 ](�⃗�) = 𝐸[𝐹 (𝑥− [𝑥] + [�⃗�])] (3)

for 𝑃𝑋𝜏 -a.e. �⃗� ∈ B𝑘, where 𝑃𝑋𝜏 is the probability distribution of 𝑋𝜏 on (B𝑘,ℬ(B𝑘)).

Definition 1. 𝑋 : 𝐶(B) → B be given by 𝑋(𝑥) = 𝑥(𝑡) for 𝑥 ∈ 𝐶(B) and let
𝐹 : 𝐶(B) → C be a function such that for 𝜆 > 0,

∫︀
𝐶0(B)

|𝐹 (𝜆−
1
2𝑥 + 𝜉)|𝑑𝑚B(𝑥) < ∞

for 𝜉 ∈ B. Then for a.e. 𝜉 ∈ B, by (3), we have 𝐸[𝐹 (𝜆−1/2 · +𝜉)|𝑋(𝜆−1/2·)](𝜂) =
𝐸[𝐹 (𝜆−

1
2 (𝑥− [𝑥]) + [𝜂] + 𝜉)] for a.e. 𝜂 ∈ B. If 𝐸[𝐹 (𝜆−

1
2 (𝑥− [𝑥]) + [𝜂] + 𝜉)] has the

analytic extension 𝐽𝜆(𝜉, 𝜂) on C+ ≡ {𝜆 ∈ C : Re𝜆 > 0} as a function of 𝜆, then we
write 𝐽𝜆(𝜉, 𝜂) = 𝐸𝑎𝑛𝑤𝜆 [𝐹 |𝑋](𝜉)(𝜂) for 𝜆 ∈ C+ and call it the conditional analytic
Wiener integral of 𝐹 given 𝑋 with parameter 𝜆. For non-zero real 𝑞, if the limit
lim𝜆→−𝑖𝑞 𝐸

𝑎𝑛𝑤𝜆 [𝐹 |𝑋](𝜉)(𝜂) exists where 𝜆 approaches to −𝑖𝑞 through C+, then
we write lim𝜆→−𝑖𝑞 𝐸

𝑎𝑛𝑤𝜆 [𝐹 |𝑋](𝜉)(𝜂) = 𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) and call it the analytic
conditional Feynman integral of 𝐹 given 𝑋 with parameter 𝑞.
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For a set 𝐸 in ℬ(B) let

𝑚𝑡1/2(𝐸) = 𝑚(𝑡−1/2𝐸) (4)

where 𝑚 is the abstract Wiener measure on (B,ℬ(B)). For 𝑝 = 1 or 𝑝 = ∞
we adopt the following notation for simplicity: 𝐿𝑝(B) = 𝐿𝑝(B,ℬ(B),𝑚𝑡1/2). Now,
we state the definition of the operator-valued Feynman integral as an element of
ℒ(𝐿1(B), 𝐿∞(B)).

Definition 2. Let 𝐹 : 𝐶(B) → C be a function. For any 𝜆 > 0, 𝜓 in 𝐿1(B)
and 𝜉 in B, let (𝐼𝜆(𝐹 )𝜓)(𝜉) =

∫︀
𝐶0(B)

𝐹 (𝜆−
1
2𝑥+ 𝜉)𝜓(𝜆−

1
2𝑥(𝑡))𝑑𝑚B(𝑥). If 𝐼𝜆(𝐹 )𝜓 is in

𝐿∞(B) as a function of 𝜉 and if the correspondence 𝜓 → 𝐼𝜆(𝐹 )𝜓 gives an element of
ℒ ≡ ℒ(𝐿1(B), 𝐿∞(B)), the space of bounded linear operators from 𝐿1(B) to 𝐿∞(B),
we say that the operator-valued function space integral 𝐼𝜆(𝐹 ) exists. Next suppose
that there exists an ℒ-valued function which is analytic in C+ and agrees with
𝐼𝜆(𝐹 ) on (0,∞). Then this ℒ-valued function is denoted by 𝐼𝑎𝑛𝜆 (𝐹 ) and is called
the analytic operator-valued Wiener integral of 𝐹 associated with 𝜆. Finally, for
any non-zero real 𝑞 suppose that there exists an operator 𝐽𝑎𝑛𝑞 (𝐹 ) in ℒ such that for
every 𝜓 in 𝐿1(B), ‖𝐼𝑎𝑛𝜆 (𝐹 )𝜓−𝐽𝑎𝑛𝑞 (𝐹 )𝜓‖∞ → 0 as 𝜆 approaches to −𝑖𝑞 through C+.
Then 𝐽𝑎𝑛𝑞 (𝐹 ) is called the operator-valued Feynman integral of 𝐹 with parameter 𝑞.

3 Operator-valued Feynman integral

Let ℋ be an infinite dimensional separable real Hilbert space. Let Δ𝑛 = {(𝑠1, 𝑠2,
. . . , 𝑠𝑛) ∈ [0, 𝑡]𝑛 : 0 = 𝑠0 < 𝑠1 < 𝑠2 < . . . < 𝑠𝑛 6 𝑡} for any fixed 𝑛 ∈ N. Let
ℳ′′

𝑛 =ℳ′′
𝑛(Δ𝑛 ×ℋ𝑛) be the class of all complex Borel measures on Δ𝑛 ×ℋ𝑛 and

let ‖𝜇‖ = 𝑣𝑎𝑟 𝜇, the total variation of 𝜇 in ℳ′′
𝑛. Let 𝒮 ′′𝑛,B = 𝒮 ′′n,B(Δ𝑛 ×ℋ𝑛) be the

space of functions of the form

𝐹𝑛(𝑥) =

∫︁
Δ𝑛×ℋ𝑛

exp

{︂
𝑖

𝑛∑︁
𝑘=1

(ℎ𝑘, 𝑥(𝑠𝑘))
∼
}︂
𝑑𝜇𝐹𝑛((𝑠1, . . . , 𝑠𝑛), (ℎ1, . . . , ℎ𝑛)) (5)

for a.e. 𝑥 ∈ 𝐶0(B), where 𝜇𝐹𝑛 ∈ ℳ
′′
𝑛. Here we take ‖𝐹𝑛‖

′′
𝑛 = inf{‖𝜇𝐹𝑛‖}, where

the infimum is taken over all 𝜇𝐹𝑛s so that 𝐹𝑛 and 𝜇𝐹𝑛 are related by (5). Let
ℳ′′ =ℳ′′(

∑︀
Δ𝑛 × ℋ𝑛) be the class of all sequences {𝜇𝑛} of measures such that

each 𝜇𝑛 ∈ ℳ
′′
𝑛 and

∞∑︀
𝑛=1
‖𝜇𝑛‖ < ∞. Let 𝒮 ′′B = 𝒮 ′′B(

∑︀
Δ𝑛 × ℋ𝑛) be the space of
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functions of the form

𝐹 (𝑥) =
∞∑︁
𝑛=1

𝐹𝑛(𝑥), (6)

for a.e. 𝑥 ∈ 𝐶0(B) where each 𝐹𝑛 ∈ 𝒮 ′′𝑛,B and
∞∑︀
𝑛=1
‖𝐹𝑛‖

′′
𝑛 < ∞. The norm of 𝐹 is

defined by ‖𝐹‖′′ = inf{
∞∑︀
𝑛=1
‖𝐹𝑛‖

′′
𝑛}, where the infimum is taken over all representa-

tions of 𝐹 given by (6).

Theorem 1. Let 𝐹𝑛 ∈ 𝒮 ′′n,B be given by (5) and let 𝑋 : 𝐶(B) → B be given by
𝑋(𝑥) = 𝑥(𝑡). Then for a.e. (𝜉, 𝜂) ∈ B2, 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) exists and it is given by

𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) =

=

∫︁
Δ𝑛×ℋ𝑛

exp

{︂
𝑖

𝑛∑︁
𝑘=1

(ℎ𝑘, [𝜂](𝑠𝑘) + 𝜉)∼ − 𝑖

2𝑞

𝑛+1∑︁
𝑗=1

(𝑠𝑗 − 𝑠𝑗−1)

⃒⃒⃒⃒𝑛+1∑︁
𝑘=𝑗

ℎ𝑘 −
𝑛+1∑︁
𝑘=1

𝑠𝑘
𝑡
ℎ𝑘

⃒⃒⃒⃒2}︂
𝑑𝜇𝐹𝑛((𝑠1, . . . , 𝑠𝑛), (ℎ1, . . . , ℎ𝑛))

for any nonzero real 𝑞, where 𝑠0 = 0, 𝑠𝑛+1 = 𝑡 and ℎ𝑛+1 = 0 ∈ ℋ.

Theorem 2. Let 𝐹 ∈ 𝒮 ′′B be given by (6) and let 𝑋 be as given in Theorem 1.
Then a.e. (𝜉, 𝜂) ∈ B2 and non-zero real 𝑞, 𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) exists and is given by

𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) =
∞∑︁
𝑛=1

𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂),

where 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) is as given in Theorem 1.

Theorem 3. Under the assumptions as given in Theorem 1, the operator-valued
Feynman integral 𝐽𝑎𝑛𝑞 (𝐹𝑛) exists as an element ℒ and for each 𝜓 ∈ 𝐿1(B) we have

(𝐽𝑎𝑛𝑞 (𝐹𝑛)𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂),

for a.e. 𝜉 ∈ B, where 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) is as given in Theorem 1 and 𝑚𝑡1/2 is
given by (4).

Theorem 4. Under the assumptions and notations as given in Theorems 1, 2
and 3 the operator-valued Feynman integral 𝐽𝑎𝑛𝑞 (𝐹 ) exists as an element ℒ, and for
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each 𝜓 ∈ 𝐿1(B) and a.e. 𝜉 ∈ B we have

(𝐽𝑎𝑛𝑞 (𝐹 )𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂) =

∞∑︁
𝑛=1

(𝐽𝑎𝑛𝑞 (𝐹𝑛)𝜓)(𝜉).

4 Existence theorems

Letℳ(ℋ) be the class of all complex Borel measures on ℋ and let 𝒢 be the set of
all C-valued functions 𝜗 on [0, 𝑡]× B which have the following form

𝜗(𝑠, 𝑦) =

∫︁
ℋ

exp{𝑖(ℎ, 𝑦)∼}𝑑𝜎𝑠(ℎ), (7)

where {𝜎𝑠 : 𝑠 ∈ [0, 𝑡]} is the family fromℳ(ℋ) satisfying the following conditions:

1. for each Borel subset 𝐸 of ℋ, 𝜎𝑠(𝐸) is a Borel measurable function of 𝑠 on
[0, 𝑡],

2. ‖𝜎𝑠‖ ∈ 𝐿1([0, 𝑡]).

Let 𝜗 ∈ 𝒢 be given by (7) and for a.e. 𝑥 in 𝐶0(B) let

𝐹𝑛(𝑥) =

⎡⎣ 𝑡∫︁
0

𝜗(𝑠, 𝑥(𝑠))𝑑𝑠

⎤⎦𝑛 and 𝐹 (𝑥) = exp

⎧⎨⎩
𝑡∫︁

0

𝜗(𝑠, 𝑥(𝑠))𝑑𝑠

⎫⎬⎭ (8)

where 𝑛 is any fixed natural number.

Theorem 5. Let 𝑋 be as given in Theorem 1 and let 𝐹𝑛 be given by (8). For
any Borel subset 𝐸 of Δ𝑛 ×ℋ𝑛 let

𝜇𝐹𝑛(𝐸) =

∫︁
Δ𝑛

∫︁
ℋ𝑛

𝑛!𝜒𝐸(�⃗�, ℎ⃗)𝑑

(︂ 𝑛∏︁
𝑘=1

𝜎𝑠𝑘

)︂
(⃗ℎ)𝑑�⃗� (9)

where �⃗� = (𝑠1, . . . , 𝑠𝑛). Then, for non-zero real 𝑞, 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) exists for a.e.
(𝜉, 𝜂) ∈ B2, and it is given by the expression in Theorem 1 with replacing 𝜇𝐹𝑛 by
(9). Moreover, the operator-valued Feynman integral 𝐽𝑎𝑛𝑞 (𝐹𝑛) exists as an element
ℒ and is given by the expression in Theorem 3.

Theorem 6. Let 𝑋 be as given in Theorem 1, let 𝑚𝑡1/2 be given by (4) and
let 𝐹 be given by (8). Then, for non-zero real 𝑞, 𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) exists for a.e.
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(𝜉, 𝜂) ∈ B2, and it is given by

𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) = 1 +

∞∑︁
𝑛=1

1

𝑛!
𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂)

where 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) is as given in Theorem 5. Moreover, the operator-valued
Feynman integral 𝐽𝑎𝑛𝑞 (𝐹 ) exists as an element ℒ and is given by, for 𝜓 in 𝐿1(B)
and a.e. 𝜉 in B,

(𝐽𝑎𝑛𝑞 (𝐹 )𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂) =

=

∫︁
B

𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂) +

∞∑︁
𝑛=1

1

𝑛!
(𝐽𝑎𝑛𝑞 (𝐹𝑛)𝜓)(𝜉)

where 𝐽𝑎𝑛𝑞 (𝐹𝑛) is as given in Theorem 5.

Let ℱ(B) be the class of all functions of the form

𝜙(𝑦) =

∫︁
ℋ

exp{𝑖(ℎ, 𝑦)∼}𝑑𝜈(ℎ) (10)

for a.e. 𝑦 in B where 𝜈 ∈ℳ(ℋ). For a.e. 𝑥 in 𝐶0(B) let

𝐾𝑛(𝑥) = 𝐹𝑛(𝑥)𝜙(𝑥(𝑡)) and 𝐾(𝑥) = 𝐹 (𝑥)𝜙(𝑥(𝑡)), (11)

where 𝐹𝑛 and 𝐹 are given by (8).

Theorem 7. Let 𝑋 be as given in Theorem 1, let 𝑚𝑡1/2 be given by (4) and let
𝐾𝑛 be given by (11). Then, for for non-zero-real 𝑞, 𝐸𝑎𝑛𝑓𝑞 [𝐾𝑛|𝑋](𝜉)(𝜂) exists for
a.e. (𝜉, 𝜂) ∈ B2, and it is given by

𝐸𝑎𝑛𝑓𝑞 [𝐾𝑛|𝑋](𝜉)(𝜂) = 𝜙(𝜂 + 𝜉)𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂),

where 𝐸𝑎𝑛𝑓𝑞 [𝐹𝑛|𝑋](𝜉)(𝜂) is as given in Theorem 5. Moreover, the operator-valued
Feynman integral 𝐽𝑎𝑛𝑞 (𝐾𝑛) exists as an element ℒ and is given by, for 𝜓 ∈ 𝐿1(B),

(𝐽𝑎𝑛𝑞 (𝐾𝑛)𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐾𝑛|𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂)

for a.e. 𝜉 ∈ B.
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Theorem 8. Let 𝑋 be as given in Theorem 1, let 𝑚𝑡1/2 be given by (4) and
let 𝐾𝑛 be given by (11). Then, for non-zero real 𝑞, 𝐸𝑎𝑛𝑓𝑞 [𝐾|𝑋](𝜉)(𝜂) exists for
a.e. (𝜉, 𝜂) ∈ B2, and it is given by 𝐸𝑎𝑛𝑓𝑞 [𝐾|𝑋](𝜉)(𝜂) = 𝜙(𝜂 + 𝜉)𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂),
where 𝐸𝑎𝑛𝑓𝑞 [𝐹 |𝑋](𝜉)(𝜂) is as given in Theorem 6. Moreover, the operator-valued
Feynman integral 𝐽𝑎𝑛𝑞 (𝐾) exists as an element ℒ and is given by, for 𝜓 ∈ 𝐿1(B),

(𝐽𝑎𝑛𝑞 (𝐾)𝜓)(𝜉) =

∫︁
B

𝐸𝑎𝑛𝑓𝑞 [𝐾|𝑋](𝜉)(𝜂)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂) =

=

∫︁
B

𝜙(𝜂 + 𝜉)𝜓(𝜂)𝑑𝑚𝑡1/2(𝜂) +
∞∑︁
𝑛=1

1

𝑛!
(𝐽𝑎𝑛𝑞 (𝐾𝑛)𝜓)(𝜉)

for a.e. 𝜉 ∈ B, where 𝐽𝑎𝑛𝑞 (𝐾𝑛) is as given in Theorem 7.
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STATISTICAL INFERENCE WITH REPRODUCING KERNELS
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Abstract. Reproducing kernels has been recently applied to statistical inference
problems by using the kernel mean expression of probability distributions. Given a
random variable 𝑋 taking values on a measurable space and a reproducing kernel
Hilbert space ℋ on that space with a positive definite kernel 𝑘, the kernel mean is
defined by 𝐸[𝑘(·, 𝑋)] ∈ ℋ. This gives a mapping from the probabilities to ℋ. If
this mapping is injective, the kernel mean uniquely identifies the probability. This
class of kernel is useful for statistical inference and called characteristic. This paper
gives a brief review on how characteristic kernels can be applied to derive practical
methods for statistical inference problems, and discusses conditions that a positive
definite kernel is characteristic.

1 Introduction

Statistical inference concerns problems of estimating or testing the relations and
properties of distributions of random variables using finite number of data. There
are various methods which solve specific tasks of statistical inference problems.
Positive kernels or reproducing kernel and reproducing kernel Hilbert spaces have
been proved to be useful for statistical data analysis since 1990’s [12]. This paper
explains a more recent methodology of statistical inference using kernel means.

Let 𝑋 be a random variable taking values on a measurable space (𝒳 ,ℬ), where
ℬ is a 𝜎-algebra on 𝒳 , and let ℋ be a reproducing kernel Hilbert space (RKHS
in short) on 𝒳 defined by a bounded measurable positive definite kernel 𝑘. Define
kernel mean, 𝑚𝑘

𝑋 , of 𝑋 on ℋ by

𝑚𝑘
𝑋 = 𝐸[𝑘(·, 𝑋)] ∈ ℋ. (1)

Note that by reproducing property of 𝑘, 𝑚𝑘
𝑋 satisfies

⟨𝑚𝑘
𝑋 , 𝑓⟩ℋ = 𝐸[𝑓(𝑋)] (2)

This work has been supported in part by JSPS KAKENHI (B) 22300098.
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for any 𝑓 ∈ ℋ. If there is no confusion, the kernel mean is simply denoted by 𝑚𝑋

by omitting 𝑘. Since the kernel mean depends only on the probability distribution
of 𝑋, it is also denoted by 𝑚𝑘

𝑃 or 𝑚𝑃 if the distribution is 𝑃 .
Let 𝒫 be the set of probability measures on (𝒳 ,ℬ). A bounded measurable

kernel 𝑘 on (𝒳 ,ℬ) is called characteristic (with respect to (𝒳 ,ℬ)) if the mapping

𝒫 → ℋ, 𝑃 ↦→ 𝑚𝑘
𝑃

is injective. Because the kernel mean with a characteristic kernel uniquely identifies
the probability, inference problems on the properties of probability distributions
can be cast into the inference on the kernel means. For example, as we will see
in Section 2, independence of two random variables 𝑋 and 𝑌 can be tested by
comparing the kernel mean of the joint variable (𝑋,𝑌 ) and the product of kernel
means of marginals.

In statistical inference, the kernel mean 𝑚𝑋 should be estimated with finite
number of data. Suppose 𝑋1, . . . , 𝑋𝑛 is an i.i.d. sample with the same distribution
as 𝑋. The empirical kernel mean ̂︀𝑚(𝑛)

𝑋 is defined by

̂︀𝑚(𝑛)
𝑋 =

1

𝑛

𝑛∑︁
𝑖=1

𝑘(·, 𝑋𝑖).

It is known [2] that ̂︀𝑚(𝑛)
𝑋 is a strongly consistent estimator, i.e., ‖̂︀𝑚(𝑛)

𝑋 − 𝑚𝑋‖
converges to zero in probability as 𝑛 → ∞. Moreover,

√
𝑛(̂︀𝑚(𝑛)

𝑋 −𝑚𝑋) converges
to a Gaussian process. One of the advantages of using positive definite kernels
and RKHS in statistical methods lies in the reproducing property: various useful
quantities defined with the RKHS norm of the empirical kernel means can be exactly
computed, while they are elements in infinite dimensional functional spaces. We
will see some examples in Section 2.

In discussing the relation between two random variables, covariance is an es-
sential notion. Let (𝒳 ,ℬ𝒳 ) and (𝒴,ℬ𝒴) be measurable spaces, and (𝑋,𝑌 ) be an
random variable taking values in 𝒳 × 𝒴. Suppose ℋ𝒳 and ℋ𝒴 are RKHS’s with
bounded measurable positive definite kernels 𝑘𝒳 on 𝒳 and 𝑘𝒴 on 𝒴, respectively.
The cross-covariance operator Σ𝑌 𝑋 : ℋ𝒳 → ℋ𝒴 is the operator that satisfies

⟨𝑔,Σ𝑌 𝑋𝑓⟩ℋ𝒴 = 𝐸[𝑔(𝑌 )𝑓(𝑋)]− 𝐸[𝑔(𝑌 )]𝐸[𝑓(𝑋)]

for any 𝑓 ∈ ℋ𝒳 and 𝑔 ∈ ℋ𝒴 . The cross-covariance operator can be also defined by
Σ𝑌 𝑋 = 𝐸[𝑚

𝑘𝒴𝑘𝒳
(𝑌 𝑋)−𝑚

𝑘𝒴
𝑌 ⊗𝑚

𝑘𝒳
𝑋 ], where the product space ℋ𝒴 ⊗ℋ𝒳 associated with

the product kernel 𝑘𝒴𝑘𝒳 is identified with the space of bounded linear operators
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from ℋ𝒳 to ℋ𝒴 in a standard way. Obviously Σ*
𝑌 𝑋 = Σ𝑋𝑌 , where 𝐴* denotes the

adjoint operator of 𝐴, and it is easy to see that Σ𝑌 𝑋 is a Hilbert-Schmidt operator.
When 𝑌 = 𝑋, the self-adjoint operator Σ𝑋𝑋 is called covariance operator. Σ𝑋𝑋 is
a self-adjoint, trace class operator.

In a similar manner to the kernel mean, given (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) the empir-
ical cross-covariance operator is defined by

̂︀Σ(𝑛)
𝑌 𝑋 =

1

𝑛

𝑛∑︁
𝑖=1

𝑘𝒴(·, 𝑌𝑖)⊗ 𝑘𝒳 (·, 𝑋𝑖)−

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑘𝒴(·, 𝑌𝑖)

)︃
⊗

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑘𝒳 (·, 𝑋𝑖)

)︃

in the tensor form. ̂︀Σ(𝑛)
𝑌 𝑋 converges to Σ𝑌 𝑋 in Hilbert–Schmidt norm at the rate

of 𝑛−1/2.

2 Statistical inference with kernel means

This section describes some examples of statistical inference with kernel means and
cross-covariance operators.

2.1 Two sample test

Suppose we have two i.i.d. samples 𝑋1, . . . , 𝑋ℓ and 𝑌1, . . . , 𝑌𝑛 with law 𝑃 and 𝑄,
respectively. We wish to determine whether 𝑃 = 𝑄 or not. This problem is called
two-sample homogeneity test, and has been long studied in statistical literature. In
statistical terminology, the null hypothesis is 𝑃 = 𝑄, and the alternative hypothesis
is 𝑃 ̸= 𝑄. With a characteristic kernel, the problem of comparing two probabilities
can be cast into the problem of comparing two kernel means. This motivates us to
define the following test statistic:

𝑇ℓ,𝑛 =

⃦⃦⃦⃦
⃦⃦1ℓ

ℓ∑︁
𝑖=1

𝑘(·, 𝑋𝑖)−
1

𝑛

ℓ∑︁
𝑗=1

𝑘(·, 𝑌𝑗)

⃦⃦⃦⃦
⃦⃦
2

by introducing a positive definite kernel 𝑘. Note that this gives an empirical esti-
mator for the squared distance measure of probabilities ‖𝑚𝑃 −𝑚𝑄‖2. By virtue of
the reproducing property, we have

𝑇ℓ,𝑛 =
1

ℓ2

ℓ∑︁
𝑎,𝑏=1

𝑘(𝑋𝑎, 𝑋𝑏) +
1

𝑛2

𝑛∑︁
𝑐,𝑑=1

𝑘(𝑌𝑐, 𝑌𝑑)−
2

ℓ𝑛

ℓ∑︁
𝑎=1

𝑛∑︁
𝑐=1

𝑘(𝑋𝑎, 𝑌𝑐).
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A small value of 𝑇ℓ,𝑛 is expected under the null hypothesis 𝑃 = 𝑄, and the null
hypothesis is rejected with the error probability 𝛼 (significance level) if 𝑇ℓ,𝑛 is larger
than some threshold 𝜗𝛼. The region of rejection is called critical region. For this
test statistic, a better statistical property is obtained by debiasing it, which results
in

𝑈ℓ,𝑛 =
1

ℓ(ℓ− 1)

ℓ∑︁
𝑎=1

∑︁
𝑏 ̸=𝑎

𝑘(𝑋𝑎, 𝑋𝑏)+
1

𝑛(𝑛− 1)

𝑛∑︁
𝑐=1

∑︁
𝑑 ̸=𝑐

𝑘(𝑌𝑐, 𝑌𝑑)−
2

ℓ𝑛

ℓ∑︁
𝑎=1

𝑛∑︁
𝑐=1

𝑘(𝑋𝑎, 𝑌𝑐).

It is known ( [15], Chap. 12) that 𝑈ℓ,𝑛 is in the class of U-statistics and the asymp-
totic distribution of 𝑈ℓ,𝑛 under ℓ, 𝑛 → ∞ with constraint ℓ/(ℓ + 𝑛) → 𝛾 ∈ (0, 1)
is a mixture of 𝜒-square distributions. With this asymptotic distribution, we can
determine 𝜗𝛼 for the test. Gretton et al. [8, 9] show some practical applications in
comparing with other methods.

2.2 Independence test

Testing independence or dependence of two random variables is an important prob-
lem in many situations. Let (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) be an i.i.d. sample on 𝒳 × 𝒴
with law 𝑃 , and consider the statistical test for independence of 𝑋𝑖 and 𝑌𝑖: the
null hypothesis is that they are independent, and the alternative hypothesis is that
they are not. This problem can be regarded as a special case of two sample test,
since we want to compare two probabilities 𝑃 and 𝑃𝑋 ⊗ 𝑃𝑌 , where 𝑃𝑋 and 𝑃𝑌
are marginal probabilities of 𝑋𝑖 and 𝑌𝑖, respectively. Prepare bounded measurable
positive definite kernels 𝑘𝒳 on 𝒳 and 𝑘𝒴 for 𝒴 such that 𝑘𝒳𝑘𝒴 is a characteristic
kernel on 𝒳 × 𝒴. We can then use the statistic ‖̂︀𝑚𝑋𝑌 − ̂︀𝑚𝑋 ⊗ ̂︀𝑚𝑌 ‖2 for testing
independence of 𝑋𝑖 and 𝑌𝑖. It is easy to see that this is equivalent to using the
squared Hilbert-Schmidt norm of the empirical cross-covariance operator ̂︀Σ(𝑛)

𝑌 𝑋 . The
test statistics is thus given by

‖̂︀Σ(𝑛)
𝑌 𝑋‖

2
𝐻𝑆 =

1

𝑛2

𝑛∑︁
𝑖,𝑗=1

𝑘𝒳 (𝑋𝑖, 𝑋𝑗)𝑘𝒴(𝑌𝑖, 𝑌𝑗)−

− 2

𝑛3

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑘𝒳 (𝑋𝑖, 𝑋𝑗)

𝑛∑︁
ℓ=1

𝑘𝒴(𝑌𝑖, 𝑌ℓ) +
1

𝑛4

𝑛∑︁
𝑖,𝑗=1

𝑘𝒳 (𝑋𝑖, 𝑋𝑗)

𝑛∑︁
ℓ,𝑟=1

𝑘𝒴(𝑌ℓ, 𝑌𝑟).

In matrix notation, ⃦⃦⃦̂︀Σ(𝑛)
𝑌 𝑋

⃦⃦⃦2
𝐻𝑆

=
1

𝑛2
Tr [𝐾𝑋𝑄𝑛𝐾𝑌𝑄𝑛] ,
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where 𝐾𝑋 and 𝐾𝑌 are Gram matrices given by (𝑘𝒳 (𝑋𝑖, 𝑋𝑗))𝑖𝑗 and (𝑘𝒴(𝑌𝑖, 𝑌𝑗))𝑖𝑗 ,
respectively, and 𝑄𝑛 = 𝐼𝑛 − 1

𝑛1𝑛1
𝑇
𝑛 with 1𝑛 = (1, . . . , 1)𝑇 .

In a similar manner to the two sample test, the asymptotic distribution of the
test statistic for 𝑛 → ∞ is known and can be used for determining the critical
region of the independence test at a significance level. Alternatively, we can also
use permutation test, which simulates the distribution under the independence as-
sumption by random permutation of either of (𝑋𝑖) or (𝑌𝑖). For the details of this
test statistic and numerical examples, see [8, 10].

Another important statistical notion is conditional independence, which is
widely used in statistical inference for graphical modeling, causal inference, and
Bayesian methods. This paper describes only a sketch of the kernel method for
conditional independence, and leaves the details to the original papers [4, 6]. Sup-
pose we have random variables (𝑋,𝑌, 𝑍) on 𝒳 × 𝒴 × 𝒵, and bounded measurable
positive definite kernels 𝑘𝒳 , 𝑘𝒴 , 𝑘𝒵 on 𝒳 ,𝒴,𝒵, respectively. The respective RKHS
are denoted by ℋ𝒳 ,ℋ𝒴 ,ℋ𝒵 . The conditional cross-covariance operator from 𝑋 to
𝑌 given 𝑍 is the operator from ℋ𝒳 to ℋ𝒴 defined by

Σ𝑌 𝑋|𝑍 = Σ𝑌 𝑋 − Σ𝑌 𝑍Σ
−1
𝑍𝑍Σ𝑍𝑋 . (3)

Here the operator Σ𝑌 𝑍Σ
−1
𝑍𝑍Σ𝑍𝑋 should be rigorously interpreted as

Σ
1/2
𝑌 𝑌 𝑉𝑌 𝑍𝑉𝑍𝑋Σ

1/2
𝑋𝑋 , where 𝑉𝑌 𝑍 is given by the unique operator in the de-

composition [1] Σ𝑌 𝑍 = Σ
1/2
𝑌 𝑌 𝑉𝑌 𝑍Σ

1/2
𝑍𝑍 with |𝑉𝑌 𝑍 | 6 1, ℛ(𝑉𝑌 𝑍) ⊂ ℛ(Σ𝑌 𝑌 ) and

𝒩 (𝑉𝑌 𝑍)
⊥ ⊂ ℛ(Σ𝑍𝑍). 𝑉𝑍𝑋 is given similarly.

The conditional cross-covariance operator is related to the conditional covariance
as follows.

Proposition 1 (see [3]). Assume 𝑘𝒵 is characteristic. Then, for any 𝑓 ∈ ℋ𝒳
and 𝑔 ∈ ℋ𝒴

⟨𝑔,Σ𝑌 𝑋|𝑍𝑓⟩ℋ𝒴 = 𝐸[Cov[𝑓(𝑋), 𝑔(𝑌 )|𝑍]].

The above definition is a straightforward extension of the conditional covariance
of the Gaussian random variables: for a Gaussian random vector (𝑋,𝑌, 𝑍) the
conditional covariance between 𝑋 and 𝑌 given 𝑍 is given by

𝐶𝑌 𝑋|𝑍 = 𝐶𝑌 𝑋 − 𝐶𝑌 𝑍𝐶−1
𝑍𝑍𝐶𝑍𝑋 ,

where the existence of 𝐶−1
𝑍𝑍 is assumed. It is well known that for Gaussian variables

𝑋 and 𝑌 are conditionally independent given 𝑍 if and only if 𝐶𝑌 𝑋|𝑍 = 0. As an
extension of this fact, we have the following theorem.
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Theorem 1 (see [3]). Define 𝑊 = (𝑋,𝑍) and use the product kernel 𝑘𝒲 =
𝑘𝒳𝑘𝒵 for 𝑊 . Assume that 𝑘𝒵 and 𝑘𝒴𝑘𝒲 are characteristic kernels on 𝒵 and
𝒴 × (𝒳 × 𝒵), respectively. Then, 𝑋 and 𝑌 are conditional independent given 𝑍 if
and only if Σ𝑌𝑊 |𝑍 = 𝑂.

Note that in the above theorem the joint variable 𝑊 = (𝑋,𝑍) is used to
check the conditional independence. As is shown in Proposition 2, the condi-
tional cross-covariance operator can handle the conditional covariance between
𝑓(𝑋) and 𝑔(𝑌 ) given 𝑍 only on average over 𝑍, though conditional independence
requires Cov[𝑓(𝑋), 𝑔(𝑌 )|𝑍] = 0 for almost every 𝑍. Intuitively, the joint variable
𝑊 = (𝑋,𝑍) in Σ𝑊𝑌 |𝑍 makes it possible to handle each value of 𝑍.

As Σ𝑌𝑊 |𝑍 is a Hilbert–Schmidt operator, the squared Hilbert-Schmidt norm
‖Σ𝑌𝑊 |𝑍‖2𝐻𝑆 can be used for discussing conditional independence or dependence.
Further discussions on this statistic can be found in [4], and an application to
causal inference is proposed in [14].

3 Characteristic kernels on LCA group

As we have seen in the previous section, the characteristic property of a kernel is
important in its statistical applications. This section discusses some conditions of
this property. We first start with a general condition.

Proposition 2. Let (𝒳 ,ℬ) be a measurable space, and 𝑘 be a measurable
bounded positive definite kernel on 𝒳 with RKHS ℋ𝑘. Then, 𝑘 is characteris-
tic if and only if ℋ𝑘+R is dense in 𝐿2(𝑃 ) for any probability measure 𝑃 on (𝒳 ,ℬ),
where ℋ𝑘 + R = {𝑓 + 𝑐 | 𝑓 ∈ ℋ𝑘, 𝑐 ∈ R}.

Proof. Suppose 𝑚𝑃 = 𝑚𝑄 for different probabilities 𝑃 and 𝑄 while ℋ𝑘 + R is
dense in 𝐿2(|𝑃 −𝑄|), where |𝑃 −𝑄| is the total variation of 𝑃 −𝑄. Then, for any
𝐸 ∈ ℬ and 𝜀 > 0 there is 𝑓 ∈ ℋ𝑘 and 𝑐 ∈ R such that

∫︀
|𝑓 + 𝑐− 𝜒𝐸 |𝑑|𝑃 −𝑄| < 𝜀.

Here 𝜒𝐸 is the indicator function of 𝐸. This means |(
∫︀
𝑓𝑑𝑃 − 𝑃 (𝐸)) − (

∫︀
𝑓𝑑𝑄 −

𝑄(𝐸))| < 𝜀. It follows from the assumption 𝑚𝑃 = 𝑚𝑄 that
∫︀
𝑓𝑑𝑃 =

∫︀
𝑓𝑑𝑄, which

implies |𝑃 (𝐸) − 𝑄(𝐸)| < 𝜀. As 𝜀 > 0 is arbitrary, 𝑃 (𝐸) = 𝑄(𝐸), which causes
contradiction.

Next, suppose ℋ𝑘 + R is not dense in 𝐿2(𝑃 ) for some probability 𝑃 . Then,
there is nonzero 𝑓 ∈ 𝐿2(𝑃 ) such that

∫︀
𝑓𝑔𝑑𝑃 = 0 for any 𝑔 ∈ ℋ𝑘 and

∫︀
𝑓𝑑𝑃 = 0.

Define two different probabilities 𝑄1 and 𝑄2 by 𝑄1(𝐸) =
∫︀
𝐸 |𝑓 |𝑑𝑃/‖𝑓‖𝐿1(𝑃 ) and

𝑄2(𝐸) =
∫︀
𝐸(|𝑓 | − 𝑓)𝑑𝑃/‖𝑓‖𝐿1(𝑃 ). Then, for any 𝑔 ∈ ℋ𝑘,

∫︀
𝑔𝑑𝑄1 −

∫︀
𝑔𝑑𝑄2 =∫︀

𝑓𝑔𝑑𝑃/‖𝑓‖𝐿1(𝑃 ) = 0. This implies 𝑚𝑄1 = 𝑚𝑄2 , hence 𝑘 is not characteristic. �
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3.1 Harmonic Analysis on LCA group

This subsection gives a brief review of the harmonic analysis on locally compact
group. For the details, see e.g. [11].

A complex-valued Radon measure 𝜇 on a locally compact space 𝑋 is
said to be regular if |𝜇| is outer regular, that is, |𝜇|(𝐸) = inf{|𝜇|(𝑈) |
𝑈 is an open set including 𝐸} holds for every Borel set 𝐸. The set of regular mea-
sures on 𝑋 is denoted by 𝑀(𝑋). For a finite regular measure, there is the largest
open set 𝑈 with |𝜇|(𝑈) = 0. The complement of 𝑈 is called the support of 𝜇, and
denoted by supp(𝜇)

Let 𝐺 be a group. A function 𝜙 : 𝐺 → C is called positive definite if
𝑘(𝑥, 𝑦) = 𝜙(𝑦−1𝑥) is a positive definite kernel. This type of positive definite kernel
is called shift-invariant, since 𝑘(𝑧𝑥, 𝑧𝑦) = 𝑘(𝑥, 𝑦). There are many examples of
shift-invariant positive definite kernels, which are used in practical applications in
statistics: Gaussian RBF kernel 𝑘(𝑥, 𝑦) = exp(−‖𝑥− 𝑦‖2/𝜎2) and Laplacian kernel
𝑘(𝑥, 𝑦) = exp(−𝛽

∑︀𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|) are famous ones on the additive group R𝑛.

A particulary interesting class of group in discussing positive definite kernels is
locally compact Abelian groups (LCA group, in short), on which famous Bochner’s
theorem characterizes the continuous positive definite functions. For a LCA group
the additive notation 𝑥+ 𝑦 is employed for the group operation hereafter.

A function 𝛾 : 𝐺 → C is called a character of a LCA group 𝐺 if 𝛾(𝑥 + 𝑦) =

𝛾(𝑥)𝛾(𝑦) and |𝛾(𝑥)| = 1 for all 𝑥, 𝑦 ∈ 𝐺. The dual group ̂︀𝐺 of 𝐺 is the set of all
continuous characters of 𝐺. ̂︀𝐺 is an Abelian group with the value multiplication,
which is conventionally denoted by addition, i.e., (𝛾1 + 𝛾2)(𝑥) := 𝛾1(𝑥)𝛾2(𝑥). For
any 𝑥 ∈ 𝐺, the function �̂� on ̂︀𝐺 given by �̂�(𝛾) = 𝛾(𝑥) (𝛾 ∈ ̂︀𝐺) defines a character of̂︀𝐺. It is known that ̂︀𝐺 is a LCA group if the weakest topology is introduced so that
�̂� is continuous for each 𝑥 ∈ 𝐺. As is well known, the Pontryagin duality guarantees
that the group homomorphism 𝐺→ ̂︀̂︀𝐺, 𝑥 ↦→ �̂� is isomorphism and homeomorphic,
where ̂︀̂︀𝐺 is the dual group of ̂︀𝐺, and thus ̂︀̂︀𝐺 can be identified with 𝐺. In view of
this duality, it is customary to write (𝑥, 𝛾) := 𝛾(𝑥).

Let 𝑓 ∈ 𝐿1(𝐺) and 𝜇 ∈𝑀(𝐺), the Fourier transform of 𝑓 and 𝜇 are respectively
defined by

𝑓(𝛾) =

∫︁
𝐺

(−𝑥, 𝛾)𝑓(𝑥)𝑑𝑥, �̂�(𝛾) =

∫︁
𝐺

(−𝑥, 𝛾)𝑑𝜇(𝑥), (𝛾 ∈ ̂︀𝐺), (4)

where 𝑑𝑥 is the Haar measure of 𝐺. Note that 𝑓 and �̂� are continuous. For
𝑓 ∈ 𝐿∞(𝐺), 𝑔 ∈ 𝐿1(𝐺), and 𝜇 ∈ 𝑀(𝐺), the convolutions are defined respectively
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by

(𝑔 * 𝑓)(𝑥) =
∫︁
𝐺

𝑓(𝑥− 𝑦)𝑔(𝑦)𝑑𝑦, (𝜇 * 𝑓)(𝑥) =
∫︁
𝐺

𝑓(𝑥− 𝑦)𝑑𝜇(𝑦).

The convolution 𝑔 * 𝑓 is uniformly continuous on 𝐺. For any 𝑓, 𝑔 ∈ 𝐿1(𝐺) and
𝜇 ∈𝑀(𝐺), the following relations hold:

𝑓 * 𝑔 = 𝑓𝑔, 𝜇 * 𝑓 = ̂︀𝜇 ̂︀𝑓. (5)

For a LCA group, the continuous positive definite functions are characterized
in the following theorem.

Theorem 2 (Bochner’s theorem). A continuous function 𝜙 on 𝐺 is positive
definite if and only if there is a non-negative measure Λ ∈𝑀( ̂︀𝐺) such that

𝜙(𝑥) =

∫︁
̂︀𝐺
(𝑥, 𝛾)𝑑Λ(𝛾) (𝑥 ∈ 𝐺). (6)

Moreover, such Λ is unique for each 𝜙.

Bochner’s theorem implies that the continuous positive definite functions form
a convex cone with the extreme points given by the dual group ̂︀𝐺.

3.2 Characteristic kernels on LCA group

Let 𝐺 be a LCA group and 𝑘 be a shift invariant positive definite kernel on 𝐺. We
wish to give conditions that 𝑘 is characteristic. Before going to the formal theorems,
we show an intuitive explanation. First note that for a shift invariant kernel 𝑘, the
kernel mean 𝑚𝑋 for a random variable 𝑋 with law 𝑃 is given by

𝑚𝑋(𝑥) = ⟨𝑚𝑋 , 𝑘(·, 𝑥)⟩ =
∫︁
𝐺

𝑘(𝑥− 𝑦)𝑑𝑃 (𝑦) = (𝜙 * 𝑃 )(𝑥).

Thus 𝑘 is characteristic if and only if 𝜙 * (𝑃 −𝑄) ̸= 0 for any different probabilities
𝑃 and 𝑄. By Fourier transforms, this holds if ̂︀𝜙̂︀𝜇 ̸= 0 for any nontrivial finite signed
measure 𝜇. Based on Bochner’s theorem, a sufficient condition is easily obtained.

Theorem 3 (see [5]). Let 𝜙 be a continuous positive definite function on a
LCA group 𝐺 given by Eq. (6) with Λ. If supp(Λ) = ̂︀𝐺, then the positive definite
kernel 𝑘(𝑥, 𝑦) = 𝜙(𝑥− 𝑦) is characteristic.
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Proof. It suffices to prove that if 𝜇 ∈𝑀(𝐺) satisfies 𝜇 * 𝜙 = 0 then 𝜇 = 0. By
Fubini’s theorem,∫︁

𝐺

(𝜇 * 𝜙)(𝑥)𝑑𝜇(𝑥) =
∫︁
𝐺

∫︁
𝐺

𝜙(𝑥− 𝑦)𝑑𝜇(𝑦)𝑑𝜇(𝑥) =

=

∫︁
̂︀𝐺
∫︁
𝐺

(𝑥, 𝛾)𝑑𝜇(𝑥)

∫︁
𝐺

(−𝑦, 𝛾)𝑑𝜇(𝑦)𝑑Λ(𝛾) =
∫︁
̂︀𝐺
|̂︀𝜇(𝛾)|2𝑑Λ(𝛾).

If 𝜇 *𝜙 = 0, it follows from the continuity of ̂︀𝜇 and supp(Λ) = ̂︀𝐺 that ̂︀𝜇 = 0, which
means 𝜇 = 0 by the duality. �

In real-valued cases, the condition supp(Λ) = ̂︀𝐺 is almost necessary.

Theorem 4 (see [5]). Let 𝜙 be a R-valued continuous positive definite function
on a LCA group 𝐺 given by Eq. (6) with Λ. The positive definite kernel 𝑘(𝑥, 𝑦) =
𝜙(𝑥− 𝑦) is characteristic if and only if either of the following (i) or (ii) holds: (i)
𝐺 is non-compact and supp(Λ) = ̂︀𝐺, or (ii) 𝐺 is compact and supp(Λ) ⊃ ̂︀𝐺− {0}.

Proof. It is obvious that 𝑘 is characteristic if and only if so is 𝑘(𝑥, 𝑦)+1. Since∫︀ ̂︀𝐺(𝑥, 𝛾)𝑑𝛿0 is a positive constant for compact 𝐺, where 𝛿0 is the Dirac measure at
0 ∈ ̂︀𝐺, we can assume w.l.o.g. that 0 ∈ supp(Λ). The “if” part is thus given by
Theorem 3.

For “only if” part, assuming supp(Λ) ̸= ̂︀𝐺, we will construct two different prob-
abilities 𝑃1 and 𝑃2 such that (𝑃1 − 𝑃2) * 𝜙 = 0. In the following, for a set 𝐴 in
𝐺 or ̂︀𝐺, the notations −𝐴 = {−𝑥 | 𝑥 ∈ 𝐴}, 𝐴 − 𝐴 = {𝑥 − 𝑦 | 𝑥, 𝑦 ∈ 𝐴}, and
𝐴+ 𝑥 = {𝑦 + 𝑥 | 𝑦 ∈ 𝐴} are used. Since 𝜙 is real-valued, Λ(−𝐸) = Λ(𝐸) for every
Borel set 𝐸. Thus 𝑈 := ̂︀𝐺∖supp(Λ) is a non-empty open set with −𝑈 = 𝑈 and
0 /∈ 𝑈 . Fix 𝛾0 ∈ 𝑈 . By the continuity of (𝛾1, 𝛾2) ↦→ 𝛾1 − 𝛾2, there exits an open
neighborhood 𝑊 of 0 ∈ ̂︀𝐺 such that ±𝛾0 /∈ 𝑊 −𝑊 , cl(𝑊 −𝑊 ) ± 𝛾0 ⊂ 𝑈 , and
(𝑊 −𝑊 ) + 𝛾0 ∩ (𝑊 −𝑊 )− 𝛾0 = ∅.

Let 𝑔 = 𝜒𝑊 * 𝜒−𝑊 , where 𝜒𝐸 denotes the indicator function of 𝐸. It is easy to
see that 𝑔 is continuous and positive definite. By Bochner’s theorem and Pontryagin
duality, there is a nonzero, non-negative measure 𝜇 ∈𝑀(𝐺) such that

𝑔(𝛾) =

∫︁
𝐺

(𝑥, 𝛾)𝑑𝜇(𝑥) (𝛾 ∈ ̂︀𝐺).
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Define a function ℎ on ̂︀𝐺 by

ℎ(𝛾) := 𝑔(𝛾 − 𝛾0) + 𝑔(𝛾 + 𝛾0) =

∫︁
𝐺

(𝑥, 𝛾)𝑑((𝛾0 + 𝛾0)𝜇)(𝑥),

where (𝛾0 + 𝛾0)𝜇 is a signed measure defined by ((𝛾0 + 𝛾0)𝜇)(𝐸) =
∫︀
𝐸(𝛾0(𝑥) +

𝛾0(𝑥))𝑑𝜇(𝑥). Note supp(𝑔) ⊂ cl(𝑊−𝑊 ). Since cl(𝑊−𝑊 )+𝛾0∩cl(𝑊−𝑊 )−𝛾0 = ∅
and 𝑔 is nonzero, ℎ is a nonzero function. Also supp(ℎ) ⊂ cl(𝑊 −𝑊 )+𝛾0∪ cl(𝑊 −
𝑊 )− 𝛾0 ⊂ 𝑈 , which does not contain 0. Thus, by setting 𝛾 = 0, we have

((𝛾0 + 𝛾0)𝜇)(𝐺) = 0. (7)

Let 𝑚 = |(𝛾0 + 𝛾0)𝜇|(𝐺) ( ̸= 0), and define two different probability measures by

𝑃1 =
1

𝑚
|(𝛾0 + 𝛾0)𝜇|, 𝑃2 =

1

𝑚
{|(𝛾0 + 𝛾0)𝜇| − (𝛾0 + 𝛾0)𝜇}.

From Fubini’s theorem,

𝑚 · ((𝑃1 − 𝑃2) * 𝜙)(𝑥) =
∫︁
𝐺

𝜙(𝑥− 𝑦)(𝛾0(𝑦) + 𝛾0(𝑦))𝑑𝜇(𝑦) =

=

∫︁
̂︀𝐺
(𝑥, 𝛾)

∫︁
𝐺

{(𝑦, 𝛾 − 𝛾0) + (𝑦, 𝛾 + 𝛾0)}𝑑𝜇(𝑦)𝑑Λ(𝛾) =

=

∫︁
̂︀𝐺
(𝑥, 𝛾){𝑔(𝛾 − 𝛾0) + 𝑔(𝛾 + 𝛾0)}𝑑Λ(𝛾) =

∫︁
̂︀𝐺
(𝑥, 𝛾)ℎ(𝛾)𝑑Λ(𝛾).

Since supp(ℎ) ⊂ 𝑈 = ̂︀𝐺∖supp(Λ), we have (𝑃1 − 𝑃2) * 𝜙 = 0. �

Theorems 3 and 4 are generalization of the results in [13]. From Theorem 4, we
can see that the characteristic property is stable under the product for real-valued
shift-invariant continuous kernels.

Corollary 1 (see [5]). Let 𝜙1(𝑥 − 𝑦) and 𝜙2(𝑥 − 𝑦) be R-valued continuous
shift-invariant characteristic kernels on a LCA group 𝐺. If (i) 𝐺 is non-compact,
or (ii) 𝐺 is compact and 2𝛾 ̸= 0 for any nonzero 𝛾 ∈ ̂︀𝐺. Then (𝜙1𝜙2)(𝑥 − 𝑦) is
characteristic.

Proof. We show the proof only for (i). Let Λ1,Λ2 be the non-negative measures
to give 𝜙1 and 𝜙2, respectively, in Eq. (6). By Theorem 4, supp(Λ1) = supp(Λ2) =
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̂︀𝐺. This means supp(Λ1 * Λ2) = ̂︀𝐺. The proof is completed because Λ1 * Λ2 gives
a positive definite function 𝜙1𝜙2. �

Example 1. (R𝑛,+): Gaussian RBF kernel exp(− 1
2𝜎2 ‖𝑥−𝑦‖2) and Laplacian

kernel exp(−𝛽
∑︀𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖|) are characteristic on R𝑛, since the corresponding
non-negative measures are exp(−𝜎2

2 ‖𝜔‖
2) and

∏︀𝑛
𝑗=1 1/(1 + 𝜔2

𝑗 ), respectively, up to
positive constant. An example of a positive definite kernel that is not characteristic
on R𝑛 is sinc(𝑥− 𝑦) = sin(𝑥−𝑦)

𝑥−𝑦 : the Fourier transform is the indicator function of a
bounded interval.

Example 2. ([0, 2𝜋),+): The addition is made modulo 2𝜋. The dual group
is {𝑒

√
−1𝑛𝑥 | 𝑛 ∈ Z}, and expression of the Bochner’s theorem is given by Fourier

expansion,

𝜙(𝑥) =
∞∑︁

𝑛=−∞
𝑎𝑛𝑒

√
−1𝑛𝑥, 𝑎𝑛 > 0,

∞∑︁
𝑛=−∞

𝑎𝑛 <∞.

Among these positive definite functions, the characteristic kernels are given by the
ones with coefficients 𝑎0 > 0 and 𝑎𝑛 > 0 (𝑛 ̸= 0). The examples of characteristic
kernels are 𝑘1(𝑥, 𝑦) = (𝜋 − (𝑥 − 𝑦)𝑚𝑜𝑑 2𝜋)

2 (𝑎0 = 𝜋2/3, 𝑎𝑛 = 2/𝑛2 (𝑛 ̸= 0)), and
𝑘2(𝑥, 𝑦) = 1/(1−2𝛼 cos(𝑥−𝑦)+𝛼2) (Poisson kernel) given by 𝑎𝑛 = 𝛼|𝑛| (𝛼 ∈ (0, 1)).
Examples of non-characteristic kernels on [0, 2𝜋) include cos(𝑥 − 𝑦), Féjer, and
Dirichlet kernel.

The above conditions of characteristic properties can be extended in part to the
case of compact groups using the unitary representations [5].
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ON BLIND SOURCE SEPARATION PROBLEM IN
TIME-FREQUENCY SPACE

K. Fujita
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Abstract. On the blind source separation problem, there is a method to use the
quotient function of complex valued time-frequency informations of two observed
signals. Under some assumptions, studying a commutative distribution function of
the quotient function, we can estimate the number of sources. We will review a
mathematical formulation of the method and give some remarks on the method in
terms of application.

1 Introduction

To treat blind source separation problem, in many cases, either statistical inde-
pendence or statistical orthogonality of the sources has been assumed. If we have
as many observed signals as sources, we can separate sources from the observed
signals under the above assumption. Jourjine et al. [7] considered the problem of
separating by using signals observed at different positions and sources were assumed
to be W-disjoint orthogonal, which means that the windowed Fourier transforms of
the sources are mutually orthogonal. Then Balan-Rosca [3] relaxed the assumption
to that of statistical independence with some ergodicity hypotheses. Napoletani
et al. [8] considered the problem of detecting the number of sources by using two
observed signals assuming the linear independence of the windowed Fourier trans-
forms of the sources and the continuity of some density functions. The fundamental
idea to detect the number of sources employed in [3,7,8] is to consider the ratio of
the windowed Fourier transforms of two observed signals. In [1] and [4], we gave
a mathematical formulation for the estimation problem of the number of sources.
Later, Ashino et al. [2] treated problem considering time delay.

In this note, we will review our results in [1, 4–6], and give some remarks.
Numerical experiments of our method were tested by Professor A. Morimoto of
Osaka Kyoiku University. The author would like to express her sincere gratitude
to him for helping her to complete this note.

This work is partially supported by KAKENHI(23540146).
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2 Underling theorems

2.1 Complex valued quotient function

Let 𝑑 be an integer and E = R𝑑, 𝑑 > 2 or E = C𝑑. For 𝑀 > 0 put

E𝑀 = {𝑧 = (𝑧1, . . . , 𝑧𝑑) ∈ E; |𝑧𝑘| < 𝑀, 𝑘 = 1, . . . , 𝑑}.

Let 𝑛 > 2 be an unknown integer and 𝑆1, . . . , 𝑆𝑛 be linearly independent complex
valued functions on 𝑋. Set

𝐷 =
𝑛⋃︁
𝑗=1

{𝑧 ∈ E; 𝑆𝑗(𝑧) ̸= 0}, 𝐷𝑀 =
𝑛⋃︁
𝑗=1

{𝑧 ∈ E𝑀 ; 𝑆𝑗(𝑧) ̸= 0},

𝐸𝑗 = {𝑧 ∈ 𝐷; 𝑆𝑗(𝑧) ̸= 0, 𝑆𝑘(𝑧) = 0 (𝑘 ̸= 𝑗)} , 𝐸 =
⋃︁
𝑗

𝐸𝑗 ,

𝐸𝑗(𝑀) = 𝐸𝑗 ∩𝐷𝑀 , 𝐸𝑀 = 𝐸 ∩𝐷𝑀 , 𝐸
𝑐(𝑀) = 𝐷𝑀 ∖ 𝐸𝑀 .

For real numbers 𝑎𝑗 , 𝑏𝑗 (𝑗 = 1, . . . , 𝑛), put

𝑋1 = 𝑎1𝑆1 + . . .+ 𝑎𝑛𝑆𝑛, 𝑋2 = 𝑏1𝑆1 + . . .+ 𝑏𝑛𝑆𝑛.

We consider a “quotient function”

𝑄(𝑧) =
𝑋1(𝑧)

𝑋2(𝑧)
=
𝑎1𝑆1(𝑧) + . . .+ 𝑎𝑛𝑆𝑛(𝑧)

𝑏1𝑆1(𝑧) + . . .+ 𝑏𝑛𝑆𝑛(𝑧)
, 𝑧 ∈ 𝑋.

First we assume the condition:
Condition A. 𝑎𝑗 ̸= 0, 𝑏𝑗 ̸= 0 (𝑗 = 1, . . . , 𝑛), 𝑎𝑗𝑏𝑘 − 𝑎𝑘𝑏𝑗 ̸= 0(𝑗 ̸= 𝑘); that is,

𝑞𝑗 ≡ 𝑎𝑗/𝑏𝑗 are mutually distinct non zero numbers.
On 𝐸𝑗 , 𝑄(𝑧) = 𝑞𝑗 ∈ R. Therefore, under Condition A, if 𝐷 = 𝐸, then we

can detect the number of sources by counting the number of elements of 𝑄(𝐷) =
𝑄(𝐸) = {𝑞𝑗 ∈ R; 𝑗 = 1, . . . , 𝑛}. In general, such a set is too small. Therefore, for
𝜂 > 0, denoting the imaginary part of 𝑄 by Im𝑄, we consider the function

𝑄𝜂(𝑧) =

{︃
𝑄(𝑧) (| Im𝑄(𝑧)| < 𝜂)

0 (| Im𝑄(𝑧)| > 𝜂)
.

2.2 Commutative distribution function on R

We denote the Lebesgue measure of a measurable set 𝑋 ∈ E by 𝜇(𝑋) =
∫︀
𝑋 𝑑𝑧,

where 𝑑𝑧 is the Lebesgue measure on E.
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Put 𝜈(𝑋) = 𝜇({𝑧 ∈ 𝑋; Im𝑄(𝑧) = 0, 𝑄(𝑧) ̸= 0}). For 𝜂 > 0,𝑀 > 0 and 𝑥 ∈ R,
define

(𝐺𝜂(𝑀))(𝑥) =
𝜇({𝑧 ∈ 𝐷𝑀 ;𝑅𝑒𝑄𝜂(𝑧) < 𝑥, 𝑄𝜂(𝑧) ̸= 0})

𝜇({𝑧 ∈ 𝐷𝑀 ; 𝑄𝜂(𝑧) ̸= 0})
,

(𝐺0(𝑀))(𝑥) =
𝜇({𝑧 ∈ 𝐷𝑀 ;𝑅𝑒𝑄(𝑧) < 𝑥, 𝐼𝑚𝑄(𝑧) = 0, 𝑄(𝑧) ̸= 0})

𝜈(𝐷𝑀 )
,

where Re𝑄 is the real part of 𝑄. Note that (𝐺𝜂(𝑀))(𝑥) is a monotone increasing
function in 𝑥. For (𝐺𝜂(𝑀))(𝑥) to be well-defined, we assume the condition.

Condition B. 𝜈(𝐷𝑀 ) > 0.
Proofs for the following theorems see [1].

Theorem 1.

(𝑖) |(𝐺𝜂(𝑀))(𝑥)− (𝐺0(𝑀))(𝑥)| 6 𝜇 ({𝑧 ∈ 𝐷𝑀 ; 0 < | Im𝑄(𝑧)| < 𝜂})
𝜇({𝑧 ∈ 𝐷𝑀 ; 𝑄𝜂(𝑧) ̸= 0})

.

(𝑖𝑖) lim
𝜂→0

(𝐺𝜂(𝑀))(𝑥) = (𝐺0(𝑀))(𝑥).

2.3 A condition to detect the number of sources

Under some conditions, (𝐺0(𝑀))(𝑥) will be a step function whose gaps are at
𝑥 = 𝑞𝑗 , 𝑗 = 1, . . . , 𝑛.

Theorem 2. Assume 𝜈(𝐸𝑀 ) > 0. Put 𝛼𝑀 = 𝜈 (𝐸𝑐(𝑀)) /𝜈(𝐷𝑀 ), and let
(𝐻0(𝑀))(𝑥) denote a step function defined by

(𝐻0(𝑀))(𝑥) =
𝑛∑︁
𝑗=1

𝜈(𝐸𝑗(𝑀))

𝜈(𝐸𝑀 )
𝑌 (𝑥− 𝑞𝑗) , 𝑌 (𝑥) =

{︃
1 (𝑥 > 0)

0 (𝑥 < 0)
.

Then we have |(𝐺0(𝑀))(𝑥)− (𝐻0(𝑀))(𝑥)| 6 𝛼𝑀 .

Corollary 1. Assume 𝜈(𝐸𝑀 ) > 0. If 𝜈 (𝐸𝑐(𝑀)) = 0, then

lim
𝜂→0

(𝐺𝜂(𝑀))(𝑥) = (𝐺0(𝑀))(𝑥) = (𝐻0(𝑀))(𝑥).
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(𝐺0(𝑀))(𝑥)

6

- 𝑥
𝑞1
pp

𝑞2
ppp
pp

𝑞3
pppp
ppp
p

=⇒
formal
derivative

(𝐺′
0(𝑀))(𝑥)

𝑞1

6

𝑞2

6

𝑞3

6

Note 1. For any 𝜀 > 0, take 𝜂 > 0 such that

𝜇 ({𝑧 ∈ 𝐷𝑀 ; 0 < | Im𝑄(𝑧)| < 𝜂})
𝜇({𝑧 ∈ 𝐷𝑀 ; 𝑄𝜂(𝑧) ̸= 0})

< 𝜀.

Then we have |(𝐺𝜂(𝑀))(𝑥)− (𝐻0(𝑀))(𝑥)| < 𝜖 + 𝛼𝑀 . Especially for 𝛼𝑀 = 0, we
have |(𝐺𝜂(𝑀))(𝑥)− (𝐻0(𝑀))(𝑥)| < 𝜖.

Note 2. Beside the number of steps or peaks, the points 𝑞𝑗 ’s are important to
find 𝑆𝑗 ’s. Once we detect the number of 𝑆𝑗 ’s, say 𝑛, take another 𝑋𝑗 , 𝑗 = 3, . . . , 𝑛.
By using 𝑋𝑗 and 𝑞𝑗 , 𝑗 = 1, . . . , 𝑛, we find 𝑚𝑗𝑆𝑗 , 𝑗 = 1, . . . , 𝑛, where 𝑚𝑗 ∈ R are
flexible multipliers. For the detail see [4].

3 Generalization

The assumption 𝜈(𝐸𝑀 ) > 0 seems quite restrictive. Let us consider an example.
For 𝑠 ∈ 𝐿2(R) and 𝜔0 > 0, the Gabor wavelet transform on R2 is defined by

𝑆(𝑡, 𝜔) = 𝑒𝑖𝜔 𝑡
√︀
|𝜔|/𝜔0

∫︁
𝑠(𝑥)𝑒(−(𝑥−𝑡)2𝜔2/2𝜔2

0)𝑒−𝑖𝜔 𝑥 𝑑𝑥. (1)

Then for 𝑠(𝑥) = sin𝛼𝑥,

𝑆(𝑡, 𝜔) = −𝑖
√︀

2𝜋𝜔0/|𝜔|
(︁
𝑒−(𝜔0−𝛼𝜔0/𝜔)2/2𝑒𝑖𝑡𝛼 − 𝑒−(𝜔0+𝛼𝜔0/𝜔)2/2𝑒−𝑖𝑡𝛼

)︁
.

Thus 𝑆(𝑡, 𝜔) for 𝑠(𝑥) = sin𝛼𝑥 will not vanish and 𝐸𝑗 = ∅. However by Figure 1,
we find that the small value are ignored.

Numerical experiment. For three signals 𝑠1(𝑡) = sin(4𝜋𝑡), 𝑠2(𝑡) = sin(12𝜋𝑡)
and 𝑠3(𝑡) = sin(18𝜋𝑡), take 𝑎1 = 0.7567, 𝑎2 = 0.8795, 𝑎3 = 0.8764, 𝑏1 = 0.6205,
𝑏2 = 0.9967, 𝑏3 = 0.5550 and set 𝑥1 = 𝑎1𝑠1 + 𝑎2𝑠2 + 𝑎3𝑠3, 𝑥2 = 𝑏1𝑠1 + 𝑏2𝑠2 + 𝑏3𝑠3.
However 𝜈(𝐸) = 0 for these sources, we will try to apply our method.
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Figure 1. |𝑆(𝑡, 𝜔)| for 𝑠(𝑥) = sin(4𝜋𝑥) + sin(12𝜋𝑥) + sin(18𝜋𝑥) with 𝑤0 = 20𝜋 in (1)

Figure 2. Sources 𝑠1, 𝑠2, 𝑠2 (left) and Oveserved signals 𝑥1, 𝑥2 (right).

Let 𝑋1 and 𝑋2 are the Gabor wavelet transforms of 𝑥1 and 𝑥2, respectively.
The steps of the graph of 𝑄𝜂(𝑀) are expected to appear at

𝑞1 = 𝑎1/𝑏1 = 1.2195, 𝑞2 = 𝑎2/𝑏2 = 0.88241, 𝑞3 = 𝑎2/𝑏2 = 1.5791.

The graphs in Figure 3 is a result of numerical experiment employing our method
by using Matlab. By Figure 3, we can detect the number of sources and 𝑞𝑗 ’s.

We would like to weaken the assumption. Consider the case that one 𝑆𝑗 is
dominant over the other 𝑆𝑘’s (𝑘 ̸= 𝑗). For 𝛿 > 0, put

𝐸𝑗(𝛿) = {𝑧 ∈ 𝐷; |𝑏𝑘𝑆𝑘(𝑧)| 6 𝛿|𝑏𝑗𝑆𝑗(𝑧)| (𝑘 ̸= 𝑗), 𝑆𝑗 ̸= 0} , 𝐸(𝛿) = ∪𝑗𝐸𝑗(𝛿),

𝐸𝑗(𝛿;𝑀) = 𝐸𝑗(𝛿) ∩𝐷𝑀 , 𝐸(𝛿;𝑀) = 𝐸(𝛿) ∩𝐷𝑀 , 𝐸
𝑐(𝛿;𝑀) = (𝐷 ∖ 𝐸(𝛿)) ∩𝐷𝑀

Instead of assuming 𝜈(𝐸𝑀 ) > 0, we discuss the problem in the situation where
𝜈(𝐸(𝛿;𝑀)) > 0 holds for some 𝛿 > 0.
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Figure 3

Theorem 3. Let 𝜂 > 0 and 1/(𝑛 − 1) > 𝛿 > 0. Put Δ = max𝑗,𝑘 |𝑞𝑗 − 𝑞𝑘|,
𝛾(𝛿) = (𝑛− 1)𝛿Δ/(1− (𝑛− 1)𝛿), 𝛼𝑀 (𝛿) = 𝜈(𝐸𝑐(𝛿;𝑀))/(𝜈(𝐷𝑀 )) and

𝜌𝜂(𝛿;𝑀) = 𝛼𝑀 (𝛿) +
𝜇 ({𝑧 ∈ 𝐷𝑀 ; 0 < | Im𝑄(𝑧)| < 𝜂})

𝜇({𝑧 ∈ 𝐷𝑀 ; 𝑄𝜂(𝑧) ̸= 0})
.

Here we take 𝛿 so small as 𝛾(𝛿) < min𝑘 ̸=𝑗 |𝑞𝑗−𝑞𝑘|/2. Assume that 𝜈(𝐸(𝛿;𝑀)) >
0. Putting 𝜈𝑗(𝐸, 𝛿,𝑀) = 𝜈(𝐸𝑗(𝛿;𝑀))/𝜈(𝐸(𝛿;𝑀)), define

(𝐻0(𝛿;𝑀))(𝑥) =

𝑛∑︁
𝑗=1

𝜈𝑗(𝐸, 𝛿,𝑀)𝑌 (𝑥− 𝑞𝑗) ,

(𝐻𝜂(𝛿;𝑀))(𝑥) =

⎛⎝ 𝑛∑︁
𝑗=1

𝜈𝑗(𝐸, 𝛿,𝑀) + 𝜌𝜂(𝛿;𝑀)

⎞⎠𝑌 (𝑥− (𝑞𝑗 − 𝛾(𝛿))),

(𝐻𝜂(𝛿;𝑀))(𝑥) =

⎛⎝ 𝑛∑︁
𝑗=1

𝜈𝑗(𝐸, 𝛿,𝑀)− 𝜌𝜂(𝛿;𝑀)

⎞⎠𝑌 (𝑥− (𝑞𝑗 + 𝛾(𝛿))).

Then the graph of𝐺𝜂(𝑀) is contained in the closed domain surrounded by the graph
𝒢(𝐻𝜂(𝛿;𝑀)) of 𝐻𝜂(𝛿;𝑀) and the graph 𝒢(𝐻𝜂(𝛿;𝑀)) of 𝐻𝜂(𝛿;𝑀) (See Figure 4).

When we have to consider time delay, we have to consider the function such as

𝑄(𝑧; 0) = 𝑄(𝑧),

𝑄(𝑧; 𝑐) =
𝑋1(𝑧; 𝑐1)

𝑋2(𝑧; 𝑐2)
=
𝑎1𝑆1(𝑧 − 𝑐11) + . . .+ 𝑎𝑛𝑆𝑛(𝑧 − 𝑐𝑛1)
𝑏1𝑆1(𝑧 − 𝑐12) + . . .+ 𝑏𝑛𝑆𝑛(𝑧 − 𝑐𝑛2)

.
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Figure 4

If 𝑐 ̸= 0, 𝑄(𝑧; 𝑐) will take various values on 𝐸𝑗 = {𝑧 ∈ 𝐷; 𝑆𝑗 ̸= 0, 𝑆𝑘 = 0 (𝑘 ̸= 𝑗)}.
Therefore we can not expect the graph of the commutative distribution function
will be a step function even if 𝐷 = ∪𝑗𝐸𝑗 .

4 Remarks

Remark 1. Let 𝑠𝑗(𝑥) = sin(𝑗𝑥), 𝑗 = 1, . . . , 𝑛 and 𝑥1(𝑥) = 𝑎1𝑠1(𝑥) +
. . . + 𝑎𝑛𝑠𝑛(𝑥), 𝑥2(𝑥) = 𝑏1𝑠1(𝑋) + . . . + 𝑏𝑛𝑠𝑛(𝑥) be observed signals. And let
𝑋1(𝑡, 𝜔), 𝑋2(𝑡, 𝜔) be the Gabor wavelet transforms of 𝑥1, 𝑥2. Then Supp𝑆1 = . . . =
Supp𝑆𝑛 = R2. Thus 𝐸𝑗 = ∅, (𝑗 = 1, . . . , 𝑛). But we can detect the number of
sources because we can take 𝛿 such that 𝜈 (𝐸𝑐(𝛿;𝑀)) and 𝛾(𝛿) are small enough.
Thus there are some case that we can detect the number of sources even though
Supp𝑆𝑗 ⊂ Supp𝑆𝑘, 𝑗 ̸= 𝑘.

Remark 2 (On conditions in Theorem 3). (i) To detect the number of
sources both 𝛿 and 𝜈 (𝐸𝑐(𝛿;𝑀)) are expected to be small. But if we take 𝛿 small
enough, then, in general, 𝜈(𝐸𝑐(𝛿;𝑀)) will be large. Thus we can not expect that
both 𝛿 and 𝜈 (𝐸𝑐(𝛿;𝑀)) to be small.

(ii) To detected the number of sources, neighboring 𝑞𝑗 , 𝑗 = 1, . . . , 𝑛 are not so
close.

Remark 3. If there are many sources, it will be difficult to detect the number
of source. The reason is as follows: For fixed 𝛿 and Δ, 𝛾(𝛿) is a increasing function
in 𝑛. Thus we need to take 𝛿 or Δ so small if we have many sources. But by
Remark 2 (ii), it is better that Δ is not small. Further by Remark 2 (i), in general,
if 𝛿 become small, then 𝜈 (𝐸𝑐(𝛿;𝑀)) may become large.

Remark 4. We also need to choose 𝜂 carefully because unnecessary element
increase as 𝜂 becomes large. On the other hand, if 𝜂 is too small, it is difficult to
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detect the number of sources except the trivial case. Because 𝜈({𝑄𝜂(𝑧) ̸= 0}) will
also become small.

Conclusion: It seems to be a few cases on which our method can apply.

Question: Is there some “good” transformation that transform original functions
to new functions which satisfy the assumptions in Theorem 3?
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Abstract. The subject of integral geometry (in the sense of [1]) is formed by
integral transforms mapping functions on a manifold (or space) 𝑋 to their integrals
over submanifolds in 𝑋 forming a family �̂� of submanifolds in 𝑋, so new functions
defined on �̂� appear. One of basic problems in integral geometry is a reconstruction
of the initial function on 𝑋 starting from its image on �̂�. This talk is an attempt to
give an answer for the following old I. M. Gelfand’s question: why some important
problems of integral geometry (e.g., the Radon transform and others) are related
to harmonic analysis on groups but for other quite similar problems such relations
are not clear? In the talk we indicate standard problems of integral geometry
generating harmonic analysis (the Plancherel theorem etc.) on pairs of commutative
hypergroups in a duality of Pontryagin’s type. As a result new meaningful examples
of hypergroups are constructed.

1 Hypergroups and generalized Fourier transforms

Suppose that 𝑋 and �̂� have structures of smooth manifolds or diffeological spaces
with fixed measures 𝑑𝑥 and 𝑑𝑦 respectively.

Let us examine transforms of the form

𝐹 : 𝑓(𝑥) ↦→ 𝑓(𝑦) =

∫︁
𝑓(𝑥)𝑒(𝑥, 𝑦) 𝑑𝑥, (1)

where 𝑒(𝑥, 𝑦) is a generalized function on 𝑋 × �̂�. Suppose that this transform gen-
erates an isomorphism 𝐿2(𝑋, 𝑑𝑥)→ 𝐿2(�̂�, 𝑑𝑦), such that the following generalized
Plancherel formula is valid:∫︁

𝑓(𝑥)𝑔(𝑥)𝑑𝑥 =

∫︁
𝑓(𝑦)𝑔(𝑦)𝑑𝑦. (2)

In addition suppose that this isomorphism can be extended to 𝛿-functions and
set 𝑔(𝑥) = 𝛿𝑥(·); then from (3) it follows that 𝛿𝑥 = 𝑒(𝑥, 𝑦) and the following inversion
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formula is valid:
𝑓(𝑥) =

∫︁
𝑓(𝑦)𝑒(𝑥, 𝑦)𝑑𝑦. (3)

On the other hand the Plancherel formula (3) follows from (1) and (4). We
suppose that in the space 𝐿2(𝑋, 𝑑𝑥) there is a dense locally convex linear subspace
𝑆 (or lineal for the sake of brevity), such that 𝑆 consists of continuous functions
(but not all of them) and the lineal ̂︀𝑆 = 𝐹 (𝑆) possesses the same properties with
respect to the space 𝐿2( ̂︀𝑋, 𝑑𝑦). It is assumed that 𝑆 and ̂︀𝑆 are algebras with respect
to the usual multiplication of functions and the isomorphism (1) can be extended
to 𝛿-functions belonging to the spaces 𝑀 and ̂︁𝑀 , dual to 𝑆 and ̂︀𝑆 respectively.

The described construction is a formalization and generalization of heuristic
ideas of B. M. Levitan [3].

In the case at hand, when formulas (1) and (4) and hence (3) are valid, we
shall say that the transform 𝐹 is a generalized Fourier transform (or GFT for the
sake of brevity); functions 𝑒(𝑥, 𝑦) and 𝑒(𝑥, 𝑦) will be called generalized exponential
functions.

Proposition 1. Under the specified assumptions, 𝑋 has a structure of com-
mutative hypergroup in the following sense: generalized translation operators act in
𝑆 and for these operators the associativity axiom of J. Delsarte [2] is valid; gener-
ally speaking, it is not supposed that X has a neutral element. These generalized
translation operators are defined by the formula

𝑅𝑦𝑓(𝑥) =

∫︁
𝑓(𝜒) · 𝑒(𝑦, 𝜒) · 𝑒(𝑥, 𝜒)𝑑𝜒, (4)

where 𝜒 ∈ ̂︀𝑋 defines the character 𝜒(𝑥) = 𝑒(𝑥, 𝜒) on 𝑋. Similarly 𝑥(𝜒) = 𝑒(𝑥, 𝜒) is
a character on ̂︀𝑋.

The hypergroup commutativity means that every two generalized translation
operators commute. Then ̂︀𝑋 is a hypergroup dual to 𝑋; of course, the hypergroup
𝑋 is dual to ̂︀𝑋 and 𝐹−1(𝛿𝑦) = 𝑒(𝑥, 𝑦).

For example, if 𝑋 = ̂︀𝑋 = R 𝑛, 𝑑𝑥 and 𝑑𝑦 are normalized invariant measures,
then 𝐹 is the usual Fourier transform, 𝑒(𝑥, 𝑦) is the exponential function 𝑒𝑖⟨𝑥,𝑦⟩,
and for 𝑆 it is possible to use the L. Schwartz space of functions which are rapidly
decreasing with all the derivatives. In this case the space 𝑀 consists of all tempered
generalized functions (distributions). Below in Section 4 the space 𝑆 is the space
of all smooth functions on a compact hypergroup 𝑋; in other sections 𝑆 is the
L. Schwartz space on a hypergroup 𝑋.
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Usually generalized translation operators act also in the spaces of smooth func-
tions, summable functions, measures and generalized functions with compact sup-
ports etc. Different versions of the concept of hypergroup are discussed, e.g., in [4].
Of course, every group (or semigroup) 𝐺 is an example of a hypergroup; in this
case translations 𝑅𝑥 are of the form 𝑅𝑥 : 𝑓(𝑡) ↦→ 𝑓(𝑡𝑥), where 𝑡𝑥 is the product of
elements of the group.

There are quite few examples of nontrivial meaningful hypergroups related to
harmonic analysis. The most well known one is the Gelfand pair related to harmonic
analysis of spherical functions, see, e.g., [4]. One of our aims in this talk is to extend
the collection of examples of this type.

2 GFT associated with the generalized Radon transform on C 𝑛

The Radon transform on C 𝑛 maps functions 𝑓 on C 𝑛 to their integrals over hy-
perplanes in C 𝑛, i.e. functions ℛ𝑓 on the manifold of hyperplanes in C 𝑛. For an
explicit description of this transform we shall define hyperplanes by the equations
𝑥𝑛 =

∑︀𝑛−1
𝑖=1 𝑎𝑖𝑥𝑖 + 𝑎𝑛 and we shall use 𝑎 = (𝑎1, . . . , 𝑎𝑛) as local coordinates for

the manifold of hyperplanes in C 𝑛. Using these notations and the delta-functions
notation we can render the Radon transform in the following form:

(ℛ𝑓)(𝑎) =
∫︁
C 𝑛

𝑓(𝑥)𝛿(𝑥𝑛 − 𝑎1𝑥1 − . . .− 𝑎𝑛−1𝑥𝑛−1 − 𝑎𝑛)𝑑𝜇(𝑥),

where 𝛿(·) is the delta-function on C , and 𝑑𝜇(𝑥) is the Lebesgue measure on C 𝑛.
It is known that the following inversion formula is valid: if 𝜙 = ℛ𝑓, then

𝑓(𝑥) =

∫︁
C 𝑛

𝜙(𝑎)𝛿(𝑛−1,𝑛−1)(𝑥𝑛 − 𝑎1𝑥1 − . . . 𝑎𝑛−1𝑥𝑛−1 − 𝑎𝑛)𝑑𝜇(𝑎),

where 𝛿(𝑛−1,𝑛−1)(𝑡) = 𝜕2𝑛−2

𝜕𝑡𝑛−1𝜕𝑡
𝑛−1 𝛿(𝑡),

We shall say that a generalized Radon transform on C 𝑛 associated with an
arbitrary generalized function 𝑢(𝑡) on C is the integral transform

(ℛ𝑢𝑓)(𝑎) =
∫︁
𝐿𝑛

𝑓(𝑥)𝑢(𝑥𝑛 − 𝑎1𝑥1 − . . .− 𝑎𝑛−1𝑥𝑛−1 − 𝑎𝑛)𝑑𝜇(𝑥).

Theorem 1. If the Fourier transform ̃︀𝑢(𝑐) of 𝑢(𝑡) is an usual function and this
function is nonzero almost everywhere, then the generalized Radon transform ℛ𝑢 is
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invertible and the inversion formula is of the form 1: if 𝜙 = 𝐽𝑢𝑓, then

𝑓(𝑥) =

∫︁
C 𝑛

𝜙(𝑎)𝑈(𝑥𝑛 − 𝑎1𝑥1 − . . . 𝑎𝑛−1𝑥𝑛−1 − 𝑎𝑛)𝑑𝜇(𝑎), (5)

where 𝑈(𝑡) =
∫︀
C [̃︀𝑢(𝑐)]−1|𝑐|2(𝑛−1)𝑒𝑖Re(𝑐𝑡)𝑑𝜇(𝑐).

Corollary 1. If |̃︀𝑢(𝑐)| = |𝑐|𝑛−1, then the generalized Radon transform 𝐽𝑢 is a
GFT, i.e. 𝑈(𝑡) = 𝑢(𝑡).

Examples of GFT. Functions ̃︀𝑢(𝑐) = 𝑐𝑘𝑐𝑛−𝑘−1, 𝑘 = 0, 1, . . . , 𝑛 − 1 correspond
to local GFT with kernels 𝑢(𝑡) = 𝛿(𝑘,𝑛−𝑘−1)(𝑡). Functions ̃︀𝑢(𝑐) = 𝑐𝜆𝑐𝜇, which differ
from functions indicated above, where Re(𝜆 + 𝜇) = 𝑛 − 1 and 𝜆 − 𝜇 is an integer
number, correspond to GFT with nonlocal kernels 𝑢(𝑡) = 𝑡−𝜆−1𝑡

−𝜇−1
.

3 GFT associated with generalized Radon transform on R 𝑛

Definitions of the usual and generalized Radon transform on R 𝑛 are similar to the
complex case. In the real case the generalized Radon transform ℛ is a GFT if
the Fourier transform ̃︀𝑢(𝑐) of the kernel 𝑢(𝑡) satisfies the equation |̃︀𝑢(𝑐)| = |𝑐|𝑛−1

2 .
Hence we have one and only one local GFT for odd 𝑛, 𝑛 = 2𝑘+1 only. This kernel
corresponds to the function ̃︀𝑢(𝑐) = 𝑐𝑘, and its kernel has the form 𝛿𝑘(𝑡). Examples
of GFT with nonlocal kernels are GFT with kernels 𝑢(𝑡) = |𝑡|−

𝑛+1
2

−𝑖𝜌, 𝜌 ∈ R .

Remark. Similarly it is possible to construct GFT for generalized Radon trans-
forms on 𝐿𝑛, where 𝐿 is a continuos non-Archimedean locally compact field.

4 GFT associated with a transform of functions on the sphere
𝑆𝑛 ⊂ R 𝑛+1

Let us examine an integral transform mapping even functions on the sphere 𝑆𝑛

to their integrals on geodesic hypersurfaces (analogs of big circles on 𝑆2). In the
spherical coordinates 𝜔 these hypersurfaces are defined by the equations ⟨𝜉, 𝜔⟩=0,
and the integral transform can be presented in the form

𝑓(𝜔)→ (𝐽𝑓)(𝜉) =

∫︁
𝑆𝑛

𝑓(𝜔)𝛿(⟨𝜉, 𝜔⟩)𝑑𝜔, (6)

1Here and in the next integral formulas we suggest that coefficients which usually are placed
before the integral symbol are included in the corresponding measure normalization.
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where 𝑑𝜔 is an invariant measure on the sphere. There exists an inversion formula
representing the initial function 𝑓 via its image under the transform 𝐽𝑓.

For every 𝜆 ∈ C let us define the following generalized transform for even
functions on 𝑆𝑛 by the equation

(𝐽𝜆𝑓)(𝜉) =

∫︁
𝑆𝑛

𝑓(𝜔)
|⟨𝜉, 𝜔⟩|𝜆

Γ(𝜆+1
2 )

𝑑𝜔. (7)

The integral converges for Re𝜆 > −1 and it is defined for every 𝜆 ∈ C as an
analytic continuation in 𝜆. In particular, 𝐽−1 = 𝐽.

Theorem 2. The following inversion formula holds:

if 𝜙 = 𝐽𝜆𝑓, then 𝑓 = 𝐽−𝜆−𝑛−1𝜙. (8)

Corollary 2. The transform 𝐽𝜆 is a GFT for 𝜆 = −𝑛+1
2 + 𝑖𝜌, 𝜌 ∈ R .

In particular, for 𝑛 = 4𝑘 + 1 and 𝜆 = −2𝑘 − 1 we have the GFT with the local
kernel 𝛿2𝑘(·).

Similarly define the transform 𝐽𝑢 for odd functions on the sphere replacing
|⟨𝜉, 𝜔⟩|𝜆 with |⟨𝜉, 𝜔⟩|𝜆 sgn(⟨𝜉, 𝜔⟩) in (7). For this definition, the same inversion
formula (8) holds and the transform 𝐽𝑢 is a GFT under the same conditions as in
the case of even functions. The difference is that local GFT exist in the case of
𝑛 = 4𝑘 − 1, and in this case the kernel is the odd generalized function 𝛿2𝑘−1(·).
Note that our hypergroup is compact and the dual hypergroupm is compact too.

5 GFT related to the complex of 𝑘-dimensional planes in C 𝑛

Define a family of 𝑛-dimensional submanifolds (complexes) in the manifold of all
𝑘-dimensional planes in the space C 𝑛, 0 < 𝑘 < 𝑛− 1.

Let the space C 𝑛 be represented in the form of direct sum C 𝑛 = C 𝑘 ⊕ C 𝑙,
𝑘 + 𝑙 = 𝑛 of the spaces with coordinates 𝑥 = (𝑥1, . . . , 𝑥𝑘) and 𝑦 = (𝑦1, . . . , 𝑦𝑙).
Define 𝑘-dimensional planes in C 𝑛 by the following equations solved with respect
to the coordinates 𝑦𝑖 : 𝑦𝑖 = 𝑢𝑖1𝑥1 + . . .+ 𝑢𝑖𝑘𝑥𝑘 + 𝛼𝑖, 𝑖 = 1, . . . , 𝑙.

Let us fix an arbitrary (𝑙, 𝑘)-matrix 𝑢(𝑡) = ‖𝑢𝑖𝑗(𝑡)‖ whose elements are polyno-
mials of 𝑡 = (𝑡1, . . . , 𝑡𝑘) ∈ C 𝑘. For this matrix let us construct the submanifold of
𝑘-dimensional planes defined by the equations

𝑦𝑖 = 𝑢𝑖1(𝑡)𝑥1 + . . .+ 𝑢𝑖𝑘(𝑡)𝑥𝑘 + 𝛼𝑖, 𝑖 = 1, . . . , 𝑙, (9)

or 𝑦 = 𝑢(𝑡)𝑥+ 𝛼 for short.



Integral Geometry and I.M. Gelfand’s Question 271

The condition that the submanifold 𝐾 just defined is a complex, i.e. dim𝐾 = 𝑛,
is equivalent to the condition of nonsingularity for the map 𝑡 ↦→ 𝑢(𝑡) of the space
C 𝑘 to the space of (𝑙, 𝑘)-matrices. We shall use vectors 𝛼 = (𝛼1, . . . , 𝛼𝑙) and
𝑡 = (𝑡1, . . . , 𝑡𝑘) as coordinates for 𝐾.

Complexes 𝐾 have a simple geometric structure. Specifically, equations (9) for
𝛼 = 0 define a 𝑘-dimensional family of (𝑘 − 1)-dimensional planes on a hyperpane
in C 𝑛 at infinity. The complex 𝐾 consists of all 𝑘-dimensional planes containing at
least one of these (𝑘 − 1)-dimensional planes. In particular, for 𝑘 = 1 the complex
𝐾 consists of straight lines in C 𝑛 that intersec a fixed curve in a hyperplane at
infinity.

The complex 𝐾 generates an integral transform 𝐽 mapping functions 𝑓(𝑥, 𝑦) on
C 𝑛 to their integrals over planes of the complex. Using the delta-functions notation,
it is convenient to present this transform in the form

(𝐽𝑓)(𝛼, 𝑡) =

∫︁
C 𝑛

𝑓(𝑥, 𝑦) 𝛿(𝑦 − 𝑢(𝑡)𝑥− 𝛼) 𝑑𝜇(𝑥) 𝑑𝜇(𝑦), (10)

where 𝛿(·) is the delta-function on C 𝑘, and 𝑑𝜇(𝑥), 𝑑𝜇(𝑦) are Lebesgue measures on
C 𝑘 and C 𝑙.

We now examine general transforms 𝐽𝑎 which are defined by replacing in defi-
nition (10) the delta-functions 𝛿(𝑠) with arbitrary generalized functions 𝑎(𝑠, 𝑡) and
find inversion formulas for these transforms. By definition we have

(𝐽𝑎𝑓)(𝛼, 𝑡) =

∫︁
𝑓(𝑥, 𝑦) 𝑎(𝑦 − 𝑢(𝑡)𝑥− 𝛼, 𝑡) 𝑑𝜇(𝑥) 𝑑𝜇(𝑦). (11)

Note that 𝐽𝑎𝑓 is a result of convolution with respect to 𝛼 of the function 𝜙 = 𝐽𝑓
with the function 𝑎(𝑠, 𝑡) :

(𝐽𝑎𝑓)(𝛼, 𝑡) =

∫︁
C 𝑙

𝜙(𝛼+ 𝑠, 𝑡) 𝑎(𝑠, 𝑡) 𝑑𝜇(𝑠). (12)

There is a simple relation between the Fourier transform ̃︀𝑓(𝜂, 𝜉) of the function
𝑓(𝑥, 𝑦) and the Fourier transform ̃︀𝜙(𝜉, 𝑡) with respect to 𝛼 of the function 𝜙 = 𝐽𝑎𝑓 :

̃︀𝜙(𝜉, 𝑡) = ̃︀𝑓(−𝜉𝑢(𝑡), 𝜉)̃︀𝑎(−𝜉, 𝑡), (13)

where ̃︀𝑎(𝜉, 𝑡) is the Fourier transform with respect to 𝑠 of the function 𝑎(𝑠, 𝑡).
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Let us check that if ̃︀𝑎(𝜉, 𝑡) is an usual function which is nonzero almost every-
where, then the function 𝑓 can be reconstructed from the function 𝜙 = 𝐽𝑎𝑓 in a
unique way.

Note that by virtue of (13) this condition implies that the function 𝐹 (𝜂, 𝜉) =̃︀𝑓(−𝜉𝑢(𝑡), 𝜉) can be reconstructed from the function 𝜙 uniquely. On the other hand
from the nonsingularity of 𝐾 and the analyticity condition it follows that for almost
every pair (𝜂, 𝜉) there exists 𝑡 ∈ C 𝑘 such that −𝜉𝑢(𝑡) = 𝜂. It then follows that the
function ̃︀𝑓, and hence the function 𝑓 can be reconstructed from the function 𝐹. Let
us describe an inversion formula explicitly.

Definition 1. We shall say that the Crofton function related to the complex
𝐾, is the function Cr𝐾(𝜂, 𝜉) on C 𝑘 ⊕C 𝑙, equal to the number of solutions 𝑡 of the
equation 𝜂 = −𝜉𝑢(𝑡). If the Crofton function is constant almost everywhere, then
this constant is called the Crofton number. Denote this number by Cr𝐾 .

From the condition on the complex 𝐾 it follows that its Crofton function is
nonzero and constant almost everywhere.

Theorem 3. If ̃︀𝑎(𝜉, 𝑡) is a usual function which is nonzero almost everywhere,
then there is the following inversion formula for the integral transform 𝑓 ↦→ 𝜙 =
𝐽𝑎𝑓 :

𝑓(𝑥, 𝑦) =

∫︁
𝜙(𝛼, 𝑡)𝐴(𝑦 − 𝑢(𝑡)𝑥− 𝛼, 𝑡) 𝑑𝜇(𝛼) 𝑑𝜇(𝑡), (14)

where
𝐴(𝑠, 𝑡) =

1

Cr𝐾

∫︁
[̃︀𝑎(𝜉, 𝑡)]−1

⃒⃒⃒𝜕(𝜉𝑢(𝑡))
𝜕𝑡

⃒⃒⃒2
𝑒𝑖Re ⟨𝑠,𝜉⟩𝑑𝜇(𝜉). (15)

Corollary 3. Under the conditions of the theorem 3 the integral transform 𝐽𝑎
is an GFT iff the Fourier transform ̃︀𝑎(𝜉, 𝑡) with respect to 𝑠 of the kernel 𝑎(𝑠, 𝑡)
satisfies the equation

|̃︀𝑎(𝜉, 𝑡)| = Cr
−1/2
𝐾 |𝜔(𝜉, 𝑡)|, where 𝜔(𝜉, 𝑡) =

𝜕(𝜉𝑢(𝑡))

𝜕𝑡
. (16)

Examples of GFT are the integral transforms 𝐽𝑎 with the kernels 𝑎(𝑠, 𝑡), for
which the Fourier transforms with respect to 𝑠 are functions ̃︀𝑎(𝜉, 𝑡) of the form

̃︀𝑎(𝜉, 𝑡) = Cr
−1/2
𝐾 𝜔(𝜉, 𝑡)

𝑙∏︁
𝑝=1

𝜉
𝜆𝑝
𝑝 𝜉

−𝜆𝑝
𝑝 , 𝜆𝑝 ∈ C . (17)

Let us describe the kernels 𝑎(𝑠, 𝑡) explicitly. Since 𝜔(𝜉, 𝑡) is a homogeneous
polynom of 𝜉1, . . . , 𝜉𝑙 of the degree 𝑘, then the function ̃︀𝑎(𝜉, 𝑡) can be presented in
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the form

̃︀𝑎(𝜉, 𝑡) = ∑︁
𝑚1+...+𝑚𝑙=𝑘

[︁
𝑢𝑚1,...,𝑚𝑙

(𝑡)

𝑙∏︁
𝑝=1

(︁
𝜉
𝑚𝑝+𝜆𝑝
𝑝 𝜉

−𝜆𝑝
𝑝

)︁]︁
.

Therefore

𝑎(𝑠, 𝑡) =
∑︁

𝑚1+...+𝑚𝑙=𝑘

[︁
𝑢𝑚1,...,𝑚𝑙

(𝑡)
𝑙∏︁

𝑝=1

ℱ
(︁
𝜉
𝑚𝑝+𝜆𝑝
𝑝 𝜉

−𝜆𝑝
𝑝

)︁]︁
,

where ℱ is the inverse Fourier transform. In particular, (see [1]), if 𝜆𝑝 ̸= 0, 𝑝 =

1, . . . , 𝑙, then ℱ(𝜉𝑚𝑝+𝜆𝑝
𝑝 𝜉

−𝜆𝑝
𝑝 ) is, up to a factor, the fuction 𝑠−𝑚𝑝−𝜆𝑝−1

𝑝 𝑠
𝜆𝑝−1
𝑝 .

In the special case 𝜆1 = . . . = 𝜆𝑙 = 0 the GFT is local and its kernel 𝑎(𝑠, 𝑡) has
the form:

𝑎(𝑠, 𝑡) = Cr
−1/2
𝐾 𝜔

(︂
𝜕

𝜕𝑠
; 𝑡

)︂
𝛿(𝑠).

6 GFT related to the complex of 𝑘-dimensional planes in R 𝑛

There are similar results in the spirit of Section 5.
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Abstract. We give a review of recent results which propose a new model for a linear
viscoelastic body. It is described by a stress-strain constitutive equation involving
the Riemann-Liouville fractional derivatives. Such an equation generalizes several
known models. We derive thermodynamical restrictions on coefficients and orders
of fractional derivatives using the entropy inequality for isothermal processes.

1 Introduction

Fractional calculus is a powerful tool for modeling various problems arising in differ-
ent branches of science such as mechanics, physics, engineering, economics, finance,
medicine, biology, chemistry, etc. It allows differential and integral operators to
be of arbitrary real (or even complex) order. Although the pioneering work in the
field of derivatives and integrals of real order was made at the end of 17th century,
and the solid foundation of the theory was given in the first half of the 19th cen-
tury, the significant expansion of fractional calculus has started about four decades
ago. Since then, many authors have contributed to this field, which has resulted
in several extensive monographs (e.g. [5]) and a great number of scientific papers,
covering different aspects of the theory of fractional calculus and its applications.

Theory of viscoelasticity was among the first areas where fractional calculus
has been applied successfully. Indeed, it has turned out that real order derivatives
and integrals are more appropriate for characterizing viscoelastic material proper-
ties. The method which is most often used for introducing such operators in the
mathematical models describing different physical phenomena (e.g. waves) in a
viscoelastic body is the so-called ’direct fractionalization’. More precisely, in the
constitutive equation, which reflects specific properties of viscoelastic materials,
the integer order derivatives are replaced by real-order fractional ones, while other
equations in the model (e.g. equilibrium equation or the strain measure) remain
unchanged. This approach is completely physically based, and therefore acceptable
for further study. However, one has to be careful with determining restrictions
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on parameters appearing in that new fractional constitutive equation, in order to
preserve the well-known physical laws (such as e.g. The Second Law of Thermody-
namics).

In this note we are concerned with the generalized linear fractional constitutive
equation of the form

𝑁∑︁
𝑛=0

𝑎𝑛 0𝐷
𝛼𝑛
𝑡 𝜎 =

𝑀∑︁
𝑚=0

𝑏𝑚 0𝐷
𝛽𝑚
𝑡 𝜀, 𝑡 > 0. (1)

It has been obtained from a model of linear viscoelastic body with arbitrary finite
number of springs and dashpots (cf. [4]), in which integer order derivatives are
replaced by the Riemann-Liouville fractional real order ones. Our purpose is to
examine validity of Eq. (1) by determining restrictions on both coefficients and
orders of fractional derivatives appearing in the equation.

To the end of Introduction we briefly recall notions and facts which will be used
in the sequel. In Section 2 we present a detailed analysis of the generalized linear
fractional constitutive Eq. (1), extract necessary and sufficient conditions for its
well-posedness, and discuss several special cases which appear in applications more
frequently. Further details, as well as an application of these results, can be found
in [2].

Let 𝜂 ∈ [0, 1]. The left 𝜂-th order Riemann-Liouville fractional derivative 0𝐷
𝜂
𝑡 𝑦

of a function 𝑦 ∈ 𝐴𝐶([0, 𝑇 ]), 𝑇 > 0, is defined as

0𝐷
𝜂
𝑡 𝑦(𝑡) :=

1

Γ(1− 𝜂)
𝑑

𝑑𝑡

𝑡∫︁
0

𝑦(𝜏)

(𝑡− 𝜏)𝜂
𝑑𝜏,

where Γ is the Euler gamma function and 𝐴𝐶([0, 𝑇 ]), 𝑇 > 0, denotes the space of
absolutely continuous functions on [0, 𝑇 ].

Also, recall that the Fourier transform of function 𝑓 is defined as

ℱ [𝑓(𝑡)](𝜔) = 𝑓(𝜔) =

∞∫︁
−∞

𝑓(𝑡)𝑒−𝑖𝜔𝑡 𝑑𝑡, 𝜔 ∈ R.

It holds ℱ [0𝐷𝜂
𝑡 𝑓(𝑡)](𝜔) = (𝑖𝜔)𝜂𝑓(𝜔).

We refer to [5] for a detailed account of fractional calculus.
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2 Thermodynamical restrictions for the linear fractional constitu-
tive equation

The goal of this section is to provide well-posedness of the generalized linear frac-
tional constitutive Eq. (1), i.e.,

𝑁∑︁
𝑛=0

𝑎𝑛 0𝐷
𝛼𝑛
𝑡 𝜎 =

𝑀∑︁
𝑚=0

𝑏𝑚 0𝐷
𝛽𝑚
𝑡 𝜀, 𝑡 > 0,

by determining restrictions on parameters {𝛼𝑛}𝑛=0,...,𝑁 , {𝛽𝑚}𝑚=0,...,𝑀 , {𝑎𝑛}𝑛=0,...,𝑁

and {𝑏𝑚}𝑚=0,...,𝑀 , in such a way that the generalized linear fractional model of a
viscoelastic body satisfies the requirements of the Second Law of Thermodynamics.

In Eq. (1) we used 𝜎 to denote the stress, 𝜀 for the strain, and 0𝐷
𝜂
𝑡 , 𝜂 ∈ [0, 1],

denotes the operator of the left Riemann-Liouville fractional derivation. The coef-
ficients {𝑎𝑛}𝑛=0,...,𝑁 and {𝑏𝑚}𝑚=0,...,𝑀 are given real numbers, having the physical
meaning of relaxation times. For technical purposes, the orders of the fractional
derivatives in Eq. (1) are assumed to satisfy

0 6 𝛼0 < 𝛼1 < . . . < 𝛼𝑁 6 1, 0 6 𝛽0 < 𝛽1 < . . . < 𝛽𝑀 6 1. (2)

Notice here that the general linear fractional constitutive Eq. (1) includes in it-
self many known constitutive equations of one-dimensional viscoelasticity as special
cases:

1. The classical Zener model is obtained for 𝛼0 = 𝛽0 = 0, 𝛼1 = 𝛽1 = 1, 𝑎0 = 𝑏0 =
1, 𝑎1 = 𝑎, 𝑏1 = 𝑏, and all other coefficients vanishing (cf. [3]).

2. The generalized Zener model is the result of the choice 𝑎0 = 𝑏0 = 1, 𝛼0 = 𝛽0 =
0, 𝑎1 = 𝑎, 𝑏1 = 𝑏, 𝛼1 = 𝛽1 = 𝛼 (𝛼 ∈ [0, 1]), and the rest of coefficients being
zero (cf. [1]).

In both cases the constants 𝑎 and 𝑏 have to satisfy the inequality 𝑎 6 𝑏, which
comes as a consequence of the Clausius-Duhem inequality. Therefore, a natural
question arises: What is a generalization of such inequality for the model (1), or
more precisely, which restrictions on the coefficients, as well as on the orders of
derivatives in generalized linear fractional constitutive Eq. (1) should be assumed
in order to obtain a model obeying The Second Law of Thermodynamics. This kind
of problem has already been considered in [3, 5], resulting in properly formulated
thermodynamical constraints (based on a nonnegative rate of energy dissipation and
nonnegative internal work), which lead to a well-behaved mathematical description
of the viscoelastic phenomenon. Hence, we shall follow the approach proposed
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in [3] and use the entropy inequality for isothermal processes, in order to determine
thermodynamical restrictions on parameters in Eq. (1).

The procedure of finding restrictions on parameters in Eq. (1) consists of several
steps, which can be briefly described as follows. First, one has to apply the Fourier
transform on Eq. (1). From the transformed equation the complex modulus should
be defined. Requesting the real and imaginary part of the complex modulus to be
nonnegative one can then extract desired restrictions on parameters {𝛼𝑛}𝑛=0,...,𝑁 ,
{𝛽𝑚}𝑚=0,...,𝑀 , {𝑎𝑛}𝑛=0,...,𝑁 and {𝑏𝑚}𝑚=0,...,𝑀 .

We therefore first apply the Fourier transform to Eq. (1) and obtain

�̂�(𝜔)
𝑁∑︁
𝑛=0

𝑎𝑛(𝑖𝜔)
𝛼𝑛 = 𝜀(𝜔)

𝑀∑︁
𝑚=0

𝑏𝑚(𝑖𝜔)
𝛽𝑚 , 𝜔 ∈ R. (3)

Set

�̂�(𝜔) :=

𝑀∑︀
𝑚=0

𝑏𝑚(𝑖𝜔)
𝛽𝑚

𝑁∑︀
𝑛=0

𝑎𝑛(𝑖𝜔)𝛼𝑛

, 𝜔 ∈ R,

to be the complex modulus. Then Eq. (3) takes the form �̂�(𝜔) = �̂�(𝜔)𝜀(𝜔), 𝜔 ∈ R.
According to (cf. [3,5]), The Second Law of Thermodynamics in case of the isother-
mal process implies that

Re �̂�(𝜔) > 0, ∀𝜔 > 0, (4)
Im �̂�(𝜔) > 0, ∀𝜔 > 0. (5)

Closer analysis of conditions (4) and (5) should lead to determination of restrictions
on parameters 𝛼𝑛, 𝛽𝑚, 𝑎𝑛 and 𝑏𝑚 in Eq. (1).

After a straightforward calculation one obtains:

�̂�(𝜔) =

𝑀∑︀
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 cos 𝛽𝑚𝜋2 + 𝑖

𝑀∑︀
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 sin 𝛽𝑚𝜋

2

𝑁∑︀
𝑛=0

𝑎𝑛𝜔𝛼𝑛 cos 𝛼𝑛𝜋
2 + 𝑖

𝑁∑︀
𝑛=0

𝑎𝑛𝜔𝛼𝑛 sin 𝛼𝑛𝜋
2

.

Set

�̂�′(𝜔) := �̂�(𝜔)

⃒⃒⃒⃒
⃒
𝑁∑︁
𝑛=0

𝑎𝑛 (𝑖𝜔)
𝛼𝑛

⃒⃒⃒⃒
⃒
2

.
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We stress here that the sign of real and imaginary parts of the complex modulus
�̂�(𝜔) and the modified complex modulus �̂�′(𝜔) coincides, thus we shall examine
the latter. We have

Re �̂�′(𝜔) =

(︃
𝑁∑︁
𝑛=0

𝑎𝑛𝜔
𝛼𝑛 cos

𝛼𝑛𝜋

2

)︃(︃
𝑀∑︁
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 cos

𝛽𝑚𝜋

2

)︃
+

+

(︃
𝑁∑︁
𝑛=0

𝑎𝑛𝜔
𝛼𝑛 sin

𝛼𝑛𝜋

2

)︃(︃
𝑀∑︁
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 sin

𝛽𝑚𝜋

2

)︃
, (6)

Im �̂�′(𝜔) =

(︃
𝑁∑︁
𝑛=0

𝑎𝑛𝜔
𝛼𝑛 cos

𝛼𝑛𝜋

2

)︃(︃
𝑀∑︁
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 sin

𝛽𝑚𝜋

2

)︃
−

−

(︃
𝑁∑︁
𝑛=0

𝑎𝑛𝜔
𝛼𝑛 sin

𝛼𝑛𝜋

2

)︃(︃
𝑀∑︁
𝑚=0

𝑏𝑚𝜔
𝛽𝑚 cos

𝛽𝑚𝜋

2

)︃
. (7)

The real part of �̂�′(𝜔) is a sum whose terms contain sine and cosine of angles
𝛼𝑛𝜋
2 , 𝛽𝑚𝜋2 . By assumption 𝛼𝑛, 𝛽𝑚 ∈ [0, 1], 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀 , thus

𝛼𝑛𝜋
2 , 𝛽𝑚𝜋2 ∈ [0, 𝜋2 ], and consequently, sine and cosine of those angles are positive.

We may then conclude that conditions 𝑎𝑛, 𝑏𝑚 > 0 imply Re �̂�′(𝜔) > 0, as well as
(4). Therefore, we shall restrict our attention to the case 𝑎𝑛, 𝑏𝑚 > 0.

Further calculation of (7) yields that (5) holds if and only if

Im �̂�′(𝜔) = −
∑︁

𝑛∈{0,1,...,𝑁}
𝑚∈{0,1,...,𝑀}

𝜔𝛼𝑛+𝛽𝑚 sin
(𝛼𝑛 − 𝛽𝑚)𝜋

2
𝑎𝑛𝑏𝑚 > 0, ∀𝜔 > 0. (8)

The following claim gives a necessary condition for inequality (8).

Theorem 1. Let
1. 0 6 𝛼0 < 𝛼1 < . . . < 𝛼𝑁 6 1 and 0 6 𝛽0 < 𝛽1 < . . . < 𝛽𝑀 6 1 (i.e., (2)

holds);
2. 𝑎𝑛, 𝑏𝑚 > 0, 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀 ;
3. 𝛼𝑁 ̸= 𝛽𝑀 .

Then a necessary condition for (8) is that 𝛼𝑁 < 𝛽𝑀 .
In other words, the highest order of fractional derivatives of stress in (1) could

not be greater than the highest order of fractional derivatives of strain.
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Proof. We observe that for large 𝜔 the sign of Im �̂�′(𝜔) coincides with the sign
of the term in the sum on the right-hand side of (8) with the largest power of 𝜔.
It follows from (2) that the latter is achieved for 𝛼𝑁 and 𝛽𝑀 . Therefore, in order
that Im �̂�′(𝜔) > 0, 𝛼𝑁 has to be less than 𝛽𝑀 , as claimed. �

Remark 1. (i) In the same way it can be proved that in the case 𝛼𝑁 = 𝛽𝑀 a
necessary condition from Th. 1 transforms to 𝛼𝑛 < 𝛽𝑚, for the largest 𝛼𝑛 and 𝛽𝑚
which do not coincide. The case when the orders of fractional derivatives of the
stress and strain are the same is discussed below.

(ii) Th. 1 can also be used as a test for accepting or rejecting an equation
which is a candidate for the constitutive equation in a mathematical model of
viscoelastic body. For instance, equation 𝑎0𝜎 + 𝑎𝛼 0𝐷

𝛼
𝑡 𝜎 = 𝑏0𝜀, 0 < 𝛼 < 1, can not

be accepted as a constitutive equation, since it does not obey The Second Law of
Thermodynamics. The latter can be seen from Eq. (8), which in this case reads
−𝜔𝛼 sin 𝛼𝜋

2 𝑎𝛼𝑏0, and which is strictly less than zero for all 𝜔 > 0.

So far we have established a necessary criterion for well-posedness of the gen-
eralized linear fractional constitutive Eq. (1). On the other hand, the question of
finding sufficient conditions from Eq. (4) and Eq. (5) is more delicate, and in turn,
it is quite difficult to give any answer in general case. However, the solution to
this problem can be sought in examination of certain special cases, which occur
more often in applications. Hence, in the sequel we list four interesting classes of
constitutive equations:

1. 𝛼𝑛 ̸= 𝛽𝑚, for all 𝑛,𝑚, i.e., there are 𝑁 + 1 and 𝑀 + 1 terms of different order
in Eq. (1).
Then the following two conditions

(a) 𝑎𝑛, 𝑏𝑚 > 0, 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀
(b) 0 6 𝛼0 < 𝛼1 < . . . < 𝛼𝑁 < 𝛽0 < 𝛽1 < . . . < 𝛽𝑀 6 1

guarantee validity of (5).
We remark here that in [2] we study a linear viscoelastic body model with

the constitutive equation which belongs to this class.
2. 𝑀 > 𝑁 and 𝛼𝑖 = 𝛽𝑖, 𝑖 = 0, 1, . . . , 𝑁 , i.e., there are 𝑁 + 1 first terms of the

same order and 𝑀 −𝑁 terms left in Eq. (1).
In this case the following set of conditions

(a) 𝑎𝑛, 𝑏𝑚 > 0, 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀

(b)
𝑎0
𝑏0
>
𝑎1
𝑏1
> . . . >

𝑎𝑁
𝑏𝑁
> 0

(c) 0 6 𝛼0 < 𝛼1 < . . . < 𝛼𝑁 < 𝛽𝑁+1 < . . . < 𝛽𝑀 6 1
provides that (5) holds.
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3. 𝑁 > 𝑀 and 𝛼𝑁−𝑀+𝑖 = 𝛽𝑖, 𝑖 = 0, 1, . . . ,𝑀 , i.e., there are 𝑀 + 1 last terms of
the same order and 𝑁 −𝑀 terms left in Eq. (1).
Here, if one supposes

(a) 𝑎𝑛, 𝑏𝑚 > 0, 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀

(b)
𝑎𝑁−𝑀
𝑏0

>
𝑎𝑁−𝑀+1

𝑏1
> . . . >

𝑎𝑁
𝑏𝑀
> 0

then (5) is satisfied.
4. 𝑁 = 𝑀 and 𝛼𝑖 = 𝛽𝑖, 𝑖 = 0, 1, . . . , 𝑁 , i.e., there are 𝑁 + 1 terms of the same

order on both sides of Eq. (1).
In this case, (5) holds if

(a) 𝑎𝑛, 𝑏𝑚 > 0, 𝑛 = 0, 1, . . . , 𝑁 , 𝑚 = 0, 1, . . . ,𝑀

(b)
𝑎0
𝑏0
>
𝑎1
𝑏1
> . . . >

𝑎𝑁
𝑏𝑁
> 0.

Remark 2. In all cases studied above we determined conditions which imply
that all terms in the sum in (5) are positive. If one wants to consider other instances
which are not listed above (e.g. when there are 𝐾 < min{𝑁,𝑀} terms of the
same order in Eq. (1)) it is not possible to make all terms in (8) nonnegative
simultaneously, and thus it is more difficult to find some particular conditions on
parameters 𝑎𝑛, 𝑏𝑚, 𝛼𝑛 and 𝛽𝑚 which implies (5).

Remark 3. We also stress here that there is a strong connection between ther-
modynamical restrictions on coefficients in Eq. (1) and conditions for the existence
of the inverse Laplace transform of equation of motion (in a model describing waves
in viscoelastic media). It has been proved that the thermodynamical restrictions
guarantee the existence of solutions (cf. [6, 7]).
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Abstract. In this paper we shall give practical inversion formulas in the one
dimensional wave equation using reproducing kernels and Tikhonov regularization.
And we show their numerical experiments by using computers.

1 Introduction and main results

We shall consider the wave equation

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑡2
= 𝑐2

𝜕2𝑢(𝑥, 𝑡)

𝜕𝑥2
(𝑐 : 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 > 0). (1)

The solutions 𝑢(𝑥, 𝑡) satisfying the condition

𝑢𝑡(𝑥, 𝑡)
⃒⃒
𝑡=0

= 𝐹 (𝑥), 𝑢(𝑥, 0) = 0 on R, (2)

is represented for some function 𝐹 as follows:

𝑢𝐹 (𝑥, 𝑡) =
1

2𝑐

∫︁
R

𝐹 (𝜉)𝜃(𝑐𝑡− |𝑥− 𝜉|)𝑑𝜉. (3)

Here, 𝜃(𝑥) is a step function.
We shall use the first order Sobolev Hilbert space 𝐻𝑆 comprising absolutely

continuous functions 𝐹 on R with the norm

‖𝐹‖2𝐻𝑆
=

∞∫︁
−∞

(𝐹 (𝑥)2 + 𝐹 ′(𝑥)2)𝑑𝑥.
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This Hilbert space admits the reproducing kernel

𝐾(𝑥, 𝑦) =
1

2
𝑒−|𝑥−𝑦| =

1

2𝜋

∞∫︁
−∞

1

1 + 𝜉2
𝑒𝑖(𝑥−𝑦)𝜉𝑑𝜉. (4)

Similarly we shall use the first order Sobolev Hilbert space 𝐻𝑆,𝑒 comprising
absolutely continuous functions 𝐹 on R which are even functions with respect to
the origin with the norm

‖𝐹‖2𝐻𝑆,𝑒
=

2

𝜋

∞∫︁
0

(𝐹 (𝑥)2 + 𝐹 ′(𝑥)2)𝑑𝑥.

This Hilbert space admits the reproducing kernel

𝐾𝑒(𝑥, 𝑦) =
𝜋

4

(︁
𝑒−|𝑥−𝑦| + 𝑒−𝑥𝑒−𝑦

)︁
=

∞∫︁
0

1

1 + 𝜉2
cos𝑥𝜉 cos 𝑦𝜉𝑑𝜉. (5)

For these formulas we see easily by using Fourier’s transform (cf. [2], page 58).

In the typical situation (2) and (3) we shall give the results:

Theorem 1. For any function 𝑔 ∈ 𝐿2(R), for any 𝜆 > 0 and for any fixed
𝑡 > 0, the best approximate function 𝐹 *

𝑔,𝜆,𝑡 in the sense

inf
𝐹∈𝐻𝑆

{︁
𝜆‖𝐹‖2𝐻𝑆

+ ‖𝑔 − 𝜕𝑥𝑢𝐹 (𝑥, 𝑡)‖2𝐿2(R)

}︁
=

= 𝜆‖𝐹 *
𝑔,𝜆,𝑡‖2𝐻𝑆

+ ‖𝑔 − 𝜕𝑥𝑢𝐹 *
𝑔,𝜆,𝑡

(𝑥, 𝑡)‖2𝐿2(R) (6)

exists uniquely and 𝐹 *
𝑔,𝜆,𝑡 is represented by

𝐹 *
𝑔,𝜆,𝑡(𝑥) =

∫︁
R

𝑔(𝜉)𝑃𝜆,𝑡(𝜉 − 𝑥)𝑑𝜉 (7)

for

𝑃𝜆,𝑡(𝜉 − 𝑥) =
−𝑐𝑖
2𝜋

∫︁
R

sin(𝑐𝑡𝜂)𝑒−𝑖𝜂(𝜉−𝑥)𝑑𝜂

𝜆𝑐2(1 + 𝜂2) + sin2(𝑐𝑡𝜂)
.



284 The 8th Congress of the ISAAC — 2011

If, for 𝐹 ∈ 𝐻𝑆 we consider the 𝑢𝐹 (𝑥, 𝑡) and we take 𝜕𝜉𝑢𝐹 (𝜉, 𝑡) as 𝑔(𝜉), then we
have the favourable result:

𝑎𝑠 𝜆→ 0, 𝐹 *
𝑔,𝜆,𝑡 → 𝐹, (8)

uniformly.

Theorem 2. For any function 𝑔 ∈ 𝐿2(R
+), for any 𝜆 > 0 and for fixed 𝑥 = 0,

the best approximate function 𝐹 *
𝑔,𝜆,0 in the sense

inf
𝐹∈𝐻𝑆,𝑒

{︁
𝜆‖𝐹‖2𝐻𝑆,𝑒

+ ‖𝑔 − 𝜕𝑡𝑢𝐹 (0, 𝑡)‖2𝐿2(R+)

}︁
=

= 𝜆‖𝐹 *
𝑔,𝜆,0‖2𝐻𝑆,𝑒

+ ‖𝑔 − 𝜕𝑡𝑢𝐹 *
𝑔,𝜆,0

(0, 𝑡)‖2𝐿2(R+) (9)

exists uniquely and 𝐹 *
𝑔,𝜆,0 is represented by

𝐹 *
𝑔,𝜆,0(𝜉) =

∞∫︁
0

𝑔(𝑡)𝑄𝜆,0(𝑡, 𝜉)𝑑𝑡 (10)

for

𝑄𝜆,0(𝑡, 𝜉) =

∞∫︁
0

cos(𝑐𝑡𝜂) cos(𝜉𝜂)𝑑𝜂

𝜆(1 + 𝜂2) + 𝜋/(2𝑐)
.

If, for 𝐹 ∈ 𝐻𝑆,𝑒 we consider the output 𝑢𝐹 (𝑥, 𝑡) and we take 𝜕𝑡𝑢𝐹 (0, 𝑡) as 𝑔(𝑡),
then we have the favourable result:

𝑎𝑠 𝜆→ 0, 𝐹 *
𝑔,𝜆,0 → 𝐹, (11)

uniformly.

The motivations and results in Theorems 1 and 2 are clear; that is, we are
establishing the inversion formulas that:

(a) from the observation 𝜕𝑥𝑢𝐹 (𝑥, 𝑡) for any fixed 𝑡 > 0, we determine the initial
velocity 𝐹 , and

(b) from the observation 𝜕𝑡𝑢𝐹 (0, 𝑡) for fixed 𝑥 = 0, we determine the initial
velocity 𝐹 , indeed, we can only determine the even part of 𝐹 with respect to the
origin ( [2], Pp. 146-157), respectively.

We shall show that our inversion formulas (7) and (10) are practical by showing
numerical experiments. In particular, Theorem 2 shows a practical formula for some
general “principle of telethoscope” in [4].
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2 Background Theorems

We shall use the following two general theorems.

Theorem 3. Let 𝐻𝐾 be a Hilbert space admitting the reproducing kernel 𝐾(𝑝, 𝑞)
on a set 𝐸. Let 𝐿 : 𝐻𝐾 → ℋ be a bounded linear operator on 𝐻𝐾 into ℋ. For
𝜆 > 0 introduce the inner product in 𝐻𝐾 and call it 𝐻𝐾𝜆

as

⟨𝑓1, 𝑓2⟩𝐻𝐾𝜆
= 𝜆⟨𝑓1, 𝑓2⟩𝐻𝐾

+ ⟨𝐿𝑓1, 𝐿𝑓2⟩ℋ (12)

then 𝐻𝐾𝜆
is the Hilbert space with the reproducing kernel 𝐾𝜆(𝑝, 𝑞) on 𝐸 satisfying

the equation
𝐾(·, 𝑞) = (𝜆𝐼 + 𝐿*𝐿)𝐾𝜆(·, 𝑞), (13)

where 𝐿* is the adjoint of 𝐿 : 𝐻𝐾 → ℋ.

Theorem 4. Let 𝐻𝐾 , 𝐿, ℋ, 𝐸 and 𝐾𝜆 be as in Theorem 3. Then, for any
𝜆 > 0 and for any 𝑔 ∈ ℋ, the extremal function in

inf
𝑓∈𝐻𝐾

(︁
𝜆‖𝑓‖2𝐻𝐾

+ ‖𝐿𝑓 − 𝑔‖2ℋ
)︁

(14)

exists uniquely and the extremal function

𝑓*𝜆,𝑔(𝑝) = ⟨𝑔, 𝐿𝐾𝜆(., 𝑝)⟩ℋ (15)

is the member of 𝐻𝐾 which attains the infimum in (14).

3 Proof of Theorem 1

As we see from the conservative law of energy, for any 𝑡 > 0∫︁
R

𝐹 (𝑥)2𝑑𝑥 =
1

2

∫︁
R

((𝜕𝑡𝑢𝐹 (𝑥, 𝑡))
2 + 𝑐2(𝜕𝑥𝑢𝐹 (𝑥, 𝑡))

2)𝑑𝑥,

the mapping 𝐿𝑡 in (3) 𝐿𝑡 : 𝐹 ∈ 𝐻𝑆 −→ 𝜕𝑥𝑢𝐹 (𝑥, 𝑡) is a bounded linear operator
from 𝐻𝑆 into 𝐿2(R) for any fixed 𝑡 > 0. Then we can see directly that

𝐾𝜆(𝑥, 𝑦;𝐿𝑡) =
𝑐2

2𝜋

∫︁
R

𝑒𝑖𝜂(𝑥−𝑦)

𝜆𝑐2(1 + 𝜂2) + sin2(𝑐𝑡𝜂)
𝑑𝜂 (16)
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satisfies the functional equation (13) in our situation; that is, it is the reproducing
kernel for the Hilbert space with the norm square 𝜆‖𝐹‖2𝐻𝑆

+ ‖𝜕𝑥𝑢𝐹 (𝑥, 𝑡)‖2𝐿2(R). In
particular, we thus obtain (7) from Theorems 3 and 4.

In order to prove the result (8), as we see from (4) note that any member 𝐹 ∈ 𝐻𝑆

is represented uniquely by a function F in the form

𝐹 (𝑥) =
1

2𝜋

∫︁
R

𝑒𝑖𝑥𝜂

1 + 𝜂2
F(𝜂)𝑑𝜂 (17)

satisfying
1

2𝜋

∫︁
R

1

1 + 𝜂2
|F(𝜂)|2𝑑𝜂 <∞

and
‖𝐹‖2𝐻𝑆

=
1

2𝜋

∫︁
R

1

1 + 𝜂2
|F(𝜂)|2𝑑𝜂. (18)

Then, we insert this 𝐹 in (3) and we have 𝑢𝐹 (𝑥, 𝑡). Then, we set 𝜕𝜉𝑢𝐹 (𝜉, 𝑡) = 𝑔(𝜉)
in (7) and we obtain, directly

𝐹 *
𝜕𝜉𝑢𝐹 (𝜉,𝑡),𝜆,𝑡(𝑥) =

1

2𝜋

∫︁
R

sin2(𝑐𝑡𝜂)𝑒𝑖𝑥𝜂

(𝜆𝑐2(1 + 𝜂2) + sin2(𝑐𝑡𝜂))(1 + 𝜂2)
F(𝜂)𝑑𝜂. (19)

From (17) and (19) we thus obtain the desired desired result (8).

4 Proof of Theorem 2

In (3), note that for any fixed 𝑥

∞∫︁
0

(𝜕𝑡𝑢𝐹 (𝑥, 𝑡))
2𝑑𝑡 = min

1

2𝑐

∫︁
R

𝐹 (𝜉)2𝑑𝜉,

where the minimum is taken over the functions 𝐹 satisfying (3). Moreover, the
minimum is attained by 𝐹 * if and only if 𝐹 * is the even parts of any 𝐹 satisfying
(3)([2], page 114.). Hence, the mapping 𝐿𝑥

𝐿𝑥 : 𝐹 ∈ 𝐻𝑆 −→ 𝜕𝑡𝑢𝐹 (𝑥, 𝑡)
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is a bounded linear operator from 𝐻𝑆 into 𝐿2(R
+) for any fixed 𝑥. Then we can

see directly that

𝐾𝜆(𝑥
′, 𝑥′′;𝐿0) =

∫︁
R+

cos(𝑥′𝜂) cos(𝑥′′𝜂)

𝜆(1 + 𝜂2) + 𝜋/(2𝑐)
𝑑𝜂 (20)

satisfies the functional equation (13) in our situation; that is, it is the reproducing
kernel for the Hilbert space with the norm square

𝜆‖𝐹‖2𝐻𝑆,𝑒
+ ‖𝜕𝑡𝑢𝐹 (0, 𝑡)‖2𝐿2(R+).

In particular, we thus obtain (10) from Theorems 3 and 4.
In order to prove the result (11), as we see from (5) note that any member

𝐹 ∈ 𝐻𝑆,𝑒 is represented uniquely by a function F in the form

𝐹 (𝑥) =

∫︁
R+

cos(𝑥𝜂)

1 + 𝜂2
F(𝜂)𝑑𝜂

satisfying ∫︁
R+

1

1 + 𝜂2
|F(𝜂)|2𝑑𝜂 <∞

and
‖𝐹‖2𝐻𝑆,𝑒

=

∫︁
R+

1

1 + 𝜂2
|F(𝜂)|2𝑑𝜂.

We insert this 𝐹 in (3) and we have 𝑢𝐹 (𝑥, 𝑡). Then, we set 𝜕𝑡𝑢𝐹 (0, 𝑡) = 𝑔(𝑡) in (10)
and we obtain, directly

𝐹 *
𝜕𝑡𝑢𝐹 (0,𝑡),𝜆,0(𝜉) =

𝜋

2𝑐

∫︁
R+

cos(𝜉𝜂)

(𝜆(1 + 𝜂2) + 𝜋/(2𝑐))(1 + 𝜂2)
F(𝜂)𝑑𝜂. (21)

From (21) we thus obtain the desired result (11).

5 Numerical Experiments with Figures

In order to demonstrate effectivity and validity of our theorems we shall present
some numerical experiments. From these results we can declare that our theory
works well on inverse problem of the wave equation.
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Figure 1. For 𝐹 (𝑥) = 𝜒[−1,1](𝑥) on R, the figures of 𝑔(𝑥) on 𝑡 = 1 and 𝐹𝑔,𝜆,0(𝑥) for
𝑐 = 1, 𝜆 = 10−1, 5 · 10−2, 10−2, 5 · 10−3, 10−3, 5 · 10−4, 10−4, 5 · 10−5, 10−5

Figure 2. For 𝑔(𝑥) = 𝜒[−1,1](𝑥) on R, the figures of 𝐹 *
𝑔,𝜆,𝑡(𝑥) and 𝜕𝑥𝑢𝐹*

𝑔,𝜆,𝑡
(𝑥, 𝑡) for

𝑡 = 1, 𝑐 = 2, 𝜆 = 100, 10, 1, 0.5, 0.2, 0.1, 0.01, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8

Figure 3. For 𝑔(𝑥) = 𝑒−𝑥
2

on R, the figures of 𝐹 *
𝑔,𝜆,𝑡(𝑥) and 𝜕𝑥𝑢𝐹*

𝑔,𝜆,𝑡
(𝑥, 𝑡) for

𝑡 = 1, 𝑐 = 1, 𝜆 = 1, 0.1, 0.01, 10−3, 10−4, 10−5, 10−6
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FRACTIONAL DIFFUSION EQUATION: NOTE ON CATTANEO
TYPE HEAT CONDUCTION EQUATION
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Abstract. Recently, in [1], the classical heat conduction (diffusion) equation is
generalized using a generalized heat conduction law. In particular, the space-time
Cattaneo heat conduction law (which contains the Caputo symmetrized fractional
derivative instead of gradient 𝜕𝑥 and fractional time derivative instead of the first
order partial time derivative 𝜕𝑡) is used. In this note we review motivation, main
ideas and results given in [1].

1 Introduction

In this note we consider the Cattaneo type space-time fractional heat conduction
equation which is of the form

(𝐼 + 𝐶
0 𝐷

𝛼
𝑡 )𝜕𝑡𝑇 = 𝜆𝜕𝑥 ℰ𝛽𝑥𝑇,

equivalent to

𝜕𝑡𝑇 = 𝜆ℒ−1

(︂
1

1 + 𝜏𝑠𝛼

)︂
*𝑡 𝜕𝑥 ℰ𝛽𝑥𝑇. (1)

Here, and through the paper, 𝑇 = 𝑇 (𝑥, 𝑡), 𝑥 ∈ R, 𝑡 > 0, denotes the temperature;
constants 𝜏 > 0 and 𝜆 > 0 denote relaxation time and the coefficient of the thermal
conductivity; operators 𝜕𝑥 and 𝜕𝑡 are usual partial differential operators, while 𝐶0 𝐷𝛼

𝑡

and ℰ𝛽𝑥 denote the left Caputo fractional derivative of order 𝛼, and the symmetrized
Caputo fractional derivative of order 𝛽, defined by (10) and (11) below; constants
𝛼 and 𝛽 are assumed to satisfy 0 6 𝛼 6, 0 6 𝛽 6 1; ℒ−1 denotes an inverse Laplace
transform and *𝑡 is (time) convolution.

Note that (1) generalizes classical difusion (or heat conduction) equation, since
for 𝛼 = 0 and 𝛽 = 1 it becomes

𝜕𝑡𝑇 = 𝒟 𝜕2𝑥𝑇, 𝒟 = 𝑐𝑜𝑛𝑠𝑡.. (2)
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Equation (1) is subject to initial condition

𝑇 (𝑥, 0) = 𝑇0(𝑥), (3)

where 𝑇0 denotes initial temperature distribution, and to boundary condition

lim
𝑥→±∞

𝑇 (𝑥, 𝑡) = 0. (4)

In [1] equivalent system to equation (1) is proposed to model heat conduction
(see (8),(9) below), and existence of a unique generalized solution (in the space of
tempered distributions) of initial-boundary problem (1), (3), (4) is proven. Also
some numerical examples are presented.

Here, in this introductory Section 1 we give motivation and mathematical pre-
liminaries, in Section 2 we list main results, and at the end we give an example. All
missing proofs can be found in [1] and references therein.

1.1 Motivation

The classical heat conduction (2), with 𝒟 = 𝜆/𝜌𝑐, is obtained from the system
consisting of two equations: the energy balance equation in simplified form

𝜌𝑐 𝜕𝑡𝑇 = −𝜕𝑥𝑞,

and the Fourier heat conduction law

𝑞 = −𝜆𝜕𝑥𝑇, (5)

where, 𝑞 denotes the heat flux depending on (𝑥, 𝑡), 𝑥 ∈ R, 𝑡 > 0, 𝜌 > 0 denotes
the density and 𝑐 > 0 the specific heat capacity of the media. Similarly, telegraph
equation

𝜏𝜕2𝑡 𝑇 + 𝜕𝑡𝑇 = 𝒟 𝜕2𝑥𝑇, 𝒟 =
𝜆

𝜌𝑐
(6)

is obtained when the constitutive equation (5) is replaced by the Cattaneo heat
conduction law (cf. [3, 4])

𝜏𝜕𝑡𝑞 + 𝑞 = −𝜆𝜕𝑥𝑇. (7)

In [1] the Cattaneo type space-time fractional heat conduction equation (1) is ob-
tained from the system

𝜕𝑡𝑇 =− 𝜕𝑥𝑞, (8)

𝜏 𝐶0 𝐷
𝛼
𝑡 𝑞 + 𝑞 =− 𝜆ℰ𝛽𝑥𝑇. (9)
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where (9) is the space-time fractional Cattaneo heat conduction law which generalizes
both, Fourier (5) and Cattaneo (7) heat conduction laws. Indeed, let 𝛽 → 1. Then
𝐶
𝑎 ℰ

𝛽
𝑏 → 𝜕𝑥 (see Subsection 1.2), and if in addition 𝛼 → 1, then (9) reduces to (7).

If 𝛽 → 1 and 𝜏 = 0 or 𝛼 = 0, then (9) reduces to (5).

If 𝑇 (·, 𝑡) = 𝑐𝑜𝑛𝑠𝑡., 𝑡 > 0, then 𝐶
𝑎 ℰ

𝛽
𝑏 𝑇 = 0, which further implies 𝜏 𝐶0 𝐷𝛼

𝑡 𝑞+ 𝑞 = 0.
The unique solution of this equation is given by 𝑞(𝑥, 𝑡) = 𝑞(𝑥, 0) · 𝑒𝛼( 1𝜏 , 𝑡)/𝜏 , which
with initial condition 𝑞(𝑥, 0) = 0 gives 𝑞 = 0. Here, 𝑒𝛼 is the Mittag-Leffler type
special function (cf. [5]). Therefore 𝑇 (·, 𝑡) = 𝑐𝑜𝑛𝑠𝑡. implies 𝑞 = 0, hence the space-
time fractional Cattaneo heat conduction law (9) describes expected physical fact
that if the temperature is constant in space, and there is no sources of the heat,
there is no heat flux. Classical heat conduction laws, as well as those with fractional
time generalizations also exhibit such physical property.

The use of the fractional gradient in space brings a new quality: even if there is
a spatial distribution of temperature, if fractional gradient of temperature vanishes,
there is no heat flux. Indeed, if 𝑇 (·, 𝑡) ̸= 𝑐𝑜𝑛𝑠𝑡., 𝑡 > 0, and 𝛽 → 0, then 𝐶

𝑎 ℰ
𝛽
𝑏 𝑇 (·, 𝑡)→

0 (see Subsection 1.2), and again 𝑞 = 0. Thus, when 𝛽 tends to zero system (1)
describes an ideal heat isolator. In such a body an initial space distribution of the
temperature would not change in time. Indeed, since (8) leads to 𝜕𝑡𝑇 = 0, we have
that 𝑇 (𝑥, 𝑡) = 𝑇 (𝑥) = 𝑇0 (𝑥). Therefore materials which are good isolators should
be modeled with small 𝛽.

For similar generalizations of the heat conduction equation or other possibilities
for generalization of the heat conduction equation (2) and the telegraph equation
(6), using the integer-order or fractional derivative(s) of constant, distributed or
variable order see references in [1].

1.2 Mathematical preliminaries

This subsection serves to recall main definitions and properties of fractional deriva-
tives used in the model, the space of tempered distributions and its particular sub-
spaces, and integral transforms used as a main tool for analysis of the solvability of
the problem.

Let 0 6 𝛼 < 1, −∞ 6 𝑎 < 𝑏 6 ∞. The left and right Caputo derivatives, of
order 𝛼, of an absolutely continuous function 𝑢 are defined by

𝐶
𝑎𝐷

𝛼
𝑡 𝑢(𝑡) =

1

Γ(1− 𝛼)

𝑡∫︁
𝑎

𝑢′(𝜗)

(𝑡− 𝜗)𝛼
𝑑𝜗, and 𝐶

𝑡 𝐷
𝛼
𝑏 𝑢(𝑡) = −

1

Γ(1− 𝛼)

𝑏∫︁
𝑡

𝑢′(𝜗)

(𝜗− 𝑡)𝛼
𝑑𝜗, (10)
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where Γ is Euler’s gamma function and 𝑢′ := 𝑑
𝑑𝑡𝑢, (cf. [5]). Caputo derivatives gen-

eralize integer order derivatives since 𝐶
𝑎𝐷

0
𝑡 𝑢(𝑡) =

𝐶
𝑡 𝐷

0
𝑏𝑢(𝑡) = 𝑢(𝑡), and for continu-

ously differentiable functions and distributions it holds 𝛼 → 1−, 𝐶𝑎𝐷1
𝑡 𝑢(𝑡) → 𝑢′(𝑡),

𝐶
𝑡 𝐷

1
𝑏𝑢(𝑡)→ −𝑢′(𝑡).
Let 0 6 𝛽 < 1, −∞ 6 𝑎 < 𝑏 6∞. The symmetrized fractional derivative of an

absolutely continuous function 𝑢 is defined as

𝐶
𝑎 ℰ

𝛽
𝑏 𝑢(𝑥) =

1

2

(︁
𝐶
𝑎𝐷

𝛽
𝑥 − 𝐶

𝑥𝐷
𝛽
𝑏

)︁
𝑢(𝑥).

The symmetrized fractional derivative generalizes the first derivative of a function,
since 𝐶

𝑎 ℰ
𝛽
𝑏 𝑢(𝑥)→ 𝑢′(𝑥), as 𝛽 → 1, but it does not generalize derivative of order zero

since 𝐶
𝑎 ℰ0𝑏 𝑢(𝑥) = 0. For 𝑢 = 𝑐𝑜𝑛𝑠𝑡. we have that 𝐶𝑎 ℰ

𝛽
𝑏 𝑢 = 0, and conversely, the fact

that 𝑢 = 𝑐𝑜𝑛𝑠𝑡. is the unique solution to equation 𝐶
𝑎 ℰ

𝛽
𝑏 𝑢 = 0 is shown in [2].

For 𝑎 = −∞ and 𝑏 =∞ we will write ℰ𝛽𝑥 instead of 𝐶𝑎 ℰ
𝛽
𝑏 and then

ℰ𝛽𝑥𝑢(𝑥) =
1

2

1

Γ(1− 𝛽)
|𝑥|−𝛽 * 𝑢′(𝑥) = sin

𝛽𝜋

2

𝑑

𝑑𝑥
𝐼1−𝛽𝑢(𝑥), (11)

where 𝐼𝛽 is the Riesz potential (cf. [5, §12.1]).
Further, recall that the space of Schwartz test functions is denoted by 𝒮(R𝑛)

and its dual, the space of Schwartz distributions is denoted by 𝒮 ′(R𝑛). By 𝒮 ′+,𝒮 ′−
we denote a subspaces of 𝒮 ′(R) which consist of distributions with support in [0,∞)
and (−∞, 0] respectively.

For fractional operators in the distributional setting, one introduces a family
{𝑓𝛼}𝛼∈R ∈ 𝒮 ′+ as

𝑓𝛼(𝑡) =

{︃
𝐻(𝑡) 𝑡

𝛼−1

Γ(𝛼) , 𝛼 > 0,

𝑑𝑁

𝑑𝑡𝑁
𝑓𝛼+𝑁 (𝑡), 𝛼 6 0, 𝛼+𝑁 > 0, 𝑁 ∈ N

,

and {𝑓}𝛼∈R ∈ 𝒮 ′− as 𝑓𝛼(𝑡) = 𝑓𝛼(−𝑡), where 𝐻 is the Heaviside function. Then 𝑓𝛼*
and 𝑓𝛼* are convolution operators and for 𝛼 < 0 they are operators of left and right
fractional differentiation and for 𝑢 absolutely continuous function we have that

𝐶
0 𝐷

𝛼
𝑡 𝑢 = 𝑓1−𝛼 * 𝑢′ and 𝐶

𝑡 𝐷
𝛼
𝑎𝑢 = −𝑓1−𝛼 * 𝑢′.

For 𝑢 ∈ 𝒮 ′(R) the Fourier transform is defined as ⟨ℱ𝑢, 𝜙⟩ = ⟨𝑢,ℱ𝜙⟩, 𝜙 ∈ 𝒮(R),

where for 𝜙 ∈ 𝒮(R) we have ℱ𝜙(𝜉) = 𝜙(𝜉) =

∞∫︁
−∞

𝑒−𝑖𝜉𝑥𝜙(𝑥) 𝑑𝑥, 𝜉 ∈ R, and the
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Laplace transform of 𝑢 ∈ 𝒮 ′(R) is defined by

ℒ𝑢(𝑠) = ̃︀𝑢(𝑠) = ℱ(𝑒−𝜉𝑡𝑢)(𝜂), 𝑠 = 𝜉 + 𝑖𝜂.

The Lizorkin space of test functions Φ (cf. [5]) is introduced so that Riesz
integro-differentiation is well defined. Let

Ψ = {𝜓 ∈ 𝒮(R), 𝜓(𝑗)(0) = 0, 𝑗 = 0, 1, 2...},

and consider the space Φ consisting of Fourier transforms of functions in Ψ, i.e.,
Φ = ℱ(Ψ). The Lizorkin function space is invariant relative to Riesz fractional
integro-differentiation and 𝐼𝛽(Φ) = Φ. The space Ψ′ and the space of Lizorkin
generalized functions Φ′ are dual spaces of Ψ and Φ respectively, and for 𝑓 ∈ Φ′ we
have

⟨ℱ𝑓𝜓⟩ = ⟨𝑓ℱ𝜓⟩, 𝜓 ∈ Ψ.

Within the space Ψ′ multiplication with functions smooth apart from the origin is
well defined. The function |𝑥|−𝛼 is an element of the space Ψ′, for all 𝛼 ∈ R, and

ℱ [ |𝑥|−𝛽](𝜉) = sin
𝛽𝜋

2
· |𝜉|𝛽−1, ℱ [ℰ𝛽𝑥𝑢](𝜉) = 𝑖 · sin 𝛽𝜋

2
· 𝜉

|𝜉|1−𝛽
ℱ(𝜉).

2 Main results

Now we give main results concerning existence and uniqueness of a generalized
solution to the initial-boundary value problem (1), (3), (4).

We set up the problem within the space 𝐸, space of all distributions 𝑢 ∈ 𝒮 ′(R2)
such that for fixed first variable 𝑥, 𝑢(𝑥, ·) ∈ 𝒮 ′+ and for fixed second variable 𝑡,
𝑢(·, 𝑡) ∈ Φ′.

Definition 1. 𝑇 ∈ 𝐸 is called a generalized solution to initial problem (1), (3)
if

𝜕𝑡𝑇 = ℒ−1

(︂
1

1 + 𝜏𝑠𝛼

)︂
*𝑡 𝜕𝑥 ℰ𝛽𝑥𝑇 + 𝑇0(𝑥)𝛿(𝑡)

holds in 𝐸.

Note that if 𝑇 ∈ 𝐸 is a generalized solution in the sense of the above definition
then (4) is automatically satisfied, since 𝑇 ∈ 𝐸 implies (4).

For the proof of main theorem following two lemmas are essential.
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Lemma 1. Let 𝑢0 ∈ Φ′ and 𝜔, 𝜈 ∈ C, 𝜔 ̸= 0. Then

𝜕𝑥ℰ𝛽𝑥𝑢− 𝜔 𝑢 = −𝜈 𝑢0 (12)

has a unique solution 𝑢 ∈ Φ′ given by 𝑢 =
𝜈

𝜋
𝑢0 *𝑥

∞∫︁
0

cos(𝜌𝑥)

sin 𝛽𝜋
2 𝜌

1+𝛽 + 𝜔
𝑑𝜌.

Lemma 2. Let 𝜏, 𝜗 > 0 and 0 < 𝛼 < 1. Then there exist unique 𝑟0 > 0 and
𝜙0 ∈ (𝜋2 , 𝜋) (depending on 𝜏, 𝜗 and 𝛼), such that 𝑠0 := 𝑟0𝑒

𝑖𝜙0 and 𝑠0, the complex
conjugated number of 𝑠0, are zeros of the multiplicity one of the function

𝑓(𝑠) = 𝜏𝑠𝛼+1 + 𝑠+ 𝜗, 𝑓 : C→ C.

The existence of a unique solution to the initial-boundary value problem (1),
(3), (4) is given in the following theorem.

Theorem 1. Let 𝑇0 ∈ Φ′. Then there exists a unique generalized solution 𝑇 ∈
𝐸 to the initial value problem (1), (3).

Proof. Applying the Laplace transform to (1) with respect to 𝑡 we obtain

𝜕𝑥ℰ𝛽𝑥𝑇 −
𝑠(1 + 𝜏𝑠𝛼)

𝜆
𝑇 = −1 + 𝜏𝑠𝛼

𝜆
𝑇0, (13)

which is an equation of type (12) where 𝜔 = 𝜔(𝑠) :=
𝑠(1 + 𝜏𝑠𝛼)

𝜆
, Re 𝑠 > 0, and

𝜈 = 𝜈(𝑠) :=
1 + 𝜏𝑠𝛼

𝜆
. Lemma 1 gives

𝑇 (𝑥, 𝑠) =
1 + 𝜏𝑠𝛼

𝜆𝜋
𝑇0(𝑥) *𝑥

∞∫︁
0

cos(𝜌𝑥)

sin 𝛽𝜋
2 𝜌

1+𝛽 + 𝜔(𝑠)
𝑑𝜌 =

=
𝑇0(𝑥)

𝜋
*𝑥

∞∫︁
0

(1 + 𝜏𝑠𝛼) cos(𝜌𝑥)

𝜆 sin 𝛽𝜋
2 𝜌

1+𝛽 + 𝑠+ 𝜏𝑠𝛼+1
𝑑𝜌 (14)

𝑇 (·, 𝑠) is unique and belongs to Φ′. Existence of a unique inverse Laplace transform
of 𝑇 (𝑥, ·) in 𝒮 ′+, 𝑇 (𝑥, 𝑡) = ℒ−1(𝑇 (𝑥, 𝑠)) is guaranteed by Lemma 2. �

An explicit calculation of the inverse Laplace transform ℒ−1(𝑇 (𝑥, 𝑠)) in the
above proof is particularly important for a numerical analysis of the problem. Next
theorem gives an explicit formula for the generalized solution 𝑇 to equation (1).
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Theorem 2. Let 𝑇 ∈ 𝐸 be the generalized solution to initial problem (1), (3)
whose existence and uniqueness is guaranteed by Theorem 1. Then

𝑇 (𝑥, 𝑡) =
1

𝜋
𝑇0(𝑥) *𝑥

∞∫︁
0

𝑆(𝜌, 𝑡) cos(𝜌𝑥)𝑑𝜌, 𝑡 > 0, 𝑥 ∈ R, (15)

with
𝑆(𝜌, 𝑡) = 𝐼(𝜌, 𝑡) +𝑅(𝜌, 𝑡), 𝑡 > 0, 𝜌 > 0, (16)

where

𝐼(𝜌, 𝑡) = − 1

𝜋

∞∫︁
0

𝜏𝑞𝛼𝜗(𝜌) sin(𝛼𝜋)

𝜏2𝑞2(𝛼+1) + 2𝜏𝑞𝛼+1(𝜗(𝜌)− 𝑞) cos((𝛼+ 1)𝜋) + (𝜗(𝜌)− 𝑞)2
𝑒−𝑞𝑡 𝑑𝑞,

𝜗(𝜌) := 𝜆 sin
𝛽𝜋

2
𝜌1+𝛽 > 0 (17)

and

𝑅(𝜌, 𝑡) = 2Re
{︂

(𝜏𝑠𝛼 + 1)𝑒𝑠𝑡

𝜏(𝛼+ 1)𝑠𝛼 + 1

⃒⃒
𝑠=𝑠0(𝜌)

}︂
,

𝑠0 = 𝑟0𝑒
𝑖𝜙0 is from Lemma 2.

In the proof of this theorem fundamental solution to (1) (generalized solution
with 𝑇0(𝑥) = 𝛿) is calculated as

𝐹 (𝑥, 𝑡) =
1

𝜋

∞∫︁
0

𝑆(𝜌, 𝑡) cos(𝜌𝑥)𝑑𝜌, 𝑡 > 0, 𝑥 ∈ R. (18)

For the proof of Theorem 2 one starts from the Laplace transform of 𝑇 given
by expression (14) and by setting

𝑆(𝜌, 𝑠) :=
𝜏𝑠𝛼 + 1

𝜏𝑠𝛼+1 + 𝑠+ 𝜗(𝜌)
, Re 𝑠 > 0,

with 𝜗 given by (17) comes to

𝑇 (𝑠, 𝑥) =
1

𝜋
𝑇0(𝑥) *𝑥

∞∫︁
0

𝑆(𝑠, 𝑥) cos(𝜌𝑥)𝑑𝜌,
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which after inversion of the Laplace transform gives (15). Then one looks for the
form (16) of 𝑆 using the inversion formula for the Laplace transform

𝑆 (𝜌, 𝑡) =
1

2𝜋𝑖

𝑠0+𝑖∞∫︁
𝑠0−𝑖∞

𝑆(𝜌, 𝑠)𝑒𝑠𝑡𝑑𝑠,

and the Cauchy residues theorem.
Example. As an example we present calculated solution (15) for particular

values of parameters 𝜏 , 𝜆, 𝛼 and 𝛽 and initial disturbance. Fix 𝜏 = 0.1, 𝜆 = 1, 𝛼 =
0.25 and the time instant 𝑡 = 1, assume that the initial temperature distribution is
the delta distribution, i.e., 𝑇0(𝑥) = 𝛿(𝑥), and consider the behavior of 𝑇 for various
𝛽, versus spatial coordinate 𝑥. Figure 1 shows that when 𝛽 decreases, resistance of
material to conduct heat increases. As 𝛽 decreases the position of the peak tends to
the 𝑇 axis (𝑇 tends to 𝛿), and presumably in the limiting case 𝛽 = 0 it would be on
the 𝑇 axis, i.e., the initial temperature distribution would not change in time. This
indicates that the parameter 𝛽 in the fractional gradient characterizes the ability
of media to conduct heat. The limiting case 𝛽 = 0 characterizes the media which
we call the ideal heat isolator.

Figure 1. Temperature 𝑇 as a function of 𝑥 at 𝑡 = 1 for various 𝛽
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Abstract. The aim of the present paper is to analyse and compare the efficient
algorithms for the numerical evaluation of Hankel transform of order 𝜈, 𝜈 > −1
using Legendre and Haar wavelets.The philosophy behind the algorithm is to re-
place the part 𝑟𝑓(𝑟) of the integrand by its wavelet decomposition obtained by
using Legendre wavelets and Haar wavelet respectively, thus representing 𝐹𝜈(𝑝) as
a Fourier–Bessel series with coefficient depending strongly on the input function
𝑟𝑓(𝑟) in all cases. Numerical evaluations of test functions with known analytical
Hankel transform illustrate the efficiency and stability of the algorithm.

1 Introduction

The Fourier Bessel (Hankel) transform is very useful in analysis of wave fields where
it is used in mathematical handling of radiation, diffraction, and field projection.
The general Hankel transform (HT) pair with the kernel being 𝐽𝑛 is defined as [1]

𝐹𝑛(𝑝) =

∞∫︁
0

𝑓(𝑟)𝑟𝐽𝑛(𝑝𝑟) 𝑑𝑟, (1)

𝑓(𝑟) =

∞∫︁
0

𝐹𝑛(𝑝)𝑝𝐽𝑛(𝑝𝑟) 𝑑𝑝 (2)

and HT being self-reciprocal, its inverse is given by where 𝐽𝑛 is the nth-order Bessel
function of first kind. Several papers [2-9] have been written to the evaluation of
the Hankel transform in general and the zeroth order in particular. Analytical
evaluations of (1) and (2) are rare and their numerical computations are difficult
because of the oscillatory behavior of the Bessel function and the infinite length
of the interval. In 2010, Singh et. al. [8] and Pandey et al. [9] presented a new
stable algorithms based on Legendre and Haar wavelets respectively to compute the
Hankel transforms.
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The purpose of this communication is to represent both the algorithms and
compare them in terms of accuracy and stability.

2 Wavelets

Wavelets are a class of functions constructed from dilation and translation of a single
function called the mother wavelet. When the dilation and translation parameters
a and b vary continuously, the following family of continuous wavelets are obtained

𝜓𝑎𝑏(𝑡) = |𝑎|−1/2𝜓

(︂
𝑡− 𝑏
𝑎

)︂
𝑎, 𝑏 ∈ 𝑅 𝑎 ̸= 0,

when the parameters 𝑎 and 𝑏 are restricted to discrete values as 𝑎 = 2−𝑘, 𝑏 = 𝑛2−𝑘,
then we have the following family of discrete wavelets 𝜓𝑘𝑛(𝑡) = 2𝑘/2𝜓(2𝑘𝑡 − 𝑛)

𝑘, 𝑛 ∈ 𝑍, where the function 𝜓, the mother wavelet, satisfies
𝑏∫︀
𝑎
𝜓(𝑡) 𝑑𝑡 = 0.

2.1 Legendre wavelets

We define the Legendre wavelets as follows:

𝜓𝑛𝑚(𝑡) =

⎧⎨⎩
√
2𝑚+ 12𝑘/2𝑃𝑚(2

𝑘𝑡− ̂︀𝑛) for
̂︀𝑛− 1

2𝑘
6 𝑡 6

̂︀𝑛+ 1

2𝑘
,

0, otherwise

where 𝑃𝑚(𝑡) are the well known Legendre polynomials of order 𝑚 and defined on
[−1, 1] by the following recurrence relation:

𝑃0(𝑡) = 0, 𝑃1(𝑡) = 𝑡, 𝑃𝑚+1(𝑡) =
2𝑚+ 1

𝑚+ 1
𝑡𝑃𝑚(𝑡)−

𝑚

𝑚+ 1
𝑃𝑚−1(𝑡), 𝑚 = 1, 2, 3 · · ·

The Legendre wavelets 𝜓𝑛𝑚 = 𝜓(𝑘, ̂︀𝑛,𝑚, 𝑡) have four arguments; ̂︀𝑛 = 2𝑛−1, 𝑛 =
0, 1, 2 · · · 2𝑘−1, 𝑘 = 1, 2, · · ·𝑚 is the order of Legendre polynomials and 𝑡 is the
normalised time. The family the family forms {𝜓𝑛𝑚}𝑛,𝑚 forms an orhtonormal
basis for 𝐿2[0, 1].

2.2 Haar wavelets

In 1910,Haar developed the Haar wavelets and in recent years,the Haar theory has
been innovated and applied to various fields. The scaling function 𝜙𝐻(𝑡) and the



A New Algorithm for Hankel Transform Using Wavelets 301

fundamental square wave or the mother wavelet 𝜓𝐻(𝑡) are defined as,

𝜙𝐻(𝑡) =

{︃
1, 0 6 𝑡 < 1

0, otherwise
and 𝜓𝐻(𝑡) =

⎧⎪⎨⎪⎩
1, 0 6 𝑡 < 1/2

− 1, 1/2 6 𝑡 < 1

0, otherwise
(3)

3 Outline of algorithm

In practical applications, usually the function 𝑓(𝑟) has compact support and in
many cases,though the support may not be compact, given any 𝜖 > 0, there exists
a compact interval 𝐼𝜀 such that |𝑓(𝑟)| < 𝜀 for 𝑟 not belongs to interval 𝐼𝜀. Hence
it is more appropriate to consider the finite Hankel transform. Suppose 𝑓(𝑟) is
supported on [0, ℎ], then (1) reduce to

𝐹𝑛(𝑝) =

ℎ∫︁
0

𝑓(𝑟)𝑟𝐽𝑛(𝑝𝑟) 𝑑𝑟 (4)

known as finite Hankel transform of 𝑓(𝑟) where 𝑟 is replaced by 𝑟/ℎ. Writing
𝑔(𝑟) = 𝑟𝑓(𝑟) in Eq.(4), we get

𝐹𝑛(𝑝) =

1∫︁
0

𝑔(𝑟)𝐽𝑛(𝑝𝑟) 𝑑𝑟. (5)

The inverse finite Hankel transform is represented as Fourier–Bessel series [8].

3.1 Algorithm based on Legendre wavelet

As 𝑔(𝑟) ∈ 𝐿2[0, 1] and 𝜓𝑛𝑚 are an orthonormal basis for the Hilbert space 𝐿2[0, 1],
we may expand 𝑔(𝑟) as follows:

𝑔(𝑟) =
∞∑︁
𝑛=1

∞∑︁
𝑚=0

𝑐𝑛𝑚𝜓𝑛𝑚(𝑟), (6)

where 𝑐𝑛𝑚 =< 𝑔(𝑟), 𝜓𝑛𝑚(𝑟) > and <,> denotes the standard inner product on the
Hilbert space 𝐿2(𝑅). By truncating the infinite series (6) at levels 𝑛 = 2𝑘−1 and
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𝑚 =𝑀 , we obtain an approximate representation for 𝑔(𝑟) as

𝑔(𝑟) =
2𝑘−1∑︁
𝑛=1

𝑀∑︁
𝑚=0

𝑐𝑛𝑚𝜓𝑛𝑚(𝑟) = 𝐶𝑇𝜓(𝑟), (7)

where the matrices 𝐶 and 𝜓 are given by

𝐶 = [𝑐10 · · · 𝑐1𝑀 · · · 𝑐20 · · · 𝑐2𝑀 · · · 𝑐2𝑘−10 · · · 𝑐2𝑘−1𝑀 ]𝑇 (8)

and

𝜓(𝑟) = [𝜓10(𝑟) · · ·𝜓1𝑀 (𝑟) · · ·𝜓20(𝑟) · · ·𝜓2𝑀 (𝑟) · · ·𝜓2𝑘−10(𝑟) · · ·𝜓2𝑘−1𝑀 (𝑟)]𝑇 (9)

substituting (7) in (5), we get

𝐹𝑛(𝑝) ≈ 𝐶𝑇
1∫︁

0

𝜓(𝑟)𝐽𝑛(𝑝𝑟) 𝑑𝑟, (10)

taking 𝑀 = 2 and 𝑘 = 2, Eq.(1) reduced to

𝐹𝑛(𝑝) ≈ 𝐶𝑇
⎡⎣ 1∫︁

0

𝜓10(𝑟)𝐽𝑛(𝑝𝑟) 𝑑𝑟,

1∫︁
0

𝜓11(𝑟)𝐽𝑛(𝑝𝑟) 𝑑𝑟 · · ·
1∫︁

0

𝜓22(𝑟)𝐽𝑛(𝑝𝑟) 𝑑𝑟

⎤⎦ . (11)

Integral in Eq.(11) are evaluated using following formulae:

𝑎∫︁
0

𝐽𝑣(𝑡) 𝑑𝑡 = 2

∞∑︁
𝑛=0

𝐽𝑣+2𝑛+1(𝑎), Re 𝑣 > −1 [9,p.333]

𝑎∫︁
0

𝑡1−𝑣𝐽𝑛(𝑡) 𝑑𝑡 =
1

2𝑣−1Γ(𝑣)
− 𝑎1−𝑣𝐽𝑣−1(𝑎) [9,p.333]

𝑎∫︁
0

𝑡𝜇𝐽𝑣(𝑡) 𝑑𝑡 =
𝑎𝜇Γ

(︁
𝑣+𝜇+1

2

)︁
Γ
(︁
𝑣−𝜇+1

2

)︁ ∞∑︁
𝑘=0

(𝑣 + 2𝑘 + 1)
(︁
Γ
(︁
𝑣−𝜇+1

2 + 𝑘
)︁)︁

Γ
(︁(︁

𝑣+𝜇+3
2

)︁
+ 𝑘
)︁ × 𝐽𝑣+2𝑘+1(𝑎),

Re (𝑣 + 𝜇+ 1) > 0 [10,p.480]
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3.2 Algorithm based on Haar wavelet

The Haar wavelet series representation of 𝑔(𝑟) ∈ 𝐿2(𝑅) with Haar bases is given
as [6]

𝑔(𝑟) =

∞∑︁
𝑘=0

𝑐𝑘𝜙𝑘(𝑟) +

∞∑︁
𝑗,𝑘=0

𝑑𝑗𝑘𝜓𝑗𝑘(𝑟) (12)

where
𝜙𝑘(𝑟) = 𝜙𝐻(𝑟 − 𝑘), 𝜓𝑗𝑘(𝑟) = 2𝑗/2𝜓𝐻(2𝑗𝑟 − 𝑘)

where the wavelet coefficients are evaluated as:

𝑐𝑘 =

𝑘+1∫︁
𝑘

𝑔(𝑟) 𝑑𝑟 and 𝑑𝑗𝑘 = 2𝑗/2

⎛⎜⎝ 2−𝑗(𝑘+1/2)∫︁
2−𝑗𝑘

𝑔(𝑟) 𝑑𝑟 −
2−𝑗(𝑘+1)∫︁

2−𝑗(𝑘+1/2)

𝑔(𝑟) 𝑑𝑟

⎞⎟⎠ (13)

From Eq.(5) and (12), we have

𝐹𝑛(𝑝) ≈
1∫︁

0

⎛⎝ ∞∑︁
𝑘=0

𝑐𝑘𝜙𝑘(𝑟) +
∞∑︁

𝑗,𝑘=0

𝑑𝑗𝑘𝜓𝑗𝑘(𝑟)

⎞⎠ 𝐽𝑛(𝑝𝑟) 𝑑𝑟. (14)

By change of variable and (14)

𝐹𝑛(𝑦) =
2

𝑝
lim
𝑀→∞

[

∞∑︁
𝑘=0

(︃
𝑀∑︁
𝑧=0

𝐽𝑛+2𝑧+1(𝑦)

)︃
+

+
2

𝑝
lim
𝑀→∞

∞∑︁
𝑗=0

2𝑗/2
∞∑︁
𝑘=0

𝑑𝑗𝑘 × (2

𝑀∑︁
𝑧=0

𝐽𝑛+2𝑧+1(2
−𝑗(𝑘 + 1/2)𝑝)+

+
2

𝑝
lim
𝑀→∞

𝑀∑︁
𝑧=0

𝐽𝑛+2𝑧+1(2
−𝑗(𝑘 + 1)𝑝)). (15)

The inverse finite Hankel transform is represented as a Fourier-Bessel series.The
corresponding expansion for finite Hankel transform 𝐹𝑛(𝑝) is obtained by putting
𝑘 = 0 in the first part of the summation involving 𝑐𝑘 and taking 0 6 𝑘 6 2𝑗 − 1 in
the second part of the summation involving 𝑑𝑗𝑘 in the above representation of the
𝐹𝑛(𝑝) as given by (15).
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4 Numerical results

Now, we discuss, the implementation of our numerical methods and investigate its
accuracy and stability by applying it on numerical example with known analytical
HT and compare it with each other. In all the examples,the exact data function is
denoted by 𝑔(𝑟) and noisy data function by 𝑔𝜀(𝑟) is obtained by adding an 𝜀 random
error to 𝑔(𝑟) such that 𝑔𝜀(𝑟𝑖) = 𝑔(𝑟𝑖) + 𝜀𝜗𝑖, where 𝑟𝑖 = 𝑖ℎ, 𝑖 = 1, 2 · · ·𝑁,𝑁ℎ = 40
and 𝜗𝑖 is a uniform random variable with values in [−1, 1] such that Max 0 6 𝑖 6 𝑁
|𝑔𝜀(𝑟𝑖) − 𝑔(𝑟𝑖)| 6 𝜀. The following examples are solved with and without random
perturbations to illustrate the efficiency and stability of our method by choosing
three different values of randon errors 𝜀 as 𝜀 = 0, 0.0002, 0.0005 and computing
the error 𝐸𝑗(𝑝)=Approximate HT obtained from proposed algorithm with random
error 𝜀𝑗-the exact HT, 𝑗 = 0, 1, 2.

We also use the discrete 𝑙2norm and the continuous 𝐿2 norm in 𝐼 = [0, 𝑃 ] to
measure root mean square (RMS) errors as well. These norms are defined as:

‖𝑓‖2,𝐼 =

(︃
1

𝑁

𝑁∑︁
𝑖=1

|𝑓(𝑟𝑖)|2
)︃1/2

and ‖𝑓‖2 =

⎛⎝ 𝑝∫︁
0

|𝑓(𝑟)|2 𝑑𝑟

⎞⎠1/2

respectively.
Figures (1) and (4) show the comparison between the absolute errors with differ-

ent perturbation by Haar method.Figures (2) and (5) show the comparison between
the absolute errors with different perturbation by Legendre method ,where as fig-
ures (3) and (6) show the comparison of absolute error between the exact transform
and appropriated transform by Haar method and Legendre method.

Figure 1. Comparison between exact transform and approximate transform with random
perturbations by Haar method
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Figure 2. Comparison between exact transform and approximate transform with random
perturbations by Legendre method

Figure 3. Comparison of absolute error by Haar method HE0(p) and Legendre method
LE0(p)

Figure 4. Comparison between exact transform and approximate transform with random
perturbations by Haar method



306 The 8th Congress of the ISAAC — 2011

Figure 5. Comparison between exact transform and approximate transform with random
perturbations by Legendre method

Figure 6. Comparison of absolute error by Haar method(HE0(p)) and Legendre
method(LE0(p))

Example 1. Let us consider 𝑓(𝑟) = 2
Π [arccos(𝑟) − 𝑟(1 − 𝑟

2)1/2], 0 6 𝑟 6 1

and 𝐹0(𝑝) = 2
𝐽2
1 (𝑝/2)
𝑝2

.

Example 2. Let us consider the pair 𝑓(𝑟) = (1− 𝑟2)1/2, 0 6 𝑟 6 1, and

𝐹1(𝑝) =

{︃
Π
𝐽2
1 (𝑝/2)
2𝑝 0 < 𝑝 <∞

0 𝑦 = 0.

5 Conclusion

We notice that in all the cases,the numerical accuracy stability of the Haar wavelet
based algorithm is more accurate the Legendre wavelet based algorithm.
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Abstract. Efficient applications of modified Bessel functions for the solution
of some problems of mathematical physics are given. The algorithm of numerical
solution of some mixed boundary value problems for the Helmholtz equation in
wedge domains by means of dual integral equations method is developed. The inte-
grals from modified Bessel functions of the second kind with pure imaginary order
𝐾𝑖𝜏 (𝑥) and with complex order 𝐾 1

2
+𝑖𝜏 (𝑥) are investigated. Analytical considera-

tions and numerical experiments are discussed. Different simplification procedures
are used for the evaluation. Examples demonstrate the efficiency of the integral
method in the numerical solution of the mixed boundary value problems of elastic-
ity, combustion and electrostatics in the wedge domains.

The definition of two pairs of direct and inverse Lebedev–Skalskaya integral
transforms [5] is cited

𝐹+(𝜏) =

∞∫︁
0

𝑓(𝑥)Re𝐾1/2+𝑖𝜏 (𝑥)𝑑𝑥, 0 6 𝜏 6∞,

𝑓(𝑥) = (4/𝜋2)

∞∫︁
0

𝑐ℎ(𝜋𝜏)𝐹+(𝜏)Re𝐾1/2+𝑖𝜏 (𝑥)𝑑𝜏, 0 < 𝑥 <∞,

and

𝐹−(𝜏) =

∞∫︁
0

𝑓(𝑥)Im𝐾1/2+𝑖𝜏 (𝑥)𝑑𝑥, 0 6 𝜏 6∞,

𝑓(𝑥) = (4/𝜋2)

∞∫︁
0

𝑐ℎ(𝜋𝜏)𝐹−(𝜏)Im𝐾1/2+𝑖𝜏 (𝑥)𝑑𝜏, 0 < 𝑥 <∞.

Sufficient conditions for the existence of these transforms and the validity of the
inversion formulas are given.
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It is shown that the inversion formulas of the Lebedev–Skalskaya integral
transforms can be deduced from the inversion formulas of the Kontorovitch–
Lebedev transforms and the corresponding theorem is proven. For the case of
nonnegative finite functions with restricted variation the conditions of present the-
orem are reduced to one condition, which is then necessary and sufficient [8, 13–15].

The application of the Kontorovitch–Lebedev integral transforms and dual
integral equations to the solution of the mixed boundary value problems are consid-
ered. The diffusion and elastic problems reduce to the solution of the proper mixed
boundary value problems for the Helmholtz equation.

The mixed boundary value problems for the Helmholtz equation [1, 4, 16]

Δ𝑢− 𝑘2𝑢 = 0 (1)

are arised in some fields of mathematical physics.

Let’s use the following notations here and further: 𝑟, 𝜙 — polar coordinates of
the point; 𝛼 - angle of the sectorial domain; 𝑢 — desired function; 𝜂 — normal to
the boundary.

The numerical solution of some boundary value problems for the equation of the
form (1) in arbitrary sectorial domains is considered in our work under the assump-
tion that the function 𝑢|Γ is known on the part of the boundary and the normal
derivative 𝜕𝑢

𝜕𝜂 |Γ is known on the other part of the boundary. The Kontorovitch–
Lebedev integral transforms [4] and dual integral equations method [4, 10] are
used for finding of the solution.

Let’s consider the symmetric case to simplify the calculations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ𝑢− 𝑘2𝑢 = 0,

𝜕𝑢

𝜕𝜂

⃒⃒⃒⃒
𝜙=±𝛼

(𝑟) = 𝑔(𝑟), 0 < 𝑟 < 𝑎,

𝑢|𝜙=±𝛼(𝑟) = 𝑓(𝑟), 𝑟 > 𝑎,

𝑢|𝑟→0 — restricted,
𝑢|𝑟→∞ — restricted.

(2)

The solution of (2) is determined by the following way in the form of
Kontorovitch-Lebedev integral transforms [4]

𝑢(𝑟, 𝜙) =

∞∫︁
0

𝑀(𝜏)
cosh𝜙𝜏

cosh𝛼𝜏
𝐾𝑖𝜏 (𝑘𝑟)𝑑𝜏, (3)
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where 𝑀(𝜏) is the solution of dual integral equation

∞∫︁
0

𝑀(𝜏)𝜏 tanh(𝛼𝜏)𝐾𝑖𝜏 (𝑘𝑟)𝑑𝜏 = 𝑟𝑔(𝑟), 0 < 𝑟 < 𝑎,

∞∫︁
0

𝑀(𝜏)𝐾𝑖𝜏 (𝑘𝑟)𝑑𝜏 = 𝑓(𝑟), 𝑟 > 𝑎,

(4)

where 𝑔(𝑟) and 𝑓(𝑟) — given functions and 𝐾𝜈(𝑧) — modified Bessel function
(Macdonald function) of imaginary order.

The dimension of the problem is lowered one unit by this approach as can be
seen easily.

Dual integral equations of this type were considered in [4, 10]. It was shown in
[4] that the solutions of these equations may be determined in the form of single
quadratures from auxiliary functions satisfying to the second kind Fredholm in-
tegral equations with symmetric kernel containing modified Bessel function of the
complex order 𝐾1/2+𝑖𝜏 (𝑥).

The general case is reduced to the case 𝑔(𝑟) = 0 as it follows from [4]. For the
simplicity, let us consider this case from this point on.

Let us denote

ℎ(𝑡) = −
√
𝑘𝑒𝑘𝑡

𝜋

𝑑

𝑑𝑡

∞∫︁
0

𝑒−𝑘𝑟𝑓(𝑟)√
𝑟 − 𝑡

𝑑𝑟,

𝐾(𝑠, 𝑡) =
4

𝜋

∞∫︁
0

sinh[(𝜋 − 𝛼)𝜏 ]
sinh(𝛼𝜏)

Re𝐾1/2+𝑖𝜏 (𝑘𝑠)Re𝐾1/2+𝑖𝜏 (𝑘𝑡)𝑑𝜏,

(5)

where Re𝐾1/2+𝑖𝜏 (𝑧) — real part of MacDonald’s function of complex order 1/2+
𝑖𝜏 .

Then we obtain the following procedure for the determination of 𝑀(𝜏) on the
basis of [4]

𝑀(𝜏) =
2
√
2 sinh(𝜋𝜏) cosh(𝛼𝜏)

𝜋
√
𝜋 sinh(𝛼𝜏)

∞∫︁
𝑎

𝜓(𝑡)Re𝐾1/2+𝑖𝜏 (𝑘𝑡)𝑑𝑡, (6)
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where 𝜓(𝑡) — solution of the integral Fredholm equation of the second kind

𝜓(𝑡) = ℎ(𝑡)− 𝑘

𝜋

∞∫︁
𝑎

𝐾(𝑠, 𝑡)𝜓(𝑠)𝑑𝑠, 𝑎 6 𝑡 <∞. (7)

It is useful under the decision of boundary value problems to find the solution
𝑢 on the boundary of sectorial domain

𝑢|Γ(𝑟) =
∞∫︁
0

𝑀(𝜏)𝐾𝑖𝜏 (𝑘𝑟)𝑑𝜏. (8)

Substituting expression (6) for 𝑀(𝜏) in (8) and transposing the order of the
integration we obtain

𝑢|Γ(𝑟) =
2
√
2

𝜋
√
𝜋

∞∫︁
𝑎

𝜓(𝑡)𝐺𝑟(𝑡)𝑑𝑡, (9)

where

𝐺𝑟(𝑡) =

∞∫︁
0

sinh(𝜋𝜏) cosh(𝛼𝜏)

sinh(𝛼𝜏)
𝐾𝑖𝜏 (𝑘𝑟)Re𝐾1/2+𝑖𝜏 (𝑘𝑡)𝑑𝜏. (10)

So the numerical solution of the boundary value problem (2) consists from the
numerical solution of integral Fredholm equation of the second kind with sym-
metric kernel and from the consequent taking of the quadratures of the solution.

Let us truncate the integral equation (7) in the following way:

𝜓(𝑡) = ℎ(𝑡)− 𝑘

𝜋

𝑏∫︁
𝑎

𝐾(𝑠, 𝑡)𝜓(𝑠)𝑑𝑠, 𝑎 6 𝑡 6 𝑏. (11)

Furthermore, the solution of the dual equation was computed by the
formulas (6) with the use of codes and routines for the computation of
𝐾𝑖𝜏 (𝑥) and Re𝐾1/2+𝑖𝜏 (𝑥) [2, 3, 6, 7, 9–12].

Integrals (5), (10) may be expressed through known functions for special values
of the angle 𝛼, in particular for 𝛼 = 𝜋

𝑛 , 𝑛 = 1, 2, ...

We obtain for 𝑛 = 1 :
𝐾(𝑠, 𝑡)|𝛼=𝜋 = 0,
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for 𝑛 = 2
𝐾(𝑠, 𝑡)|𝛼=𝜋

2
= 𝐾0(𝑘(𝑠+ 𝑡)) +𝐾1(𝑘(𝑠+ 𝑡)),

for 𝑛 = 3

𝐾(𝑠, 𝑡)|𝛼=𝜋
3
=
√
3𝐾0(𝑘

√︀
𝑠2 + 𝑡2 + 𝑠𝑡) +

√
3(𝑠+ 𝑡)√

𝑠2 + 𝑡2 + 𝑠𝑡
𝐾1(𝑘

√︀
𝑠2 + 𝑡2 + 𝑠𝑡)

and so on.
We compute the truncated integrals in fact by the computations of integrals (5),

(10) on the computer: the integration is carried on over some interval [0, 𝐵]. In view
of this fact it’s important to choose by the correct way the truncation interval [0, 𝐵],
ensuring the computation of stated integrals with necesssary precision without the
expenditure of unnecessary computer time. The estimations of the error

𝐾𝐵(𝑠, 𝑡) =
4

𝜋

∞∫︁
𝐵

sinh[(𝜋 − 𝛼)𝜏 ]
sinh(𝛼𝜏)

Re𝐾1/2+𝑖𝜏 (𝑘𝑠)Re𝐾1/2+𝑖𝜏 (𝑘𝑡)𝑑𝜏,

𝐺𝐵𝑟 (𝑡) =

∞∫︁
𝐵

sinh(𝜋𝜏) cosh(𝛼𝜏)

sinh(𝛼𝜏)
𝐾𝑖𝜏 (𝑘𝑟)Re𝐾1/2+𝑖𝜏 (𝑘𝑡)𝑑𝜏,

arising from the truncation are useful for this purpose. On the basis of inequalities
from [4, 8] for functions 𝐾𝑖𝜏 (𝑥) and Re𝐾1/2+𝑖𝜏 (𝑥) we obtain

𝐾𝐵(𝑠, 𝑡) 6 𝑐2𝑘−3/2(𝑠𝑡)−3/4 𝑒
−2𝛼𝐵

2𝛼
(𝐵2 +

𝐵

𝛼
+

1

2𝛼2
), (12)

𝐺𝐵𝑟 (𝑡) 6
𝐴𝑐

𝛼
𝑘−1𝑟−1/4𝑡−3/4𝑒−2𝛼𝐵, (13)

where 𝐴 and 𝑐 — some positive constants having the multiplicity of a unit. As it
can be seen from (14) and (15) it is necessary to take the extending interval [0, 𝐵]
for the decreasing values of angle 𝛼.

It’s necessary to compute 𝑁2 values 𝐾𝑖𝑗 = 𝐾(𝑠𝑖, 𝑡𝑗), 𝑖 = 1, ..., 𝑁, 𝑗 = 1, ..., 𝑁,
under the solution of the system of algebraic equations of this form.

It’s convenient to use Gauss quadrature formulas by Laguerre polynomials
knots and to perform the computations of 𝑁 integrand for one fixed variable 𝑠 or
𝑡 by parallel for the economy of computer time under the integrals computation.
Let’s note moreover the symmetry 𝐾(𝑠, 𝑡) = 𝐾(𝑡, 𝑠) what gives the possibility to
decrease the number of computed integrals twice.



On Some Integrals from Modified Bessel functions 313

Let’s describe the conducted evaluations.

Let’s represent 𝐾(𝑠, 𝑡) in the form

𝐾(𝑠, 𝑡) = −4𝑘

𝜋2

∞∫︁
0

𝑒−2𝛼𝜏𝑃 (𝜏, 𝑠, 𝑡)𝑑𝜏,

𝑃 (𝜏, 𝑠, 𝑡) =
1− 𝑒−2(𝜋−𝛼)𝜏

1− 𝑒−2𝛼𝜏
𝑒

𝜋𝜏
2 Re𝐾 1

2
+𝑖𝜏 (𝑘𝑠)𝑒

𝜋𝜏
2 Re𝐾 1

2
+𝑖𝜏 (𝑘𝑡).

The used quadrature formulas have the form

∞∫︁
0

𝑒−2𝛼𝛽𝑃 (𝜏, 𝑠, 𝑡)𝑑𝜏 =
1

2𝛼

𝑛∑︁
𝑘=1

𝜆𝑘𝑃 (
𝛽𝑘
2𝛼
, 𝑠, 𝑡), (14)

where 𝛽𝑘 -zeros of Laguerre polynomials 𝐿0
𝑛(𝑥), 𝜆𝑘 — weights of quadrature for-

mulas.

The computations were conducted simultaneously in loop for all 𝑠 and all 𝑡 (for
given 𝑠. ) The representation of the integrand 𝑃 (𝜏, 𝑠, 𝑡) in the form

𝑃 (𝜏, 𝑠, 𝑡) = 𝑝1(𝜏)𝑝2(𝜏, 𝑠)𝑝2(𝜏, 𝑡),

𝑝1(𝜏) =
1− 𝑒−2(𝜋−𝛼)𝜏

1− 𝑒−2𝛼𝜏
, 𝑝2(𝜏, 𝑠) = 𝑒

𝜋𝜏
2 Re𝐾 1

2
+𝑖𝜏 (𝑘𝑠),

allows to decrease significantly the number of handlings to the code of real part of
modified Bessel function 𝐾 1

2
+𝑖𝜏 (𝑥) computation.

Let’s consider the example admitting the complete analytical solution of the
problem (2)

𝑓(𝑟) =

√
𝜋

𝑘
√
2
(𝑒−𝑘𝑟 + 𝑒𝑘𝑟[1− Φ(

√︀
2𝑘(𝑟 + 𝑎))]), 𝑔(𝑟) = 0, 𝛼 =

𝜋

4
.

Then we obtain on the basis of relevant calculations [4] that

ℎ(𝑡) = 𝑒−𝑘𝑡 +
1

𝜋
𝑒−𝑘𝑎𝐾0(𝑘(𝑡+ 𝑎)), 𝐾(𝑠, 𝑡) = 𝐾0(𝑘(𝑠+ 𝑡)) +𝐾1(𝑘(𝑠+ 𝑡)), (15)

and 𝜓(𝑡) = 𝑒−𝑘𝑡.
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Substituting (15) in (9) and performing some calculations we obtain for 𝑟 < 𝑎

𝑢|Γ(𝑟) =
√
𝜋

𝑘
√
2
(𝑒−𝑘𝑟(1− 𝜙(

√︀
2𝑘(𝑎− 𝑟))) + 𝑒𝑘𝑟(1− 𝜙(

√︀
2𝑘(𝑎+ 𝑟))))

and for 𝑟 > 𝑎

𝑢|Γ(𝑟) =
√
𝜋

𝑘
√
2
(𝑒−𝑘𝑟 + 𝑒𝑘𝑟(1− 𝜙(

√︀
2𝑘(𝑎+ 𝑟))))

(verification of the conditions of the problem).
We obtained the precision in 7-8 significant digits under the solution of dual

integral equation (computation of the values (cosh 𝜋𝜏
2 )−1𝑀(𝜏) ) so for 𝑎 = 1.0, 𝑘 =

1(cosh 3𝜋
2 )−1𝑀(3) = .928825310 − 01.

We obtained the precision in 6-7 digits after comma under the calculation of
values 𝑢|Γ(𝑟) so for 𝑎 = 1.0, 𝑘 = 1𝑢|Γ(2) = .174544410 + 00.

The different preliminary procedures of the separation of singularity or trans-
formation of the integral into the integral without the singularity are useful for the
computation of integral (9).

It’s strongly efficient to use the procedures of numerical integration for the trans-
formed integral [10]. The accuracy of computations is increased and the computer
time is shorten by this approach.
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Abstract. In the present paper the relation between two definitions of Morrey
spaces is discussed. This paper will be an announcement of the paper “Liguang
Liu, Yoshihiro Sawano and Dachun Yang, Morrey-type Spaces on Gauss Measure
Spaces and Boundedness of Singular Integrals, submitted”.

1 Introduction

We propose a definition of Morrey spaces when we are given a Radon measure on
R𝑛.

Definition. Let 𝑓 ∈ 𝐿𝑞loc(𝜇).

‖𝑓‖ℳ𝑝
𝑞(𝑘,𝜇)

:= sup
𝑄∈𝒬(𝜇)

𝜇(𝑘 𝑄)
1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄

|𝑓(𝑦)|𝑞 𝑑𝜇(𝑦)

⎞⎟⎠
1
𝑞

. (1)

Denote byℳ𝑝
𝑞(𝑘, 𝜇) the set of all 𝑓 ∈ 𝐿𝑞loc(𝜇) for which ‖𝑓‖ℳ𝑝

𝑞(𝑘,𝜇)
<∞.

The parameter 𝑘 > 1 appearing in the definition does not affect the definition
of the space. More precisely, we have the following proposition, which will be a key
to our arguments throughout this paper.

Proposition. Let 𝑘1, 𝑘2 > 1. Thenℳ𝑝
𝑞(𝑘1, 𝜇) ≈ℳ𝑝

𝑞(𝑘2, 𝜇), that is,ℳ𝑝
𝑞(𝑘1, 𝜇)

andℳ𝑝
𝑞(𝑘2, 𝜇) coincide as a set and their norms are mutually equivalent.

Proof. Let 𝑘1 6 𝑘2. Then the inclusion ℳ𝑝
𝑞(𝑘1, 𝜇) ⊂ ℳ𝑝

𝑞(𝑘2, 𝜇) is obvious by
the definition of the norms. Let us show the reverse inclusion. Let 𝑓 ∈ ℳ𝑝

𝑞(𝑘2, 𝜇)
and 𝑄 ∈ 𝒬(𝜇). Then we have to estimate

Yoshihiro Sawano is supported by Grant-in-Aid for Young Scientists (B) No. 21740104, Japan
Society for the Promotion of Science.
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𝜇(𝑘1𝑄)
1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄

|𝑓(𝑥)|𝑞 𝑑𝜇(𝑥)

⎞⎟⎠
1
𝑞

.

A simple geometric observation shows that there exist cubes 𝑄1, 𝑄2, . . ., 𝑄𝑁 with
the same sidelength such that

𝑄 ⊂
𝑁⋃︁
𝑖=1

𝑄𝑖, 𝑘2𝑄𝑖 ⊂ 𝑘1𝑄 (𝑖 = 1, 2, . . . , 𝑁) and 𝑁 6 𝐶
(︂
𝑘2 − 1

𝑘1 − 1

)︂𝑛
.

Using this covering, we easily obtain

𝜇(𝑘1𝑄)
1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄

|𝑓(𝑥)|𝑞 𝑑𝜇(𝑥)

⎞⎟⎠
1
𝑞

6
𝑁∑︁
𝑖=1

𝜇(𝑘1𝑄)
1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄𝑖

|𝑓(𝑥)|𝑞 𝑑𝜇(𝑥)

⎞⎟⎠
1
𝑞

6

6
∑︁

𝑄𝑖∈𝒬(𝜇)

𝜇(𝑘2𝑄𝑖)
1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄𝑖

|𝑓(𝑥)|𝑞 𝑑𝜇(𝑥)

⎞⎟⎠
1
𝑞

6 𝑁‖𝑓‖ℳ𝑝
𝑞(𝑘2,𝜇)

.

Example. Place ourselves in the setting of R2 with a Radon measure
𝜇(𝑥1, 𝑥2) := 𝑒2𝑥2 𝑑𝑥1 𝑑𝑥2. Then we have

ℳ2
1(1, 𝜇) ⊂ℳ2

1(2, 𝜇)

and the inclusion is strict.

Proof. We take 𝑓 := 𝑒−𝑥2 and for 𝑎, 𝑏 ∈ R, ℎ > 0 we set 𝑄 = 𝑄((𝑎, 𝑏), ℎ).
Then we have

1√︀
𝜇(𝑄)

∫︁
𝑄

𝑓 𝑑𝜇 =

∫︀
𝑄 𝑒

−𝑥2 𝑑𝑥1 𝑑𝑥2√︁∫︀
𝑄 𝑒

−2𝑥2 𝑑𝑥1 𝑑𝑥2
=

2ℎ 𝑒𝑏(𝑒ℎ − 𝑒−ℎ)√︀
ℎ 𝑒2𝑏(𝑒2ℎ − 𝑒−2ℎ)

=

= 2

√︃
ℎ (𝑒ℎ − 𝑒−ℎ)
𝑒ℎ + 𝑒−ℎ

→∞, ℎ→∞
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1√︀
𝜇(2𝑄)

∫︁
𝑄

𝑓 𝑑𝜇 =

∫︀
𝑄 𝑒

−𝑥2 𝑑𝑥1 𝑑𝑥2√︁∫︀
2𝑄 𝑒

−2𝑥2 𝑑𝑥1 𝑑𝑥2
=

2ℎ 𝑒𝑏(𝑒ℎ − 𝑒−ℎ)√︀
2ℎ 𝑒2𝑏(𝑒4ℎ − 𝑒−4ℎ)

=

=

√︃
2ℎ (𝑒ℎ − 𝑒−ℎ)

𝑒3ℎ + 𝑒ℎ + 𝑒−ℎ + 𝑒−3ℎ
→ 0, ℎ→∞

showing thatℳ2
1(1, 𝜇) is a proper subset ofℳ2

1(2, 𝜇). �

Example-a special case of the Gauss measure
Here we present an example.
Here and below we define 𝛾 = 𝜋−𝑛/2 exp(−|𝑥|2) 𝑑𝑥 on R𝑛. The measure 𝛾 has

a lot to do with the Ornstein-Uhlenbeck process. Denote by

ℬ := {𝐵(𝑥, 𝑟) : 𝑥 ∈ R𝑛, 𝑟 6 min(1, |𝑥|−1)}.

One defines

‖𝑓‖ℳ𝑝
𝑞(ℬ,𝛾) := sup

𝐵∈ℬ
𝛾(𝑘 𝐵)

1
𝑝
− 1

𝑞

⎛⎝∫︁
𝐵

|𝑓(𝑦)|𝑞 𝑑𝛾(𝑦)

⎞⎠ 1
𝑞

.

Denote byℳ𝑝
𝑞(ℬ, 𝛾) the set of all 𝑓 ∈ 𝐿𝑞loc(𝛾) for which ‖𝑓‖ℳ𝑝

𝑞(ℬ,𝛾) <∞.

Theorem. (𝑖) If 1 6 𝑞 = 𝑝 < ∞, then ℳ𝑝
𝑞(2, 𝛾) is a proper subset of

ℳ𝑝
𝑞(ℬ, 𝛾).

(𝑖𝑖) If 1 6 𝑞 < 𝑝 <∞, then ℳ𝑝
𝑞(ℬ, 𝛾) and ℳ𝑝

𝑞(2, 𝛾) are isomorphic.

To see (𝑖), for any 𝑡 > 0 and 𝑥 ∈ R𝑛, set ℎ𝑡(𝑥) := 𝑡𝑛/𝑞𝑒(1−𝑡
2)|𝑥|2/𝑞. Then, for all

𝑡 > 0, an easy calculation leads to

‖ℎ𝑡‖𝑞𝐿𝑞(𝛾) = 𝛾(R𝑛) = 1 (2)

and that when 𝑡→ 0,

‖ℎ𝑡‖𝑞ℳ𝑝
𝑞(ℬ,𝛾)

= 𝑡𝑛 sup
𝐵∈ℬ

∫︁
𝐵

𝑒−|𝑡𝑥|2 𝑑𝑥 6 𝑡𝑛 sup
𝐵∈ℬ
|𝐵| = 𝑡𝑛|𝐵(0, 𝑎)| → 0. (3)

From (2) and (3), it follows thatℳ𝑝
𝑞(ℬ, 𝛾) can not be embedded into 𝐿𝑞(𝛾).

We outline the proof of (𝑖𝑖).
Let 𝑎 ∈ (0,∞). Any ball 𝐵 ∈ ℬ is said to be maximal if 𝑟𝐵 = 𝑎𝑚(𝑐𝐵). For each

maximal ball 𝐵 ∈ ℬ which does not contain the origin, we denote by 𝑀(𝐵) the
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maximal ball in ℬ with center at a point on the segment [0, 𝑐𝐵] = {𝑡𝑐𝐵 : 𝑡 ∈ [0, 1]}
such that the boundary of 𝑀(𝐵) contains 𝑐𝐵, and we call 𝑀(𝐵) the mother of 𝐵.
In other words, the relation between 𝐵 and its mother 𝑀(𝐵) is as follows:

𝑟𝑀(𝐵) = 𝑎𝑚(𝑐𝑀(𝐵)), |𝑐𝑀(𝐵)|+ 𝑟𝑀(𝐵) = |𝑐𝐵| and 𝑐𝑀(𝐵) =
|𝑐𝑀(𝐵)|
|𝑐𝐵|

𝑐𝐵.

For notational convenience, we set 𝑀0(𝐵) := 𝐵. If 𝑀(𝐵) does not contain the
origin, then we may consider the mother of 𝑀(𝐵), which we denote by 𝑀2(𝐵).
Therefore, given any maximal ball 𝐵 in ℬ, we may find a chain of maximal balls,
𝐵,𝑀(𝐵),𝑀2(𝐵), · · · ,𝑀𝑘(𝐵), with the property that 𝑀 𝑗(𝐵) is the mother of
𝑀 𝑗−1(𝐵) for 𝑗 ∈ {1, · · · , 𝑘}, and 𝑀𝑘(𝐵) contains the origin.

We can establish some subtle geometric relations between the maximal admis-
sible balls and their mothers.

Lemma 1. Let 𝑎 ∈ (0,∞). If the maximal ball 𝐵 ∈ ℬ satisfies that 0 /∈ 𝐵, then
𝐵 ⊂ (𝑎 + 2)𝑀(𝐵) and 𝑀(𝐵) ⊂ (2𝑎 + 2)𝐵. Consequently, 𝛾(𝑀(𝐵)) ∼ 𝛾(𝐵) with
implicit constants depending only on 𝑎 and 𝑛.

Proof. Let 𝑟𝑀(𝐵) and 𝑐𝑀(𝐵) be the radius and center of the ball 𝑀(𝐵), re-
spectively. By the definition of 𝑀(𝐵), we have 𝑟𝑀(𝐵) = 𝑎𝑚(𝑐𝑀(𝐵)), 𝑟𝐵 = 𝑎𝑚(𝑐𝐵)
and |𝑐𝑀(𝐵)| + 𝑟𝑀(𝐵) = |𝑐𝐵|. Using the fact that 𝑐𝐵 is on the boundary of 𝑀(𝐵),
together with the continuity of 𝑚, we see that

(𝑎+ 1)−1𝑚(𝑐𝑀(𝐵)) 6 𝑚(𝑐𝐵) 6 (𝑎+ 1)𝑚(𝑐𝑀(𝐵)),

and hence (𝑎+ 1)−1𝑟𝑀(𝐵) 6 𝑟𝐵 6 (𝑎+ 1)𝑟𝑀(𝐵). This implies that for any 𝑧 ∈ 𝐵,

|𝑧 − 𝑐𝑀(𝐵)| 6 |𝑧 − 𝑐𝐵|+ |𝑐𝐵 − 𝑐𝑀(𝐵)| < 𝑟𝐵 + 𝑟𝑀(𝐵) 6 (𝑎+ 2)𝑟𝑀(𝐵),

that is, 𝐵 ⊂ (𝑎+ 2)𝑀(𝐵). Meanwhile, for any 𝑧 ∈𝑀(𝐵), we have

|𝑧 − 𝑐𝐵| 6 |𝑧 − 𝑐𝑀(𝐵)|+ |𝑐𝑀(𝐵) − 𝑐𝐵| < 2𝑟𝑀(𝐵) 6 2(𝑎+ 1)𝑟𝐵.

which implies that 𝑀(𝐵) ⊂ (2𝑎 + 2)𝐵. Furthermore, we conclude that 𝛾(𝐵) 6
𝛾((𝑎+1)𝑀(𝐵)) . 𝛾(𝑀(𝐵)) and 𝛾(𝑀(𝐵)) 6 𝛾((2𝑎+2)𝐵) . 𝛾(𝐵), which completes
the proof of the lemma. �

2 Boundedness of the maximal operator

In this section we shall investigate some maximal inequalities. In proving the max-
imal inequalities we do not need the growth condition on 𝜇. For 𝜅 > 1 we define
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the modified maximal operator 𝑀𝜅 by

𝑀𝜅𝑓(𝑥) := sup
𝑥∈𝑄∈𝒬(𝜇)

1

𝜇(𝜅𝑄)

∫︁
𝑄

|𝑓(𝑦)| 𝑑𝜇(𝑦).

The following boundedness of 𝑀𝜅 will be used in the proof of the main theorem of
this section.

Lemma 2. If 𝜅 > 1 and 1 < 𝑝 6∞, then ‖𝑀𝜅𝑓‖𝐿𝑝(𝜇) 6 𝐶𝑑,𝑝,𝜅‖𝑓‖𝐿𝑝(𝜇).

If 𝑘, 𝜅 > 1 and 1 < 𝑞 6 𝑝 <∞, then ‖𝑀𝜅𝑓‖ℳ𝑝
𝑞(𝑘,𝜇)

6 𝐶𝑑,𝑝,𝑞,𝜅,𝑘‖𝑓‖ℳ𝑝
𝑞(𝑘,𝜇)

.

Proof. Fix 𝑄0 ∈ 𝒬(𝜇) and put 𝐿 := ℓ(𝑄0)/2. Let 𝑓1 := 𝜒𝜅+7
𝜅−1

𝑄0
𝑓 and 𝑓2 :=

𝑓 − 𝑓1. Then for all 𝑦 ∈ 𝑄0 we have

𝑀𝜅𝑓(𝑦) 6𝑀𝜅𝑓1(𝑦) +𝑀𝜅𝑓2(𝑦). (4)

It follows from the definition of 𝑀𝜅 that

𝑀𝜅𝑓2(𝑦) 6 sup
𝑦∈𝑄∈𝒬(𝜇)

ℓ(𝑄)>8𝐿/(𝜅−1)

1

𝜇(𝜅𝑄)

∫︁
𝑄

|𝑓(𝑥)| 𝑑𝜇(𝑥).

Suppose that 𝑦 ∈ 𝑄0, 𝑦 ∈ 𝑄 ∈ 𝒬(𝜇) and ℓ(𝑄) > 8𝐿/(𝜅− 1). Then simple calculus

yields 𝑄0 ⊂
1 + 𝜅

2
𝑄. Thus, we obtain

𝑀𝜅𝑓2(𝑦) 6 sup
𝑄0⊂𝑄∈𝒬(𝜇)

1

𝜇
(︁

2𝜅
𝜅+1 𝑄

)︁ ∫︁
𝑄

|𝑓(𝑥)| 𝑑𝜇(𝑥). (5)

The lemma above, (1), (2) and Hölder’s inequality yield

𝜇

(︂
2𝜅(𝜅+ 7)

𝜅2 − 1
𝑄0

)︂ 1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄0

(𝑀𝜅𝑓(𝑦)
𝑞 𝑑𝜇(𝑦)

⎞⎟⎠
1
𝑞

6

6 𝜇

(︂
2𝜅(𝜅+ 7)

𝜅2 − 1
𝑄0

)︂ 1
𝑝
− 1

𝑞

⎛⎝∫︁
R𝑛

𝑀𝜅𝑓1(𝑦)
𝑞 𝑑𝜇(𝑦)

⎞⎠ 1
𝑞

+
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+ 𝜇(𝑄0)
1
𝑝
− 1

𝑞 ·

⎛⎜⎝∫︁
𝑄0

𝑀𝜅𝑓2(𝑦)
𝑞 𝑑𝜇(𝑦)

⎞⎟⎠
1
𝑞

6

6 𝜇

(︂
2𝜅(𝜅+ 7)

𝜅2 − 1
𝑄0

)︂ 1
𝑝
− 1

𝑞

⎛⎝∫︁
R𝑛

𝑀𝜅𝑓1(𝑦)
𝑞 𝑑𝜇(𝑦)

⎞⎠ 1
𝑞

+

+ sup
𝑄0⊂𝑄
𝑄0∈𝒬(𝜇)

𝜇(𝑄0)
1
𝑝

𝜇
(︁

2𝜅
𝜅+1 𝑄

)︁ ∫︁
𝑄

|𝑓(𝑦)| 𝑑𝜇(𝑦).

If we use the Hölder inequality, then we obtain

𝜇

(︂
2𝜅(𝜅+ 7)

𝜅2 − 1
𝑄0

)︂ 1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄0

(𝑀𝜅𝑓(𝑦)
𝑞 𝑑𝜇(𝑦)

⎞⎟⎠
1
𝑞

6

6 𝐶 𝜇

(︂
2𝜅(𝜅+ 7)

𝜅2 − 1
𝑄0

)︂ 1
𝑝
− 1

𝑞

⎛⎜⎜⎝ ∫︁
𝜅+7
𝜅−1

𝑄0

|𝑓(𝑦)|𝑞 𝑑𝜇(𝑦)

⎞⎟⎟⎠
1
𝑞

+

+ 𝐶 ′ sup
𝑄0⊂𝑄∈𝒬(𝜇)

𝜇

(︂
2𝜅

𝜅+ 1
𝑄

)︂ 1
𝑝
− 1

𝑞

⎛⎜⎝∫︁
𝑄

|𝑓(𝑦)|𝑞 𝑑𝜇(𝑦)

⎞⎟⎠
1
𝑞

6 𝐶 ‖𝑓‖ℳ𝑝
𝑞(2𝜅/(𝜅+1),𝜇).

Hence we have ‖𝑀𝜅𝑓‖ℳ𝑝
𝑞(2𝜅(𝜅+7)/(𝜅2−1),𝜇) 6 𝐶‖𝑓‖ℳ𝑝

𝑞(2𝜅/(𝜅+1),𝜇). Using the fact
thatℳ𝑝

𝑞(𝜅, 𝜇) does not depend on 𝜅 > 1, we obtain the conclusion of the theorem.�
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FAST LAGUERRE PROJECTION METHOD FOR FINITE HANKEL
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Abstract. The fast Laguerre projection methods for the inversion of finite Hankel
transform of arbitrary order and Hankel transform of arbitrary order are introduced.
The proposed effective technique for projection coefficients computation is based
on the Gauss-Laguerre quadrature. The test results showed the effectiveness of
proposed computational algorithm as well as its good approximation quality.

1 Introduction

The general scheme of the projection method for solving type I linear equations
𝐴𝑧 = 𝑢 in Hilbert space is based on expanding the solution in a series of the
eigenfunctions of self-adjoint operator 𝐴*𝐴 [1]. Projection method is well applicable
for image processing tasks where it was used for filtration and parametrization of
data [2].

Let us consider the following equation

𝐴𝑧 =

𝑎∫︁
0

𝑧(𝑥)𝐽𝛼(𝑘𝑥)
√
𝑘𝑥 𝑑𝑥 = 𝑢(𝑘), (1)

𝐴 : 𝐿2[0, 𝑎]→ 𝐿2[0, 𝑎], 0 < 𝑎 <∞, (2)

where the right part is given approximately and 𝐽𝛼(𝑥) is Bessel function of the
first kind of order 𝛼. There is a classic projection method for this kind of equa-
tion presented in [1]. It is based on the expansion of the solution into the set of
eigenfunctions of operator 𝐴*𝐴. However there is a special feature of (1). The
operator 𝐴 has computationally multiple eigenvalues for sufficiently large 𝑎. They
are equivalent for calculations with computer precision. This fact can lead to the
loss of the approximation quality of the solution in the case when the number of

The work was supported by the Federal Targeted Programme “R&D in Priority Fields of the
S&T Complex of Russia 2007-2013”.
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eigenfunctions corresponding to this eigenvalue used in the projection method is
less then the computational multiplicity of the eigenvalue.

The modification of this projection method for (1) was presented in [3]. This
modification is based on the replacement of the eigenfunctions which correspond to
multiple eigenvalue by Laguerre functions.

Laguerre functions are defined as:

𝜓𝛼𝑛(𝑥) =
1√︀

𝑛!Γ(𝑛+ 𝛼+ 1)
𝑥𝛼/2𝑒−𝑥/2𝐿𝛼𝑛(𝑥),

where 𝐿𝛼𝑛(𝑥) are Laguerre polynomials: 𝐿𝛼𝑛(𝑥) = (−1)𝑛𝑥−𝛼𝑒𝑥 𝑑

𝑑𝑥𝑛
(𝑥𝑛+𝛼𝑒−𝑥) . They

form an orthonormal system in 𝐿2[0,∞). At the same time, from a computational
point of view, each of these functions has a finite support.

The functions Ψ𝛼
𝑛(𝑥) =

√
2𝑥𝜓𝛼𝑛(𝑥

2) are the eigenfunctions of Hankel transform
of order 𝛼 (operator 𝐴 for 𝑎 =∞).

In [4] the projection method for the inversion of the following integral transform
was presented:

𝐻𝑧 =

∞∫︁
0

𝑧(𝑥)𝐽𝛼(𝑘𝑥)
√
𝑘𝑥 𝑑𝑥 = 𝑢(𝑘), (3)

𝐻 : 𝐿2[0,∞]→ 𝐿2[0, 𝑎], 0 < 𝑎 <∞, (4)

where the right part is given approximately and 𝐽𝛼(𝑥) is Bessel function of the first
kind of order 𝛼. This method is based on the expansion of the right part of (3)
into the set of Laguerre functions being eigenfunctions of operator 𝐻 : 𝐿2[0,∞]→
𝐿2[0,∞]. The theorem which gives the criterion of choosing the number of functions
for the projection method was proved in [4].

Computing the projection coefficients for (1) and (3) the following equations
occurres:

𝑢𝑖 =

𝑎∫︁
0

𝑢𝛿(𝑘)Ψ
𝛼
𝑖 (𝑘) 𝑑𝑘, (5)

where 𝑢𝛿(𝑘) is the given approximation of the right part 𝑢(𝑘):

‖𝑢(𝑘)− 𝑢𝛿(𝑘)‖𝐿2[0,𝑎] 6 𝛿.
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In the case of sufficiently large 𝑎 the norms ‖Ψ𝛼
𝑖 (𝑥)‖𝐿2[𝑎,∞) are close to the

zero [3] and

𝑢𝑖 =

𝑎∫︁
0

𝑢𝛿(𝑘)Ψ
𝛼
𝑖 (𝑘) 𝑑𝑘 ≈

∞∫︁
0

𝑢𝛿(𝑘)Ψ
𝛼
𝑖 (𝑘) 𝑑𝑘. (6)

In this paper we suggest the fast algorithms for computation of projection co-
efficients (5). These methods are based on the the Gauss-Laguerre quadrature for
integrals computation.

2 Fast algorithm for projection coefficients computation

Let us consider the equation

𝑢𝑛 ≈
∞∫︁
0

𝑢𝛿(𝑥)Ψ
𝛼
𝑛(𝑥) 𝑑𝑥 =

∞∫︁
0

𝑢𝛿(𝑥)
√
2𝑥𝜓𝛼𝑛(𝑥

2) 𝑑𝑥 =

=

∞∫︁
0

𝑢𝛿(𝑥)(2𝑥)
− 1

2𝜓𝛼𝑛(𝑥
2) 𝑑(𝑥2). (7)

Denote 𝑥2 = 𝑡 and 𝛽𝛼𝑛 =
√︀
𝑛!Γ(𝑛+ 𝛼+ 1) then

∞∫︁
0

𝑢𝛿(𝑥)(2𝑥)
− 1

2𝜓𝛼𝑛(𝑥
2) 𝑑(𝑥2) =

1√
2

∞∫︁
0

𝑢𝛿(
√
𝑡)𝑡−

1
4𝜓𝛼𝑛(𝑡) 𝑑𝑡 =

=
1√
2

∞∫︁
0

𝑡𝛼𝑒−𝑡
(︂
𝑢𝛿(
√
𝑡)

1

𝛽𝛼𝑛
𝑡−

𝛼
2
− 1

4 𝑒
𝑡
2𝐿𝛼𝑛(𝑡)

)︂
𝑑𝑡 (8)

Considering (8) the initial equation (7) can be rewritten as

𝑢𝑛 ≈
1√
2

∞∫︁
0

𝑡𝛼𝑒−𝑡𝑓(𝑡) 𝑑𝑡, (9)

where
𝑓(𝑡) = 𝑢𝛿(

√
𝑡)

1

𝛽𝛼𝑛
𝑡−

𝛼
2
− 1

4 𝑒
𝑡
2𝐿𝛼𝑛(𝑡). (10)
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Integral (9) can be approximated using Gauss-Laguerre quadrature [5]:

∞∫︁
0

𝑡𝛼𝑒−𝑡𝑓(𝑡) 𝑑𝑡 ≈
𝑁∑︁
𝑘=1

𝐴𝑘𝑓(𝑡𝑘) +𝑅𝑁 , (11)

where

𝐴𝑘 =
(𝛽𝛼𝑁 )

2𝑡𝑘(︀
𝐿𝛼𝑁+1(𝑡𝑘)

)︀2 (12)

and 𝑡𝑘 are the zeros of Laguerre polynomial 𝐿𝛼𝑁 .
The 𝐴𝑘 coefficient for 𝛼 = 0 and different values of 𝑡𝑘 and 𝑁 are presented

below [5] in Tab. 1.

Table 1
The 𝐴𝑘 coefficient for 𝛼 = 0 and different values of 𝑡𝑘 and 𝑁

𝑁 = 1

𝑡1 = 1.000 000 000 000 𝐴1 = 1.000 000 000 000

𝑁 = 2

𝑡1 = 0.585 786 437 627 𝐴1 = 0.853 553 390 593
𝑡2 = 3.414 213 562 373 𝐴2 = 0.146 446 609 407

𝑁 = 7

𝑡1 = 0.193 043 676 560 𝐴1 = 0.409 318 951 701
𝑡2 = 1.026 664 895 339 𝐴2 = 0.421 831 277 862
𝑡3 = 2.567 876 744 951 𝐴3 = 0.147 126 348 658
𝑡4 = 4.900 353 084 526 𝐴4 = 0.(1) 206 335 144 687
𝑡5 = 8.182 153 444 563 𝐴5 = 0.(2) 107 401 014 328
𝑡6 = 12.734 180 291 798 𝐴6 = 0.(4) 158 654 643 486
𝑡7 = 19.395 727 862 263 𝐴7 = 0.(7) 317 031 547 900

It can be seen that direct computation of 𝐴𝑘 coefficients in (12) leads to the loss
in approximation precision and increase of computation complexity. The same prob-
lem for Gauss-Hermite quadrature coefficients did not give possibility to W.F. Eber-
lein [6] to implement his idea of acceleration of Fourier transform.

However, taking into consideration (10) equation (11) can be transformed as

∞∫︁
0

𝑡𝛼𝑒−𝑡𝑓(𝑡) 𝑑𝑡 ≈
𝑁∑︁
𝑘=1

𝐴𝑘𝑓(𝑡𝑘) +𝑅𝑁 =

𝑁∑︁
𝑘=1

(𝛽𝛼𝑁 )2𝑡𝑘𝑢𝛿(
√
𝑡𝑘)𝑡𝑘

−𝛼
2 − 1

4 𝑒
𝑡𝑘
2 𝐿𝛼𝑛(𝑡𝑘)(︀

𝐿𝛼𝑁+1(𝑡𝑘)
)︀2
𝛽𝛼𝑛

+𝑅𝑁 =
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=

𝑁∑︁
𝑘=1

𝑢𝛿(
√
𝑡𝑘)𝑡

3
4

𝑘 𝜓
𝛼
𝑛(𝑡𝑘)(︁

𝛽𝛼
𝑁+1

𝛽𝛼
𝑁

)︁2 (︀
𝜓𝛼𝑁+1(𝑡𝑘)

)︀2 +𝑅𝑁 =

𝑁∑︁
𝑘=1

𝑢𝛿(
√
𝑡𝑘)𝑡

3
4

𝑘 𝜓
𝛼
𝑛(𝑡𝑘)

(𝑁 + 1)(𝑁 + 𝛼+ 1)
(︀
𝜓𝛼𝑁+1(𝑡𝑘)

)︀2 +𝑅𝑁 . (13)

Thus the coefficients 𝑢𝑛 can be efficiently calculated as

𝑢𝑛 ≈
1√
2

𝑁∑︁
𝑘=1

𝑢𝛿(
√
𝑡𝑘)𝜇

𝑛
𝑁+1 , (14)

where

𝜇𝑛𝑁 =
𝑡
3
4
𝑘 𝜓

𝛼
𝑛(𝑡𝑘)

𝑁(𝑁 + 𝛼)
(︀
𝜓𝛼𝑁 (𝑡𝑘)

)︀2 . (15)

It is important to mention that the approximation of 𝑢𝛿(
√
𝑡𝑘) can be performed

using linear interpolation for sufficiently smooth data as 𝑡𝑘 are not very dense
distributed.

The presented computation technique accelerates the computation in several
times. If the number of points in the initial uniform grid is 𝑀 then the number of
multiplications to compute coefficient 𝑢𝑖 using quadrature formula on the uniform
grid is proportional to 𝑀 . Using the proposed fast algorithm the number of mul-
tiplications to compute coefficient 𝑢𝑖 can be reduced to 𝑁 . The value of 𝑁 can be
chosen according to the needed approximation quality.

3 Fast projection method for finite Hankel transform of arbitrary
order

We used the suggested fast method to accelerate the scheme of the modified pro-
jection method for (1) proposed in [3]. The modified projection method looks as:

1. Compute the eigenfunctions {𝜙𝑖} and the eigenvalues {𝜆𝑖} of operator 𝐴*𝐴:

𝐴*𝐴𝜙𝑖 = 𝜆𝑖𝜙𝑖, 𝜆𝑖 > 𝜆𝑗 > 0, for 𝑖 < 𝑗, 𝑖 = 0, 1, . . . , 𝑗 = 0, 1, . . . .

2. Compute the functions:

𝜙𝑖 =
𝐴𝜙𝑖
‖𝐴𝜙𝑖‖

.

3. Compute the Fourier coefficients:

𝑢𝑖 =

𝑎∫︁
0

𝑢𝛿(𝑘)Ψ
𝛼
𝑖 (𝑘) 𝑑𝑘 for 𝑖 = 0, ..., 𝑁1
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where 𝑁1 = min(𝑁𝛿, 𝑁𝜆):

𝑁𝛿 > 0 : ‖
𝑁𝛿∑︁
𝑖=0

𝑢𝑖Ψ
𝛼
𝑖 − 𝑢𝛿‖ 6 𝑞𝛿, 𝑞 > 1

and 𝑁𝜆 is the number of 𝜆𝑖 ≈ 1.
4. Compute the Fourier coefficients:

�̂�𝑖 =

𝑎∫︁
0

𝑢𝛿(𝑘)𝜙𝑖(𝑘) 𝑑𝑘 for 𝑖 = 𝑁1 + 1, ..., 𝑁2

where

𝑁2 > 0 : ‖
𝑁1∑︁
𝑖=0

𝑢𝑖Ψ
𝛼
𝑖 +

𝑁2∑︁
𝑖=𝑁1+1

�̂�𝑖𝜙𝑖 − 𝑢𝛿‖ 6 𝑞𝛿, 𝑞 > 1. (16)

5. Compute the solution as a partial sum of the Fourier series

𝑧𝛿 =

𝑁1∑︁
𝑖=0

𝑧𝑖Ψ
𝛼
𝑖 +

𝑁2∑︁
𝑖=𝑁1+1

𝑧𝑖𝜙𝑖, 𝑧𝑖 =

⎧⎪⎨⎪⎩
(−1)𝑖𝑢𝑖, for 𝑖 = 0, ..., 𝑁1

1
√
𝜆𝑖
�̂�𝑖, for 𝑖 = 𝑁1 + 1, ..., 𝑁2

To compare the results obtained by projection method and its fast modification
we performed the calculations for (1) with the model function shown in Fig. 1 (a).
The calculations were performed for 𝑎 = 10 and 𝛼 = 0. To model the real data
situation the uniformly distributed noise with 𝛿 = 0.49 was added to the right part
𝑢(𝑥) of the equation (1). The comparison between standard method and projection
method was given in [3] and it was shown that the projection method allows to
achieve more accurate approximation results with lower number of functions in
the expansion. The comparison of solutions obtained by projection method and
fast projection method is given in Fig. 1 (a). The approximation error for the
solution obtained by projection method is 0.180. The approximation error for the
solution obtained by fast projection method is 0.244. The number of Laguerre
functions to obtain these results was 𝑁 = 9. The number of computationally
multiple eigenvalues was 𝑁𝜆 = 17. The graphs illustrate that the result obtained
by the fast algorithm has higher oscillations on the interval 𝑥 ∈ [0, 2] than the result
obtained by ordinary projection method. But the computational speed in the case
of using fast modification is about 10 times higher.
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Figure 1. Solution approximation results for model functions for the inversion of finite
Hankel transform (a) and Hankel transform (b)

4 Fast projection method for Hankel transform of arbitrary order

Projection method for (3) was proposed in [4]. By this method we choose the
number of the Fourier series terms 𝑁 according to the theorem proposed in [4].

To compare the results obtained by projection method and its fast modification
we perform the calculations for (1) with the model function shown in Fig. 1 (b). The
calculations were performed for 𝑎 = 14 and 𝛼 = 2. To model the real data situation
the uniformly distributed noise with 𝛿 = 0.53 was added to the right part 𝑢(𝑥) of the
equation (3). The comparison of solutions obtained by projection method and fast
projection method is given in Fig. 1 (b). The comparison between standard method
and projection method was given in [4]. The approximation error for the solution
obtained by projection method is 0.172. The approximation error for the solution
obtained by fast projection method is 0.261. The number of Laguerre functions
to obtain these results was 𝑁 = 41. One can see that the results of the proposed
fast projection method are close to the results of the projection method while the
computational speed of the fast projection method is about 10 times higher.

5 Conclusion

Fast algorithm for computation of Laguerre projection coefficients has been pro-
posed. The method can be used for inversion of finite Hankel transform of arbitrary
order and Hankel transform of arbitrary order. The test results showed the effec-
tiveness of proposed computational algorithm as well as its good approximation
quality. The future work will include the comparison of proposed technique with
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the method based on the Gauss-Hermite quadrature which can be used in the case
of less smooth initial data.
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GENERALIZED CONVOLUTIONS OF THE INTEGRAL
TRANSFORM OF FOURIER TYPE AND APPLICATIONS

Ng. M. Tuan
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AMS Mathematics Subject Classification: Primary: 42A85, 43A32, 45P05;
Secondary: 45E10, 46H99

Abstract. In this report we construct the infinitely many generalized convolutions
related to the Hermite functions, and consider an application for structureing the
normed rings on 𝐿1(R𝑑). There is a fact (interesting, perhaps) most of those normed
rings are commutative.

1 Introduction

The theory of integral transforms has been developed for a long time, and applied
to many fields of mathematics. In recent years, many papers and books devoting to
applications of integral transforms have been published (see [2,3,5,8–11,11,13–16]
and references therein). Among those studied intensively are the integral transforms
of Fourier type.

Having considered recently vigorous discussion about integral transforms, we
hereinafter present the following transform

(ℱ𝑓)(𝑥) := 1

(2𝜋)
𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)𝑓(𝑦)𝑑𝑦, (1)

and its inverse transform

(ℱ−1𝑓)(𝑥) :=
1

(2𝜋)
𝑑
2

∫︁
R𝑑

(︂
1

2
cos𝑥𝑦 + sin𝑥𝑦

)︂
𝑓(𝑦)𝑑𝑦. (2)

The main aim of this paper is to present new generalized convolutions ℱ related
to Hermite functions and considers an application in normed rings of the Banach
space 𝐿1(R𝑑).

This work is supported partially by the Vietnam National Foundation for Science and Tech-
nology Development, grant: 101.03-2011.03.
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2 Generalized convolutions

To begin with, we formulate the theorem relating to Hermite func-
tions. The multi-dimensional Hermite functions are defined by Φ𝛼(𝑥) :=

(−1)|𝛼|𝑒
1
2
|𝑥|2𝐷𝛼

𝑥𝑒
−|𝑥|2 (see [12]).

Theorem 1. The following formula holds

ℱΦ𝛼 =

⎧⎨⎩(−1)
|𝛼|
2 2Φ𝛼, 𝑖𝑓 |𝛼| is even

(−1)
|𝛼|−1

2 Φ𝛼, 𝑖𝑓 |𝛼| is odd.
(3)

Proof. By considering 𝐿1(R𝑑) as a domain of ℱ , ℱ−1 and ℱ the following
identity holds

ℱ =
2 + 𝑖

2
ℱ +

2− 𝑖
2
ℱ−1. (4)

Since ℱΦ𝛼 = (−𝑖)|𝛼|Φ𝛼 and ℱ−1Φ𝛼 = (𝑖)|𝛼|Φ𝛼, we have

ℱΦ𝛼 =

[︂
2 + 𝑖

2
(−𝑖)|𝛼| + 2− 𝑖

2
(𝑖)|𝛼|

]︂
Φ𝛼.

Calculating the coefficient in the right-side of this equality we obtain (3). The
theorem is proved. �

For given 𝑓 ∈ 𝐿1(R𝑑) define the norm ‖𝑓‖0 :=
1

(2𝜋)
𝑑
2

∫︀
R𝑑

|𝑓(𝑥)|𝑑𝑥. Put 𝑁𝛼 :=

‖Φ𝛼‖0 for given Hermite function Φ𝛼. It is known that 𝐿1(R𝑑) becomes a Banach
space by the norm ‖ · ‖0. Let |𝛼| = 𝑟 (mod 4) where 𝑟 ∈ {0, 1, 2, 3}.

Theorem 2 (main theorem). If 𝑓, 𝑔 ∈ 𝐿1(R𝑑), then each of the transforms
below defines a generalized convolution followed by its normed inequality and fac-
torization identity.
∙ The case 𝑟 ∈ {0, 2}.

(︂
𝑓

Φ𝛼*
ℱ
𝑔

)︂
(𝑥) =

(−1)
𝑟
2

8(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑢)𝑔(𝑣) [11Φ𝛼(𝑥− 𝑢− 𝑣)− 5Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (5)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ
𝑔

⃦⃦⃦⃦
0

6
13𝑁𝛼

4
‖𝑓‖0 · ‖𝑔‖0,
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ℱ
(︂
𝑓

Φ𝛼*
ℱ
𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ𝑓)(𝑥)(ℱ𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

)︂
(𝑥) =

=
(−1)

𝑟
2

8(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [5Φ𝛼(𝑥− 𝑢− 𝑣)− 5Φ𝛼(𝑥+ 𝑢+ 𝑣) −

− Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (6)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

⃦⃦⃦⃦
0

6 2𝑁𝛼‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ𝑓)(𝑥)(ℱ−1𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

)︂
(𝑥) =

=
(−1)

𝑟
2

8(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [5Φ𝛼(𝑥− 𝑢− 𝑣)− 5Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣)− Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (7)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

⃦⃦⃦⃦
0

6 2𝑁𝛼‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ−1𝑓)(𝑥)(ℱ𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

)︂
(𝑥) =

=
(−1)

𝑟
2

32(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [5Φ𝛼(𝑥− 𝑢− 𝑣)− 11Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (8)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

⃦⃦⃦⃦
0

6
13𝑁𝛼

16
‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ−1𝑓)(𝑥)(ℱ−1𝑔)(𝑥).

(9)

∙ The case 𝑟 ∈ {1, 3}.

(︂
𝑓

Φ𝛼*
ℱ
𝑔

)︂
(𝑥) =

(−1)
𝑟−1
2

4(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [Φ𝛼(𝑥− 𝑢− 𝑣) + 5Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (10)
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⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ
𝑔

⃦⃦⃦⃦
0

6 4𝑁𝛼‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ
𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ𝑓)(𝑥)(ℱ𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

)︂
(𝑥) =

=
(−1)

𝑟−1
2

16(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [−5Φ𝛼(𝑥− 𝑢− 𝑣) + 5Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 11Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑣𝑑𝑢, (11)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

⃦⃦⃦⃦
0

6
13𝑁𝛼

8
‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ ,ℱ−1

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ𝑓)(𝑥)(ℱ−1𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

)︂
(𝑥) =

=
(−1)

𝑟−1
2

16(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑓(𝑣)𝑔(𝑢) [−5Φ𝛼(𝑥− 𝑢− 𝑣) + 5Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣) + 11Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑣𝑑𝑢, (12)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

⃦⃦⃦⃦
0

6
13𝑁𝛼

8
‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ−1𝑓)(𝑥)(ℱ𝑔)(𝑥)

(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

)︂
(𝑥) =

=
(−1)

𝑟−1
2

16(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

𝑔(𝑢) [−5Φ𝛼(𝑥− 𝑢− 𝑣)− Φ𝛼(𝑥+ 𝑢+ 𝑣) +

+ 5Φ𝛼(𝑥+ 𝑢− 𝑣) + 5Φ𝛼(𝑥− 𝑢+ 𝑣)] 𝑑𝑢𝑑𝑣, (13)

⃦⃦⃦⃦
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

⃦⃦⃦⃦
0

6 ‖𝑓‖0‖𝑔‖0,

ℱ
(︂
𝑓

Φ𝛼*
ℱ ,ℱ−1,ℱ−1

𝑔

)︂
(𝑥) = Φ𝛼(𝑥)(ℱ−1𝑓)(𝑥)(ℱ−1𝑔)(𝑥).

(14)

Proof. By estimating the integral inequalities we can prove the normed in-
equality in (5) as: ‖𝑓 Φ𝛼*

ℱ
𝑔‖0 6 13𝑁𝛼

4 ‖𝑓‖0 · ‖𝑔‖0. We now prove the factorization

identity. Using simultaneously two identities: Φ𝛼 = (−1)
𝑟
2ℱΦ𝛼 = (−1)

𝑟
2ℱ−1Φ𝛼,
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we have

Φ𝛼(𝑥)

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[2 cos𝑥(𝑢+ 𝑣) + sin𝑥(𝑢+ 𝑣)]𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =

=
Φ𝛼(𝑥)

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[︂
2 + 𝑖

2
𝑒−𝑖⟨𝑥,𝑢+𝑣⟩ +

2− 𝑖
2

𝑒𝑖⟨𝑥,𝑢+𝑣⟩
]︂
𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =

=
(−1)

𝑟
2

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[︂
2 + 𝑖

2
𝑒−𝑖⟨𝑥,𝑢+𝑣+𝑡⟩ +

2− 𝑖
2

𝑒𝑖⟨𝑥,𝑢+𝑣+𝑡⟩
]︂
Φ𝛼(𝑡)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =

=
(−1)

𝑟
2

(2𝜋)
3𝑑
2

∫︁
R𝑑

∫︁
R𝑑

∫︁
R𝑑

[︂
2 + 𝑖

2
𝑒−𝑖⟨𝑥,𝑦⟩ +

2− 𝑖
2

𝑒𝑖⟨𝑥,𝑦⟩
]︂
Φ𝛼(𝑦 − 𝑢− 𝑣)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦 =

=
(−1)

𝑟
2

(2𝜋)
3𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)

∫︁
R𝑑

∫︁
R𝑑

Φ𝛼(𝑦 − 𝑢− 𝑣)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦. (15)

Replacing 𝑢 with −𝑢, 𝑣 with −𝑣, and afterward 𝑓(−𝑢) with 𝑓(𝑢), 𝑔(−𝑣) with 𝑔(𝑣),
we obtain

Φ𝛼(𝑥)

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[2 cos𝑥(𝑢− 𝑣) + sin𝑥(𝑢− 𝑣)]𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =

=
(−1)

𝑟
2

(2𝜋)
3𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)

∫︁
R𝑑

∫︁
R𝑑

Φ𝛼(𝑦 − 𝑢+ 𝑣)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦; (16)

Φ𝛼(𝑥)

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[2 cos𝑥(−𝑢+ 𝑣) + sin𝑥(−𝑢+ 𝑣)]𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =

=
(−1)

𝑟
2

(2𝜋)
3𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)

∫︁
R𝑑

∫︁
R𝑑

Φ𝛼(𝑦 + 𝑢− 𝑣)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦; (17)

Φ𝛼(𝑥)

(2𝜋)𝑑

∫︁
R𝑑

∫︁
R𝑑

[2 cos𝑥(−𝑢− 𝑣) + sin𝑥(−𝑢− 𝑣)]𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣 =
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=
(−1)

𝑟
2

(2𝜋)
3𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)

∫︁
R𝑑

∫︁
R𝑑

Φ𝛼(𝑦 + 𝑢+ 𝑣)𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦. (18)

On the other hand,

(2 cos𝑥𝑣 + sin𝑥𝑣)(2 cos𝑥𝑢+ sin𝑥𝑢) =
11

8
[2 cos𝑥(𝑢+ 𝑣) + sin𝑥(𝑢+ 𝑣)]+

+
5

8
[2 cos𝑥(𝑢− 𝑣) + sin𝑥(𝑢− 𝑣)] + 5

8
[2 cos𝑥(−𝑢+ 𝑣) + sin𝑥(−𝑢+ 𝑣)]−

− 5

8
[2 cos𝑥(−𝑢− 𝑣) + sin𝑥(−𝑢− 𝑣)]. (19)

Using (15)–(18), and (19) we get

Φ𝛼(𝑥)(ℱ𝑓)(𝑥)(ℱ𝑔)(𝑥) =
(−1)

𝑟
2

8(2𝜋)
3𝑑
2

∫︁
R𝑑

(2 cos𝑥𝑦 + sin𝑥𝑦)

∫︁
R𝑑

∫︁
R𝑑

[︀
11Φ𝛼(𝑦 − 𝑢− 𝑣)+

+5Φ𝛼(𝑦−𝑢+𝑣)+5Φ𝛼(𝑦+𝑢−𝑣)−5Φ𝛼(𝑦+𝑢+𝑣)
]︀
𝑓(𝑢)𝑔(𝑣)𝑑𝑢𝑑𝑣𝑑𝑦 = ℱ

(︂
𝑓

Φ𝛼*
ℱ
𝑔

)︂
(𝑥).

The factorization identity of (5) is proved.
We have to prove the theorem for the other convolutions. However, due to the
limitted of the paper we leave the proof to the readers as those convolutions may
be proved in the same way as the proof of (5). The theorem 2 is proved. �

3 Normed ring structures

In this section, we shall prove that a half of convolution multiplications in The-
orem 1 consists of commutative convolutions. Moreover, all the above-mentioned
convolution operators are continuous maps from 𝐿1(R𝑑) into itself whenever 𝑓 (or
𝑔) is fixed. Therefore, those convolutions are useful for constructing normed rings
on 𝐿1(R𝑑) that could be applied to theories of Banach algebras (see [1,2,4,6,7,16]).

Theorem 3. The space 𝑋 := 𝐿1(R𝑑), equipped with each one of convolu-
tion multiplications (5) and with the norm ‖𝑓‖𝛼 = 13𝑁𝛼

4 ‖𝑓‖0, or with each one
of those (6), (7) and the norm ‖𝑓‖𝛼 = 2𝑁𝛼‖𝑓‖0, or with (8) and the norm
‖𝑓‖𝛼 = 13

16𝑁𝛼‖𝑓‖0, or with each one of those (10) and the norm ‖𝑓‖𝛼 = 4𝑁𝛼‖𝑓‖0,
or with each one of those (11), (12) and the norm ‖𝑓‖𝛼 = 13

8 𝑁𝛼‖𝑓‖0, or with (13)
and the norm ‖𝑓‖𝛼 = 𝑁𝛼‖𝑓‖0, becomes a normed ring. Moreover, for convolutions
(5), (8), (10), (13), 𝑋 is commutative.
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Proof. Obviously, 𝑋, equipped with one of the convolution multiplications (5)–
(13) and with the above appropriate norm is a commutative ring. The multiplicative
inequalities follow directly from the norm inequalities in (5)–(13). Therefore, 𝑋 is
a normed ring. We have to prove that 𝑋 has no unit.

We shall prove the assertion for the convolution multiplication (5), and those
for the others may be proved analogously.

Suppose that there exists an element 𝑒 ∈ 𝑋 such that 𝑓 = 𝑓
Φ0*
ℱ
𝑒 = 𝑒

Φ0*
ℱ
𝑓

for every 𝑓 ∈ 𝑋. As Φ0 ∈ 𝑋, Φ0 = Φ0
Φ0*
ℱ
𝑒 = 𝑒

Φ0*
ℱ

Φ0. By using the factorization

identity and Theorem 1, we obtain Φ0 = Φ2
0ℱ𝑒. Since Φ0(𝑥) ̸= 0 for every 𝑥 ∈ R𝑑,

we have Φ0(𝑥)(ℱ𝑒)(𝑥) = 1 for every 𝑥 ∈ R𝑑. But, this contradicts to the identity
lim𝑥→∞

[︀
Φ0(𝑥)(ℱ𝑒)(𝑥)

]︀
= 0 that deduced from the Riemann-Lebesgue lemma and

the fact Φ0 ∈ 𝒮. Hence, 𝑋 has no unit.
The commutativity of the convolutions (5), (8), (10), (13) are clearly. The

theorem is proved. �

Remark. (1) Actually, we can prove the non-commutativity of convolution
multiplications (6), (7), (11), (12). However, it does not need in any sense.

(2) Due to the limited pages of this report, this report does not present neither
other applications of ℱ nor of the constructed convolutions such as those in operator
equations, eigen-functions, spectral radius, and in integral transforms of convolution
type. Therefore, those applications will be addressed in another paper.
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CHARACTERIZATION OF INTEGRALS WITH RESPECT TO ALL
RADON MEASURES ON AN ARBITRARY HAUSDORFF SPACE

AS LINEAR FUNCTIONALS
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Key words: Radon measure, regular measure, Radon integral, symmetrizable
functions, uniform functions
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Abstract. The problem of characterization of integrals as linear functionals is
considered in the paper. It starts from the familiar results of F. Riesz (1909)
and J. Radon (1913) on integral representation of bounded linear functionals by
Riemann – Stiltjes integrals on a segment and by Lebesgue integrals on a compact
in R𝑛, respectively. After works of J. Radon, M. Fréchet, and F. Hausdorff the
problem of characterization of integrals as linear functionals took the particular
form of the problem of extension of Radon’s theorem from compact subspaces of R𝑛
to more general topological spaces with Radon measures. Therefore it may be
naturally called the Riesz –Radon –Fréchet problem of characterization of integrals.
The important stages of its solving are connected with such mathematicians as
S. Banach, S. Saks, S. Kakutani, P. Halmos, E. Hewitt, R. E. Edwards, N. Bourbaki,
V. K. Zakharov, A. V. Mikhalev, et al. In this paper the Riesz – Radon – Fréchet
problem is solving for the general Radon measures on arbitrary Hausdorff spaces.

1 Lattice linear spaces of functions and linear functionals on them

Let (𝑇,𝒢) be a Hausdorff topological space with the ensembles 𝒢, ℱ , 𝒞, and ℬ of
all open, closed, compact, and Borel subsets. Denote the family of all real-valued
functions on a set 𝑇 by 𝐹 (𝑇 ).

Let 𝐴(𝑇 ) ⊂ 𝐹 (𝑇 ) be a lattice linear space of functions on 𝑇 . Its subfamilies of all
nonnegative and all bounded functions is denoted by 𝐴(𝑇 )+ and 𝐴𝑏(𝑇 ), respectively.
The subspace of 𝐴(𝑇 ) consisting of all functions with a compact support is denoted
by 𝐴𝑐(𝑇 ).

A function family 𝐴(𝑇 ) is said to be truncatable or to have the Stone property
if the condition 𝑓 ∈ 𝐴(𝑇 ) implies 𝑓 ∧ 1 ∈ 𝐴(𝑇 ) (see [3, 71D] and [5, I.7.2]). For

This research was partially supported by Russian Foundation for Basic Research (11-01-
00321) and President’s grant for Leading Scientific Schools (NSh-3252.2010.1).
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example, the space 𝐶(𝑇,𝒢) =𝑀(𝑇,𝒢) of all continuous functions and its subspaces
𝐶𝑏(𝑇,𝒢) and 𝐶𝑐(𝑇,𝒢) have this property.

A functional 𝜙 : 𝐴(𝑇 ) → R is called bounded if sup{|𝜙𝑓 | | 𝑓 ∈ 𝐴(𝑇 ) ∧ |𝑓 | 6
𝑔} <∞ for every 𝑔 ∈ 𝐴(𝑇 )+. The set of all bounded linear functionals on 𝐴(𝑇 ) is
denoted by 𝐴(𝑇 )∼; it is lattice and linear.

Define for an arbitrary linear functional 𝜙 : 𝐴(𝑇 ) → R the (lower and upper)
boundedness indices of a functional :

𝑏(𝜙) ≡ inf{𝜙𝑓 | 𝑓 ∈ 𝐴(𝑇 )+ ∧ 𝑓 6 1},
𝑏(𝜙) ≡ sup{𝜙𝑓 | 𝑓 ∈ 𝐴(𝑇 )+ ∧ 𝑓 6 1}.

It is clear that −∞ 6 𝑏(𝜙) 6 𝜙(0) = 0 and 0 = 𝜙(0) 6 𝑏(𝜙) 6 ∞. A linear
functional 𝜙 : 𝐴(𝑇 ) → R is said to be natural if at least one of its boundedness
indices is finite.

A functional 𝜙 on 𝐴(𝑇 ) is called pointwise 𝜎-continuous if for every monotone
sequence (𝑓𝑚 ∈ 𝐴(𝑇 ) | 𝑚 ∈𝑀 ⊂ N) and every function 𝑓 ∈ 𝐴(𝑇 ) the convergence
(𝑓𝑚(𝑡) | 𝑚 ∈ 𝑀)→ 𝑓(𝑡) in all points 𝑡 ∈ 𝑇 implies (𝜙𝑓𝑚 | 𝑚 ∈ 𝑀)→ 𝜙𝑓 [5, ch. I,
8.1]. Every 𝜎-pointwise continuous functional is bounded.

A functional 𝜙 on 𝐴(𝑇 ) is said to be tight or to have the Prokhorov property [3,
73G(e)] if for every 𝜀 > 0 there is a compact set 𝐶 ⊂ 𝑇 such that the conditions
𝑓 ∈ 𝐴(𝑇 ) and |𝑓 | 6 𝜒(𝑇 ∖ 𝐶) imply |𝜙𝑓 | < 𝜀. The set of all tight bounded linear
functionals on 𝐴(𝑇 ) will be denoted by 𝐴(𝑇 )𝜋.

A functional 𝜙 on 𝐴(𝑇 ) will be called locally tight or with the local Prokhorov
property) [10] if for every 𝐺 ∈ 𝒢, 𝑢 ∈ 𝐴(𝑇 )+, and 𝜀 > 0 there is a compact subset
𝐶 ⊂ 𝐺 such that the conditions 𝑓 ∈ 𝐴(𝑇 ) and |𝑓 | 6 𝜒(𝐺 ∖ 𝐶) ∧ 𝑢 imply |𝜙𝑓 | < 𝜀.

A functional 𝜙 on 𝐴(𝑇 ) is said to be 𝜎-exact if it is pointwise 𝜎-continuous and
locally tight. All 𝜎-exact functionals are bounded in virtue of their 𝜎-continuity.
The set of all 𝜎-exact linear functionals on 𝐴(𝑇 ) will be denoted by 𝐴(𝑇 )△. It
is clear that this space is lattice and linear. The family of all natural 𝜎-exact
functionals on 𝐴(𝑇 ) will be denoted by (𝐴(𝑇 )△)nat.

2 Radon measures on a Hausdorff space

Let (𝑇,𝒢) be a Hausdorff space. A Borel measure 𝜇 : ℬ → [−∞,∞[ or ] −∞,∞]
is called a Radon measure on (𝑇,𝒢), if the following conditions are fulfilled:

1. 𝜇𝐶 ∈ R for every 𝐶 ∈ 𝒞;
2. for every 𝐵 ∈ ℬ such that 𝜇𝐵 ∈ R and every 𝜀 > 0 there is 𝐶 ∈ 𝒞 such that
𝐶 ⊂ 𝐵 and |𝜇𝐵 − 𝜇𝐶| < 𝜀;
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3. for every 𝐵 ∈ ℬ such that 𝜇𝐵 =∞ [respectively, 𝜇𝐵 = −∞] and every 𝑎 ∈ R
there is 𝐶 ∈ 𝒞 such that 𝐶 ⊂ 𝐵 and 𝜇𝐶 > 𝑎 [respectively, 𝜇𝐶 < 𝑎].

For the first time this definition of a general Radon measure appeared in
V. K. Zakharov’s paper [10]. In the case of positive measures the joint prop-
erty 2)&3) is equivalent to the property of inner 𝒞-regularity (compact regular-
ity), which was used earlier in the definition of a positive Radon measure (see,
e. g., [3, 73A] and [5, ch. V, 1.2]).

Property 2) does lie in the base of the definition of finite Radon measure on
a compact space used by J. Radon, S. Banach, S. Saks, and S. Kakutani (see [8,
18.2.1]).

Generalizing their definition for the case of finite measure on a noncompact space
it is naturally to replace the approximation by closed subsets by the approximation
by compact subsets.

The family of all Radon measures will be denoted by RM(𝑇,𝒢). Unfortunately,
it is not a linear space because ∞ − ∞ is not defined in R. The subscripts 0
and 𝑏 are used to denote subfamilies of positive and bounded measures. We use the
subscript 0 here because the subscript + is reserved for cones of positive elements
of lattice linear spaces.

If 𝜇 ∈ RM(𝑇,𝒢), then the integral functional 𝑖𝜇 : 𝑓 ↦→
∫︀
𝑓 𝑑𝜇 is called the

Radon integral.

3 Properties of envelopment for symmetrizable functions

Let (𝑇,𝒢) be a topological space. Consider the multiplicative ensemble 𝒦 ≡ {𝐺∩𝐹 |
𝐺 ∈ 𝒢 ∧ 𝐹 ∈ ℱ} of all symmetrizable sets 𝐾 ≡ 𝐺 ∩ 𝐹 [9].

A function 𝑓 ∈ 𝐹 (𝑇 ) will be called symmetrizable if for every 𝜀 > 0 there exists
a finite cover (𝐾𝑖 ∈ 𝒦 | 𝑖 ∈ 𝐼) of the set 𝑇 such that the oscillation 𝜔(𝑓,𝐾𝑖) ≡
sup{|𝑓(𝑠) − 𝑓(𝑡)| | 𝑠, 𝑡 ∈ 𝐾𝑖} < 𝜀 for every 𝑖 ∈ 𝐼. Symmetrizable functions are
uniform functions (for these functions see, e. g., [12]) as a particular case: they are
uniform with respect to the ensemble 𝒦.

The space 𝑆(𝑇,𝒢) of all symmetrizable functions on (𝑇,𝒢) is linear and lat-
tice [14], contains the unit function 1, and, therefore, it is truncatable. It is clear
that 𝑆𝑏(𝑇,𝒢) = 𝑆(𝑇,𝒢).

We will say that a family 𝐴(𝑇 ) envelopes [𝜎-envelopes] from above a function ℎ ∈
𝐹 (𝑇 ) if there is a net (𝑓𝑚 ∈ 𝐴(𝑇 ) | 𝑚 ∈𝑀) [a sequence (𝑓𝑚 ∈ 𝐴(𝑇 ) | 𝑚 ∈𝑀 ⊂ N)]
such that (𝑓𝑚(𝑡) | 𝑚 ∈ 𝑀) ↓ ℎ(𝑡) in each point 𝑡 ∈ 𝑇 . Similarly, we will say
that 𝐴(𝑇 ) envelope [𝜎-envelope] from below a function 𝑔 ∈ 𝐹 (𝑇 ) if (𝑓𝑚(𝑡) | 𝑚 ∈
𝑀) ↑ 𝑔(𝑡) in each point 𝑡 ∈ 𝑇 .



342 The 8th Congress of the ISAAC — 2011

A family 𝐴(𝑇 ) is said to have Dini property (𝐷) if the pointwise convergence of
a net (𝑓𝑚 ∈ 𝐴(𝑇 ) | 𝑚 ∈𝑀) to a function 𝑓 ∈ 𝐴(𝑇 ) implies its uniform convergence
on every compact subset 𝐶 ⊂ 𝑇 .

By the Dini theorem if 𝐴(𝑇 ) is contained in the lattice linear space 𝐶(𝑇,𝒢) of
all continuous functions on a Hausdorff space (𝑇,𝒢), then 𝐴(𝑇 ) has property (𝐷).

A family 𝐴(𝑇 ) is said to have property (𝐸) [respectively, (𝐸𝜎)] if the following
three conditions are fulfilled:
(i) for every 𝐺 ∈ 𝒢 and every 𝑢 ∈ 𝐴(𝑇 )+ the family 𝐴(𝑇 ) envelopes [𝜎-envelopes]

from below the function 𝜒(𝐺) ∧ 𝑢,
(ii) for all 𝐹 ∈ ℱ , 𝐶 ∈ 𝒞, and 𝑢 ∈ 𝐴(𝑇 )+ the family 𝐴(𝑇 ) envelopes [𝜎-envelopes]

from above the functions 𝜒(𝐹 ) ∧ 𝑢 and 𝜒(𝐶),
(iii) for every 𝐺 ∈ 𝒢 and every compact subset 𝐶 ⊂ 𝐺 there is a function 𝑣 ∈ 𝐴(𝑇 )

such that 𝜒(𝐶) 6 𝑣 6 𝜒(𝐺).
It is clear that property (𝐸𝜎) is stronger than property (𝐸). The spaces 𝑆(𝑇,𝒢),
𝑆𝑐(𝑇,𝒢), 𝐶𝑏(𝑇,𝒢), and 𝐶𝑐(𝑇,𝒢) used in the last section have these properties.

4 Construction of the representing Radon measure for a given
positive 𝜎-exact linear functional

Using a simplified variant of Daniell’s method of functionals extension the following
theorem can be proved [11]. Put 𝐵(𝑇 ) ≡ {𝑓 ∈ 𝑆(𝑇 ) | ∃𝑢 ∈ 𝐴(𝑇 ) (|𝑓 | 6 𝑢)}.

Theorem 1. 1. For every 𝜎-exact linear functional 𝜙 on 𝐴(𝑇 ) there is the
unique 𝜎-exact linear functional 𝜙𝑆 on 𝐵(𝑇 ) extending the functional 𝜙.

2. The mapping 𝑄 : 𝜙 ↦→ 𝜙𝑆 is an isomorphism of lattice linear spaces 𝐴(𝑇 )△

and 𝐵(𝑇 )△.

The representing measure 𝜇 is constructed from a positive 𝜎-exact functional 𝜙𝑆
in the following way. Consider the ensemble ℛ of all sets 𝑅 ⊂ 𝑇 such that 𝐵(𝑇 )
𝜎-envelopes from above the function 𝜒(𝑅). Define on ℛ the evaluation 𝜆 : ℛ → R+

setting 𝜆𝑅 ≡ inf{𝜙𝑆𝑓 | 𝑓 ∈ 𝐵(𝑇 )+ ∧ 𝑓 > 𝜒(𝑅)}. Further, define the evaluation
𝜈 : 𝒫 → R+ setting 𝜈𝐸 ≡ sup{𝜆𝑅 | 𝑅 ∈ ℛ ∧ 𝑅 ⊂ 𝐸}. Consider the ensemble
ℳ ≡ {𝑀 ∈ 𝒫 | ∀𝐿 ∈ ℛ (𝜆𝐿 6 𝜈(𝐿 ∩ 𝑀) + 𝜈(𝐿 ∖ 𝑀))} and the evaluation
𝜇0 ≡ 𝜈|ℳ. Then ℳ is a 𝜎-algebra and 𝜇0 : ℳ → R+ is a measure extending 𝜆
and possessing the property of ℛ-regularity : 𝜇0𝑀 = sup{𝜇0𝑅 | 𝑅 ∈ ℛ ∧𝑅 ⊂𝑀}
for every 𝑀 ∈ℳ. Moreover, 𝜇 ≡ 𝜇0|ℬ is a positive Radon measure.

Theorem 2. The functional 𝜙𝑆 is integrally representable with respect to the
measure 𝜇, i. e., 𝜙𝑆𝑓 = 𝑖𝜇𝑓 for all 𝑓 ∈ 𝐵(𝑇 ).
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The following characterization of positive Radon integrals [11] is based on these
two technical theorems.

Theorem 3. Let (𝑇,𝒢) be a Hausdorff space, 𝐴(𝑇 ) be a truncatable lattice lin-
ear subspace in 𝑆(𝑇,𝒢). Let 𝐴(𝑇 ) has either property (𝐸𝜎) or property (𝐸)&(𝐷).
Then for every positive 𝜎-exact linear functional 𝜙 there is a unique positive Radon
measure 𝜇 such that 𝜙 is integrally representable with respect to the measure 𝜇 and
𝜇𝐶 = inf{𝜙𝑓 | 𝑓 ∈ 𝐴(𝑇 ) ∧ 𝑓 > 𝜒(𝐶)} for every compact set 𝐶.

5 Characterization of integrals with respect to all Radon measures
as linear functionals

Theorem 3 gives a key to the characterization of integrals with respect to all Radon
measures.

Theorem 4. Let (𝑇,𝒢) be a Hausdorff space and 𝐴(𝑇 ) be a truncatable lattice
linear subspace in the space 𝑆(𝑇,𝒢) possessing property (𝐸𝜎) or property (𝐸)&(𝐷).
Suppose 𝜙 ∈ 𝐴(𝑇 )△. Then the functional 𝜙 is natural if and only if there exists the
(unique) Radon measure 𝜇 such that 𝜙𝑓 =

∫︀
𝑓 𝑑𝜇 for all 𝑓 ∈ 𝐴(𝑇 ).

Moreover, the injection 𝜙 ↦→ 𝜇 of (𝐴(𝑇 )△)nat into RM(𝑇,𝒢) preserves all linear
and lattice structures.

This general parametric theorem with the parameter 𝐴(𝑇 ) gives for concrete
functional families 𝐴(𝑇 ) all the earlier obtained well known characterization theo-
rems and also some new ones. Put 𝐼(𝐴(𝑇 ), 𝑅𝑀(𝑇 )) ≡ {𝑖𝜇|𝐴(𝑇 ) | 𝜇 ∈ 𝑅𝑀(𝑇 )}.

Corollary 1 (the Zakharov – Mikhalev – Rodionov theorem). Let
(𝑇,𝒢) be a Hausdorff space. Then 𝐼(𝑆𝑐(𝑇,𝒢),RM(𝑇,𝒢)) = (𝑆𝑐(𝑇,𝒢)△)nat.

Corollary 2 (the Zakharov – Mikhalev theorem). Let (𝑇,𝒢) be a Haus-
dorff space. Then 𝐼(𝑆(𝑇,𝒢),RM𝑏(𝑇,𝒢)) = 𝑆(𝑇,𝒢)△ and the mapping 𝜇 ↦→
𝑖𝜇|𝑆(𝑇,𝒢) is an isomorphism of the lattice linear spaces [13].

Corollary 3 (the Bourbaki – Prokhorov theorem). Let (𝑇,𝒢) be a Ty-
chonoff space. Then 𝐼(𝐶𝑏(𝑇,𝒢),RM𝑏(𝑇,𝒢)) = 𝐶𝑏(𝑇,𝒢)𝜋 and the mapping 𝜇 ↦→
𝑖𝜇|𝐶𝑏(𝑇,𝒢) is also an isomorphism (see [1, ch. IX, § 5, no. 2] and [3, 73G(e)]).

Corollary 4 (the generalized Halmos –Hewitt –Edwards theorem).
Let (𝑇,𝒢) be a locally compact space. Then 𝐼(𝐶𝑐(𝑇,𝒢),RM(𝑇,𝒢)0) =
(𝐶𝑐(𝑇,𝒢)∼)+ (see [2, 4]) and 𝐼(𝐶𝑐(𝑇,𝒢),RM(𝑇,𝒢)) = (𝐶𝑐(𝑇,𝒢)∼)nat.

Corollary 5 (the Radon – Banach – Saks –Kakutani theorem). Let
(𝑇,𝒢) be a compact space. Then 𝐼(𝐶(𝑇,𝒢),RM(𝑇,𝒢)) = 𝐶(𝑇,𝒢)∼ and the
mapping 𝜇 ↦→ 𝑖𝜇|𝐶(𝑇,𝒢) is also an isomorphism (see [6, 7]).
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Chap. IX: Intégration sur les espaces topologiques séparés, Actualitées Scient.
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Abstract. Chromatic series expansions of bandlimited functions have recently
been introduced in signal analysis with promising results as a tool for signal pro-
cessing. Chromatic series share similar properties with Taylor series insofar as the
coefficients of the expansions, which are called chromatic derivatives, are based on
the ordinary derivatives of the function, but unlike Taylor series, chromatic series
have better rate of convergence and more practical applications. The purpose of
this paper is to show that chromatic series expansions can be used to characterize
some reproducing-kernel Hilbert spaces. We show that functions in the Paley-
Wiener space 𝑃𝑊𝜎 and the Bargmann-Segal-Foch space F can be characterized by
their chromatic series expansions that use chromatic derivatives associated with the
Legendre and Hermite polynomials, respectively.

1 Introduction

Chromatic derivatives and series expansions have recently been introduced in signal
analysis by A. Ignjatovic in [8, 9] as an alternative representation to Taylor series
for bandlimited functions and they have been shown to be more useful in practical
applications than Taylor series; see [1–3,5–7,13,14].

Recall that a function 𝑓 is bandlimited to [−𝜎, 𝜎] if it can be represented as

𝑓(𝑡) =

𝜎∫︁
−𝜎

𝑒−𝑖𝑥𝑡𝑔(𝑥) 𝑑𝑥, 𝑡 ∈ R , (1)

for some function 𝑔 ∈ 𝐿2(−𝜎, 𝜎).
The space of bandlimited functions, which is also known as the Paley–Wiener

space of bandlimited functions, consists of entire functions of exponential type that
are square integrable on the real axis. The Paley–Wiener space of functions ban-
dlimited to [−𝜎, 𝜎] will be denoted by 𝑃𝑊𝜎. The Whittaker-Shannon-Kotel’nikov
(WSK) sampling theorem states that if 𝑓 ∈ 𝑃𝑊𝜎, then it can be reconstructed
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from its samples, 𝑓(𝑘𝜋/𝜎). The construction formula is

𝑓(𝑡) =

∞∑︁
𝑘=−∞

𝑓

(︂
𝑘𝜋

𝜎

)︂
sin (𝜎𝑡− 𝑘𝜋)
(𝜎𝑡− 𝑘𝜋)

=

∞∑︁
𝑘=−∞

𝑓 (𝑡𝑘)
sin [𝜎(𝑡− 𝑡𝑘)]
𝜎(𝑡− 𝑡𝑘)

, 𝑡 ∈ R, (2)

where 𝑡𝑘 = 𝑘𝜋/𝜎, and the series being absolutely and uniformly convergent on
compact subsets of R. See, e.g., [17, p. 16].

The WSK theorem plays an important role in communication engineering be-
cause it enables engineers to reconstruct an analogue signal from its samples at a
discrete set of points. The WSK expansion may be viewed as a global expansion
because it uses function values at infinitely many points uniformly distributed on
the real line.

On the other hand, as an entire function, 𝑓 has a Taylor series expansion of the

form 𝑓(𝑡) =
∞∑︀
𝑛=0

(︀
𝑓 (𝑛)(0)/𝑛!

)︀
𝑡𝑛, which may be viewed as a local expansion since it

uses the values of 𝑓 and all its derivatives at a single point.
While the Whittaker–Shannon-Kotel’nikov sampling expansion has played an

important role in digital signal processing applications, the Taylor series has limited
practical applications. This can be attributed to two facts.

— The Sinc function, Sinc 𝑥 = sin𝜋𝑥/𝜋𝑥 belongs to 𝑃𝑊𝜋, and its translates
{sinc(𝑡− 𝑛)}𝑛∈Z , form an orthogonal basis for 𝑃𝑊𝜋; hence any 𝑓 ∈ 𝑃𝑊𝜋 can
be approximated by truncating its sampling series, while a truncated Taylor
series, i.e., a polynomial of degree 𝑛, is not bandlimited.

— Function evaluation is easier to compute and more numerically stable than
numerical evaluation of derivatives.

Another representation of bandlimited functions is provided by the chromatic
series expansions which are based on the notion of chromatic derivatives.

2 Chromatic Derivatives

The 𝑛-th chromatic derivative 𝐾𝑛[𝑓 ](𝑡0) of an analytic function 𝑓(𝑡), at 𝑡0, whose
formal definition will be given below, is a linear combination of the ordinary deriva-
tives 𝑓 (𝑘)(𝑡0), 0 6 𝑘 6 𝑛, where the coefficients of the combination are based on
systems of orthogonal polynomials. However, unlike the ordinary derivatives, the
chromatic derivatives can be obtained more accurately in a noise robust way. Al-
though there are several notions of derivatives available in the literature, such as
symmetric, Peano, 𝐿𝑝, symmetric 𝐿𝑝, quantum, Fréchet, and Gateaux derivatives,
they are all mathematical generalizations of the ordinary derivative and they are
used to describe the local behavior of a function in a neighborhood of the point
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of differentiation. In contrast, chromatic derivatives arose from real world applica-
tions and analogous to ordinary derivatives they can be used to describe the global
behavior of analytic functions.

Although chromatic series are like Taylor series, locally in nature, they provide
more numerically robust expansions than their Taylor counterparts. The transfer
functions of ordinary derivatives cluster tightly together and obliterate all but the
edges of the spectrum of a bandlimited signal. On the contrary, the transfer func-
tions of chromatic derivatives form a family of well separated, interleaved refined
comb filters.

We will briefly describe how chromatic series are constructed. Let 𝑊 (𝜔) be a
non-negative weight function such that all of its moments are finite, i.e., such that

𝜇𝑛 =

∞∫︁
−∞

𝜔𝑛𝑊 (𝜔)𝑑𝜔 <∞.

Let {𝑃𝑛(𝜔)}∞𝑛=0 be the family of polynomials orthonormal with respect to 𝑊 (𝜔):

∞∫︁
−∞

𝑃𝑛(𝜔)𝑃𝑚(𝜔)𝑊 (𝜔)𝑑𝜔 = 𝛿𝑚,𝑛,

and let 𝐾𝑛(𝑓) = 𝑃𝑛(𝑖
𝑑
𝑑𝑡)(𝑓) be the corresponding linear differential operator ob-

tained from 𝑃𝑛(𝜔) by replacing 𝜔𝑘 (0 6 𝑘 6 𝑛) with 𝑖𝑘 𝑑𝑘

𝑑𝑡𝑘
. These differential

operators are called chromatic derivatives associated with the family of orthogonal
polynomials {𝑃𝑛(𝜔)} because they preserve the spectral features of band-limited
signals. They can be evaluated with high accuracy and in a noise robust way from
samples of the signal taken at a small multiple of the usual Nyquist rate; see [5, 6]
for details.

Let 𝜓(𝑧) be the Fourier transform of the weight function 𝑊 (𝜔),

𝜓(𝑧) =

∞∫︁
−∞

𝑒𝑖𝜔𝑧𝑊 (𝜔)𝑑𝜔.

Because 𝜓(𝑧) will be used in a Taylor-type expansion of functions analytic in a
domain around the origin, we shall assume that lim sup(𝜇𝑛/𝑛!)

1/𝑛 < ∞, where,
𝜓(𝑛)(0) = 𝑖𝑛𝜇𝑛. This condition implies that 𝜓(𝑧) is analytic around the origin. As
shown in [4], this condition holds if and only if
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∞∫︁
−∞

𝑒𝑐|𝜔|𝑊 (𝜔)𝑑𝜔 <∞

for some 𝑐 > 0, and in this case 𝜓(𝑧) is analytic in the strip 𝑆(𝑐/2) = {𝑧 : Im(𝑧) <
𝑐/2}.

The chromatic series expansion of 𝑓 ∈ 𝐶∞(R) is given by the following formal
series.

𝑓(𝑧) ∼
∞∑︁
𝑛=0

𝐾𝑛(𝑓)(0)𝐾𝑛(𝜓)(𝑧). (3)

3 Chromatic Expansions in the Paley–Wiener Space

It has been shown in [4] that if 𝑓(𝑧) is analytic in the strip 𝑆(𝑐/2) and
∞∑︀
𝑛=0
|𝐾𝑛(𝑓)(0)|2 converges, then the series (3) converges to 𝑓(𝑧), uniformly in every

strip {𝑧 : | Im(𝑧)| < 𝑐/2 − 𝜀}, for any 𝜀 > 0. Here it should be emphasized that
although chromatic series were originally introduced for bandlimited functions, the
theory now applies to a much larger class of functions.

In the particular case, where 𝑊 (𝜔) = 𝜒(−1,1), the chromatic series associated
with the Legendre polynomials converge in the whole complex plane, i.e., the strip

𝑆(𝑐/2) is C, and the set of entire functions for which
∞∑︀
𝑛=0
|𝐾𝑛(𝑓)(0)|2 converges is

precisely the set of 𝐿2 functions whose Fourier transforms are finitely supported,
i.e., the set of bandlimited functions.

More precisely, let 𝑃𝑛(𝑡) be the Legendre polynomial of degree 𝑛 normalized so
that

1∫︁
−1

𝑃𝑛(𝑡)𝑃𝑚(𝑡)𝑑𝑡 = 1,

then if we define the chromatic derivative 𝐾𝑛[𝐹 ](𝑧) of 𝐹 order 𝑛 to be

𝐾𝑛 [𝐹 ] (𝑡) = 𝑃𝑛

(︂
−𝑖 𝑑
𝑑𝑡

)︂
𝐹 (𝑡),

the for any bandlimited function 𝐹 (𝑧) =
1∫︀

−1

𝑓(𝜔)𝑒𝑖𝑧𝜔𝑑𝜔, we have
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𝐹 (𝑧) =
∞∑︁
𝑛=0

𝐾𝑛(𝐹 )(0)𝐾𝑛(𝜓)(𝑧),

where 𝜓(𝑧) = 2Sinc(𝑧).

For such functions the chromatic expansions converge uniformly on R, and their
truncated series are themselves bandlimited which is analogous to the Whittaker-
Shannon sampling series [17]. This is in contrast to Taylor series whose truncated
series are not bandlimited. For this reason chromatic series have more practical
applications in signal processing than Taylor series.

To extend chromatic expansions to other function spaces, we need to generalize
the notion of chromatic derivatives. In two recent papers [15,16] we introduced more
general types of chromatic derivatives and series that are better suited to handle
integral transforms other than the Fourier transform. In [16] we presented two
different methods to construct a differential operator 𝐿 that gives rise to generalized
chromatics derivatives and their associated integral transform. In the first method
the operator 𝐿 arises from certain Sturm-Liouville boundary-value problems, while
in the second, it arises from initial-value problems involving differential operators
of order 𝑛.

Consider the singular Sturm–Liouville boundary-value problem on the half line

𝐿𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆𝑦, 0 6 𝑥 <∞, (4)

𝑦(0) cos𝛼+ 𝑦′(0) sin𝛼 = 0, −𝜋 < 𝛼 6 𝜋 (5)

where 𝑞(𝑥) ∈ 𝐿1(R+) is real valued. It is known that the condition 𝑞 ∈ 𝐿1(R+)
implies that the problem is in the limit point case at ∞ and that the spectrum is
continuous [11]. In fact, there exists a non-decreasing function 𝜌(𝜆) such that for
all 𝑓 ∈ 𝐿2(R+)

𝑓(𝜆) =

∞∫︁
0

𝑓(𝑥)𝜙(𝑥, 𝜆)𝑑𝑥, (6)

exists in the mean and defines a function 𝑓(𝜆) such that

𝑓(𝑥) =

∞∫︁
−∞

𝑓(𝜆)𝜙(𝑥, 𝜆)𝑑𝜌(𝜆) (7)
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where 𝜙(𝑥, 𝜆) is a solution of the differential equation (4) that satisfies the initial
condition

𝜙(0, 𝜆) = sin𝛼,𝜙′(0, 𝜆) = − cos𝛼. (8)

We call the integral transform (6) the 𝜙-transform of 𝑓. Fix 0 < 𝑎 < ∞, and let
𝐾2(𝑎) denote the set of all functions with supports in [0, 𝑎] that are square integrable
with respect to 𝑑𝜌. In most cases of interest 𝑑𝜌 is supported on a half-line which,
without loss of generality, we may take as [0,∞). For sufficient conditions for this to
hold see [10, p.128]. The main result can be summarized in the following theorem
whose proof can be found in [16]

Theorem 1. Consider the boundary-value problem (4) and (5) and let 𝐶𝐾2(𝑎)
denote the image of 𝐾2(𝑎) under the transformation (7). Then there exists a
sequence of polynomials {𝑝𝑛(𝜆)}∞𝑛=0 that are orthonormal with respect to 𝑑𝜌 on
[0, 𝑎] and 𝑝𝑛(𝜆) is of exact degree 𝑛. Furthermore, for any 𝑓 ∈ 𝐶𝐾2(𝑎) we have for
𝛼 ̸= 0, 𝜋

𝑓 (𝑥) =
1

(sin𝛼)

∞∑︁
𝑛=0

[𝑝𝑛(𝐿)𝑓 ] (0)𝜓𝑛(𝑥), (9)

where𝜓𝑛(𝑥) =
∫︀∞
0 𝑝𝑛(𝜆)𝜙(𝑥, 𝜆)𝑑𝜌(𝜆), and the series converges to 𝑓 in the mean.

Similar expressions exist for 𝛼 = 0 or 𝜋. The functions {𝜓𝑛(𝑥)} are orthonormal
on [0,∞) and satisfy the initial condition (8). The series (9) converges to 𝑓(𝑥)
pointwise for 0 6 𝑥 < ∞. In fact, the series converges to 𝑓 uniformly on compact
subsets of (0,∞).

Definition 1. The 𝑛-th generalized chromatic derivative of a function 𝑓 asso-
ciated with the differential operator 𝐿 at 𝑥 = 0 is defined as

𝐾𝑛[𝑓 ](0) = ⟨𝑓, 𝑝𝑛⟩𝑑𝜌 =
1

(sin𝛼)
[𝑝𝑛(𝐿)𝑓 ] (0), for 𝛼 ̸= 0, 𝜋

where 𝑓 is the 𝜙 transform of 𝑓.

Analogous to (3), we define the generalized chromatic series expansion of 𝑓 as

∞∑︁
𝑛=0

𝐾𝑛[𝑓 ](0)𝐾𝑛[𝜓](𝑥), where 𝜓𝑛(𝑥) = 𝐾𝑛[𝜓](𝑥),

and

𝜓(𝑥) =

𝑎∫︁
0

𝜙(𝑥, 𝜆)𝑑𝜌(𝜆).
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4 Chromatic Expansions in the Bargmann–Segal–Foch Space

In this section we show that functions in the Bargmann-Segal-Foch space can be
characterized by their chromatic series expansion.

Definition 2. Let 𝑑𝜇(𝑧) = 𝜌𝑑𝑥𝑑𝑦, 𝜌 = (𝜋)−1 exp
(︁
− |𝑧|2

)︁
, where 𝑧 = 𝑥 + 𝑖𝑦.

The Bargmann-Segal-Foch space, F consists of all entire functions 𝐹 (𝑧) in C such
that

‖𝐹‖2F =

∫︁
C

|𝐹 (𝑧)|2𝑑𝜇(𝑧) <∞.

It is a Hilbert space with inner product defined by

⟨𝐹,𝐺⟩F =

∫︁
C

𝐹 (𝑧)𝐺(𝑧)𝑑𝜇(𝑧) <∞,

and hence with norm
‖𝐹‖2F =

∫︁
C

|𝐹 (𝑧)|2𝑑𝜇(𝑧).

It is known that F is a reproducing-kernel Hilbert space. Since{︁
𝑢𝑚(𝑧) = 𝑧𝑚/

√
𝑚!
}︁∞

𝑚=0
is an orthonormal basis of F, the reproducing kernel can

be found explicitly. In fact, since {𝑢𝑚(𝑧)}∞𝑚=0 is an orthonormal basis of F, the
reproducing kernel is readily seen to be

𝐾(𝑧, 𝑤) =

∞∑︁
𝑚=0

𝑧𝑚𝑤𝑚

𝑚!
= 𝑒𝑧𝑤.

Thus, for any 𝐹 ∈ F, we have

⟨𝐹 (𝑧),𝐾(𝑧, 𝑤)⟩F =

∫︁
𝐹 (𝑧)𝑒𝑤𝑧𝑑𝜇(𝑧) =

∞∑︁
𝑛=0

𝑛!𝑎𝑛
𝑤𝑛

𝑛!
= 𝐹 (𝑤). (10)

Definition 3. The Bargmann transform 𝒜[𝑓 ] of a function 𝑓 : R→ C is defined
by

𝒜[𝑓 ](𝑧) = 𝐹 (𝑧) = (𝜋)−1/4

∫︁
R

𝑓(𝑞) exp
{︁
−(|𝑧|2 + |𝑞|2)/2 +

√
2 (𝑧𝑞)

}︁
𝑑𝑞 (11)
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which can be written as

𝐹 (𝑧) = ⟨𝑘(𝑧, 𝑞), 𝑓(𝑞)⟩𝐿2(R), whenever 𝑓 ∈ 𝐿2(R),

where 𝑧 = 𝑥+ 𝑖𝑦, and

𝑘(𝑧, 𝑞) = (𝜋)−1/4 exp
{︁
−(|𝑧|2 + |𝑞|2)/2 +

√
2 (𝑧𝑞)

}︁
, (12)

𝑞 ∈ R and 𝑧 ∈ C.

Let �̃�𝑚(𝑥) be the Hermite polynomial of degree 𝑚 defined by

�̃�𝑚(𝑥) = (−1)𝑚𝑒𝑥2
(︂
𝑑

𝑑𝑥

)︂𝑚
𝑒−𝑥

2
, 0 6 𝑚.

We define the normalized Hermite polynomials by

𝐻𝑚(𝑥) =
1

4
√
𝜋2𝑚/2

√
𝑚!
�̃�𝑚(𝑥)

so that ∫︁
R

𝐻𝑘(𝑥)𝐻𝑚(𝑥)𝑒
−𝑥2𝑑𝑥 = 𝛿𝑘,𝑚

or ∫︁
R

ℎ𝑘(𝑥)ℎ𝑚(𝑥)𝑑𝑥 = 𝛿𝑘,𝑚,

where ℎ𝑘(𝑥) = 𝐻𝑘(𝑥)𝑒
−𝑥2/2 are the normalized Hermite functions, which are an

orthonormal basis of 𝐿2(R).
Let

𝐿 =
1√
2

(︂
𝑑

𝑑𝑧
+ 𝑧

)︂
.

It is easy to see that

𝐿𝐹 (𝑧) =

∫︁
R

𝑓(𝑞)𝑞𝑘(𝑧, 𝑞)𝑑𝑞,

hence
𝐻𝑚 (𝐿)𝐹 (𝑧) =

∫︁
R

𝑓(𝑞)𝐻𝑚(𝑞)𝑘(𝑧, 𝑞)𝑑𝑞.
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Definition 4. We define the 𝑚-th chromatic derivative of 𝐹 (𝑧) with respect to
the operator 𝐿 and the Hermite polynomials as

𝐾𝑚𝐹 (𝑧) = 𝐻𝑚(𝐿)𝐹 (𝑧).

Let 𝒮 (R) be the Schwartz space of rapidly decreasing functions consisting of all
𝜙 ∈ 𝐶∞ (R) such that

𝛾𝑙,𝑚(𝜙) = sup
𝑞∈R,𝛽6𝑙,𝛼6𝑚

⃒⃒⃒⃒
𝑞𝛽
𝑑𝛼𝜙(𝑞)

𝑑𝑞𝛼

⃒⃒⃒⃒
<∞,

where 𝑙,𝑚, 𝛼, 𝛽 ∈ N.
Finally, we are ready to state the main result of this section whose proof will be

published somewhere else.

Theorem 2. There exists a function 𝜙 ∈ 𝒮 (R) whose Bergmann transform
𝒜(𝜙) = 𝜓(𝑧) ∈ F has the property that its chromatic derivatives {𝐾𝑚𝜓(𝑧)} are an
orthogonal basis of F. Hence, any 𝐹 ∈ F can be written in the form

𝐹 (𝑧) =
∞∑︁
𝑚=0

𝐾𝑚𝐹 (0)𝐾𝑚𝜓(𝑧). (13)
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II.3. Spaces of Differentiable Functions of
Several Variables and Applications
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CHARACTERIZATION OF SPACES OF FUNCTIONS OF ZERO
SMOOTHNESS

O. V. Besov

Key words: function spaces, embedding theorems

AMS Mathematics Subject Classification: 46E35

Abstract. For functions of many variables in the spaces 𝐵𝑠
𝑝,𝜃(R𝑛), 0 6 𝑠 < 1, we

study new difference characteristics which define equivalent norms for 0 < 𝑠 < 1,
as well as for 𝑠 = 0 in some cases.

For functions of many variables in the spaces 𝐵𝑠
𝑝,𝜗(R𝑛), 0 6 𝑠 < 1, we study

new difference characteristics which define equivalent norms for 0 < 𝑠 < 1, as well
as for 𝑠 = 0 in some cases. Using the averaged difference of a function 𝑓 ,

𝛿(ℎ)𝑓(𝑥) := (2ℎ)−2𝑛

∫︁
[−ℎ,ℎ]𝑛

∫︁
[−ℎ,ℎ]𝑛

|𝑓(𝑥+ 𝑦)− 𝑓(𝑥+ 𝑧)| 𝑑𝑦 𝑑𝑧,

we construct Banach spaces 𝐵𝐵𝑠
𝑝,𝜗(R𝑛), 0 6 𝑠 < 1.

Here R𝑛 is the Euclidean 𝑛-space of points 𝑥 = (𝑥1, . . . , 𝑥𝑛), 1 6 𝑝 6∞.

Let 𝐿𝑝 be the Lebesgue space with the norm ‖𝑓 |𝐿𝑝‖ =
(︀ ∫︀
R𝑛

|𝑓(𝑥)|𝑝 𝑑𝑥
)︀1/𝑝.

Consider the Banach space 𝐵𝑠
𝑝,𝜗 = 𝐵𝑠

𝑝,𝜗(R𝑛) of generalized functions 𝑓 ∈ 𝑆′

with the norm

‖𝑓 |𝐵𝑠
𝑝,𝜗‖ =

⎧⎨⎩
∞∑︁
𝑗=0

2𝑠𝜗‖𝑎𝑗 |𝐿𝑝‖𝜗
⎫⎬⎭

1/𝜗

, 𝑠 ∈ R, 1 6 𝑝 6∞, (1)

where

𝑎𝑗(𝑥) = 𝐹−1𝜙𝑗𝐹𝑓, 𝜙0(𝑥) = 𝜙(𝑥), 𝜙𝑗(𝑥) = 𝜙(2−𝑗𝑥)− 𝜙(2−𝑗+1𝑥),

𝜙 ∈ 𝐶∞
0 (R𝑛), 𝜙(𝑥) = 1 for |𝑥| 6 1, 𝜙(𝑥) = 0 for |𝑥| > 2,

so that
supp𝜙0 ⊂ {𝑥 : |𝑥| 6 2},

supp𝜙𝑗 ⊂ {𝑥 : 2𝑗−1 6 |𝑥| 6 2𝑗+1} for 𝑗 ∈ N,
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∞∑︁
𝑗=0

𝜙𝑗(𝑥) = 1 ∀𝑥 ∈ R𝑛,

𝜙𝑗(𝑥) = 𝜙1

(︁ 𝑥

2𝑗−1

)︁
, 𝜙1(𝑥) = 𝜙

(︁𝑥
2

)︁
− 𝜙(𝑥).

We compare the space 𝐵𝑠
𝑝,𝜗, 0 6 𝑠 < 1, with four other Banach function spaces

defined for 0 6 𝑠 < 1, 1 6 𝑝 6∞, and 1 6 𝜗 6∞ as the spaces of locally integrable
functions on R𝑛 with the norms

‖𝑓 |Δ𝐵𝑠
𝑝,𝜗‖ := |||𝑓 |||𝑝,𝑠 +

⎧⎪⎨⎪⎩
∫︁

|𝑦|<1

(︂
‖Δ(𝑦)𝑓 |𝐿𝑝‖
|𝑦|𝑠

)︂𝜗 𝑑𝑦

|𝑦|𝑛

⎫⎪⎬⎪⎭
1/𝜗

, (2)

‖𝑓 |Δ𝐵𝑠
𝑝,𝜗‖ := |||𝑓 |||𝑝,𝑠 +

⎧⎨⎩
1∫︁

0

(︂
‖Δ(ℎ)𝑓 |𝐿𝑝‖

ℎ𝑠

)︂𝜗
𝑑ℎ

ℎ

⎫⎬⎭
1/𝜗

, (3)

where Δ(𝑦)𝑓(𝑥) = 𝑓(𝑥 + 𝑦) − 𝑓(𝑥), Δ(ℎ)𝑓(𝑥) = ℎ−𝑛
∫︀

|𝑦|<ℎ
|Δ(𝑦)𝑓(𝑥)| 𝑑𝑦,

𝑄 = [−1, 1]𝑛,

|||𝑓 |||𝑝,𝑠 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖𝑓 |𝐿𝑝‖ for 0 < 𝑠 < 1, 1 6 𝑝 6∞;⃦⃦⃦⃦
⃦⃦⃦∫︁
𝑄

|𝑓(·+ 𝑦)| 𝑑𝑦
⃒⃒⃒
𝐿𝑝

⃦⃦⃦⃦
⃦⃦⃦ for 𝑠 = 0, 1 6 𝑝 6∞.

It is known that for 0 < 𝑠 < 1 the norms (1), (2) and (3) are equivalent.

‖𝑓 |𝐵𝐵𝑠
𝑝,𝜗‖ := |||𝑓 |||𝑝,𝑠 +

⎧⎨⎩
1∫︁

0

(︂
‖𝛿(ℎ)𝑓 |𝐿𝑝‖

ℎ𝑠

)︂𝜗 𝑑ℎ
ℎ

⎫⎬⎭
1/𝜗

, (4)

where
𝛿(ℎ)𝑓(𝑥) := (2ℎ)−2𝑛

∫︁
[−ℎ,ℎ]𝑛

∫︁
[−ℎ,ℎ]𝑛

|𝑓(𝑥+ 𝑦)− 𝑓(𝑥+ 𝑧)| 𝑑𝑦 𝑑𝑧,

‖𝑓 | ̃︀𝐵𝑠
𝑝,𝜗‖ := |||𝑓 |||𝑝,𝑠 +

⎧⎨⎩
1∫︁

0

(︂
‖𝑣ℎ * 𝑓 |𝐿𝑝‖

ℎ𝑠

)︂𝜗 𝑑ℎ
ℎ

⎫⎬⎭
1/𝜗

, (5)



Characterization of Spaces of Functions of Zero Smoothness 359

where
𝑣ℎ = ℎ−𝑛𝑣

(︁𝑥
ℎ

)︁
, 𝑣(𝑥) = 2𝜔

(︁𝑥
2

)︁
− 𝜔(𝑥), 𝜔 ∈ 𝐶∞

0 (R𝑛),

supp𝜔 ⊂ 𝑄, 𝜔(𝑥) = 𝜔(|𝑥|),
∫︁
𝜔(𝑥) 𝑑𝑥 ̸= 0.

Theorem 1. For 0 < 𝑠 < 1

Δ𝐵𝑠
𝑝,𝜗 = Δ𝐵𝑠

𝑝,𝜗 = 𝐵𝐵
𝑠
𝑝,𝜗 = ̃︀𝐵𝑠

𝑝,𝜗 = 𝐵𝑠
𝑝,𝜗.

For 𝑠 = 0
Δ𝐵0

𝑝,𝜗 ⊂ Δ𝐵0
𝑝,𝜗 ⊂ 𝐵𝐵

0
𝑝,𝜗 ⊂ ̃︀𝐵0

𝑝,𝜗 ⊂ 𝐵0
𝑝,𝜗,

𝐵𝐵
0
𝑝,𝜗 ̸= ̃︀𝐵0

𝑝,𝜗 for 1 6 𝑝 <∞, 1 6 𝜗 <∞.

For comparison, consider the space bmo(R𝑛) = 𝐹 0
∞,2(R𝑛) of locally integrable

functions with the norm

‖𝑓 |bmo(R𝑛)‖ = sup
𝑥∈R𝑛

∫︁
𝑄

|𝑓(𝑥+ 𝑦)| 𝑑𝑦+

+ sup
ℎ>0, 𝑥∈𝑅𝑛

(2ℎ)−𝑛
∫︁
ℎ𝑄

|𝑓(𝑥+ 𝑦)− 𝑓ℎ(𝑥)| 𝑑𝑦, (6)

where 𝑓ℎ(𝑥) = (2ℎ)−𝑛
∫︀
ℎ𝑄

𝑓(𝑥+ 𝑦) 𝑑𝑦, ℎ𝑄 = [−ℎ, ℎ]𝑛.

Lemma 1. 𝐵𝐵0
∞,∞(R𝑛) = bmo(R𝑛) = 𝐹 0

∞,2 ⊂ ̃︀𝐵0
∞,∞(R𝑛).

It is interesting to find out when �̃�0
𝑝,𝜗 and 𝐵0

𝑝,𝜗 coincide.
This problem is solved by using the following Sickel–Triebel result (1995):
Let 1 6 𝑝 6∞ and 1 6 𝜗 6 min{𝑝, 2}. Then

𝐵0
𝑝,𝜗 ⊂

{︃
𝐿𝑝 for 1 6 𝑝 <∞,

bmo for 𝑝 =∞.

Theorem 2. For 1 6 𝑝 6∞ and 1 6 𝜗 6 min{𝑝, 2} ̃︀𝐵0
𝑝,𝜗(R𝑛) = 𝐵0

𝑝,𝜗(R𝑛).

In R𝑛, consider domains satisfying the flexible cone condition. The definition of
the space 𝐵𝐵0

𝑝,𝜗(R𝑛) = 𝐵𝐵
0
𝑝,𝜗 extends naturally to such domains.
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On a domain 𝐺 satisfying the flexible cone condition, consider the spaces
𝐵𝑠
𝑝,𝜗(𝐺), 𝑠 > 0, and the Sobolev spaces 𝑊 𝑠

𝑝 (𝐺), 𝑠 ∈ N,

‖𝑓 |𝑊 𝑠
𝑝 (𝐺)‖ = ‖𝑓 |𝐿𝑝‖+

𝑛∑︁
𝑖=1

‖𝐷𝑠
𝑖 𝑓 |𝐿𝑝(𝐺)‖.

Theorem 3. Let 𝐺 be a domain satisfying the flexible cone condition,
1 6 𝑝 < 𝑞 6∞, 𝑠 = 𝑛

𝑝 −
𝑛
𝑞 and 1 6 𝜗 6∞. Then

𝐵𝑠
𝑝,𝜗(𝐺) ⊂ 𝐵𝐵

0
𝑞,𝜗(𝐺).

Theorem 4. Let 𝐺 be a domain satisfying the flexible cone condition,
1 6 𝑝 < 𝑞 6∞, and 𝑠 = 𝑛

𝑝 −
𝑛
𝑞 . Then

𝑊 𝑠
𝑝 (𝐺) ⊂ 𝐵𝐵

0
𝑞,𝑝(𝐺) for 𝑠 ∈ N, 𝑝 > 1.

Remark 1. If 𝐺 = R𝑛, 1 < 𝑝 6 2, 2 6 𝑞 6 ∞ the statement of Theorem 4
strengthens the known embeddings

𝑊 𝑠
𝑝 ⊂ 𝐿𝑞 for 𝑞 <∞,

𝑊 𝑠
𝑝 ⊂ bmo for 𝑞 =∞.

The proofs are based on integral representations of functions in terms of their
derivatives and differences.
O. V. Besov
Steklov Mathematical Institute, Moscow, Russia, 119991, Moscow, 8, Gubkina Street,
(499)1351150, besov@mi.ras.ru
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NEW DESCRIPTION OF UNIFORMLY CONTINUOUS BOUNDED
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Abstract. In the paper the new description of uniformly continuous bounded
functions on topological groups is introduced and studied. In the case of the additive
group of real numbers with the natural topology the description is eguivalent to the
classical definition of a uniformly continuous function in mathematical analysis.

Let 𝒢 = ⟨𝐺, ·, 𝜏⟩ be a topological group with the unity 𝑒 and 𝑇1-topology 𝜏 ,
Σ𝑒 — a base for the topological space (𝐺, 𝜏) at the point 𝑒.

Definition 1. Let 𝑓 : 𝒢 → [𝑎, 𝑏] be a continuous bounded nonconstant function
from the topological group 𝒢 to the interval [𝑎, 𝑏] of the real line, 𝑎 = inf{𝑓𝑥 | 𝑥 ∈
𝐺}, 𝑏 = sup{𝑓𝑥 | 𝑥 ∈ 𝐺}. The family Im = {𝐹𝑟 = 𝑓−1[𝑎, 𝑟) | 𝑟 ∈ 𝐷} of the inverse
images of the subsets [𝑎, 𝑟) ⊂ [𝑎, 𝑏], where 𝐷 — an everywhere dense subset of (𝑎, 𝑏],
is called a basis of the function 𝑓 .

Definition 2. A basis Im of the function 𝑓 : 𝒢 → [𝑎, 𝑏] is called a left mul-
tiplicative basis or, shortly, 𝑚-basis if for every 𝑟, 𝑠 ∈ 𝐷, 𝑟 < 𝑠, there exists a
neighbourhood 𝑇 = 𝑇 (𝑟, 𝑠) of 𝑒 such that 𝑇 · 𝐹𝑟 ⊆ 𝐹𝑠.

Note. The definitions of a basis and 𝑚-basis for a special case of a continuous
function 𝑓 : 𝒢 → [0, 1], 𝑓𝑒 = 0, were given in [1].

The following properties of the basis Im are obvious.
1. For any 𝑟 ∈ 𝐷 𝐹𝑟 is an open neighbourhood of 𝑎.
2. For any 𝑟, 𝑠 ∈ 𝐷 if 𝑟 < 𝑠, then 𝐹𝑟 ⊆ 𝐹𝑠 where 𝐹𝑟 is the closure of 𝐹𝑟.

Proposition 1. If a continuous function 𝑓 : 𝒢 → [𝑎, 𝑏] has 𝑚-basis Im = {𝐹𝑟 |
𝑟 ∈ 𝐷}, then any basis ℋ = {𝐻𝑠 = 𝑓−1[𝑎, 𝑠)|𝑠 ∈ 𝐸} of the function 𝑓 is also
𝑚-basis.

Proof. Let 𝑝, 𝑡 ∈ 𝐸, 𝑝 < 𝑡. 𝐷 is an everywhere dense subset of (𝑎, 𝑏] that is
why there exist 𝑟, 𝑠 ∈ 𝐷 such that 𝑝 6 𝑟 < 𝑠 6 𝑡. 𝐻𝑝 ⊆ 𝐹𝑟 ⊆ 𝐹𝑠 ⊆ 𝐻𝑡 and for some
𝑇 ∈ Σ𝑒 𝑇 · 𝐹𝑟 ⊆ 𝐹𝑠. The last relation shows that 𝑇 ·𝐻𝑝 ⊆ 𝐻𝑡. Hence ℋ — 𝑚-basis
of 𝑓 . �
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The following definition of a uniformly continuous function from a topological
group will be used.

Definition 3. A continuous function 𝑓 : 𝒢 → Re = ⟨𝑅,+, 𝑛𝑎𝑡𝑢𝑟𝑎𝑙⟩ from a
topological group 𝒢 to the additiveve group of real numbers is a uniformly contin-
uous function with respect to right uniformity on 𝒢 if for every 𝜀 > 0 there exists a
neighbourhood 𝑇 = 𝑇 (𝜀) such that for every 𝑥, 𝑦 ∈ 𝐺 if 𝑦 ∈ 𝑇 ·𝑥 we have |𝑓𝑥−𝑓𝑦| <
𝜀 or, equivalent, for every 𝑥 ∈ 𝐺 we have sup{|𝑓𝑥− 𝑓(𝑡 · 𝑥)| | 𝑥 ∈ 𝐺, 𝑡 ∈ 𝑇} < 𝜀.

Theorem. A continuous bounded nonconstant function 𝑓 : 𝒢 → [𝑎, 𝑏] from a
topological group 𝒢 to an interval [𝑎, 𝑏] of the real line is a uniformly continuous
function with respect to right uniformity on 𝒢 if and only if the function 𝑓 has a
left multiplicative basis.

Proof. Let 𝑓 : 𝒢 → [𝑎, 𝑏] be a uniformly continuous bounded function with
a basis Im = {𝐹𝑟 | 𝑟 ∈ 𝐷}. We have to show that Im – 𝑚-basis. Let us take
arbuitrary elements 𝑟, 𝑠 ∈ 𝐷, 𝑟 < 𝑠. For these 𝑟, 𝑠 there exists a number 𝜀 > 0
such that 𝑟 + 𝜀 < 𝑠. The function 𝑓 is uniformly continuous relative to right
uniformity on 𝒢. Thus for this 𝜀 there exists a neighbourhood 𝑇 of 𝑒 such that for
every 𝑥 ∈ 𝐺 sup{|𝑓𝑥 − 𝑓(𝑡 · 𝑥)| | 𝑡 ∈ 𝑇} < 𝜀, in particular, for every 𝑥 ∈ 𝐹𝑟 and
every 𝑡 ∈ 𝑇 |𝑓𝑥 − 𝑓(𝑡 · 𝑥)| < 𝜀. The last unequality shows that for every 𝑥 ∈ 𝐹𝑟
𝑓(𝑇 · 𝑥) ⊆ [𝑎, 𝑟 + 𝜀) ⊆ [𝑎, 𝑠) from where for every 𝑥 ∈ 𝐹𝑟 𝑇 · 𝑥 ⊆ 𝐹𝑠. Hence
𝑇 · 𝐹𝑟 ⊆ 𝐹𝑠 and the basis Im of a uniformly continuous function 𝑓 is 𝑚-basis.

Conversely, let a continuous function 𝑓 : 𝒢 → [𝑎, 𝑏] have a left multiplicative
basis Im = {𝐹𝑟 | 𝑟 ∈ 𝐷}. For simplicity of notation we consider 𝐷 = (𝑎, 𝑏].
Suppose 𝑓 is not a uniformly continuous function: there exists 𝜀 > 0 such that for
any neighbourhood 𝑇 of 𝑒 there exists 𝑥, 𝑦 ∈ 𝐺 such that 𝑦 ∈ 𝑇 ·𝑥 but |𝑓𝑥−𝑓𝑦| > 𝜀.
We have to show that under this assumption the basis Im will be not 𝑚-basis.

Because 𝜀 — the fixed positive number there exists the finite cover of the space
(𝐺, 𝜏) by disjoint sets

𝐹 𝜀
2
, 𝐹 2·𝜀

2
∖ 𝐹 𝜀

2
, 𝐹 3·𝜀

2
∖ 𝐹 2·𝜀

2
, . . . , 𝐹 𝑖·𝜀

2
∖ 𝐹 (𝑖−1)·𝜀

2

, . . . , 𝐹𝑏 ∖ 𝐹 𝑘·𝜀
2
, 𝐹 ′

𝑏 (1)

where 𝐹 ′
𝑏 is the complement of 𝐹𝑏.

We shall index the elements of the base Σ𝑒 by the partial ordered set Γ so that
Σ𝑒 = {𝑇𝛼|𝛼 ∈ Γ} and 𝛼 6 𝛽 ⇐⇒ 𝑇𝛼 ⊇ 𝑇𝛽 . Γ is a right directed set. Let us assume
also that the elements of Σ𝑒 are symmetrical neighbourhoods of 𝑒: 𝑇−1

𝛼 = 𝑇𝛼 for
every 𝛼 ∈ Γ. On the assumption that 𝑓 is not a uniformly continuous function it
follows that for any 𝛼 ∈ Γ there exist 𝑥𝛼, 𝑦𝛼 ∈ 𝐺 such that 𝑦𝛼 ∈ 𝑇𝛼 ·𝑥𝛼, 𝑥𝛼 ∈ 𝑇𝛼 ·𝑦𝛼
but |𝑓𝑥𝛼−𝑓𝑦𝛼| > 𝜀. The last unequality means that for every 𝛼 ∈ Γ points 𝑥𝛼 and
𝑦𝛼 do not belong to the same or to the neighbouring sets of the cover (1).



New Description of Uniformly Continuous Bounded Functions on . . . 363

The cover (1) is finite, therefore there exist two nonneighbouring sets of the
cover (1) each of which contains infinite and confinal with respect to the index set
Γ subset of the sets {𝑥𝛼 | 𝛼 ∈ Γ}, {𝑦𝛼 | 𝛼 ∈ Γ}. Moreover, because the relations
𝑦𝛼 ∈ 𝑇𝛼 ·𝑥𝛼, 𝑥𝛼 ∈ 𝑇𝛼 ·𝑦𝛼, |𝑓𝑥𝛼−𝑓𝑦𝛼| > 𝜀 are symmetric with respect to 𝑥𝛼 and 𝑦𝛼
we can consider that there exist integers 𝑖, 𝑗 such that 𝑗 > 𝑖+ 1 and confinal with
respect to indexes subset of {𝑥𝛼 | 𝛼 ∈ Γ} is contained in 𝐹 𝑖·𝜀

2
∖𝐹 (𝑖−1)·𝜀

2

, confinal with
respect to indexes subset of {𝑦𝛼 | 𝛼 ∈ Γ} is contained in 𝐹 𝑗·𝜀

2
∖𝐹 (𝑗−1)·𝜀

2

. For simplisity
of notation we assume that these confinal subsets coincide with the sets {𝑥𝛼 | 𝛼 ∈ Γ}
and {𝑦𝛼 | 𝛼 ∈ Γ}, that is {𝑥𝛼 | 𝛼 ∈ Γ} ⊆ 𝐹 𝑖·𝜀

2
∖𝐹 (𝑖−1)·𝜀

2

, {𝑦𝛼 | 𝛼 ∈ Γ} ⊆ 𝐹 𝑗·𝜀
2
∖𝐹 (𝑗−1)·𝜀

2

and 𝑗 > 𝑖+ 1.

Now for any 𝑇𝛼 ∈ Σ𝑒 there exist 𝑥𝛼, 𝑦𝛼, for which 𝑦𝛼 ∈ 𝑇𝛼 · 𝑥𝛼 and 𝑦𝛼 ∈
𝑇𝛼 · (𝐹 𝑖·𝜀

2
∖𝐹 (𝑖−1)·𝜀

2

) ⊆ 𝑇𝛼 ·𝐹 𝑖·𝜀
2

. But 𝑦𝛼 ∈ 𝐹 𝑗·𝜀
2
∖𝐹 (𝑗−1)·𝜀

2

. The last two relations show
that for any 𝑇𝛼 ∈ Σ𝑒

𝑇𝛼 · 𝐹 𝑖·𝜀
2
* 𝐹 (𝑖+1)·𝜀

2

(2)

because 𝑦𝛼 ∈ 𝑇𝛼 · 𝐹 𝑖·𝜀
2

, 𝑦𝛼 ∈ 𝐹 𝑗·𝜀
2
∖ 𝐹 (𝑗−1)·𝜀

2

and 𝑗 > 𝑖 + 1, hence 𝑦𝛼 /∈ 𝑇𝛼 · 𝐹 (𝑖+1)·𝜀
2

.
The obtained relation (3) demonstrates that Im is not 𝑚-basis. The achieved con-
tradiction with the assumption that the basis Im is 𝑚-basis completes the proof of
the theorem. �

Example 1. Let Re = ⟨𝑅,+, 𝜏⟩ be an additive group of real numbers with the
natural topology on real line. The continuous function 𝑓 : Re→ [0, 1] is defined by
the formula ∀𝑥 ∈ 𝑅 𝑓𝑥 = | sin (𝑥2)|. The function 𝑓 is not uniformly continuous.
We have to show that any basis Im of the function 𝑓 is not 𝑚-basis.

Let 𝑟, 𝑠 be arbitrary elements of 𝐷 and 𝑟 < 𝑠 6 1. For simplicity we consider
𝑓 for 𝑥 > 0 (𝑓 — the even function). The element 𝐹𝑟 = 𝑓−1[0, 𝑟) of Im contains
all points 𝑥𝑘 =

√
𝜋𝑘, 𝑘 = 0, 1, 2, . . . , 𝑛, . . ., in which the value of 𝑓 is equal to zero.

Therefore
𝐹𝑟 ⊃ {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .}. (3)

It is easy to show that if 𝑘 → +∞ the distance 𝑑(𝑥𝑘, 𝑥𝑘+1) = 𝑥𝑘+1 − 𝑥𝑘 between
neighbouring zeros of 𝑓 monotonically approaches to zero. For arbitrary 𝜀 > 0 there
exists a natural number 𝑛 > 0 for which 𝑑(𝑥𝑛, 𝑥𝑛+1) < 2𝜀 and this unequality is true
for all natural numbers grater 𝑛. Therefore for any 𝜀-neighbourhood 𝑇𝜀 = (−𝜀,+𝜀)
of 0 there exists a real number 𝑎 > 0 such that

𝑇𝜀 + {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛, . . .} ⊃ [𝑎,+∞), (4)
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we can take as 𝑎 any real number greater than 𝑥𝑛 − 𝜀. From (4), (5) we have

[𝑎,+∞) ⊂ 𝑇𝜀 + 𝐹𝑟. (5)

Note that the set 𝐹𝑠 does not include any ray [𝑎,+∞)

[𝑎,+∞) * 𝐹𝑠 (6)

because 𝐹𝑠 = 𝑓−1[0, 𝑠) does not contain the set of points {
√︀
𝜋/2 + 𝜋𝑘 | 𝑘 =

0, 1, 2, . . . , 𝑛, ...} in which 𝑓𝑥 = 1.
The relation (7), along with the relation (6), shows that for any 𝜀 > 0 𝑇𝜀+𝐹𝑟 *

𝐹𝑠. Hence any basis Im of the function 𝑓𝑥 = | sin (𝑥2)| is not 𝑚-basis.
Example 2. Let 𝒬 = ⟨𝑄,+, 𝜏⟩ be an additive group of rational numbers

with the natural topology 𝜏 induced by the natural topology on real line. For an
irrational number 𝛼 > 0 we define the function 𝑓 : 𝒬 → [0, 1] by the formula

𝑓𝑥 =

{︃
0 𝑓𝑜𝑟 𝑥 ∈ 𝑄 ∩ [−𝛼, 𝛼],
1 𝑓𝑜𝑟 𝑥 ∈ 𝑄 ∖ [−𝛼, 𝛼].

The function 𝑓 is continuous, but 𝑓 is not a uniformly continuous function. Any
basis Im of the function 𝑓 is not 𝑚-basis because for every 𝑟 ∈ 𝐷 𝐹𝑟 = 𝑄∩ [−𝛼, 𝛼].

The importance of the proven theorem for topological algebra lies in the fact
that for topological-algebraic systems, more general than topological groups (that
are paratopological and semitopological groups, topological monoids and topolog-
ical loops [1, 2]), which have not uniform structures, continuous functions with
𝑚-basises are the natural generalization of uniformly continuous functions. Ap-
plication of functions with 𝑚-basises permits to solve some problems, which con-
cern the existance of embeddings such topological-algebraic systems in topological
groups [1].
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Abstract. The paper deals with investigation of spectral properties of the Stürm–
Liouville operators on finite binary trees. They have direct applications to many ar-
eas of Engineering because Stürm–Liouville equations are commonly used to model
elastic structures, and their eigenvalues correspond to the natural frequencies of
vibrations. The structures are often complex and modeled by graphs, finite trees
in particular. We mainly discuss the case of periodic potentials on finite regular
trees and, in particular, we present the complete description of the spectrum of the
Dirichlet Laplacian on a binary regular tree of an arbitrary height.

1 Introduction

Consider a general binary tree 𝑇 of height ℎ with the nodes

𝑁−1; 𝑁0; 𝑁1, 𝑁2; 𝑁11, 𝑁12, 𝑁21, 𝑁22; . . . ;𝑁𝑘1,...,𝑘ℎ−1
,

𝑘𝑗 = 1, 2, 𝑗 = 1, . . . , ℎ− 1. Let

𝑏0 = [𝑁−1, 𝑁0]; 𝑏1 = [𝑁0, 𝑁1], 𝑏2 = [𝑁0, 𝑁2]; . . . ;

𝑏𝑘1,...,𝑘ℎ−2,𝑘ℎ−1
= [𝑁𝑘1,...,𝑘ℎ−2

, 𝑁𝑘1,...,𝑘ℎ−2,𝑘ℎ−1
]; 𝑘𝑗 = 1, 2, 𝑗 = 1, . . . , ℎ− 1,

be the branches of the tree 𝑇 :

𝑇 =

ℎ−1⋃︁
𝑚=0

⋃︁
𝑘𝑗 = 1, 2,

𝑗 = 1, . . . ,𝑚

𝑏𝑘1,...,𝑘𝑚 .

The author thanks Professors B.M. Brown and W.D. Evans for setting the problem and for
numerous useful discussions.
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It is assumed that the interiors of the intervals 𝑏𝑘1,...,𝑘𝑚 are disjoint. (If 𝑚 = 0 it is
meant that 𝑏𝑘1,...,𝑘𝑚 ≡ 𝑏0.) Moreover, let

𝑙0; 𝑙1, 𝑙2; 𝑙11, 𝑙12, 𝑙21, 𝑙22; . . . ; 𝑙𝑘1,...,𝑘ℎ−1
, 𝑘𝑗 = 1, 2, 𝑗 = 1, . . . , ℎ− 1,

be the lengths of the branches and let

𝑥−1 = 0; 𝑥0 = 𝑙0; 𝑥1 = 𝑙0 + 𝑙1, 𝑥2 = 𝑙0 + 𝑙2; . . . ;

𝑥𝑘1,...,𝑘ℎ−1
=

ℎ−1∑︁
𝑚=0

𝑙𝑘1,...,𝑘𝑚 , 𝑘𝑗 = 1, 2, 𝑗 = 1, . . . , ℎ− 1 .

Given a point 𝑃 ∈ 𝑇 , 𝑥(𝑃 ) is the distance of 𝑃 to 𝑁−1 along the tree. Say, if
𝑃 ∈ 𝑏𝑘1,...,𝑘𝑚 , then 𝑥(𝑃 ) = 𝑥𝑘1,...,𝑘𝑚−1 + |𝑁𝑘1,...,𝑘𝑚−1𝑃 |.

Let a real-valued function 𝑦 be defined on 𝑇 . Then 𝑦 = {𝑦𝑘1,...,𝑘𝑚}𝑚=0,...,ℎ−1;
𝑘𝑗 = 1, 2, 𝑗 = 1, . . . , ℎ−1, where the functions 𝑦𝑘1,...,𝑘𝑚 are defined on the branches
𝑏𝑘1,...,𝑘𝑚 .

On 𝑇 we consider the operator 𝐿𝑦 ≡ −𝑦′′ + 𝑞(𝑥)𝑦, where 𝑞(𝑥) > 0 is the
potential, satisfying the Dirichlet boundary conditions. The domain𝐷(𝐿) is defined
in the following way: 𝑦 ∈ 𝐷(𝐿) if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑘1,...,𝑘𝑚 ∈ 𝐶2[𝑥𝑘1,...,𝑘𝑚−1 , 𝑥𝑘1,...,𝑘𝑚 ],

𝑚 = 0, . . . , ℎ− 1, smoothness conditions,

𝑦0(0) = 0, Dirichlet boundary condition,

𝑦𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚) = 𝑦𝑘1,...,𝑘𝑚,1(𝑥𝑘1,...,𝑘𝑚)

= 𝑦𝑘1,...,𝑘𝑚,2(𝑥𝑘1,...,𝑘𝑚)

𝑚 = 0, . . . , ℎ− 2, continuity conditions,

𝑦′𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚) = 𝑦′𝑘1,...,𝑘𝑚,1(𝑥𝑘1,...,𝑘𝑚)

+𝑦′𝑘1,...,𝑘𝑚,2(𝑥𝑘1,...,𝑘𝑚)

𝑚 = 0, . . . , ℎ− 2, Kirchhoff conditions,

𝑦𝑘1,...,𝑘ℎ−1
(𝑥𝑘1,...,𝑘ℎ−1

) = 0, Dirichlet boundary conditions.
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Note that 𝐷(𝐿) is dense in 𝐿2(𝑇 ). For 𝑦 ∈ 𝐷(𝐿)

(𝐿𝑦)(𝑥) = {(𝐿𝑦𝑘1,...,𝑘𝑚)(𝑥)}𝑚=0,...,ℎ−1, 𝑘𝑗=1,2 = {−𝑦′′𝑘1,...,𝑘𝑚(𝑥) + 𝑞(𝑥)𝑦𝑘1,...,𝑘𝑚(𝑥),

𝑥 ∈ (𝑁𝑘1,...,𝑘𝑚−1 , 𝑁𝑘1,...,𝑘𝑚)}𝑚=0,...,ℎ−1, 𝑘𝑗=1,2 .

(At the nodes of the tree (𝐿𝑦)(𝑥) may not be defined.)
The operator 𝐿 is symmetric, non-negative, and its eigenvalues are positive.

Throughout the paper it is assumed that the potential 𝑞 is such that the spectrum
of the operator 𝐿 is discrete and consists of countable number of eigenvalues of
finite multiplicity.

2 Simultaneous equations for eigenvalues and eigenfunctions

2.1 The case of a general potential for a tree of an arbitrary height ℎ

Consider a particular branch 𝑏𝑘1,...,𝑘𝑚 = [𝑁𝑘1,...,𝑘𝑚−1 , 𝑁𝑘1,...,𝑘𝑚 ] of a general tree 𝑇
of height ℎ.

Moreover, let 𝜙𝑘1,...,𝑘𝑚(𝑥, 𝜆) and 𝜓𝑘1,...,𝑘𝑚(𝑥, 𝜆) be the solutions of the equation

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆𝑦, 𝑥𝑘1,...,𝑘𝑚−1 6 𝑥 6 𝑥𝑘1,...,𝑘𝑚 ,

satisfying {︃
𝜙𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚−1 , 𝜆) = 0, 𝜙′

𝑘1,...,𝑘𝑚
(𝑥𝑘1,...,𝑘𝑚−1 , 𝜆) = 1,

𝜓𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚−1 , 𝜆) = 1, 𝜓′
𝑘1,...,𝑘𝑚

(𝑥𝑘1,...,𝑘𝑚−1 , 𝜆) = 0.

Throughout the paper it is assumed that the potential 𝑞 is such that the solutions
𝜙𝑘1,...,𝑘𝑚(𝑥, 𝜆) and 𝜓𝑘1,...,𝑘𝑚(𝑥, 𝜆) exist, are defined uniquely, and also are analytic
in 𝜆.

The general solution of this equation has the form

𝑦𝑘1,...,𝑘𝑚 = 𝐴𝑘1,...,𝑘𝑚𝜙𝑘1,...,𝑘𝑚(𝑥, 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓𝑘1,...,𝑘𝑚(𝑥, 𝜆) ,

𝑚 = 0, . . . , ℎ− 1, 𝑘𝑗 = 1, 2 , 𝑗 = 1, . . . ,𝑚 ,

and 𝑦 = {𝑦𝑘1,...,𝑘𝑚}𝑚=0,...,ℎ−1, 𝑘𝑗=1,2 is the general solution of the equation

𝐿𝑦 ≡ −𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆𝑦

on the tree 𝑇 .
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In order that 𝑦 ∈ 𝐷(𝐿) it is necessary and sufficient that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐵0 = 0

𝐴𝑘1,...,𝑘𝑚𝜙𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚 , 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓𝑘1,...,𝑘𝑚(𝑥𝑘1,...,𝑘𝑚 , 𝜆)

= 𝐵𝑘1,...,𝑘𝑚,1 = 𝐵𝑘1,...,𝑘𝑚,2 ,

𝑚 = 0, . . . , ℎ− 2, 𝑘𝑗 = 1, 2 ,

𝐴𝑘1,...,𝑘𝑚𝜙
′
𝑘1,...,𝑘𝑚

(𝑥𝑘1,...,𝑘𝑚 , 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓
′
𝑘1,...,𝑘𝑚

(𝑥𝑘1,...,𝑘𝑚 , 𝜆)

= 𝐴𝑘1,...,𝑘𝑚,1 +𝐴𝑘1,...,𝑘𝑚,2 ,

𝑚 = 0, . . . , ℎ− 2, 𝑘𝑗 = 1, 2 ,

𝐴𝑘1,...,𝑘ℎ−1
𝜙𝑘1,...,𝑘ℎ−1

(𝑥𝑘1,...,𝑘ℎ−1
, 𝜆) +𝐵𝑘1,...,𝑘ℎ−1

𝜓𝑘1,...,𝑘ℎ−1
(𝑥𝑘1,...,𝑘ℎ−1

, 𝜆) = 0,

𝑘𝑗 = 1, 2 ,

This is a system of 2ℎ+1 − 2 equations in 2ℎ+1 − 1 unknowns 𝐴𝑘1,...,𝑘𝑚 , 𝐵𝑘1,...,𝑘𝑚 ,
𝑚 = 0, . . . , ℎ − 1, 𝑘𝑗 = 1, 2, and 𝜆, defining the eigenvalues and eigenfunctions of
the problem.

2.2 The case of a periodic potential

In this case all branches have the same length 𝑙, 𝑥𝑘1,...,𝑘𝑚 = (𝑚+1)𝑙, 𝑚 = 1, . . . , ℎ−
1, and 𝑞(𝑥) = 𝑞(𝑥−𝑚𝑙) for 𝑚𝑙 6 𝑥 6 (𝑚+ 1).

Let 𝜙(𝑥, 𝜆) ≡ 𝜙0(𝑥, 𝜆) and 𝜓(𝑥, 𝜆) ≡ 𝜓0(𝑥, 𝜆), i. e. 𝜙(𝑥, 𝜆)) and 𝜓(𝑥, 𝜆) are the
solutions of the equation

−𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆𝑦, 0 6 𝑥 6 𝑙 ,

satisfying {︃
𝜙(0, 𝜆) = 0, 𝜙′(0, 𝜆) = 1,

𝜓(0, 𝜆) = 1, 𝜓′(0, 𝜆) = 0.

Then
𝑦𝑘1,...,𝑘𝑚 = 𝐴𝑘1,...,𝑘𝑚𝜙(𝑥−𝑚𝑙, 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓(𝑥−𝑚𝑙, 𝜆) ,

𝑚 = 0, . . . , ℎ− 1, 𝑘𝑗 = 1, 2 , 𝑗 = 1, . . . ,𝑚 ,

and the system of equations defining eigenvalues and eigenfunctions takes the form
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐵0 = 0

𝐴𝑘1,...,𝑘𝑚𝜙(𝑙, 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓(𝑙, 𝜆) = 𝐵𝑘1,...,𝑘𝑚,1 = 𝐵𝑘1,...,𝑘𝑚,2 ,

𝑚 = 0, . . . , ℎ− 2, 𝑘𝑗 = 1, 2 ,

𝐴𝑘1,...,𝑘𝑚𝜙
′(𝑙, 𝜆) +𝐵𝑘1,...,𝑘𝑚𝜓

′(𝑙, 𝜆) = 𝐴𝑘1,...,𝑘𝑚,1 +𝐴𝑘1,...,𝑘𝑚,2 ,

𝑚 = 0, . . . , ℎ− 2, 𝑘𝑗 = 1, 2 ,

𝐴𝑘1,...,𝑘ℎ−1
𝜙(𝑙, 𝜆) +𝐵𝑘1,...,𝑘ℎ−1

𝜓(𝑙, 𝜆) = 0, 𝑘𝑗 = 1, 2 .

Lemma 1. Let 𝐴0 ∈ R,

𝑊 =

(︃
𝜙′(𝑙, 𝜆) 𝜓′(𝑙, 𝜆)

2𝜙(𝑙, 𝜆) 2𝜓(𝑙, 𝜆)

)︃
, 𝑊0 =

(︃
0 0

2𝜙(𝑙, 𝜆) 2𝜓(𝑙, 𝜆)

)︃
.

Then all eigenvalues of the problem are defined by the equation

𝑊0𝑊
ℎ−1

(︃
𝐴0

0

)︃
= 0 .

Lemma 2. Let 𝛼(𝑙, 𝜆) = 𝜙′(𝑙, 𝜆) + 2𝜓(𝑙, 𝜆), then this equation is equivalent to
the equation 𝐴0𝜙(𝑙, 𝜆)𝑃ℎ(𝛼) = 0, where

𝑃ℎ(𝛼) =

[ℎ−1
2

]∑︁
𝑖=0

(−1)𝑖2𝑖
(︂
ℎ− 1− 𝑖

𝑖

)︂
𝛼ℎ−1−2𝑖 .

Remark 1. Note that

𝑃ℎ(𝛼) = 0⇐⇒

{︃
𝛼 = 0 or 𝐵ℎ(

2
𝛼2 ) = 0, ℎ even,

𝐵ℎ(
2
𝛼2 ) = 0, ℎ odd,

where

𝐵ℎ(𝑥) =

[ℎ−1
2

]∑︁
𝑖=0

(︂
ℎ− 1− 𝑖

𝑖

)︂
(−1)𝑖𝑥𝑖 .
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These polynomials are independent of the potential 𝑞, and in that sense they are
universal. In the sequel they will be called the branch polynomials.

3 Structure of the spectrum of the Dirichlet Laplacian on a finite
regular tree

For the Dirichlet Laplacian 𝑞 ≡ 0, hence 𝛼(𝑙, 𝜆) = 3 cos 𝑙
√
𝜆 .

Theorem 1. The spectrum 𝑆ℎ of the Dirichlet Laplacian on a regular tree of
height ℎ consists of

1) the eigenvalues

𝜆(1)𝑛 =
(︁𝜋𝑛
𝑙

)︁2
, 𝑛 ∈ N ,

of multiplicity 2ℎ−1.
2) the eigenvalues

𝜆(2)𝑛 =
(︁ 𝜋

2 + 𝜋𝑛

𝑙

)︁2
, 𝑛 ∈ N0 ,

of multiplicity 1
3(2

ℎ−1 + (−1)ℎ).
3) the eigenvalues

𝜆(3)𝑚,𝑠,𝑛 =

(︂arccos 1
3

√︁
2

𝑥𝑚,𝑠
+ 𝜋𝑛

𝑙

)︂2

, 𝑛 ∈ N0 ,

where 𝑥𝑚,𝑠 are all roots of the branch polynomial 𝐵𝑚, and
4) the eigenvalues

𝜆(4)𝑚,𝑠,𝑛 =

(︂𝜋 − arccos 1
3

√︁
2

𝑥𝑚,𝑠
+ 𝜋𝑛

𝑙

)︂2

, 𝑛 ∈ N0 .

If 𝜈(3)𝑛 is one of the eigenvalues of the third group, then its multiplicity is equal
to ∑︁

𝑚:𝜆
(3)
𝑚,𝑠,𝑛=𝜈

(3)
𝑛

2(ℎ−𝑚−1)+ ,

where 𝑎+ = 𝑎 if 𝑎 > 0 and 𝑎+ = 0 if 𝑎 < 0. The multiplicities of the eigenvalues of
the fourth group are defined similarly.

The total number of all eigenvalues, which do not exceed (𝜋𝑙 )
2, counted together

with their multiplicities, is equal to 2ℎ − 1.
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Remark 2. Note that for all four series of the eigenvalues the expressions√︁
𝜆
(1)
𝑛 ,

√︁
𝜆
(2)
𝑛 ,

√︁
𝜆
(3)
𝑚,𝑠,𝑛,

√︁
𝜆
(3)
𝑚,𝑠,𝑛 are periodic functions of 𝑛 of period 𝜋

𝑙 .

Remark 3. One can expect that the spectrum 𝑆∞ of the Dirichlet Laplacian
on an infinite regular tree can be obtained from the case of finite regular trees of
height ℎ by passing to the limit as ℎ→∞. If so, then it follows that

𝑆∞ =
∞⋃︁
𝑛=0

{︂[︂(︂
𝜗+ 𝜋𝑛

𝑙

)︂2

,

(︂
𝜗+ 𝜋𝑛

𝑙

)︂2]︂⋃︁{︂(︂
𝜋 + 𝜋𝑛

𝑙

)︂2}︂}︂
,

where 𝜗 = arccos 2
√
2

3 . Moreover,

∞⋃︁
𝑛=0

[︃(︂
𝜗+ 𝜋𝑛

𝑙

)︂2

,

(︂
𝜗+ 𝜋𝑛

𝑙

)︂2
]︃

should be a continuous spectrum, and (𝜋+𝜋𝑛𝑙 )2, 𝑛 ∈ N0, should be eigenvalues of
infinite multiplicity. This conforms with the result for infinite regular trees estab-
lished by A. Sobolev and M. Solomyak [4].

4 The cases of special periodic potentials

Let 𝑞 be the periodic function on the tree 𝑇 defined by

𝑞(𝑥) =

{︃
𝑎, for 0 6 𝑥 < 𝑚,

𝑏, for 𝑚 6 𝑥 6 𝑙,

where 0 < 𝑚 < 𝑙, 𝑎, 𝑏 > 0, or by

𝑞(𝑥) =
2

cos2 𝑥
, 0 6 𝑥 6 𝑙

(︁
0 < 𝑙 <

𝜋

2

)︁
.

In these cases one can find the explicit solutions to the equation

𝐿𝑦 = −𝑦′′ + 𝑞(𝑥)𝑦 = 𝜆𝑦 , 0 6 𝑥 6 𝑙 .

In the first case direct calculations show that

𝑦 =

{︃
𝐴 sin𝑥

√
𝜆− 𝑎+𝐵 cos𝑥

√
𝜆− 𝑏 , 0 6 𝑥 < 𝑚,

𝐶 sin𝑥
√
𝜆− 𝑎+𝐷 cos𝑥

√
𝜆− 𝑏 , 𝑚 6 𝑥 6 𝑙,
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where 𝐴,𝐵,𝐶,𝐷 are arbitrary real numbers satisfying the conditions 𝑦(𝑚 − 0) =
𝑦(𝑚+ 0), 𝑦′(𝑚− 0) = 𝑦′(𝑚+ 0).

In the second case

𝑦 = 𝑐1(−
√
𝜆 sin𝑥

√
𝜆+ tan𝑥 cos𝑥

√
𝜆) + 𝑐2(

√
𝜆 cos𝑥

√
𝜆+ tan𝑥 sin𝑥

√
𝜆) ,

where 𝑐1 and 𝑐2 are arbitrary real numbers. (See E. Kamke [3], pp. 504-505.)
This allows to explicitly compute 𝛼(𝐿, 𝜆) and to write out all the eigenvalues

in the spirit of Theorem 1. In both cases there are also 4 groups of the eigenvalues
𝜆
(1)
𝑛 , 𝜆(2)𝑛 , 𝜆(3)𝑚,𝑠,𝑛, 𝜆

(4)
𝑚,𝑠,𝑛, but, in contrast to the case of the Dirichlet Laplacian, the

square roots of these eigenvalues are not periodic in 𝑛. However for large 𝑛 they
are close to being periodic of period 𝜋

𝑙 , namely

lim
𝑛→∞

(︁√︁
𝜆
(𝑘)
𝑛+1 −

√︁
𝜆
(𝑘)
𝑛

)︁
=
𝜋

𝑙
, 𝑘 = 1, 2 ,

and similar equalities hold for the eigenvalues of the third and the fourth groups.
This follows since in both cases 𝛼(𝑙, 𝜆) ∼ 3 cos 𝑙

√
𝜆 as 𝜆→∞. (Much better 𝛼(𝑙, 𝜆)

is approximated by the expression 3 cos 𝑙
√
𝜆− 𝑞, where 𝑞 = 1

𝑙

∫︀ 𝑙
0 𝑞(𝑥)𝑑𝑥; in the first

case 𝑞 = 𝑚
𝑙 𝑎(1−

𝑚
𝑙 )𝑏, in the second case 𝑞 = 2 tan 𝑙

𝑙 .)
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ON APPLICATION OF EMBEDDING THEOREMS TO THE STUDY
OF OSCILLATION OF SOLUTIONS OF THE SOBOLEV-TYPE
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Abstract. The paper analyzes functions of several variables oscillating on a half-
axle on one selected variable. Using the weighted Sobolev space, the functional
space is constructed for which embedding of functions into the space containing
oscillating functions is proved. The results allow describing the behavior of solutions
of Sobolev-type equations over time.

1 Introduction

The objective of this report is to generalize the work methods and deliverables [1–3]
for a case of Sobolev weighted spaces. The study plan is similar to [3]: firstly, on
the basis of a certain functional space (in this case, the weighted Sobolev space
𝑊𝑁
𝑝,𝛼(R+)) to construct the space of functions of one variable to contain oscillating

functions, then, based on appropriate Sobolev spaces, to determine the relevant
spaces of functions of several variables, then to prove the local embedding theorem
(the theorem of traces) for the two types of spaces.

Behavior of solutions of the first boundary-value problem for Sobolev-type equa-
tions is studied as an example of application of this method, in particular, to prove
that eventually solutions cannot grow monotonically. The method establishes that
behavior of such solutions in each point of the spatial domain depends on the scope
of growth of the solution norm in certain Sobolev space. Meanwhile the require-
ment for that growth not exceeding the power growth value, is, due to the relevant
embedding theorems, a sufficient condition for the solution belonging to a certain
space with oscillating functions. At the same time, the specified condition is not
necessary, therefore in this case we are forced to combine oscillating and summable
functions in one class.

The basic data from the embedding theorems used in this report can be found
in [4, 5], and from the theory of Sobolev-type differential equations — in [6, 7].
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2 Background Information. Problem Statement

In 1943-1945, while looking for solutions of important applied problems S.L. Sobolev
considered the problem of small-amplitude oscillations of a rotating ideal liquid
about the dynamic equilibrium position [8–10]. The assumption is made that the
volume Ω is filled up with the ideal liquid, which has the density 𝜌 = 1 and rotates
with a constant angular velocity 𝜔 as a solid body. The liquid does not move in
the rotating coordinate system. That is a position of equilibrium about which the
liquid creates small amplitude oscillations. Linearization of the Euler system of
equations results in the following system of equations{︃

𝐷𝑡�⃗� + 2𝜔[⃗𝑘 × �⃗�] +∇𝑝 = 0,

div �⃗� = 0 (div𝐷𝑡�⃗� = 0)
(1)

with two unknowns: velocity: �⃗� = �⃗�(𝑡, 𝑥1, 𝑥2, 𝑥3) = (𝑣1, 𝑣2, 𝑣3) and pressure
𝑝 = 𝑝(𝑥1, 𝑥2, 𝑥3).

The Cauchy problem was set for the system of equations (1): �⃗� |𝑡=0 = �⃗�0. Please
note that the system of equations (1) from the Cauchy problem is not a Cauchy–
Kovalevskaya-type system.

By introducing into review the scalar potential function 𝑢 = 𝑢(𝑡, 𝑥1, 𝑥2, 𝑥3)

by which the unknown velocity �⃗� = ∇𝐷2
𝑡 𝑢 + [∇𝐷𝑡𝑢, �⃗�] + �⃗�(∇𝑢, �⃗�) and pressure

𝑝 = −𝐷3
𝑡 𝑢−𝐷𝑡𝑢 are expressed, S.L. Sobolev moved from (1) to the equation

𝐷2
𝑡Δ𝑢+𝐷2

𝑥3𝑢 = 0, (2)

subsequently named the Sobolev equation. The equation (2) is one of the first
examples of a partial differential equation not solved with respect to the higher-
order derivative.

In [8] it was demonstrated that in 𝑊 1
2 (R3) the Cauchy problem{︃

𝑢 |𝑡=0 = 𝑢0(𝑥),

𝐷𝑡𝑢 |𝑡=0 = 𝑢1(𝑥)
(3)

for the equation (2) was formulated correctly (the solution exists, it is unique and
depends continuously upon the initial conditions), and also, the explicit problem
solution is presented.

In [8] for the equation (2) the first initial-boundary problem (3)–(4) was set,
where

𝑢
⃒⃒
[0,𝑇 ]×𝜕Ω = 0 ∀𝑇 ∈ R+, (4)
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in case the domain Ω is homeomorphic to a ball.

It was also shown in [8] that in the 𝑊 1
2 (Ω) the solution of the problem (2)–(4)

exists, is unique and depends continuously on the initial conditions.

Dependence of the solution of the first initial-boundary problem (2)–(4) upon
the boundary of the domain in a case where 𝑛 = 2, Φ = 0 ; 𝑢0, 𝑢1 ∈ 𝐶∞(Ω) was
considered in [10, 11]. In particular, it was shown that in the circle 𝑟 < 𝑎, in the
ellipse 𝑥2

𝑎2
+ 𝑦2

𝑏2
< 1, and also in the rectangle {(𝑥, 𝑦) ∈ R2 ||𝑥− 𝑥0| < 𝑎, |𝑦 − 𝑦0| < 𝑏}

the solution is almost periodical (has a discrete spectrum) while at any 𝜀 > 0 in
the domain 𝑟 < 1− 𝜀 sin 4𝜙 the solution is not almost periodical (has a continuous
spectrum).

The similar problem for the case of 𝑛 = 3, Φ = 0 ; 𝑢0, 𝑢1 ∈𝑊 1
2 (Ω) was studied

in [12] where it was established that in the ellipsoid 𝑥2

𝑎2
+ 𝑦2

𝑏2
+ 𝑧2

𝑐2
< 1 and in the

cylinder with a generator, which is parallel to the axis Oz, the solution of the first
initial-boundary problem for the Sobolev equation 𝐷2

𝑡Δ𝑢 + 𝐷2
𝑧𝑢 = 0 is almost

periodical.

The studies performed demonstrated that “the solution behavior depends on
the domain . . . , but the dependence is much more complicated than in the classical
case” [10].

As you know, the energy integral always exists in the classical problems of
mathematical physics. The conservation laws stipulate continuous dependence of
the solution upon the initial and boundary conditions, and upon the right part of
the domain. In particular, if the closure Ω̄ of the domain Ω is compact, the solution
is almost periodical.

The problem (2)–(4) features a conservation law∫︁
Ω

𝐷𝑡div 𝑢𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑐𝑜𝑛𝑠𝑡,

but it is impossible to construct [11] integrals of energy of the type of⃦⃦
𝑢(𝑡, 𝑥),𝑊 2

2 (Ω)
⃦⃦
6 𝑐𝑜𝑛𝑠𝑡, (5)

therefore traditional methods of solution are not applicable to the problem (2)–(4).

Works of Sobolev and his followers [8–12] were a starting point of the systematic
study of the equation (2) and its numerous generalizations. In particular, in [13]
the Sobolev equation was studied in a case when the spatial variable belongs to the
𝑛− dimensional space; in [14] generalization of the Sobolev equation was studied
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in a case of a compressible liquid; in [15] the following equation was considered

𝐷2
𝑡Δ𝑢+ (𝐷2

𝑥1 +𝐷2
𝑥2)𝑢 = 0,

which was modeling small-amplitude nonlinear waves on shallow water.
By the end of the 20th century, equations of the type of

𝐷2
𝑡

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐷𝑖(𝑎𝑖𝑗(𝑡, 𝑥) ·𝐷𝑗𝑢) +
𝑛−1∑︁
𝑘=1

𝑛−1∑︁
𝑙=1

𝐷𝑘(𝑏𝑘𝑙(𝑡, 𝑥) ·𝐷𝑙𝑢) = 𝑓(𝑡, 𝑥) (6)

were named the Sobolev-type equations. The extensive bibliography on that subject
can be found in [16–19]. The study of the Sobolev-type equations was the first in-
depth study of the following equations

𝐷𝑙
𝑡𝐿0(𝐷𝑥)𝑢+

𝑙−1∑︁
𝑘=0

𝐷𝑘−1
𝑡 𝐿𝑙−𝑘(𝐷𝑥)𝑢 = 𝐹 ,

not solved with respect to the higher-order time derivative. One of the fullest
descriptions of the theory of equations of this type is presented in [6].

Let’s recall that it is impossible to construct an integral of energy of the type
(5) for the first boundary-value problem even for the equation (2). However in [20]
it was proved for the first boundary-value problem for the equation (6) that if Ω is
the bounded domain, and 𝑢0, 𝑢1 ∈ 𝑊𝑚

2 (Ω), then for any sub-domain Ω′ lying in
the domain Ω together with its closure, the estimate⃦⃦⃦

𝐷𝑘
𝑡 𝑢,𝑊

𝑚
2 (Ω′)

⃦⃦⃦
6 𝐶(𝑡𝑚−1 + 1). (7)

is correct.
In [1, 2, 20, 21] the study was initiated of the problem on relationship between

estimate (7) with an asymptotic behavior of a solution of the first boundary-value
problem (6)–(3)–(4) in case of arbitrary domain. The present paper follows up on
those studies, using embedding theorems of functional spaces.

3 Embedding Theorems and Oscillation of Functions of Several
Variables on One Selected Variable

Let 𝛼 ∈ R and 𝑁 ∈ 𝑁0, 𝑝 ∈ R, 𝑝 > 1.
The weighted Sobolev space is considered
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𝑊𝑁
𝑝,𝛼(R+) =

{︂
𝐷𝑘𝑓

(1 + 𝑡)𝛼
∈ 𝐿𝑙𝑜𝑐𝑝 (R+)∀𝑘 ∈ {0, 1, ..., 𝑁}

}︂
with norm

⃦⃦
𝑓,𝑊𝑁

𝑝,𝛼(R+)
⃦⃦
=

𝑁∑︀
𝑘=0

⃦⃦⃦
𝐷𝑘𝑓

(1+𝑡)𝛼 , 𝐿𝑝(R
+)
⃦⃦⃦
.

For functions (and their derivatives) from space𝑊𝑁
𝑝,𝛼(R+) the Laplace transform

is defined as 𝑓(𝛾) =
+∞∫︀
0

𝑓(𝑡)𝑒−𝛾𝑡𝑑𝑡 which we will consider at real values of parameter

𝛾, where 𝛾 > 0.

Lemma 1. Let
1

𝑝
+
1

𝑞
= 1, 𝛼𝑞+1 > 0. If 𝑓 ∈𝑊𝑁

𝑝,𝛼(R+), then �̂�𝑘𝑓 is a function

analytical on the interval (0,+∞) ∀𝑘 ∈ {0, 1, ..., 𝑁}.

Remark. Lemma 1 represents an analogue of the known Paley–Wiener theorem
for Fourier transform (about isometric homeomorphism of space 𝐿2(−𝑎, 𝑎) and the
whole analytic functions space).

Let’s consider the following subspace in space 𝑊𝑁
𝑝,𝛼(R+)

𝑄𝑊𝑁
𝑝,𝛼(R+) =

{︃
𝑓 ∈𝑊𝑁

𝑝,𝛼(R+)

⃒⃒⃒⃒
⃒∃ sup(0,1]

⃒⃒⃒
𝐷𝑘𝑓(𝛾)

⃒⃒⃒
∈ R

}︃

with norm

⃦⃦
𝑓,𝑄𝑊𝑁

𝑝,𝛼(R+)
⃦⃦
=
⃦⃦
𝑓,𝑊𝑁

𝑝,𝛼(R+)
⃦⃦
+

𝑁∑︁
𝑘=0

sup
(0,1]

⃒⃒⃒
�̂�𝑘𝑓(𝛾)

⃒⃒⃒
.

According to the known Sobolev embedding theorem, if 𝑓 ∈𝑊𝑁
𝑝,𝛼(R+), then 𝐷𝛽𝑓 ∈

𝐶(R+) at 𝛽 < 𝑁 − 1
𝑝 .

It is interesting to find out the properties which the corresponding continuous
derivative 𝐷𝛽𝑓 of function 𝑓 from space 𝑄𝑊𝑁

𝑝,𝛼(R+) possesses.

Definition (see [6]). The determined and continuous function 𝑦 = 𝑓(𝑡) on
R+ is called oscillated on R+ if at any neighborhood of infinity it changes its sign:
∀𝑡 ∈ R+ ∃𝑡1 and 𝑡2 ∈ R+ : 𝑡1 > 𝑡, 𝑡2 > 𝑡, 𝑡1 ̸= 𝑡2 and 𝑓(𝑡1) · 𝑓(𝑡2) < 0.

Lemma 2. Let
1

𝑝
+

1

𝑞
= 1, 𝛼𝑞 + 1 > 0. If 𝑓 ∈ 𝑄𝑊𝑁

𝑝,𝛼(R+), then 𝐷𝑘𝑓 is

either a summable function, or a function oscillating on the half-axle R+ at every
𝑘 ∈ {0, 1, ..., 𝑁 − 1}.
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Proof. It follows from the embedding theorem 𝐷𝜌𝑊𝑁
𝑝 (R+) ⊂ 𝐶(R+) that

derivatives 𝐷𝑘𝑓 of 𝑘 ∈ {0, 1, ..., 𝑁 − 1} order of functions from space 𝑊𝑁
𝑝,𝛼(R+)

are continuous on the half-axle R+.
Subsequent proof is proved from the contrary. �

It is assumed that the function 𝐷𝑘𝑓 is not oscillating on the half-axle R+. Let’s

consider the sequence {𝐷𝑘𝑓(𝑡)𝑒−
𝑡
𝑛 }𝑛∈𝑁 of nonnegative summables on the interval

[𝑡0,+∞) of functions where 𝑡0 is determined by the fact that at [𝑡0,+∞) the function
𝐷𝑘𝑓 does not change its sign.

Moreover, 𝐷𝑘𝑓(𝑡)𝑒−
𝑡
𝑛 ⇒

𝑛→∞
𝑓(𝑡), therefore under the Fatou theorem the 𝐷𝑘𝑓

function is summable on R+ which contradicts the lemma condition.
The space 𝑄𝑊𝑁

𝑝,𝛼(R+) contains a wide class of oscillating functions, in partic-
ular, 𝑃𝑛(𝑡) sin 𝑡(𝑃𝑛(𝑡) — a polynomial of 𝑛 order), the Bessel functions and others.
At the same time, there exist oscillating functions from the space 𝑊𝑁

𝑝,𝛼(R+), not
belonging to 𝑄𝑊𝑁

𝑝,𝛼(R+), for example.
Make a note that the space 𝑄𝑉 0

1,𝛼(R+) contains not all oscillating functions
from space 𝑉 0

1,𝛼(R+). For example, convolution Δ𝑡 * 𝑦, where Δ𝑡 — function from
𝛿-shaped sequence of functions, and

𝑦(𝑡) =

{︃
𝑎 sin 𝑡, if 𝑡 ∈ [2𝜋𝑛, 𝜋(2𝑛+ 1)),

𝑏 sin 𝑡, if 𝑡 ∈ [𝜋(2𝑛+ 1), 2𝜋(𝑛+ 1)),

𝑛 ∈ 𝑁0, 𝑎, 𝑏 ∈ R, 𝑎 > 0, 𝑏 > 0, 𝑎 ̸= 𝑏.

Let’s move over to consideration of functions of several variables.
Let’s define space 𝑊𝑁

1,𝛽(R+,𝑊𝑚
𝑟 (Ω)) as the space of the functions

𝑓 : R+ × Ω→ R on cylinder set R+ × Ω, where Ω is a spatial domain with a mini-
mally smoothed boundary and the following properties:

1. ∀𝑘 ∈ {0, 1, ..., 𝑁} and ∀ |𝛽| 6 𝑚 𝐷𝑘
𝑡𝐷

𝛽
𝑥𝑓 ∈ 𝐿𝑙𝑜𝑐1 ([0, 𝑇 ]× Ω),

2. ∀𝑘 ∈ {0, 1, ..., 𝑁} 𝐷𝑘
𝑡 𝑓 |Ω ∈𝑊𝑚

𝑟 (Ω) ,
3.
⃦⃦
𝐷𝑘
𝑡 𝑓,𝑊

𝑚
𝑟 (Ω)

⃦⃦
∈ 𝐿1,𝛽(R+).

Let’s define the norm of function 𝑓 from space 𝑊𝑁
1,𝛽(R+,𝑊𝑚

𝑟 (Ω)) as follows:

⃦⃦
𝑓,𝑊𝑁

1,𝛽(R+,𝑊𝑚
𝑟 (Ω))

⃦⃦
=

𝑁∑︁
𝑘=0

⃦⃦⃦⃦
⃦
⃦⃦
𝐷𝑘
𝑡 𝑓,𝑊

𝑚
𝑟 (Ω)

⃦⃦
(1 + 𝑡)𝛽

, 𝐿1(R+)

⃦⃦⃦⃦
⃦.
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Theorem 1. We have the following embedding:

𝐷𝑘
𝑡𝐷

𝛽
𝑥𝑊

𝑁
1,𝛼(R+,𝑊𝑚

2 (Ω))
⃒⃒⃒
R+×(𝑥01,𝑥

0
2,...,𝑥

0
𝑛)
⊂ 𝑄𝑊𝑁−𝑘

1,𝛼 (R+)

for all 𝜌 = (𝜌1, 𝜌2, ..., 𝜌𝑛) so that
𝑛∑︀
𝑖=1

𝜌𝑖 < 𝑚− 𝑛
2 and

1) for all 𝑘 ∈ {0, 1, ..., 𝑁} at 𝛼 6 1,
2) for all 𝑘 ∈ {[𝛼], [𝛼] + 1, ..., 𝑁} at 1 < 𝛼 6 𝑁 + 1.
The embedding is understood to mean that

1. ∀𝑓 ∈ 𝑊𝑁
1,𝛼(R+,𝑊𝑚

2 (Ω)) ∃𝜙 = 𝑓
⃒⃒⃒
R+×(𝑥01,𝑥

𝑛
2 ,...,𝑥

0
𝑛)

: 𝐷𝑘
𝑡𝐷

𝜌
𝑥𝜙 ∈ 𝑄𝑊𝑁−𝑘

1,𝛼 (R+)

and
2.
⃦⃦⃦
𝐷𝑘
𝑡𝐷

𝜌
𝑥𝜙,𝑄𝑊

𝑁−𝑘
1,𝛼 (R+)

⃦⃦⃦
6 𝐶

⃦⃦
𝑓,𝑊𝑁

1,𝛼(R+,𝑊𝑚
2 (Ω)

⃦⃦
.

The proof is similar to the proof of theorem 1 [3].

4 The First Initial Boundary Value Problem for Sobolev-Type
Equations with Constant Coefficients

The first initial boundary-value problem for the following Sobolev-type equation is
under consideration

𝐷2
𝑡

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐷𝑖(𝑎𝑖𝑗(𝑥) ·𝐷𝑗𝑢(𝑡, 𝑥)) +
𝑛−1∑︁
𝑘=1

𝑛−1∑︁
𝑙=1

𝐷𝑘(𝑏𝑘𝑙(𝑥) ·𝐷𝑙𝑢(𝑡, 𝑥)) = 0, (8)

𝑢(𝑡, 𝑥) |𝑡=0 = 𝑢0(𝑥), 𝐷𝑡𝑢(𝑡, 𝑥) |𝑡=0 = 𝑢1(𝑥), 𝑢(𝑡, 𝑥)
⃒⃒
[0,𝑇 ]×𝜕Ω = 0 (9)

for any 𝑇 > 0, where the spatial domain Ω is the domain with a minimally smoothed
boundary.

Moreover, it is assumed that in closure Ω̄ of domain Ω coefficients (8) have the
following properties:

1. ∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}, ∀𝑘, 𝑙 ∈ {1, 2, ..., 𝑛− 1} 𝑎𝑖𝑗(𝑥), 𝑏𝑘𝑙(𝑥) ∈ 𝐶∞(Ω̄),
2. ∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑛}∀𝑘, 𝑙 ∈ {1, 2, ..., 𝑛− 1}𝑎𝑖𝑗(𝑥) = 𝑎𝑗𝑖(𝑥), 𝑏𝑘𝑙(𝑥) = 𝑏𝑙𝑘(𝑥), and

also
3. 𝜇0 ‖𝜉,R𝑛‖2 6

𝑛∑︀
𝑖=1

𝑛∑︀
𝑗=1

𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 6𝜇1 ‖𝜉,R𝑛‖2,

𝜈0
𝑛−1∑︀
𝑘=1

𝜉2𝑘 6
𝑛−1∑︀
𝑘=1

𝑛−1∑︀
𝑙=1

𝑏𝑘𝑙(𝑥)𝜉𝑘𝜉𝑙 6 𝜈1
𝑛−1∑︀
𝑘=1

𝜉2𝑘 ∀𝑥 ∈ Ω ∀𝜉 = (𝜉1, 𝜉2, ..., 𝜉𝑛) ∈ R𝑛.
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Solution of the problem (8)–(9) lies in the space
{𝐶𝑁𝑡 (R+)

⃒⃒
∃𝑚 ∈ 𝑁 : 𝐷𝑘

𝑡 𝑢 ∈𝑊𝑚
2 (Ω) at 𝑡 ∈ R+}, with 𝑁 > 3. In this case,

the solution exists and it is unique [6].

Lemma 3. For the problem (8)–(9) there exist first integrals

𝐼𝐾(𝑡) =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑎𝑖𝑗(𝑥)𝐷
𝐾
𝑡 𝐷𝑗𝑢(𝑡, 𝑥), 𝐷

𝐾
𝑡 𝐷𝑖𝑢(𝑡, 𝑥))+

+
𝑛−1∑︁
𝑘=1

𝑛−1∑︁
𝑙=1

(𝑏𝑘𝑙(𝑥)𝐷
𝐾−1
𝑡 𝐷𝑙𝑢(𝑡, 𝑥), 𝐷

𝐾−1
𝑡 𝐷𝑘𝑢(𝑡, 𝑥)) = 𝑐𝑜𝑛𝑠𝑡

at 𝑡 ∈ R+ for all 𝐾 ∈ {1, 2, ..., 𝑁 − 1}.

Lemma 4. If Ω′ ⊂ Ω̄′ ⊂ Ω, then 𝐷𝑡𝑢 ∈ 𝑊𝑁−2
1,2 (R+,𝑊 1

2 (Ω
′)), 𝐷𝑙𝑢 ∈

𝑊𝑁−2
1,2 (R+,𝑊 0

2 (Ω
′)) ∀𝑙 ∈ {1, 2, ..., 𝑛− 1}.

Theorem 2. Let Ω — a spatial domain with a minimally smoothed boundary,
Ω′ ⊂ Ω̄′ ⊂ Ω, 𝑁 > 3. Then the solution of the problem (8) - (9) is characterized
by the following properties: functions 𝑦 = 𝐷𝜌

𝑥𝐷2
𝑡 𝑢(𝑡, 𝑥), 𝑦 = 𝐷𝜌

𝑥𝐷3
𝑡 𝑢(𝑡, 𝑥), . . . ,

𝑦 = 𝐷𝜌
𝑥𝐷

𝑁−1
𝑡 𝑢(𝑡, 𝑥), and also 𝑦 = 𝐷𝜌

𝑥𝐷𝑙𝐷
𝑢
𝑡 (𝑡, 𝑥), 𝑦 = 𝐷𝜌

𝑥𝐷𝑙𝐷
2
𝑡 𝑢(𝑡, 𝑥), . . . , 𝑦 =

𝐷𝜌
𝑥𝐷𝑙𝐷

𝑁−2
𝑡 𝑢(𝑡, 𝑥) are either oscillated, or summable on R+ in any point 𝑥 ∈ Ω′∀𝑙 ∈

{1, 2, ..., 𝑛− 1}, ∀𝜌 = (𝜌1, ..., 𝜌𝑛) :
𝑛∑︀
𝑖=1

𝜌𝑖 < 𝑚− 𝑃
2 .

Apparently, the considered method to study the behavior of a solution can be
applied to a rather wide class of equations, it allows considering problems whose
solutions admit the estimate (7) from a unified point of view. In particular, the
approach under consideration can be generalized to Sobolev-type equations with
both constant and variable coefficients. Besides, the method is a universal one to the
extent the conditions of the spatial domain are determined only by corresponding
embedding theorems.

However, the method has some drawbacks. In particular, it does not distinguish
almost periodic solutions. In addition, it does not allow obtaining the asymptotics
of the solutions up to the boundary of the spatial domain.

By now, a range of further study areas has been identified. It is desirable to find
conditions under which the solution of the first initial-boundary value problem for
equation (8) is oscillatory. In addition, it is interesting to find out in which cases
the solution will be almost periodical. There are many problems in mathematical
physics whose solutions satisfy the estimates of the type (7). In this connection,
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the question of describing classes of equations to which the considered method can
be applied is of special interest.
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THE SMALL PARAMETER METHOD FOR LINEAR
DIFFERENTIAL REGULAR EQUATIONS IN R𝑁 AND R𝑁+

G. A. Karapetyan, H. G. Tananyan

Key words: regular operator, hypoelliptic operator, boundary layer, regular de-
generation, singular perturbation, uniformly solubility

AMS Mathematics Subject Classification: Primary: 35H10, 35B25; Sec-
ondary: 41A80

Abstract. Algorithms for asymptotic expansion of the solution of Dirichlet prob-
lem for regular equation with small parameter 𝜀 (𝜀 > 0) at higher derivatives in R𝑛
and R𝑛+ based on solution of the degenerated (under 𝜀→ 0). Dirichlet problem for
regular and hypoelliptic equation of the lower order are described. The approximate
estimates for remainder terms of those expansions are obtained.

Introduction

The degeneration of the Dirichlet problem D𝜀 for regular (in the sense of Mikhailov
- Nikol’skii [1]– [5]) equation with small parameter 𝜀 (𝜀 > 0) at higher derivatives
into the Dirichlet problem D0 for regular and hypoelliptic (introduced by Horman-
der [6]) equation in the Sobolev’s anisotropic spaces WM

2 (𝐺) (generated by regular
polyhedron M and by unbounded manifold 𝐺) is considered. The methods for con-
structing asymptotic expansion of the solution of Problem D𝜀 based on Lindshted-
Poincare’s method, Prandell’s boundary layer method (for references and for more
details about those methods see [7]– [11]) and Lyusternik-Vishik’s method [12] (as
well as with using Newton’s polyhedron method [13]) are described.

Note that the degenerated Problem D0 can be solved by Bubnov-Galyorkin’s
method (see Ghazaryan and Karapetyan [14]) by choosing anisotropic 𝐵-splines as
a base functions (see Tananyan [15]).

1 Basic notation and terminology

Throughout the paper, we will use the following standard notation: N is a set of
natural numbers, N0 ≡ N ∪ {0}, R is a set of real numbers. For 𝑛 ∈ N, 𝑥 =
(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ N𝑛0 , 𝛽 = (𝛽1, . . . , 𝛽𝑛) ∈ N𝑛0 , M ⊂ N𝑛0 and
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𝜉 = (𝜉1, . . . , 𝜉𝑛) ∈ R𝑛 we denote

|𝑥| =
(︀
𝑥21 + . . .+ 𝑥2𝑛

)︀ 1
2 , 𝑥(𝑗) = (𝑥1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥𝑛) (1 6 𝑗 6 𝑛) ,

𝛼! = 𝛼1! . . . 𝛼𝑛!, |𝛼| = 𝛼1 + . . .+ 𝛼𝑛, 𝛽 6 𝛼 ⇐⇒ 𝛽𝑗 6 𝛼𝑗 (1 6 𝑗 6 𝑛),(︂
𝛼

𝛽

)︂
=

𝛼!

𝛽! (𝛼− 𝛽)!
(𝛽 6 𝛼) , 𝛼𝛽 = 𝛼1𝛽1 + . . .+ 𝛼𝑛𝛽𝑛,

M 2 ≡M ×M ≡ {(𝛼, 𝛽) : 𝛼 ∈M , 𝛽 ∈M }

𝜉𝛼 = 𝜉𝛼1 . . . 𝜉
𝛼
𝑛 , 𝐷𝛼 = 𝐷𝛼1

1 . . . 𝐷𝛼𝑛
𝑛 ,

where 𝐷𝑗 =
𝜕
𝜕𝑥𝑗

(1 6 𝑗 6 𝑛).
Through C(𝐺) is denoted the space of uniformly continuous on a domain 𝐺 of

functions 𝑓 with the norm

‖𝑓‖C(𝐺) ≡ sup
𝑥∈𝐺
|𝑓(𝑥)|.

For a finite set of multi-indices M ⊂ N𝑛0 and domain 𝐺 ⊂ R𝑛 we denote

WM
2 (𝐺) ≡

⎧⎨⎩𝑓 ∈ L2(𝐺) : ‖𝑓‖WM
2 (𝐺) ≡

∑︁
𝛼∈⟨M∪{0}⟩

‖𝐷𝛼𝑓‖L2(𝐺) <∞

⎫⎬⎭ ,

where ⟨M ⟩ is a convex hull of the collection M , and by H̊M (𝐺) is denoted a closure
of the set C∞

0 (𝐺) with respect to the norm ‖.‖WM
2 (𝐺).

In the Hilbert space H the inner product is denoted by (., .)H.
In this work, all functional scapes will be assumed to be real.

2 Problem Statement

Let Ω ⊆ R𝑛, 𝜀 ∈ (0, 1) , N ⊂ N𝑛0 and N0 ⊆ N be finite collections of multi-indices,
𝜓 is a non-negative function defined on N ×N , and let

𝐿𝜀 ≡ 𝐿𝜀 (𝑥,𝐷) ≡
∑︁

𝛼,𝛽∈N

𝜀𝜓(𝛼,𝛽)𝐷𝛼
(︁
𝜂𝛼,𝛽 (𝑥, 𝜀)𝐷

𝛽
)︁

(𝜂𝛼,𝛽 (𝑥, 𝜀) ̸≡ 0, 𝛼, 𝛽 ∈ N )

(1)
and

𝐿0 ≡ 𝐿0 (𝑥,𝐷) ≡
∑︁

𝛼,𝛽∈N0

𝐷𝛼
(︁
𝜂𝛼,𝛽 (𝑥, 0)𝐷

𝛽
)︁

(𝜂𝛼,𝛽 (𝑥, 0) ̸≡ 0, 𝛼, 𝛽 ∈ N0) (2)
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be linear differential operators with real coefficients defined on Ω× [0, 𝜀].
Consider the following boundary problems:
Problem D0. Find a solution 𝑢 ∈ H̊N0(Ω) of the equation

𝐿0𝑢 = ℎ, ℎ ∈W∞
2 (Ω) ≡

∞⋂︁
𝑝=1

W(𝑝)
2 (Ω). (3)

Problem D𝜀. Find a solution 𝑢 ∈ H̊N (Ω) of the equation

𝐿𝜀𝑢𝜀 = ℎ, ℎ ∈W∞
2 (Ω). (4)

In the further will be used the following notations

𝜙 (𝜈) ≡ min
𝛼,𝛽∈N
𝛼+𝛽=𝜈

𝜓 (𝛼, 𝛽) 𝜈 ∈ N + N ≡ {𝛼+ 𝛽 : 𝛼, 𝛽 ∈ N } ,

𝜙𝑜𝑝𝑡M

(︀
𝛼0
)︀
≡ min

{︃
𝑞 ∈ R : ∀𝜀 ∈ (0, 𝜀],∀𝜉 ∈ R𝑛, 𝜉 > 0, 𝜀𝑞𝜉𝛼

0
6
∑︁
𝛼∈M

𝜀𝜙(𝛼)𝜉𝛼

}︃
(5)

𝛼0 ∈ ⟨M ⟩ ,M ⊆ N + N .

On the operators 𝐿0 and 𝐿𝜀 we impose the following restrictions:
(A1) a) the functions 𝜂𝛼,𝛽 (𝑥, 𝜀) (𝛼, 𝛽 ∈ N ) are infinitely differentiable on Ω×

[0, 𝜀];
b) for each 𝛼, 𝛽 ∈ N0 the function 𝜂𝛼,𝛽 (𝑥, 𝜀) , as 𝜀 → 0, uniformly with

respect to 𝑥 tends to 𝜂𝛼,𝛽 (𝑥, 0) ;
(A2) there exists the constant 𝜒1 > 0 such that

(𝐿0𝑤,𝑤) > 𝜒1

∑︁
𝛼∈N0∪{0}

‖𝐷𝛼𝑤‖2 ∀𝑤 ∈ C∞
0 (Ω) ; (6)

(A3) {𝛾 ∈ N𝑛0 : 𝛾 6 𝛼} ⊆ ⟨N ∪ {0}⟩ for all 𝛼 ∈ N ;
(A4) a) the functions 𝜂𝛼,𝛽 (𝑥, 𝜀) are uniformly continuous with respect to 𝑥 on

Ω× (0, 𝜀], for (𝛼, 𝛽) ∈ R ≡
{︀
(𝛼, 𝛽) ∈ N 2∖N 2

0 : |𝛼+ 𝛽| ≡ 0 (mod2)
}︀
;

b) there exists the constant 𝜅1 > 0 such that

|𝜂𝛼,𝛽 (𝑥, 𝜀)| 6 𝜅1 ∀𝑥 ∈ Ω, ∀𝜀 ∈ (0, 𝜀], (𝛼, 𝛽) ∈ R;
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c) there exists the constant 𝜒2 > 0 such that∑︁
(𝛼,𝛽)∈R

𝜀𝜓(𝛼,𝛽)𝜂𝛼,𝛽 (𝑥, 0) (𝑖𝜉)
𝛼+𝛽 > 𝜒2

∑︁
𝛼∈B

𝜀𝜙
𝑜𝑝𝑡
N +N (2𝛼)𝜉2𝛼 ∀𝜉 ∈ R𝑛,∀𝜀 ∈ (0, 𝜀],

where
R ≡

{︁
(𝛼, 𝛽) ∈ R : 𝜙 (𝛼+ 𝛽) = 𝜙𝑜𝑝𝑡N +N (𝛼+ 𝛽)

}︁
,

V ≡ {𝛼 ∈ N ∖N0 : 𝛼 /∈ ⟨(N ∖N0) ∖ {𝛼}⟩} ,

B ≡ V ∪
{︁
𝛼 ∈ (N ∖N0) ∖V : 𝜙𝑜𝑝𝑡(N ∖N0)∖{𝛼} (𝛼) > 𝜙𝑜𝑝𝑡N ∖N0

(𝛼)
}︁
;

d) there exists the constant 𝜅3 > 0 such that for every (𝛼, 𝛽) ∈ I ≡{︀
(𝛼, 𝛽) ∈ N 2∖N 2

0 : |𝛼+ 𝛽| ≡ 1 (mod2)
}︀

and 𝛾, 𝛿 ∈ N𝑛0 , if 𝛾 6 𝛼, 𝛿 6 𝛽 and 𝛾+𝛿 ̸=
𝛼+ 𝛽, then ⃒⃒⃒

𝐷𝛾+𝛿𝜂𝛼,𝛽 (𝑥, 𝜀)
⃒⃒⃒
6 𝜅3 𝑥 ∈ Ω, 𝜀 ∈ (0, 𝜀];

(A5) for every 𝛼, 𝛽 ∈ N + N , 𝛼 6 𝛽, 𝛼 ̸= 𝛽

𝜙𝑜𝑝𝑡N +N (𝛼) < 𝜙𝑜𝑝𝑡N +N (𝛽) .

(A6) 𝜓 takes only integer values;

3 Terms of solubility and uniform solubility

Definition 1. Problem D0 is said to be solvable if for any ℎ ∈ L2(Ω) the
equation (3) has a solution 𝑤0 ∈ W̊N0

2 (Ω) such that

‖𝑤0‖WN0
2 (Ω)

6 𝐶 ‖ℎ‖L2(Ω)

for some constant 𝐶 > 0 independent of ℎ.

Remark 1. (see [1] and [3]) Let Ω is whole space, half space or strip. Then
Problem D0 is solvable if Condition (A2) holds. If ℎ ∈ W∞

2 (Ω) then the solution
𝑤0 of Problem D0 is smooth, i.e. 𝑤0 ∈W∞

2 (Ω) (see [19]) and hence 𝐷𝛼𝑤0 ∈ C
(︀
Ω
)︀

for any 𝛼 ∈ N𝑛0 by the known embedding theorem (see [20], p. 129).

Definition 2. (see [12] and [16]) Problem D𝜀 is said to be uniformly solvable
if there exists a number 𝜀0 > 0 for which

a) Problem D𝜀 is solvable for 𝜀 ∈ (0, 𝜀0], i.e., for every ℎ ∈ L2(Ω) equation (4)
has a solution 𝑢𝜀 ∈ W̊N

2 (Ω);
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b) there exists the number 𝐶0 > 0, and the functional space 𝐵𝜀
(︁
H̊N (Ω) ⊂ 𝐵𝜀

)︁
with the norm ‖.‖𝐵𝜀

such that for all 𝑢 ∈ H̊N (Ω)

‖𝑢‖𝐵𝜀
6 𝐶0 ‖ℎ‖L2(Ω) , 𝜀 ∈ (0, 𝜀0].

Remark 2. (see [1] and [3]) Let Ω is whole space, half space or strip. Then
Problem D𝜀 is solvable for any fixed 𝜀 ∈ (0, 𝜀0] if Condition (A1) − (A4) hold.

Theorem 1. (see [18]) Let N ⊂ N𝑛0 , ⟨N ⟩ be a regular polyhedron, Ω ⊂ R𝑛
be a domain satisfying the shift conditions (see [20]), and the operator 𝐿𝜀 satisfy
conditions (𝐴1) − (𝐴8). Then the problem D𝜀 is uniformaly solvable, i.e. there
exists the constants 𝜀 ∈ (0, 𝜀], 𝐶1 > 0 and 𝐶2 > 0 such that for all 𝑢 ∈ H̊N (Ω)
holds

‖𝑢‖2𝜀 ≡
∑︁

𝛼∈⟨N ⟩∖⟨N0⟩

𝜀𝜙
𝑜𝑝𝑡
N +N (2𝛼) ‖𝐷𝛼𝑢‖2+

∑︁
𝛼∈⟨N0∪{0}⟩

‖𝐷𝛼𝑢‖2 6 𝐶1 (𝐿𝜀𝑢, 𝑢) ∀𝜀 ∈ (0, 𝜀].

4 Poincare method on R𝑛

Theorem 2. Let Ω ≡ R𝑛, 𝑚 ∈ N0 and
I. a) Conditions (A1) and (A6) hold;

b) The coefficients 𝜂𝛼,𝛽 (𝑥, 𝜀) (𝛼, 𝛽 ∈ N ) of the operator 𝐿𝜀 bounded with its
derivatives of 𝑥𝑛 up to order 𝑚+ 1 on Ω× [0, 𝜀];

II. a) Problem D0 is solvable;
b) The solution 𝑤0 of Problem D0 is smooth, i.e. 𝑤0 ∈W∞

2 (R𝑛);
III. Problem D𝜀 is uniformly solvable;
Then the solution 𝑢𝜀 of the problem D𝜀 admits the following asymptotic repre-

sentation:

𝑢𝜀 = 𝑤0 +

𝑚∑︁
𝑖=1

𝜀𝑖𝑤𝑖 + 𝑧𝑚, (7)

where 𝑤0 is the solution of the problem D0, 𝑤𝑖 (𝑖 = 1, . . . ,𝑚) is the solution of the
D0 type problem, and for the remainder 𝑧𝑚 holds the following estimate:

‖𝑧𝑚‖𝜀 = 𝑂
(︀
𝜀𝑚+1

)︀
(8)

(‖.‖𝜀 is a norm from Condition III, see Definition 2).

Proof. Let 𝑁 ∈ N0. Since Condition (A1) the coefficients 𝜂𝛼,𝛽 can be repre-
sented as a finite power series with respect to 𝜀 with the remainder term of (𝑁+1)-th
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order:

𝜂𝛼,𝛽 (𝑥, 𝜀) = 𝜂
(0)
𝛼,𝛽 (𝑥) +

𝑁∑︁
𝑖=1

𝜀𝑖𝜂
(𝑖)
𝛼,𝛽 (𝑥) + 𝜀𝑁+1𝜂

(𝑁+1)
𝛼,𝛽 (𝑥, 𝜀) (𝛼, 𝛽 ∈ N ) (9)

(𝜂
(0)
𝛼,𝛽 (𝑥) ≡ 𝜂𝛼,𝛽 (𝑥, 0)), then by Condition (A6)

𝐿𝜀 =
𝑁∑︁
𝑠=0

𝜀𝑠𝐿(𝑠) + 𝜀𝑁+1𝐿(𝑁+1), (10)

where

𝐿(0) ≡ 𝐿0, 𝐿(𝑠) ≡ 𝐿(𝑠)(𝐷,𝑥) ≡
∑︁

𝛼,𝛽∈N
06𝑗6𝑁

𝜓(𝛼,𝛽)+𝑗=𝑠

𝐷𝛼𝜂
(𝑗)
𝛼,𝛽 (𝑥)𝐷

𝛽 (𝑠 = 1, . . . , 𝑁) , (11)

𝐿(𝑁+1) ≡ 𝐿(𝑁+1)(𝐷,𝑥, 𝜀) ≡
∑︁

𝛼,𝛽∈N
06𝑠6𝑁

𝜓(𝛼,𝛽)+𝑠>𝑁+1

𝐷𝛼𝜂
(𝑠)
𝛼,𝛽 (𝑥)𝐷

𝛽 +
∑︁

𝛼,𝛽∈N

𝜂
(𝑁+1)
𝛼,𝛽 (𝑥, 𝜀) .

(12)
Let 𝑁 = 𝑚 and let 𝑤0 is the solution of Problem D0, and let 𝑤𝑖 ∈ H̊N0(R𝑛)

(𝑖 = 1, . . . ,𝑚) is the solution of the equation

𝐿0𝑤𝑖 = −
𝑖∑︁

𝑠=1

𝐿(𝑠)𝑤𝑖−𝑠 (13)

It is obvious that by Condition III

𝑤𝑖 ∈W∞
2 (R𝑛) 𝑖 = 1, . . . ,𝑚. (14)

Denote

𝑢(𝑚) ≡ 𝑤0 +
𝑚∑︁
𝑖=1

𝜀𝑖𝑤𝑖.

Thus

𝐿𝜀𝑢
(𝑚) = 𝐿0𝑤0+

𝑚∑︁
𝑖=1

𝜀𝑖

(︃
𝐿0𝑤𝑖 +

𝑖∑︁
𝑠=1

𝐿(𝑠)𝑤𝑖−𝑠

)︃
+𝜀𝑁+1

𝑚∑︁
𝑖=0

𝑖∑︁
𝑟=0

𝜀𝑖−𝑟𝐿(𝑁+1−𝑟)𝑤𝑖. (15)
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It is not hard to see (using forms 11 and 12, by Conditions I, II and 14) that
exists number 𝑀 > 0 such that⃦⃦⃦

𝐿(𝑁+1−𝑟)𝑤𝑖

⃦⃦⃦
6𝑀 (𝑟 = 0, . . . , 𝑖; 𝑖 = 0, . . . ,𝑚) ,

hence from (15) by (13) follows that exists number 𝐾 > 0 such that⃦⃦⃦
𝐿𝜀𝑢

(𝑚) − ℎ
⃦⃦⃦
6 𝐾𝜀𝑚+1 ∀𝑥 ∈ R𝑛.

Let 𝑢𝜀 is the solution of Problem D𝜀, and let 𝑧𝑚 = 𝑢𝜀 − 𝑢(𝑚) (it is easy to see
that 𝑧𝑚 ∈ H̊N (R𝑛)). Then by Condition III

‖𝑧𝑚‖𝜀 6 (𝐿𝜀𝑧𝑚, 𝑧𝑚) = (𝐿𝜀𝑢𝜀, 𝑧𝑚)−
(︁
𝐿𝜀𝑢

(𝑚), 𝑧𝑚

)︁
= −(𝐿𝜀𝑢(𝑚) − ℎ, 𝑧𝑚),

so by Cauchy type inequality

‖𝑧𝑚‖𝜀 6
1

2

(︂
𝜔
⃦⃦⃦
𝐿𝜀𝑢

(𝑚) − ℎ
⃦⃦⃦
+

1

𝜔
‖𝑧𝑚‖

)︂
,

therefore
‖𝑧𝑚‖𝜀 = 𝑂

(︀
𝜀𝑚+1

)︀
.

Remark 3. Under Conditions (A1) − (A6) the solution 𝑢𝜀 admits an asymp-
totic expansion (7) where 𝑤0 is the solution of Problem D0, and 𝑤𝑖 ∈ W̊N0

2 (R𝑛)
(𝑖 = 1, . . . ,𝑚) is the solution of the equation (13) and for the remainder 𝑧𝑚 holds
the estimate (8).

5 Terms of regular degeneration

Denote
𝑘𝑛 ≡ max

𝛼∈N0

𝛼𝑛, 𝑙𝑛 ≡ max
𝛼∈N

𝛼𝑛 − 𝑘𝑛,

𝑒𝑛 ≡ (0, . . . , 0, 1) , 𝑞𝑛 ≡ 𝜓 ((𝑘𝑛 + 𝑙𝑛) 𝑒
𝑛, (𝑘𝑛 + 𝑙𝑛) 𝑒

𝑛) .

We impose the following additional restriction on coefficients of operator 𝐿𝜀
(A7) for every 𝛼, 𝛽 ∈ N + N

𝜓 (𝛼, 𝛽) >
(𝛼𝑛 + 𝛽𝑛 − 2𝑘𝑛) 𝑞𝑛

2𝑙𝑛
with 𝛼+ 𝛽 = (𝛼𝑛 + 𝛽𝑛) 𝑒

𝑛,
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𝜓 (𝛼, 𝛽) >
(𝛼𝑛 + 𝛽𝑛 − 2𝑘𝑛) 𝑞𝑛

2𝑙𝑛
with 𝛼+ 𝛽 ̸= (𝛼𝑛 + 𝛽𝑛) 𝑒

𝑛.

Let Ω ≡ R𝑛+ ≡ {𝑥 ∈ R𝑛 : 𝑥𝑛 > 0} , κ ∈ N, 𝑁 ∈ N0 and 𝑡 = 𝑥𝑛𝜀
−κ. Then, under

the Condition (A1) the coefficients 𝜂𝛼,𝛽 can be represented as in formula (9), and in
addition the functions 𝜂(𝑖)𝛼,𝛽 can be represented as a finite power series with respect
to 𝑥𝑛:

𝜂
(𝑖)
𝛼,𝛽 (𝑥) = 𝜂

(𝑖,0)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁
+

𝑁∑︁
𝑗=1

𝑥𝑗𝑛𝜂
(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁
+ 𝜀𝑁+1𝜂

(𝑖,𝑁+1)
𝛼,𝛽 (𝑥, 𝜀)

(𝛼, 𝛽 ∈ N ; 𝑖 = 0, 1, . . . , 𝑁) ,

where 𝜂(𝑖,0)𝛼,𝛽

(︀
𝑥(𝑛)

)︀
≡ 𝜂(𝑖)𝛼,𝛽

(︀
𝑥(𝑛), 0

)︀
.

Since
𝜕𝑠

𝜕𝑥𝑠𝑛
= 𝜀−𝑠κ

𝜕𝑠

𝜕𝑡𝑠
(𝑠 > 1) ,

then

𝐷𝛼
𝑥

(︁
𝑥𝑗𝑛𝜂

(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁)︁
𝐷𝛽
𝑥 = 𝜀−κ(𝛼𝑛+𝛽𝑛)+κ𝑗𝐷𝛼

𝑦

(︁
𝑡𝑗𝜂

(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁)︁
𝐷𝛽
𝑦 (16)

(𝛼, 𝛽 ∈ N ; 𝑖 = 0, 1, . . . , 𝑁 ; 𝑗 = 0, 1, . . . , 𝑁) ,

where 𝑦 ≡
(︀
𝑥(𝑛), 𝑡

)︀
.

Using (16), the operator 𝐿𝜀 can be represented as follows:

𝐿𝜀 =
∑︁

𝛼,𝛽∈N

𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=0

𝜀𝑖−κ(𝛼𝑛+𝛽𝑛)+κ𝑗+𝜓(𝛼,𝛽)𝐷𝛼
𝑦

(︁
𝑡𝑗𝜂

(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁)︁
𝐷𝛽
𝑦 . (17)

Denote
𝛾 ≡ max

𝛼,𝛽∈N
(𝜓 (𝛼, 𝛽)− κ (𝛼𝑛 + 𝛽𝑛)) .

From (17), combining terms with equal powers of 𝜀, we get:

𝐿𝜀 = 𝜀𝛾

{︃
𝑀0 +

𝑁∑︁
𝑠=1

𝜀𝑠𝑅𝑠 + 𝜀𝑁+1𝑅𝑁+1

}︃
, (18)
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where

𝑀0 ≡
∑︁

𝛼,𝛽∈N

𝜓(𝛼,𝛽)−κ(𝛼𝑛+𝛽𝑛)=𝛾

𝐷𝛼
𝑦 𝜂

(0,0)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁
𝐷𝛽
𝑦 =

∑︁
𝛼,𝛽∈N

𝜓(𝛼,𝛽)−κ(𝛼𝑛+𝛽𝑛)=𝛾

𝐷𝛼
𝑦 𝜂𝛼,𝛽

(︁
𝑥(𝑛), 0, 0

)︁
𝐷𝛽
𝑦 ,

(19)

𝑅𝑠 ≡
∑︁

𝛼,𝛽∈N
06𝑖6𝑁,06𝑗6𝑁

𝜓(𝛼,𝛽)−κ(𝛼𝑛+𝛽𝑛)+𝑖+κ𝑗=𝛾+𝑠

𝐷𝛼
𝑦

(︁
𝑡𝑗𝜂

(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁)︁
𝐷𝛽
𝑦 (𝑠 = 1, . . . , 𝑁) ,

𝑅𝑁+1 ≡

≡
∑︁

𝛼,𝛽∈N
06𝑖6𝑁,06𝑗6𝑁

𝜓(𝛼,𝛽)−κ(𝛼𝑛+𝛽𝑛)+𝑖+κ𝑗>𝛾+𝑁

𝜀𝑖−κ(𝛼𝑛+𝛽𝑛)+κ𝑗+𝜓(𝛼,𝛽)−𝑁−1𝐷𝛼
𝑦

(︁
𝑡𝑗𝜂

(𝑖,𝑗)
𝛼,𝛽

(︁
𝑥(𝑛)

)︁)︁
𝐷𝛽
𝑦+

+
∑︁

𝛼,𝛽∈N
06𝑖6𝑁

𝜂
(𝑖,𝑁+1)
𝛼,𝛽 (𝑥, 𝜀) .

Proposition 1. To𝑀0 was an ordinary differential operator of order 2 (𝑘𝑛 + 𝑙𝑛)
with a minor member of the order 2𝑘𝑛, it is necessary and sufficient to

10) 𝛾 = −𝑘𝑛𝑞𝑛
𝑙𝑛

;

20) κ = 𝑞𝑛
2𝑙𝑛

is a natural number;

30) 𝜓 (𝛼, 𝛽) > (𝛼𝑛+𝛽𝑛−2𝑘𝑛)𝑞𝑛
2𝑙𝑛

for 𝛼+ 𝛽 = (𝛼𝑛 + 𝛽𝑛) 𝑒
𝑛,

𝜓 (𝛼, 𝛽) > (𝛼𝑛+𝛽𝑛−2𝑘𝑛)𝑞𝑛
2𝑙𝑛

for 𝛼+ 𝛽 ̸= (𝛼𝑛 + 𝛽𝑛) 𝑒
𝑛.

Remark 4. Note that under the Condition (A6) we can assume that κ = 𝑞𝑛
2𝑙𝑛

is a natural number (otherwise we can reach this by replacement variable).

Remark 5. Under the Conditions (A1), (A6) and (A7) (in respect that 4) if
κ = 𝑞𝑛

2𝑙𝑛
then the operator 𝑀0 is an ordinary differential operator.

Let 𝑀0 (introduced in (19)) is a ordinary differential operator satisfies the con-
ditions of the proposition 1. We introduce the following equation (which is the
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characteristic equation of the operator 𝑀0):

𝜆2𝑘𝑛𝑄 (𝜆) ≡ 𝜆2𝑘𝑛
∑︁

𝛼𝑛𝑒𝑛,𝛽𝑛𝑒𝑛∈N

𝜓(𝛼𝑛𝑒𝑛,𝛽𝑛𝑒𝑛)−κ(𝛼𝑛+𝛽𝑛)=𝛾

𝜂𝛼𝑛𝑒𝑛,𝛽𝑛𝑒𝑛

(︁
𝑥(𝑛), 0, 0

)︁
𝜆𝛼𝑛+𝛽𝑛−2𝑘𝑛 = 0.

(20)

Definition 3. The degeneration of the Problem D𝜀 into Problem D0 is called
regular if the Conditions (A1), (A6) and (A7) hold and characteristic polynomial
𝑄 (𝜆) has exactly 𝑙𝑛 pairwise different roots with negative real parts.

For the complete symbol of the operator 𝐿𝜀, we introduce the notation

𝐿𝜀 (𝑥, 𝑖𝜉) ≡
∑︁

𝛼,𝛽∈N

𝜀𝜓(𝛼,𝛽)𝜂𝛼,𝛽 (𝑥, 𝜀) (𝑖𝜉)
𝛼+𝛽 .

Theorem 3. Let the Conditions (A1), (A6) and (A7) hold and there exists a
number 𝐶 such that for all 𝜉𝑛 ∈ R and 𝜀 ∈ (0, 𝜀0]

Re𝐿𝜀 (𝑥, 0, . . . , 0, 𝑖𝜉𝑛) > 𝐶
𝑙𝑛∑︁
𝑠=0

𝜀𝜙
𝑜𝑝𝑡
N +N (2(𝑘𝑛+𝑠)𝑒𝑛) |𝜉𝑛|2(𝑘𝑛+𝑠) . (21)

Then the degeneration of the Problem D𝜀 into Problem D0 is regular.

6 Boundary layer method on R𝑛
+

Definition 4. (see [12], p. 7). Let 𝑣𝜀(𝑥) = 𝑣𝜀(𝑥1, . . . , 𝑥𝑛) be an 𝑠 (𝑠 ∈ N) times
differentiable function in a domain 𝑄 ⊂ R𝑛. Then 𝑣𝜀 is called boundary layer type
function of order 𝑘 (𝑘 < 𝑠), if

1. for every closed subset 𝐾 of the domain 𝑄 (𝐾 ⊂ 𝑄), which does not intersect
the boundary 𝜕𝑄 of the domain 𝑄 (𝐾 ∩𝜕𝑄 = ∅) and for every 𝛿 > 0 there exists
positive number 𝜀0 such that

|𝐷𝛼𝑣𝜀(𝑥)| 6 𝛿 ∀𝜀 ∈ (0, 𝜀0], ∀𝑥 ∈ 𝐾, |𝛼| 6 𝑠;

2. there exist positive numbers 𝑀 and 𝜀0 such that

|𝐷𝛼𝑣𝜀(𝑥)| 6𝑀 ∀𝜀 ∈ (0, 𝜀0], ∀𝑥 ∈ 𝑄, |𝛼| = 𝑘;

3. for every 𝛿 > 0 there exists positive number 𝜀0 such that

|𝐷𝛼𝑣𝜀(𝑥)| 6 𝛿 ∀𝜀 ∈ (0, 𝜀0], ∀𝑥 ∈ 𝑄, |𝛼| < 𝑘;
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Example 1. The typical examples of boundary layer type functions of order 𝑘
on the positive semiaxis are

𝜀𝑘𝑒−
𝜆𝑡
𝜀 and 𝜀𝑘𝑃

(︂
𝑡

𝜀

)︂
𝑒−

𝜆𝑡
𝜀 ,

where 𝜆 > 0 and 𝑃 is a polynomial.
Suppose 𝜏 ∈ (0,∞), and 𝜑 (𝑦) is an infinitely differentiable function of one

variable, that equals to 1 when 𝑦 6 𝜏
2 and vanishes when 𝑦 > 𝜏 .

It is possible to prove the following result.

Theorem 4. Let Ω ≡ R𝑛+, 𝑚 ∈ N0 and
I. a) Conditions (A1) and (A6) hold;

b) The coefficients 𝜂𝛼,𝛽 (𝑥, 𝜀) (𝛼, 𝛽 ∈ N ) of the operator 𝐿𝜀 bounded with its
derivatives of 𝑥𝑛 up to order 𝑚+ 𝑘𝑛 + 1 on Ω× [0, 𝜀];

II. a) Problem D0 is solvable;
b) The solution 𝑤0 of Problem D0 is smooth, i.e. 𝑤0 ∈W∞

2

(︀
R𝑛+
)︀
;

III. Problem D𝜀 is uniformly solvable;
IV. The degeneration of Problem D𝜀 into Problem D0 is regular.
Then the solution 𝑢𝜀 of Problem D𝜀 admits the following asymptotic represen-

tation:

𝑢𝜀 = 𝑤0 +
𝑚∑︁
𝑖=1

𝜀𝑖𝑤𝑖 +

𝑚+𝑘𝑛∑︁
𝑖=0

𝜀𝑖 (𝑣𝑖 + 𝜀𝜑 (𝑥𝑛)𝛼𝑖) + 𝑧𝑚,

where 𝑤0 is the solution of Problem D0, 𝑤𝑖 (𝑖 = 1, . . . ,𝑚) is the solution of the D0

type problem, 𝑣𝑖 = 𝜀𝑘𝑛𝑣𝑖 (𝑖 = 0, . . . ,𝑚+ 𝑘𝑛) is a boundary layer type function of
order 𝑘𝑛, 𝛼𝑖 (𝑖 = 0, . . . ,𝑚+ 𝑘𝑛) is a polynomial of degree 𝑘𝑛− 1 with respect to 𝑥𝑛,
and for the remainder 𝑧𝑚 holds the following estimate:

‖𝑧𝑚‖𝜀 = 𝑂
(︀
𝜀𝑚+1

)︀
(‖.‖𝜀 is a norm from Condition III, see Definition 2).
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V. I. Korzyuk, O. A. Kovnatskaya

Key words: method of energy inequalities and averaging operators with variable
step, strong solution, partial differential equation of the fourth order, partial differ-
ential equation of composite type

AMS Mathematics Subject Classification: 35D35

Abstract. The method of energy inequalities and averaging operators with variable
step was applied in the article to prove the existence and uniqueness of strong
solution of boundary value problem for the fourth-order partial differential equation
of composite type.

1 Introduction

In the 1930s, studying boundary value problems for partial differential equations [1–
3], J. Hadamard introduced the concept of well-posed problem. This and studying
of Cauchy problem by I. G. Petrovskii, whose results were published in 1937 [4, 5],
were a key factor of modern theory of partial differential equations creation.

The theory of solvability of various problems of differential equations and their
systems receives further development using different methods of functional analysis.
One of such tools is energy inequality

‖𝑢‖𝐵 6 ‖𝐿𝑢‖𝐻 , (1)

where the operator 𝐿 generated by considered problem acts from Banach space
𝐵 into Hilbert space 𝐻, elements 𝑢 from the domain 𝒟(𝐿) of the operator 𝐿, a
constant 𝑐 > 0 is independent of 𝑢, ‖ · ‖𝐵 and ‖ · ‖𝐻 are norms in the spaces 𝐵
and 𝐻.

The uniqueness in the space 𝐵 of the solution of equation

𝐿𝑢 = 𝐹, 𝑢 ∈ 𝒟(𝐿), (2)

for the the original problem generated operator equation (2) follows from inequal-
ity (1) immediately (if it exists).
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The elliptic theory, integral transforms and other methods are used along with
inequality (1) or various its modifications when proving theorems of existence [6–9].

But, for example, when studying many mixed and other problems for nonsta-
tionary equations given in noncylindrical domains, i. e. in domains changing with
time, the mentioned mathods of proving solvability can not be migrate to this case
automatically. In the same time the considering of such problems is dictated by real
physical problems when modeling of specific phenomena. In the book [10, chapter 3,
problems 11.9–11.11] J. L. Lions notes such problems for equations of evolutionary
type in noncylindrical domains as problems.

2 Strong solution

We assume that the considered linear problem can be written in the form of linear
operator equation (2), where an operator 𝐿 : 𝐵 → 𝐻 with dense in the space 𝐵
domain 𝒟(𝐿). We denote the range of the operator 𝐿 by ℛ(𝐿).

To prove the existence of solution of equation (2) for all 𝐹 ∈ 𝐻 we need to show
ℛ(𝐿) coincidence with 𝐻. As a rule, the equality ℛ(𝐿) = 𝐻 doesn’t hold, and
even more so if the domain 𝒟(𝐿) of the operator 𝐿 represents a set of sufficiently
smooth functions. In this connection the extension of the operator 𝐿 is done.

We consider the extension of 𝐿 in the strong topology. We assume that the
operator 𝐿 : 𝐵 → 𝐻 admits closure 𝐿.

Definition 1. A solution of operator equation

𝐿𝑢 = 𝐹, 𝑢 ∈ 𝒟(𝐿), (3)

is called a strong solution of equation (2) or differential problem which equation (2)
describes.

If energy inequality (1) holds for the operator 𝐿 : 𝐵 → 𝐻 and it admits closure
𝐿 : 𝐵 → 𝐻, then equality

ℛ(𝐿) = ℛ(𝐿) (4)

is proved, where 𝑅(𝐿) is the closure in 𝐻 of the set ℛ(𝐿), ℛ(𝐿) is the range of the
operator 𝐿.

It follows from equality (4) that it suffices to prove energy inequality (1), the
density of the range ℛ(𝐿) of the operator 𝐿 in the space 𝐻 and that the operator
𝐿 admits closure 𝐿 within the spaces 𝐵 and 𝐻 for proving the existence of the
solution of equation (2) (the strong solution of equation (2)) for all 𝐹 ∈ 𝐻. One
can use averaging operators to achieve the formulated goals.
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We note that the introduction of the averaging operators is related in a certain
sense to approximation of defined functions by infinitely differentiable or other
smoother functions. In their research S. L. Sobolev [11, 12] and K. Friedricks [13]
offer integral operators with infinitely differentiable kernel as averaging operators.
The structure of averaging operators with variable step based on the structures
these integral operators and the partition of unity was offered in the papers by
Deny and Lions [14] and Burenkov [15, 16], which allows to take into account the
boundary conditions (see also [17]). It is known that the averaging operators allow
to build the sequence of smooth functions, are used for the partition of unity, for
the integral representation, for the theory of the continuation of functions. In the
same time, the averaging operatirs with variable step can be used in the proof of
the solvability of many boundary value problems for partial differential equations.
More exactly: in the proof of the density of the set ℛ(𝐿) of the corresponding to
the considered problem operator 𝐿 in 𝐻.

Many boundary value problems for partial differential equations were consud-
ered by the just described scheme of proved energy inequalities and averaging op-
erators of variable step [19–34]. We note that we had to evaluate the commutator
of the differential operators and the averaging operators here. If the differential
expression is of the high order, then some problems arise when evaluating such
commutators. In this connection we consider a slightly modified method of en-
ergy inequalities and averaging operatoes with variable step for a boundary value
problem for the fourth-order differential equation of composite type (see also [35]).

3 Statement of problem for differential equation

Let 𝑄 = (0, 𝑇 ) × Ω, Ω ⊂ R𝑛, be a domain in the (𝑛 + 1)-dimensional Eu-
clidean space R𝑛+1 of independent variables 𝑥 = (𝑥0, 𝑥1, . . . , 𝑥𝑛), 𝑥0 ∈ (0, 𝑇 ),
𝑥′ = (𝑥1, . . . , 𝑥𝑛) ∈ Ω. For a function 𝑢 : 𝑄 ∋ 𝑥 → 𝑢(𝑥) ∈ R we consider the
fourth-order linear differential equation

ℒ𝑢 ≡ ℒ(0)𝑢+𝐴(2)𝑢 = 𝑓 (5)

with an operator of composite type in the leading part. Here ℒ(0) = ℒ(1)ℒ(2),

ℒ(1) =
𝜕2

𝜕𝑥20
− 𝑎2Δ, ℒ(2) =

𝜕2

𝜕𝑥20
+ 𝑏2Δ, 𝑎 and 𝑏 are some real constants, 𝑎2 < 𝑏2,

Δ =
𝑛∑︀
𝑖=1

𝜕2/𝜕𝑥2𝑖 is the Laplace operator, 𝐴(2)𝑢 =
∑︀

|𝛼|62
𝑎(𝛼)(𝑥)𝐷𝛼𝑢, 𝑎(𝛼) ∈ 𝐶2(𝑄),
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𝛼 = (𝛼0, . . . , 𝛼𝑛), |𝛼| =
𝑛∑︀
𝑖=0

𝛼𝑖, 𝛼𝑖, 𝑖 = 0, . . . , 𝑛, are nonnegative integers, 𝐷𝛼𝑢 =

𝜕|𝛼|𝑢

𝜕𝑥𝛼0
0 · · · 𝜕𝑥

𝛼𝑛
𝑛
, 𝑓 : 𝑄 ∋ 𝑥→ 𝑓(𝑥) ∈ R is a given square integrable function.

The boundary 𝜕𝑄 of the domain 𝑄 consists of the bottom face Ω(0) = {𝑥 ∈
𝜕𝑄| 𝑥0 = 0}, the top face Ω(𝑇 ) = {𝑥 ∈ 𝜕𝑄| 𝑥0 = 𝑇} and the lateral surface
Γ = {𝑥 ∈ 𝜕𝑄| 0 < 𝑥0 < 𝑇}.

We consider equation (5) with the boundary conditions

𝑢|Ω(0) =
𝜕𝑢

𝜕𝑥0

⃒⃒⃒⃒
Ω(0)

= 0, 𝑙𝑢 ≡ 𝜕3𝑢

𝜕𝑥30

⃒⃒⃒⃒
Ω(0)

= 𝜙(𝑥′),
𝜕𝑢

𝜕𝑥0

⃒⃒⃒⃒
Ω(𝑇 )

= 0 (6)

on Ω(0) and Ω(𝑇 ) and the boundary conditions

𝑢|Γ =
𝜕2𝑢

𝜕𝜈2

⃒⃒⃒⃒
Γ

= 0 (7)

on the lateral surface Γ, where 𝜙 : Ω ∋ 𝑥′ → 𝜙(𝑥′) ∈ R is a given square integrable
function, 𝜈 = (𝜈0, . . . , 𝜈𝑛) is the unit normal to Γ outward with respect to 𝑄. One
can give conditions

𝜕𝑢

𝜕𝑥0

⃒⃒⃒⃒
Γ

=
𝜕3𝑢

𝜕𝜈3

⃒⃒⃒⃒
Γ

= 0 (8)

instead of conditions (7) on the lateral area Γ.

The existence and uniqueness of weak solution of problem (5)–(7) are proved
in [18].

We rewrite problem (5)–(7) in the operator form

𝐿𝑢 = 𝐹 (9)

with operator 𝐿 = (ℒ, 𝑙) and right-hand side 𝐹 = (𝑓, 𝜙). For the domain 𝒟(𝐿) of
𝐿, we take the set of functions that are four times continuously differentiable in the
closure 𝑄 of 𝑄 and satisfy the homogeneous boundary conditions in (6) and (7);
i. e.,

𝒟(𝐿) =

{︂
𝑢 ∈ 𝐶4(𝑄)| 𝑢|Ω(0) =

𝜕𝑢

𝜕𝑥0

⃒⃒⃒⃒
Ω(0)

=
𝜕𝑢

𝜕𝑥0

⃒⃒⃒⃒
Ω(𝑇 )

= 𝑢|Γ =
𝜕2𝑢

𝜕𝜈2

⃒⃒⃒⃒
Γ

= 0

}︂
.
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By 𝐵 we denote the Banach space obtained as the closure of 𝒟(𝐿) in the norm

‖𝑢‖𝐵 =
∑︁
|𝛼|=3

‖𝐷𝛼𝑢‖𝐿2(𝑄) + sup
0<𝜏<𝑇

∑︁
|𝛼|62

‖𝐷𝛼𝑢‖𝐿2(Ω)(𝜏),

and by 𝐻 we denote the Hilbert space of right-hand sides of the operator equa-
tion (9); that is, 𝐻 = 𝐿2(𝑄)× 𝐿2(Ω), ‖𝐹 ‖𝐻 = ‖𝑓‖𝐿2(𝑄) + ‖𝜙‖𝐿2(Ω).

In what follows, we consider equation (9) only in the spaces 𝐵 and 𝐻 thus
introduced; 𝐿 : 𝐵 ∋ 𝑢→ 𝐿𝑢 ∈𝐻.

4 Energy inequality

Theorem 1. The energy inequality

𝑞‖𝑢‖𝐵 6 𝑐‖𝐿𝑢‖𝐻 (10)

∀𝑢 ∈ 𝒟(𝐿) holds for the operator 𝐿 in the operator equation (9), where 𝑐 is some
constant independent of 𝑢.

Proof. Consider the expression 2ℒ𝑢ℳ𝑢, whereℳ𝑢 = (𝑇−𝑥0) 𝜕3𝑢/𝜕𝑥30+(𝑏2−
𝑎2)(𝑇 − 𝑥0)𝜕/𝜕𝑥0Δ𝑢, and represent it in the divergence form

2ℒ𝑢ℳ𝑢 =
𝜕

𝜕𝑥0

(︂
(𝑇 − 𝑥0)

(︂
𝜕3𝑢

𝜕𝑥30

)︂2)︂
+

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

+

+2(𝑏2− 𝑎2)
𝑛∑︁
𝑖=1

𝜕

𝜕𝑥0

(︂
𝜕3𝑢

𝜕𝑥30
(𝑇 −𝑥0)

𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑖

)︂
+2(𝑏2− 𝑎2)

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥20

𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑖

)︂
−

− 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

(︂
𝜕2𝑢

𝜕𝑥20

𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

)︂
+ 2(𝑏2 − 𝑎2)

𝑛∑︁
𝑖=1

(︂
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

)︂2

+

+ 2(𝑏2 − 𝑎2)2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖
(𝑇 − 𝑥0)

𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑗

)︂
−

− 2(𝑏2 − 𝑎2)2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖
(𝑇 − 𝑥0)

𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂
+

+ (𝑏2 − 𝑎2)2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥0

(︂
(𝑇 − 𝑥0)

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂2)︂
+

+((𝑏2−𝑎2)2+3𝑎2𝑏2)

𝑛∑︁
𝑖,𝑗=1

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂2

−2𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥2𝑗
(𝑇−𝑥0)

𝜕3𝑢

𝜕𝑥30

)︂
+
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+ 2𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑇 − 𝑥0)

𝜕4𝑢

𝜕𝑥30𝜕𝑥𝑖

)︂
−

− 2𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑇 − 𝑥0)

𝜕4𝑢

𝜕𝑥20𝜕𝑥𝑖𝜕𝑥𝑗

)︂
+

+𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥0

(︂
(𝑇−𝑥0)

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂2)︂
−2𝑎2𝑏2

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂
−

− 2𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

𝜕

𝜕𝑥𝑖

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥2𝑗
(𝑇 − 𝑥0)

𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑘

)︂
+

+ 2𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

𝜕

𝜕𝑥𝑗

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑇 − 𝑥0)

𝜕4𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥2𝑘

)︂
−

− 2𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

𝜕

𝜕𝑥𝑘

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑇 − 𝑥0)

𝜕4𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂
+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

𝜕

𝜕𝑥0

(︂
(𝑇 − 𝑥0)

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂2)︂
+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂2

+𝐴(2)𝑢ℳ𝑢.

Then we integrate the resulting relation over the domain 𝑄,

2

∫︁
𝑄

ℒ𝑢ℳ𝑢 𝑑𝑥 =

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

𝑑𝑥+ 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

)︂2

𝑑𝑥+

+ ((𝑏2 − 𝑎2)2 + 3𝑎2𝑏2)

𝑛∑︁
𝑖,𝑗=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂2

𝑑𝑥+

+, 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂2

𝑑𝑥− 𝑇
∫︁
Ω

𝜙2(𝑥′)𝑑𝑥′ + 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥.

(11)

Using the inequality

2|𝑎𝑏| 6 𝜀𝑎2 + 1

𝜀
𝑏2 ∀𝜀 > 0, (12)
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we estimate the left-hand side of relation (11) as

2

∫︁
𝑄

ℒ𝑢ℳ𝑢 𝑑𝑥 6
1

𝜀1

∫︁
𝑄

(ℒ𝑢)2 𝑑𝑥+ 𝜀1𝑇
2

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

𝑑𝑥+

+ 𝜀1(𝑏
2 − 𝑎2)2𝑇 2

𝑛∑︁
𝑖=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑖

)︂2

𝑑𝑥.

By using this estimate, from (11), we obtain the inequality

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

𝑑𝑥+ 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

)︂2

𝑑𝑥+

+ ((𝑏2 − 𝑎2)2 + 3𝑎2𝑏2)

𝑛∑︁
𝑖,𝑗=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

)︂2

𝑑𝑥+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

)︂2

𝑑𝑥+ 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥 6

6
1

𝜀1

∫︁
𝑄

(ℒ𝑢)2 𝑑𝑥+ 𝑇

∫︁
Ω

𝜙2(𝑥′) 𝑑𝑥′ + 𝜀1𝑇
2

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

𝑑𝑥+

+ 𝜀1(𝑏
2 − 𝑎2)2𝑇 2

𝑛∑︁
𝑖=1

∫︁
𝑄

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑖

)︂2

𝑑𝑥,

where we pass to the norm of the space 𝐿2(𝑄),

(1− 𝜀1𝑇 2)

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥30

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

⃦⃦⃦⃦2
𝐿2(𝑄)

+

+ ((𝑏2 − 𝑎2)2 + 3𝑎2𝑏2 − 𝜀1(𝑏2 − 𝑎2)2𝑇 2𝛿𝑖𝑗)
𝑛∑︁

𝑖,𝑗=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

⃦⃦⃦⃦2
𝐿2(𝑄)

+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥 6

6
1

𝜀1
‖ℒ𝑢‖2𝐿2(𝑄) + 𝑇‖𝜙‖2𝐿2(Ω), (13)
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where 𝛿𝑖𝑗 is the Kronecker delta.

Take an 𝜀1 such that 1− 𝜀1𝑇 2 > 0 and (𝑏2 − 𝑎2)2 +3𝑎2𝑏2 − 𝜀1(𝑏2 − 𝑎2)2𝑇 2 > 0.

To obtain an expression for the norm of the space 𝐵, on the left-hand side in
inequality (13), we add the missing terms sup

0<𝜏<𝑇
‖𝐷𝛼𝑢‖2𝐿2(Ω)(𝜏), |𝛼| 6 2. To this

end, we integrate the relation

𝑐1
𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

= 2𝑐1
𝜕2𝑢

𝜕𝑥20

𝜕3𝑢

𝜕𝑥30

over the domain 𝑄(𝜏) = (0, 𝜏) × Ω, 𝜏 ∈ (0, 𝑇 ), where 𝑐1 is some sufficiently large
positive constant,

𝑐1

∫︁
Ω

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

(𝜏,𝑥′)𝑑𝑥′ = 2𝑐1

∫︁
𝑄(𝜏)

𝜕2𝑢

𝜕𝑥20

𝜕3𝑢

𝜕𝑥30
𝑑𝑥 6

𝑐1
𝜀2

∫︁
𝑄(𝜏)

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

𝑑𝑥+

+ 𝜀2𝑐1

∫︁
𝑄(𝜏)

(︂
𝜕3𝑢

𝜕𝑥30

)︂2

𝑑𝑥 6
𝑐1
𝜀2

∫︁
𝑄(𝜏)

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

𝑑𝑥+ 𝜀2𝑐1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥30

⃦⃦⃦⃦2
𝐿2(𝑄)

, (14)

𝜀2 > 0.

Set

𝑣(𝜏) = 𝑐1

∫︁
Ω

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

(𝜏,𝑥′)𝑑𝑥′.

Then

𝑐1

∫︁
𝑄(𝜏)

(︂
𝜕2𝑢

𝜕𝑥20

)︂2

𝑑𝑥 =

𝜏∫︁
0

𝑣(𝑡) 𝑑𝑡

and inequality (14) acquires the form

𝑣(𝜏) 6
1

𝜀2

𝜏∫︁
0

𝑣(𝑡) 𝑑𝑡+ 𝜀2𝑐1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥30

⃦⃦⃦⃦2
𝐿2(𝑄)

.

By adding it to inequality (13) and by using the Gronwall inequality, we obtain the
relations

(1− 𝜀1𝑇 2 − 𝜀2𝑐1)
⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥30

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

⃦⃦⃦⃦2
𝐿2(𝑄)

+
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+ ((𝑏2 − 𝑎2)2 + 3𝑎2𝑏2 − 𝜀1(𝑏2 − 𝑎2)2𝑇 2𝛿𝑖𝑗)

𝑛∑︁
𝑖,𝑗=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

⃦⃦⃦⃦2
𝐿2(𝑄)

+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥+ 𝑣(𝜏) 6

6 𝑒𝜏/𝜀2
(︂

1

𝜀1
‖ℒ𝑢‖2𝐿2(𝑄) + 𝑇‖𝜙‖2𝐿2(Ω)

)︂
6 𝑒𝑇/𝜀2

(︂
1

𝜀1
‖ℒ𝑢‖2𝐿2(𝑄) + 𝑇‖𝜙‖2𝐿2(Ω)

)︂
. (15)

Take an 𝜀2 such that 1− 𝜀1𝑇 2− 𝜀2𝑐1 > 0. The right-hand side of inequality (15)
is independent of 𝜏 ; therefore, one can pass to the least upper bound with respect
to 𝜏 on the left-hand side. As a result, inequality (15) acquires the form

(1− 𝜀1𝑇 2 − 𝜀2𝑐1)
⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥30

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 2(𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥20𝜕𝑥𝑖

⃦⃦⃦⃦2
𝐿2(𝑄)

+

+ ((𝑏2 − 𝑎2)2 + 3𝑎2𝑏2 − 𝜀1(𝑏2 − 𝑎2)2𝑇 2𝛿𝑖𝑗)
𝑛∑︁

𝑖,𝑗=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥0𝜕𝑥𝑖𝜕𝑥𝑗

⃦⃦⃦⃦2
𝐿2(𝑄)

+

+ 𝑎2𝑏2(𝑏2 − 𝑎2)
𝑛∑︁

𝑖,𝑗,𝑘=1

⃦⃦⃦⃦
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑘

⃦⃦⃦⃦2
𝐿2(𝑄)

+ 𝑐2 sup
0<𝜏<𝑇

⃦⃦⃦⃦
𝜕2𝑢

𝜕𝑥20

⃦⃦⃦⃦2
𝐿2(Ω)

(𝜏) +

+ 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥 6 𝑒𝑇/𝜀2
(︂

1

𝜀1
‖ℒ𝑢‖2𝐿2(𝑄) + 𝑇‖𝜙‖2𝐿2(Ω)

)︂
.

In a similar way, by adding the terms sup0<𝜏<𝑇
⃦⃦

𝜕2𝑢
𝜕𝑥0𝜕𝑥𝑖

⃦⃦2
𝐿2(Ω)

(𝜏), 𝑖 = 1, . . . , 𝑛,

sup0<𝜏<𝑇
⃦⃦

𝜕2𝑢
𝜕𝑥𝑖𝜕𝑥𝑗

⃦⃦2
𝐿2(Ω)

(𝜏), 𝑖, 𝑗 = 1, . . . , 𝑛, and sup0<𝜏<𝑇 ‖𝑢‖𝐿2(Ω)(𝜏), we arrive at
the inequality

∑︁
|𝛼|=3

‖𝐷𝛼𝑢‖𝐿2(𝑄) + 𝑐2 sup
0<𝜏<𝑇

∑︁
|𝛼|62

‖𝐷𝛼𝑢‖𝐿2(Ω)(𝜏) + 2

∫︁
𝑄

𝐴(2)𝑢ℳ𝑢 𝑑𝑥 6

6 𝑐

(︂
‖ℒ𝑢‖2𝐿2(𝑄) + ‖𝜙‖

2
𝐿2(Ω)

)︂
,

where the constant 𝑐2 is sufficiently large.

By estimating the integral
∫︀
𝑄𝐴

(2)𝑢ℳ𝑢 𝑑𝑥 from above with the use of inequal-
ity (12), we obtain an energy inequality for the operator 𝐿. The proof of the theorem
is complete. �
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5 Existence of strong solution

Then we prove that operator 𝐿 admits closure with the help of

Definition 2. An operator 𝐿 : 𝐵 → 𝐻 admits closure if and only if it follows
from the condition 𝑢(𝑚) → 0 in 𝐵 and 𝐿𝑢(𝑚) → 𝐹 in 𝐻 as 𝑚→∞ that 𝐹 = 0 in
the norm of the space 𝐻, where 𝑢(𝑚) ∈ 𝒟(𝐿) [36].

Theorem 2. The range ℛ(𝐽𝐿) =
⋃︀∞
𝑘=1ℛ(𝐽(𝑘)𝐿) of the operators 𝐽(𝑘)𝐿 is

dense in 𝐻.

Proof. Let an element 𝑣 = (𝑣(𝑥), 𝑣(0)(𝑥′)) ∈ 𝐻 be orthogonal to the set
ℛ(𝐽(𝑘)𝐿). It means that the relation

(𝐽(𝑘)ℒ𝑢, 𝑣)𝐿2(𝑄) + (𝑙𝑢, 𝑣(0))𝐿2(Ω) = 0 (16)

holds for any 𝑢 ∈ 𝒟(𝐽(𝑘)𝐿). Taking in (16), in particular, 𝑢 equal to any ele-
ment from 𝒟(0)(𝐽(𝑘)𝐿), where 𝒟(0)(𝐽(𝑘)𝐿) = {𝑢 ∈ 𝒟(𝐽(𝑘)𝐿) | 𝑙𝑢 = 0}, we obtain
from (16) the relation

(𝐽(𝑘)ℒ𝑢, 𝑣)𝐿2(𝑄) = 0 (17)

for all 𝑢 ∈ 𝒟(0)(𝐽(𝑘)𝐿). Show that it follows from relation (17) that it holds only
for 𝑣 = 0 in 𝐿2(𝑄).

Transform relation (17) in the following way:

(𝐽(𝑘)ℒ𝑢, 𝑣)𝐿2(𝑄) = (ℒ𝑢, 𝐽⋆(𝑘)𝑣)𝐿2(𝑄) = (𝑢,ℒ′𝐽⋆(𝑘)𝑣)𝐿2(𝑄) +ℳ(𝑢, 𝐽⋆(𝑘)𝑣; 𝜕𝑄), (18)

where

ℒ′𝐽⋆(𝑘)𝑣 = ℒ(0)𝐽⋆(𝑘)𝑣 +𝐴(2)′𝐽⋆(𝑘)𝑣, 𝐴
(2)′𝐽⋆(𝑘)𝑣 =

∑︁
|𝛼|62

(−1)|𝛼|𝐷𝛼(𝑎(𝛼)𝐽⋆(𝑘)𝑣),

(𝑢, 𝐽⋆(𝑘)𝑣; 𝜕𝑄) =

∫︁
𝜕𝑄

(︂
𝜕

𝜕𝑥0

(︂
𝜕3𝑢

𝜕𝑥30
𝐽⋆(𝑘)𝑣

)︂
+ (𝑏2 − 𝑎2)

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥0

(︂
𝜕3𝑢

𝜕𝑥0𝜕𝑥2𝑖
𝐽⋆(𝑘)𝑣

)︂
−

− 𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︃
𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥2𝑗
𝐽⋆(𝑘)𝑣

)︃
− 𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥20

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣

)︂
−

− (𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

𝜕

𝜕𝑥0

(︂
𝜕2𝑢

𝜕𝑥2𝑖

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣

)︂
+ 𝑎2𝑏2

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖
𝐽⋆(𝑘)𝑣

)︂
+

+
𝜕

𝜕𝑥0

(︂
𝜕𝑢

𝜕𝑥0

𝜕2

𝜕𝑥20
𝐽⋆(𝑘)𝑣

)︂
+ (𝑏2 − 𝑎2)

𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

(︂
𝜕𝑢

𝜕𝑥𝑖

𝜕2

𝜕𝑥20
𝐽⋆(𝑘)𝑣

)︂
−
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− 𝑎2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕

𝜕𝑥𝑖

(︂
𝜕𝑢

𝜕𝑥𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐽⋆(𝑘)𝑣

)︂
− 𝜕

𝜕𝑥0

(︂
𝑢
𝜕3

𝜕𝑥30
𝐽⋆(𝑘)𝑣

)︂
−

− (𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

𝜕

𝜕𝑥𝑖

(︂
𝑢

𝜕3

𝜕𝑥20𝜕𝑥𝑖
𝐽⋆(𝑘)𝑣

)︂
+ 𝑎2𝑏2

𝑛∑︁
𝑖,𝑗=1

𝜕

𝜕𝑥𝑗

(︂
𝑢

𝜕3

𝜕𝑥2𝑖 𝜕𝑥𝑗
𝐽⋆(𝑘)𝑣

)︂)︂
𝑑𝑥.

From the homogeneous conditions (6), (7) (𝑢 ∈ 𝒟(0)(𝐽(𝑘)𝐿)) we have
ℳ(𝑢, 𝐽⋆(𝑘)𝑣; 𝜕𝑄) =ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Ω

(0)) +ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Ω
(𝑇 )) +ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Γ), where

ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Ω
(0)) = −

∫︁
Ω(0)

𝜕2𝑢

𝜕𝑥20

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣 𝑑𝑥

′,

ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Ω
(𝑇 )) =

=

∫︁
Ω(𝑇 )

(︂
𝜕3𝑢

𝜕𝑥30
𝐽⋆(𝑘)𝑣−

𝜕2𝑢

𝜕𝑥20

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣− (𝑏2− 𝑎2)𝜕

2𝑢

𝜕𝑥2𝑖

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣− −𝑢

𝜕3

𝜕𝑥30
𝐽⋆(𝑘)𝑣

)︂
𝑑𝑥′,

ℳ(𝑢, 𝐽⋆(𝑘)𝑣; Γ) =

∫︁
Γ

(︂
−𝑎2𝑏2

𝑛∑︁
𝑖,𝑗=1

𝜕3𝑢

𝜕𝑥𝑖𝜕𝑥2𝑗
𝐽⋆(𝑘)𝑣 𝜈𝑖+

+ (𝑏2 − 𝑎2)
𝑛∑︁
𝑖=1

𝜕𝑢

𝜕𝑥𝑖

𝜕2

𝜕𝑥20
𝐽⋆(𝑘)𝑣 𝜈𝑖 − 𝑎

2𝑏2
𝑛∑︁

𝑖,𝑗=1

𝜕𝑢

𝜕𝑥𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐽⋆(𝑘)𝑣 𝜈𝑖

)︂
𝑑𝑠.

Varying in relation (18) the function 𝑢 in the bound of the set 𝒟(0)(𝐽(𝑘)𝐿), it
is possible to show that it holds if and only if the relations

(𝑢,ℒ′𝐽⋆(𝑘)𝑣)𝐿2(𝑄) = 0, (19)

ℳ(𝑢, 𝐽⋆(𝑘)𝑣; 𝜕𝑄) = 0 (20)

hold, since in (19) and (20) the domains of integrating are different.

Relation (20) generates the boundary conditions

𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣

⃒⃒⃒⃒
Ω(0)

= 𝐽⋆(𝑘)𝑣|Ω(𝑇 ) =
𝜕

𝜕𝑥0
𝐽⋆(𝑘)𝑣

⃒⃒⃒⃒
Ω(𝑇 )

=
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=
𝜕3

𝜕𝑥30
𝐽⋆(𝑘)𝑣

⃒⃒⃒⃒
Ω(𝑇 )

= 𝐽⋆(𝑘)𝑣|Γ =
𝜕2

𝜕𝜈2
𝐽⋆(𝑘)𝑣

⃒⃒⃒⃒
Γ

= 0. (21)

As far as the set 𝒟(0)(𝐽(𝑘)𝐿) is dense in 𝐿2(𝑄), relation (19) can be extended
with the help of passaging to the limit to all functions 𝑢 ∈ 𝐿2(𝑄). We suppose

𝑢 = (𝑇 − 𝑥0)
𝜕3

𝜕𝑥30
𝐽⋆(𝑘)𝑣 + (𝑏2 − 𝑎2)(𝑇 − 𝑥0)

𝜕

𝜕𝑥0
Δ𝐽⋆(𝑘)𝑣 in relation (19) and, by

repeating the proof of Theorem 1, obtain that ‖𝐽⋆(𝑘)𝑣‖𝐻3(𝑄) = 0 for all 𝑘 = 1, 2, . . . .
As long as {𝐽⋆(𝑘)𝑣} converges to 𝑣 as 𝑘 →∞, it follows from here that ‖𝑣‖𝐿2(𝑄) = 0.
Here 𝐻 𝑙(𝑄) is the Hilbert space of functions 𝑢 ∈ 𝐿2(𝑄) and have generalized
derivatives 𝐷𝛼𝑢, |𝛼| 6 𝑙, also belonging to 𝐿2(𝑄). On 𝐻 𝑙(𝑄) the scalar product
𝐻 𝑙(𝑄)×𝐻 𝑙(𝑄) ∋ 𝑢, 𝑣 → (𝑢, 𝑣)𝐻𝑙(𝑄) =

∑︀
|𝛼|6𝑙

(𝐷𝛼𝑢,𝐷𝛼𝑣)𝐿2(𝑄) is introduced and the

norm 𝐻 𝑙(𝑄) ∋ 𝑢→ ‖𝑢‖𝐻𝑙(𝑄) = (𝑢, 𝑢)
1/2

𝐻𝑙(𝑄)
.

Returning again to (16), taking into account (17) we have the relation of or-
thogonality

(𝑙𝑢, 𝑣(0))𝐿2(Ω) = 0 (22)

for all 𝑢 ∈ 𝒟(𝐽(𝑘)𝐿). If the function 𝑢 ∈ 𝒟(𝐽(𝑘)𝐿), then 𝑙𝑢 =
𝜕3𝑢(0,𝑥′)

𝜕𝑥30
∈ 𝐶1(Ω).

It is evidently that for any function 𝑢(0) ∈ 𝐶1(Ω) 𝑢 ∈ 𝐶1(𝑄) exists such that
𝜕3𝑢(0,𝑥′)

𝜕𝑥30
= 𝑢(0)(𝑥′). The set 𝐶1(Ω) is dense in 𝐿2(Ω). Since the set {𝑙𝑢} is dense

in 𝐿2(Ω), if 𝑢 runs through the whole set 𝒟(𝐽(𝑘)𝐿), then relation (22) holds if and
only if 𝑣(0) = 0 in 𝐿2(Ω). Theorem 2 is proved. �

So, Theorem 3 is proved.

Theorem 3. For arbitrary functions 𝑓 ∈ 𝐿2(𝑄), 𝜙 ∈ 𝐿2(Ω) there exists a
unique strong solution 𝑢 ∈ 𝐵 of (5)–(7), and the estimate

‖𝑢‖𝐵 6 𝑐(‖𝑓‖𝐿2(𝑄) + ‖𝜙‖𝐿2(Ω)),

holds, where 𝑐 is the same constant as in inequality (10).

The proof of the theorem analogous to Theorem 3 for problem (5), (6), (8) is a
verbatim repetition of the above proof.
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Abstract. Singular inergral equations with a regular part of a specific kind is
viewed and the theorems about their decidability for them are obtained.

On the smooth closed path 𝐿 = ∪𝐿𝑗 , consisting of the finite number of closed curves
which are mutually disjoint and non-passing through the infinite point singular
integral equation is regarded

𝐾𝜙(𝑡) ≡ 𝑎(𝑡)𝜙(𝑡) + 𝑏(𝑡)(𝑆𝜙(𝑡)−𝐻𝑚−1(𝑡, 𝑆𝜙,Δ)) = 𝑓(𝑡). (1)

Further we’ll be using the generally adopted abbreviation s.i.e.
Here the singular integration operator is the integral Cauchy type along the con-

tour 𝐿, 𝐻𝑚−1(𝑡, 𝑔,Δ) one of the interpolational polynominals by Lagrange, Taylor
and Hermite [3], built according to the 𝑔 function meaning and its derivation in the
interpolation points Δ = {𝑡𝑛1

1 , 𝑡
𝑛2
2 , ..., 𝑡

𝑛𝑞
𝑞 }, 𝑛1 + ...+ 𝑛𝑞 = 𝑚− 1.

The equation coefficient 𝑎(𝑡), 𝑏(𝑡) and its right 𝑓(𝑡) belong to the class
𝐶

(𝑚−1)
𝛼 (𝐿) and here 𝑎2(𝑡) − 𝑏2(𝑡) ≡ 1. Suggested investigations adjoin to the au-

thor’s works [5]- [8].
S.i.e. (1) is a complete singular integral equation [1]. The peculiarity of this

equation lies in the presence of the Hermite polynominal, which can be regarded as
a quasi-regular part of the operator 𝐾.

According to the definition [1] the integral
∫︀
𝐿

𝑘(𝑡, 𝜏)𝜙(𝜏) 𝑑𝜏 is part of the singular

integral operator, the nucleus 𝑘(𝑡, 𝜏) of which can be presented in the form of the
fraction 𝑘(𝑡, 𝜏) = 𝑘1(𝑡, 𝜏)/|𝑡 − 𝜏 |𝛼, 𝑘1(𝑡, 𝜏) is a piecewise Hölder function and 𝛼 —
is such a real number as 0 ≤ 𝛼 < 1. In the equation (1) under discussion the
Hermite polynominal can be registered in the shape of integral, but the nucleus of
this integral representation can have peculiarities of the first order terminal type in
the nodes of interpolation.
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The singular integral equation can be solved with the help of Carleman-Veku
regularization method [1], which consists of s.i.e. reduction (1) to the characteristic
equation 𝐾0𝜙 = 𝐹 with the right side in the form of 𝐹 (𝑡) = 𝑓(𝑡)−𝐻𝑚−1(𝑡, 𝑆𝜙,Δ).
The general solution and the picture of solvability in the characteristic equation
is well-known by the present time. Indefinite constants are a part of them which
depend on the required s.i.e. solution (1). If we want to calculate these constants
we’ll have to compose a system of linear algebraic equations which is investigated
by the higher algebra methods through the rank of this system.

At present we suggest drawing a direct analytical continuation of s.i.e. into the
surface of a complex variable 𝑧. Such an approach allows not only to construct a
general solution of the s.i.e. (1), but to investigate effectively the conditions of this
equation solvability. This method works according to one and the same scheme for
all kinds of the Hermite polynominal. That’s why we’ll describe this method in
detail for the case when the Hermite polynominal is part of the Taylor one while
for other situations we’ll show only the peculiarities.

1∘. Let 𝐿 be a smooth closed composite contour and 𝑡0 ∈ 𝐿 — as a fixed point.
Let us regard on 𝐿 a singular integral equation of the type (1)

𝑎(𝑡)𝜓(𝑡) + 𝑏(𝑡)

{︃
(𝑆𝜓)(𝑡)−

𝑛−1∑︁
𝑘=0

(𝑡− 𝑡0)𝑘

𝑘!
(𝑆𝜓)(𝑘)(𝑡0)

}︃
= 𝑓(𝑡). (2)

We can notice that from the qualities of the function 𝑎(𝑡) and 𝑏(𝑡) it follows that
if 𝑎(𝑡0) = 𝑎(1)(𝑡0) = ... = 𝑎(𝑝−1)(𝑡0) = 0, we’ll 𝑓(𝑡0) = 𝑓 ′(𝑡0) = ... = 𝑓 (𝑝−1)(𝑡0) = 0.
We’ll consider that these conditions are fulfilled.

1 An auxiliary problem about a jump

In the surface of a complex variable 𝑧 to find the piecewise-analytical function of
Ψ(𝑧) which on 𝐿 meets the boundary condition

Φ+(𝑡)− Φ−(𝑡) = 𝑔(𝑡), 𝑔 ∈ 𝐶𝑛−1
𝛼 (𝐿),

[Φ+(𝑡) + Φ−(𝑡)](𝑘)
⃒⃒⃒
𝑡=𝑡0

= 0, 𝑘 = 0, .., 𝑛− 1,
(3)

while in the infinite point it can have an order terminal not higher than 𝑛− 1.
The boundary problem (3) differs from a usual Riemann problem [2] only by

additional conditions (3). Taking into account them, let us write down a general
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solution of the problem (3) as follows:

Φ(𝑧) =
1

2𝜋𝑖

∫︁
𝐿

𝑔(𝜏) 𝑑𝜏

𝜏 − 𝑧
+

𝑛−1∑︁
𝑘=0

𝐶𝑘(𝑧 − 𝑡0)𝑘.

Let’s make it dependent on the condition (3). We have

Φ+(𝑡) + Φ−(𝑡) = (𝑆𝑔)(𝑡) + 2

𝑛−1∑︁
𝑘=0

𝐶𝑘(𝑡− 𝑡0)𝑘. (4)

Then from the condition (3) has only one solution which is done according to
the formula (4).

2 Obtaining the equation (2) to the Riemann boundary problem

Let us introduce an auxiliary function

Ψ(𝑧) =
1

2𝜋𝑖

∫︁
𝐿

𝜓(𝜏) 𝑑𝜏

𝜏 − 𝑧
− 1

2

𝑛−1∑︁
𝑘=0

1

𝑘!
(𝑧 − 𝑡0)𝑘(𝑆𝜓)(𝑘)(𝑡0). (5)

In the infinite point this function has an order terminal not higher than 𝑛 − 1
while its limiting meanings on 𝐿 are connected by Yu.V. Sokhotsky formulas

Ψ+(𝑡)−Ψ−(𝑡) = 𝜓(𝑡),

Ψ+(𝑡) + Ψ−(𝑡) = (𝑆𝜓)(𝑡)−
𝑛−1∑︁
𝑘=0

1

𝑘!
(𝑡− 𝑡0)𝑘(𝑆𝜓)(𝑘)(𝑡0).

(6)

And by point wise conditions

(Ψ+ +Ψ−)(𝑘)(𝑡0) = 0, 𝑘 = 0, ..., 𝑛− 1. (7)

Using the formulas (6) we come from the equation (2) to the boundary prob-
lem. "Find the piecewise-analytical function of Ψ(𝑧) which meets the 𝐿 piecewise
condition

Ψ+(𝑡) =

(︂
𝑏− 𝑎
𝑎+ 𝑏

)︂
(𝑡)Ψ−(𝑡) +

(︂
𝑓

𝑎+ 𝑏

)︂
(𝑡) (8)

and the correlations (7) and in (8) the infinitely distant point having a point order
not more than 𝑛− 1".
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The boundary problem (7)–(8) is equivalent to the equation (2). It is proved
by a usual scheme [1] with the use of the results p.1. From the proved equation (2)
equivalence and the boundary problems (7)–(8) it follows that first it’s necessary
to solve the boundary problem and then to get the equation (2) solution using the
formula (6).

3 Boundary problem solution (7)–(8)

Let us mark through 𝜒(𝑧) the canonical function of the homogeneous problem (1),
corresponding to the problem (7)–(8) and through 𝜅 — its order in the infinitely
distant point. The general solution of the boundary problem (7)–(8) can be put
this way:

Ψ(𝑧) = 𝜒(𝑧)

⎡⎣ 1

2𝜋𝑖

∫︁
𝐿

𝑓(𝜏)

𝑍(𝜏)

𝑑𝜏

𝜏 − 𝑧
+
𝑛+𝜅−1∑︁
𝑘=0

𝐶𝑘(𝑧 − 𝑡0)𝑘
⎤⎦ , (9)

where 𝑍(𝑡) = 𝜒+(𝑡)(𝑎(𝑡) + 𝑏(𝑡)).
Here 𝑛 + 𝜅 ≤ 0 should be regarded all the 𝐶𝑘 = 0 and 𝑛 + 𝜅 < 0 in equations

the solution should be carried out∫︁
𝐿

𝑓(𝜏)𝑍−1(𝜏)𝜏𝑘𝑑𝜏 = 0, 𝑘 = 0, ..,−𝑛− 𝜅− 1, (10)

which present the integral conditions of solvability.
Let us now meet the conditions (7). For this we calculate the sum of the limit

meanings in the function (9)

Ψ+(𝑡) + Ψ−(𝑡) = −(𝑄𝑓)(𝑡) +
𝑛+𝜅−1∑︁
𝑘=0

𝐶𝑘𝜓𝑘(𝑡),

where

(𝑄𝐹 )(𝑡) = −𝑏(𝑡)𝑓(𝑡) + 𝑎(𝑡)𝑍(𝑡)

(︂
𝑆
𝑓

𝑍

)︂
(𝑡), 𝜓𝑘(𝑡) = 2𝑎(𝑡)𝑍(𝑡)(𝑡− 𝑡0)𝑘.

Then the conditions (7) are rechanged into:

𝑛+𝜅−1∑︁
𝑘=0

𝐶𝑘𝜓
(𝑙)
𝑘 (𝑡0) = (𝑄𝑓)(𝑙)(𝑡0), 𝑙 = 0, ..., 𝑛− 1. (11)
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Thus, a general solution of the problem (7)–(8) has a shape (9) when the conditions
(10),(11) are fulfilled.

4 Equation (2) solution and the picture of its solvability

Now according to the first one from the formulas (6) and to the formula (9) we get
a general equation (2) solution

𝜓(𝑡) = 𝑅𝑓(𝑡) +

𝑛−𝜅∑︁
𝑘=1

𝐶𝑘𝜓𝑘(𝑡), (12)

where
(𝑅𝑓)(𝑡) = (𝑎𝑓)(𝑡)− 𝑏(𝑡)𝑍(𝑡)

(︂
𝑆
𝑓

𝑍

)︂
(𝑡), (13)

while constants 𝐶𝑘 are connected with condition (11).
Because of the function 𝑓(𝑡) the general solution belongs to class 𝐶𝑛−1

𝛼 (𝐿). It
must be also noted that the differentiability of coefficients s.i.e (1) and its right part
guarantee the existence and calculation derived from the integral of the Cauche type
involved in the s.i.e. (2) solution.

Let us now describe the picture of the equation (2) solvability. A direct analysis
of the condition (11) shows that the rank of the system (11) depends on the number
of the derived coefficient 𝑎(𝑡) turning into a zero at the point 𝑡 = 𝑡0. Using simple
arguments the next theorem is proved.

Theorem 1. Let 𝑟 be a number of the derived coefficient 𝑎(𝑡) of the integral
operator 𝐾 which turns into zero at point 𝑡0, including into this number meaning of
the function proper. Then, if 𝑛+𝜅−𝑟 ≥ 0, the homogeneous s.i.e. (1) has 𝑛+𝜅−𝑟
linear independent solutions. If 𝑛 + 𝜅 − 𝑟 < 0, then a inhomogeneous s.i.e. (1) is
solvable while carrying out 𝑟 − 𝑛− 𝜅 integral and pointwise conditions.

2∘. Let 𝐿 be a differentiable close composite contour and Δ = {𝑡1, 𝑡2, ..., 𝑡𝑛} —
the divisor from arbitory fixed points let us regard on 𝐿 singular integral equation
of type (1).

𝑎(𝑡)𝜓(𝑡) + 𝑏(𝑡){(𝑆𝜓)(𝑡)− 𝐿𝑛−1(𝑡, 𝑆𝜓,Δ)} = 𝑓(𝑡), (14)

where

𝐿𝑛−1(𝑡, 𝜙,Δ) ≡
𝑛∑︁
𝑗=1

𝜙(𝑡𝑗) · 𝜔𝑗(𝑡), 𝜔𝑗(𝑡) ≡
𝑛∏︁

𝑘=1,

𝑘 ̸=𝑗

𝑡− 𝑡𝑘
𝑡𝑗 − 𝑡𝑘

. (15)
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In this case s.i.e. (15) leads to the equivalent of the Riemann boundary problem
with the help of auxiliary piecewise analytical function

Φ(𝑧) ≡ 1

2

⎛⎝ 1

𝜋𝑖

∫︁
𝐿

𝜙(𝜏) 𝑑𝜏

𝜏 − 𝑧
− 𝐿𝑛−1(𝑧, 𝑆𝜙,Δ)

⎞⎠ . (16)

The boundary condition of this problem has a shape⎧⎨⎩ Φ+(𝑡) =
𝑎(𝑡)− 𝑏(𝑡)
𝑎(𝑡) + 𝑏(𝑡)

Φ−(𝑡) +
𝑓(𝑡)

𝑎(𝑡) + 𝑏(𝑡)
,

Φ+(𝑡𝑘) + Φ−(𝑡𝑘) = 0, 𝑘 = 1, 2, ..., 𝑛
(17)

and its solution is looked for in the class of functions, having at the point 𝑧 = ∞
an order terminal 𝑛 = 1.

A general solution of s.i.e. in this case looks as follows

𝜙(𝑡) = 𝑅𝑓(𝑡) + 𝑏(𝑡)𝑍(𝑡)𝑃𝑛+𝜅−1(𝑡), (18)

where 𝑅 is a linear integral operators which allows a partial solution of the inhomo-
geneous equation (15), 𝑍(𝑡) is quite a definite function which is part of the operator
𝑅, and

𝑃𝑛+𝜅−1(𝑡) =

⎧⎪⎨⎪⎩
𝑛+𝜅−1∑︁
𝑘=0

𝐶𝑘𝑡
𝑘, 𝑛+ 𝜅− 1 ≥ 0,

0, 𝑛+ 𝜅− 1 < 0.

(19)

If 𝑛 + 𝜅 − 1 ≤ −1, then for the s.i.e (15) solvability it is necessary to fulfill
1− 𝑛− 𝜅 integral conditions∫︁

𝐿

𝑓(𝑡)

𝑍(𝑡)
𝑡𝑙−1𝑑𝑡 = 0, 𝑙 = 1, 2, ..., 1− 𝑛− 𝜅. (20)

Here 𝑍(𝑡) = (𝑎(𝑡)+𝑏(𝑡))𝑋+(𝑡), 𝑋(𝑧) is a canonic function of the Riemann homoge-
neous problem corresponding to the problem (17), 𝑙 — is the index of this problem.
Besides, pointwise conditions (17) give birth to pointwise of the s.i.e. solvability (1)

𝑎(𝑡𝑘)𝑍(𝑡𝑘)𝑃𝑛+𝜅−1(𝑡𝑘) = −𝑄𝑓(𝑡𝑘), 𝑘 = 1, 2, .., 𝑛, (21)
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𝑄 is a linear integral operator of the shape

𝑄𝑓(𝑡) = −𝑏(𝑡)𝑓(𝑡) + 𝑎(𝑡)𝑍(𝑡) · 𝑆
(︂
𝑓

𝑍

)︂
(𝑡). (22)

The conditions (20) and (21) are necessary and sufficient ones fro the s.i.e.
solvability (1).

It is more convenient to analyze the picture of the s.i.e. (15) solvability if to
mark polynominal 𝑃𝑛+𝜅−1(𝑡) in the form of the linear combination in the elementary
Langrage 𝜔𝑗(𝑡) polynominals which are the basis polynominals degree of the linear
space not more than 𝑛− 1.

The main result which is obtained here is expressed by the following theorem.

Theorem 2. Let 𝑟 be the point number from the set group Δ in which the coef-
ficient 𝑎(𝑡) of the operator 𝐾 turns into zero. If 𝑛+𝜅− 𝑟 ≥ 0, then a homogeneous
s.i.e. (15) has 𝑛 + 𝜅 − 𝑟 a linear independent solutions. If 𝑛 + 𝜅 − 𝑟 < 0, then
a inhomogeneous s.i.e. (15) can be solved while fulfilling 𝑟 − 𝑛 − 𝜅 integral and
pointwise conditions.

3∘. The previous situations are by no means summarized if we take the quasi-
reular part of the integral operator 𝐾 in the form of 𝑘𝜙(𝑡) = −𝑏(𝑡) ·𝐻𝑚−1(𝑡, 𝑆𝜙,Δ),
where 𝐻𝑚−1(𝑡, 𝑆𝜙,Δ) is an interpolational of the Hermite polynominal (3), drawn
by the divisor Δ = (𝑡𝜆11 , 𝑡

𝜆2
2 , ..., 𝑡

𝜆𝑛
𝑛 ), 𝑚 = 𝜆1 + ... + 𝜆𝑛 for the singular integral

operator 𝑆, studied in the polynominals of functions, differentiated by 𝑚− 1 times
on 𝐿 contour. The coefficients 𝑎(𝑡), 𝑏(𝑡) and the right part of s.i.e. (1) are taken
from the same class 𝐶𝑛−1

𝛼 (𝐿).

The method of the s.i.e. (1) solution in the case of 3 is a reduction to the
Riemann equivalent problem with pointwise conditions in the form of

(Φ+)(𝑗)(𝑡𝑘) + (Φ−)(𝑗)(𝑡𝑘) = 0, 𝑗 = 0, ..., 𝜆𝑘 − 1, 𝑘 = 1, ..., 𝑛. (23)

The analogy prompts and the calculations show that a general s.i.e. (1) solution
in case 3 is given by the same formulas (13), (18). The conditions (23) give birth
to pointwise conditions of s.i.e. (1) solvability which are analogous the mentioned
conditions (11), (21) in the cases of 1 and 2.

The final theorem of case 3 about the s.i.e. (1) solvability coincide with the
content of the previous theorems 1 and 2, if by the quantity 𝑟 the sum of highest
orders derived from coefficient 𝑎(𝑡) of the integral operator 𝐾, turning into zero at
divisor Δ points is understood.
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Supplement 1. The s.i.e. (1) of case 2 appears while solving the s.i.e. 𝐾0𝜙 =
𝑓 in the class of non-summarized functions in the form

𝜙(𝑡) =
𝜓(𝑡)

Ω(𝑡)
, Ω(𝑡) = (𝑡− 𝑡1)...(𝑡− 𝑡𝑛), 𝜓(𝑡) ∈ 𝐻(𝐿), (24)

where all the points 𝑡𝑘 are inner points of the 𝐿 curve and are different in pairs.

If in this equation the required function is changed according to the formula
(24), then the mentioned characteristic equation twins into the equation (15).

Supplement 2. The s.i.e. (1) in all the three considered above cases appears
in the s.i.e. solution as

𝑏(𝑡)(𝜙(𝑡)−𝑀(𝑡, 𝜙,Δ)) + 𝑎(𝑡)𝑆𝜙(𝑡) = 𝑓(𝑡),

where 𝑀(𝑡, 𝜙,Δ) is one of the interpolational of the Langrage, Taylor or Hermite
polynominals for the function 𝜙(𝑡) on the set group Δ. For this it is enough to
change the desired functions as 𝑆𝜙 = 𝜓.

And here the integration order permutation formula is summarized in case of
the composite closed contour for a repeated singular integral.

Supplement 3. The singular integral equation connected with the s.i.e. (1)
in case 2, it is natural to solve it in class (24) which is discovered in a concrete
formation the adjoint operator.

Supplement 4. The s.i.e. (1) appears if it is solved in the N.I. Mousheshvili [2]
class and it is changed (24). Here the s.i.e. (15) appears while appearing in this
case the Riemann problem has an additional condition on 𝐿 contour.

Φ+(𝑡𝑘)± Φ−(𝑡𝑘) = 0,

where points 𝑡𝑘 coincide with the groups which define the N.I. Moushelishvili func-
tion class.

Supplement 5. The s.i.e. in cases 1–3 appears if as S.G. Samko suggests
bilding the composition of integral operators with power and logarithmic nuclei and
that of the integral operator 𝐾 (1). And here the integral equations of Fredholm of
the first kind, solving a closed form are received.

Supplement 6. The s.i.e. with the Hilbert nucleous, interpolated by a peri-
odic analog of the interpolational polynominals by Langrange, Taylor or Hermite
are solved by the method of reduction to the boundary Riemann problem with the
symmetry (4) condition and with additional pointwise conditions.
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Abstract. In present work based on the elements of Lorentz’s spaces with Hermite
weight𝑓 ∈ 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ was defined class 𝐸(𝑛)

𝑝,𝜗(𝜆; 𝜌𝑛)

and established criterions of embeddings 𝐸(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛), 1 6 𝑝 < 𝑞 <

+∞, 0 < 𝜗 6 +∞, 0 < 𝜏 < +∞ 𝐸
(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,∞(R𝑛; 𝜌𝑛), 1 6 𝑝 < 𝑞 < +∞,

0 < 𝜗 6 +∞.

1 Definitions and auxiliary theorems

Integral properties of functions in terms of the rate of decrease to zero the best
approximations of periodic functions by trigonometric polynomials were investi-
gated in [1,2]. Afterwards this theme had got rapid development in works of many
mathematicians, including [3]– [7].

In present work based on the elements of Lorentz space with Hermite weight
is defining class 𝐸(𝑛)

𝑝,𝜗(𝜆; 𝜌𝑛) and establishing criterion of its embedding in spaces
𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛), 𝐿𝑞,∞(R𝑛; 𝜌𝑛), where 1 6 𝑝 < 𝑞 < +∞, 0 < 𝜗 6 +∞, 0 < 𝜏 < +∞.

Let 1 6 𝑝 6 +∞, 1 6 𝜗 6 +∞ and 𝑓(�̄�)- measurable in the sense of Lebesgue

on R𝑛 function; let 𝜌𝑛(�̄�) = 𝑒−
|�̄�|2
2 , �̄� ∈ R𝑛; |�̄�| =

(︂
𝑛∑︀
𝑘=1

𝑥2𝑘

)︂ 1
2

.

By 𝐹 (|𝑓𝜌𝑛|; 𝑡) — denote nonincreasing rearrangement of functions |𝑓(�̄�)𝜌𝑛(�̄�)|
on R𝑛, 𝑡 ∈ [0; +∞). Let’s say, that 𝑓 ∈ 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛), [8] if finite value:

‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) =

⎧⎨⎩𝜗𝑝
+∞∫︁
0

𝑡
𝜗
𝑝
−1

(𝐹 (|𝑓𝜌𝑛|; 𝑡))𝜗𝑑𝑡

⎫⎬⎭
1
𝜗

, by 0 < 𝜗 < +∞,

‖𝑓‖𝐿𝑝∞(R𝑛;𝜌𝑛) = sup
𝑡>0

{︁
𝑡
1
𝑝𝐹 (|𝑓𝜌𝑛|; 𝑡)

}︁
, by 𝜗 = +∞.

Space 𝐿𝑝∞(R𝑛; 𝜌𝑛) — is also called Marcinkiewicz space.
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By 𝒫𝑚1,...,𝑚𝑛(R𝑛) let’s define set of all possible algebraic polynomials of 𝑚𝑘

order, by variable 𝑥𝑘, 𝑘 = 1, . . . , 𝑛;

𝐸𝑚1,...,𝑚𝑛(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) =

= inf
{︁
‖𝑓 − 𝑃𝑚1,...,𝑚𝑛‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

: 𝑃𝑚1,...,𝑚𝑛(�̄�) ∈ 𝒫𝑚1,...,𝑚𝑛(R𝑛)
}︁
−

complete best approximation of functions 𝑓 in the metric of space 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛),
1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ by means of algebraic polynomials.

Definition 1. let {𝜆𝑚}+∞
𝑚=1 — decreasing to zero given sequence of numbers.

Then, for 𝐸(𝑛)
𝑝,𝜗(𝜆; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ let’s define class of all functions

𝑓 ∈ 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛), for which 𝐸𝑚,...,𝑚(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) 6 𝜆𝑚, ∀𝑚 ∈ N.

Lemma 1. Let 0 < 𝛼 < +∞, 0 < 𝛾 < +∞, {𝜆𝑚}+∞
𝑚=1 is given sequence of

numbers.

a) If series
+∞∑︀
𝑚=1

𝑚𝛾𝛼−1𝜆𝛾𝑚 is diverging than exists the sequence of natural num-

bers {𝑚𝑘}+∞
𝑘=1 and sequence of positive numbers {𝜇𝑘}+∞

𝑘=1 possessing such qualities:
1) 𝜇𝑘 6 𝜆𝜈 , for 𝑚𝑘 6 𝜈 < 𝑚𝑘+1; 2𝑚𝑘 6 𝑚𝑘+1; 𝜆𝑚𝑘+1

6 𝜇𝑘, ∀𝑘 ∈ N; 2)

𝜇𝑘+1 6
1
2𝜇𝑘, ∀𝑘 ∈ N; 3)

+∞∑︀
𝑘=1

𝑚𝛾𝛼
𝑘+1𝜇

𝜆
𝑘 = +∞.

b) Let 1 6 𝑝 < 𝑞 < +∞. If sup
𝑚∈N

(︂
𝑚

− 𝑛
2𝑞

𝑚∑︀
𝑘=1

𝑘
𝑛
2𝑝

−1
𝜆𝑘

)︂
= +∞, then exist

the sequence of natural numbers {𝑙𝑘}+∞
𝑘=1 and sequence of positive numbers {𝜇𝑘}+∞

𝑘=1

such, that satisfy the conditions 1 and 2 of point a) of given lemma, for which the

assertion 4) is true sup
𝜈∈N

(︂
𝑙
− 𝑛

2𝑞

𝜈+1

𝜈∑︀
𝑠=1

𝑙
𝑛
2𝑝

𝑠+1𝜇𝑠

)︂
= +∞.

The proof of point a) of this lemma is in [5], and point b) is establishing with
the help of the same technique by verbatim repetition of proof of point a).

Lemma 2 (see [9]). Let 0 < 𝑝 < +∞, 1 6 𝜗 6 +∞. There is exists sequence
of negative algebraic polynomials {𝑃𝑚*(𝑥)}+∞

𝑚=1, 𝑥 ∈ R1 of degree not higher (𝑚−1)
such, that

𝑃 *
𝑚(0) = 1 and 𝑐′𝑝𝑚

− 1
2𝑝 6 ‖𝑃 *

𝑚‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) 6 𝑐
′′
𝑝𝑚

− 1
2𝑝 ,𝑚 ∈ N.

Here 𝜌(𝑥) = 𝑒−
𝑥2

2 , 𝑥 ∈ R and multipliers 𝑐′𝑝 > 0, 𝑐′′𝑝 > 0 depend only on mentioned
parameters.
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Lemma 3. Let 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞. Then, for nonin-
creasing rearrangements 𝐹 (𝑡) of functions |𝑓(�̄�)𝜌𝑛(�̄�)| the inequality is valid:

𝐹
(︁
2−

𝑛(𝑚+1)
2

)︁
6 𝐴𝑝𝜗𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) +

𝑚∑︁
𝑘=0

2
(𝑘+1)𝑛

2𝑝 𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

The proof of this approval is carried by analogy with proof of similar theorem 1
from [4].

2 Theorems of embedding in Lorentz spaces 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛), 1 6 𝑝 <
𝑞 < +∞, 0 < 𝜏 < +∞.

Theorem 1 (see [10]). Let 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ and {𝑙𝑘}+∞
𝑘=0 ⊂ Z+ is

such that 𝑙0 = 1, 1 < 𝑎 6 𝑙𝑘+1 · 𝑙−1
𝑘 , ∀𝑘 ∈ Z+. Let 𝑓 ∈ 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛) and sequence of

algebraic polynomials {𝑃𝑙𝑘,...,𝑙𝑘(�̄�)}
+∞
𝑘=0 is such, that in metric of space 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛)

valid representation is

𝑓(�̄�) = 𝑃1,...,1(�̄�) +
+∞∑︁
𝑘=1

(︀
𝑃𝑙𝑘,...,𝑙𝑘(�̄�)− 𝑃𝑙𝑘−1,...,𝑙𝑘−1

(�̄�)
)︀
=

+∞∑︁
𝑘=0

Δ𝑙𝑘,...,𝑙𝑘(𝑓 ; �̄�).

If for some 𝑞 and 𝜏 : 𝑝 < 𝑞 < +∞, 0 < 𝜏 < +∞ series
+∞∑︀
𝑘=0

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑘 ‖Δ𝑙𝑘,...,𝑙𝑘(𝑓)‖

𝜏
𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

converges, then 𝑓 ∈ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛) and with it

the following inequality is valid:

‖𝑓‖𝐿𝑞,𝜏 (R𝑛;𝜌𝑛) 6 𝐶𝑝𝑞𝜗𝜏𝑛

[︃
+∞∑︁
𝑘=0

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑘 ‖Δ𝑙𝑘,...,𝑙𝑘(𝑓)‖

𝜏
𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

]︃ 1
𝜏

.

Theorem 2 (see [10]). Let 1 6 𝑝 < 𝑞 < +∞, 1 6 𝜗 6 +∞, 1 6 𝜏 < +∞,
sequence {𝑙𝑘}+∞

𝑘=0 ⊂ Z+ is such, that 𝑙0 = 1, 𝑙𝑘+1 · 𝑙−1
𝑘 > 𝑎0 > 1. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛)

and in metric of space 𝐿𝑝𝜗(R𝑛; 𝜌𝑛) the following representation is valid:

𝑓(�̄�) = 𝑃1,...,1(�̄�) +
+∞∑︁
𝑘=1

(︀
𝑃𝑙𝑘,...,𝑙𝑘(�̄�)− 𝑃𝑙𝑘−1,...,𝑙𝑘−1

(�̄�)
)︀
=

+∞∑︁
𝑘=0

Δ𝑙𝑘,...,𝑙𝑘(�̄�),

where 𝑃𝑚,...,𝑚(�̄�) ∈ 𝒫𝑚,...,𝑚, 𝑚 ∈ N are algebraic polynomials.
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Then the following inequality is valid:

‖𝑓‖𝐿𝑝𝜗(R𝑛;𝜌𝑛) > 𝐴𝑝𝑞𝜗𝜏𝑛

{︃
+∞∑︁
𝑘=0

𝑙
𝜗
(︁

𝑛
2𝑞

− 𝑛
2𝑝

)︁
𝑘 ‖Δ𝑙𝑘,...,𝑙𝑘‖

𝜗
𝐿𝑞𝜏 (R𝑛;𝜌𝑛)

}︃ 1
𝜗

.

Here 𝐴𝑝𝑞𝜗𝜏𝑛 > 0 depends on mentioned parameters.

Theorem 3. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ and sequence of
integers {𝑙𝑘}+∞

𝑘=0 is such, that 𝑙0 = 1, 𝑙𝑘+1 · 𝑙−1
𝑘 > 𝑎0 > 1, ∀𝑘 ∈ Z+.

If for some numbers 𝑞 and 𝜏 : 𝑝 < 𝑞 < +∞, 0 < 𝜏 < +∞ series
+∞∑︀
𝑚=0

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑚+1 𝐸𝜏𝑙𝑚,...,𝑙𝑚(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) converges, then 𝑓 ∈ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛). While there

is inequality:

‖𝑓‖𝐿𝑞,𝜏 (R𝑛;𝜌𝑛) 6

6 𝐶𝑝𝑞𝜗𝜏𝑛

⎧⎨⎩‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) +

[︃
+∞∑︁
𝑚=1

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑚+1 𝐸𝜏𝑙𝑚,...,𝑙𝑚(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

]︃ 1
𝜏

⎫⎬⎭ ,

here 𝐶𝑝𝑞𝜗𝜏𝑛 > 0 depends only on mentioned parameters.

Proof. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞ and {𝑃𝑙𝑘,...,𝑙𝑘(�̄�)}
+∞
𝑘=0-

sequence of algebraic polynomial of best approximation of this function by space
metric 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛): 𝐸𝑚,...,𝑚(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) = ‖𝑓 − 𝑃𝑚,...𝑚‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛), ∀𝑚 ∈ N.

That is why in sense of space 𝐿𝑝𝜗(R𝑛; 𝜌𝑛) the following inequality is valid

𝑓(�̄�) = 𝑃𝑙0,...,𝑙0(�̄�) +

+∞∑︁
𝑘=1

(︀
𝑃𝑙𝑘,...,𝑙𝑘(�̄�)− 𝑃𝑙𝑘−1,...,𝑙𝑘−1

(�̄�)
)︀
,

where {𝑙𝑘}+∞
𝑘=0 is some integer sequence which satisfy conditions 𝑙0 = 1, 𝑙𝑘+1 · 𝑙−1

𝑘 >
𝑎0 > 1, ∀𝑘 ∈ Z+.

Let’s consider the series

+∞∑︁
𝑚=0

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑚 ‖Δ𝑙𝑚,...,𝑙𝑚‖

𝜏
𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

6

6 2𝜏+1

{︃
‖𝑓‖𝜏𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

+
+∞∑︁
𝑚=1

𝑙
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑚+1 𝐸𝑙𝑚,...,𝑙𝑚(𝑓)

𝜏
𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.
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According to the condition of theorem the series on the right side converges, so
according to the theorem 1 function 𝑓 ∈ 𝐿𝑞𝜏 (R𝑛; 𝜌𝑛) and takes place inequality
mentioned in statement of theorem. �

If in theorem 3 put 𝑙𝑘 = 2𝑘, ∀𝑘 ∈ Z+, then we get variant of theorem equivalent
to approval:

Theorem 4. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞.
If for some numbers 𝑞 and 𝜏 : 𝑝 < 𝑞 < +∞, 0 < 𝜏 < +∞ series
+∞∑︀
𝑘=1

𝑘
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
−1
𝐸𝜏𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) converges, then 𝑓 ∈ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛) and while

there is inequality:

‖𝑓‖𝐿𝑞,𝜏 (R𝑛;𝜌𝑛) 6

6 𝐷𝑝𝑞𝜗𝜏𝑛

⎧⎨⎩‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) +

[︃
+∞∑︁
𝑘=1

𝑘
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
−1
𝐸𝜏𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

]︃ 1
𝜏

⎫⎬⎭ ,

where multiplier 𝐷𝑝𝑞𝜗𝜏𝑛 > 0 depends only on mentioned parameters.

Theorem 5. Let 1 6 𝑝 < 𝑞 < +∞, 0 < 𝜗 6 +∞, 0 < 𝜏 < +∞. For occurring
of embedding 𝐸(𝑛)

𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛) it is necessary and sufficient that the series

converges
+∞∑︀
𝑘=1

𝑘
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
−1
𝜆𝜏𝑘.

Proof. Sufficiency of theorem follows from theorem 4 and definition of class
𝐸

(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛). Now let’s prove the necessity of theorem’s condition. For it let’s sup-

pose that 𝐸(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛), 1 6 𝑝 < 𝑞 < +∞, 0 < 𝜗 6 +∞, 0 < 𝜏 < +∞

but, in this case the series
+∞∑︀
𝑘=1

𝑘
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
−1
𝜆𝜏𝑘 diverges. Then according to lemma

1 for 𝛾 = 𝜏 , 𝛼 = 𝑛
2𝑝 −

𝑛
2𝑞 > 0 exists the sequence of natural numbers {𝑚𝑘}+∞

𝑘=1

and sequence of positive numbers {𝜇𝑘}+∞
𝑘=1 with mentioned in lemma 1 qualities, in

particular
+∞∑︀
𝑘=1

𝑚
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑘+1 𝜇𝜏𝑘 = +∞.

Let’s consider the functional series 𝑓0(�̄�) = 1
2(𝑐′′𝑝 )

𝑛

+∞∑︀
𝑘=1

𝑚
𝑛
2𝑝

𝑘+1𝜇𝑘
𝑛∏︀
𝜈=1

𝑃 *
𝑚𝑘+1

(𝑥𝜈),

where 𝑐′′𝑝 > 0 is defined by lemma 2. By the direct estimation accountinf lemma
2, we can show that function 𝑓0 belongs to 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛) and 𝐸

(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛). Now

let’s show that as consequence of our assumption there is that 𝑓0 /∈ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛).
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If to introduce the notation 𝑇𝑚𝑙,...,𝑚𝑙
(�̄�) =

𝑙−1∑︀
𝑘=0

𝑚
𝑛
2𝑝

𝑘+1𝜇𝑘
∏︀𝑛
𝜈=1 𝑃

*
𝑚𝑘+1

(𝑥𝜈), then

Δ𝑚𝑙,...,𝑚𝑙
(𝑓0; �̄�) = 𝑚

𝑛
2𝑝

𝑙 𝜇𝑙−1
∏︀𝑛
𝜈=1 𝑃

*
𝑚𝑙
(𝑥𝜈), 𝑙 ∈ Z+.

Further by theorem 2 and lemma 2 there appears the following set of inequalities:

‖𝑓0‖𝜏𝐿𝑞,𝜏 (R𝑛;𝜌𝑛)
>

𝐴𝜏𝑝𝑞𝜗𝜏𝑛
2𝜏 (𝑐′′𝑝)

𝜏𝑛

+∞∑︁
𝑘=2

𝑚
𝜏
(︁

𝑛
4𝑞

− 𝑛
2𝑞

)︁
𝑘 ‖𝑇𝑚𝑘,...,𝑚𝑘

− 𝑇𝑚𝑘−1,...,𝑚𝑘−1
‖𝜏𝐿2𝑞,𝜗

=

=
𝐴𝜏𝑝𝑞𝜗𝜏𝑛
2𝜏 (𝑐′′𝑝)

𝜏𝑛

+∞∑︁
𝑘=2

𝑚
−𝜏 𝑛

4𝑞

𝑘 ·𝑚
𝜏 𝑛
2𝑝

𝑘 𝜇𝜏𝑘−1

(︁
‖𝑃 *

𝑚𝑘
‖𝐿2𝑞,𝜗(R;𝜌)

)︁𝑛𝜏
>

> 2−𝜏𝐴𝜏𝑝𝑞𝜗𝜏𝑛

+∞∑︁
𝑘=1

𝑚
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
𝑘+1 · 𝜇𝜏𝑘 = +∞, i.e. 𝑓0 /∈ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛).

Thus if there is imbedding 𝐸
(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,𝜏 (R𝑛; 𝜌𝑛), 1 6 𝑝 < 𝑞 < +∞,

0 < 𝜗 6 +∞, 0 < 𝜏 < +∞, then series
+∞∑︀
𝑘=1

𝑘
𝜏
(︁

𝑛
2𝑝

− 𝑛
2𝑞

)︁
−1
𝜆𝜏𝑘 must converge. By this

the necessity of theorem condition is established. �

3 Theorem about the embedding in Marcinkiewicz space
𝐿𝑞,∞(R𝑛; 𝜌𝑛)

Theorem 6. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞. If for some

𝑞: 𝑝 < 𝑞 < +∞ final value sup
𝑚∈Z+

2
−𝑛𝑚

2𝑞

𝑚∑︀
𝑘=0

2
𝑛𝑘
2𝑝𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛), then 𝑓 ∈

𝐿𝑞,∞(R𝑛; 𝜌𝑛) and the following inequality is valid:

‖𝑓‖𝐿𝑞,∞(R𝑛;𝜌𝑛) 6

6 𝐶𝑝𝑞𝜗𝜏𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) + sup

𝑚∈Z+

2
−𝑛𝑚

2𝑞

𝑚∑︁
𝑘=0

2
𝑛𝑘
2𝑝𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

Here multiplier 𝐶𝑝𝑞𝜗𝜏𝑛 > 0 depends only on mentioned parameters.

Proof. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < 𝑞 < +∞, 0 < 𝜗 6 +∞. According to the
definition ‖𝑓‖𝐿𝑞,∞(R𝑛;𝜌𝑛) 6 sup

06𝑡61

{︁
𝑡
1
𝑞𝐹 (|𝑓𝜌𝑛|; 𝑡)

}︁
+ sup

𝑡>1

{︁
𝑡
1
𝑞𝐹 (|𝑓𝜌𝑛|; 𝑡)

}︁
= 𝐽1 + 𝐽2.
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Firstly let’s estimate 𝐽2:

𝐽2 6 sup
𝑡>1

{︂
𝑡
1
𝑝𝐹 (|𝑓𝜌𝑛|; 𝑡) · 𝑡

−
(︁

1
𝑝
− 1

𝑞

)︁}︂
6 sup

𝑡>1

{︁
𝑡
1
𝑝𝐹 (|𝑓𝜌𝑛|; 𝑡)

}︁
. (1)

By property of the monotonicity of nonincreasing rearrangement:

𝑡
1
𝑝𝐹 (|𝑓𝜌𝑛|; 𝑡) = 𝐹 (|𝑓𝜌𝑛|; 𝑡) ·

⎧⎨⎩𝜗𝑝
𝑡∫︁

0

𝑦
𝜗
𝑝
−1
𝑑𝑦

⎫⎬⎭
1
𝜗

6

6

⎧⎨⎩𝜗𝑝
𝑡∫︁

0

𝑦
𝜗
𝑝
−1

(𝐹 (|𝑓𝜌𝑛|; 𝑡))𝜗𝑑𝑦

⎫⎬⎭
1
𝜗

6 ‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛). (2)

Thus from (1), (2) we have, that 𝐽2 6 ‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛).
Further

𝐽1 6 sup
𝜈∈Z+

sup

2−
(𝜈+1)𝑛

2 6𝑡62−
𝜈𝑛
2

{︁
𝑡
1
𝑞𝐹 (|𝑓𝜌𝑛|; 𝑡)

}︁
6

6 sup
𝜈∈Z+

{︁
2
− 𝜈𝑛

2𝑞 𝐹
(︁
|𝑓𝜌𝑛|; 2−

(𝜈+1)𝑛
2

)︁}︁
6 (lemma3) 6

6 𝐴𝑝𝜗𝑛 sup
𝜈∈Z+

{︃
2
− 𝜈𝑛

2𝑞

[︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) +

𝜈∑︁
𝑘=0

2
𝑛(𝑘+1)

2𝑝 𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

]︃}︃
.

Thus

‖𝑓‖𝐿𝑞,∞(R𝑛;𝜌𝑛) 6 𝐴
′
𝑝𝜗𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) + sup

𝜈∈Z+

2
−𝑛𝜈

2𝑞

𝜈∑︁
𝑘=0

2
𝑛𝑘
2𝑝𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

Theorem 7. Let 𝑓 ∈ 𝐿𝑝𝜗(R𝑛; 𝜌𝑛), 1 6 𝑝 < +∞, 0 < 𝜗 6 +∞. If for some
number 𝑞: 𝑝 < 𝑞 < +∞ final value is sup𝑚∈N𝑚

− 𝑛
2𝑞
∑︀𝑚

𝑘=1 𝑘
𝑛
2𝑝

−1
𝐸𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛),

so 𝑓 ∈ 𝐿𝑞,∞(R𝑛; 𝜌𝑛) and the following inequality is valid:

‖𝑓‖𝐿𝑞,∞(R𝑛;𝜌𝑛) 6

6 𝐶𝑝𝑞𝜗𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) + sup

𝑚∈N
𝑚

− 𝑛
2𝑞

𝑚∑︁
𝑘=1

𝑘
𝑛
2𝑝

−1
𝐸𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.



Criterion of Function Classes Imbedding 𝐸(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) in Space of . . . 427

Proof. By property of monotonicity of sequence of complete best approxima-
tion{︁
𝐸𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︁+∞

𝑘=1
there is inequality:

2
𝑛𝜈
2𝑝𝐸2𝜈 ,...,2𝜈 (𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) 6 𝐶𝑝𝑛

2𝜈−1∑︁
𝑘=2𝜈−1+1

𝑘
𝑛
2𝑝

−1
𝐸𝑘,...,𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛),∀𝜈 ∈ N.

Hence we obtain

𝜈∑︁
𝑘=0

2
𝑛𝑘
2𝑝𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) 6

6 𝐶 ′
𝑝𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) +

2𝜈∑︁
𝑙=2

𝑙
𝑛
2𝑝

−1
𝐸𝑙,...,𝑙(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

Let now 2𝜈 6 𝑚 < 2𝜈+1, 𝜈 ∈ Z+. Then

sup
𝜈∈Z+

2
−𝑛𝜈

2𝑞

𝜈∑︁
𝑘=0

2
𝑛𝑘
2𝑝𝐸2𝑘,...,2𝑘(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛) 6

6 𝐶 ′
𝑝𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) + 2

𝑛
2𝑞 sup
𝑚∈N

𝑚
− 𝑛

2𝑝

𝑚∑︁
𝑙=1

𝑙
𝑛
2𝑝

−1
𝐸𝑙,...,𝑙(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

Since according to the condition of theorem right side of inequality is final then
left side is also final. So according to the theorem 6 function 𝑓 ∈ 𝐿𝑞,∞(R𝑛; 𝜌𝑛) and
also inequality

‖𝑓‖𝐿𝑞,∞(R𝑛;𝜌𝑛) 6

6 𝐴𝑝𝑞𝜗𝑛

{︃
‖𝑓‖𝐿𝑝,𝜗(R𝑛;𝜌𝑛) + sup

𝑚∈N
𝑚

− 𝑛
2𝑞

𝑚∑︁
𝑙=1

𝑙
𝑛
2𝑝

−1
𝐸𝑙,...,𝑙(𝑓)𝐿𝑝,𝜗(R𝑛;𝜌𝑛)

}︃
.

Theorem 8. Let 1 < 𝑝 < 𝑞 < +∞, 1 6 𝜗 6 +∞. For occurring the embedding
𝐸

(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,∞(R𝑛; 𝜌𝑛) it is necessary and sufficient that value

sup
𝑚∈N

𝑚
− 𝑛

2𝑞

𝑚∑︁
𝑘=1

𝑘
𝑛
2𝑝

−1
𝜆𝑘

was final.
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Proof. Sufficiency of theorem condition follows from the definitions of class
𝐸

(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) and theorem 7. Let’s prove the necessity of theorem condition. For it

let’s suppose that there is embedding 𝐸(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,∞(R𝑛; 𝜌𝑛), 1 < 𝑝 < 𝑞 < +∞,

1 6 𝜗 6 +∞, but sup
𝑚∈N

𝑚
− 𝑛

2𝑞

𝑚∑︀
𝑘=1

𝑘
𝑛
2𝑝

−1
𝜆𝑘 = +∞.

Let’s consider functional series 𝑓0(�̄�) = 1
2(𝑐′′𝑝 )

𝑛

+∞∑︀
𝑘=1

𝑙
𝑛
2𝑝

𝑘+1𝜇𝑘
𝑛∏︀
𝜈=1

𝑃 *
𝑙𝑘+1

(𝑥𝜈), where

𝑐′′𝑝 > 0 is defined by lemma 2.
By estimation with the help of lemma 2, we can show that this series is converges

in sense of space 𝐿𝑝,𝜗(R𝑛; 𝜌𝑛) and its amount 𝑓0 ∈ 𝐸
(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛), 1 < 𝑝 < +∞,

1 6 𝜗 6 +∞.

‖𝑓0‖𝐿𝑞,∞(R𝑛;𝜌𝑛) > 𝐶𝑞 sup
𝑡>0

⎧⎨⎩𝑡 1𝑞−1

𝑡∫︁
0

𝐹 (|𝑓𝜌𝑛|; 𝑡)𝑑𝑡

⎫⎬⎭ >
> 𝐶𝑞 sup

𝑡∈
[︁
𝑙
−𝑛/2
𝑠+1 ,𝑙

−𝑛/2
𝑠

]︁
⎧⎨⎩𝑡 1𝑞−1

sup
|𝐸|=𝑡

∫︁
𝐸

|𝑓0(�̄�)𝜌𝑛(�̄�)|𝑑�̄�

⎫⎬⎭ >

> 𝐶𝑞𝑙
− 𝑛

2𝑞

𝑠+1 · 𝑙
𝑛
2
𝑠

𝑙
− 1

2
𝑠∫︁
0

. . .

𝑙
− 1

2
𝑠∫︁
0

|𝑓0(�̄�)𝜌𝑛(�̄�)|𝑑�̄� >

> 𝐶𝑞𝑙
− 𝑛

2𝑞

𝑠+1 · 𝑙
𝑛
2
𝑠

(︃
𝑠∑︁

𝑘=1

𝑙
𝑛
2𝑝

𝑘+1𝜇𝑘

𝑛∏︁
𝑘=1

𝑃 *
𝑘 (0)𝜌𝑛(�̄�)

)︃
𝑙
−𝑛

2
𝑠 = 𝐶𝑞𝑙

− 𝑛
2𝑞

𝑠+1

𝑠∑︁
𝑘=1

𝑙
𝑛
2𝑝

𝑘+1𝜇𝑘,∀𝑠 ∈ N.

Since sup
𝑠∈N

𝑙
− 𝑛

2𝑞

𝑠+1

∑︀𝑠
𝑘=1 𝑙

𝑛
2𝑝

𝑘+1𝜇𝑘 = +∞, then ‖𝑓0‖𝐿𝑞,∞(R𝑛;𝜌𝑛) = +∞.

This fact contradict that 𝐸(𝑛)
𝑝𝜗 (𝜆; 𝜌𝑛) ⊂ 𝐿𝑞,∞(R𝑛; 𝜌𝑛), 1 < 𝑝 < 𝑞 < +∞, 1 6

𝜗 6 +∞. Consequently if before this embedding existed then it must be

sup
𝑚∈N

𝑚
− 𝑛

2𝑞

𝑚∑︁
𝑘=1

𝑘
𝑛
2𝑝

−1
𝜆𝑘 < +∞.
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NEW RESULTS IN THE STUDY OF LYAPUNOV STABILITY

V. Trenogin

Key words: abstract parabolic differential equation, stability by Lyapunov, as-
ymptotic stability

AMS Mathematics Subject Classification: 4 7J35, 377K45

Abstract. In Banach space semi-linear differential equation with the singular
linear operator is considered. The stability questions of its trivial solution on the
base of the generalized Lyapunov–Schmidt method are investigated. On this way
the different extensions of Lyapunov theorem about stability on the base of linear
approximation for the DE are obtained.

1 Regular case of stability

Let𝑋 be real or complex Banach space. The initial problem for differential equation

�̇� = 𝐴𝑥+𝑅(𝑡, 𝑥), 𝑥(0) = 𝑎 (1)

is considered under the fulfillment of the following conditions.
I. 𝐴 is closed linear operator mapping its dense in 𝑋 domain 𝐷(𝐴) and its range

𝑅(𝐴) is closed in 𝑋. Furthermore let 𝐴 be infinitesimal operator of continuous semi
group 𝑇 (𝑡).

II. Nonlinear operator 𝑅(𝑡, 𝑥) is continuous at 𝑡 ∈ 𝑅+, 𝑥 : ||𝑥|| 6 𝜌, 𝑅(0, 𝑡) = 0
for all 𝑡 ∈ 𝑅+.

Introduce the concepts of classical and generalized solutions of initial prob-
lem (1).

𝑥 = 𝑥(𝑡) is classical solution of (1) if and only if 𝑥(𝑡)𝐷(𝐴) continuously differ-
entiable and satisfies (1) on Re+.

The continuous on Re+ solution 𝑥(𝑡) to the integral equation

𝑥(𝑡) = 𝑈(𝑡)𝑎+

𝑡∫︁
0

𝑈(𝑡− 𝑠)𝑅(𝑠, 𝑢(𝑠))]𝑑𝑠 (2)

will be called generalized solution of Cauchy problem (1).

This work was supported by Grants 09-01-00586 and 09-07-00365a of the RFBR..
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We interesting in stability properties of trivial solution of DE from (1). Consider
the corresponding Cauchy linear problem

�̇� = 𝐴𝑥, 𝑥(0) = 𝑎 (3)

Introduce the following restriction to operator 𝐴.
III. There exist constants 𝑀 > 0 and 𝛼 > 0 such that for all 𝑡 ∈ Re+ the

inequality ||𝑈(𝑡)|| 6𝑀 exp (−𝛼𝑡) is fulfilled.
Let III is satisfied then solution of (3)𝑥(𝑡) = 𝑈(𝑡)𝑎 and ||𝑥(𝑡)|| 6

𝑀 ||𝑎|| exp (−𝛼𝑡). This means that the trivial solution of the linearized DE is as-
ymptotic stable.

Introduce the restriction to nonlinear part of DE in (1) which guaranties the
asymptotic stability of trivial solution to nonlinear equation from (1).

IV. There exist constants 𝐶 > 0 and 𝛽 > 0 such that for all 𝑡 ∈ Re+, 𝑥1, 𝑥2 ∈
𝑆 the inequality

||𝑅(𝑥1, 𝑡)−𝑅(𝑥2, 𝑡)|| 6 𝐶
𝛽

max(||𝑥1||, ||𝑥2||)||𝑥1 − 𝑥2||

is fulfilled.

Remark 1. From condition IV it follows that for all 𝑥 ∈ 𝑆 and any 𝑡 ∈ Re+

the inequality ||𝑅(𝑥, 𝑡)|| 6 𝐶||𝑥||1+𝛽 is true.

Following to [4, 5] introduce a convenient family of Banach spaces of abstract
functions.

Definition 1. Let 𝛾 > 0. The space 𝐶𝛾(𝑋) will be called a set of all abstract
functions 𝑢(𝑡), defined and continuous on semi axis Re+ with natural operations
of addition and multiplication on scalars taking values in 𝑋, for which the norm
|||𝑢|||𝛾 = 𝑠𝑢𝑝Re+ ||𝑢(𝑡)||𝑒𝑥𝑝(𝛾𝑡) is finite.

Note, that 𝐶𝛾 is Banach space. For 𝛾 = 0 we have the limit case - the space
𝐶0(𝑋) of bounded on Re+ continuous abstract functions.

In the articles [4,5] it was established that by the realization of the restrictions
I-IV condition take place the asymptotic stability of the trivial solution to nonlinear
𝐷 Eq (1).

Theorem 1. Let the condition I-IV be realized. Then there exist the numbers
𝑟* > 0, 𝜌* > 0 such that for any 𝑎 : ||𝑎|| 6 𝜌* the initial problem (1) has in the
ball ||𝑥|| 6 𝑟* the unique general on Re+ solution 𝑥 = 𝑥(𝑡, 𝑎) ∈ 𝐶𝛾. This solution
is continuous on 𝑎 in the ball ||𝑥0|| 6 𝜌* and 𝑥(0) = 𝑎.



432 The 8th Congress of the ISAAC — 2011

In the work [5] we show that if the Holder condition to 𝑅(𝑡, 𝑥) is fulfilled then
the generalized solution is classic one.

In the work [6] we assume that the result of theorem be reserved if some growth
𝑅(𝑥, 𝑡) by t goes to plus infinity damps by semi group 𝑇 (𝑡) decreasing.

2 Singular case of stability

Under the fulfillment of the restrictions I,III the operator 𝐴 is continuously invert-
ible (see [2]), that is its range is coincided with all space𝑋 and the inverse to 𝐴
operator is bounded.

Here it is stated the problem to stability study of principally another case when
the operator 𝐴 is non-invertible. Apparently, here more typical is the case of Lya-
punov stability of trivial solution to D Eq, but not the case of its asymptotic
stability. It is supposed further that for the operator 𝐴 the following very gen-
eral conditions are realized. More precisely we suppose the following restriction be
realized.

V. The set 𝑉 = 𝑁(𝐴) of zeroes of the operator 𝐴 and the range 𝑈 = 𝑅(𝐴) of
the operator 𝐴 are nontrivial and closed in 𝑋. Let the space 𝑋 can be represented
in the form of direct sum of 𝑈 and 𝑉 𝑋 = 𝑈 + 𝑉 .

Note that the finite-dimensionality of the subspace 𝑉 is not assumed. Thus in
that case the question is about the generalization of Fredholm operator notion.

Introduce two projectors. Let 𝑃 and 𝑄 are the projectors of 𝑋 to 𝑈 and
𝑉 respectively. Now the semi group 𝑈(𝑡) does not satisfies the condition of the
exponentially decrease because of 𝑈(𝑡)𝑣 = 𝑣 for all 𝑣 from 𝑉 . This condition we
replace to the following one.

IV. Let the restriction of 𝑇 (𝑡) to subspace 𝑈 be the exponentially decreasing
semi group, i.e. there exist constants 𝑀 > 0 and 𝛼 > 0 such that for all 𝑡 ∈ Re+

and for all 𝑢 ∈ 𝑈 the inequality ||𝑇 (𝑡)𝑢|| 6𝑀 exp (−𝛼𝑡)||𝑢|| is fulfilled.
Consider the linear problem (3) where we take 𝑥 = 𝑢+ 𝑣, 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 .
Project obtained identity on 𝑈 and than on 𝑉 . Now we can rewrite (3) as the

system of initial problems

�̇� = 𝐴𝑢, 𝑢(0) = 𝑃𝑎,

�̇� = 0, 𝑣(0) = 𝑄𝑎.
(4)

The solution of this system has the form 𝑢(𝑡) = 𝑇 (𝑡)𝑃𝑎, 𝑣(𝑡) = 𝑄𝑎.

Hence the solution of (3) 𝑥(𝑡) = 𝑈(𝑡)𝑃𝑎 + 𝑄𝑎 is bounded on Re+ because of
restrictions I,III,IV. This means that the trivial solution of linear problem is stable
by Lyapunov (not asymptotic).
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Introduce now two following special local Lipschitz restrictions for nonlinear
part of DE. They guarantee the Lyapunov stability of trivial solution to nonlinear
problem (1).

V.Let ∀𝑥1, 𝑥2 : ||𝑥1|| 6 𝜌, ||𝑥2|| 6 𝜌 (𝛽𝑘 > 0, 𝑘 = 1, 2):

||𝑃 (𝑅(𝑥1)−𝑅(𝑥2))|| 6 𝐶1(𝑡)
𝛽1

max(||𝑥1||, ||𝑥2||)||𝑥1 − 𝑥2||

||𝑄(𝑅(𝑥1)−𝑅(𝑥2))|| 6 𝐶2(𝑡)
𝛽2

max(||𝑥1||, ||𝑥2||)||𝑥1 − 𝑥2||

are fulfilled.

Theorem 2. Suppose conditions I-II, IV-V are fulfilled. If on 𝑅+, 𝐶1(𝑡) 6
𝑐𝑜𝑛𝑠𝑡,

∫︀ +∞
0 𝐶2(𝑡)𝑑𝑡 𝑙𝑒𝑐𝑜𝑛𝑠𝑡 then there exist the numbers 𝑟* > 0, 𝜌* > 0 such

that for any 𝑎 : ||𝑎|| 6 𝜌* the initial problem (1) has in the ball ||𝑥|| 6 𝑟* the unique
bounded on 𝑅+ generalized solution 𝑥 = 𝑥(𝑡, 𝑎) ∈ 𝐶0 for all initial values a such
that ||𝑎|| < 𝜌*. This solution is continuous on 𝑎 in the ball ||𝑥0|| 6 𝜌* and 𝑥(0) = 𝑎.

Give the plan of theorem 2 proof. In (1) take 𝑥 = 𝑢+ 𝑣, where 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉
, project obtained identity on 𝑈 and than on 𝑉 . Now we can rewrite (1) as the
system of initial problems

�̇� = 𝐴𝑢+ 𝑃𝑅(𝑡, 𝑢+ 𝑣), 𝑢(0) = 𝑃𝑎

�̇� = 𝑄𝑅(𝑡, 𝑢+ 𝑣), 𝑣(0) = 𝑄𝑎
(5)

Replace the system (3)-(4) by the equivalent integral equations system

𝑢(𝑡) = 𝑈(𝑡)𝑃𝑎+

𝑡∫︁
0

𝑈(𝑡− 𝑠)𝑃𝑅(𝑠, 𝑢(𝑠) + 𝑣(𝑠))]𝑑𝑠,

𝑣(𝑡) = 𝑄𝑎+

𝑡∫︁
0

𝑄𝑅(𝑠, 𝑢(𝑠) + 𝑣(𝑠))]𝑑𝑠.

(6)

The two integral equations may be written as the nonlinear operator equation in
the space of couple 𝑥(𝑡) = (𝑢(𝑡), 𝑣(𝑡)) of continuous bounded on 𝑅+ functions. In
other words write the system of integral equations (6)–(7) in the form of operator
equation with unknown 𝑥 ∈ 𝐶0(𝑋) and with small parameter 𝑎 ∈ 𝑋 and with
corresponding operators 𝐷 and 𝐹

𝑥 = 𝐷𝑎+ 𝐹 (𝑥). (7)
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Here 𝐷𝑎(𝑡) is continuous and bounded on Re+. Then we establish that the operator
𝐹 (𝑥) maps the ball of sufficiently small radius into this ball and satisfies in this ball
the Lipschitz condition with the constant tending to zero together with radius.
Applying to this this equation the variant of implicit operator theorem from [2] we
obtain the theorem 2 statement.

As the consequences of the theorem 2 one has the following previously estab-
lished propositions.

Theorem 3 (V.A. Trenogin, A-V. Ion [11]). Suppose the conditions I-II,
IV-V are fulfilled. If

+∞∫︁
0

𝐶𝑘(𝑡) 6 𝑐𝑜𝑛𝑠𝑡𝑘, 𝑘 = 1, 2

then theorem 2 conclusion are fulfilled.

This result was represented in the joint work of author and professor Anca
Veronica Ion (Romania) carried out in the process of International grant Russia–
Romania realization. In this work one can find also different useful additions and
generalizations.

Theorem 4 (V.A. Trenogin). Suppose the conditions I–II, IV–V are ful-
filled. If 𝑅 = 𝑅(𝑥) and 𝐶2 = 0 or 𝑄𝑅(𝑥) = 0 then theorem 2 conclusions are
fulfilled.

The result of theorem 4 is published in the work [10] for the more general case
of presence nontrivial Jordan structure of operator 𝐴.

Corollary. By additional Holder condition to nonlinear operator 𝑅(𝑡, 𝑥) with
respect to 𝑡 one can proof as in the work [5] that the generalized solution indicated
in the theorems 2-4 will be classic one.

These theorems are new variants of the known Lyapunov theorem about the as-
ymptotic stability of trivial solution of DE but now the question is about Lyapunov
stability and not asymptotic stability.

In conclusion we want to note that the more general situation of problem (1)
must also investigated. Let now the following restrictions to operator 𝐴 are fulfilled.
𝑉 = 𝑁(𝐴) and 𝑊 = 𝑅(𝐴) are nontrivial, closed in 𝑋 and have in 𝑋 the nontrivial
direct complements 𝑈 and 𝑍 respectively so that𝑋 = 𝑈 + 𝑉 and 𝑋 = 𝑊 + 𝑍.
Now the existence of nontrivial Jordan structure for elements from V is not except
as our preceding text where 𝑊 = 𝑈 and 𝑍 = 𝑉 . In the work [10] and another our
last publications the analogue of theorem 4 are illuminate. In consequence we plan
extend this ideas to theorem 4 analog.
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II.4. Fixed Point Theory and Applications
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METRIC SPACES»

Thabet Abdeljawad, Erdal Karapinar

Key words: cone metric space, TVS-cone metric space, fixed point theorems

AMS Mathematics Subject Classification: 46N40, 47H10, 54H25, 46T99

Abstract. Recently, M. Abbas and B.E. Rhoades proved some fixed point theorems
on the class of complete cone metric space with normal cone. In 2010, Wei-Shih
Du introduces TVS-cone metric space. In this paper, the results of M. Abbas and
B.E. Rhoades are extended to the class of complete TVS-cone metric spaces without
using any normality assumption.

1 Introduction

Many authors attempted to generalize the notion of the metric space. In 2007,
Huang and Zhang [8] announced the notion of cone metric spaces (CMS) by us-
ing the same idea, namely, by replacing real numbers with an ordering real Ba-
nach space. In that paper, they also discussed some properties of convergence of
sequences and proved the fixed point theorems of contractive mapping for cone
metric spaces: Any mapping 𝑇 of a complete cone metric space 𝑋 into itself that
satisfies, for some 0 6 𝑘 < 1, the inequality 𝑑(𝑇𝑥, 𝑇𝑦) 6 𝑘𝑑(𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝑋,
has a unique fixed point. Lately, many results on fixed point theorems have been
extended to cone metric spaces (see e.g. [4, 8, 14–16], [5]– [13], [2, 3]).

Recently, Du [7] gave the definition of generalized cone metric space, namely
topological vector space-cone metric space (TVS-CMS), and proved some fixed point
theorem on that class. The author show also that Banach contraction principles in
usual metric spaces and in TVS-CMS are equivalent.

In this manuscript, the results of [1] are generalized to TVS-cone metric spaces
and without any normality assumptions.

Throughout this paper, 𝐸 stands for real topological vector space (t.v.s.) with
zero vector and Z+ represent the set of all positive integer, as usual. A non-empty
subset 𝑃 of 𝐸 is called a cone if 𝑃 +𝑃 ⊆ 𝑃 , 𝜆𝑃 ⊆ 𝑃 for 𝜆 > 0 and 𝑃 ∩(−𝑃 ) = {0}.
For a given cone 𝑃 , one can define a partial ordering (denoted by 6: or 6 𝑃 ) with
respect to 𝑃 by 𝑥 6 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃 . The notation 𝑥 < 𝑦 indicate that
𝑥 6 𝑦 and 𝑥 ̸= 𝑦 while 𝑥 ≪ 𝑦 will show 𝑦 − 𝑥 ∈ int𝑃 , where int𝑃 denotes the
interior of 𝑃 .



438 The 8th Congress of the ISAAC — 2011

Throughout this manuscript, 𝐸 is locally convex Hausdorff t.v.s. with its zero
vector, 𝑃 is a proper, closed and pointed convex cone in 𝐸 with 𝑖𝑛𝑡(𝑃 ) ̸= ∅,
𝑐 ∈ 𝑖𝑛𝑡(𝑃 ) and 6 is a partial ordering with respect to 𝑃 .

Definition 1 (see [5–7]). For 𝑐 ∈ 𝐼𝑛𝑡𝑃 , the nonlinear scalarization function
𝜙𝑐 : 𝐸 → R is defined by 𝜙𝑐(𝑦) = inf{𝑡 ∈ R : 𝑦 ∈ 𝑡𝑐− 𝑃}, for all 𝑦 ∈ 𝐸.

Lemma 1 (see [5–7]). For each 𝑡 ∈ R and 𝑦 ∈ 𝐸, the following are satisfied:

1. 𝜙𝑐(𝑦) 6 𝑡⇔ 𝑦 ∈ 𝑡𝑐− 𝑃 ,
2. 𝜙𝑐(𝑦) > 𝑡⇔ 𝑦 /∈ 𝑡𝑐− 𝑃 ,
3. 𝜙𝑐(𝑦) > 𝑡⇔ 𝑦 /∈ 𝑡𝑐− 𝑖𝑛𝑡(𝑃 ),
4. 𝜙𝑐(𝑦) < 𝑡⇔ 𝑦 ∈ 𝑡𝑐− 𝑖𝑛𝑡(𝑃 ),
5. 𝜙𝑐(𝑦) is positively homogeneous and continuous on 𝐸,
6. if 𝑦1 ∈ 𝑦2 +𝐾, then 𝜙𝑐(𝑦2) 6 𝜙𝑐(𝑦1),
7. 𝜙𝑐(𝑦1 + 𝑦2) 6 𝜙𝑐(𝑦1) + 𝜙𝑐(𝑦2), for all 𝑦1, 𝑦2 ∈ 𝐸.

Definition 2. Let 𝑋 be non-empty set. Suppose a vector-valued function 𝑝 :
𝑋 ×𝑋 → 𝑌 satisfies:

1. 0 6 𝑝(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋,
2. 𝑝(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
3. 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋
4. 𝑝(𝑥, 𝑦) 6 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, 𝑝 is called TVS-cone metric on 𝑋, and the pair (𝑋, 𝑝) is called a TVS-cone
metric space (in short, TVS-CMS).

Note that in [8], the authors considered 𝐸 as a real Banach space in the definition
of TVS-CMS. Thus, a cone metric space (in short, CMS) in the sense of Huang and
Zhang [8] is a special case of TVS-CMS.

The cone 𝑃 of a real Banach space 𝐸 is called normal if there is a number 𝐾 > 1
such that for all 𝑥, 𝑦 ∈ 𝐸: 0 6 𝑥 6 𝑦 ⇒ ‖𝑥‖ 6 𝐾‖𝑦‖. The least positive integer
𝐾, satisfying this inequality, is called the normal constant of 𝑃 . Also, 𝑃 is said to
be regular if every increasing sequence which is bounded from above is convergent.
That is, if {𝑥𝑛}𝑛>1 is a sequence such that 𝑥1 6 𝑥2 6 · · · 6 𝑦 for some 𝑦 ∈ 𝐸, then
there is 𝑥 ∈ 𝐸 such that lim𝑛→∞ ‖𝑥𝑛 − 𝑥‖ = 0. For the definition of normality of
cones in locally convex topological vector spaces we may refer the reader to [17].

Lemma 2 (see [7]). Let (𝑋, 𝑝) be a TVS-CMS. Then, 𝑑𝑝 : 𝑋 × 𝑋 → [0,∞)
defined by 𝑑𝑝 = 𝜙𝑐(𝑦) ∘ 𝑝 is a metric.



Remarks on «Fixed and Periodic Results in TVS-Cone Metric Spaces» 439

Remark 1. Since a cone metric space (𝑋, 𝑑) in the sense of Huang and
Zhang [8], is a special case of TVS-CMS, then 𝑑𝑝 : 𝑋 × 𝑋 → [0,∞) defined by
𝑑𝑝 = 𝜙𝑐(𝑦) ∘ 𝑑 is also a metric.

Definition 3 (see [7]). Let (𝑋, 𝑝) be a TVS-CMS, 𝑥 ∈ 𝑋 and {𝑥𝑛}∞𝑛=1 a
sequence in 𝑋.

(𝑖) {𝑥𝑛}∞𝑛=1 TVS-cone converges to 𝑥 ∈ 𝑋 whenever for every 0 ≪ 𝑐 ∈ 𝐸, there
is a natural number 𝑀 such that 𝑝(𝑥𝑛, 𝑥) ≪ 𝑐 for all 𝑛 > 𝑀 and denoted by
𝑐𝑜𝑛𝑒− lim𝑛→∞ 𝑥𝑛 = 𝑥 (or 𝑥𝑛

𝑐𝑜𝑛𝑒→ 𝑥 as 𝑛→∞),
(𝑖𝑖) {𝑥𝑛}∞𝑛=1 TVS-cone Cauchy sequence in (𝑋, 𝑝) whenever for every 0 ≪ 𝑐 ∈ 𝐸,

there is a natural number 𝑀 such that 𝑝(𝑥𝑛, 𝑥𝑚)≪ 𝑐 for all 𝑛,𝑚 >𝑀 ,
(𝑖𝑖𝑖) (𝑋, 𝑝) is TVS-cone complete if every sequence TVS-cone Cauchy sequence in

𝑋 is a TVS-cone convergent.

Lemma 3 (see [7]). Let (𝑋, 𝑝) be a TVS-CMS, 𝑥 ∈ 𝑋 and {𝑥𝑛}∞𝑛=1 a sequence
in 𝑋. Set 𝑑𝑝 = 𝜙𝑐(𝑦) ∘ 𝑝. Then the following statements hold:

(𝑖) If {𝑥𝑛}∞𝑛=1 converges to 𝑥 in TVS-CMS (𝑋, 𝑝), then 𝑑𝑝(𝑥𝑛, 𝑥)→ 0 as 𝑛→∞,
(𝑖𝑖) If {𝑥𝑛}∞𝑛=1 is Cauchy sequence in TVS-CMS (𝑋, 𝑝), then {𝑥𝑛}∞𝑛=1 is a Cauchy

sequence (in usual sense) in (𝑋, 𝑑𝑝),
(𝑖𝑖𝑖) If (𝑋, 𝑝) is complete TVS-CMS, then (𝑋, 𝑑𝑝) is a complete metric space.

Proposition 1 (see [7]). Let (𝑋, 𝑝) is complete TVS-CMS and 𝑇 : 𝑋 → 𝑋
satisfy the contractive condition

𝑝(𝑇𝑥, 𝑇𝑦) 6 𝑘𝑝(𝑥, 𝑦) (1)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 6 𝑘 < 1. Then, 𝑇 has a unique fixed point in 𝑋. Moreover,
for each 𝑥 ∈ 𝑋, the iterative sequence {𝑇𝑛𝑥}∞𝑛=1 converges to fixed point.

2 Common Fixed Point Theorems

Theorem 1. Let (𝑋, 𝑝) be a complete TVS-CMS and 𝑓, 𝑔 : 𝑋 → 𝑋 self-
mappings. Suppose the following condition is satisfied:

𝑝(𝑓𝑥, 𝑔𝑦) 6 𝛼𝑝(𝑥, 𝑦) + 𝛽[𝑝(𝑥, 𝑓𝑥) + 𝑝(𝑦, 𝑔𝑦)] + 𝛾[𝑝(𝑥, 𝑔𝑦) + 𝑝(𝑦, 𝑓𝑥)] (2)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾 > 0 and 𝛼 + 2𝛽 + 2𝛾 < 1. Then, 𝑓 and 𝑔 have a
unique fixed point in 𝑋. Moreover, any fixed point of 𝑓 is a fixed point of 𝑔, and
conversely.
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Proof. By Lemma 2, 𝑑𝑝 = 𝜙𝑐(𝑦) ∘ 𝑝 is a (usual) metric. Due to Lemma 3,
(𝑋, 𝑑𝑝) is a complete metric space. Taking Lemma 1 into account, (2) turns into

𝑑𝑝(𝑓𝑥, 𝑔𝑦) 6 𝛼𝑑𝑝(𝑥, 𝑦) + 𝛽[𝑑𝑝(𝑥, 𝑓𝑥) + 𝑑𝑝(𝑦, 𝑔𝑦)] + 𝛾[𝑑𝑝(𝑥, 𝑔𝑦) + 𝑑𝑝(𝑦, 𝑓𝑥)] (3)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾 > 0 and 𝛼+ 2𝛽 + 2𝛾 < 1.

The rest of the proof is standard. Indeed, take an arbitrary 𝑥0 ∈ 𝑋 and let
𝑥2𝑛+1 = 𝑓𝑥2𝑛 and 𝑥2𝑛+2 = 𝑓𝑥2𝑛+1 for all 𝑛 ∈ {0, 1, 2, · · · }. By (3), routine
calculation implies that 𝑑𝑝(𝑥2𝑛+1, 𝑥2𝑛+2) 6

𝛼+𝛽+𝛾
1−(𝛼+𝛽)𝑑𝑝(𝑥2𝑛, 𝑥2𝑛+1). Analogously,

𝑑𝑝(𝑥2𝑛+3, 𝑥2𝑛+2) 6
𝛼+𝛽+𝛾
1−(𝛼+𝛽)𝑑𝑝(𝑥2𝑛+2, 𝑥2𝑛+1). Thus, one can get

𝑑𝑝(𝑥𝑛+1, 𝑥𝑛+2) 6 𝑡𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) 6 · · · 6 𝑡𝑛+1𝑑𝑝(𝑥0, 𝑥1)

for any 𝑛, where 𝑡 = 𝛼+𝛽+𝛾
1−(𝛼+𝛽) < 1. Hence, for 𝑚 > 𝑛

𝑑𝑝(𝑥𝑚, 𝑥𝑛) 6 𝑑𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑑𝑝(𝑥𝑛+1, 𝑥𝑛+2) + · · ·+ 𝑑𝑝(𝑥𝑚−1, 𝑥𝑚)

(𝑡𝑛 + 𝑡𝑛+1 + · · ·+ 𝑡𝑚−1)𝑑𝑝(𝑥0, 𝑥1) 6 𝑡𝑛

1−𝑡

Thus, 𝑑𝑝(𝑥𝑚, 𝑥𝑛)→ 0 as 𝑛,𝑚→∞ and {𝑥𝑛} is a Cauchy sequence. Since (𝑋, 𝑑𝑝)
is complete metric space, {𝑥𝑛} converges to some point in 𝑋, say 𝑧. To show 𝑧 is
a fixed point, Taking account into (3), routine calculation yields that

𝑑𝑝(𝑧, 𝑔𝑧) 6 𝑑𝑝(𝑧, 𝑥2𝑛+1) + 𝑑𝑝(𝑥2𝑛+1, 𝑔𝑧)

𝑑𝑝(𝑧, 𝑔𝑧) 6
1

1− (𝛼+ 𝛽)
[𝑑𝑝(𝑧, 𝑥2𝑛+1) + 𝛼𝑑𝑝(𝑧, 𝑥2𝑛)+

+ 𝛽𝑑𝑝(𝑥2𝑛, 𝑥2𝑛+1) + 𝛾(𝑑𝑝(𝑥2𝑛, 𝑧) + 𝑑𝑝(𝑧, 𝑥2𝑛+1))]. (4)

The right hand side of (4) converges to zero as 𝑛 → ∞. Thus, 𝑔𝑧 = 𝑧. Regarding
(3) and 𝑔𝑧 = 𝑧, we have

𝑑𝑝(𝑓𝑧, 𝑧) = 𝑑𝑝(𝑓𝑧, 𝑔𝑧) 6 [𝛼𝑑𝑝(𝑧, 𝑧)+

+ 𝛽(𝑑𝑝(𝑧, 𝑓𝑧) + 𝑑𝑝(𝑧, 𝑔𝑧))𝛾(𝑑𝑝(𝑧, 𝑔𝑧) + 𝑑𝑝(𝑧, 𝑓𝑧))] = (𝛽 + 𝛾)𝑑𝑝(𝑧, 𝑓𝑧)

which is possible only if 𝑑𝑝(𝑓𝑧, 𝑧) = 0, that is, 𝑓𝑧 = 𝑧.

For the uniqueness follows by the method of reductio ad absurdum. Suppose 𝑤
is another common fixed point of 𝑓 and 𝑔.
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𝑑𝑝(𝑧, 𝑧) = 𝑑𝑝(𝑓𝑧, 𝑔𝑧) 6 [𝛼𝑑𝑝(𝑧, 𝑤)+

+ 𝛽(𝑑𝑝(𝑧, 𝑓𝑧) + 𝑑𝑝(𝑤, 𝑔𝑤))𝛾(𝑑𝑝(𝑧, 𝑔𝑤) + 𝑑𝑝(𝑤, 𝑓𝑧))] = (𝛽 + 2𝛾)𝑑𝑝(𝑧, 𝑤)

which is possible only if 𝑑𝑝(𝑧, 𝑤) = 0, that is, 𝑤 = 𝑧. �

Remark 2. Theorem 1 generalizes Theorem 2.1 in [1] and the consequent re-
sults (see Corollaries 2.2–2.8 in [1]) for proper choice of 𝑓, 𝑔, 𝛼, 𝛽, 𝛾. Notice also
that we remove all additional conditions on the cone 𝑃 .

Corollary 1. Let (𝑋, 𝑝) be a complete TVS-CMS. A self-mapping 𝑓 : 𝑋 →
𝑋 has a unique fixed point if one of the following conditions is satisfied (for all
𝑥, 𝑦 ∈ 𝑋):

1. 𝑝(𝑓𝑝𝑥, 𝑓 𝑞𝑦) 6 𝛼𝑝(𝑥, 𝑦)+𝛽[𝑝(𝑥, 𝑓𝑝𝑥)+𝑝(𝑦, 𝑓 𝑞𝑦)]+𝛾[𝑝(𝑥, 𝑓 𝑞𝑦)+𝑝(𝑦, 𝑓𝑝𝑥)] where
𝛼, 𝛽, 𝛾 > 0 and 𝛼+ 2𝛽 + 2𝛾 < 1 and 𝑝, 𝑞 ∈ N,

2. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛼𝑝(𝑥, 𝑦) + 𝛽[𝑝(𝑥, 𝑓𝑥) + 𝑝(𝑦, 𝑓𝑦)] + 𝛾[𝑝(𝑥, 𝑓𝑦) + 𝑝(𝑦, 𝑓𝑥)] where
𝛼, 𝛽, 𝛾 > 0 and 𝛼+ 2𝛽 + 2𝛾 < 1,

3. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛼1𝑝(𝑥, 𝑦)+𝛼2𝑝(𝑥, 𝑓𝑥)+𝛼3𝑝(𝑦, 𝑓𝑦)+𝛼4𝑝(𝑥, 𝑓𝑦)+𝛼5𝑝(𝑦, 𝑓𝑥) where
0 6 𝛼𝑖 for 𝑖 = 1, 2, · · · , 5, and

∑︀5
𝑖=1 𝛼𝑖 < 1,

4. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛼𝑝(𝑥, 𝑦) where 0 6 𝛼𝑖 < 1,
5. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛽[𝑝(𝑥, 𝑓𝑥) + 𝑝(𝑦, 𝑓𝑦)] where 𝛽 > 0 and 2𝛽 < 1,
6. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛼𝑝(𝑥, 𝑦) + 𝛾[𝑝(𝑥, 𝑓𝑦) + 𝑝(𝑦, 𝑓𝑥)] where 𝛾 > 0 and 2𝛾 < 1,
7. 𝑝(𝑓𝑥, 𝑓𝑦) 6 𝛼𝑝(𝑥, 𝑦) + 𝛽[𝑝(𝑥, 𝑓𝑥) + 𝑝(𝑦, 𝑓𝑦)] where 𝛼, 𝛽 > 0 and 𝛼+ 2𝛽 < 1.

3 Periodic Fixed Point Theorems

Let 𝑧 ∈ 𝑋 be an fixed point of 𝑓 : 𝑋 → 𝑋. Then 𝑓𝑛(𝑧) = 𝑓𝑛−1(𝑓(𝑧)) =
𝑓(𝑓(...𝑓(𝑧))) = 𝑧. Thus, 𝑧 is also a fixed point of 𝑓𝑛 for any 𝑛 ∈ N. In gen-
eral, the converse is not true. For example, consider 𝑋 = R and 𝑓 : 𝑋 → 𝑋 in a
way that 𝑓𝑥 = 1 − 𝑥. Then 𝑓2𝑥 = 𝑥 and thus 𝑓𝑛𝑥 = 𝑥 for all 𝑛 > 1. Thus, each
𝑥 ∈ R is a fixed point of 𝑓𝑛𝑥 = 𝑥 for all 𝑛 > 1 but only fixed point of 𝑓 is 1

2 . Let
𝐹𝑖𝑥(𝑓) denotes a set of all fixed point of 𝑓 .

Theorem 2. Let (𝑋, 𝑝) be a complete TVS-CMS. A self-mapping 𝑓 : 𝑋 → 𝑋
satisfies the following condition:
(𝑖) 𝑝(𝑓𝑥, 𝑓2𝑥) 6 𝛼𝑝(𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋, where 0 6 𝛼 < 1

If 𝐹𝑖𝑥(𝑓) ̸= ∅ then 𝐹𝑖𝑥(𝑓) = 𝐹𝑖𝑥(𝑓𝑛).

Proof. By Lemma 2, 𝑑𝑝 = 𝜙𝑐(𝑦) ∘ 𝑝 is a (usual) metric. Due to Lemma 3,
(𝑋, 𝑑𝑝) is a complete metric space. Taking Lemma 1. into account, the condition
of the theorem turns into
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(𝑖)’ 𝑑𝑝(𝑓𝑥, 𝑓2𝑥) 6 𝛼𝑑𝑝(𝑥, 𝑓𝑥) for all 𝑥 ∈ 𝑋, where 0 6 𝛼 < 1

The rest of the proof is obtained by standard methods. Indeed, suppose 𝑧 ∈ 𝐹𝑖𝑥(𝑓𝑛)
for 1 6 𝑛 and (𝑖) holds. Thus (𝑖)′ holds and

𝑑𝑝(𝑧, 𝑓𝑧) = 𝑑𝑝(𝑓𝑓
𝑛−1𝑧, 𝑓2𝑓𝑛−1𝑧) 6 𝛼𝑑𝑝(𝑓

𝑛−1𝑧, 𝑓𝑛𝑧) 6 · · · 6 𝛼𝑛𝑑𝑝(𝑧, 𝑓𝑧).

The right hand side of the inequality converges to zero as 𝑛 → ∞ which implies
that 𝑓𝑧 = 𝑧 and so 𝐹𝑖𝑥(𝑓) = 𝐹𝑖𝑥(𝑓𝑛). �

Remark 3. Theorem 2 generalizes Theorem 3.1 in [1]. Notice also that we
remove all additional conditions on the cone 𝑃 .

Theorem 3. Suppose (𝑋, 𝑝) is a complete TVS-CMS and a self-mapping 𝑓 :
𝑋 → 𝑋 satisfies the condition (2) then 𝐹𝑖𝑥(𝑓) ∩ 𝐹𝑖𝑥(𝑔) = 𝐹𝑖𝑥(𝑓𝑛) ∩ 𝐹𝑖𝑥(𝑔𝑛).

Proof. Due to Theorem 1, the condition (3) holds and also 𝐹𝑖𝑥(𝑓)∩𝐹𝑖𝑥(𝑔) ̸= ∅.
Let 𝑧 ∈ 𝐹𝑖𝑥(𝑓𝑛) ∩ 𝐹𝑖𝑥(𝑔𝑛). Then by (3) and triangle inequality

𝑑𝑝(𝑧, 𝑔𝑧) = 𝑑𝑝(𝑓𝑓
𝑛−1𝑧, 𝑔𝑔𝑛𝑧) 6

6 𝛼𝑑𝑝(𝑓
𝑛−1𝑧, 𝑓𝑛𝑧) + 𝛽(𝑑𝑝(𝑓

𝑛−1𝑧, 𝑓𝑛𝑧) + 𝑑𝑝(𝑓
𝑛𝑧, 𝑔𝑛+1𝑧))+

+ 𝛾(𝑑𝑝(𝑓
𝑛−1𝑧, 𝑔𝑛+1𝑧) + 𝑑𝑝(𝑔

𝑛𝑧, 𝑓𝑛𝑧)) 6

6 𝛼𝑑𝑝(𝑓
𝑛−1𝑧, 𝑧) + 𝛽(𝑑𝑝(𝑓

𝑛−1𝑧, 𝑧) + 𝑑𝑝(𝑧, 𝑔𝑧)) + 𝛾(𝑑𝑝(𝑓
𝑛−1𝑧, 𝑔𝑧) + 𝑑𝑝(𝑧, 𝑧)) 6

6 𝛼𝑑𝑝(𝑓
𝑛−1𝑧, 𝑧) + 𝛽(𝑑𝑝(𝑓

𝑛−1𝑧, 𝑧) + 𝑑𝑝(𝑧, 𝑔𝑧)) + 𝛾(𝑑𝑝(𝑓
𝑛−1𝑧, 𝑧) + 𝑑𝑝(𝑔𝑧, 𝑧)). (5)

Thus, (5) implies 𝑑𝑝(𝑧, 𝑔𝑧) 6 𝑡𝑑𝑝(𝑛−1𝑧, 𝑧) where 𝑡 = 𝛼+𝛽+𝛾
1−(𝛼+𝛽) < 1. Hence,

𝑑𝑝(𝑧, 𝑔
𝑛+1𝑧) = 𝑑𝑝(𝑓

𝑛𝑧, 𝑔𝑧) 6 𝑡𝑑𝑝(
𝑛−1𝑧, 𝑧) 6 · · · 6 𝑡𝑛𝑑(𝑧, 𝑓𝑧)

The right hand side of the inequality converges to zero as 𝑛 → ∞ which implies
𝑧 = 𝑔𝑧. By regarding Theorem 1 again, one can get 𝑧 = 𝑓𝑧. �

Theorem 4. Suppose (𝑋, 𝑝) is a complete TVS-CMS and a self-mapping 𝑓 :
𝑋 → 𝑋 satisfies the condition 2 of Corollary 1 then 𝐹𝑖𝑥(𝑓) = 𝐹𝑖𝑥(𝑓𝑛).

Proof. It is clear that 𝐹𝑖𝑥(𝑓) ⊂ 𝐹𝑖𝑥(𝑓𝑛). Due to Corollary 1, 𝐹𝑖𝑥(𝑓) ̸= ∅.
One can repeat the process of proof Theorem 3, by replacing 𝑔 with 𝑓 and get
𝑑𝑝(𝑧, 𝑓𝑧) 6 𝑡𝑛𝑑(𝑧, 𝑓𝑧) where 𝑡 = 𝛼+𝛽+𝛾

1−(𝛼+𝛽) < 1. Thus, 𝑓𝑧 = 𝑧 and hence 𝐹𝑖𝑥(𝑓) =
𝐹𝑖𝑥(𝑓𝑛). �



Remarks on «Fixed and Periodic Results in TVS-Cone Metric Spaces» 443

Corollary 2. Suppose (𝑋, 𝑝) is a complete TVS-CMS and a self-mapping 𝑓 :
𝑋 → 𝑋 satisfies one of the condition 4-7 of Corollary 1 then 𝐹𝑖𝑥(𝑓) = 𝐹𝑖𝑥(𝑓𝑛).

Remark 4. Normality can be removed also without making use of the nonlinear
scalarization function 𝜙𝑐. It can be removed by using the fact that for each 𝑐≫ 0
in (𝐸,𝑆) there exists 𝑞 ∈ 𝑆 and 𝛿 > 0 such that 𝑞(𝑏) < 𝛿, 𝑏 ∈ 𝐸 implies 𝑏 ≪ 𝑐.
Where 𝑆 is the system of the seminorms defining the locally convex topology of 𝐸.
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Abstract. The notion of tripled fixed point is introduced by Berinde and Bor-
cut. Very recently Karapinar defined quadruple fixed point on partially ordered
metric spaces. In this manuscript, we consider the existence and uniqueness of the
quadruple fixed point on the class of partially ordered partial metric space.

1 Introduction

Berinde and Borcut [1] introduced the concept of tripled fixed point which is a
generalization of coupled fixed point, defined by Bhaskar and Lakshmikantham [2].
Many authors focused on coupled and tripled fixed point and proved remarkable
results (see e.g. [3, 4, 7–11]). Recently, Karapinar [5] introduced the concept of
quadruple fixed point.

We consider the following partial order on the product space 𝑋4 = 𝑋 × 𝑋 ×
𝑋 ×𝑋:

(𝑢, 𝑣, 𝑟, 𝑡) 6 (𝑥, 𝑦, 𝑧, 𝑤) if and only if 𝑥 > 𝑢, 𝑦 6 𝑣, 𝑧 > 𝑟, 𝑡 6 𝑤 (1)

where (𝑢, 𝑣, 𝑟, 𝑡), (𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑋4. Regarding this partial order, we state the defi-
nition of the following mapping.

Definition 1 (see [5, 6]). Let (𝑋,6) be partially ordered set and 𝐹 : 𝑋4 →
𝑋. We say that 𝐹 has the mixed monotone property if 𝐹 (𝑥, 𝑦, 𝑧, 𝑤) is monotone
non-decreasing in 𝑥 and 𝑧, and it is monotone non-increasing in 𝑦 and 𝑤, that is,
for any 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋

𝑥1, 𝑥2 ∈ 𝑋, 𝑥1 6 𝑥2 ⇒ 𝐹 (𝑥1, 𝑦, 𝑧, 𝑤) 6 𝐹 (𝑥2, 𝑦, 𝑧, 𝑤),

𝑦1, 𝑦2 ∈ 𝑋, 𝑦1 6 𝑦2 ⇒ 𝐹 (𝑥, 𝑦1, 𝑧, 𝑤) > 𝐹 (𝑥, 𝑦2, 𝑧, 𝑤),

𝑧1, 𝑧2 ∈ 𝑋, 𝑧1 6 𝑧2 ⇒ 𝐹 (𝑥, 𝑦, 𝑧1, 𝑤) 6 𝐹 (𝑥, 𝑦, 𝑧2, 𝑤),

𝑤1, 𝑤2 ∈ 𝑋, 𝑤1 6 𝑤2 ⇒ 𝐹 (𝑥, 𝑦, 𝑧, 𝑤1) > 𝐹 (𝑥, 𝑦, 𝑧, 𝑤2).

(2)
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Definition 2 (see [5, 6]). An element (𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋4 is called a quadruple
fixed point of 𝐹 : 𝑋4 → 𝑋 if

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥 and 𝐹 (𝑥,𝑤, 𝑧, 𝑦) = 𝑦 and
𝐹 (𝑧, 𝑦, 𝑥, 𝑤) = 𝑧 and 𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑤

(3)

For a metric space (𝑋, 𝑑), the function 𝜌 : 𝑋4 → [0,∞), given by,

𝜌((𝑥, 𝑦, 𝑧, 𝑤), (𝑢, 𝑣, 𝑟, 𝑡)) := 𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣) + 𝑑(𝑧, 𝑟) + 𝑑(𝑤, 𝑡)

forms a metric space on 𝑋4, that is, (𝑋4, 𝜌) is a metric induced by (𝑋, 𝑑). For more
details for quadruple fixed point theory, see [5, 6].

Metric spaces were introduced by Maurice René Fréchet in [12]. It is quite
natural to attempt to get a generalization of the notion of metric: Pseudometric
space, quasimetric space, semimetric spaces are well known examples of the gen-
eralizations of metric space. Here, we focus on another generalization of a metric
space: Partial metric space. It was introduced by Matthews (see e.g. [13, 14]) for
applying properly the concept of the metric space to apply to computer science [15].
Matthews suggested to non-zero self distance that was the basic idea of the con-
struction of a partial metric space. In computer science this idea was appreciated
(see e.g. [16, 17, 23, 24] and the references therein). In the last decade, on partial
metric spaces a number of papers were reported (see e.g. [20]– [29] and the references
therein)

We start our study by recalling some basic definitions and technical lemmas.
A mapping 𝑝 : 𝑋 × 𝑋 → [0,∞) is called a partial metric (see e.g. [13, 14]) on a
nonempty set 𝑋 if the following conditions are satisfied:

(PM1) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) (symmetry)
(PM2) If 0 6 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦) then 𝑥 = 𝑦 (equality)
(PM3) 𝑝(𝑥, 𝑥) 6 𝑝(𝑥, 𝑦) (small self-distances)
(PM4) 𝑝(𝑥, 𝑧) + 𝑝(𝑦, 𝑦) 6 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) (triangularity)

Here, the pair (𝑋, 𝑝) is called a partial metric space (PMS). Additionally, a triple
(𝑋, 𝑝,6) is called a partially ordered partial metric space if (𝑋, 𝑝) is a partial metric
space and (𝑋,6) is a partially ordered set.

For a partial metric 𝑝 on 𝑋, the mappings 𝑑𝑝, 𝑑𝑚 : 𝑋 ×𝑋 → R+ given by

𝑑𝑝(𝑥, 𝑦) = 2𝑝(𝑥, 𝑦)− 𝑝(𝑥, 𝑥)− 𝑝(𝑦, 𝑦) (4)

𝑑𝑚(𝑥, 𝑦) = max{𝑝(𝑥, 𝑦)− 𝑝(𝑥, 𝑥), 𝑝(𝑥, 𝑦)− 𝑝(𝑦, 𝑦)} (5)
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are (usual) metrics on 𝑋. It is clear that 𝑑𝑝 and 𝑑𝑚 are equivalent. Notice also
that each partial metric 𝑝 on 𝑋 generates a 𝑇0 topology 𝜏𝑝 on 𝑋 with a base of
the family of open 𝑝-balls {𝐵𝑝(𝑥, 𝜀) : 𝑥 ∈ 𝑋, 𝜀 > 0}, where 𝐵𝑝(𝑥, 𝜀) = {𝑦 ∈ 𝑋 :
𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥) + 𝜀} for all 𝑥 ∈ 𝑋 and 𝜀 > 0.

Example 1 (see e.g. [13, 22, 23]). Consider 𝑋 = [0,∞) with 𝑝(𝑥, 𝑦) =
max{𝑥, 𝑦}. Then (𝑋, 𝑝) is a partial metric space. It is clear that 𝑝 is not a (usual)
metric. Note that in this case 𝑑𝑝(𝑥, 𝑦) = |𝑥− 𝑦| and 𝑑𝑚(𝑥, 𝑦) = 1

2 |𝑥− 𝑦|.
Example 2 (see [13]). Let 𝑋 = {[𝑎, 𝑏] : 𝑎, 𝑏,∈ R, 𝑎 6 𝑏} and define

𝑝([𝑎, 𝑏], [𝑐, 𝑑]) = max{𝑏, 𝑑} −min{𝑎, 𝑐}. Then (𝑋, 𝑝) is a partial metric spaces.
Example 3 (see [13]). Let 𝑋 := [0, 1] ∪ [2, 3] and define 𝑝 : 𝑋 ×𝑋 → [0,∞)

by

𝑝(𝑥, 𝑦) =

{︃
max{𝑥, 𝑦} if {𝑥, 𝑦} ∩ [2, 3] ̸= ∅,
|𝑥− 𝑦| if {𝑥, 𝑦} ⊂ [0, 1].

Then (𝑋, 𝑝) is a complete partial metric space.
Throughout the paper, (𝑋, 𝑝) will always denote a partial metric space and

(𝑋, 𝑝,6) will denote a partially ordered complete partial metric space.

Definition 3 (see e.g. [13, 14]). (𝑖) A sequence {𝑥𝑛} in (𝑋, 𝑝) converges to
𝑥 ∈ 𝑋 if and only if 𝑝(𝑥, 𝑥) = lim𝑛→∞ 𝑝(𝑥, 𝑥𝑛),

(𝑖𝑖) A sequence {𝑥𝑛} in (𝑋, 𝑝) is called a Cauchy if and only if lim𝑛,𝑚→∞ 𝑝(𝑥𝑛, 𝑥𝑚)
exists (and finite),

(𝑖𝑖𝑖) (𝑋, 𝑝) is said to be complete if every Cauchy sequence {𝑥𝑛} in 𝑋 converges,
with respect to 𝜏𝑝, to a point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim𝑛,𝑚→∞ 𝑝(𝑥𝑛, 𝑥𝑚).

(𝑖𝑣) Let 𝑃 = (𝑥, 𝑦, 𝑧, 𝑤) ∈ 𝑋4 and 𝑃0 = (𝑥0, 𝑦0, 𝑧0, 𝑤0) A mapping 𝐹 : 𝑋4 → 𝑋 is
said to be continuous at (𝑥0, 𝑦0, 𝑧0, 𝑤0) ∈ 𝑋4, if

𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0) = lim
𝑃→𝑃0

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝐹

(︂
lim
𝑃→𝑃0

𝑥, lim
𝑃→𝑃0

𝑦, lim
𝑃→𝑃0

𝑧, lim
𝑃→𝑃0

𝑤

)︂
. (6)

Lemma 1 (see e.g. [13, 14]). (𝐴) A sequence {𝑥𝑛} is Cauchy in (𝑋, 𝑝) if and
only if {𝑥𝑛} is Cauchy in the metric space (𝑋, 𝑑𝑝),

(𝐵) (𝑋, 𝑝) is complete if and only if the metric space (𝑋, 𝑑𝑝) is complete. Moreover,

lim
𝑛→∞

𝑑𝑝(𝑥, 𝑥𝑛) = 0⇔ 𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥, 𝑥𝑛) = lim
𝑛,𝑚→∞

𝑝(𝑥𝑛, 𝑥𝑚) (7)

Lemma 2 (see e.g. [22, 25]). Assume 𝑥𝑛 → 𝑧 as 𝑛 → ∞ in (𝑋, 𝑝) such that
𝑝(𝑧, 𝑧) = 0. Then lim𝑛→∞ 𝑝(𝑥𝑛, 𝑦) = 𝑝(𝑧, 𝑦) for every 𝑦 ∈ 𝑋.

Lemma 3 (see e.g. [13, 25]). Let (𝑋, 𝑝) be a PMS. If 𝑝(𝑥, 𝑦) = 0 then 𝑥 = 𝑦.
Moreover if 𝑥 ̸= 𝑦, then 𝑝(𝑥, 𝑦) > 0.
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Remark 1. Since 𝑑𝑝 and 𝑑𝑚 are equivalent, we can take 𝑑𝑚 instead of 𝑑𝑝 in
the above Lemma.

2 Existence of Quadruple Fixed Point

The aim of this paper is to prove the existence and uniqueness of quadruple fixed
point on the class of complete partially ordered partial metric space.

Theorem 1. Let (𝑋,6) be partially ordered set and (𝑋, 𝑝) be a complete partial
metric space. Let 𝐹 : 𝑋4 → 𝑋 be a mapping having the mixed monotone property
on 𝑋. Assume that there exists a constant 𝑘 ∈ [0, 1) such that

𝑝(𝐹 (𝑥, 𝑦, 𝑧, 𝑤), 𝐹 (𝑢, 𝑣, 𝑟, 𝑡)) 6
𝑘

4
[𝑝(𝑥, 𝑢) + 𝑝(𝑦, 𝑣) + 𝑝(𝑧, 𝑟) + 𝑝(𝑤, 𝑡)] (8)

for all 𝑥 > 𝑢, 𝑦 6 𝑣, 𝑧 > 𝑟, 𝑤 6 𝑡. Suppose there exist 𝑥0, 𝑦0, 𝑧0, 𝑤0 ∈ 𝑋 such that

𝑥0 6 𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0), 𝑦0 > 𝐹 (𝑥,𝑤0, 𝑧0, 𝑦0),

𝑧0 6 𝐹 (𝑧0, 𝑦0, 𝑥0, 𝑤0), 𝑤0 > 𝐹 (𝑧0, 𝑤0, 𝑥0, 𝑦0).

Suppose either (𝑎) 𝐹 is continuous, or (𝑏) 𝑋 has the following property:
(𝑖) if non-decreasing sequence 𝑥𝑛 → 𝑥 (respectively, 𝑧𝑛 → 𝑧), then 𝑥𝑛 6 𝑥 (respec-

tively, 𝑧𝑛 6 𝑧) for all 𝑛,
(𝑖𝑖) if non-increasing sequence 𝑦𝑛 → 𝑦(respectively, 𝑤𝑛 → 𝑤), then 𝑦𝑛 > 𝑦 (respec-

tively, 𝑤𝑛 > 𝑤) for all 𝑛,
then there exist 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 such that

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥, 𝐹 (𝑥,𝑤, 𝑧, 𝑦) = 𝑦,

𝐹 (𝑧, 𝑦, 𝑥, 𝑤) = 𝑧, 𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑤.

Proof. We construct a sequence {(𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑤𝑛)} in the following way: Set

𝑥1 = 𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0) > 𝑥0, 𝑦1 = 𝐹 (𝑥0, 𝑤0, 𝑧0, 𝑦0) 6 𝑦0,

𝑧1 = 𝐹 (𝑧0, 𝑦0, 𝑥0, 𝑤0) > 𝑧0, 𝑤1 = 𝐹 (𝑧0, 𝑤0, 𝑥0, 𝑦0) 6 𝑤0,
(9)

Since 𝑥0 6 𝑥1 (see (9)) then by the mixed monotone property of 𝐹 we
have 𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0) 6 𝐹 (𝑥1, 𝑦0, 𝑧0, 𝑤0). Notice that 𝑦1 6 𝑦0 (see (9)). Thus,
again by the mixed monotone property of 𝐹 , we obtain that 𝐹 (𝑥1, 𝑦0, 𝑧0, 𝑤0) 6
𝐹 (𝑥1, 𝑦1, 𝑧0, 𝑤0). Since 𝑧0 6 𝑧1 (see (9)) then by the mixed monotone property of
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𝐹 we get 𝐹 (𝑥1, 𝑦1, 𝑧0, 𝑤0) 6 𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤0). Regarding 𝑤1 6 𝑤0 (see (9)) and the
mixed monotone property of 𝐹 we observe that 𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤0) 6 𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤1).
Combining all the inequalities above, we get the desired result, that is,

𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0) 6 𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤1) or equivalently, 𝑥1 6 𝑥2.

Analogously, one can gets 𝑦2 6 𝑦1, 𝑧1 6 𝑧2 and 𝑤2 6 𝑤1. Hence, for 𝑛 > 1,
inductively we get

𝑥𝑛 = 𝐹 (𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1, 𝑤𝑛−1) > 𝑥𝑛−1 > · · · > 𝑥0,
𝑦𝑛 = 𝐹 (𝑥𝑛−1, 𝑤𝑛−1, 𝑧𝑛−1, 𝑦𝑛−1) 6 𝑦𝑛−1 6 · · · 6 𝑦0,
𝑧𝑛 = 𝐹 (𝑧𝑛−1, 𝑦𝑛−1, 𝑥𝑛−1, 𝑤𝑛−1) > 𝑧𝑛−1 > · · · > 𝑧0,
𝑤𝑛 = 𝐹 (𝑧𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1, 𝑦𝑛−1) 6 𝑤𝑛−1 6 · · · 6 𝑤0,

(10)

Due to (8) and (10), we have

𝑝(𝑥1, 𝑥2) = 𝑝(𝐹 (𝑥0, 𝑦0, 𝑧0, 𝑤0), 𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤1)) 6

6
𝑘

4
[𝑝(𝑥0, 𝑥1) + 𝑝(𝑦0, 𝑦1) + 𝑝(𝑧0, 𝑧1) + 𝑝(𝑤0, 𝑤1)] (11)

𝑝(𝑦1, 𝑦2) = 𝑝(𝐹 (𝑥0, 𝑤0, 𝑧0, 𝑦0), 𝐹 (𝑥1, 𝑤1, 𝑧1, 𝑦1)) 6

6
𝑘

4
[𝑝(𝑥0, 𝑥1) + 𝑝(𝑤0, 𝑤1) + 𝑝(𝑧0, 𝑧1) + 𝑝(𝑦0, 𝑦1)] (12)

𝑝(𝑧1, 𝑧2) = 𝑝(𝐹 (𝑧0, 𝑦0, 𝑥0, 𝑤0), 𝐹 (𝑧1, 𝑦1, 𝑥1, 𝑤1)) 6

6
𝑘

4
[𝑝(𝑧0, 𝑧1) + 𝑝(𝑦0, 𝑦1) + 𝑝(𝑥0, 𝑥1) + 𝑝(𝑤0, 𝑤1)] (13)

𝑝(𝑤1, 𝑤2) = 𝑝(𝐹 (𝑧0, 𝑤0, 𝑥0, 𝑦0), 𝐹 (𝑧1, 𝑤1, 𝑥1, 𝑦1)) 6

6
𝑘

4
[𝑝(𝑧0, 𝑧1) + 𝑝(𝑤0, 𝑤1) + 𝑝(𝑥0, 𝑥1) + 𝑝(𝑦0, 𝑦1)] (14)

Regarding (8) together with (11), (12), (13) we have

𝑝(𝑥2, 𝑥3) = 𝑝(𝐹 (𝑥1, 𝑦1, 𝑧1, 𝑤1), 𝐹 (𝑥2, 𝑦2, 𝑧2, 𝑤2)) 6

6
𝑘

4
[𝑝(𝑥1, 𝑥2) + 𝑝(𝑦1, 𝑦2) + 𝑝(𝑧1, 𝑧2) + 𝑝(𝑤1, 𝑤2)] (15)
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𝑝(𝑦2, 𝑦3) = 𝑝(𝐹 (𝑥1, 𝑤1, 𝑧1, 𝑦1), 𝐹 (𝑥2, 𝑤2, 𝑧2, 𝑦2)) 6

6
𝑘

4
[𝑝(𝑥1, 𝑥2) + 𝑝(𝑤1, 𝑤2) + 𝑝(𝑧1, 𝑧2) + 𝑝(𝑦1, 𝑦2)] (16)

𝑝(𝑧2, 𝑧3) = 𝑝(𝐹 (𝑧1, 𝑦1, 𝑥1, 𝑤1), 𝐹 (𝑧2, 𝑦2, 𝑥2, 𝑤2)) 6

6
𝑘

4
[𝑝(𝑧1, 𝑧2) + 𝑝(𝑦1, 𝑦2) + 𝑝(𝑥1, 𝑥2) + 𝑝(𝑤1, 𝑤2)] (17)

𝑝(𝑤2, 𝑤3) = 𝑝(𝐹 (𝑧1, 𝑤1, 𝑥1, 𝑦2), 𝐹 (𝑧2, 𝑤2, 𝑥2, 𝑦2)) 6

6
𝑘

4
[𝑝(𝑧1, 𝑧2) + 𝑝(𝑤1, 𝑤2) + 𝑝(𝑥1, 𝑥2) + 𝑝(𝑦1, 𝑦2)] (18)

Recursively we have

𝑝(𝑥𝑛+1, 𝑥𝑛+2) = 𝑝(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑤𝑛), 𝐹 (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝑤𝑛+1)) 6

6
𝑘

4
[𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑦𝑛, 𝑦𝑛+1) + 𝑝(𝑧𝑛, 𝑧𝑛+1) + 𝑝(𝑤𝑛, 𝑤𝑛+1)] (19)

𝑝(𝑦𝑛+1, 𝑦𝑛+2) = 𝑝(𝐹 (𝑥𝑛, 𝑤𝑛, 𝑧𝑛, 𝑦𝑛), 𝐹 (𝑥𝑛+1, 𝑤𝑛+1, 𝑧𝑛+1, 𝑦𝑛+1)) 6

6
𝑘

4
[𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑤𝑛, 𝑤𝑛+1) + 𝑝(𝑧𝑛, 𝑧𝑛+1) + 𝑝(𝑦𝑛, 𝑦𝑛+1)] (20)

𝑝(𝑧𝑛+1, 𝑧𝑛+2) = 𝑝(𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛, 𝑤𝑛), 𝐹 (𝑧𝑛+1, 𝑦𝑛+1, 𝑥𝑛+1, 𝑤𝑛+1)) 6

6
𝑘

4
[𝑝(𝑧𝑛, 𝑧𝑛+1) + 𝑝(𝑦𝑛, 𝑦𝑛+1) + 𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑤𝑛, 𝑤𝑛+1)] (21)

𝑝(𝑤𝑛+1, 𝑤𝑛+2) = 𝑝(𝐹 (𝑧𝑛, 𝑤𝑛, 𝑥𝑛, 𝑦𝑛), 𝐹 (𝑧𝑛+1, 𝑤𝑛+1, 𝑥𝑛+1, 𝑦𝑛+1)) 6

6
𝑘

4
[𝑝(𝑧𝑛, 𝑧𝑛+1) + 𝑝(𝑤𝑛, 𝑤𝑛+1) + 𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑦𝑛, 𝑦𝑛+1)] (22)



Quadruple Fixed Point Theorems for Nonlinear Contractions in Par . . . 451

For simplicity, we can use the matrix notation as follow. Set

𝑀 =

⎛⎜⎜⎜⎝
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞⎟⎟⎟⎠ and 𝐷𝑛 =

⎛⎜⎜⎜⎝
𝑝(𝑥𝑛+1, 𝑥𝑛)

𝑝(𝑦𝑛+1, 𝑦𝑛)

𝑝(𝑧𝑛+1, 𝑧𝑛)

𝑝(𝑤𝑛+1, 𝑤𝑛)

⎞⎟⎟⎟⎠ , 𝑅 =
(︁

1
4

1
4

1
4

1
4

)︁
.

Notice that 𝑅𝑀 = 𝑅 and 𝑀𝑛 =𝑀 for all 𝑛 ∈ N. (23)

So we have,
𝐷1 6 𝑘𝐷0, (24)

𝐷2 6 𝑘𝑀𝐷1 6 𝑘
2𝑀2𝐷0 = 𝑘2𝑀𝐷0, and, inductively, (25)

𝐷𝑛 6 𝑘𝑀𝐷𝑛−1 6 𝑘
𝑛𝑀𝐷0. (26)

𝑝(𝑥𝑛+1, 𝑥𝑛+2) 6 𝑘𝑅𝐷𝑛

⎛⎜⎜⎜⎜⎝
𝑝(𝑥𝑛, 𝑥𝑛+1)

𝑝(𝑦𝑛, 𝑦𝑛+1)

𝑝(𝑧𝑛, 𝑧𝑛+1)

𝑝(𝑤𝑛, 𝑤𝑛+1)

⎞⎟⎟⎟⎟⎠ . (27)

Hence, by (23), (8) and (10), we have

𝑝(𝑥𝑛+1, 𝑥𝑛+2) = 𝑝(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑤𝑛), 𝐹 (𝑥𝑛+1, 𝑦𝑛+1, 𝑧𝑛+1, 𝑤𝑛+1)) 6

6
𝑘

4
[𝑝(𝑥𝑛, 𝑥𝑛+1) + 𝑝(𝑦𝑛, 𝑦𝑛+1) + 𝑝(𝑧𝑛, 𝑧𝑛+1) + 𝑝(𝑤𝑛, 𝑤𝑛+1)] 6

6 𝑘𝑅𝐷𝑛 6 𝑘
𝑛+1𝑅𝑀𝐷0 6 𝑘

𝑛+1𝑅𝐷0. (28)

We shall show the sequence {𝑥𝑛} is Cauchy easily by using (19)–(26). Without
loss of generality, we may assume that 𝑚 > 𝑛. By using (19)–(26) together with
triangle inequality, we obtain that

𝑝(𝑥𝑚, 𝑥𝑛) 6 𝑝(𝑥𝑚, 𝑥𝑚−1) + 𝑝(𝑥𝑚−1, 𝑥𝑚−2) + · · ·+ 𝑝(𝑥𝑛+1, 𝑥𝑛) 6

6 𝑘𝑚−1𝑅𝐷0 + · · ·+ 𝑘𝑛𝑅𝐷0 6 𝑘
𝑛(1 + · · ·+ 𝑘𝑚−𝑛−1)𝑅𝐷0 6

6 𝑘𝑛
1

1− 𝑘
𝑅𝐷0 (29)
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Letting 𝑛→∞ in (29) and recalling that 𝑘 ∈ [0, 1), lim𝑛,𝑚→∞ 𝑝(𝑥𝑚, 𝑥𝑛) = 0.

By definition, 𝑑𝑝(𝑥𝑛, 𝑥𝑚) = 2𝑝(𝑥𝑛, 𝑥𝑚) − 𝑝(𝑥𝑛, 𝑥𝑛) − 𝑝(𝑥𝑚, 𝑥𝑚) 6 2𝑝(𝑥𝑛, 𝑥𝑚).
Thus, we have

lim
𝑛→∞

𝑑𝑝(𝑥𝑛, 𝑥𝑚) = 0. (30)

Since (𝑋, 𝑝) is a complete partial metric spaces, then by Lemma 1,(𝑋, 𝑑𝑝) is a
complete metric space. Thus, {𝑥𝑛} converges in (𝑋, 𝑑𝑝), say 𝑥. Again by Lemma
1, we have

𝑝(𝑥, 𝑥) = lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥𝑚) = lim
𝑛→∞

𝑝(𝑥𝑛, 𝑥) = 0. (31)

Analogously, one can show that {𝑦𝑛}, {𝑧𝑛} and {𝑤𝑛} are also Cauchy sequences.
Since (𝑋, 𝑑𝑝) is complete metric space, there exists 𝑦, 𝑧, 𝑤 ∈ 𝑋 such that

𝑝(𝑦, 𝑦) = lim
𝑛→∞

𝑝(𝑦𝑛, 𝑦𝑚) = lim
𝑛→∞

𝑝(𝑦𝑛, 𝑦) = 0,

𝑝(𝑧, 𝑧) = lim
𝑛→∞

𝑝(𝑧𝑛, 𝑧𝑚) = lim
𝑛→∞

𝑝(𝑧𝑛, 𝑧) = 0,

𝑝(𝑤,𝑤) = lim
𝑛→∞

𝑝(𝑤𝑛, 𝑤𝑚) = lim
𝑛→∞

𝑝(𝑤𝑛, 𝑤) = 0.

(32)

Suppose now the assumption (𝑎) holds. Then by (10) and (6), we have

𝑥 = lim
𝑛→∞

𝑥𝑛 = lim
𝑛→∞

𝐹 (𝑥𝑛−1, 𝑦𝑛−1, 𝑧𝑛−1, 𝑤𝑛−1) =

= 𝐹 ( lim
𝑛→∞

𝑥𝑛−1, lim
𝑛→∞

𝑦𝑛−1, lim
𝑛→∞

𝑧𝑛−1, lim
𝑛→∞

𝑤𝑛−1) = 𝐹 (𝑥, 𝑦, 𝑧, 𝑤) (33)

Analogously, we also observe that

𝑦 = lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

𝐹 (𝑥𝑛−1, 𝑤𝑛−1, 𝑧𝑛−1, 𝑦𝑛−1) = 𝐹 (𝑥,𝑤, 𝑧, 𝑦)

𝑧 = lim
𝑛→∞

𝑧𝑛 = lim
𝑛→∞

𝐹 (𝑧𝑛−1, 𝑦𝑛−1, 𝑥𝑛−1, 𝑤𝑛−1) = 𝐹 (𝑧, 𝑦, 𝑥, 𝑤)

𝑤 = lim
𝑛→∞

𝑤𝑛 = lim
𝑛→∞

𝐹 (𝑧𝑛−1, 𝑤𝑛−1, 𝑥𝑛−1, 𝑦𝑛−1) = 𝐹 (𝑧, 𝑤, 𝑥, 𝑦)

(34)

Thus, we have
𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥, 𝐹 (𝑥,𝑤, 𝑧, 𝑦) = 𝑦,

𝐹 (𝑧, 𝑦, 𝑥, 𝑤) = 𝑧, 𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑤.

Suppose now the assumption (𝑏) holds. Since {𝑥𝑛}, {𝑧𝑛} are non-decreasing and
𝑥𝑛 → 𝑥, 𝑧𝑛 → 𝑧 and also {𝑦𝑛}, {𝑤𝑛} are non-increasing and 𝑦𝑛 → 𝑦, 𝑤𝑛 → 𝑤,
then by assumption (𝑏) we have

𝑥𝑛 > 𝑥, 𝑦𝑛 6 𝑦, 𝑧𝑛 > 𝑧, 𝑤𝑛 6 𝑤
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for all 𝑛. Regarding (8) and the triangle inequality, we have

𝑝(𝑥, 𝐹 (𝑥, 𝑦, 𝑧, 𝑤)) 6 𝑝(𝑥, 𝑥𝑛+1) + 𝑝(𝑥𝑛+1, 𝐹 (𝑥, 𝑦, 𝑧, 𝑤))− 𝑝(𝑥𝑛+1, 𝑥𝑛+1) =

= 𝑝(𝑥, 𝑥𝑛+1) + 𝑝(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑤𝑛), 𝐹 (𝑥, 𝑦, 𝑧, 𝑤)) 6

6 𝑝(𝑥, 𝑥𝑛+1) +
𝑘

4
[𝑝(𝑥𝑛, 𝑥) + 𝑝(𝑦𝑛, 𝑦) + 𝑝(𝑧𝑛, 𝑧) + 𝑝(𝑤𝑛, 𝑤)] (35)

Taking 𝑛→∞ in (35) and using (31) and (32), we get that 𝑝(𝑥, 𝐹 (𝑥, 𝑦, 𝑧, 𝑤)) = 0.
Again by (31) and (32), we have

𝑝(𝐹 (𝑥, 𝑦, 𝑧, 𝑤), 𝐹 (𝑥, 𝑦, 𝑧, 𝑤)) 6
𝑘

4
[𝑝(𝑥, 𝑥) + 𝑝(𝑦, 𝑦) + 𝑝(𝑧, 𝑧) + 𝑝(𝑤,𝑤)] = 0. (36)

Hence, by (31),(36),(35) and definition

𝑑𝑝(𝑥, 𝐹 (𝑥, 𝑦, 𝑧, 𝑤)) = 2𝑝(𝑥, 𝐹 (𝑥, 𝑦, 𝑧, 𝑤))−𝑝(𝐹 (𝑥, 𝑦, 𝑧, 𝑤), 𝐹 (𝑥, 𝑦, 𝑧, 𝑤))−𝑝(𝑥, 𝑥) = 0.
(37)

Thus, we have 𝑥 = 𝐹 (𝑥, 𝑦, 𝑧, 𝑤). Analogously we get

𝐹 (𝑦, 𝑧, 𝑤, 𝑥) = 𝑦, 𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑧, 𝐹 (𝑤, 𝑥, 𝑦, 𝑧) = 𝑤.

Thus, we proved that 𝐹 has a quadruple fixed point.

3 Uniqueness of Quadruple Fixed Point

In this section we shall prove the uniqueness of quadruple fixed point. For a product
𝑋4 of a partial ordered set (𝑋,6) we define a partial ordering in the following way:
For all (𝑥, 𝑦, 𝑧, 𝑡), (𝑢, 𝑣, 𝑟, 𝑡) ∈ 𝑋 ×𝑋 ×𝑋 ×𝑋

(𝑥, 𝑦, 𝑧, 𝑤) 6 (𝑢, 𝑣, 𝑟, 𝑡)⇔ 𝑥 6 𝑢, 𝑦 > 𝑣, 𝑧 6 𝑟, 𝑤 > 𝑟. (38)

We say that (𝑥, 𝑦, 𝑧, 𝑤) is equal (𝑢, 𝑣, 𝑟, 𝑡) if and only if 𝑥 = 𝑢, 𝑦 = 𝑣, 𝑧 = 𝑟 and
𝑤 = 𝑡.

Theorem 2. In addition to hypothesis of Theorem 1., suppose that for all
(𝑥, 𝑦, 𝑧, 𝑡), (𝑢, 𝑣, 𝑟, 𝑡) ∈ 𝑋4, there exists (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑋4 that is comparable to
(𝑥, 𝑦, 𝑧, 𝑡) and (𝑢, 𝑣, 𝑟, 𝑡), then 𝐹 has a unique quadruple fixed point.
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Proof. The set of quadruple fixed point of 𝐹 is not empty due to Theorem 1.
Assume, now, (𝑥, 𝑦, 𝑧, 𝑡) and (𝑢, 𝑣, 𝑟, 𝑡) are the quadruple fixed point of 𝐹 , that is,

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) = 𝑥, 𝐹 (𝑢, 𝑣, 𝑟, 𝑡) = 𝑢,

𝐹 (𝑥,𝑤, 𝑧, 𝑦) = 𝑦, 𝐹 (𝑢, 𝑡, 𝑟, 𝑣) = 𝑣,

𝐹 (𝑧, 𝑦, 𝑥, 𝑤) = 𝑧, 𝐹 (𝑟, 𝑣, 𝑢, 𝑡) = 𝑟,

𝐹 (𝑧, 𝑤, 𝑥, 𝑦) = 𝑤, 𝐹 (𝑟, 𝑡, 𝑢, 𝑣) = 𝑡,

We shall show that (𝑥, 𝑦, 𝑧, 𝑤) and (𝑢, 𝑣, 𝑟, 𝑡) are equal. By assumption, there exists
(𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑋 ×𝑋 ×𝑋 ×𝑋 that is comparable to (𝑥, 𝑦, 𝑧, 𝑡) and (𝑢, 𝑣, 𝑟, 𝑡). Define
sequences {𝑎𝑛}, {𝑏𝑛}, {𝑐𝑛} and {𝑑𝑛} such that

𝑎 = 𝑎0, 𝑏 = 𝑏0, 𝑐 = 𝑐0, 𝑑 = 𝑑0 and

𝑎𝑛 = 𝐹 (𝑎𝑛−1, 𝑏𝑛−1, 𝑧𝑛−1, 𝑑𝑛−1),

𝑏𝑛 = 𝐹 (𝑎𝑛−1, 𝑑𝑛−1, 𝑐𝑛−1, 𝑏𝑛−1),

𝑐𝑛 = 𝐹 (𝑐𝑛−1, 𝑏𝑛−1, 𝑎𝑛−1, 𝑑𝑛−1),

𝑑𝑛 = 𝐹 (𝑐𝑛−1, 𝑑𝑛−1, 𝑎𝑛−1, 𝑏𝑛−1).

(39)

for all 𝑛. Since (𝑥, 𝑦, 𝑧, 𝑤) is comparable with (𝑎, 𝑏, 𝑐, 𝑑), we may assume that
(𝑥, 𝑦, 𝑧, 𝑤) > (𝑎, 𝑏, 𝑐, 𝑑) = (𝑎0, 𝑏0, 𝑐0, 𝑑0). Recursively, we get that

(𝑥, 𝑦, 𝑧, 𝑤) > (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛) for all 𝑛. (40)

By (40) and (8), we have

𝑝(𝑥, 𝑎𝑛+1) = 𝑝(𝐹 (𝑥, 𝑦, 𝑧, 𝑤), 𝐹 (𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛)) 6

6
𝑘

4
[𝑝(𝑥, 𝑎𝑛) + 𝑝(𝑦, 𝑏𝑛) + 𝑝(𝑧, 𝑐𝑛) + 𝑝(𝑤, 𝑑𝑛)] (41)

𝑝(𝑏𝑛+1, 𝑦) = 𝑝(𝐹 (𝑎𝑛, 𝑑𝑛, 𝑐𝑛, 𝑏𝑛), 𝐹 (𝑥,𝑤, 𝑧, 𝑦)) 6

6
𝑘

4
[𝑝(𝑎𝑛, 𝑥) + 𝑝(𝑑𝑛, 𝑤) + 𝑝(𝑐𝑛, 𝑧) + 𝑝(𝑏𝑛, 𝑦)] (42)

𝑝(𝑧, 𝑐𝑛+1) = 𝑝(𝐹 (𝑧, 𝑦, 𝑥, 𝑤), 𝐹 (𝑐𝑛, 𝑏𝑛, 𝑎𝑛, 𝑑𝑛)) 6

6
𝑘

4
[𝑝(𝑧, 𝑐𝑛) + 𝑝(𝑦, 𝑏𝑛) + 𝑝(𝑥, 𝑎𝑛) + 𝑝(𝑤, 𝑑𝑛)] (43)
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𝑝(𝑑𝑛+1, 𝑤) = 𝑝(𝐹 (𝑐𝑛, 𝑑𝑛, 𝑎𝑛, 𝑏𝑛), 𝐹 (𝑧, 𝑤, 𝑥, 𝑦)) 6

6
𝑘

4
[𝑝(𝑐𝑛, 𝑧) + 𝑝(𝑑𝑛, 𝑤) + 𝑝(𝑎𝑛, 𝑥) + 𝑝(𝑏𝑛, 𝑦)] (44)

Set 𝛾𝑛 = 𝑝(𝑥, 𝑎𝑛) + 𝑝(𝑦, 𝑏𝑛) + 𝑝(𝑧, 𝑐𝑛) + 𝑝(𝑤, 𝑑𝑛). Then, due to (44)–(44), we have

𝛾𝑛+1 6 𝑘𝛾𝑛 6 𝑘
𝑛𝛾0, for all 𝑛. (45)

Since 0 6 𝑘 < 1, the sequence {𝛾𝑛} is decreasing and bounded below. Thus,
there exists 𝛾 > 0 such that lim𝑛→∞ 𝛾𝑛 = 𝛾. Now, we shall show that 𝛾 = 0. Letting
𝑛→∞ in (45), and having mind 0 6 𝑘 < 1, we obtain that 𝛾 6 0. Therefore, 𝛾 = 0.
That is, lim𝑛→∞ 𝛾𝑛 = 0. Consequently, we have

lim
𝑛→∞

𝑝(𝑥, 𝑎𝑛) = 0, lim
𝑛→∞

𝑝(𝑦, 𝑏𝑛) = 0, lim
𝑛→∞

𝑝(𝑧, 𝑐𝑛) = 0, lim
𝑛→∞

𝑝(𝑤, 𝑑𝑛) = 0. (46)

Analogously, we show that

lim
𝑛→∞

𝑝(𝑢, 𝑎𝑛) = 0, lim
𝑛→∞

𝑝(𝑣, 𝑏𝑛) = 0, lim
𝑛→∞

𝑝(𝑟, 𝑐𝑛) = 0, lim
𝑛→∞

𝑝(𝑠, 𝑑𝑛) = 0. (47)

Combining (46) and (47) yield that (𝑥, 𝑦, 𝑧, 𝑤) and (𝑢, 𝑣, 𝑟, 𝑡) are equal. �

Example 4. Let𝑋 = [0, 1] with the metric 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}, for all 𝑥, 𝑦 ∈ 𝑋
and the usual ordering. Let 𝐹 : 𝑋4 → 𝑋 be given by

𝐹 (𝑥, 𝑦, 𝑧, 𝑤) =
𝑥− 𝑦 + 𝑧 − 𝑤

16
, for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋.

It is easy to check that all the conditions of Theorem 2 are satisfied and (0, 0, 0, 0)
is the unique quadruple fixed point of 𝐹 .
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Abstract. We define a convex attractor 𝐻(�⃗�) for a graph-directed system 𝒮 of
similarities in R𝑑. We show that if the system 𝒮 acting in R2 satisfies the open
convex set condition, then Hausdorff dimension of the set 𝐹 of extreme points of
it’s convex attractor 𝐻(�⃗�) is zero.

1 Introduction

The interplay between the concepts of self-similarity and convexity is a promising
and still unexplored field in the theory of self-similar fractals. This sharply differs
from the situation in the theory of Kleinian groups, where the study of convex hulls
of the limit sets (which are self-conformal fractals) for a long time serves as one of
the main research tools in the theory.

It was shown by the first author in [1] that for self-similar sets in R2 satisfying
the open convex set condition, the set of the extreme points of their convex hull has
zero Hausdorff dimension. Below we solve this problem for graph-directed systems
of similarities in R2. The main result of the paper is the following

Theorem 1. If a graph-directed system 𝒮 of similarities in R2 satisfies OCSC,
then Hausdorff dimension of the set 𝐹 of extreme points of the convex attractor
𝐻(�⃗�) of the system 𝒮 is zero.

1.1 Graph-directed IFS and it’s attractor

Let 𝐺 = (𝑉,𝐸) be a directed multigraph, where 𝑉 is a finite set of vertices and 𝐸
is a finite set of edges. For each 𝑢, 𝑣 ∈ 𝑉 , 𝐸𝑢𝑣 ⊂ 𝐸 is the set of edges from 𝑢 to
𝑣, so 𝐸 =

⋃︀
𝑢,𝑣∈𝑉

𝐸𝑢𝑣. If 𝑒 ∈ 𝐸𝑢𝑣 then 𝑒 has initial vertex 𝑢 = 𝛼(𝑒) and final vertex

𝑣 = 𝜔(𝑒). We assume that every node 𝑢 ∈ 𝑉 is the initial vertex for at least one
edge. We call 𝜎 = 𝑒1𝑒2 . . . 𝑒𝑘 a path in 𝐺 if for 𝑖 = 1, . . . , 𝑘−1, 𝛼(𝑒𝑖+1) = 𝜔(𝑒𝑖). We
define 𝛼(𝜎) = 𝛼(𝑒1) and 𝜔(𝜎) = 𝜔(𝑒𝑘) as initial and final vertex of the path 𝜎. We
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write 𝐸(𝑘)
𝑢𝑣 for the set of all paths 𝜎 = 𝑒1𝑒2 . . . 𝑒𝑘 of length 𝑘, with initial vertex 𝑢

and final vertex 𝑣 and set 𝐸(*)
𝑢𝑣 =

∞⋃︀
𝑘=0

𝐸
(𝑘)
𝑢𝑣 , so that 𝐸(*) =

⋃︀
𝑢,𝑣∈𝑉

𝐸
(*)
𝑢𝑣 . We say that

𝐺 = (𝑉,𝐸) is strongly connected if 𝐸(*)
𝑢𝑣 ̸= ∅ for all 𝑢, 𝑣 ∈ 𝑉 .

Vector-sets. Let 𝑉 be a finite set. An array {𝐴𝑢, 𝑢 ∈ 𝑉 } of sets 𝐴𝑢, will be
called a vector-set �⃗� with components 𝐴𝑢; we call �⃗� non-degenerate, if neither of
𝐴𝑢 is empty, and open, if all 𝐴𝑢 are open sets, and compact, if all of 𝐴𝑢 are compact
sets. We say �⃗� ⊂ �⃗� if �⃗� = {𝐴𝑢, 𝑢 ∈ 𝑉 }, �⃗� = {𝐵𝑢, 𝑢 ∈ 𝑉 } and 𝐴𝑢 ⊂ 𝐵𝑢 for each
𝑢 ∈ 𝑉 .

Graph-directed IFS. Let �⃗� = {𝑋𝑢, 𝑢 ∈ 𝑉 } be a vector-set, with all of it’s
components being metric spaces 𝑋𝑢 = R𝑑 for certain 𝑑. Suppose for each 𝑒 ∈ 𝐸𝑢𝑣
we have a similarity 𝑆𝑒 : 𝑋𝑣 → 𝑋𝑢, with contraction ratio 𝑞𝑒 : |𝑆𝑒(𝑥) − 𝑆𝑒(𝑦)| =
𝑞𝑒|𝑥 − 𝑦| and (for the case 𝑑 = 2) rotation angle 𝜗𝑒. Assume 0 < 𝑞𝑒 < 1. Let
𝑞max = max{𝑞𝑒 : 𝑒 ∈ 𝐸}. For 𝜎 = 𝑒1𝑒2 . . . 𝑒𝑘 write 𝑆𝜎 = 𝑆𝑒1𝑆𝑒2 . . . 𝑆𝑒𝑘 and
𝑞𝜎 = 𝑞𝑒1𝑞𝑒2 . . . 𝑞𝑒𝑘 . At the same time, 𝜗𝜎 = 𝜗𝑒1 + 𝜗𝑒2 . . .+ 𝜗𝑒𝑘 .

We call the family 𝒮 = {𝑆𝑒, 𝑒 ∈ 𝐸} a graph-directed iterated function system or
IFS. There is an unique non-degenerate compact vector-set �⃗� = {𝐾𝑢 : 𝑢 ∈ 𝑉 } ⊂ �⃗�
such that 𝐾𝑢 =

⋃︀
𝑣∈𝑉

⋃︀
𝑒∈𝐸𝑢𝑣

𝑆𝑒(𝐾𝑣) for all 𝑢 ∈ 𝑉 [2, Theorem (4.3.5)]. The vector-set

�⃗� is called the invariant set, or the attractor, of the system 𝒮. We call the system
𝒮 regular if the graph 𝐺 is strongly connected.

1.2 The convex attractor of the system 𝒮

Let 𝐴 be a subset in R𝑑. We denote by 𝐻(𝐴) or by 𝐴 the convex hull of the set
𝐴. Similarly, for a vector-set �⃗� ⊂ �⃗� = {𝑋𝑢 = R𝑑, 𝑢 ∈ 𝑉 } we define it’s convex hull

𝐻(�⃗�) or ̃︀𝐴 as a vector-set 𝐻(�⃗�) = {̃︁𝐴𝑢, 𝑢 ∈ 𝑉 }.
Let 𝒮 be a graph-directed system of contraction similarities 𝑆𝑒 : R𝑑 → R𝑑 with

the structure graph 𝐺 = (𝑉,𝐸) acting on �⃗� = {𝑋𝑢 = R𝑑, 𝑢 ∈ 𝑉 } and let �⃗� be
it’s attractor. The convex hull 𝐻(�⃗�) = {̃︁𝐾𝑢, 𝑢 ∈ 𝑉 } of this attractor will be called
the convex attractor of the system 𝒮. It is easily verified that the components of
𝐻(�⃗�) satisfy the equation ̃︁𝐾𝑢 = 𝐻(

⋃︀
𝑣∈𝑉

⋃︀
𝑒∈𝐸𝑢𝑣

𝑆𝑒(̃︁𝐾𝑣)) for all 𝑢 ∈ 𝑉 .

Throughout this paper the system 𝒮 is supposed to be regular, so for each
𝑢 ∈ 𝑉 , the dimension of the sets ̃︁𝐾𝑢 is the same for all 𝑢 ∈ 𝑉 and is supposed to
be equal to 𝑑, so each ̃︁𝐾𝑢 has nonempty interior ̃̇︁𝐾𝑢.

We denote by 𝐹 the vector-set whose components 𝐹𝑢, 𝑢 ∈ 𝑉 are the sets of
extreme points of ̃︁𝐾𝑢 and call it the vector-set of extreme points of �⃗�.
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2 Hausforff dimension for the set of extreme points

2.1 Open Convex Set Condition

Definition 1. We say, that a graph-directed system 𝒮 satisfies the open convex
set condition (OCSC), if there exists a non-degenerate open vector-set �⃗� = {𝒪𝑢, 𝑢 ∈
𝑉 } with convex components such that:

(i) for any 𝑢, 𝑣 ∈ 𝑉, and 𝑒 ∈ 𝐸𝑢𝑣, 𝑆𝑒(𝒪𝑣) ⊂ 𝒪𝑢;
(ii) for any 𝑣1, 𝑣2 ∈ 𝑉 , 𝑒1 ∈ 𝐸𝑢𝑣1 , 𝑒2 ∈ 𝐸𝑢𝑣2 , 𝑆𝑒1(𝒪𝑣1) ∩ 𝑆𝑒2(𝒪𝑣2) = ∅.

If OCSC is satisfied, we can take for �⃗� the vector-set whose components are the
interiors ̃̇︀𝐾𝑣 of the convex hulls of the components 𝐾𝑣 of the attractor �⃗� of the
system 𝒮:

Proposition 1. Let 𝑈𝑣 = ̃̇︁𝐾𝑣. Then:
(i) for any 𝑢, 𝑣 ∈ 𝑉, and 𝑒 ∈ 𝐸𝑢𝑣, 𝑆𝑒(𝑈𝑣) ⊂ 𝑈𝑢;
(ii) for any 𝑣1, 𝑣2 ∈ 𝑉 , 𝑒1 ∈ 𝐸𝑢𝑣1 , 𝑒2 ∈ 𝐸𝑢𝑣2 , 𝑆𝑒1(𝑈𝑣1) ∩ 𝑆𝑒2(𝑈𝑣2) = ∅.

All further considerations in the paper will be performed for the systems of
similarities in R2.

2.2 The number of boundary components 𝑄𝑖,𝑠

Lemma 1. Let 𝑈1, . . . , 𝑈𝑛 be a collection of disjoint closed domains in R2. Let̃︀𝑈 = 𝐻(
𝑛⋃︀
𝑖=1

𝑈𝑖). For each 𝑖 = 1, . . . , 𝑛 consider the set Γ𝑖 of such subarcs 𝛾 ⊂ 𝜕 ̃︀𝑈
with endpoints in 𝑈𝑖, that if 𝑗 ̸= 𝑖, then 𝛾∩𝑈𝑗 = ∅. Let 𝑄𝑖,𝑠 be the maximal subarcs
inΓ𝑖 . Let 𝑚𝑖 = #{𝑄𝑖,𝑠}.

Then each 𝑚𝑖 is finite, and the sum of all 𝑚𝑖 is less or equal to 2𝑛− 2.

Proof. We may suppose all 𝑈𝑖 are simply-connected. If 𝑛 = 2, then 𝑚1 =
𝑚2 = 1, so the statement is true. Take 𝑛 > 3 and suppose that the statement of
the Lemma is true for any collection of no more than 𝑛 − 1 sets 𝑈𝑖. If all 𝑚𝑖 = 1,
the statement is true, so consider the case when for some 𝑖,𝑚𝑖 > 2. Denote those
connected components of the set ̃︀𝑈 ∖ 𝑈𝑖, which are disjoint from any of 𝑄𝑖,𝑠, by
𝑁𝑘, 𝑘 = 1, . . . ,𝑚𝑖. Each of the sets 𝑈𝑗 , 𝑗 ̸= 𝑖 is contained in the closure of one of
the sets 𝑁𝑘; let 𝑛𝑘 be the number of those 𝑈𝑗 , 𝑗 ̸= 𝑖 which are contained in 𝑁𝑘. For
each 𝑘, 1 6 𝑛𝑘 6 𝑛− 2. Therefore 𝑚𝑖 6 𝑛− 1. Since 𝑛𝑘 + 1 6 𝑛− 1, we apply the
Lemma’s statement to the subfamily {𝑈𝑖} ∪ {𝑈𝑗 |𝑈𝑗 ⊂ 𝑁𝑘} and to it’s convex hull
𝑁𝑘 ∪ 𝑈𝑖. As a result we have

∑︀
𝑈𝑗⊂𝑁𝑘

𝑚𝑗 + 1 6 2𝑛𝑘. Taking sum over all 𝑁𝑘, we get

𝑚 =
∑︀
𝑗 ̸=𝑖

𝑚𝑗 +𝑚𝑖 6 2
∑︀
𝑛𝑘 = 2(𝑛− 1). �
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2.3 Boundary components for convex subcopies

Let 𝒮 be a regular graph-directed system of similarities in R2 satisfying OCSC. Let̃︀𝐾𝑣 be the components of the convex attractor of the system 𝒮. By �̃�𝑒 we denote
the subsets 𝑆𝑒(�̃�𝜔(𝑒)) of the sets �̃�𝛼(𝑒), and by �̃�𝜎 we denote the subsets 𝑆𝜎(�̃�𝜔(𝜎))

of the set �̃�𝛼(𝜎). Since the sets 𝑈𝑣 =
˙̃𝐾𝑣 satisfy (i), (ii) in OCSC, acting the same

way as in Lemma 1, we define the sets 𝑄𝑒 = �̃�𝑒∩𝜕�̃�𝛼(𝑒), and denote their connected
components by 𝑄𝑒,𝑠. Similarly, for a path 𝜎 in 𝐺 we put 𝑄𝜎 = �̃�𝜎 ∩ 𝜕�̃�𝛼(𝜎), and
denote connected components of the set 𝑄𝜎 by 𝑄𝜎,𝑠.

Proposition 2. 1) Each set 𝜕�̃�𝑢, 𝑢 ∈ 𝑉 contains a finite number 𝑚𝑒 of subsets
𝑄𝑒,𝑠, the sum

∑︀
𝑒∈𝐸𝑢

𝑚𝑒 being less or equal to 2𝑛𝑢 − 2, where 𝑛𝑢 is a number of

elements of 𝐸𝑢.
2) If 𝑛𝑢 > 2, then for any 𝑒1 ̸= 𝑒2, #(𝑄𝑒1,𝑠

⋂︀
𝑄𝑒2,𝑡) 6 1.

3) For each two sets 𝑄𝜎,𝑠, 𝑄𝜎′,𝑠′ either or one of these sets is a subset of the
other whereas one of the two paths 𝜎, 𝜎′ is the initial subpath of the other empty
or one-point, or #(𝑄𝜎,𝑠

⋂︀
𝑄𝜎′,𝑠′) 6 1 .

Proof. Applying the argument of Lemma 1 to the sets �̃�𝑒, 𝑒 ∈ 𝐸𝑢 (instead
of the sets 𝑈𝑖), we get that �̃� = �̃�𝑢, and connected components 𝑄𝑒,𝑠 of the sets
𝑄𝑒 = �̃�𝑒 ∩ 𝜕�̃�𝑢 are the maximal subarcs of 𝜕�̃�𝑢 having their endpoints in �̃�𝑒,
whose interior does not intersect any of the sets �̃�𝑒′ , 𝑒

′ ̸= 𝑒.
Indeed, if the interior of 𝑄𝑒,𝑠 has nonempty intersection with some �̃�𝑒′ , 𝑒

′ ̸= 𝑒,
then ˙̃𝐾𝑒 ∩ ˙̃𝐾𝑒′ ̸= ∅, and this contradicts OCSC.

Let 𝑄𝑒,𝑠, 𝑄𝑒,𝑡 be two connected components of the set 𝑄𝑒 = �̃�𝑒 ∩ 𝜕�̃�𝛼(𝑒), and
let 𝛾 be a subarc in 𝜕�̃�𝑢, with one endpoint lying in 𝑄𝑒,𝑠, and the other in 𝑄𝑒,𝑡,
whose interior is disjoint from 𝑄𝑒. If 𝛾 is a straight line segment, then 𝛾 ⊂ �̃�𝑒,
which is impossible, because in this case the set 𝑄𝑒,𝑠 ∪ 𝛾 ∪ 𝑄𝑒,𝑡 is connected and
is contained in the set 𝑄𝑒 = �̃�𝑒 ∩ 𝜕�̃�𝛼(𝑒). Therefore 𝛾 ∩ 𝑄𝑒′ ̸= ∅ for some 𝑒′ ̸= 𝑒,
which ensures the maximality of the subarcs 𝑄𝑒,𝑠.

Therefore the statement 1) directly follows from Lemma 1. The statement 2) is
obvious.

Since the inclusions 𝑄𝑒1 ⊃ 𝑄𝑒1𝑒2 . . . ⊃ 𝑄𝑒1𝑒2...𝑒𝑝 ⊃ . . . imply that the set
𝑄𝑒1𝑒2...𝑒𝑝 ∩ 𝑄𝑒′1𝑒′2...𝑒′𝑞 is contained in each of the sets 𝑄𝑒1𝑒2...𝑒𝑝′ ∩ 𝑄𝑒′1𝑒′2...𝑒′𝑞′ with
𝑝 > 𝑝′, 𝑞 > 𝑞′, the statement 3) follows from 2). �
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2.4 The estimates for the number of boundary components

We will call two graph-directed systems 𝒮 and 𝒮 ′ with structure graphs 𝐺 = (𝑉,𝐸)

and 𝐺′ = (𝑉 ′, 𝐸′) convex equivalent, if 𝑉 = 𝑉 ′ and the convex hulls 𝐻(�⃗�) and
𝐻(�⃗� ′) of their invariant sets are the same.

Proposition 3. Let 𝒮 be a regular graph directed system in R2 with the struc-
ture graph Γ = (𝑉,𝐸), satisfying OCSC. There is such a system 𝒮 ′ convex equivalent
to 𝒮 and satisfying OCSC , with a structure graph Γ′ = (𝑉,𝐸′), that

for each 𝜎 ∈ 𝐸′(𝜔), 𝑄𝜎 is connected, (1)

for each 𝑒 ∈ 𝐸′, ̃︀𝐾𝑒 ∩ 𝐹𝛼(𝑒) ̸= ∅, (2)

for each 𝑒1 ̸= 𝑒2, 𝑄𝑒1 ̸⊂ 𝑄𝑒2 . (3)

Proof. Suppose for some 𝑒 ∈ 𝐸, the set𝑄𝑒 is not connected, and let𝑄𝑒,1 . . . 𝑄𝑒,𝑠
be it’s components. Denote the minimal distance between points belonging to
different components of 𝑄𝑒 by 𝛿𝑒. Let 𝛿 be the minimum of all such 𝛿𝑒, 𝑒 ∈ 𝐸.

For each component 𝑄𝑒,𝑘 denote by 𝑁𝑒,𝑘 the set of all outer normal vectors at
points 𝑥 ∈ 𝑄𝑒,𝑘. For each line segment 𝑙 ⊂ 𝜕 ̃︀𝐾𝑢, with both endpoints belonging
to 𝑄𝑒, it is contained in 𝑄𝑒, therefore 𝑙 lies in some component 𝑄𝑒,𝑘. Therefore
the sets 𝑁𝑒,𝑘 are disjoint closed subarcs of the unit circle 𝐶. Their complement
𝐶 ∖
⋃︀
𝑘

𝑁𝑒,𝑘 is a collection of 𝑠 open circular arcs; let 𝜆𝑒 be the length of the smallest

of those arcs and 𝜆 be the minimum of 𝜆𝑒, 𝑒 ∈ 𝐸.
By Lemma II in [5] there is such an integer 𝑝, that for each path 𝜎 ∈ 𝐸(𝑝),

𝑞𝜎 6
𝛿

max{diam(𝐾𝑢), 𝑢 ∈ 𝑉 }
.

For each path 𝜎 = 𝑒1 . . . 𝑒𝑝 the set 𝑆𝜎( ̃︀𝐾𝜔(𝜎)) has the diameter smaller than
𝛿, therefore the intersection 𝑆𝜎( ̃︀𝐾𝜔(𝜎)) ∩ 𝜕 ̃︀𝐾𝛼(𝜎) = 𝑄𝜎 is contained in one of the
components of the set 𝑆𝑒1( ̃︀𝐾𝜔(𝑒1))∩𝜕 ̃︀𝐾𝛼(𝜎) = 𝑄𝑒1 . Also, for each such path 𝜎1 = 𝜏 ·𝜎
that 𝜎 ∈ 𝐸(𝑝) the set 𝑄𝜎1 = 𝑆𝜎1(

̃︀𝐾𝜔(𝜎1)) ∩ 𝜕 ̃︀𝐾𝛼(𝜎1) is contained in one of the
components of the set 𝑄𝜏 = 𝑆𝜏 ( ̃︀𝐾𝜔(𝜏)) ∩ 𝜕 ̃︀𝐾𝛼(𝜎1).

Consider the path 𝜎1 = 𝜏 · 𝜎, 𝜎 = 𝑒1 . . . 𝑒𝑝, 𝜏 = 𝑒′1 . . . 𝑒
′
𝑚. Suppose the set 𝑄𝜎1

is not connected. Let 𝑄(1)
1 and 𝑄(1)

2 be two it’s adjacent components and 𝜉(1), 𝜂(1)

are the endpoints of the interval Δ(1) in the set 𝜕 ̃︀𝐾𝛼(𝜎1), separating 𝑄(1)
1 from 𝑄

(1)
2 .
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Each of the sets 𝑆𝑒′𝑘...𝑒′𝑚𝑒1...𝑒𝑝(
̃︀𝐾𝜔(𝜎)) ∩ 𝜕 ̃︀𝐾𝛼(𝑒′𝑘)

is also non-connected, and contains

two such components 𝑄(𝑘)
1 , 𝑄(𝑘)

2 that 𝑆𝑒′1...𝑒′𝑘−1
(𝑄(𝑘))∩ 𝜕 ̃︀𝐾𝛼(𝜎1) = 𝑄

(1)
𝑖 . In this case

the points 𝜉(𝑘) = 𝑆−1
𝑒′1...𝑒

′
𝑘−1

(𝜉), 𝜂(𝑘) = 𝑆−1
𝑒′1...𝑒

′
𝑘−1

(𝜂) are the endpoints of the interval

Δ(𝑘), separating 𝑄(𝑘)
1 from 𝑄

(𝑘)
2 . Consider the sets of normal vectors 𝑁(Δ(𝑘)). They

are the equal open arcs. They cannot coincide when 𝑘 ̸= 𝑙, because all the distances
𝑑(𝜉(𝑘), 𝜂(𝑘)) are different. Due to OCSC their intersection is empty.

Therefore the number of such arcs is not larger than
2𝜋

𝜆
·#𝑉 .

So, if 𝑝1 >
2𝜋

𝜆
·#𝑉+𝑝, then each of the sets𝑄𝑒1...𝑒𝑝1 = 𝑆𝑒1...𝑒𝑝1 (

̃︀𝐾𝜔(𝑒𝑝1 )
)∩𝜕 ̃︀𝐾𝛼(𝑒1)

is connected.
To obtain the new system 𝒮 ′ we take the set of all such 𝑆𝑒1...𝑒𝑝1 that the set

𝑄𝑒1...𝑒𝑝1 is non-empty. The system 𝒮 ′ satisfies the OCSC. So the condition (3) is
proved.

To make sure that (1) (2) are fulfilled too, delete those similarities 𝑆𝑒′ , which
violate these conditions; the resulting system 𝒮”, is convex equivalent to 𝒮. The
reader may verify that the resulting system is also regular. �

A system 𝒮, satisfying (1), (2), (3) and OCSC, is called a proper one.

Lemma 2. If 𝒮 is a proper system then for each natural 𝑝 and each 𝑢 ∈ 𝑉 , the
number of order p components 𝑄𝑒1...𝑒𝑝 ⊂ 𝜕̃︁𝐾𝑢, having nonempty interior in 𝜕 ̃︀𝐾𝑢,
is less or equal to 𝑝𝑛+1, where 𝑛 is the number #𝐸 of the edges of the graph Γ.

Proof. For 𝑝 = 1 the statement is obvious.
Suppose it holds for the components of order 𝑝− 1.
If the component 𝑄𝑒1...𝑒𝑝−1 contains a component 𝑄𝑒1...𝑒𝑝−1𝑓 of order 𝑝 which is

not equal to 𝑄𝑒1...𝑒𝑝−1 , then one of the endpoints 𝜉𝑓 , 𝜂𝑓 of the component 𝑄𝑓 either
𝑆𝑒1...𝑒𝑝−1(𝜉𝑓 ), or 𝑆𝑒1...𝑒𝑝−1(𝜂𝑓 ) lies in the interior of the arc 𝑄𝑒1...𝑒𝑝−1 .

This allows us to evaluate the number of those components 𝑄𝑒1...𝑒𝑝 of order 𝑝,
whose interior is non-empty.

For each of these components consider a set of unit normal vectors
·
𝑁 𝑒1...𝑒𝑝=⋃︀

𝑥∈
·
𝑄𝑒1...𝑒𝑝

𝑁𝑥, where
·
𝑄𝑒1...𝑒𝑝 is the interior of the component 𝑄𝑒1...𝑒𝑝 in 𝜕 ̃︀𝐾𝛼(𝑒1). If

·
𝑄𝑒1...𝑒𝑝 is non-empty, then

·
𝑁 𝑒1...𝑒𝑝 — is an open subarc of the unit circle, so that

·
𝑁 𝑒1⊃

·
𝑁 𝑒1𝑒2⊃ . . . ⊃

·
𝑁 𝑒1...𝑒𝑝⊃ . . . and

·
𝑁 𝑒1...𝑒𝑝= 𝑆𝑒1...𝑒𝑝(

·
𝑁 𝑒𝑝)∩

·
𝑁 𝑒1...𝑒𝑝−1 .

The set
·
𝑁 𝑒1...𝑒𝑝 is different from

·
𝑁 𝑒1...𝑒𝑝−1 if at least one of the endpoints of the

arc
·
𝑁 𝑒1...𝑒𝑝 lies in the interior of the arc

·
𝑁 𝑒1...𝑒𝑝−1 .



464 The 8th Congress of the ISAAC — 2011

Let 𝛽−𝑒𝑝 and 𝛽+𝑒𝑝 be the endpoints of the arc
·
𝑁 𝑒𝑝 . Then one of the following

inequalities is true:

𝛽−𝑒1...𝑒𝑝 < 𝜗𝑒1 + . . .+ 𝜗𝑒𝑝−1 + 𝛽−𝑒𝑝 < 𝛽+𝑒1...𝑒𝑝

𝛽−𝑒1...𝑒𝑝 < 𝜗𝑒1 + . . .+ 𝜗𝑒𝑝−1 + 𝛽+𝑒𝑝 < 𝛽+𝑒1...𝑒𝑝

Observe now, that first, the sets
·
𝑁 𝑒1...𝑒𝑝−1 are disjoint for each fixed 𝑢 = 𝛼(𝑒1)

and second, that the value of the sum 𝜗𝑒1 + . . . + 𝜗𝑒𝑝−1 remains the same for all
permutations of the symbols 𝑒1 . . . 𝑒𝑝−1. Therefore for each 𝑢 ∈ 𝑉 denote by 𝑁𝑢

𝛾

the union of all those sets
·
𝑁 𝑒1...𝑒𝑝−1 , for which 𝑢 = 𝛼(𝑒1) and 𝜗𝑒1 + . . .+𝜗𝑒𝑝−1 = 𝛾;

and denote by 𝑃 𝑢𝛾 the union of all corresponding open components
·
𝑄𝑒1...𝑒𝑝−1

, and
let 𝑝𝑢𝛾 be the number of these components.

Then, if
·
𝑄𝑒1...𝑒𝑝⊂ 𝑃 𝑢𝛾 and if

·
𝑄𝑒1...𝑒𝑝 is not equal to

·
𝑄𝑒1...𝑒𝑝−1

, then at least one

of the conditions 𝛾 + 𝛽−𝑒𝑝 ∈
·
𝑁𝑢
𝛾 and 𝛾 + 𝛽+𝑒𝑝 ∈

·
𝑁𝑢
𝛾 is satisfied.

When one passes from 𝑝− 1 to 𝑝, the number of components increases, if some

component
·
𝑄𝑒1...𝑒𝑝−1

contains at least two components 𝑄𝑒1...𝑒𝑝 , 𝑄𝑒1...𝑒𝑝−1𝑒′𝑝 of the
order 𝑝 and this means that the following system of inequalities hold:{︃

𝛽−𝑒1...𝑒𝑝−1
< 𝜗𝑒1 + . . .+ 𝜗𝑒𝑝−1 + 𝛽+𝑒𝑝 < 𝛽+𝑒1...𝑒𝑝−1

𝛽−𝑒1...𝑒𝑝−1
< 𝜗𝑒1 + . . .+ 𝜗𝑒𝑝−1 + 𝛽−𝑒′𝑝

< 𝛽+𝑒1...𝑒𝑝−1

So if 𝑚 is a total number of those angles 𝛽+𝑗 and 𝛽−𝑗 , for which 𝛾 + 𝛽−𝑗 ∈
·
𝑁𝑢
𝛾 or

𝛾 + 𝛽+𝑗 ∈
·
𝑁𝑢
𝛾 , then the number of the components of the order 𝑝 contained in 𝑃 𝑢𝛾

is not larger than 𝑝𝑢𝛾 +𝑚. The number 𝑚 does not exceed the number 𝑛 = #𝐸 of
similarities generating the system 𝒮.

The number of different sets 𝑃 𝑢𝛾 is not larger than the number of different sums
composed of 𝑝− 1 summands, chosen from the set {𝜗𝑒, 𝑒 ∈ 𝐸}. This number does
not exceed the number of different monomials in the expansion (𝑥1 + . . .+ 𝑥𝑛)

𝑝−1,

which is equal to
(𝑛+ 𝑝− 2)!

(𝑝− 1)!(𝑛− 1)!
.

Then, while passing from (𝑝− 1) to 𝑝, for each 𝑢 ∈ 𝑉 there arises no more than

𝑛 · (𝑛+ 𝑝− 2)!

(𝑝− 1)!(𝑛− 1)!
new components. Therefore the total number of the components
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of the order 𝑝 does not exceed

𝑛

(︂
1 +

𝑛!

1!(𝑛− 1)!
+

(𝑛+ 1)!

2!(𝑛− 1)!
+ . . .+

(𝑛+ 𝑝− 2)!

(𝑝− 1)!(𝑛− 1)!

)︂
=

(𝑛+ 𝑝− 1)!

(𝑝− 1)!(𝑛− 1)!
,

and this number is in it’s turn smaller than 𝑝𝑛+1.

2.5 The proof of the main theorem

Proof of the Theorem 1. We may suppose that the system 𝒮 is a proper one.
Since the set 𝐹0 of isolated extreme points of 𝜕̃︁𝐾𝑢 is at most countable, and therefore
has zero Hausdorff dimension, it suffices to find the dimension of it’s complement
𝐹 ′ = 𝐹 ∖𝐹0. For any 𝑝, each set 𝐹 ′

𝑢 may be covered by components 𝑄𝑒1...𝑒𝑝 , having
non-empty interior in 𝜕̃︁𝐾𝑢. The total number of these components does not exceed
𝑝𝑛+1, while the diameter of each of them is smaller than 𝑞𝑝max ·max{diam(̃︁𝐾𝑢), 𝑢 ∈
𝑉 }. Since for each 𝑢 ∈ 𝑉 the box dimension [4, p.41] of the set 𝐹 ′

𝑢 is equal

to dim𝐵 𝐹
′
𝑢 = lim

𝑝→∞

(︂
− ln 𝑝𝑛+1

ln 𝑞𝑝max

)︂
= 0, Hausdorff dimension of the set 𝐹 ′ is zero.

Therefore Hausdorff dimension of the set 𝐹 also is equal to zero. �

References

1. A.V. Tetenov Hausdorff dimension of the set of extreme points of a self-
similar set in the plane. Dynamics of Continuum, 120, Inst. of Hydrodynamics,
Siberian Branch of Russian Acad. Sci., Novosibirsk, 2002, Pp. 53-59.

2. G.A.Edgar Measure, Topology, and Fractal Geometry. Springer-Verlag, 1990.
3. G.A. Edgar, M. Das Separation properties for graph-directed self-similar frac-

tals. Top. appl., V. 152, 2005, Pp. 138–156.
4. K.J. Falconer Fractal geometry: mathematical foundations and applications.

J. Wiley and Sons, New York, 1990.
5. R.D. Mauldin, S. C. Williams Hausdorff dimension in graph directed con-

structions. Trans. Amer. Math. Soc. 1988, V. 309, Pp. 811–829.

A. V. Tetenov
Gorno-Altaisk State University, Gorno-Altaisk, 649000, Russia, email: atet@mail.ru

M. M. Tripathi
Department of Mathematics and DST-CIMS, Faculty of Science, Banaras Hindu
University, Varanasi 221005, India, Mob. no. 091-9453559944, email:
mmtripathi66@yahoo.com



466 The 8th Congress of the ISAAC — 2011
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Abstract. In the present study, we introduce the notion of E. A. property for
trivariate mapping 𝐹 and self mapping 𝑔 in fuzzy metric spaces. Also utilize these
perceptions to prove a tripled coincidence point theorem for such nonlinear contrac-
tive mappings in both sense GV-fuzzy metric spaces and KM-fuzzy metric spaces.
The efforts of this work extend, unify and generalize all the result of Mihet. We
illustrate an example to support our results.

1 Introduction

Metric space is an important notion in analysis and the Banach contraction principle
is the root of fruitful tree of fixed point theory. The custom of improving contraction
conditions in the fixed point theorem is still in fashion. Many studies have been
done on contractive mappings, e.g., Rhoades [20] made a comparison of various
definition (more than 100 types varied from 25 basic types) of contractive mappings
on complete metric space in 1977. And up to now, such study is still going on,
proceeding the same tradition, the concept of coupled fixed point was initially
introduced by Chang and Ma [3]. Since then, the concept has been of interest to
many researchers in metrical fixed point theory.

Specifically, Bhaskar and Lakshmikanthan [3] established coupled fixed point for
mixed monotone operator in partially ordered metric spaces. Afterward, Ciric and
Lakshmikanthan [7] extended the results of [3] by furnishing coupled coincidence
and coupled fixed point theorem for two commuting mappings. In a subsequent
series, B. S. Choudhary and A. Kundu [6] introduced the concept of compatibility
and proved the result of [3]. under different set of condition. Very recently, Borcut
and Berinde [4] introduce tripled fixed point theorem for contractive type mapping
in partially ordered metric spaces.

The first author is gratefully acknowledged to Council of Scientific and Industrial Re-
search, Government of India, for providing financial assistant under research project no-
25(0197)/11/EMR-II. Authors also thankful to the reviewer for carefully reading and to suggest
necessary changes in the manuscript.
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The concept of fuzzy metric space was introduced by different authors (see [8,
12]) in different ways and further using these different concepts various authors (([1,
7–12, 20–25]) proved theorem which assures the existence of fixed point. Here, we
use notion of fuzzy metric space established by Kramosil and Michalek [15]. was
modified by George and Veeramani [9].

Aamri and ElMoutawakil [2] defined a property (E.A) which generalizes the
concept of non-compatible mappings and gave some common fixed point theorems
under strict contractive conditions. Recently, Mihet [18] enlarged the concept in
setting of fuzzy metric space. Motivated by Bhaskar and Lakshmikanthan [3] and
Borcut and Berinde [4], the purpose of present study is to investigate tripled coin-
cidence point theorem for mappings that possess monotonicity type properties, in
the context of GV-fuzzy metric space and KM-Fuzzy metric spaces which combine
method of contraction principle with method of monotone iterations.

2 Preliminaries

In what follows, we collect some relevant definitions, results, examples for our fur-
ther use.

Definition 1. A fuzzy set 𝐴 in X is a function with domain 𝑋 and values in
[0, 1].

Definition 2. A continuous 𝑡-norm (in sense of Schweizer and Sklar [21]) is a
binary operation 𝑇 on [0, 1] satisfying the following conditions:

— 𝑇 is a commutative and associative;,
— 𝑇 (𝑎, 1) = 𝑎 for all 𝑎 ∈ [0, 1];
— and 𝑇 (𝑎, 𝑏) = 𝑇 (𝑐, 𝑑) whenever 𝑎 = 𝑐 and 𝑏 = 𝑑(𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1]);
— The mapping 𝑇 : [0, 1]× [0, 1]→ [0, 1] is continuous.

Remark 1. The following are classical example of continuous 𝑡-norm

— 𝑇𝑀 (𝑎, 𝑏) = min{𝑎, 𝑏}, minimum 𝑡-norm.,

— 𝑇𝐻(𝑎, 𝑏) =

⎧⎨⎩0 if 𝑎 = 𝑏 = 0,

𝑎𝑏

𝑎+ 𝑏+ 𝑎𝑏
otherwise,

Hamacher product.

— and 𝑇𝑁 (𝑎, 𝑏) =

{︃
min{𝑎, 𝑏} if 𝑎+ 𝑏 > 1,

0 otherwise,
Nilpotent minimum.

— 𝑇𝐿(𝑎, 𝑏) = max{𝑎+ 𝑏− 1, 0}, Lukasiewict 𝑡-norm
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— 𝑇𝐷(𝑎, 𝑏) =

⎧⎪⎪⎨⎪⎪⎩
𝑏 if 𝑎 = 1,

𝑎 if 𝑏 = 1,

0 otherwise,

Drastic 𝑡-norm.

The minimum 𝑡-norm is point wise largest 𝑡-norm and the drastic 𝑡-norm is
point wise smallest 𝑡-norm; that is, 𝑇𝑀 (𝑎, 𝑏) = 𝑇 (𝑎, 𝑏) = 𝑇𝐷(𝑎, 𝑏) for any 𝑡-norm 𝑡
with 𝑎, 𝑏 ∈ [0, 1].

Kramosil and Michalek in [16] generalized the concept of probabilistic metric
space given by Menger [19] to the fuzzy framework as follows.

Definition 3. A fuzzy metric space (in sense of Kramosil and Michalek [15]) is
a triple (𝑋,𝑀, *), where 𝑋 is a nonempty set, * is a continuous 𝑡-norm and 𝑀 is
a fuzzy set on 𝑋2 × [0,∞) such that the following axioms holds:

— [(FM-1)] 𝑀(𝑥, 𝑦, 0) = 0 (𝑥, 𝑦 ∈ 𝑋);
— [(FM-2)] 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 iff 𝑥 = 𝑦;
— [(FM-3)] 𝑀(𝑥, 𝑦, 𝑡) =𝑀(𝑦, 𝑥, 𝑡) (𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0);
— [(FM-4)] 𝑀(𝑥, 𝑦, ·) : [0,∞) → [0, 1] is left continuous for all 𝑥, 𝑦 ∈
𝑋;

— [(FM-5)] 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) > 𝑀(𝑥, 𝑦, 𝑡) * 𝑀(𝑦, 𝑧, 𝑠) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and
𝑠, 𝑡 > 0.

We will refer to these spaces as KM-fuzzy metric spaces.

Lemma 1 (see [8]). For every 𝑥, 𝑦 ∈ 𝑋, the mapping 𝑀(𝑥, 𝑦, ·) is nondecreas-
ing on (0,∞).

In order to introduce an Hausdorff topology on the fuzzy metric spaces, George
and Veeramani [9] modified in a slight but appealing way the notion of fuzzy metric
spaces of Kramosil and Michalek [16].

Definition 4. A fuzzy metric space (in sense of George and Veeramani [9]) is
a triple (𝑋,𝑀, *), where 𝑋 is a nonempty set, * is a continuous 𝑡-norm and M is a
fuzzy set on 𝑋2 × (0,∞) such that the following axioms holds:

— [(GV-1)] 𝑀(𝑥, 𝑦, 𝑡) > 0(𝑥, 𝑦 ∈ 𝑋);
— [(GV-2)] 𝑀(𝑥, 𝑦, 𝑡) = 1 for all 𝑡 > 0 iff 𝑥 = 𝑦;
— [(GV-3)] 𝑀(𝑥, 𝑦, 𝑡) =𝑀(𝑦, 𝑥, 𝑡) (𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0);
— [(GV-4)] 𝑀(𝑥, 𝑦, ·) : (0,∞)→ (0, 1] is continuous for all 𝑥, 𝑦 ∈ 𝑋;
— [(GV-5)] 𝑀(𝑥, 𝑧, 𝑡 + 𝑠) > 𝑀(𝑥, 𝑦, 𝑡) * 𝑀(𝑦, 𝑧, 𝑠) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and
𝑠, 𝑡 > 0.
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Notice that condition (GV-5) is a fuzzy version of triangular inequality. The value
𝑀(𝑥, 𝑦, 𝑡) can be thought of as degree of nearness between 𝑥 and 𝑦 with respect to
𝑡 and from axiom (GV-2) we can relate the value 0 and 1 of a fuzzy metric to the
notions of ∞ and 0 of classical metric respectively.

We will refer to these spaces as GV-fuzzy metric spaces.

Definition 5 (see [9]). A fuzzy metric 𝑀 on 𝑋 is said to be stationary if 𝑀
does not depend on 𝑡, i.e., the function 𝑀𝑥,𝑦(𝑡) =𝑀(𝑥, 𝑦, 𝑡) is constant.

Definition 6 (see [21]). If (𝑋,𝑀, *) is a KM-fuzzy metric space and {𝑥𝑛},
{𝑦𝑛} are sequences in 𝑋 such that 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, then 𝑀(𝑥𝑛, 𝑦𝑛, 𝑡)→𝑀(𝑥, 𝑦, 𝑡)
for every continuity point 𝑡 of 𝑀(𝑥, 𝑦, ·). We can fuzzify example of metric space
into fuzzy metric spaces in a normal way.

Example 1 (see [10]). Let (𝑋, 𝑑) be metric space and 𝑔 : 𝑅+ → 𝑅+ is an
increasing continuous function. For 𝑚 > 0, we define the function 𝑀 by

𝑀(𝑥, 𝑦, 𝑡) =
𝑔(𝑡)

𝑔𝑡+𝑚 · 𝑑(𝑥, 𝑦)
(1)

Then for 𝑎 * 𝑏 = 𝑎 · 𝑏, (𝑋,𝑀, *) is a GV-fuzzy metric space on 𝑋.
As a particular case if we take 𝑔(𝑡) = 𝑡𝑛 where 𝑛 ∈ 𝑁 and 𝑚 = 1. Then (1)

becomes

𝑀(𝑥, 𝑦, 𝑡) =
𝑡𝑛

𝑡𝑛 + 𝑑(𝑥, 𝑦)
(2)

Then for 𝑎 * 𝑏 = 𝑇𝑀 (𝑎, 𝑏), (𝑋,𝑀, *) is a GV-fuzzy metric space on 𝑋.
If we take 𝑛 = 1 in (1), the well-known fuzzy metric space is obtained.
On the other hand, if we take g as a constant function in (1) i.e., 𝑔(𝑡) = 𝑘 > 0

and 𝑚 = 1, we obtain

𝑀(𝑥, 𝑦, 𝑡) =
𝑘

𝑘 + 𝑑(𝑥, 𝑦)

And so (𝑋,𝑀, *) is a stationary GV-fuzzy metric space for 𝑎 * 𝑏 = 𝑎 · 𝑏 but, in
general, (𝑋,𝑀, 𝑇𝑀 ) is not.

Definition 7. An element (𝑥, 𝑦, 𝑧) ∈ 𝑋 ×𝑋 ×𝑋 is called tripled coincidence
point of 𝐹 : 𝑋 ×𝑋 ×𝑋 → 𝑋 and 𝑔 : 𝑋 → 𝑋 if

𝐹 (𝑥, 𝑦, 𝑧) = 𝑔(𝑥), 𝐹 (𝑦, 𝑥, 𝑦) = 𝑔(𝑦)𝑡𝑒𝑥𝑡𝑎𝑛𝑑 𝐹 (𝑧, 𝑦, 𝑥) = 𝑔(𝑧).
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Now, we introduce the notion of E.A. Property for trivariate mapping 𝐹 and
self mapping g in fuzzy metric spaces.

Definition 8. The mappings 𝐹 and 𝑔 where 𝐹 : 𝑋×𝑋×𝑋 → 𝑋 and 𝑔 : 𝑋 →
𝑋, of a fuzzy metric space (𝑋,𝑀, *) satisfy E.A. property, if there exist sequences
{𝑥𝑛}, {𝑦𝑛} and {𝑧𝑛} in 𝑋, such that lim

𝑛→∞
𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = lim

𝑛→∞
𝑔(𝑥𝑛) = 𝑔(𝑢),

lim
𝑛→∞

𝐹 (𝑦𝑛, 𝑥𝑛, 𝑦𝑛) = lim
𝑛→∞

𝑔(𝑦𝑛) = 𝑔(𝑣) and lim
𝑛→∞

𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛) = lim
𝑛→∞

𝑔(𝑧𝑛) = 𝑔(𝑤)

for 𝑢, 𝑣, 𝑤 ∈ 𝑋 and 𝑡 > 0.

Let the class Φ of all mappings 𝜙 : [0, 1] → [0, 1] satisfying the following prop-
erties:

— [(𝜙1)] 𝜙 is continuous and nondecreasing on [0, 1];
— [(𝜙2)] 𝜙(𝑥) > 𝑥 for all 𝑥 ∈ (0, 1).

We note that if 𝜙 ∈ Φ, then 𝜙(1) = 1 and that 𝜙(𝑥) = 𝑥 for all 𝑥 ∈ [0, 1].

3 Tripled coincidence point in KM-fuzzy metric spaces.

In this section, we prove tripled coincidence point theorem for mapping satisfying
E. A. property for 𝜙-contraction. E. A property buys containment of ranges with-
out any continuity requirements. Moreover, E. A. property allows replacing the
completeness requirement of the space with more natural condition of closeness of
ranges.

Theorem 1. Let (𝑋,𝑀, *) be a KM-fuzzy metric space and and the mappings
𝐹 : 𝑋×𝑋×𝑋 → 𝑋, 𝑔 : 𝑋 → 𝑋, such that, for some 𝜙 ∈ Φ and 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤 ∈ 𝑋,
𝑡 > 0,

𝑀(𝐹 (𝑥, 𝑦, 𝑧), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) > 𝜙(min{𝑀(𝑔(𝑥), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑥, 𝑦, 𝑧), 𝑔(𝑥), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑦, 𝑥, 𝑦), 𝑔(𝑣), 𝑡),𝑀(𝐹 (𝑧, 𝑦, 𝑥), 𝑔(𝑤), 𝑡)}). (3)

If 𝐹 and 𝑔 satisfy E.A. property and range of 𝑔 is a closed subspace of 𝑋, then 𝐹
and 𝑔 have a tripled coincidence point in 𝑋.

Proof. Suppose 𝐹 and 𝑔 satisfy E.A. property, so we can find sequences {𝑥𝑛},
{𝑦𝑛} and {𝑧𝑛} in 𝑋 and the point 𝑢, 𝑣, 𝑤 in 𝑋 such that

lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = lim
𝑛→∞

𝑔(𝑥𝑛) = 𝑔(𝑢), lim
𝑛→∞

𝐹 (𝑦𝑛, 𝑥𝑛, 𝑦𝑛) = lim
𝑛→∞

𝑔(𝑦𝑛) = 𝑔(𝑣)
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and lim
𝑛→∞

𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛) = lim
𝑛→∞

𝑔(𝑧𝑛) = 𝑔(𝑤). Let 𝑡 be continuity point of
𝑀(𝑔𝑢, 𝐹 (𝑢, 𝑣, 𝑤), ·). Then by using (3), we have

𝑀(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) >

> 𝜙(min{𝑀(𝑔(𝑥𝑛), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝑔(𝑥𝑛), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑦𝑛, 𝑥𝑛, 𝑦𝑛), 𝑔(𝑣), 𝑡),𝑀(𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛), 𝑔(𝑤), 𝑡)}).

By applying limit 𝑛→∞ and using Lemma 1, we obtain the inequality

𝑀(𝑔(𝑢), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) > 𝜙(min{𝑀(𝑔(𝑢), 𝑔(𝑢), 𝑡),𝑀(𝑔(𝑢), 𝑔(𝑢), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),𝑀(𝑔(𝑣), 𝑔(𝑣), 𝑡),𝑀(𝑔(𝑤), 𝑔(𝑤), 𝑡)}) =
= 𝜙(min{1, 1,𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡), 1, 1} = 𝜙(𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡))

Now, if 𝐹 (𝑢, 𝑣, 𝑤) ̸= 𝑔(𝑢), then 0 < 𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡0) < 1 for some 𝑡0 > 0. As
𝑀(𝑔𝑢, 𝐹 (𝑢, 𝑣, 𝑤), ·) is left continuous and the 𝑀(𝑔𝑢, 𝐹 (𝑢, 𝑣, 𝑤), ·) is nondecreasing,
that it has only a most countable point of discontinuity, we may suppose that 𝑡0
is a continuity point of 𝑀(𝑔𝑢, 𝐹 (𝑢, 𝑣, 𝑤), ·). Then, from condition 𝜙2 we obtain
𝜙(𝑀(𝑔(𝑢), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡0)) > 𝑀(𝑔(𝑢), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡0), which is a contradiction to the
inequality (4), which implies that 𝑔(𝑢) = 𝐹 (𝑢, 𝑣, 𝑤). Similarly, it can be proved that
𝐹 (𝑣, 𝑢, 𝑣) = 𝑔(𝑣) and 𝐹 (𝑤, 𝑣, 𝑢) = 𝑔(𝑤). Hence 𝐹 and 𝑔 have tripled coincidence
point. �

Corollary 1. Let (𝑋,𝑀, *) be a KM-fuzzy metric space and the mappings
𝐹 : 𝑋×𝑋×𝑋 → 𝑋, 𝑔 : 𝑋 → 𝑋, such that, for some 𝜙 ∈ Φ and 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤 ∈ 𝑋,
𝑡 > 0,

𝑀(𝐹 (𝑥, 𝑦, 𝑧), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) > 𝜙(min{𝑀(𝑔(𝑥), 𝑔(𝑢), 𝑡)}).

If 𝐹 and 𝑔 satisfy E.A. property and range of 𝑔 is a closed subspace of 𝑋, then 𝐹
and 𝑔 have tripled coincidence point.

4 Tripled coincidence point in GV-fuzzy metric spaces.

If we suppose (𝑋,𝑀, *) is a GV-fuzzy metric, then some of hypothesis in the pre-
ceding theorem can be relaxed.

Theorem 2. Let (𝑋,𝑀, *) be a GV-fuzzy metric space and the mappings 𝐹 :
𝑋 ×𝑋 ×𝑋 → 𝑋, 𝑔 : 𝑋 → 𝑋, such that, for some 𝜙 ∈ Φ and 𝑥, 𝑦, 𝑧, 𝑢, 𝑣, 𝑤 ∈ 𝑋,
𝑡 > 0,
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𝑀(𝐹 (𝑥, 𝑦, 𝑧), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) > 𝜙(min{𝑀(𝑔(𝑥), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑥, 𝑦, 𝑧), 𝑔(𝑥), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑦, 𝑥, 𝑦), 𝑔(𝑣), 𝑡),𝑀(𝐹 (𝑧, 𝑦, 𝑥), 𝑔(𝑤), 𝑡)}). (4)

If 𝐹 and 𝑔 satisfy E.A. property and range of 𝑔 is a closed subspace of 𝑋, then 𝐹
and 𝑔 have tripled coincidence point.

Proof. Since 𝐹 and 𝑔 satisfy E.A. property, then there exist sequences {𝑥𝑛},
{𝑦𝑛} and {𝑧𝑛} in 𝑋 and the point 𝑢, 𝑣, 𝑤 in 𝑋 such that

lim
𝑛→∞

𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛) = lim
𝑛→∞

𝑔(𝑥𝑛) = 𝑔(𝑢), lim
𝑛→∞

𝐹 (𝑦𝑛, 𝑥𝑛, 𝑦𝑛) = lim
𝑛→∞

𝑔(𝑦𝑛) = 𝑔(𝑣)

and lim
𝑛→∞

𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛) = lim
𝑛→∞

𝑔(𝑧𝑛) = 𝑔(𝑤). Then, by using (3), we have

𝑀(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) >

> 𝜙(min{𝑀(𝑔(𝑥𝑛), 𝑔(𝑢), 𝑡),𝑀(𝐹 (𝑥𝑛, 𝑦𝑛, 𝑧𝑛), 𝑔(𝑢), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑥𝑛), 𝑡),𝑀(𝐹 (𝑦𝑛, 𝑥𝑛, 𝑦𝑛), 𝑔(𝑣), 𝑡),𝑀(𝐹 (𝑧𝑛, 𝑦𝑛, 𝑥𝑛), 𝑔(𝑤), 𝑡)}) (5)

Taking the limit as 𝑛→∞, ones obtain the inequality

𝑀(𝑔(𝑢), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) > 𝜙(min{𝑀(𝑔(𝑢), 𝑔(𝑢), 𝑡),𝑀(𝑔(𝑢), 𝑔(𝑢), 𝑡),

𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),𝑀(𝑔(𝑣), 𝑔(𝑣), 𝑡),𝑀(𝑔(𝑤), 𝑔(𝑤), 𝑡)}) >
> 𝜙(min{1, 1,𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡), 1, 1}) = 𝜙(𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡)) .

Now, if 𝐹 (𝑢, 𝑣, 𝑤) ̸= 𝑔(𝑢), then 0 < 𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡) < 1, that is,

𝜙(𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡)) > 𝑀(𝐹 (𝑢, 𝑣, 𝑤), 𝑔(𝑢), 𝑡),

contradicting the above inequality. This proves that 𝑀(𝑔(𝑢), 𝐹 (𝑢, 𝑣, 𝑤), 𝑡) = 1,
which implies due to (GV-2), 𝐹 (𝑢, 𝑣, 𝑤) = 𝑔(𝑢). Similarly, it can be proved that
𝐹 (𝑣, 𝑢, 𝑣) = 𝑔(𝑣) and 𝐹 (𝑤, 𝑣, 𝑢) = 𝑔(𝑤). Hence 𝐹 and 𝑔 have tripled coincidence
point. �

Remark 2. The results of [14] are deduced from the results discussed here, by
choosing 𝑓(𝑥) = 𝐹 (𝑥, 𝑦, 𝑧), 𝑓(𝑦) = 𝐹 (𝑦, 𝑥, 𝑦), 𝑓(𝑧) = 𝐹 (𝑧, 𝑦, 𝑥) and setting 𝑢 = 𝑦
and 𝑣 = 𝑥.

Example 2. Consider the space (𝑋,𝑀, *), where 𝑋 = [0, 1] and 𝑎 * 𝑏 = 𝑎𝑏.
Let

𝑀(𝑥, 𝑦, 𝑡) =
𝑡

𝑡+ |𝑥− 𝑦|
for 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0.
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Let the mapping 𝑔 : 𝑋 → 𝑋 be defined as 𝑔(𝑥) = 𝑥2 for all 𝑥, 𝑦 ∈ 𝑋. Let 𝐹 :
𝑋 ×𝑋 ×𝑋 → 𝑋 be defined as

𝐹 (𝑥, 𝑦, 𝑧) =

{︃
(𝑥− 𝑦 − 𝑧)2 if 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦 ̸= 𝑧

0 if 𝑥 = 𝑦 = 𝑧

It is obvious that 𝐹 and g obeys E.A. property and if 𝜙 : [0, 1] → [0, 1], 𝜙 = 3
√
𝑡,

then it is easy to satisfy all the conditions of preceding theorem (5). The tripled
coincidence point of 𝐹 and 𝑔 is (0, 0, 0).
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II.5. Generalized Functions and Asymptotics

(Sessions organizers: M. Oberguggenberger, S. Pilipovic)



476 The 8th Congress of the ISAAC — 2011

PARADIGMATIC WELL-POSEDNESS IN SOME GENERALIZED
CHARACTERISTIC CAUCHY PROBLEMS
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Abstract. By means of convenient regularizations for an ill-posed Cauchy prob-
lem, we define an associated generalized problem and discuss the conditions for
the solvability of it. To illustrate this, starting from the semilinear unidirectional
wave equation with data given on a characteristic curve, we show existence and
uniqueness of the solution.

1 Introduction

Many obstructions can be encountered when trying to solve a Cauchy problem for
PDEs with the data given on a characteristic manifold, and, a fortiori, to obtain
uniqueness or well-posedness in Hadamard sense. We can refer to many works
inspired in the complex field by the ideas of G̊arding, Kotake, Leray [9] and others
on the continuation of holomorphic solutions and, in the real field, by the ideas of
Egorov [8], Hörmander [11] and others on the distribution solutions of some Cauchy
problems supported in a half space whose boundary is a characteristic hyperplane.

Here, we propose another method, based on a parametrized family of geometric
transformations of the characteristic manifold, in continuation of previous ideas
developed in [4–7, 12]. In order to concentrate on the methods and not on the
technicalities, we consider the Cauchy problem for a simple equation, namely the
transport equation (in basic form) (𝑃𝑐) 𝜕𝑢/𝜕𝑡 = 𝐹 (., ., 𝑢), 𝑢 |𝛾= 𝑣 where 𝛾 of
equation 𝑥 = 0 is obviously globally characteristic for the Cauchy problem.

In order to focus only on the characteristic aspect, 𝑣 and 𝐹 are supposed
to be smooth. Moreover 𝐹 has to verify some estimates involving derivatives.
Clearly (𝑃𝑐) is ill-posed, but can be associated to a generalized problem 𝑃 (𝐷)𝑢 =
ℱ(𝑢), ℛ (𝑢) = 𝑣 well formulated in convenient algebras of nonlinear generalized
functions, by means of generalized operators: ℱ , associated to 𝐹 , and ℛ, obtained
by replacing the characteristic curve 𝛾 by a family (𝛾𝜀)𝜀 of non-characteristic ones
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of equation 𝑥 = 𝑙𝜀(𝑡) where (𝑙𝜀)𝜀 is a regularizing family. We can show the exis-
tence of a generalized solution in some (𝒞, ℰ ,𝒫)-algebra [12] 𝒜

(︀
R2
)︀

based on the
space of smooth functions. It is also proved that this solution does not depend on
the representative of the “tempered” class [(𝑙𝜀)𝜀] under some additional assumption
on the growth of (𝑙𝜀)𝜀. However this generalized solution in 𝒜

(︀
R2
)︀

fails to be, in
general, unique. We show how uniqueness may be recovered by searching a solution
in the space of new tempered generalized functions 𝒢𝒪𝑀

(︀
R2
)︀

based on the space of
slowly increasing smooth functions [3] in which some useful tools that we use, like
pointwise characterization, are still valid [14].

2 General overview on (𝒞, ℰ ,𝒫)-type algebras

2.1 Algebraic and topological structures [12]

Let: (1) Λ be a set of indices left-filtering for a given (partial) order relation ≺.
(2) 𝐴 be a solid subring with unity of the ring KΛ (K = R or C) and 𝐼𝐴 a solid ideal
of 𝐴, which means that 𝐵 = 𝐴, 𝐼𝐴 has the following stability property: whenever
(|𝑠𝜆|)𝜆 6 (𝑟𝜆)𝜆 (i.e. for any 𝜆, |𝑠𝜆| 6 𝑟𝜆) for any pair ((𝑠𝜆)𝜆, (𝑟𝜆)𝜆) ∈ KΛ × |𝐵|, it
follows that (𝑠𝜆)𝜆 ∈ 𝐵, with |𝐵| = {(|𝑟𝜆|)𝜆, (𝑟𝜆)𝜆 ∈ 𝐵};
(3) ℰ be a sheaf of K-topological algebras over a topological space 𝑋 .

Moreover, suppose that:
(4) For any open set Ω in 𝑋, the algebra ℰ(Ω) is endowed with a family 𝒫(Ω) =
(𝑃𝑖)𝑖∈𝐼(Ω) of semi-norms such that if Ω1 ⊂ Ω2 are two open subsets of 𝑋, it follows
that 𝐼(Ω1) ⊂ 𝐼(Ω2) and if 𝜌21 is the restriction operator ℰ(Ω2) → ℰ(Ω1), then, for
each 𝑃 ∈ 𝒫(Ω1) the semi-norm ̃︀𝑃 = 𝑃 ∘ 𝜌21 extends 𝑃 to 𝒫(Ω2);
(5) Let Θ = (Ωℎ)ℎ∈𝐻 be any family of open sets in 𝑋 with Ω = ∪ℎ∈𝐻Ωℎ. Then,
for each 𝑃 ∈ 𝒫(Ω), there exists a finite subfamily (Ω𝑗)16𝑗6𝑛 of Θ and semi-norms

𝑃𝑗 ∈ 𝒫(Ω𝑗) (1 6 𝑗 6 𝑛) such that, for any 𝑢 ∈ ℰ(Ω), 𝑃 (𝑢) 6
𝑛∑︀
𝑗=1

𝑃𝑗
(︀
𝑢|Ω𝑗

)︀
.

Set 𝒞 = 𝐴/𝐼 and let ℋ(𝐴,ℰ,𝒫)(Ω) (resp. 𝒥(𝐼𝐴,ℰ,𝒫)(Ω)) be the set of all (𝑢𝜆)𝜆 ∈
[ℰ(Ω)]Λ such that ((𝑃𝑖(𝑢𝜆))𝜆 ∈ |𝐴| (resp. |𝐼𝐴|) for all 𝑖 ∈ 𝐼 (Ω).

From (2), it follows that |𝐴| is a subset of 𝐴 and that 𝐴+ =
{(𝑏𝜆)𝜆 ∈ 𝐴 | (∀𝜆 ∈ Λ) (𝑏𝜆 > 0)} = |𝐴|. The same holds for 𝐼𝐴. Furthermore, (2)
implies also that 𝐴 is a K-algebra. Thus ℋ(𝐴,ℰ,𝒫) (resp. 𝒥(𝐼𝐴,ℰ,𝒫)) is a sheaf of
K-subalgebras (resp. of ideals) of the sheaf ℰΛ (resp. of ℋ(𝐴,ℰ,𝒫)). The factor
ℋ(𝐴,ℰ,𝒫)/𝒥(𝐼𝐴,ℰ,𝒫) is a presheaf with localization principle [12]. Moreover, the con-
stant sheaf ℋ(𝐴,K,||)/𝒥(𝐼𝐴,K,|.|) is equal to the sheaf 𝒞 = 𝐴/𝐼𝐴. We call presheaf of
(𝒞, ℰ ,𝒫)-algebra, the factor presheaf of the algebras 𝒜 = ℋ(𝐴,ℰ,𝒫)/𝒥(𝐼𝐴,ℰ,𝒫) over
the ring 𝒞 = 𝐴/𝐼𝐴.
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Notation 1. (𝑖) We denote by [𝑢𝜆] the class in 𝒜(Ω) of (𝑢𝜆)𝜆∈Λ ∈ ℋ(𝐴,ℰ,𝒫)(Ω).
(𝑖𝑖) For a topological space 𝑇 , 𝐾 b 𝑇 means that 𝐾 is a compact subset of 𝑇 and
𝒪 (𝑇 ) denotes the set of all open sets of 𝑇 .

Example 1. (Special Colombeau Algebra [10, 13]) We consider the sheaf ℰ =
C∞ over R𝑑, endowed with the usual family of topologies 𝒫 = (𝒫Ω)Ω∈𝒪(R𝑑). Let
us recall that 𝒫Ω is defined by the family of semi-norms (𝑝𝐾,𝑙)𝐾bΩ,𝑙∈N with

∀𝑓 ∈ C∞ (Ω) , 𝑝𝐾,𝑙 (𝑓) = sup|𝛼|6𝑙 𝑝𝐾,𝛼 (𝑓) with 𝑝𝐾,𝛼 (𝑓) = sup𝑥∈𝐾 |𝐷𝛼𝑓 (𝑥)| . (1)

Let 𝐴 (resp. 𝐼) be the set of all (𝑟𝜀)𝜀 ∈ R(0,1] such that there exists 𝑚 ∈ N
(resp. for all 𝑞 ∈ N) with |𝑟𝜀| = o(𝜀−𝑚) (resp. |𝑟𝜀| = o(𝜀𝑞)) as 𝜀 → 0.The sheaf
𝒜 = ℋ(𝐴,ℰ,𝒫)/𝒥(𝐼𝐴,ℰ,𝒫) is the sheaf of (special) Colombeau algebras 𝒢. In this case,
we shall write ℋ(𝐴,ℰ,𝒫) = 𝒳 and 𝒥(𝐼𝐴,ℰ,𝒫) = 𝒩 .

Remark 1. (An association process) Consider Ω an open subset of 𝑋, ℱ a
given sheaf of topological K-vector spaces (resp. K-algebras) over 𝑋 containing ℰ
as a subsheaf and 𝑎 : R+ → 𝐴+ a map such that 𝑎(0) = 1 (for 𝑟 ∈ R+, we denote
𝑎 (𝑟) by (𝑎𝜆 (𝑟))𝜆). For (𝑣𝜆)𝜆 ∈ ℋ(𝐴,ℰ,𝒫) (Ω), we shall denote by limΛ,ℱ(Ω) 𝑣𝜆 the
limit of (𝑣𝜆)𝜆 for the ℱ-topology when it exists. We recall that limΛ,ℱ(Ω) 𝑢𝜆 |𝑉 =
𝑓 ∈ ℱ(𝑉 ) iff, for each ℱ-neighborhood 𝑊 of 𝑓 , there exists 𝜆0 ∈ Λ such that:
𝜆 ≺ 𝜆0 =⇒ 𝑢𝜆 ∈𝑊 . We also assume that, for each open subset 𝑉 ⊂ Ω, we have

𝒥(𝐼𝐴,ℰ,𝒫)(𝑉 ) ⊂
{︀
(𝑣𝜆)𝜆 ∈ ℋ(𝐴,ℰ,𝒫)(𝑉 ) | limΛ,ℱ(Ω) 𝑣𝜆 = 0

}︀
. (2)

Consider 𝑢 = [𝑢𝜆] ∈ 𝒜(Ω), 𝑟 ∈ R+, 𝑉 an open subset of Ω and 𝑓 ∈ ℱ(𝑉 ). We say

that 𝑢 is 𝑎 (𝑟)-associated to 𝑓 in 𝑉 , denoted by 𝑢
𝑎(𝑟)∼
ℱ(𝑉 )

𝑓 , if limΛ,ℱ(Ω) (𝑎𝜆 (𝑟)𝑢𝜆 |𝑉 ) =

𝑓. In particular, if 𝑟 = 0, 𝑢 and 𝑓 are said to be associated in 𝑉 .

Example 2. Take 𝑋 = R𝑑, ℱ = 𝒟′, Λ =]0, 1], 𝒜 = 𝒢, 𝑉 = Ω, 𝑟 = 0. The
usual association [10, §1.2.6] between 𝑢 = [𝑢𝜀] ∈ 𝒢 (Ω) and 𝑇 ∈ 𝒟′ (Ω) is defined by

𝑢 ∼ 𝑇 ⇐⇒ 𝑢
𝑎(0)∼
𝒟′(Ω)

𝑇 ⇐⇒ lim𝜀→0,𝒟′(Ω) 𝑢𝜀 = 𝑇.

The ring 𝐴 and the ideal 𝐼𝐴 are given by the asymptotic structure of the problem
and constructed as follows. Let 𝐵𝑝 a finite family of 𝑝 nets in (R*

+)
Λ. Consider 𝐵

the subset of elements in (R*
+)

Λ obtained as rational fractions with coefficients in
R*
+, of elements in 𝐵𝑝 as variables. Define

𝐴 =
{︀
(𝑎𝜆)𝜆 ∈ KΛ | (∃ (𝑏𝜆)𝜆 ∈ 𝐵) (∃𝜆0 ∈ Λ) (∀𝜆 ≺ 𝜆0) (|𝑎𝜆| 6 𝑏𝜆)

}︀
;
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𝐼𝐴 =
{︀
(𝑎𝜆)𝜆 ∈ KΛ | (∀ (𝑏𝜆)𝜆 ∈ 𝐵) (∃𝜆0 ∈ Λ) (∀𝜆 ≺ 𝜆0) (|𝑎𝜆| 6 𝑏𝜆)

}︀
.

It is easy to see that 𝐴 (resp. 𝐼𝐴) is a solid subring of KΛ (resp. 𝐴). We say that
𝐴 and 𝒞 = 𝐴/𝐼𝐴 are overgenerated by 𝐵𝑝.

In this paper, we consider the particular case ℰ = C∞, 𝑋 = R𝑑 endowed with
the usual topology defined in Example 1. For any choice of 𝒞, 𝒜 is a sheaf of
differential algebras with 𝐷𝛼𝑢 = [𝐷𝛼𝑢𝜆] where (𝑢𝜆)𝜆 ∈ 𝑢. For (𝒞,𝐶∞,𝒫)-algebras,
we have the analogue of [10, Thm 1.2.3]:

Proposition 1 (see [2]). Assume that the set 𝐵, defined above, is stable
by inverse and that there exists (𝑎𝜆)𝜆 ∈ 𝐵 with limΛ 𝑎𝜆 = 0. Consider
(𝑢𝜆)𝜆 ∈ ℋ(𝐴,ℰ,𝒫)(R𝑑) such that, for all 𝐾 b R𝑑, (𝑃𝐾,0 (𝑢𝜆))𝜆 ∈ |𝐼𝐴|. Then
(𝑢𝜆)𝜆 ∈ 𝒥(𝐴,ℰ,𝒫)(R𝑑).

We shall also consider the algebra of tempered generalized functions. For 𝑓 ∈
C∞(R𝑛), 𝑟 ∈ Z and 𝑚 ∈ N, we set 𝜇𝑟,𝑚(𝑓) = sup𝑥∈R𝑛,|𝛼|6𝑚(1 + |𝑥|)𝑟 |𝒟𝛼𝑓(𝑥)|. We
say that (𝑓𝜀)𝜀 ∈ 𝒪𝑀 (R𝑛)(0,1] belongs toℳ𝜏 (R𝑛) (resp. 𝒩𝜏 (R𝑛)) if

(∀𝑚 ∈ N) (∃𝑞 ∈ N) (∃𝑁 ∈ N) 𝑡𝑒𝑥𝑡(𝑟𝑒𝑠𝑝.∀𝑝 ∈ N)
(︀
𝜇−𝑞,𝑚(𝑓𝜀) = 𝑂(𝜀−𝑁 ) (resp. 𝑂(𝜀𝑝))

)︀
.

From [10], it follows thatℳ𝜏 (R𝑛) (resp. 𝒩𝜏 (R𝑛)) is a subalgebra (resp. ideal)
of 𝒪𝑀 (R𝑛)(0,1] (resp. ℳ𝜏 (R𝑛)). The algebra 𝒢𝜏 (R𝑛) =ℳ𝜏 (R𝑛) /𝒩𝜏 (R𝑛) is called
the algebra of tempered generalized functions. The generalized derivation, defined
as for (𝒞,𝐶∞,𝒫)-algebras, provides 𝒢𝜏 (R𝑛) with a differential algebraic structure.

Remark 2. (Simplification of notations) In the sequel, we have 𝑑 = 1 or 𝑑 = 2
and Λ = (0, 1]. We shall write ℋ (resp. 𝒥 ) instead of ℋ(𝐴,ℰ,𝒫) (resp. 𝒥(𝐴,ℰ,𝒫)) and
use the same sheaf symbols ℋ, 𝒥 , 𝒜 = ℋ/𝒥 for 𝑋 = R𝑑 or 𝑋 = Ω, where 𝑑 = 1, 2
and Ω is an open subset of R𝑑.

2.2 Generalized operators and general restrictions

Let Ω be an open subset of R2 and 𝐹 ∈ C∞(Ω × R,R). We say that the algebra
𝒜 (Ω) is stable under 𝐹 if, for all (𝑢𝜀)𝜀 ∈ ℋ(Ω) and all (𝑖𝜀)𝜀 ∈ 𝒥 (Ω), we have
(𝐹 (·, ·, 𝑢𝜀))𝜀 ∈ ℋ(Ω) and (𝐹 (·, ·, 𝑢𝜀 + 𝑖𝜀)− 𝐹 (·, ·, 𝑢𝜀))𝜀 ∈ 𝒥 (Ω). If 𝒜

(︀
R2
)︀

if stable
under 𝐹 , for 𝑢 = [𝑢𝜀] ∈ 𝒜

(︀
R2
)︀
, [𝐹 (., ., 𝑢𝜀)] is a well defined element of 𝒜

(︀
R2
)︀

(i.e.
not depending on (𝑢𝜀)𝜀 ∈ 𝑢).

A simple example of stability condition is when 𝐹 is smoothly tempered, which
means that the following two conditions are satisfied:
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(𝑖) For each 𝐾 b R2, 𝑙 ∈ N and 𝑢 ∈ C∞(Ω,R), there is a positive finite sequence

(𝐶𝑗)16𝑗6𝑙 such that: 𝑃𝐾,𝑙(𝐹 (·, ·, 𝑢)) 6
𝑙∑︀

𝑖=0
𝐶𝑖 (𝑃𝐾,𝑙(𝑢))

𝑖 ,

(𝑖𝑖) For each 𝐾 b R2, 𝑙 ∈ N, 𝑢, 𝑣 ∈ C∞(Ω,R), there is a positive finite sequence

(𝐷𝑗)16𝑗6𝑙 such that: 𝑃𝐾,𝑙 (𝐹 (·, ·, 𝑣)− 𝐹 (·, ·, 𝑢)) 6
𝑙∑︀

𝑗=1
𝐷𝑗 (𝑃𝐾,𝑙(𝑣 − 𝑢))𝑗 .

Definition 1 (see [5]). If 𝒜
(︀
R2
)︀

if stable under 𝐹 , the map ℱ : 𝒜
(︀
R2
)︀
→

𝒜
(︀
R2
)︀
𝑢 = [𝑢𝜀] ↦→ [𝐹 (., ., 𝑢𝜀)] is called the generalized map corresponding to 𝐹 .

Consider (𝑙𝜀)𝜀 ∈ C∞ (R)Λ. Set 𝑅𝜀 : C∞ (︀R2
)︀
→ C∞ (R) , 𝑔 ↦→ 𝑅𝜀 (𝑔) with

𝑅𝜀 (𝑔) : R→ R, 𝑡 ↦→ 𝑔(𝑡, 𝑙𝜀(𝑡)). We say that (𝑙𝜀)𝜀 is compatible with the generalized
restriction if, for all (𝑢𝜀)𝜀 ∈ ℋ(R2) (resp. (𝑖𝜀)𝜀 ∈ 𝒥 (R2)), (𝑢𝜀 (·, 𝑙𝜀(·)))𝜀 ∈ ℋ(R)
(resp. (𝑖𝜀 (·, 𝑙𝜀(·)))𝜀 ∈ 𝒥 (R)).

Definition 2 (see [5]). If the family of smooth functions (𝑙𝜀)𝜀 is compatible
with the generalized restriction, the map ℛ : 𝒜

(︀
R2
)︀
→ 𝒜 (R) , 𝑢 = [𝑢𝜀] ↦→

[𝑢𝜀 (·, 𝑙𝜀(·))] = [𝑅𝜀 (𝑢𝜀)] is called the generalized restriction mapping correspond-
ing to the family (𝑙𝜀)𝜀.

Definition 3 (see [10]). Let (𝑙𝜀)𝜀 ∈ C∞(R𝑛)Λ. We say (𝑙𝜀)𝜀 is c-bounded if for
all 𝐾 b R𝑛, there exists 𝐿 b R𝑛 such that 𝑙𝜀(𝐾) ⊂ 𝐿 for all 𝜀 (𝐿 is independent
of 𝜀).

The following proposition establishes a link between the 𝑐-boundeness and the
compatibility with restriction.

Proposition 2. Assume that (𝑙𝜀)𝜀 belongs toℋ(R) and (𝑙𝜀)𝜀 is c-bounded, then
the family (𝑙𝜀)𝜀 is compatible with generalized restriction.

3 Application to a characteristic Cauchy problem

We deal with the characteristic Cauchy problem for the transport equation formally
written in characteristic coordinates: 𝑃𝑐 𝜕𝑢/𝜕𝑡 = 𝐹 (., ., 𝑢), 𝑢 |{𝑥=0}= 𝑓 , where
𝑓 ∈ C∞ (R). We are going to formulate some assumptions which will allow us to
associate to (𝑃𝑐) a generalized and well-posed problem (𝑃𝑔) constructed below.

3.1 From the ill-posed problem (𝑃𝑐) to a well-posed formulation (𝑃𝑔)

We approximate the characteristic curve {𝑥 = 0} by a family of non-characteristic
ones 𝛾𝜀 = {𝑥 = 𝑙𝜀 (𝑡)}𝜀∈(0,1]. We assume that the family (𝑙𝜀)𝜀 ∈ C∞(R)]0,1] tends
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Theorem 1. Under the previous assumptions (𝐻), 𝒜
(︀
R2
)︀

is stable under
𝐹 and the generalized restriction operator ℛ : 𝒜

(︀
R2
)︀
→ 𝒜 (R) , 𝑢 = [𝑢𝜀] →

[𝑢𝜀 (𝑡, 𝑙𝜀(𝑡))] is well defined.

We can link to (𝑃𝑐) the generalized problem : (𝑃𝑔) 𝜕𝑢/𝜕𝑡 = ℱ(𝑢), ℛ (𝑢) = 𝑓.

3.2 Existence of a solution to (𝑃𝑔)

In order to solve (𝑃𝑔), we begin to solve in C∞ (︀R2
)︀

the regularized problem:
(𝑃∞) 𝜕𝑢𝜀/𝜕𝑡 (𝑡, 𝑥) = 𝐹 (𝑡, 𝑥, 𝑢𝜀 (𝑡, 𝑥)), 𝑢𝜀 (𝑡, 𝑙𝜀(𝑡)) = 𝑓 (𝑡) .

Proposition 3. With the assumptions (4) and (𝐻), the problem (𝑃∞) admits
a unique smooth solution 𝑢𝜀 such that

𝑢𝜀(𝑡, 𝑥) = 𝑓(𝑙−1
𝜀 (𝑥)) +

𝑡∫︁
𝑙−1
𝜀 (𝑥)

𝐹 (𝜏, 𝑥, 𝑢𝜀(𝜏, 𝑥)) d𝜏. (5)

Moreover we have the estimate

‖𝑢𝜀‖∞,𝐾 6 (𝜔𝐾,𝛽𝑄𝜀 +𝐵𝐾𝑎𝜀𝑀𝜀) (exp 𝑎𝜀𝑀𝜀)
𝐶𝐾 (6)

where 𝐵𝐾 = 𝜇𝐾,0𝜈𝐾 , 𝐶𝐾 = 𝜇𝐾,1𝜈𝐾 depend only upon the compact set 𝐾.

The proof uses the Cauchy-Lipschitz theorem (for fixed 𝑥) for the existence and
the uniqueness of a smooth solution 𝑢𝜀 to the problem (𝑃∞), which satisfies (5).
Starting from this relation, the Gronwall Lemma, leads to the estimate (6).

Theorem 2. Under Assumption (𝐻), the problem (𝑃𝑔) admits [𝑢𝜀]𝒜(R2) as so-
lution where 𝑢𝜀 is the solution given in Proposition 3.

The proof follows the same steps as the existence results which can be found
in [6, 7]: starting from the estimate (6), an induction process on the order of the
successive derivatives shows that (𝑢𝜀)𝜀 belongs to ℋ

(︀
R2
)︀
.

For linear (or semi linear) problems with irregular data, a more complete the-
ory exists, based on the functorial properties of the Colombeau type algebras [4].
Existence and uniqueness are obtained whenever the map associating the solution
to the data for the classical problem is continuously temperate. Of course, this the-
ory fails when the problem under consideration is characteristic as in the present
paper. Moreover, without further assumption the solution given by Theorem 2 fails
in general to be unique as shown by a counter example given in [4].
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3.3 Independence of the generalized solution from the regularizing pro-
cess

The solution of all the problems which are regularized by the Colombeau method
depends a priori on the choice of the regularizing process. Indeed, in the preceding
section we have built the solution 𝑢 to (𝑃𝑔) by making use in a crucial way of
the representative (𝑙𝜀)𝜀. So even though the map ℛ itself does not depend on the
representative of 𝑙 = [(𝑙𝜀)𝜀], we need to prove that our solution is independant of
this representative. A first step in this direction is done by [1] in which the purely
characteristic case is studied (with regular data). Here we have an analogous result
whose proof follows essentially the same lines:

Theorem 3. In addition to the previous assumptions, suppose that (𝑙𝜀)𝜀 ∈
ℳ𝜏 (𝑅) and

(︀
𝑙−1
𝜀

)︀
𝜀
∈ ℳ𝜏 (R). Then, the generalized function 𝑢 = [𝑢𝜀], where (𝑢𝜀)𝜀

is given by (5), depends solely on 𝑙 = [𝑙𝜀] ∈ 𝒢𝜏 (R) as generalized function and not
on the representatives (𝑙𝜀)𝜀.

However, we shall give the main step of the proof, as it emphasizes the difference
between the case of usual Colombeau algebra and tempered generalized functions:

Lemma 1. Let (𝑙𝜀)𝜀 ∈ℳ𝜏 (R) such that for every 𝜀, 𝑙𝜀 is bijective and
(︀
𝑙−1
𝜀

)︀
𝜀
∈

ℳ𝜏 (R). Then, for any (𝑔𝜀)𝜀 ∈ℳ𝜏 (R) such that for every 𝜀, 𝑔𝜀 is bijective,
(︀
𝑔−1
𝜀

)︀
𝜀
∈

ℳ𝜏 (R) and (𝑔𝜀 − 𝑙𝜀)𝜀 ∈ 𝒩𝜏 (R), we have
(︀
𝑙−1
𝜀 − 𝑔−1

𝜀

)︀
𝜀
∈ 𝒩𝜏 (R).

Proof. We shall use the point values characterization [10, §1.2.4]. Let ℳR
(resp. 𝒩R) be the set of all (𝑥𝜀)𝜀 ∈ R(0,1] such that: (∃𝑁 ∈ N)

(︀
|𝑥𝜀| = O(𝜀−𝑁 )

)︀
(resp. (∀𝑚 ∈ N) (|𝑥𝜀| = O(𝜀𝑚))) as 𝜀 → 0. We denote by ̃︀R = ℳR/𝒩R the ring
of generalized real numbers in the Colombeau setting. Let (𝑙𝜀)𝜀 , (𝑔𝜀)𝜀 ∈ ℳ𝜏 (R).
Define the maps

𝐺 : ̃︀R→ ̃︀R, �̃� ↦→ 𝑔(�̃�) = [(𝑔𝜀(𝑥𝜀))𝜀]̃︀R ;𝐻 : ̃︀R→ ̃︀R, �̃� ↦→ ℎ(�̃�) = [𝑔−1
𝜀 (𝑥𝜀)]̃︀R

where 𝑔(�̃�) (resp. ℎ(�̃�)) is the generalized point value of 𝑔 (resp. ℎ) at the gen-
eralized point �̃� = [(𝑥𝜀)𝜀] and well defined from [10, Prop. 1.2.45]. It is easy
to see that 𝐺 ∘ 𝐻 = 𝐻 ∘ 𝐺 = 𝑖𝑑 so that 𝐺−1 = 𝐻. In the same way, if we
set 𝐹 : ̃︀R → ̃︀R, �̃� ↦→ 𝑙(�̃�) = [𝑙𝜀(𝑥𝜀)]̃︀R. Then 𝐹−1 : ̃︀R → ̃︀R is defined by
𝐹−1(�̃�) =

[︀
𝑙−1
𝜀 (𝑥𝜀)

]︀
. Then, proving the Lemma amounts to prove that 𝑙−1−𝑔−1 = 0

in 𝒢𝜏 (R), and, by point value characterization [10, Prop. 1.2.47], it suffices to show
that ∀̃︀𝑦 ∈ ̃︀R, (︀𝐹−1 −𝐺−1

)︀
(̃︀𝑦) = 0. Let ̃︀𝑦 = [𝑦𝜀] ∈ ̃︀R. As 𝐺 is bijective there exists

�̃� = [𝑥𝜀] ∈ ̃︀R such that ̃︀𝑦 = 𝐺 (�̃�) and for all 𝜀 we have(︀
𝐹−1 −𝐺−1

)︀
(𝑦) =

[︀(︀
𝑙−1
𝜀 (𝑔𝜀(𝑥𝜀))− 𝑔−1

𝜀 (𝑔𝜀(𝑥𝜀))
)︀
𝜀

]︀
=
[︀(︀
𝑙−1
𝜀 (𝑔𝜀(𝑥𝜀))− 𝑥𝜀

)︀
𝜀

]︀
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but as (𝑔𝜀 − 𝑙𝜀)𝜀 ∈ 𝒩𝜏 (R) we have
(︀
𝑙−1
𝜀 ∘ 𝑔𝜀 − 𝑖𝑑

)︀
𝜀
∈ 𝒩𝜏 (R) so that[︀(︀

𝑙−1
𝜀 (𝑔𝜀(𝑥𝜀))− 𝑥𝜀

)︀
𝜀

]︀
∈ 𝒩R, which concludes the proof. �

Example 4. We consider the problem: (𝑃𝑐ℎ𝑎𝑟) 𝜕𝑢/𝜕𝑡 = 0, 𝑢 |{𝑥=0}= 𝑓
and 𝑓 ∈ C∞ (R). We regularize (𝑃𝑐ℎ𝑎𝑟) by choosing 𝑙𝜀 (𝑡) = 𝜀𝑡 and obtain:
(𝑃∞) 𝜕𝑢𝜀/𝜕𝑡 (𝑡, 𝑥) = 0, 𝑢𝜀(𝑡, 𝜀𝑡) = 𝑓 (𝑡). Clearly the solution to (𝑃∞) is
the function 𝑢𝜀 : (𝑡, 𝑥) ↦→ 𝑓 (𝑥/𝜀). Then, a generalized solution 𝑢 of (𝑃𝑔) is
[(𝑡, 𝑥) ↦→ 𝑓 (𝑥/𝜀)]𝒜(R2). Remark that here 𝒞 is overgenerated by the family (𝜀)𝜀
showing that 𝒜

(︀
R2
)︀

is the simplified Colombeau algebra 𝒢
(︀
R2
)︀

. This generalized
function is neither a function nor a distribution. However, it is possible to link 𝑢 to a
distribution by means of the association process defined in Remark 1. Suppose that
𝑓 is integrable with

∫︀
𝑓 (𝑥) d𝑥 = 1 and write (1/𝜀)𝑢𝜀 : (𝑡, 𝑥) ↦→ 1𝑡 ⊗ (1/𝜀) 𝑓 (𝑥/𝜀).

We have clearly lim𝜀→0,𝐷′(R2) (𝑢𝜀/𝜀) = 1𝑡⊗ 𝛿𝑥 = 𝛿Γ, where 𝛿Γ is the Dirac distribu-
tion on the characteristic manifold Γ =

{︀
(𝑡, 𝑥) ∈ R2 : 𝑥 = 0

}︀
. Thus, the solution 𝑢

of the generalized problem (𝑃𝑔) associated to (𝑃𝑐ℎ𝑎𝑟) satisfies 𝑢 ∼
𝜀
𝛿Γ. In addition,

this solution is not unique but depends only on the class in 𝒢𝜏
(︀
R2
)︀

of (𝑡 ↦→ 𝜀𝑡)𝜀.

4 The framework 𝒢𝒪𝑀
(R2) and uniqueness

The natural topology of𝒪𝑀 permits to define a new algebra of tempered generalized
functions, 𝒢𝒪𝑀

(︀
R𝑑
)︀

[3] which differs from 𝒢𝜏
(︀
R𝑑
)︀

but permits a point value charac-
terization [14] and an extension 𝒜𝒪𝑀

(︀
R𝑑
)︀

in the framework of (𝒞,ℰ ,𝒫)-algebras [5].
As 𝒢𝒪𝑀

(︀
R𝑑
)︀

is of (𝒞,ℰ ,𝒫)-type and endowed with the sharp topology [2], our goal
is at least to recover uniqueness of the solution of (𝑃𝑔) in this context, the well-
posedness in Hadamard setting being the final goal.

4.1 Point values in 𝒢𝒪𝑀

(︀
R𝑑
)︀

Define 𝒢𝒪𝑀

(︀
R𝑑
)︀

as the quotient algebraℳ𝒪𝑀

(︀
R𝑑
)︀
/𝒩𝒪𝑀

(︀
R𝑑
)︀

where

ℳ𝒪𝑀
(R𝑑) = {(𝑢𝜀)𝜀 ∈ 𝒪𝑀 (R𝑑)(0,1] : (∀𝜙 ∈ 𝒮(R𝑑)) (∀𝛼 ∈ N𝑑)

(∃𝑀 ∈ N) (∃𝜀0) (∀𝜀 < 𝜀0) (sup𝑥∈R𝑑 |𝜙 (𝑥) 𝜕𝛼𝑢𝜀 (𝑥)| 6 𝜀−𝑀 )} ;

𝒩𝒪𝑀
(R𝑑) = {(𝑢𝜀)𝜀 ∈ 𝒪𝑀 (R𝑑)(0,1] : (∀𝜙 ∈ 𝒮(R𝑑)) (∀𝛼 ∈ N𝑑)

(∀𝑚 ∈ N) (∃𝜀0) (∀𝜀 < 𝜀0) (sup𝑥∈R𝑑 |𝜙 (𝑥) 𝜕𝛼𝑢𝜀 (𝑥)| 6 𝜀𝑚)}.

This definition can be compared to the one of 𝒢𝜏 (R𝑑). On one hand, we have
ℳ𝒪𝑀

(︀
R𝑑
)︀
=ℳ𝜏

(︀
R𝑑
)︀

[3, Prop. 3.2]. However we only have𝒩𝒪𝑀

(︀
R𝑑
)︀
! 𝒩𝜏

(︀
R𝑑
)︀
.
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Example 5. Let 𝜓 ∈ 𝒟(R𝑑) with supp𝜓 ⊆ 𝐵(0, 1) and 𝜓(0) = 1. Let 𝑒 ∈ R𝑑
be a unit vector. Let 𝑢𝜀(𝑥) := 𝜓(𝑥−𝜀−1𝑒) for each 𝜀. It is easy to check that (𝑢𝜀)𝜀 ∈
𝒩𝒪𝑀

(R𝑑). However (𝑢𝜀)𝜀 /∈ 𝒩𝜏 (R𝑑). Indeed take 𝛼 = 0. Let 𝑝 ∈ N arbitrary. Then:
sup𝑥∈R𝑑(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)| > (1 + 𝜀−1)−𝑝|𝑢𝜀(𝜀−1)| > (2𝜀−1)−𝑝|𝜓(0)| = (𝜀/2)𝑝, so no
choice of 𝑝 satisfies: (∀𝑚 ∈ N) (∃𝜀0) (∀𝜀 6 𝜀0) (sup𝑥∈R𝑑(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)| 6 𝜀𝑚).

Thus 𝒢𝒪𝑀

(︀
R𝑑
)︀

differs from 𝒢𝜏
(︀
R𝑑
)︀
. On the other hand, along the same lines

as [3, Prop. 3.2], we get

𝒩𝒪𝑀
(R𝑑) = {(𝑢𝜀)𝜀 ∈ (𝒪𝑀 (R𝑑)(0,1] | (∀𝛼 ∈ N𝑑) (∀𝑚 ∈ N) (∃𝑝 ∈ N)

(∃𝜀0) (∀𝜀 < 𝜀0) (sup𝑥∈R𝑑(1 + |𝑥|)−𝑝|𝜕𝛼𝑢𝜀(𝑥)| 6 𝜀𝑚)}.

By the same Taylor-argument as in [10, Thm. 1.2.25], we obtain:

Theorem 4.

𝒩𝒪𝑀
(R𝑑) = {(𝑢𝜀)𝜀 ∈ℳ𝜏 (R𝑑) | (∀𝑚 ∈ N) (∃𝑝 ∈ N)

(∃𝜀0) (∀𝜀 < 𝜀0) (sup𝑥∈R𝑑(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)| 6 𝜀𝑚)}.

We refer to generalized points and point values as developed in [10, §1.2.4]. We
recall that ̃︀K =ℳK/𝒩K is the ring of Colombeau generalized numbers (K = R,C)
and similarly ̃︁K𝑑 = ̃︀K𝑑 the set of generalized points.

Definition 4. An element ̃︀𝑥 = [(𝑥𝜀)𝜀] ∈ ̃︀R𝑑 is of slow scale if for all 𝑛 ∈ N there
exists 𝜀0 such that, for all 𝜀 < 𝜀0, we have |𝑥𝜀| 6 𝜀−1/𝑛.

Theorem 5. Let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝒪𝑀
(R𝑑) and let �̃� = [(𝑥𝜀)𝜀] be of slow scale.

Then the point value 𝑢(�̃�) := [(𝑢𝜀(𝑥𝜀))𝜀] ∈ ̃︀C is well-defined.

Proof. Let (𝑢𝜀)𝜀 ∈ ℳ𝒪𝑀
(R𝑑) = ℳ𝜏 (R𝑑) be a representative of 𝑢. By [10,

Prop. 1.2.45], (𝑢𝜀)𝜀 ∈ ℳ𝜏 (R𝑑) implies that (𝑢𝜀(𝑥𝜀))𝜀 ∈ ℳR, and that (𝑢𝜀(𝑥𝜀) −
𝑢𝜀(𝑥

′
𝜀))𝜀 ∈ 𝒩R if (𝑥′𝜀)𝜀 is another representative of �̃�. It remains to show that the

definition of the point value does not depend on the choice of representative of 𝑢.
So let (𝑢𝜀)𝜀 ∈ 𝒩𝒪𝑀

(R𝑑). Let 𝑚 ∈ N. Choose 𝑝 ∈ N as in the statement of theorem
4. Then for sufficiently small 𝜀,

|𝑢𝜀(𝑥𝜀)| 6 𝜀𝑚(1 + |𝑥𝜀|)𝑝 6 𝜀𝑚(2|𝑥𝜀|)𝑝 6 𝜀𝑚(2𝜀−1/𝑝)𝑝 = 2𝑝𝜀𝑚−1.

Since 𝑚 ∈ N is arbitrary, (𝑢𝜀(𝑥𝜀))𝜀 ∈ 𝒩C. �
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Theorem 6. Let 𝑢 ∈ 𝒢𝒪𝑀
(R𝑑). Then 𝑢 = 0 iff 𝑢(�̃�) = 0 for each slow scale

point �̃�.

Proof. If 𝑢 = 0, then clearly 𝑢(�̃�) = 0 for each slow scale point (since the
definition of point values does not depend on the representative of 𝑢). Conversely,
let 𝑢(�̃�) = 0 for each slow scale point �̃�. We first show by contradiction that

(∀𝑚 ∈ N) (∃𝑛 ∈ N) (∃𝜀0) (∀𝜀 < 𝜀0)𝑏𝑖𝑔(sup|𝑥|6𝜀−1/𝑛 |𝑢𝜀(𝑥)| 6 𝜀𝑚
)︀
. (7)

Assuming the contrary, we find 𝑀 ∈ N, a decreasing sequence (𝜀𝑛)𝑛 tending to
0 and 𝑥𝜀𝑛 ∈ R𝑑 with |𝑥𝜀𝑛 | 6 𝜀

−1/𝑛
𝑛 and |𝑢𝜀𝑛(𝑥𝜀𝑛)| > 𝜀𝑀𝑛 , for each 𝑛Let 𝑥𝜀 := 0

if 𝜀 /∈ {𝜀𝑛 : 𝑛 ∈ N}. Then �̃� := [(𝑥𝜀)𝜀] is of slow scale and (𝑢𝜀(𝑥𝜀))𝜀 /∈ 𝒩R,
contradicting 𝑢(�̃�) = 0.

Now let 𝑚 ∈ N arbitrary. Choose 𝑛 as in equation ((7)). Since (𝑢𝜀)𝜀 ∈
ℳ𝒪𝑀

(R𝑑) = ℳ𝜏 (R𝑑), there exists 𝑁 ∈ N such that for small 𝜀, sup𝑥∈R𝑑(1 +
|𝑥|)−𝑁 |𝑢𝜀(𝑥)| 6 𝜀−𝑁 . Let 𝑝 := 𝑛𝑚+ 𝑛𝑁 +𝑁 . Then, for small 𝜀,

sup𝑥∈R𝑑(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)| =

= max
(︁
sup|𝑥|6𝜀−1/𝑛(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)|, sup|𝑥|>𝜀−1/𝑛(1 + |𝑥|)−𝑝|𝑢𝜀(𝑥)|

)︁
6

6 max
(︁
sup|𝑥|6𝜀−1/𝑛 |𝑢𝜀(𝑥)|, sup𝑥∈R𝑑(1+ |𝑥|)−𝑁 |𝑢𝜀(𝑥)| sup|𝑥|>𝜀−1/𝑛(1+ |𝑥|)𝑁−𝑝

)︁
6

6 max
(︀
𝜀𝑚, 𝜀−𝑁 (𝜀−1/𝑛)𝑁−𝑝)︀ = 𝜀𝑚.

Hence (𝑢𝜀)𝜀 ∈ 𝒩𝒪𝑀
(R𝑑) by Theorem 4. �

4.2 The main theorem

We start by two technical lemmas, the proof of the first one being a simple adap-
tation of [10, Thm 1.2.29].

Lemma 2. Let (𝑓𝜀), (𝑔𝜀), (𝑓𝜀), (𝑔𝜀) ∈ℳ𝒪𝑀
(R) be such that [𝑓𝜀] = [𝑓𝜀], [𝑔𝜀] =

[𝑔𝜀]. We have that [𝑓𝜀 ∘ 𝑔𝜀] = [𝑓𝜀 ∘ 𝑔𝜀]. If [𝑔𝜀] preserves slow scale points then
[𝑓𝜀 ∘ 𝑔𝜀] = [𝑓𝜀 ∘ 𝑔𝜀].

Lemma 3. Consider (𝑓𝜀)𝜀, (𝑔𝜀)𝜀 ∈ ℳ𝒪𝑀
(R) with 𝑓𝜀 and 𝑔𝜀 bijective,

(𝑓𝜀 − 𝑔𝜀)𝜀 ∈ 𝒩𝒪𝑀
(R) and (𝑓−1

𝜀 )𝜀, (𝑔
−1
𝜀 )𝜀 ∈ℳ𝒪𝑀

(R). Suppose that
[︀
𝑔−1
𝜀

]︀
preserves

slow scale points. Then (𝑓−1
𝜀 − 𝑔−1

𝜀 )𝜀 ∈ 𝒩𝒪𝑀
(R).

Proof. We have (𝑓−1
𝜀 − 𝑔−1

𝜀 ) ∘ 𝑔𝜀 = 𝑓−1
𝜀 ∘ 𝑔𝜀 − 𝐼𝑑 ∈ 𝒩𝒪𝑀

(R) because 𝑔𝜀 − 𝑓𝜀 ∈
𝒩𝒪𝑀

(R) which implies that [𝑓−1
𝜀 ∘ 𝑔𝜀] = [𝑓−1

𝜀 ∘ 𝑓𝜀] = [𝐼𝑑]. Note that 𝑓−1
𝜀 − 𝑔−1

𝜀 =



Paradigmatic Well-Posedness in Some Generalized Characteristic . . . 487

(︀
(𝑓−1
𝜀 − 𝑔−1

𝜀 ) ∘ 𝑔𝜀
)︀
∘𝑔−1

𝜀 and that [𝑔−1
𝜀 ] ∈ 𝒢𝑂𝑀

(R) preserves slow scale points. Using
the preceding Lemma, we find that 𝑓−1

𝜀 − 𝑔−1
𝜀 ∈ 𝒩𝒪𝑀

(R). �

Theorem 7. Suppose that (𝑙𝜀)𝜀 belongs to the subset ℒ𝒪𝑀
(R) in ℳ𝒪𝑀

(R) of
families (𝑔𝜀)𝜀 such that: 𝑔′𝜀 > 0,

[︀
𝑔−1
𝜀

]︀
𝜀
∈ 𝒢𝒪𝑀

(R) preserves slow scale points and
lim𝜀→0,𝒟′(R) 𝑔𝜀 = 0. Then if 𝑓 ∈ 𝒪𝑀 (R) and 𝐹 = 0, the generalized function
𝑢 =

[︀
1𝑡 ⊗ 𝑓 ∘ 𝑙−1

𝜀

]︀
𝒢𝒪𝑀

(R2)
depends only on 𝑙 = [𝑙𝜀]𝒢𝒪𝑀

(R). Moreover 𝑢 is the unique

solution to (𝑃𝑔) in 𝒢𝒪𝑀

(︀
R2
)︀
.

Proof. Take (𝑙𝜀)𝜀, (ℎ𝜀)𝜀 ∈ℳ𝒪𝑀
(R) such that [𝑙𝜀] = [ℎ𝜀] and let 𝑢 = [𝑢𝜀], 𝑣 =

[𝑣𝜀] (with (𝑢𝜀)𝜀, (𝑣𝜀)𝜀 ∈ ℳ𝒪𝑀
(R2)) be the corresponding solutions of (𝑃𝑔). For all

𝜀, we have ⎧⎨⎩𝑢𝜀(𝑡, 𝑥) = 𝑓(𝑙−1
𝜀 (𝑥)) + 𝜇𝜀(𝑙

−1
𝜀 (𝑥)) +

∫︀ 𝑡
𝑙−1
𝜀 (𝑥) 𝑖𝜀(𝜏, 𝑥)𝑑𝜏

𝑣𝜀(𝑡, 𝑥) = 𝑓(ℎ−1
𝜀 (𝑥)) + 𝜈𝜀(ℎ

−1
𝜀 (𝑥)) +

∫︀ 𝑡
ℎ−1
𝜀 (𝑥) 𝑗𝜀(𝜏, 𝑥)𝑑𝜏

where (𝑖𝜀)𝜀, (𝑗𝜀)𝜀, (𝜇𝜀)𝜀, (𝜈𝜀)𝜀 ∈ 𝒩𝒪𝑀

(︀
R2
)︀
. First we know that 𝑙−1

𝜀 −ℎ−1
𝜀 ∈ 𝒩𝒪𝑀

(R)
and 𝑓 ∈ 𝒪𝑀 (R) so that 𝑓 ∘ 𝑙−1

𝜀 − 𝑓 ∘ ℎ−1
𝜀 ∈ 𝒩𝒪𝑀

(R). Furthermore, as 𝜇𝜀, 𝜈𝜀 ∈
𝒩𝒪𝑀

(R),
[︀
𝑙−1
𝜀

]︀
,
[︀
ℎ−1
𝜀

]︀
∈ 𝒢𝑂𝑀 (R) and they preserve slow scale points, we have that

𝜇𝜀 ∘ 𝑙−1
𝜀 , 𝜈𝜀 ∘ ℎ−1

𝜀 ∈ 𝒩𝒪𝑀
(R). To finish the proof, we have to check that

𝑡∫︁
𝑙−1
𝜀 (𝑥)

𝑖𝜀(𝜏, 𝑥)𝑑𝜏 −
𝑡∫︁

ℎ−1
𝜀 (𝑥)

𝑗𝜀(𝜏, 𝑥)𝑑𝜏 ∈ 𝒩𝒪𝑀

(︀
R2
)︀
.

We will do it only for the first integral part, as they are almost identical. First
we set, for all 𝜀, 𝑘𝜀(𝑡, 𝑥) =

∫︀ 𝑡
𝑙−1
𝜀 (𝑥) 𝑖𝜀(𝜏, 𝑥)𝑑𝜏 . Let (𝑡𝜀, 𝑥𝜀)𝜀 ∈ ̃︀R2 be a slow scale

point. Then 𝑥𝜀 ∈ ̃︀R is a slow scale point and 𝑦𝜀 = 𝑙−1
𝜀 (𝑥𝜀) is also a slow scale point.

We have ∀𝜀, ∃𝑐𝜀 ∈ [𝑦𝜀, 𝑡𝜀], 𝑘𝜀(𝑡𝜀, 𝑥𝜀) =
∫︀ 𝑡𝜀
𝑦𝜀
𝑖𝜀(𝜏, 𝑥𝜀)𝑑𝜏 = (𝑡𝜀 − 𝑦𝜀)𝑖𝜀(𝑐𝜀, 𝑥𝜀) but as

|𝑐𝜀| 6 max(|𝑦𝜀| , |𝑡𝜀|), (𝑐𝜀) is also a slow scale point. But then (𝑐𝜀, 𝑥𝜀) is a slow scale
point of R2 so that (𝑖𝜀(𝑐𝜀, 𝑥𝜀))𝜀 ∈ 𝒩R and finally (𝑘𝜀(𝑡𝜀, 𝑥𝜀))𝜀 ∈ 𝒩R. �

Remark 3. However, we cannot prove the existence of a solution to (𝑃𝑔) in
𝒢𝒪𝑀

(︀
R2
)︀

if 𝐹 ̸= 0 as can be seen by taking 𝐹 (., ., 𝑢) = 𝑢. Indeed the regularized
problem becomes: (𝑃∞) 𝜕𝑢𝜀/𝜕𝑡 (𝑡, 𝑥) = 𝑢𝜀 (𝑡, 𝑥) , 𝑢𝜀 (𝑡, 𝜀𝑡) = 𝑣 (𝑡) whose solution
is 𝑢𝜀 (𝑡, 𝑥) = 𝑣(𝑥/𝜀) exp(−𝑥/𝜀) exp(𝑡) which clearly is not inℳ𝒪𝑀

(︀
R2
)︀
.
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5 The well-posedness

Classically, in Hadamard sense, the well-posedness for a Cauchy problem asks for
existence, uniqueness of solution to the problem and in addition, its continuous
dependence on the data. Sharp topologies and functorial properties are extended
to the case of (𝒞, ℰ ,𝒫)-algebra in [2]. Thus, one can expect here the following
Hadamard setting: Let 𝑢 (𝑣,ℛ) be the solution given by Theorem 7 to the gener-
alized problem 𝜕𝑢/𝜕𝑡 = 0, ℛ (𝑢) = 𝑣 with 𝑣 ∈ 𝒪𝑀 (R) ⊂ 𝒢𝒪𝑀

(R). Then, at least
in a neighborhood of 𝑣, the map 𝒢𝒪𝑀

(R)→ 𝒢𝒪𝑀

(︀
R2
)︀
, 𝑣 ↦→ 𝑢 (𝑣,ℛ) is continuous

for the corresponding sharp topologies.
For this result, which is left to a forthcoming paper, we shall build 𝒢𝒪𝑀

(︀
R𝑑
)︀

with a unique parameter, the one used to de-characterize the problem, in contrast
to previous works in which a parameter is used for the singular data, and a different
one is introduced for each regularization procedure. The ring 𝒞 = 𝐴/𝐼𝐴 will be the
same for 𝑑 = 1, 2.

But to obtain a good continuity result in this setting will require great care for
choosing the type of tempered class of regularizations used to de-characterize the
problem.
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AN INTRODUCTION TO NONLINEAR GENERALIZED
FUNCTIONS AND TOPICAL DEVELOPMENTS

J. F. Colombeau

Key words: Generalized Functions

AMS Mathematics Subject Classification: 46F

Abstract. This is a general introduction to the nonlinear generalized functions
aimed at a wide audience of nonspecialists. It also includes forthcoming develop-
ments.

The following calculations are the core of the Schwartz Impossibility Result
1954 [7,13,17]. Let 𝐻 denote the Heaviside function defined by 𝐻(𝑥) = 0 if 𝑥 < 0,
𝐻(𝑥) = 1 if 𝑥 > 0 and 𝐻(0) unspecified.

𝐻2 = 𝐻 ⇒
+∞∫︁

−∞

(𝐻2 −𝐻)𝐻 ′𝑑𝑥 = 0. (1)

On the other hand “formal calculations” mimicking classical calculations on 𝒞∞
functions give

+∞∫︁
−∞

(𝐻2 −𝐻)𝐻 ′𝑑𝑥 =

[︂
𝐻3

3
− 𝐻2

2

]︂+∞

−∞
=

1

3
− 1

2
= −1

6
. (2)

The trouble is that 0 ̸= −1
6 ! Indeed Schwartz carried similar calculations on some

continuous functions instead of 𝐻 to have a more convincing result but the situation
is exactly the same and the above gives a maximum of clearness.

Schwartz adopted 𝐻2 = 𝐻 as obvious (more precisely he adopted the classical
product of continuous functions which was the assumption in his more elaborate
calculation [7, 13, 17]) and therefore he claimed that the formal calculations are
wrong because they give a wrong result. From the introduction of [18] “Multipli-
cation of distributions is impossible in any mathematical context possibly different
from distribution theory”. In his mind this result was positive in that it showed
that the absence of a general multiplication in distribution theory was not due to
a defect of the distributions, but to the foundations of mathematics.

But since nearly one century our basic knowledge of the World has been based
on formal calculations (including the above one, and a lot of considerably more
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complicated formal calculations): the field quantization by Heisenberg–Pauli (1927),
the Renormalized Quantum Electrodynamics by Feynman–Tomonaga–Schwinger
(1947), the Electroweak Model by Weinberg-Salam (1968,69 and Nobel Prize in
1979), Quantum Chromodynamics and finally the to-day Standard Model. Since
about 1955 an enormous amount of effort was devoted to the search of a formulation
of Quantum Field Theory that could make sense within the distributions (Axiomatic
Field Theories). The failure was recognized after 1980.

I had been seeking for long time how to give a mathematical sense to the formal
calculations in QFT (postponing the understanding of the Schwartz Impossibility
Result since I believed physics was more basic than a paradox in pure mathematics)
when I found a guideline from a study of spaces of 𝒞∞ functions over the locally
convex spaces of distribution theory. This guideline led to “Nonlinear Generalized
Functions” [4–6]. When going back to the Schwartz Impossibility Result I noticed
with amazement a “miracle”: in these nonlinear generalized functions one has both
𝐻2 ̸= 𝐻 (needed for formal calculations) and “𝐻2 = 𝐻” (needed from intuition)!
An explanation is in order. In the nonlinear generalized functions there are “nonzero
infinitesimal functions” (i.e. functions that look null in distribution theory: in a
natural sense their integral with test functions appear null) and 𝐻2−𝐻 is precisely
such an infinitesimal function. Since in 1954 mathematicians had not in mind the
possibility of existence of nonzero infinitesimals in mathematics, these infinitesimal
functions (to be considered as “approximately null but not exactly null”) were con-
sidered as “exactly null”, and clearly this is the origin of the impossibility claim.
Therefore the Schwartz Impossibility Result could now be formulated as: “infinites-
imals are needed to multiply the distributions”.

The understanding of the paradox is now quite clear: in a way similar to the
fact that a real number (with an infinite sequence of unpredictable digits) is an
idealization of its approximations using a finite increasing number of its digits, a
nonlinear generalized function is an idealization of a sequence of 𝒞∞ functions: an
Heaviside function 𝐻 is an idealization of a sequence of smooth functions whose
jump from the value 0 to the value 1 takes place on a 0-neighborhood of size 𝜖
tending to 0. Therefore since the approximations of 𝐻2 are slightly different from
the approximations of 𝐻 in the interval of size 𝜖 in which the jump takes place,
it appears that the sequence of approximations of 𝐻2 and 𝐻 are slightly different
which explains that 𝐻2 −𝐻 is infinitesimal but not zero. In short 𝐻2 −𝐻 has the
status of a limit =0, not of a fixed value 0. 𝐻 ′ is infinitely large (≈ 1

𝜖 ) in the region
of the jump of length 𝜖. Finally the integral in (1,2) appears as some undeterminate
limit of the conventional form 0 ×∞. Nonlinear generalized functions replace the
0 by a lot of possible infinitesimal functions and the ∞ by a lot of possible infinite
functions: for any choice of one of them in each category this gives the possibility to
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resolve the indeterminacy. This is exactly the method taught by school teachers in
mathematics to pupils who meet the concept of limit for the first time: replace 0 and
∞ by explicit formulas and seek a simplification that would resolve the ambiguity.
The nonlinear generalized functions are based on a reproduction of this perfectly
standard method in mathematical analysis!

In all calculations that make sense within the distributions infinitesimals are
only multiplied by bounded quantities, for example

∫︀
(𝐻2−𝐻)𝜓𝑑𝑥, 𝜓 a continuous

test function. Therefore infinitesimals remain infinitesimals and do not give rise
to new finite results. In short they serve to nothing and so they are conveniently
replaced by 0𝒟′ (the 0 of distribution theory). In short the calculations in nonlinear
generalized functions always give exactly the classical results modulo infinitesimals:
there is a perfect coherence with distribution theory and classical mathematics.
Schwartz believed this coherence impossible because he did not perceive how to
reconcile 𝐻2 = 𝐻 with 𝐻2 ̸= 𝐻.

Are these infinitesimals a mathematical trick or are they really present and
observable in the physical world? The evidence of their presence in nature can be
given by an observation of the elastoplastic shock waves [7, 8]. Imagine a metallic
bar on one side of which you knock with a hammer. If you knock strongly enough
you create an elastoplastic shock wave that propagates in the bar. An elastoplastic
shock wave is made of an elastic region first, then a plastic region, put side by side
on a certain width, the total width of the shock wave, of the order, for instance,
of about one hundred crystal sizes. The velocity and density of the solid vary
troughout the width of the shock wave. Another variable, the stress, increases in the
elastic region, then it reaches some critical value for which the links that maintain
the crystalline structure disappear: the plastic region is attained; then the stress
remains constant equal to this critical value in the plastic region. In this region
the solid behaves like a fluid: it changes its shape definitively and can break. The
jump of the Heaviside function representing the stress takes place only in the elastic
region while the jumps of the Heaviside functions representing the density and the
velocity take place throughout the width of the shock wave encompassing both
the elastic and the plastic regions. Therefore it is obvious even qualitatively that
at least two kinds of very different Heaviside functions are requested to describe
an elastoplastic shock wave. This has been observed by experimental physicists.
This has also been observed from numerical tests and from explicit calculations of
these shock waves, see [7, 8]. This phenomenon occurs in everyday’s life (definitive
deformations or breakings).

Nonlinear generalized functions in physics have many applications that escape
from the domain of distribution theory.
∙ They give a rigorous mathematical sense to formal calculations involving nonlinear
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functions of distributions.
∙ They permit to correct mistakes such as those implied by erroneous simplifications:
it is common in the physical litterature to find expressions such as 𝐻2 = 𝐻 or√
𝛿 = 0, where 𝛿 is the Dirac delta function. When these are followed by nonlinear

calculations such as respectively multiplication by 𝐻 ′, or elevation to the square,
the formal calculations so obtained lead to wrong results.
∙ The nonlinear generalized functions permit to state physics in a way precise
enough so as to resolve ambiguities in form of products of distributions, for instance
in products of the form 𝐻 × 𝛿. Indeed if the notation ≈ means “differ by an
infinitesimal” then

𝐻2 ≈ 𝐻 ⇒ 𝐻𝐻 ′ ≈ 1

2
𝐻 ′

and
𝐻3 ≈ 𝐻 ⇒ 𝐻2𝐻 ′ ≈ 1

3
𝐻 ′

since both sides of ≈ can be differentiated freely. This gives examples of two prod-
ucts of the form 𝐻 × 𝛿 that are respectively equal to 1

2𝛿 and 1
3𝛿, modulo infinitesi-

mals.

Examples of removal of ambiguities by a deeper formulation of the equations on
physical ground are provided by models in nonconservative form. Consider a system
made of one or several conservation laws (stating the balance of mass, momentum,
total energy) and of a state law in nonconservative form, for instance a differential
form of Hooke’s law [7,8], that we state for convenience in the form

𝑢𝑡 + (𝑢2)𝑥” = ”𝜎𝑥, 𝑠𝑖𝑔𝑚𝑎𝑡 + 𝑢𝜎𝑥” = ”𝑢𝑥.

The difficulty comes from the term 𝑢𝜎𝑥 which is of the form 𝐻 × 𝛿 in the case of
shock waves. How to state this system in the nonlinear generalized functions in
order to have well defined shock wave solutions?
∙ If both equations of the system are stated with the equality in nonlinear gen-
eralized functions then arbitrary nonlinear calculations on the equations would be
allowed; they give contradictions in the case of shock waves therefore this statement
has no shock wave solutions.
∙ If both equations are stated with the association i.e.

𝑢𝑡 + (𝑢2)𝑥 ≈ 𝜎𝑥, 𝑠𝑖𝑔𝑚𝑎𝑡 + 𝑢𝜎𝑥 ≈ 𝑢𝑥,

then there are shock wave solutions, but too many!: there is an infinity of possible
jump conditions depending on an arbitrary real parameter while one needs a pre-
cisely well defined jump condition playing the role of the classical Rankine-Hugoniot
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jump formula of conservation laws.
∙ If one equation is stated with = and the other one with ≈ one has existence of
shock wave solutions and a well defined jump condition, which is satisfactory from
a qualitative viewpoint. From a quantitative viewpoint one wonders which state-
ment, if any, should be chosen since the two jump formulas are different. One has
the choice between the two statements

𝑢𝑡 + (𝑢2)𝑥 = 𝜎𝑥, 𝑠𝑖𝑔𝑚𝑎𝑡 + 𝑢𝜎𝑥 ≈ 𝑢𝑥

and
𝑢𝑡 + (𝑢2)𝑥 ≈ 𝜎𝑥, 𝑠𝑖𝑔𝑚𝑎𝑡 + 𝑢𝜎𝑥 = 𝑢𝑥.

The choice is easy from the following reasoning on physical ground: it is known in
physics that shock waves have a (very small) width. In this width one can state
the basic conservation laws while the state laws are rather unknown in a situation
of fast deformation and entropy increase inside a shock wave. This imposes the
statement

𝑢𝑡 + (𝑢2)𝑥 = 𝜎𝑥, 𝑠𝑖𝑔𝑚𝑎𝑡 + 𝑢𝜎𝑥 ≈ 𝑢𝑥.

Not only everything makes sense mathematically but also one has obtained nonam-
biguous jump conditions that have given satisfactory results.

Now we sketch various closely related presentations of the nonlinear generalized
functions, giving slightly different differential algebras of nonlinear generalized
functions, all of them denoted abusively by the generic symbol 𝒢(Ω),Ω any open
set in R𝑛.
∙ The original presentation [4–6] is directly issued from distribution theory by
following a guideline. One has the inclusions

𝒞∞(Ω) ⊂ 𝒞0(Ω) ⊂ 𝒟′(Ω) ⊂ 𝒢(Ω).

The partial derivatives in 𝒢(Ω) induce the partial derivatives in 𝒟′(Ω) which is
a vector subspace of 𝒢(Ω). 𝒞∞(Ω) is a faithful subalgebra of 𝒢(Ω), while 𝒞0(Ω)
is only a subalgebra “modulo infinitesimals” as explained above. The situation is
very clear and expected by mathematicians (after one has understood the role of
infinitesimals). There is a privileged Heaviside function and a privilegied Dirac
delta function (those in 𝒟′(Ω)). This situation is useless in physics in which the
various Heaviside functions and the various Dirac delta functions (functions in each
category differ between each other by infinitesimal functions) have to be treated
on an equal footing. Further the fact that these inclusions are canonical is paid
by a certain amount of quantifiers in the statements of definitions. This version of
𝒢(Ω) is often refered to as “full algebra”. It is the richest from a viewpoint of pure
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mathematics.
∙ Then a simplified presentation has been introduced in which the inclusion 𝒟′(Ω) ⊂
𝒢(Ω) is no longer canonical and depends on the arbitrary choice of a mollifier 𝜌
which is a smooth function with integral one and a few other properties [13]. The
advantage is a simplification in definitions (less quantifiers).
∙ Simplifying more one obtains a “more objective” setting from the viewpoint of
physics: there is no well defined inclusion 𝒟′(Ω) ⊂ 𝒢(Ω): several elements of 𝒢(Ω)
have the “macroscopic aspect” of distributions, which is still denoted by the symbol
≈ which then connects an element of 𝒢(Ω) with a distribution, and by extension
connects two elements of 𝒢(Ω) whose difference has the macroscopic aspect of the
distribution 0, i.e. whose difference is an infinitesimal function. This is the simplest
presentation and presumably the most objective for use in physics since it is free
from mathematical complications due to a distinction of privilieged objects among
those that have the macroscopic aspect of distributions.

Various other concepts have been introduced by different authors. First there is
a clear connection with Nonstandard Analysis due to the presence of infinitesimals
(but the infinitesimals were introduced here only for the problem of multiplication of
distributions; they do not play a role inside distribution theory). Then the quotient
(which is present in the constuction of the three concepts defined above) can be
dropped and one obtains the concept developped by Egorov [12]. This quotient
stems from distribution theory: it permits to identify objects that play the same role
in all multiplications of distributions. When restricted to applications to the concept
of solutions of nonlinear PDEs the concept of a “weak asymptotic method” defined
by Danilov, Omelyanov and Shelkovich [11] is very well adapted to the search of
weak solutions in a sense of generalized functions. In short the theory is not fixed.
The theory of nonlinear generalized functions has been extended to manifolds and
applied to General Relativity by Vickers, Grosser, Kunzinger, Steinbauer,. . . [20].
However we will note that these various concepts are not really competing since
they manipulate the same ideas, with only superficial mathematical variations due
to various degrees of simplicity according to the taste of the author or for the
adaptation to a particular problem. But the presence of all these variations can be
a serious drawback for the divulgation of nonlinear generalized functions since it
can give a superficial impression of confusion.

Now we give an idea of the third concept quoted above: the “most objective”
one from the viewpoint of physics and the simplest one from the viewpoint of
mathematics due to the absence of a well defined embedding of distributions. The
construction of this simple version of 𝒢(Ω) is done by defining a large algebra called
“Reservoir of representatives”, an ideal of it called “Ideal of null representatives”,
and then 𝒢(Ω) is the quotient of the Reservoir by the Ideal of null representatives.
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In what follows 𝑥 ∈ Ω and 𝜖 > 0.
∙Reservoir of representatives={(𝑥, 𝜖) ↦−→ 𝑅(𝑥, 𝜖)𝒞∞ /𝑓𝑜𝑟𝑎𝑙𝑙𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈
N𝑛, | 𝜕|𝛼|

𝜕𝑥
𝛼1
1 ...𝜕𝑥𝛼𝑛

𝑛
𝑅(𝑥, 𝜖)| 6 𝑐𝑜𝑛𝑠𝑡

𝜖𝑁(𝛼) } uniformly on compact sets in Ω, where 𝑁(𝛼) is an
integer which may depend on 𝛼 (and on the compact subset of Ω).
∙Ideal of null representatives={𝑅/∀𝛼 ∈ N𝑛, 𝑓𝑜𝑟𝑎𝑙𝑙𝑞 ∈ N | 𝜕|𝛼|

𝜕𝑥
𝛼1
1 ...𝜕𝑥𝛼𝑛

𝑛
𝑅(𝑥, 𝜖)| 6

𝑐𝑜𝑛𝑠𝑡(𝑞)𝜖𝑞} for 𝜖 > 0 small enough, uniformly on compact sets in Ω, where 𝑐𝑜𝑛𝑠𝑡(𝑞)
is a constant that depends on 𝑞 (and on the compact subset of Ω).

Therefore an element of the quotient has a specific behavior when 𝜖 → 0. The
ideal has been chosen so as to identify maps 𝑅 that have a close enough behavior
when 𝜖→ 0 so that they need not be distinguished to resolve ambiguities in multi-
plication of distributions. An element of 𝒢(Ω) is said to be infinitesimal iff it has a
representative 𝑅 (then all representatives) that tends to zero in the sense of distri-
butions when 𝜖→ 0, i.e.

∫︀
𝑅(𝑥, 𝜖)𝜓(𝑥)𝑑𝑥→ 0 for any test function 𝜓 ∈ 𝒞∞𝑐 (Ω). An

element of 𝒢(Ω) is said to have the macroscopic aspect of a distribution T iff it has
a representative 𝑅 (then all representatives) such that

∫︀
𝑅(𝑥, 𝜖)𝜓(𝑥)𝑑𝑥→< 𝑇,𝜓 >

when 𝜖→ 0, for any test function 𝜓 ∈ 𝒞∞𝑐 (Ω).
The more elaborate concepts point out a privilieged inclusion of the vector space

of distributions into the algebra of nonlinear generalized functions, which is nicer
from the mathematical viewpoint: it simplifies statements of theorems since one
can speak of distributions as contained in the nonlinear generalized functions.

Now we recall the two steps in the historical development of distribution theory.
∙ First step: Sobolev 1936 [19].
Definition 1. A sequence (𝜙𝑛)𝑛, 𝜙𝑛 ∈ 𝒞𝑘𝑐 (Ω), is said to be null iff support(𝜙𝑛) is
contained in a fixed compact set (independent on 𝑛) and if this sequence tends to
zero in sup norm as well as all derivatives up to order 𝑘.
Definition 2. A distribution 𝑇 (of order 𝑘) is a linear map on the vector space 𝒞𝑘𝑐 (Ω)
(without topology) such that < 𝑇,𝜙𝑛 >→ 0 as soon as (𝜙𝑛)𝑛 is a null sequence.
∙ Second step: Schwartz 1945 introduced locally convex topologies on these vector
spaces and defined a distribution as a linear continuous map. The topology gives
an exactly equivalent definition and Schwartz developped the theory using locally
convex vector space topologies [18]. He had a very great success which permitted a
wide divulgation of distribution theory.

As the Sobolev theory the nonlinear theory presented up to now is of algebraic
nature. One could try to find an analog of the Schwartz theory based on locally
convex algebras. A natural topology-but not a vector space topology: some kind
of ultra-metric topology - has been pointed out at the very beginning [2, 3]. It has
been used in [2] to state the well posedness of Cauchy problems. It is now called
“sharp topology” following Scarpalezos [16] and it has been studied and used by
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many authors: Scarpalezos, Aragona, Juriaans, Vernaeve, . . . . There appears an
obstruction to the existence of a Hausdorff locally convex algebra topology 𝒯 on
𝒢(Ω) or suitable subalgebras. Indeed let 𝑓𝑛(𝑥) =

√
𝑛 if 0 < 𝑥 < 1

𝑛 , 𝑓𝑛(𝑥) = 0
elsewhere. Clearly for a natural topology 𝒯 , one should have 𝑓𝑛 → 0 since this
is the case in the classical 𝐿1 space (one privileges the classical 𝐿𝑝 spaces in view
of the applications; intuitively note that the family (𝑓𝜖) represents a

√
𝛿 function)

and (𝑓𝑛)
2 → 𝛿, the Dirac 𝛿 function. Since 𝒯 has to be a topological algebra

𝑓𝑛 → 0 ⇒ (𝑓𝑛)
2 → 0. Then since 𝒯 is Hausdorff one has 𝛿 = 0, which is absurd.

We are confronted with another “Impossibility Result”, now of a topological nature!
I am starting to propose a solution (still unpublished and only announced in [9]).

Theorem 1. There exists subalgebras of 𝒢(R𝑛) (the simplest one, i.e. the third
concept as described above) with the following properties:

i) these subalgebras are Hausdorff locally convex algebras in which all bounded
sets are relatively compact.

ii) they contain “most” distributions on Ω (in particular 𝐿𝑝 spaces, distributions
with compact support) with continuous inclusions; therefore bounded sets of
distributions are relatively compact in these subalgebras.

iii) all partial derivatives are linear continuous from any such algebra into itself.

As far as I know up to now 𝒢(R𝑛) is far from being covered by the union of
these subalgebras. No attempt has been done concerning the two richer concepts of
𝒢(R𝑛) described above. Although non metrizable these topological algebras have
optimal properties: they are complete, Schwartz (i.e. a compactness property on
the 0-neighborhoods), nuclear. They are completely different from the spaces of
distribution theory. Their construction and study use very deeply the classical
theories of locally convex spaces and nuclear spaces.

As an application these topological subalgebras permit the passage to the limit
in nonlinearities: for these topologies

𝑢𝑛 → 𝑢, 𝑣𝑛 → 𝑣 ⇒ 𝑢𝑛.𝑣𝑛 → 𝑢.𝑣.

Such results are well known to be wrong for the weak convergence in classical spaces
of distributions, but one has to keep in mind that the products here are those in
𝒢(R𝑛), which differ from the classical products by infinitesimal quantities (recall the
paradox raised by the Schwartz impossibility result considered at the beginning of
this introduction) and that the situation is original. The redaction of this material
and deeper investigations are in preparation.

In conclusion the nonlinear theory of generalized functions is used in physics:
in particular
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∙ in continuum mechanics for systems in nonconservative form such as elastoplas-
ticity, one pressure model in multifluid flows [7].
∙ in general relativity, see the research-expository paper [20], in particular see works
of Vickers, Grosser, Kunzinger, Steinbauer,. . . that extend the nonlinear theory of
generalized functions to manifolds and apply it to nonlinear functions of distribu-
tions in General Relativity.
∙ in quantum field theory it permits to give a mathematical sense to the canonical
Hamiltonian formalism, [10].

It is compatible with mathematics: 0′𝒟 splits into infinitesimals, which permits
to resolve ambiguities in multiplications of distributions as exposed at the beginning
of the paper. This theory is used for linear PDEs with discontinuous coefficients
and for nonlinear PDEs with distributional initial data, see [14,15] and recent works
in arXiv.org of Oberguggenberger, Pilipovic, Kunzinger, Hoermann, Garetto, . . . .
I know between 500 and 800 papers on this theory therefore I give only a few
introductory papers.
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Abstract. We introduce Ultrahyperbolic Clifford Analysis (UCA) as a moti-
vation for studying Associated Homogeneous Distributions (AHDs). UCA can be
regarded as a higher-dimensional function theory that generalizes the theory of com-
plex holomorphic functions. In UCA, the algebra of complex numbers is replaced
with a Clifford algebra 𝐶𝑙𝑝,𝑞 and the classical complex Cauchy-Riemann equation
is replaced with a Clifford algebra-valued equation, having physical relevance.

The convolution kernel in Cauchy’s integral formula from complex analysis,
1

2𝜋𝑖𝑧
−1, becomes in UCA a (non-trivial) AHD. In the theoretical development of

UCA and also for its practical application, it is necessary that we can convolve and
multiply AHDs. The aim of this talk is to show that UCA can be founded on classi-
cal distribution theory, so that it is not necessary to use a more general generalized
function algebra for this purpose. This is achieved by using a new convolution and
isomorphic multiplication algebra of (one-dimensional) AHDs developed earlier by
the author, entirely within the setting of Schwartz’ distributions.

1 Introduction

Ultrahyperbolic Clifford Analysis (UCA) is a particular generalization of complex
analysis to hypercomplex analysis. Let 𝑝, 𝑞 ∈ N, 𝑛 , 𝑝 + 𝑞, 𝑃 the canonical qua-
dratic form of signature (𝑝, 𝑞), R𝑝,𝑞 , (𝑅𝑛, 𝑃 ) the inner product space with inner
product induced by 𝑃 and 𝐶𝑙𝑝,𝑞 the Clifford algebra generated by R𝑝,𝑞. Then, UCA
can be regarded as the study of a particular subset of functions from 𝑅𝑛 → 𝐶𝑙𝑝,𝑞. A
physical interpretation of UCA is that of a theory of functions defined on a gener-
alized Lorentzian space with an arbitrary number of time (𝑝) and space dimensions
(𝑞). UCA generalizes Hyperbolic Clifford Analysis (HCA), corresponding to 𝑝 = 1
or 𝑞 = 1, and Elliptic Clifford Analysis (ECA), corresponding to 𝑝 = 0 or 𝑞 = 0.
ECA is about 30 years old and now a mature part of analysis, [2,4]. HCA and UCA
are still under development.
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The set of Associated Homogeneous Distributions (AHDs) with support in 𝑅,
denoted by ℋ′ (𝑅), is the distributional analogue of the set of power-log functions
with domain in 𝑅, [11,18,25]. ℋ′ (𝑅) contains the majority of the (one-dimensional)
distributions one typically encounters in physics applications, such as 𝛿, 𝜂 , 1

𝜋𝑥
−1

(a normalized Cauchy’s principal value Pv 1
𝑥), the Heaviside step distributions 1±,

pseudo-functions generated by taking Hadamard’s finite part of certain divergent
integrals, associated Riesz kernels, generalized Heisenberg distributions, all their
generalized derivatives and primitives, etc.

There is a close relationship between UCA and AHDs. First, the development
of UCA requires us to study AHDs since the latter appear as cornerstone objects
in the formulation of UCA. In addition, one needs their properties, e.g. for solving
Boundary Value Problems (BVPs) and Riemann-Hilbert Problems (RHPs).

In particular, HCA with 𝑝 = 1 and 𝑞 = 3 appears to be a very suitable math-
ematical tool for solving physics applications, e.g. in Electromagnetism (EM) and
Quantum Physics (QP). The latter physical relevance explains why AHDs appear
so often in applications.

In earlier work, I constructed a convolution algebra and an isomorphic multi-
plication algebra of AHDs on 𝑅 within Schwartz’ distribution theory, [11]– [17].
We will see that higher dimensional versions of these algebras on 𝑅𝑛, obtained as
pullbacks along the quadratic form 𝑃 , play a key role in UCA. Consequently, UCA
can be founded on Schwartz’ distribution theory and it is thus not necessary to use
a more general generalized function algebra for its construction.

2 Ultrahyperbolic Clifford Analysis

For an in depth overview of Clifford analysis, see [2–4,9, 10].

2.1 Clifford algebras

Let {e1, . . . , e𝑛} denote an orthogonal basis for 𝑅𝑛. The universal (real) Clifford
algebra 𝐶𝑙𝑝,𝑞 over R𝑝,𝑞 is defined by

e21 = . . . = e2𝑝 = +1 and e2𝑝+1 = . . . = e2𝑛 = −1, (1)
e𝑖e𝑗 + e𝑗e𝑖 = 0, 𝑖 ̸= 𝑗, (2)

together with linearity over R and associativity. Clifford showed how to turn an
𝑛-dimensional linear space into an 2𝑛-dimensional algebra. Essential is that his
algebra is not closed for vectors, but is closed for all anti-symmetric tensors which
can be generated from the underlying linear space. These anti-symmetric tensors
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represent oriented subspaces of the original 𝑛-dimensional linear space. A (real)
Clifford number (also called “multivector”) 𝑥 is therefore a hypercomplex number
over R of the form

𝑥 = 𝑎1⏟ ⏞ 
1

+ 𝑎𝑖e𝑖⏟ ⏞ 
(𝑛1)

+
1

2!
𝑎𝑖1𝑖2 (e𝑖1 ∧ e𝑖2)⏟  ⏞  

(𝑛2)

+ . . .+ 𝑎1,...,𝑛 (e1 ∧ . . . ∧ e𝑛)⏟  ⏞  
(𝑛𝑛)

. (3)

This can be regarded as a direct sum of 𝑛 + 1 grades 𝑥 = ⊕𝑛𝑘=0 [𝑥]𝑘, making 𝐶𝑙𝑝,𝑞
a graded linear space of dimension 2𝑛. We have the embeddings: R →˓ 𝐶𝑙𝑝,𝑞 by
the grade 0 part and R𝑝,𝑞 →˓ 𝐶𝑙𝑝,𝑞 by the grade 1 part. A Clifford number of pure
grade 𝑘 has the geometrical interpretation of an oriented 𝑘-dimensional subspace.
E.g., 𝑥 = [𝑥]1 represents an oriented line segment (a vector), 𝑥 = [𝑥]2 represents
an oriented surface segment, etc. Clifford himself called his algebras geometrical
algebras, because they are the natural choice when doing geometrical meaningful
calculations with oriented subspaces of a given 𝑛-dimensional linear space.

The Clifford product of two numbers of pure grade, 𝑥 = [𝑥]𝑘 and 𝑦 = [𝑦]𝑙, is
given by

𝑥𝑦 =

𝑘+𝑙∑︁
𝑖=|𝑘−𝑙|,2

[𝑥𝑦]𝑖 . (4)

In particular, the Clifford product of two vectors v and w decomposes into the sum
of the inner and outer products,

vw = v ·w + v ∧w, (5)

wherein the grade 0 part contains information about the angle between the vectors
and the grade 2 part expresses that two vectors also span an oriented parallelogram.

Familiar Clifford algebras are: R, C, H (Hamilton’s quaternions), 𝑃 (Pauli’s al-
gebra), 𝑀 (Majorana’s algebra), and the time-space algebra 𝐶𝑙1,3. Clifford algebras
have been found to be very well-suited to formulate physical problems, [1,20,21,24].

2.2 Generalized Cauchy-Riemann equation

Introduce the 𝐶𝑙𝑝,𝑞-valued nabla operator 𝜕 ,
𝑛∑︀
𝑖=1

e𝑖𝜕𝑖, called Dirac operator, and

let Ω be a domain in 𝑅𝑛 .

Definition 1. Ultrahyperbolic Clifford Analysis is the study of functions sat-
isfying

𝜕𝐹 = −𝑆, (6)
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with 𝐹 ∈ 𝐶∞ (Ω, 𝐶𝑙𝑝,𝑞) and for given 𝑆 ∈ 𝐶∞
𝑐 (𝑅𝑛, 𝐶𝑙𝑝,𝑞), together with a boundary

condition for 𝐹 at infinity and possibly integrability conditions on 𝑆.

If 𝑆 = 0, eq. (6) is a particular generalization of the Cauchy-Riemann equation
from complex analysis and then defines functions 𝐹 called (left) holomorphic.

2.3 Physical interpretation

Let us restrict eq. (6) to the Clifford algebra 𝐶𝑙1,3, choose for 𝑆 a smooth compact
support multivector function having as only non-vanishing grades 1 and 3 (i.e.,
𝑆 = [𝑆]1 + [𝑆]3) and restrict 𝐹 to be of pure grade 2 (i.e., 𝐹 = [𝐹 ]2). Then
eq. (6) reproduces the Maxwell-Heaviside equations for the EM field 𝐹 , generated
by a given electric monopole current density source [𝑆]1 and a given magnetic
monopole current density source [𝑆]3, [19, 23, 26]. Hence, HCA of signature (1, 3)
(and with additional grade restrictions) is a mathematical function theory that
models physical EM fields. This identification now leads to the correspondences
summarized in Table 1.

Table 1
Correspondences between CA and EM

CA EM
Cauchy-Riemann eq. Equation of EM
Clifford-valued functions Generalized EM fields
Holomorphy Holography
Singularities, Residues Source fields
Cauchy/Integral theorems Reciprocity theorems
Riemann-Hilbert problems Scattering problems
etc. etc.

The above physical interpretation can be readily generalized. Choose any Clif-
ford algebra 𝐶𝑙𝑝,𝑞, let 𝐹 be a general 𝐶𝑙𝑝,𝑞-valued function and 𝑆 a given smooth
compact support 𝐶𝑙𝑝,𝑞-valued function. Then eq. (6) becomes a model for a gener-
alized EM in a universe with 𝑝 time dimensions and 𝑞 space dimensions!

2.4 Cauchy kernels

Of central importance in the formulation of UCA are the Cauchy kernels. The
Cauchy kernel 𝐶𝑥0 in UCA is a vector-valued distribution, which derives from a
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scalar distribution 𝑔𝑥0 ∈ 𝒟′ as
𝐶𝑥0 = 𝜕𝑔𝑥0 . (7)

The scalar distribution 𝑔𝑥0 is a fundamental solution of the Ultrahyperbolic Equation
(UE) (i.e., the wave equation) in R𝑝,𝑞

�𝑝,𝑞𝑔𝑥0 = 𝛿𝑥0 . (8)

The point 𝑥0 ∈ 𝑅𝑛 will eventually play the role of calculation point in the general-
ized Cauchy’s integral theorem in UCA, but can here be thought of as parametrizing
a family of distributions.

Introduce the shorthands, 𝑃𝑥0 , 𝑃 (𝑥− 𝑥0) and 𝐴𝑛−1 , 2𝜋𝑛/2/Γ (𝑛/2). A
(real) fundamental solution of the UE for general (𝑝, 𝑞) with 2 6 𝑛 is, [5, 6, 8, 22],

(i) for 𝑛 > 2

𝑔𝑥0 = − 1

(𝑛− 2)𝐴𝑛−1

1

2

(︁
𝑒𝑖𝑞

𝜋
2 (𝑃𝑥0 + 𝑖0)1−

𝑛
2 + 𝑒−𝑖𝑞

𝜋
2 (𝑃𝑥0 − 𝑖0)1−

𝑛
2

)︁
, (9)

(ii) for 𝑛 = 2

𝑔𝑥0 =
1

4𝜋

1

2

(︁
𝑒𝑖𝑞

𝜋
2 ln(𝑃𝑥0 + 𝑖0) + 𝑒−𝑖𝑞

𝜋
2 ln(𝑃𝑥0 − 𝑖0)

)︁
, (10)

=
1

4

(︂
cos(𝑞𝜋/2)

1

𝜋
ln |𝑃𝑥0 | − sin(𝑞𝜋/2)1−(𝑃𝑥0)

)︂
. (11)

The distributions 𝑔𝑥0 are readily seen to be pullbacks along 𝑃𝑥0 of one-
dimensional AHDs. This is how AHDs enter in the formulation of UCA.

3 Associated Homogeneous Distributions on R

3.1 Definition

Definition 2. HD. A distribution 𝑓𝑧0 ∈ 𝒟′ is called a (positively) homogeneous
distribution of degree of homogeneity 𝑧 ∈ C iff it satisfies for any 𝑟 > 0,

⟨𝑓𝑧0 , 𝜙 (𝑥/𝑟)⟩ = 𝑟𝑧+1 ⟨𝑓𝑧0 , 𝜙 (𝑥)⟩ ,∀𝜙 ∈ 𝒟. (12)

Definition 3. AHD. A distribution 𝑓𝑧𝑚 ∈ 𝒟′ is called an associated (positively)
homogeneous distribution of degree of homogeneity 𝑧 ∈ C and order of association
𝑚 ∈ Z+, iff there exists a sequence of associated homogeneous distributions 𝑓𝑧𝑚−𝑙
of degree of homogeneity 𝑧 and associated order 𝑚− 𝑙, ∀𝑙 ∈ Z[1,𝑚], not depending
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on 𝑟 and with 𝑓𝑧0 ̸= 0, satisfying,

⟨𝑓𝑧𝑚, 𝜙 (𝑥/𝑟)⟩ = 𝑟𝑧+1

⟨
𝑓𝑧𝑚 +

𝑚∑︁
𝑙=1

(ln 𝑟)𝑙

𝑙!
𝑓𝑧𝑚−𝑙, 𝜙 (𝑥)

⟩
,∀𝜙 ∈ 𝒟. (13)

For a more detailed overview of AHDs, see [11, 18,25].

3.2 Preliminaries

We will use hereafter the following terminology.

Definition 4. A partial distribution is a linear and continuous functional that
is only defined on a proper subset 𝒟𝑟 ⊂ 𝒟.

Definition 5. A 𝑓𝑧𝑚 ∈ ℋ′ (𝑅) has a critical degree of homogeneity at 𝑧 = 𝑧𝑐 iff
𝑓𝑧𝑐𝑚 exists as a partial distribution.

Definition 6. An extension 𝑓𝜀 from 𝒟𝑟 to 𝒟, of a partial distribution 𝑓 , is a
distribution 𝑓𝜀 ∈ 𝒟′, defined ∀𝜙 ∈ 𝒟, such that ⟨𝑓𝜀, 𝜓⟩ = ⟨𝑓, 𝜓⟩, ∀𝜓 ∈ 𝒟𝑟 ⊂ 𝒟.

Definition 7. A regularization of a partial distribution 𝑓𝑧𝑐𝑚 ∈ ℋ′ (𝑅) is any
extension (𝑓𝑧𝑐𝑚 )𝑒 in ℋ′ (𝑅) of 𝑓𝑧𝑐𝑚 from 𝒟𝑟 to 𝒟.

Definition 8. (i) The convolution product of any two AHDs on 𝑅 of degrees
𝑎 − 1 and 𝑏 − 1 is called a critical convolution product, iff the resulting degree
𝑎+ 𝑏− 1 , 𝑘 ∈ N.

Definition 9. (ii) The multiplication product of any two AHDs on 𝑅 of degrees
𝑎 and 𝑏 is called a critical multiplication product, iff the resulting degree 𝑎 + 𝑏 ,
−𝑙 ∈ Z−.

3.3 Definition of the products

3.3.1 Convolution

Let 𝒟′
𝑅 denote the distributions based on 𝑅 with support bounded on the left and

𝒟′
𝐿 denote the distributions based on 𝑅 with support bounded on the right. A

structure theorem for AHDs states that any AHD on 𝑅 is the sum of an AHD
in 𝒟′

𝐿 and an AHD in 𝒟′
𝑅. To define a convolution product on ℋ′ (𝑅) we must

consider three cases.
Case 1. The factors have one-sided support, bounded at the same side.
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In this case we can use for any degree of the factors the standard definition
involving the direct product (the standard convolution integral). This case is an
example of the method of retarded distributions.

Case 2. The factors have one-sided support, bounded at different sides, and the
resulting degree of homogeneity is not a natural number.

In this case, the convolution 𝑓 * 𝑔, with 𝑓 ∈ 𝒟′
𝐿 and 𝑔 ∈ 𝒟′

𝑅, can not straight-
forwardly be defined in terms of a direct product, because supp(𝑓 * 𝑔) ∩ supp(𝜙 ∈
𝒟
(︀
𝑅2
)︀
) is generally non-compact. This case is handled in two steps:

(i) First in 𝑇 ,
{︀
(𝑎, 𝑏) ∈ C2 : 0 < Re(𝑎), 0 < Re(𝑏) and Re(𝑎+ 𝑏) < 1

}︀
we use

the standard convolution integral.
(ii) Then we extend by analytic continuation to 𝑅 ,{︀

(𝑎, 𝑏) ∈ C2 : 𝑎+ 𝑏− 1 /∈ N
}︀
.

Case 3. The factors have one-sided support, bounded at different sides, and the
resulting degree of homogeneity 𝑎+ 𝑏− 1 is a natural number 𝑘 (critical product).
It was observed that:

(a) Any critical convolution product 𝑓𝑎−1 * 𝑓 𝑏−1 is in general a partial distribu-
tion only defined on 𝒮{𝑘}. 𝑆{𝑘} is the subspace of 𝑆 whose members have zero 𝑘-th
order moment.

(b) A particular extension of the partial distribution 𝑓𝑎−1 * 𝑓 𝑏−1 from 𝒮{𝑘} to
𝒮 can be realized as an analytic finite part.

(c) This finite part, being a limit in C2, is in general non-unique.
(d) Fortunately, it turned out that this non-uniqueness only involves an arbitrary

term of the form 𝑐𝑥𝑘, 𝑐 ∈ C arbitrary.
A critical convolution product, only existing as a partial distribution 𝑓𝑎−1*𝑓 𝑏−1,

is then defined as any extension in ℋ′ (𝑅) and so obtains meaning as a distribution.

3.3.2 Multiplication

Let 𝑓𝑎, 𝑔𝑏 ∈ ℋ′ (𝑅) of degree 𝑎 and 𝑏. The multiplication of AHDs is defined in
terms of the convolution product by

𝑓𝑎 . 𝑔𝑏 , ℱ
(︁ (︀
ℱ−1𝑓𝑎

)︀
*
(︁
ℱ−1𝑔𝑏

)︁)︁
. (14)

3.4 Properties of the products

The constructed algebras of AHDs on 𝑅 have the following properties.
A. Non-commutativity
(i) Non-critical products are always commutative.
(ii) Critical products are generally non-commutative.



Associated Homogeneous Distributions in Clifford Analysis 507

(iii) Deviation from commutative is by a term of the form 𝑐𝑥𝑘 (convolution) or
𝑐𝛿(𝑙) (multiplication), 𝑘 ∈ N, 𝑙 ∈ Z+ and 𝑐 ∈ R arbitrary.

B. Non-associativity
(i) Non-critical triple products are always associative.
(ii) Critical triple products are generally non-associative.
(iii) Deviation from commutative is by a term of the form 𝑐𝑥𝑘 (convolution) or

𝑐𝛿(𝑙) (multiplication), 𝑘 ∈ N, 𝑙 ∈ Z+ and 𝑐 ∈ R arbitrary.

4 Conclusion

The here presented connection between UCA and AHDs clearly reveals the impor-
tance of this rather small subset of Schwartz distributions. On the one hand, they
appear as crucial building blocks in the construction of advanced higher dimen-
sional analysis. On the other hand, and essentially because of their role in UCA,
they appear ubiquitous in physics applications.
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