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HYPERBOLIC-LIKE DISSIPATIONS FOR SECOND ORDER
EQUATIONS

M. D’Abbicco, M. R. Ebert

Key words: Hyperbolic Equations, Dissipative Equations

AMS Mathematics Subject Classification: 35L15

Abstract. The main goal of this paper is to study the long time behavior of the
energy for the second order hyperbolic equation with time-dependent coefficients of
the form

𝑢𝑡𝑡 − 𝜆2(𝑡)𝑢𝑥𝑥 + 𝑏(𝑡)𝑢𝑡 + 𝑑(𝑡)𝑢𝑥 = 0.

Under positivity assumptions of the coefficient 𝑏(𝑡) of the damping term we expect a
dissipative effect, whereas the drift term 𝑑(𝑡)𝑢𝑥 should be controlled to avoid blow-
up effects. We give a precise description of the behavior of the local energy in the
hyperbolic zone of the extended phase space, then we look for sufficient conditions
that guarantee the same energy estimate from above in all the extended phase space.
We call this class of dissipations hyperbolic-like since the energy behavior is deeply
depending on the hyperbolic structure of the equation. We refer the interested
reader to [2], where it is also considered the case of a strong influence coming from
the drift term 𝑑(𝑡)𝑢𝑥 and it is introduced a classification of mass terms 𝑒(𝑡)𝑢 which
brings no contribution to the energy behavior. Moreover, some models of higher
order equations are presented.

1 Introduction

In this paper, we consider the Cauchy problem for the second order linear hyperbolic
equation with time-dependent coefficients of the form{︃

𝑢𝑡𝑡 − 𝜆2(𝑡)𝑢𝑥𝑥 + 𝑏(𝑡)𝑢𝑡 + 𝑑(𝑡)𝑢𝑥 = 0 , 𝑡 > 0,

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥),
(1)

with initial data (𝑢0, 𝑢1) ∈ 𝐻1 × 𝐿2 and we study the behavior of its 𝜆-energy

𝐸𝜆(𝑡) = ‖𝑢𝑡(𝑡, ·)‖2𝐿2 + 𝜆2(𝑡)‖𝑢𝑥(𝑡, ·)‖2𝐿2 ,
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as 𝑡 → ∞. For the sake of simplicity we are going to consider (1) in one space
dimension, but our reasoning can be easily extended to the case of space dimen-
sion 𝑛 > 2.

Let 𝜆 ≡ 1 and 𝑑 ≡ 0; if 𝑏 ≡ 0 (wave equation), then the energy

𝐸1(𝑡) = ‖𝑢𝑡(𝑡, ·)‖2𝐿2 + ‖𝑢𝑥(𝑡, ·)‖2𝐿2 ,

is constant, whereas if 𝑏 ≡ 1 (classical damped wave equation), then the wave
energy 𝐸1(𝑡) dissipates as 𝑡 → ∞. In the latter case, a better decay is obtained
thanks to the presence of the dissipative term 𝑢𝑡.

If one is interested in decay estimates for the second order homogeneous equation

𝑢𝑡𝑡 − 𝜆2(𝑡)𝑢𝑥𝑥 = 0, (2)

that is, the wave equation with variable speed of propagation, then one has to study
properties of 𝜆 = 𝜆(𝑡). Even if 0 < 𝜆0 6 𝜆(𝑡) 6 𝜆2, some difficulties arise for the
energy estimates, since the oscillations of 𝜆 = 𝜆(𝑡) have a deteriorating influence
on the energy behavior [10]. Nevertheless if

|𝜆(𝑘)(𝑡)| 6 𝐶𝑘(1 + 𝑡)−𝑘, for 𝑘 = 1, 2,

then the so-called generalized energy conservation property holds [9], that is,

𝐶0𝐸1(0) 6 𝐸1(𝑡) 6 𝐶1𝐸1(0). (3)

More recently (see [5–7, 9]), these energy estimates have been studied for (2)
with speed 𝜆(𝑡) > 𝜆0 > 0, not bounded from above. By using an hypothesis of
stabilization at 𝑡 = ∞ and 𝒞𝑚 regularity for 𝜆(𝑡), it is possible to enlarge the class
of admissible oscillations for 𝜆(𝑡). In [7] it is derived the estimate

𝐶0(𝑢0, 𝑢1) 6
1

𝜆(𝑡)
𝐸𝜆(𝑡) 6 𝐶1𝐸(0), (4)

where 𝐶0(𝑢0, 𝑢1) is a positive constant that depends on the initial data, and the
(Klein-Gordon) energy 𝐸(0) is given by

𝐸(0) = ‖𝑢1‖2𝐿2 + ‖𝑢0‖2𝐻1 .

We remark that the 𝐿2 norm of 𝑢0 can not be neglected in (4) if 𝜆(𝑡) is not bounded
from above. We refer the interested reader to [3] and [4] too, where generalized
energy conservation and blow-up effects are proved for 2 by 2 systems and some
(dissipative) influence from the lower order term is considered.
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If one is interested in the energy behavior for the wave equation with time-
dependent dissipation

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑏(𝑡)𝑢𝑡 = 0, (5)

with 𝑏(𝑡) positive, then one has to explore properties of the dissipative term 𝑏(𝑡).
In [11], J. Wirth derived 𝐿𝑝 − 𝐿𝑞 estimates for the solution if among other things

lim sup𝑡→∞ 𝑡𝑏(𝑡) < 1 ; in particular, he proved that 𝐸1(𝑡) 6 𝐶𝐸(0) exp(−
𝑡∫︀
0

𝑏(𝜏)𝑑𝜏),

and he called this a non-effective dissipation. Theorem 1 largely extends this energy
estimate to a much more complex situation with a unified approach.

In this paper we describe new effects coming from the interaction between the
wave speed 𝜆(𝑡) and the term 𝑏(𝑡) in a very general setting. In particular, the
function 𝜆(𝑡) is not necessarily increasing and 𝑏(𝑡) is not necessarily positive; nev-
ertheless 𝜆′(𝑡) + 𝑏(𝑡)𝜆(𝑡) is positive. We also introduce some conditions to control
the influence coming from the drift term 𝑑(𝑡)𝑢𝑥.

2 Hyperbolic-like dissipation for second order equations

We consider (1) and we assume 𝜆 ∈ 𝒞2, positive, 𝑏 ∈ 𝒞1 real-valued, and 𝑑 ∈ 𝒞1,
may be complex-valued, in general. We assume that 𝜆(0) = 1 and 𝜆(𝑡) > 0.

Hypothesis 1. We define Λ(𝑡) = 1 +
𝑡∫︀
0

𝜆(𝜏)𝑑𝜏 , and we assume that Λ(𝑡) re-

mains not bounded as 𝑡→ ∞, that is, 𝜆 ̸∈ 𝐿1. We assume that the coefficients have
very slow oscillations, that is,

|𝜆(𝑘)(𝑡)|
𝜆(𝑡)

+ |𝑏(𝑘−1)(𝑡)|+ |𝑑(𝑘−1)(𝑡)| 6 𝐶 (𝜂(𝑡))𝑘 for 𝑘 = 1, 2, (6)

where the function 𝜂(𝑡):=𝜆(𝑡)/Λ(𝑡) will play a fundamental role in the following.

In order to consider the real part of 𝑑(𝑡) as a weak perturbation which does not
influence the energy behavior, we assume the following.

Hypothesis 2. We assume that the real part of 𝑑(𝑡) satisfies the following:

−𝐶 6
𝑡∫︁

0

ℜ𝑑(𝜏) 𝑑𝜏 6 𝐶. (7)
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Definition 1. We put

𝛾(𝑡):= exp
(︁
−

𝑡∫︁
0

𝑏(𝜏)𝑑𝜏
)︁
, Γ(𝑡):=1 +

𝑡∫︁
0

𝛾(𝜏) 𝑑𝜏.

If 𝛾 ∈ 𝐿1, that is, Γ(𝑡) remains bounded as 𝑡→ ∞, we define Γ♯(𝑠):=
∞∫︀
𝑠
𝛾(𝜏) 𝑑𝜏 .

Hypothesis 3. We assume that 𝜆(𝑡) and 𝑏(𝑡) satisfy the following conditions:

𝜆(𝑡)

𝛾(𝑡)
is increasing, i.e. 𝜆′(𝑡) + 𝑏(𝑡)𝜆(𝑡) > 0, (8)

𝜂(𝑡)Γ(𝑡)√︀
𝜆(𝑡)𝛾(𝑡)

6 𝐶. (9)

In particular, if 𝛾 ∈ 𝐿1, then the conditions (8)-(9) hold if

0 6 𝜆′(𝑡) + 𝑏(𝑡)𝜆(𝑡) 6 2𝜆(𝑡)𝜂(𝑡) . (10)

If the equation in (1) satisfies (8) and (9), we say that it is hyperbolic-like dissi-
pative.

Remark 1. We remark that (9) is related to the request to have an estimate
of the local energy for small frequencies (i.e. in the pseudo-differential zone, see
the proof of Theorem 1) which is not worst than the estimate obtained for large
frequencies (i.e. in the hyperbolic zone). If we relax (9) we can still prove some
dissipative effect for the energy, but it will be not hyperbolic-like.

Hypothesis 4. We assume that there exist two functions 𝑔(𝑡) and ℎ(𝑠) such
that

𝑡∫︁
𝑠

𝛾(𝜏) 𝑑𝜏 6 𝑔(𝑡)ℎ(𝑠),
𝜂(𝑡)𝑔(𝑡)√︀
𝜆(𝑡)𝛾(𝑡)

6 𝐶, (11)

where 𝑔(𝑡) > Γ(𝑡) is increasing, 𝑔(0) = 1 and ℎ(𝑠) is decreasing, 𝑔(𝑡)ℎ(𝑡) 6 Γ(𝑡),
and

𝑑(𝑡) 6 𝐶
𝛾(𝑡)

𝑔(𝑡)ℎ(𝑡)
. (12)

Remark 2. If 𝛾 ̸∈ 𝐿1, in most of the cases it is sufficient to take 𝑔(𝑡) = Γ(𝑡)
and ℎ(𝑠) = 1 in (11), whereas if 𝛾 ∈ 𝐿1, then we can take 𝑔(𝑡) = 1 and ℎ(𝑠) = Γ♯(𝑠)
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in (11). Indeed (11) is satisfied thanks to (9). Nevertheless, in some cases it may
be convenient to choose different 𝑔(𝑡) and ℎ(𝑠) such that 𝑔(𝑡)ℎ(𝑡) ≪ Γ(𝑡) for large 𝑡
(see Example 2), so that condition (12) is less restrictive.

Theorem 1. We assume the Hypotheses 1 to 4. Then the following a priori
energy estimate holds:

𝐸𝜆(𝑡) 6 𝐶𝜆(𝑡)𝛾(𝑡)𝐸(0). (13)

In particular, from Theorem 1 it follows that ‖𝑢𝑥(𝑡, ·)‖𝐿2 is bounded from above
by a decreasing function since

‖𝑢𝑥(𝑡, ·)‖2𝐿2 6 𝐶𝐸(0)𝛾(𝑡)/𝜆(𝑡).

3 Examples

For the sake of brevity, we present only a few examples.

Example 1. It is easy to prove that Γ(𝑡) 6 𝐶Λ(𝑡). Therefore it makes sense
to consider which dissipative effect we can expect if Γ(𝑡) = 1 + (Λ𝜅(𝑡)− 1) /𝜅 for
some 𝜅 ∈ (0, 1]. It follows 𝛾(𝑡) = Γ′(𝑡) = 𝜆(𝑡)/Λ1−𝜅(𝑡) and

𝑏(𝑡) = −(log 𝛾(𝑡))′ = ((1− 𝜅) log Λ− log 𝜆)′ = (1− 𝜅)
𝜆(𝑡)

Λ(𝑡)
− 𝜆′(𝑡)

𝜆(𝑡)
.

Condition (8) holds true since

𝜆′(𝑡) + 𝜆(𝑡)𝑏(𝑡) = (1− 𝜅)𝜆(𝑡)𝜂(𝑡) > 0,

whereas condition (9) holds true since 𝛾/Γ ≈ 𝜆/Λ. If |𝑑(𝑡)| 6 𝐶𝜂(𝑡) as in Hypoth-
esis 1, then (12) trivially holds for (𝑔, ℎ) = (Γ, 1).

Now let Γ♯(𝑡) = (𝜅Λ𝜅(𝑡))−1 for some 𝜅 ∈ [−1, 0). Then 𝛾(𝑡), 𝑏(𝑡) and 𝜆′(𝑡) +
𝜆(𝑡)𝑏(𝑡) are as above. Condition (10) is satisfied since 0 6 1−𝜅 6 2, and if |𝑑(𝑡)| 6
𝐶𝜂(𝑡) as in Hypothesis 1, then (12) trivially holds for (𝑔, ℎ) = (1,Γ♯).

Example 2. Let 𝑏(𝑡) = −𝜂′(𝑡)/𝜂(𝑡). It follows 𝛾(𝑡) = 𝜂(𝑡) and Γ(𝑡) = 1 +
log Λ(𝑡). Therefore, we have

𝜆

𝛾
= Λ,

𝜂√
𝜆

Γ
√
𝛾
=

1 + log Λ√
Λ

,

hence, conditions (8) and (9) hold. Nevertheless, we remark that
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𝛾

Γ
=

𝜆

Λ(1 + log Λ)
̸≈ 𝜆

Λ
.

If we take 𝑔 = Γ and ℎ = 1, then condition (12) on 𝑑(𝑡) is more restrictive
than |𝑑(𝑡)| 6 𝐶𝜂(𝑡) as in Hypothesis 1. Therefore, we fix 𝜖 ∈ (0, 1/2) and we
take 𝑔(𝑡) = Λ𝜖(𝑡) and ℎ(𝑠) = Λ−𝜖(𝑠)/𝜖 in (11). With this choice condition (12)
holds true (see Remark 2).

Examples 1 and 2 are applicable for any 𝜆(𝑡) which satisfies our assumptions.
For the sake of clarity we apply our reasoning to two specific choices of 𝜆(𝑡).

Example 3 (Polynomial growth). Let 𝜆(𝑡) = (1 + 𝑡)𝑝 for some 𝑝 > −1;
then the function Λ(𝑡) has a polynomial growth, i.e. Λ(𝑡) ≈ (1 + 𝑡)𝑝+1. The case of
polynomial growth has many special properties, therefore it is the easiest to manage.
Let 𝑏(𝑡) = 𝜇/(1 + 𝑡), for some 𝜇 ∈ R; we remark that the case 𝑏 ≡ 0 is included.
If 𝜇 = 1 we are, asymptotically speaking, in the case considered in Example 2, i.e,
𝑏(𝑡) ≍ −𝜂′(𝑡)/𝜂(𝑡). Otherwise we can follow Example 1 for 𝜅 = (1 − 𝜇)/(𝑝 + 1).
Therefore, Hypothesis 3 is satisfied if and only if |𝜅| 6 1, that is, −𝑝 6 𝜇 6
𝑝 + 2. Concerning the term 𝑑(𝑡), it is sufficient to assume |𝑑(𝑡)| 6 𝐶/(1 + 𝑡) as in
Hypothesis 1.

Example 4 (Exponential growth). Let 𝜆(𝑡) = 𝑒𝑝𝑡 for some 𝑝 > 0;
then Λ(𝑡) ≈ 𝜆(𝑡). Condition (6) is satisfied if 𝑏, 𝑏′, 𝑑, 𝑑′ are bounded. Let 𝑏 ≡ 𝜇 for
some 𝜇 ̸= 0. We can follow Example 1 for 𝜅 = −𝜇/𝑝. Therefore, Hypothesis 3 is
satisfied if and only if |𝜇| 6 𝑝.

4 Brief sketch of the proof of Theorem 1

We perform the Fourier transform of (1) and we claim that ℰ𝜆(𝑡, 𝜉) 6 𝐶𝜆(𝑡)𝛾(𝑡)ℰ0(𝜉)
uniformly with respect to 𝜉 ∈ R, where

ℰ𝜆(𝑡, 𝜉) = |̂︀𝑢𝑡(𝑡, 𝜉)|2 + |𝜉|2𝜆2(𝑡)|̂︀𝑢(𝑡, 𝜉)|2,
ℰ0(𝜉) = |̂︁𝑢1(𝜉)|2 + (1 + |𝜉|2)|̂︁𝑢0(𝑡, 𝜉)|2.

To prove this claim we divide the extended phase space into the pseudo-differential
zone 𝑍pd(𝑁) and into the hyperbolic zone 𝑍hyp(𝑁), where the separating curve is
given by Λ(𝑡)|𝜉| = 𝑁 for a suitable 𝑁 > 0. In 𝑍hyp(𝑁) we consider the system
for the micro-energy 𝑈 = (𝑖𝜉𝜆(𝑡)𝑏(𝑡)̂︀𝑢, ̂︀𝑢𝑡). We diagonalize its principal part, and
then we apply a refined diagonalization of the lower-order term, which allow us to
reduce the order of the non-diagonal part of the pseudo-differential system. This
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refined diagonalizer is explicitly constructed by using Hypothesis 1, together with
the condition Λ(𝑡)|𝜉| > 𝑁 , which holds in 𝑍hyp(𝑁). Namely, we derive:

𝜕𝑡𝑊 =

(︃
−1 0

0 1

)︃
𝜙(𝑡, 𝜉)𝑊 + 𝑓(𝑡)𝑊 + 𝐽(𝑡, 𝜉)𝑊, (14)

where 𝜙(𝑡, 𝜉) and 𝑓(𝑡) are scalar functions given by

𝜙(𝑡, 𝜉) = 𝑖𝜉𝜆(𝑡)𝑏(𝑡)− 𝑑(𝑡), 𝑓(𝑡) =
1

2

(︂
𝜆′(𝑡)

𝜆(𝑡)
− 𝑏(𝑡)

)︂
,

and the matrix 𝐽(𝑡, 𝜉) is integrable in 𝑍hyp(𝑁). Since 𝜆(𝑡) is real-valued and ℜ𝑑(𝑡)
satisfies Hypothesis 2, the only contribution to the behavior of |𝑊 (𝑡, 𝜉)| is given
by exp

∫︀
𝑓(𝑡) 𝑑𝑡, and we prove our claim in 𝑍hyp(𝑁). In 𝑍pd(𝑁) we introduce the

micro-energy 𝑉 = (𝑖𝜂(𝑡)̂︀𝑢, ̂︀𝑢𝑡), and we set 𝑉 =
√︀
𝜆(𝑡)𝛾(𝑡)̃︀𝑉 . In this way we

derive

𝜕𝑡 ̃︀𝑉 = 𝒜(𝑡, 𝜉)̃︀𝑉 ≡

⎛⎜⎜⎝
𝜂′

𝜂
+
𝑏

2
− 𝜆′

2𝜆
𝑖𝜂

𝑖𝜉2𝜆2 − 𝜉𝜆𝑑

𝜂
− 𝑏
2
− 𝜆′

2𝜆

⎞⎟⎟⎠𝑉 . (15)

To prove our claim in 𝑍pd(𝑁), we have to prove that the fundamental solution
𝐸(𝑡, 𝜉) of (15), which satisfies 𝜕𝑡𝐸 = 𝒜(𝑡, 𝜉)𝐸 with initial condition 𝐸(0, 𝜉) = Id,
remains bounded as 𝑡 → ∞. We put 𝐸 = (𝐸𝑖𝑗)𝑖,𝑗=1,2 and we write down a system
of integral equations. We transform this system into two Volterra-type integral
equations and we derive boundedness of the solution by using integral Gronwall-
like inequalities [3]. The main difficulty arises into get estimates as sharp as possible
of the kernels of these equations. For instance, for 𝐸1𝑗(𝑡, 𝜉) we have

𝐸1𝑗 =
𝜂(𝑡)√︀
𝛾(𝑡)𝜆(𝑡)

𝛿1𝑗 + 𝑖
𝜂(𝑡)(Γ(𝑡)− 1)√︀

𝛾(𝑡)𝜆(𝑡)
𝛿2𝑗+

+
𝑖𝜂(𝑡)√︀
𝛾(𝑡)𝜆(𝑡)

𝑡∫︁
0

𝛾(𝜏)

𝜏∫︁
0

√︃
𝜆(𝜎)

𝛾(𝜎)

𝑖𝜉2𝜆2(𝜎)− 𝜉𝜆(𝜎)𝑑(𝜎)

𝜂(𝜎)
𝐸1𝑗(𝜎, 𝜉)𝑑𝜎𝑑𝜏.

The boundedness of 𝐸(𝑡, 𝜉) then follows from Hypotheses 3 and 4. Once we proved
boundedness of 𝐸(𝑡, 𝜉), that is, our claim in 𝑍pd(𝑁), we conclude the proof by
integrating over 𝜉 and by using Plancherel’s theorem.
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Abstract. In this paper we study some third type boundary value problems for
a general semilinear parabolic equation in divergence form. The existence of a
generalized solution for the considered problem is proved under sufficient conditions
and also the uniqueness of the solution of the considered problem is proved in a
model case.

1 Introduction

Consider the problem

𝜕𝑢

𝜕𝑡
+ 𝐿𝑢+ 𝑔(𝑥, 𝑡, 𝑢) = ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 ≡ Ω× (0, 𝑇 ), (1)

𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω ⊂ R𝑛, 𝑛 > 3, (2)

(︂
𝜕𝑢

𝜕𝜈
+ 𝑘(𝑥, 𝑡)𝑢

)︂⃒⃒⃒⃒
Γ𝑇

= 𝜙(𝑥, 𝑡), Γ𝑇 ≡ 𝜕Ω× [0, 𝑇 ], 𝑇 > 0. (3)

Here Ω is a bounded domain with sufficiently smooth boundary 𝜕Ω; 𝐿 denotes
a second order linear elliptic operator in divergence form:

𝐿𝑢 := −
𝑛∑︁

𝑖,𝑗=1

𝐷𝑖(𝑎𝑖𝑗 (𝑥, 𝑡)𝐷𝑗𝑢) +

𝑛∑︁
𝑖=1

𝑏𝑖 (𝑥, 𝑡)𝐷𝑖𝑢+ 𝑐(𝑥, 𝑡)𝑢,

where 𝑎𝑖𝑗 , 𝑏𝑖 and 𝑐 are given coefficient functions (𝑖, 𝑗 = 1, . . . , 𝑛);
𝑔 : 𝑄𝑇 × R −→ R and 𝑘 : Γ𝑇 −→ R are given functions; ℎ and 𝜙 are given

generalized functions.
Semilinear parabolic equations like (1) have been studied extensively in the

literature by numerous scientists who used various methods (see for example [4, 5,

This research is supported by 110T558-project of TUBITAK.
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7, 9, 11]). A lot of mathematical models from physics, chemistry, and mechanics
correspond to this type of equations. Mostly Dirichlet or Neumann type boundary
value problems are studied, different cases of 𝐿 and 𝑔 have been investigated [2, 9,
10, 14]. Generally differential operator 𝐿 has been taken as Laplace operator [3, 4,
14] and mapping 𝑔 in polynomial forms [10].

In this paper we investigate nonhomogeneous third type boundary value problem
for equation (1) in divergence form, with the mapping 𝑔 in general form. For
the existence of the generalized solution of problem (1)–(3) we obtain sufficient
conditions for 𝐿, 𝑔 and 𝑘. Under these conditions we prove that problem (1)–(3) is
solvable in corresponding spaces by applying a general existence theorem from [11].
Also, in a model case of the mapping 𝑔, we prove the uniqueness of the solution of
the considered problem.

2 Formulation and the Main Conditions

We investigate problem (1)–(3) when ℎ ∈ 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*)+𝐿𝑞(𝑄𝑇 ) ([8]), where

𝑞 > 1 and 𝜙 ∈ 𝐿2(0, 𝑇 ; (𝑊
− 1

2
2 (𝜕Ω)).

We assume the following conditions:

(1) The coefficients 𝑎𝑖𝑗 ∈ 𝐿∞(𝑄𝑇 ), 𝑎𝑖𝑗 = 𝑎𝑗𝑖 is satisfied for all 𝑖, 𝑗 = 1, . . . , 𝑛 and
there exists a constant 𝜗 > 0 such that

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝜉𝑖𝜉𝑗 > 𝜗 |𝜉|2

holds for all 𝜉 ∈ R𝑛 and 𝑎.𝑒.(𝑥, 𝑡) ∈ 𝑄𝑇 .

(2) the function 𝑔 is a Caratheodory function in 𝑄𝑇 × R1 such that there exist a
number 𝛼 > 0 and some functions 𝑔0, 𝑔1 which satisfy the inequality

|𝑔(𝑥, 𝑡, 𝜏)| 6 𝑔1(𝑥, 𝑡) |𝜏 |𝛼 + 𝑔0(𝑥, 𝑡).

(The spaces to which 𝑔0, 𝑔1 belong will be defined later according to 𝛼.)

(3) The function 𝑘 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑛−1(𝜕Ω)).

We define the space 𝑃0 in the following way: P0 ≡ 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω))∩𝐿𝛼+1(𝑄𝑇 )∩

𝑊 1
𝑞 (0, 𝑇 ; (𝑊

1
2 (Ω))

*) ∩ {𝑢 : 𝑢(𝑥, 0) = 0} (𝑞 = 𝑞(𝛼) > 1).

A solution of the considered problem is understood as following:
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Definition 1. A function 𝑢 ∈ 𝑃0 is called a generalized solution of problem
(1)-(3) if it satisfies the equality

−
𝑇∫︁
0

∫︁
Ω

𝑢
𝜕𝑣

𝜕𝑡
𝑑𝑥𝑑𝑡+

∫︁
Ω

𝑢(𝑥, 𝑇 )𝑣(𝑥, 𝑇 )𝑑𝑥+

𝑇∫︁
0

∫︁
Ω

𝑛∑︁
𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥, 𝑡)𝐷𝑗𝑢𝐷𝑖𝑣𝑑𝑥𝑑𝑡+

+

𝑇∫︁
0

∫︁
Ω

𝑛∑︁
𝑖=1

𝑏𝑖 (𝑥, 𝑡)𝐷𝑖𝑢 𝑣𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
Ω

𝑐(𝑥, 𝑡)𝑢𝑣𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
Ω

𝑔(𝑥, 𝑡, 𝑢)𝑣𝑑𝑥𝑑𝑡+

+

𝑇∫︁
0

∫︁
𝜕Ω

𝑘(𝑥, 𝑡)𝑢𝑣𝑑𝑥𝑑𝑡 =

𝑇∫︁
0

∫︁
Ω

ℎ𝑣𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
𝜕Ω

𝜙𝑣𝑑𝑥𝑑𝑡

for all 𝑣 ∈ 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) ∩ 𝐿𝛼+1(𝑄𝑇 ) ∩𝑊 1

2 (0, 𝑇 ;𝐿2(Ω)).
The investigation of problem (1)–(3) is related to the connection between the

spaces 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) and 𝐿𝛼+1(𝑄𝑇 ) according to values of 𝛼 in condition (2).

Depending on this connection we consider the problem in the sub-linear, linear and
super-linear case.

3 Solvability of Problem (1)–(3) in the Super-linear Case

In this section we investigate problem (1)–(3) while 𝛼 > 1. For this case P0 ≡
𝐿2(0, 𝑇 ;𝑊

1
2 (Ω))∩𝐿𝛼+1(𝑄𝑇 )∩𝑊 1

𝛼+1
𝛼

(0, 𝑇 ; (𝑊 1
2 (Ω))

*)∩{𝑢 : 𝑢(𝑥, 0) = 0} . We assume
that the following conditions are satisfied:

(2′) Let condition (2) be fulfilled with functions 𝑔1 > 0, 𝑔0 > 0 such that

𝑔1 ∈ 𝐿∞(𝑄𝑇 ), 𝑔0 ∈ 𝐿𝛼+1
𝛼

(𝑄𝑇 ).

(i) Let the functions 𝑏𝑖 and 𝑐 belong to 𝐿∞(0, 𝑇 ;𝐿𝛼+1
𝛼−1

(Ω)) for all 𝑖 = 1, . . . , 𝑛)

and 𝐿𝛼+1
𝛼−1

(𝑄𝑇 ) respectively.

(ii) There exist some numbers ∼
𝑔1 > 0 and ∼

𝑔0 ∈ R1 such that

𝑔(𝑥, 𝑡, 𝜉)𝜉 >
∼
𝑔1 |𝜉|𝛼+1 − ∼

𝑔0

holds for all 𝜉 ∈ R𝑛.
(iii) Let the function 𝑘 satisfy one of the following relations:

(a) There exists a number 𝑘0 > 0 such that 𝑘(𝑥, 𝑡) > −𝑘0 > −𝜗1
𝑐3

holds for
a.e. (𝑥, 𝑡) ∈ Γ𝑇 ,
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(b) ‖𝑘‖𝐿∞(0,𝑇 ;𝐿𝑛−1(𝜕Ω)) <
𝜗1
𝑐1

,
where 𝜗1 < min{𝜗, ∼𝑔1}. (Here 𝑐1, 𝑐3 are constants of Sobolev’s embedding
inequalities 1[1].)

Theorem 1. Let the conditions (1),(2′),(3) and (i)–(iii) be fulfilled for 𝛼 > 1.
Then the problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ [𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*) +

𝐿𝛼+1
𝛼

(𝑄𝑇 )]× 𝐿2(0, 𝑇 ; (𝑊
− 1

2
2 (𝜕Ω)).

Proof. To apply the existence theorem from [11] to problem (1)–(3) firstly we
define the corresponding mappings

𝑓 := {𝑓1, 𝑓2} : 𝑃0 → 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) + 𝐿𝛼+1
𝛼

(𝑄𝑇 ),

where
𝑓1 := 𝐿+ 𝑔, 𝑓2 :=

𝜕

𝜕𝜈
+ 𝑘(𝑥, 𝑡) (4)

and
𝐴 ≡ 𝐼𝑑 : 𝑃0 → 𝑃0. (5)

We show that the conditions of the existence theorem from [11] are satisfied by
proving the following lemmas.

Lemma 1. The mapping 𝑓 : 𝑃0 → 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) + 𝐿𝛼+1
𝛼

(𝑄𝑇 ) is weakly
continuous under the conditions of Theorem 1.

Lemma 2. The mappings 𝑓 and 𝐴 generate a coercive pair on
𝐿2(0, 𝑇 ;𝑊

1
2 (Ω)) ∩ 𝐿𝛼+1(𝑄𝑇 ) under the conditions of Theorem 1.

Thus, problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ [𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) +

𝐿𝛼+1
𝛼

(𝑄𝑇 )]× 𝐿2(0, 𝑇 ; (𝑊
− 1

2
2 (𝜕Ω)). �

4 Solvability of Problem (1)–(3) in the Linear and Sub-linear
Cases

In this section we investigate problem (1)–(3) while 0 6 𝛼 6 1.For this case P0 ≡
𝐿2(0, 𝑇 ;𝑊

1
2 (Ω)) ∩𝑊 1

2 (0, 𝑇 ; (𝑊
1
2 (Ω))

*) ∩ {𝑢 : 𝑢(𝑥, 0) = 0} .
We assume that the following conditions are satisfied:

(2′′) Let the condition (2) be fulfilled with the nonnegative functions below:

𝑔1 ∈

{︃
𝐿 2

1−𝛼
(0, 𝑇 ;𝐿 2*

2*−𝛼−1
(Ω)), if 0 6 𝛼 < 1,

𝐿∞(0, 𝑇 ;𝐿𝑛
2
(Ω)), if 𝛼 = 1,

𝑔0 ∈ 𝐿2(0, 𝑇 ;𝐿(2*)′(Ω)).

1‖𝑢‖2𝐿 2(𝑛−1)
𝑛−2

(𝜕Ω) 6 c1 ‖𝑢‖2𝑊1
2 (Ω), ‖𝑢‖

2
𝐿2(𝜕Ω) 6 c3 ‖𝑢‖2𝑊1

2 (Ω)
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(Here 2* := 2𝑛
𝑛−2 and (2*)′ := 2*

2*−1 .)

(i′) Let 𝑏𝑖 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑛(Ω)) for all 𝑖 = 1, . . . , 𝑛. For these functions, we define

sup
𝑖

‖𝑏𝑖‖𝐿∞(0,𝑇 ;𝐿𝑛(Ω)) ≡ 𝜎.

(ii′) Let the functions 𝑐 and 𝑘 belong to 𝐿∞(0, 𝑇 ;𝐿𝑛
2
(Ω)) and 𝐿∞(0, 𝑇 ;𝐿𝑛−1(𝜕Ω))

respectively, and satisfy one of the following relations when 0 6 𝛼 < 1 (When
𝛼 = 1, i.e. that contains the linear case, it is allowed to take the function 𝑐−𝑔1
instead of the function 𝑐.):

(a) There exists a number ∼
𝑐 such that 𝑐(𝑥, 𝑡) > ∼

𝑐 > 0 holds for a.e. (𝑥, 𝑡) ∈
𝑄𝑇 and a number 𝜎 satisfies the inequality

𝜎 <
𝜗2
𝑐0
, where𝜗2 := min

{︁
𝜗,

∼
𝑐
}︁
.

In this case the function 𝑘 satisfies one of the following conditions:
(a1) 𝑘(𝑥, 𝑡) > −𝑘0 for a.e. (𝑥, 𝑡) ∈ Γ𝑇 , where 0 < 𝑘0 <

𝜗2 −𝜎𝑐0
𝑐3

,
(a2) ‖𝑘‖𝐿∞(0,𝑇 ;𝐿𝑛−1(𝜕Ω)) <

𝜗2 −𝜎𝑐0
𝑐1

.
(b) There exists a number 𝑘0 such that 𝑘(𝑥, 𝑡) > 𝑘0 > 0 holds for a.e.

(𝑥, 𝑡) ∈ Γ𝑇 and a number 𝜎 satisfies the inequality

𝜎 <
𝜗2𝑐2
𝑐0

where𝜗2 := min {𝜗, 𝑘0} .

In this case the function 𝑐 satisfies one of the following conditions:
(b1) 𝑐(𝑥, 𝑡) > −∼

𝑐 for a.e. (𝑥, 𝑡) ∈ 𝑄𝑇 , where 0 <
∼
𝑐 < 𝜗2𝑐2 − 𝜎𝑐0,

(b2) ‖𝑐‖𝐿∞(0,𝑇 ;𝐿𝑛
2
(Ω)) <

𝜗2𝑐2−𝜎𝑐0
𝑐20

.

(Here, 𝑐0, 𝑐1, 𝑐3 are constants of Sobolev’s embedding inequalities 1 [1] and
𝑐2 comes from the inequality2 [8, 13].)

Theorem 2. Let the conditions (1), (2′′), (3), (i′) and (ii′) be fulfilled for
0 6 𝛼 6 1. Then the problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈
𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*)× 𝐿2(0, 𝑇 ; (𝑊
− 1

2
2 (𝜕Ω)).

Proof. For the proof of Theorem 2. we again apply the existence theorem from
[11] to problem (1)–(3). Here we take the corresponding mappings as in (4)–(5).

1 ‖𝑢‖𝐿 2𝑛
𝑛−2

(Ω) 6 c0‖𝑢‖𝑊1
2 (Ω), ‖𝑢‖2𝐿 2(𝑛−1)

𝑛−2

(𝜕Ω) 6 c1 ‖𝑢‖2𝑊1
2 (Ω), ‖𝑢‖2𝐿2(𝜕Ω) 6 c3 ‖𝑢‖2𝑊1

2 (Ω)

2c2 ‖𝑢‖2𝑊1
2 (Ω) 𝑙𝑒𝑞 ‖𝐷𝑢‖2𝐿2(Ω) + ‖𝑢‖2𝐿2(𝜕Ω)
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We obtain again that the conditions of the existence theorem in [11] are satisfied
from the following lemmas:

Lemma 3. The mapping 𝑓 : 𝑃0 → 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) is weakly continuous
under the conditions of Theorem 2.

Lemma 4. The mappings 𝑓 and 𝐴 generate a coercive pair on 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω))

under the conditions of Theorem 2.
Thus, problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ 𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*) ×
𝐿2(0, 𝑇 ; (𝑊

− 1
2

2 (𝜕Ω)). �

5 Uniqueness of the Solution of Problem (1)–(3) in a Model Case

We investigate the uniqueness of solutions of problem (1)–(3) in a model case of
the mapping 𝑔 in P0 ≡ 𝐿2(0, 𝑇 ;𝑊

1
2 (Ω)) ∩ 𝐿𝜌+1(𝑄𝑇 ) ∩ 𝑊 1

𝜌+1
𝜌

(0, 𝑇 ; (𝑊 1
2 (Ω))

*) ∩

{𝑢 : 𝑢(𝑥, 0) = 0} . We assume that the following conditions are satisfied:

(i0) Let 𝑏𝑖 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑛(Ω)) for all 𝑖 = 1, . . . , 𝑛. For these functions we define

sup
𝑖

‖𝑏𝑖‖𝐿∞(0,𝑇 ;𝐿𝑛(Ω)) ≡ 𝜎.

(ii0) Let the functions 𝑐 and 𝑘 belong to 𝐿∞(0, 𝑇 ;𝐿𝑛
2
(Ω)) and 𝐿∞(0, 𝑇 ;𝐿𝑛−1(𝜕Ω))

respectively, and satisfy one of the following conditions:
(a) There exists a number ∼

𝑐 such that 𝑐(𝑥, 𝑡) > ∼
𝑐 > 0 holds for a.e. (𝑥, 𝑡) ∈

𝑄𝑇 and a number 𝜎 satisfies the inequality

𝜎 <
𝜗2
𝑐0
, where𝜗2 := min

{︁
𝜗,

∼
𝑐
}︁
.

In this case the function 𝑘 satisfies one of the following conditions:
(a1) 𝑘(𝑥, 𝑡) > −𝑘0 for a.e. (𝑥, 𝑡) ∈ Γ𝑇 , where 0 < 𝑘0 <

𝜗2 −𝜎𝑐0
𝑐3

,
(a2) ‖𝑘‖𝐿∞(0,𝑇 ;𝐿𝑛−1(𝜕Ω)) <

𝜗2 −𝜎𝑐0
𝑐1

.
(b) There exists a number 𝑘0 such that 𝑘(𝑥, 𝑡) > 𝑘0 > 0 holds for a.e.

(𝑥, 𝑡) ∈ Γ𝑇 and a number 𝜎 satisfies the inequality

𝜎 <
𝜗2𝑐2
𝑐0

, where𝜗2 := min {𝜗, 𝑘0} .

In this case the function 𝑐 satisfies one of the following conditions:
(b1) 𝑐(𝑥, 𝑡) > −∼

𝑐 for a.e. (𝑥, 𝑡) ∈ 𝑄𝑇 , where 0 <
∼
𝑐 < 𝜗2𝑐2 − 𝜎𝑐0,

(b2) ‖𝑐‖𝐿∞(0,𝑇 ;𝐿𝑛
2
(Ω)) <

𝜗2𝑐2−𝜎𝑐0
𝑐20

.
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Theorem 3. Let the mapping 𝑔 in problem (1)–(3) be defined as

𝑔 (𝑥, 𝑡, 𝜏) = 𝑑(𝑥, 𝑡) |𝜏 |𝜌−1 𝜏,

where 𝜌 > 0, 𝑑(𝑥, 𝑡) > 0 for a.e. (𝑥, 𝑡) ∈ 𝑄𝑇 and

𝑑 ∈

⎧⎪⎨⎪⎩
𝐿 2

1−𝜌
(0, 𝑇 ;𝐿 2*

2*−𝜌−1
(Ω)), if 0 6 𝜌 < 1,

𝐿∞(0, 𝑇 ;𝐿𝑛
2
(Ω)), if 𝜌 = 1,

𝐿∞(𝑄𝑇 ), if 𝜌 > 1.

Let additionally the conditions (1), (3), (i0) and (ii0) be fulfilled. Then the solution
of problem (1)–(3) in 𝑃0 is unique if it exists.

For the proof of Theorem 3 we use a well-known method. We assume that
problem (1)–(3) has two different solutions and after making necessary operations
we obtain a contradiction.
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Abstract. In this paper we study the boundary control, produced the third bound-
ary condition at the left end of a string with fixed right. Optimality criterion is
established based on the minimization of the integral of a linear combination of the
control and its primitive, built in an arbitrary integer power 𝑝 > 1. In this paper,
optimal control is presented in the form of a well-established solutions Volterra
integral equation of convolution type.

1 Introduction

Consider the vibrations of a string governed by the wave equation

𝑢𝑥𝑥(𝑥, 𝑡)− 𝑢𝑡𝑡(𝑥, 𝑡) = 0. (1)

over the time interval 0 < 𝑡 6 𝑇 . It is assumed that the end 𝑥 = 𝑙 is fixed,
while the other end 𝑥 = 0 is controlled by applying the third boundary condition
𝑢𝑥(0, 𝑡)−ℎ𝑢(0, 𝑡) = 𝜇(𝑡). In an arbitrary time 𝑇 that is a multiple of 4𝑙, the vibration
process transfers the string from the arbitrarily given initial state

{𝑢(𝑥, 0) = 𝜙(𝑥); 𝑢𝑡(𝑥, 0) = 𝜓(𝑥)} (2)

to the arbitrarily given terminal state{︁
𝑢(𝑥, 𝑇 ) = ̂︀𝜙(𝑥); 𝑢𝑡(𝑥, 𝑇 ) = ̂︀𝜓(𝑥)}︁ . (3)

The consideration is performed in terms of a weak solution to wave equation
(1) from the class ̂︁𝑊 1

𝑝 (Q𝑇 ), where 𝑄𝑇 is the rectangle [0 6 𝑥 6 𝑙] × [0 6 𝑡 6 𝑇 ].
This class was first introduced by V.Il’in in [1]. It is defined as the set of continuous
functions 𝑢(𝑥, 𝑡) in 𝑄𝑇 with generalized partial derivatives 𝑢𝑥(𝑥, 𝑡), 𝑢𝑡(𝑥, 𝑡), that
belong not only to the class 𝐿𝑝(𝑄𝑇 ), but also to 𝐿𝑝[0, 𝑙] for all 𝑡 ∈ [0, 𝑇 ] and to
𝐿𝑝[0, 𝑇 ] for all 𝑥 ∈ [0, 𝑙].

This work was supported by the program MK-6025.2010.1.
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The definition of ̂︁𝑊 1
𝑝 (Q𝑇 ) implies the membership conditions

𝑢(𝑥, 0) = 𝜙(𝑥) ∈𝑊 1
𝑝 [0, 𝑙], 𝑢𝑡(𝑥, 0) = 𝜓(𝑥) ∈ 𝐿𝑝[0, 𝑙];

𝑢(𝑥, 𝑇 ) = ̂︀𝜙(𝑥) ∈𝑊 1
𝑝 [0, 𝑙], 𝑢𝑡(𝑥, 𝑇 ) = ̂︀𝜓(𝑥) ∈ 𝐿𝑝[0, 𝑙];

𝜇(𝑡) ∈ 𝐿𝑝[0, 𝑇 ].

(4)

The fixed end conditions at 𝑥 = 𝑙 are

𝜙(𝑙) = 0, ̂︀𝜙(𝑙) = 0. (5)

2 Mixed problem

Before stating further results, we consider the following mixed problem for the wave
equation with initial and boundary conditions:

𝑢𝑥𝑥(𝑥, 𝑡)− 𝑢𝑡𝑡(𝑥, 𝑡) = 0, (6)
𝑢(𝑥, 0) = 𝜙(𝑥), 𝑢𝑡(𝑥, 0) = 𝜓(𝑥), (7)

𝑢𝑥(0, 𝑡)− ℎ · 𝑢(0, 𝑡) = 𝜇(𝑡), 𝑢(𝑙, 𝑡) = 0, (8)

where 𝜙(𝑥), 𝜓(𝑥) and 𝜇(𝑡) belong to classes (4) and obey conditions (5).
Definition 1. The weak solution to the mixed problem in the class ̂︁𝑊 1

𝑝 (Q𝑇 ) is
a function 𝑢(𝑥, 𝑡) ∈ ̂︁𝑊 1

𝑝 (Q𝑇 ), satisfying the integral identity

𝑙∫︁
0

𝑇∫︁
0

𝑢(𝑥, 𝑡)[Φ𝑡𝑡(𝑥, 𝑡)− Φ𝑥𝑥(𝑥, 𝑡)]𝑑𝑥𝑑𝑡+

𝑇∫︁
0

𝜇(𝑡)Φ(0, 𝑡)𝑑𝑡+

+

𝑙∫︁
0

[𝜙(𝑥)Φ𝑡(𝑥, 0)− 𝜓(𝑥)Φ(𝑥, 0)] 𝑑𝑥 = 0, (9)

where Φ(𝑥, 𝑡) is an arbitrary function from 𝐶2(Q𝑇 ), satisfying the conditions:
Φ𝑥(0, 𝑡)− ℎΦ(0, 𝑡) ≡ 0, Φ(𝑙, 𝑡) ≡ 0 for 0 6 𝑡 6 𝑇 and Φ(𝑥, 𝑇 ) ≡ 0,Φ𝑡(𝑥, 𝑇 ) ≡ 0
for 0 6 𝑥 6 𝑙.

The assertion below follows from [2] Proposition 1. For every 𝑇 > 0, the
mixed problem has a unique weak solution from the class ̂︁𝑊 1

𝑝 (Q𝑇 ).
Definition 2. The solution to the corresponding boundary control problem is a

function 𝜇(𝑡) ∈ 𝐿𝑝[0, 𝑇 ] such that the weak solution 𝑢(𝑥, 𝑡) ∈ ̂︁𝑊 1
𝑝 (Q𝑇 ) to mixed

problem (6) - (8) satisfies terminal conditions (3).
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Consider this problem when 𝑇 = 4𝑙(𝑛 + 1), 𝑛 = 0, 1, 2, . . .. For 𝑇 > 2𝑙, the
boundary control problem has infinitely many solutions. Therefore, the problem
arises of finding an optimal solution among them. The optimality of this boundary
control is achieved by minimizing the 𝑝th power of the integral of a linear combi-
nation of the control itself and its primitive, where 𝑝 > 1 is an arbitrary integer.
The result is a generalization of the control problem for a force at the string’s left
end with its right end being fixed (i.e., at ℎ = 0, 𝑝 = 2), which was investigated in
detail in [3].

3 Optimization

To formulate the optimization problem, we define the function

H𝑚(𝜏) =
{︁
𝑒−ℎ𝜏 ·

[︁
L1
2𝑛−𝑚+1(2ℎ𝜏) + L1

2𝑛−𝑚(2ℎ𝜏)
]︁
, 𝑚 = 0, 2𝑛+ 1

}︁
, (10)

where L1
𝑘(2ℎ𝜏) is a Laguerre polynomial, see [4].

Now define function H(𝑡, 𝜏) as

H(𝑡, 𝜏) =
{︀
H𝑚(𝜏), for 2𝑙𝑚 < 𝑡 6 2𝑙(𝑚+ 1), 𝑚 = 0, 2𝑛+ 1

}︀
. (11)

The task is, among all the boundary controls 𝜇(𝑡) ∈ 𝐿𝑝[0, 𝑇 ], to find a function
that minimizes the integral

𝑇∫︁
0

⃒⃒⃒⃒
⃒⃒𝜇(𝑡)− ℎ ·

𝑡∫︁
0

H(𝑡, 𝑡− 𝜉)𝜇(𝜉) 𝑑𝜉

⃒⃒⃒⃒
⃒⃒
𝑝

𝑑𝑡 (12)

subject to the coupling conditions derived from the arbitrarily given initial and
terminal conditions.

The functions 𝜙(𝑥) and 𝜓(𝑥) are extended from initial conditions (2) and func-
tions ̂︀𝜙(𝑥) and ̂︀𝜓(𝑥) are extended from terminal conditions (3) in an odd manner
with respect to the point 𝑥 = 𝑙 from the interval [0, 𝑙] to [𝑙, 2𝑙]. The fixed point
conditions (5) guarantee that the functions thus extended to [0, 2𝑙] belong to the
classes

𝜙(𝑥), ̂︀𝜙(𝑥) ∈𝑊 1
𝑝 [0, 2𝑙], 𝜓(𝑥), ̂︀𝜓(𝑥) ∈ 𝐿𝑝[0, 2𝑙]; (4*)

The assertion below follows [5]
Proposition 2. The weak solution ̂︀𝑢(𝑥, 𝑡) to mixed problem (6)–(8) with zero

initial conditions (7) for 𝑇 6 4𝑙(𝑛+ 1) is given by the identity
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̂︀𝑢(𝑥, 𝑡) = −
2𝑛+1∑︁
𝑘=0

(−1)𝑘
𝑡−𝑥−2𝑘𝑙∫︁

0

𝜇(𝜉)𝑑𝜉 −
2𝑛+2∑︁
𝑘=1

(−1)𝑘
𝑡+𝑥−2𝑘𝑙∫︁

0

𝜇(𝜉)𝑑𝜉 + ℎ

2𝑛+1∑︁
𝑘=0

(−1)𝑘×

×
𝑡∫︁

0

𝑒−ℎ𝜏L1
𝑘(2ℎ𝜏)

[︁ 𝑡−2𝑘𝑙−𝑥−𝜏∫︁
0

𝜇(𝜉)𝑑𝜉 −
𝑡−2𝑙(𝑘+1)+𝑥−𝜏∫︁

0

𝜇(𝜉)𝑑𝜉

𝑡−2𝑙(𝑘+1)−𝑥−𝜏∫︁
0

−

− 𝜇(𝜉)𝑑𝜉

𝑡−2𝑙(𝑘+2)+𝑥−𝜏∫︁
0

+𝜇(𝜉)𝑑𝜉
]︁
𝑑𝜏, (13)

where 𝜇(𝑡) denotes the function that equals 𝜇(𝑡) for 𝑡 > 0 and vanishes for 𝑡 < 0.
For brevity, we introduce the notations

𝜇𝑚(𝑥) = 𝜇(𝑥+ 2𝑙𝑚), 𝑚 = 0, 1, 2, . . . ; l 1
𝑘(2ℎ𝜏) = 𝑒−ℎ𝜏 · L1

𝑘(2ℎ𝜏).

Applying the technique proposed in [6] and identity (13), we find the coupling
condition to be considered together with integral (12):

−
2𝑛+1∑︁
𝑚=0

(−1)𝑚 · 𝜇𝑚(𝑥)+

+ ℎ

2𝑛+1∑︁
𝑚=0

(−1)𝑚
2𝑙𝑚+𝑥∫︁
0

[︀
l 1
2𝑛−𝑚+1(2ℎ𝜏) + l 1

2𝑛−𝑚(2ℎ𝜏)
]︀
· 𝜇𝑚(𝑥− 𝜏)𝑑𝜏 = D(𝑥),

where

D(𝑥) =
1

2

[︁̂︀𝜙′(𝑥) + ̂︀𝜓(𝑥)]︁− ̃︀A(𝑥) + ℎ ·
𝑥∫︁

0

[︀
l 1
2𝑛+1(2ℎ𝜏) + l 1

2𝑛(2ℎ𝜏)
]︀
· ̃︀A(𝑥− 𝜏)𝑑𝜏,

̃︀A(𝑥) =
1

2
·

⎧⎨⎩𝜙′(𝑥) + 𝜓(𝑥)− ℎ ·

⎡⎣𝜙(𝑥) + 𝜙(0) +

𝑥∫︁
0

𝜓(𝜉) 𝑑𝜉

⎤⎦⎫⎬⎭
(14)

Note that this condition is necessary and sufficient for function 𝜇 to be a solution
of the considered boundary control problem.
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By using relation (10), this condition can be rewritten as

2𝑛+1∑︁
𝑚=0

(−1)𝑚 ·

⎧⎨⎩𝜇𝑚(𝑥)− ℎ ·
2𝑙𝑚+𝑥∫︁
0

H𝑚(𝜏) · 𝜇𝑚(𝑥− 𝜏)𝑑𝜏

⎫⎬⎭ = −D(𝑥). (15)

The substitution {𝜏 = 𝑡− 𝜉} reduces integral (12) to the form

𝑇∫︁
0

⃒⃒⃒⃒
⃒⃒𝜇(𝑡)− ℎ ·

𝑡∫︁
0

H(𝑡, 𝜏)𝜇(𝑡− 𝜏) 𝑑𝜏

⃒⃒⃒⃒
⃒⃒
𝑝

𝑑𝑡. (16)

For the time interval 𝑇 = 4𝑙(𝑛+ 1), this integral can be written as

2𝑙∫︁
0

2𝑛+1∑︁
𝑚=0

⃒⃒⃒⃒
⃒⃒(−1)𝑚 ·

⎧⎨⎩𝜇𝑚(𝑥)− ℎ ·
2𝑙𝑚+𝑥∫︁
0

H𝑚(𝜏)𝜇𝑚(𝑥− 𝜏) 𝑑𝜏

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒
𝑝

𝑑𝑥, (17)

where the variable 𝑡 was replaced by 𝑥.

Thus, the optimization problem is reduced to finding the minimum of integral
(12) with the coupling conditions given by (14) and (15). The lemma proved in
[6] reduces the minimization of the integral in sum (17) to finding the pointwise
minimum of the sum

2𝑛+1∑︁
𝑚=0

⃒⃒⃒⃒
⃒⃒(−1)𝑚 ·

⎧⎨⎩𝜇𝑚(𝑥)− ℎ

2𝑙𝑚+𝑥∫︁
0

H𝑚(𝜏)𝜇𝑚(𝑥− 𝜏) 𝑑𝜏

⎫⎬⎭
⃒⃒⃒⃒
⃒⃒
𝑝

. (18)

This minimum can be found by the Lagrange method. Without going into
technical details, the result can be described as follows. For all 𝑝 > 1, the desired
solution 𝜇(𝑥) to problem (14), (15), (18) on each interval is found by solving the
integral equation

𝜇𝑚(𝑥)− ℎ

2𝑙𝑚+𝑥∫︁
0

H𝑚(𝜏)𝜇𝑚(𝑥− 𝜏) 𝑑𝜏 =
(−1)𝑚+1 D(𝑥)

2𝑛+ 2
, 0 6 𝑥 6 2𝑙; 𝑚 = 0, 2𝑛+ 1.

For all 𝑚 = 0, 1, . . . , 2𝑛 + 1, the number 2𝑙𝑚 + 𝑥 is redenoted by 𝑦 and the
substitution 𝑦 − 𝜏 = 𝜉 is made in the integrand. Moreover, the result is reduced
to the solution to the convolution-type Volterra integral equation the of the second
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kind

𝜇(𝑦)− ℎ

𝑦∫︁
0

H𝑚(𝑦 − 𝜉)𝜇(𝜉)𝑑𝜉 =
(−1)𝑚+1D(𝑦 − 2𝑙𝑚)

2𝑛+ 2
,

for 2𝑙𝑚 6 𝑦 6 2𝑙(𝑚+ 1); 𝑚 = 0, 2𝑛+ 1, (19)

where the kernel H𝑚(𝑦 − 𝜉) is given by (10).

Such equations are studied using the Laplace transform ̃︀F(𝑧) = ∞∫︀
0

𝑒−𝑧𝑡F(𝑡) 𝑑𝑡,

since, under certain constraints associated with its applicability, this operator brings
the convolution to an ordinary product. Applying direct and inverse Laplace trans-
form to the equation (19) we can write the solution of this equation, the function
𝜇(𝑦) in the form of

𝜇(𝑦) =
(−1)𝑚+1 D(𝑦 − 2𝑙𝑚)

2𝑛+ 2
+ ℎ

𝑦∫︁
0

R𝑚(𝑦 − 𝑡)
(−1)𝑚+1 D(𝑡− 2𝑙𝑚)

2𝑛+ 2
𝑑𝑡, (20)

where

R𝑚(𝑦 − 𝑡) =
2𝑛−𝑚+2∑︁
𝑖=0

ℎ𝑖−1(𝑦 − 𝑡)𝑖−1

(︃
2𝑛−𝑚+ 2

𝑖

)︃
1

F̃1

(︀
2𝑛−𝑚+ 1; 𝑖; ℎ(𝑦 − 𝑡)

)︀
,

1F̃1(𝑎; 𝑐; 𝑧) — Kummer confluent hypergeometric function, see. [7].
Remark: Since 𝜇(𝑦) is defined on the finite interval [2𝑙𝑚, 2𝑙(𝑚 + 1)], it can be

extended by zero outside this interval. Thus, these conditions can be assumed to
hold. Expressions (14) and (19) imply the following estimate for integral (12):

𝑇∫︁
0

⃒⃒⃒⃒
⃒⃒𝜇(𝑡)− ℎ ·

𝑡∫︁
0

H(𝑡, 𝑡− 𝜉)𝜇(𝜉) 𝑑𝜉

⃒⃒⃒⃒
⃒⃒
𝑝

𝑑𝑡 = 𝑂

(︂
1

𝑇 𝑝−1

)︂
, (21)

where the constant limiting the growth of the 𝑂 - terms depends only on the norms
of 𝜙(𝑥), 𝜓(𝑥), ̂︀𝜙(𝑥) and ̂︀𝜓(𝑥), in classes (4). Estimate (21) shows that integral (12)
tends to zero as 𝑇 → ∞ for any 𝑝 > 1. Therefore, choosing a sufficiently long time
interval 𝑇 , we can avoid the resonance of the process.

To conclude, we analyze the uniqueness of the optimal solution to the boundary
control problem. Since the integral is linear, using the Minkowski inequality and
an argument similar to that used in [6], we can prove that integral (12) for 𝑝 > 1
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has its minimum at a unique function 𝜇(𝑡). And for 𝑝 = 1 we get infinitely many
solutions.
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Abstract. In this article we investigate mixed problem with Robin boundary
condition for a Yamabe type Parabolic Equation. We show that there exists a
generalized solution of the considered problem under more general conditions. We
also show the uniqueness of the solution of the considered problem in a special case.

1 Introduction

We consider the problem;

𝜕𝑢

𝜕𝑡
−Δ𝑢+ 𝑎(𝑥, 𝑡) |𝑢|𝜌 𝑢− 𝑏(𝑥, 𝑡) |𝑢|𝜈 𝑢 = ℎ(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄𝑇 (1)

(︂
𝜕𝑢

𝜕𝜂
+ 𝑘(𝑥′, 𝑡)𝑢

)︂⃒⃒⃒⃒
Σ𝑇

= 𝜙(𝑥′, 𝑡), (𝑥′, 𝑡) ∈ Σ𝑇 (2)

𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω (3)

Where Ω ⊂ R𝑛, 𝑛 > 3, is a bounded domain with sufficiently smooth boundary
𝜕Ω; 𝜌, 𝜈 > −1 are given some numbers; 𝑄𝑇 = Ω × (0, 𝑇 ), Σ𝑇 = 𝜕Ω × [0, 𝑇 ]; Δ is
the 𝑛 dimensional Laplace operator; 𝑎 : 𝑄𝑇 → R1, 𝑏 : 𝑄𝑇 → R1 and 𝑘 : Σ𝑇 → R1

are given functions; In general ℎ and 𝜙 are given generalized functions.
The elliptic part of equation (1) is so-called “Yamabe type equation” when it’s

homogenous and 𝑎(𝑥, 𝑡) = 1, 𝑏(𝑥, 𝑡) = 1, 𝜌 = 0, 𝜈 = 4
𝑛−2 (see [2, 10]). Hence,

equation (1) is the so-called “Yamabe type parabolic equation”. This semilinear
parabolic equation has been studied extensively in homogeneous form (see [3, 5-8,
12, 15]) for 𝑎(𝑥, 𝑡) = 0, 𝑏(𝑥, 𝑡) = 1 and various restriction on 𝜈. In [4], the existence
of global solutions of homogeneous form of equation (1) when 𝑎(𝑥, 𝑡) = 0, 𝑏(𝑥, 𝑡) =
1, 𝜈 > 2

𝑛−2 with nonhomogeneous Dirichlet boundary condition (also for Neumann
boundary condition) was proved in a domain Ω which has special conditions on

This research is supported by 110T558-project of TUBITAK..
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boundary 𝜕Ω. In [11], global nonnegative weak solutions of Cauchy problem for
homogeneous form of equation (1) when 𝑎(𝑥, 𝑡) = 0, 𝑏(𝑥, 𝑡) = 1 was researched. In
[9], global positive solutions of homogenous form of (1) when 𝑎(𝑥, 𝑡) = 0, 𝑏(𝑥, 𝑡) = 1,
𝜈 = 𝑝−1 for special cases of 𝑝 with homogenous Dirichlet condition was investigated.

In this paper, we investigate mixed problem with Robin boundary condition for
a Yamabe type parabolic equation. We investigate the problem (1)–(3) in sublinear,
linear and super linear cases, by depending on nonlinear part. For the existence of
generalized solution of problem (1)–(3) and for the uniqueness of generalized solu-
tion of the problem in a special case, we obtained sufficient conditions for functions
𝑎, 𝑏 and 𝑘 and relations between 𝜌 and 𝜈. And under these conditions we showed
the existence of generalized solution of problem (1)–(3) and the uniqueness of the
solution in corresponding spaces, by applying a general existence theorem from [13].

2 Formulation of Problem (1)–(3) and Main Conditions

We shall assume ℎ ∈ 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) + 𝐿 𝜌+2
𝜌+1

(𝑄𝑇 ) and 𝜙 ∈ 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω)).

We assume that the following conditions are satisfied;
(i) 𝑎 and 𝑏 are nonnegative functions such that 𝑎 ∈ 𝐿𝑝1(0, 𝑇 ;𝐿𝑝2(Ω)), 𝑏 ∈

𝐿𝑟1(0, 𝑇 ;𝐿𝑟2(Ω)) for some numbers 𝑝1, 𝑟1, 𝑝2, 𝑟2 > 1 which will be defined
later.

(ii) 𝑘 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑛−1 (𝜕Ω))

We introduce following space; 𝑃0 := 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) ∩ 𝐿𝜌+2(𝑄𝑇 ) ∩

𝑊 1
𝛼(0, 𝑇 ; (𝑊

1
2 (Ω))

*) ∩ {𝑢 : 𝑢(𝑥, 0) = 0}, (𝛼 = 𝛼(𝜌) > 1)
We will understand the solution of the considered problem as the following sense:

Definition 1. A function 𝑢 ∈ 𝑃0 is called the generalized solution of problem
(1)–(3) if it satisfies the equality;

−
𝑇∫︁
0

∫︁
Ω

𝑢
𝜕𝑣

𝜕𝑡
𝑑𝑥𝑑𝑡+

∫︁
Ω

𝑢(𝑥, 𝑇 )𝑣(𝑥, 𝑇 )𝑑𝑥𝑑𝑡+

+

𝑇∫︁
0

∫︁
Ω

𝐷𝑢.𝐷𝑣𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
Ω

(𝑎(𝑥, 𝑡) |𝑢|𝜌 𝑢− 𝑏(𝑥, 𝑡) |𝑢|𝜈 𝑢) 𝑣𝑑𝑥𝑑𝑡+

+

𝑇∫︁
0

∫︁
𝜕Ω

𝑘(𝑥′, 𝑡)𝑢𝑣𝑑𝑥′𝑑𝑡 =

𝑇∫︁
0

∫︁
Ω

ℎ𝑣𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
𝜕Ω

𝜙𝑣𝑑𝑥′𝑑𝑡
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for all 𝑣 ∈𝑊 1
2 (0, 𝑇 ;𝐿2(Ω)) ∩ 𝐿2(0, 𝑇 ;𝑊

1
2 (Ω)) ∩ 𝐿𝜌+2(𝑄𝑇 ).

We’ll consider the problem in three different sections: sublinear, linear, super
linear cases. This division will be done according to nonlinear part of the problem.

3 Existence of the Solution of Problem (1)–(3) in Subliner Case

Let −1 < 𝜌 < 0, −1 < 𝜈 6 0 or −1 < 𝜌 6 0, −1 < 𝜈 < 0. Then, 𝑃0 ≡
𝐿2(0, 𝑇 ;𝑊

1
2 (Ω))∩𝑊 1

2 (0, 𝑇 ; (𝑊
1
2 (Ω))

*)∩ {𝑢 : 𝑢(𝑥, 0) = 0} since 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) ⊂

𝐿𝜌+2(𝑄𝑇 ).
In this case, condition (i) is denoted as (i′) with following parameters 𝑝1, 𝑟1,

𝑝2, 𝑟2

𝑝1 :=

⎧⎨⎩
2

|𝜌|
, if − 1 < 𝜌 < 0

∞, if 𝜌 = 0
𝑝2 :=

⎧⎪⎨⎪⎩
2𝑛

𝜌(2− 𝑛) + 4
, if − 1 < 𝜌 < 0

𝑛

2
, if 𝜌 = 0

𝑟1 :=

⎧⎨⎩
2

|𝜈|
, if − 1 < 𝜈 < 0

∞, if 𝜈 = 0
𝑟2 :=

⎧⎪⎨⎪⎩
2𝑛

𝜈(2− 𝑛) + 4
, if − 1 < 𝜈 < 0

𝑛

2
, if 𝜈 = 0

Theorem 1. Let −1 < 𝜌 < 0, −1 < 𝜈 6 0 or −1 < 𝜌 6 0, −1 < 𝜈 < 0 and
conditions (i′), (ii) be fulfilled. Additionally the following conditions are satisfied;
(iii) There exists a number 𝑘0 > 0 such that 𝑘(𝑥′

, 𝑡) > 𝑘0 for almost every (𝑥
′
, 𝑡) ∈

Σ𝑇
(iv) If 𝜈 = 0 then ‖𝑏‖𝐿𝑟1 (0,𝑇 ;𝐿𝑟2 (Ω)) <

1
∼
𝑐𝑐21

min{1, 𝑘0}1

Then problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ [𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*)] ×
𝐿2(0, 𝑇 ;𝑊

− 1
2

2 (𝜕Ω)).

Proof. We want to apply the existence Theorem from [13] to problem (1)–(3),
firstly we define corresponding mappings and spaces for the problem: 𝑓 = {𝑓1, 𝑓2}
such that

𝑓1(𝑢) := −Δ𝑢+ 𝑎(𝑥, 𝑡)|𝑢|𝜌𝑢− 𝑏(𝑥, 𝑡)|𝑢|𝜈𝑢

1Here 𝑐1 is constant of Sobolev’s Imbedding inequality [1]: ‖𝑢‖𝐿 2𝑛
𝑛−2

(Ω) 6 𝑐1 ‖𝑢‖𝑊1
2 (Ω)

∼
𝑐 comes

from this inequality [14]: ‖𝑢‖2𝑊1
2 (Ω) 6

∼
𝑐(‖𝐷𝑢‖2𝐿2(Ω) + ‖𝑢‖2𝐿2(𝜕Ω))
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𝑓2(𝑢) :=
𝜕𝑢

𝜕𝜂
+ 𝑘(𝑥′, 𝑡)𝑢 (4)

𝐴 := 𝐼𝑑

Here, 𝑓 : 𝑃0 → 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*)× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω));𝐴 : 𝑃0 → 𝑃0.

Now, we shall give the following lemmas to see that mappings 𝑓 and 𝐴 satisfy
the conditions of existence theorem from [13]:

Lemma 1. 𝑓 is bounded from 𝑃0 to 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))*), under the conditions

of Theorem 1.

Lemma 2. 𝑓 is weakly continuous from 𝑃0 to 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))*), under the

conditions of Theorem 1.

Lemma 3. 𝑓 and 𝐴 generate a coercive pair on 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)), under the

conditions of Theorem 1.

From these Lemmas, we obtain that all conditions of existence theorem from
[13] are satisfied for the mappings 𝑓 and 𝐴. So we apply existence theorem to
problem (1)–(3) then we see that problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈
𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*)× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω)). �

4 Existence and Uniqueness of the Solution of problem (1)–(3) in
Linear Case

Let 𝜌 = 𝜈 = 0. Then, 𝑃0 ≡ 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) ∩ 𝑊 1

2 (0, 𝑇 ; (𝑊
1
2 (Ω))

*) ∩
{𝑢 : 𝑢(𝑥, 0) = 0} . In this case, condition (i) is denoted as (i ′′) with following pa-
rameters 𝑝1, 𝑟1, 𝑝2, 𝑟2 𝑝1 = 𝑟1 = ∞ and 𝑝2 = 𝑟2 =

𝑛
2

Theorem 2. Let 𝜌 = 𝜈 = 0 and conditions (i′′), (ii) be fulfilled. Additionally
one of the following conditions is satisfied:
(iii) There exists a number 𝑘0 > 0 such that 𝑘(𝑥′, 𝑡) > 𝑘0 for almost every (𝑥′, 𝑡) ∈

Σ𝑇 . In this case, one of the following conditions is satisfied1

(a1) There exists a number 𝑏0 > 0 such that (𝑎(𝑥, 𝑡) − 𝑏(𝑥, 𝑡)) > −𝑏0 for

almost every (𝑥, 𝑡) ∈ 𝑄𝑇 , and 𝑏0 <
min{𝑘0, 1}

∼
𝑐𝑐22

1Here
∼
𝑐 is the constant coming from the inequality, [14]: ‖𝑢‖2𝑊1

2 (Ω) 6
∼
𝑐(‖𝐷𝑢‖2𝐿2(Ω) +

‖𝑢‖2𝐿2(𝜕Ω)) 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants of Sobolev’s Imbedding inequalities, [1]: ‖𝑢‖𝐿 2𝑛
𝑛−2

(Ω) 6

𝑐1 ‖𝑢‖𝑊1
2 (Ω) , ‖𝑢‖𝐿2(Ω) 6 𝑐2‖𝑢‖𝑊1

2 (Ω), ‖𝑢‖𝐿2(𝜕Ω) 6 𝑐3‖𝑢‖𝑊1
2 (Ω), ‖𝑢‖𝐿 2(𝑛−1)

𝑛−2

(𝜕Ω) 6 𝑐4‖𝑢‖𝑊1
2 (Ω)
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(b1) ‖𝑎− 𝑏‖𝐿∞(0,𝑇 ;𝐿𝑛
2
(Ω)) <

min{𝑘0, 1}
∼
𝑐𝑐21

(c1) ‖𝑏‖𝐿∞(0,𝑇 ;𝐿𝑛
2
(Ω)) <

min{1, 𝑘0}
∼
𝑐𝑐21

(iv) There exists a number 𝑑0 > 0 such that (𝑎(𝑥, 𝑡)− 𝑏(𝑥, 𝑡)) > 𝑑0 for almost every
(𝑥, 𝑡) ∈ 𝑄𝑇 . In this case, the function 𝑘 satisfies one of the followings:
(a2) There exists a number 𝑘1 > 0 such that 𝑘(𝑥′, 𝑡) > −𝑘1 for almost every

(𝑥′, 𝑡) ∈ Σ𝑇 , and 𝑘1 <
min{𝑑0, 1}

𝑐23

(b2) ‖𝑘‖𝐿∞(0,𝑇 ;𝐿𝑛−1(𝜕Ω)) <
min{𝑑0, 1}

𝑐24
Then the solution of problem (1)–(3) uniquely exists in 𝑃0 for any (ℎ, 𝜙) ∈
[𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*)]× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω)).

Proof. To prove this theorem we again make use of the existence theorem
from [13]. We define corresponding mappings as (4), (5), (6) such that,

𝑓 = {𝑓1, 𝑓2} : 𝑃0 → 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*)× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω));𝐴 : 𝑃0 → 𝑃0

We obtain that the conditions of the existence theorem [13] are satisfied from the
following lemmas:

Lemma 4. 𝑓 is bounded from 𝑃0 to 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))*), under the conditions

of Theorem 2.

Lemma 5. 𝑓 is weakly continuous from 𝑃0 to 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*), under the
conditions of Theorem 2.

Lemma 6. 𝑓 and 𝐴 generate a coercive pair on 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)), under the

conditions of Theorem 2.

Thus problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) ×
𝐿2(0, 𝑇 ;𝑊

− 1
2

2 (𝜕Ω)). For the uniqueness, we assume that the problem has two
different solutions: 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) from 𝑃0. If we denote by 𝑤 := 𝑢− 𝑣 then we
have the following:

0 =

𝑇∫︁
0

∫︁
Ω

𝜕𝑤

𝜕𝑡
𝑤𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
Ω

(𝐷𝑤)2𝑑𝑥𝑑𝑡+
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+

𝑇∫︁
0

∫︁
Ω

(𝑎(𝑥, 𝑡)− 𝑏(𝑥, 𝑡))𝑤2𝑑𝑥𝑑𝑡+

𝑇∫︁
0

∫︁
𝜕Ω

𝑘(𝑥′, 𝑡)𝑤2𝑑𝑥′𝑑𝑡

Here from the conditions of Theorem 2, we obtain contradiction of 0 > 0. Hence,
the solution of problem (1)–(3) uniquely exists. �

5 Existence of the solution of Problem (1)–(3) in Super Linear
Case

Let 𝜌 > 0,−1 < 𝜈 6 𝜌. In this section, 𝑃0 = 𝐿2(0, 𝑇 ;𝑊
1
2 (Ω)) ∩ 𝐿𝜌+2(𝑄𝑇 ) ∩

𝑊 1
𝜌+2
𝜌+1

(0, 𝑇 ; (𝑊 1
2 (Ω))

*) ∩ {𝑢 : 𝑢(𝑥, 0) = 0} In this case, condition (i) is denoted as

(i ′′′) with the following parameters 𝑝1, 𝑟1, 𝑝2, 𝑟2:

𝑝1 = 𝑝2 := ∞ 𝑟1 = 𝑟2 :=

⎧⎨⎩
𝜌+ 2

𝜌− 𝜈
if 𝜈 < 𝜌,

∞ if 𝜈 = 𝜌.

Theorem 3. Let 𝜌 > 0, −1 < 𝜈 6 𝜌 and let the conditions (i′′′), (ii) be fulfilled.
Additionally the following conditions are satisfied:
(iii) If −1 < 𝜈 < 𝜌, then there exists a number 𝑎0 > 0 such that 𝑎(𝑥, 𝑡) > 𝑎0 for

almost every (𝑥, 𝑡) ∈ 𝑄𝑇 . If 𝜈 = 𝜌, then there exists a number 𝑏0 > 0 such that
𝑎(𝑥, 𝑡)− 𝑏(𝑥, 𝑡) > 𝑏0 for almost every (𝑥, 𝑡) ∈ 𝑄𝑇 .

(iv) The function 𝑘 satisfies one of the following conditions:
(a) There exists a number 𝑘0 such that 𝑘(𝑥′, 𝑡) > −𝑘0 for almost every

(𝑥′, 𝑡) ∈ Σ𝑇 , and1

𝑘0 <

⎧⎪⎪⎨⎪⎪⎩
min{𝑎′, 1}

𝑐23
if − 1 < 𝜈 < 𝜌,

min{𝑏0, 1}
𝑐23

if 𝜈 = 𝜌.

1 Here 𝑎′ is a positive number such that 𝑎′ < 𝑎0 and, 𝑐3, 𝑐4 are constants of Sobolev’s imbedding
inequalities: ‖𝑢‖𝐿2(𝜕Ω) 6 𝑐3‖𝑢‖𝑊1

2 (Ω), ‖𝑢‖𝐿 2(𝑛−1)
𝑛−2

(𝜕Ω) 6 𝑐4‖𝑢‖𝑊1
2 (Ω).
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(b) It holds

‖𝑘‖𝐿∞(0,𝑇 ;𝐿𝑛−1(𝜕Ω)) <

⎧⎪⎪⎨⎪⎪⎩
min{𝑎′, 1}

𝑐24
if − 1 < 𝜈 < 𝜌,

min{𝑏0, 1}
𝑐24

if 𝜈 = 𝜌.

Then the problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈ [𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) +

𝐿 𝜌+2
𝜌+1

(𝑄𝑇 )]× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω)).

Proof. To prove this theorem we again make use of the existence theorem
from [13]. We define the corresponding mappings as (4), (5), (6) such that,

𝑓 = {𝑓1, 𝑓2} : 𝑃0 → [𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) + 𝐿 𝜌+2
𝜌+1

(𝑄𝑇 )]×

× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω));𝐴 : 𝑃0 → 𝑃0.

Lemma 7. The mapping 𝑓 is bounded from 𝑃0 to 𝐿2(0, 𝑇 ; (𝑊
1
2 (Ω))

*) +
𝐿 𝜌+2

𝜌+1
(𝑄𝑇 ) under the conditions of Theorem 3.

Lemma 8. The mapping 𝑓 is weakly continuous from 𝑃0 to
𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*) + 𝐿 𝜌+2
𝜌+1

(𝑄𝑇 ) under the conditions of Theorem 3.

Lemma 9. The mappings 𝑓 and 𝐴 generate a coercive pair on
𝐿2(0, 𝑇 ;𝑊

1
2 (Ω)) ∩ 𝐿𝜌+2(𝑄𝑇 ) under the conditions of Theorem 3.

From these lemmas we obtain that all conditions of the existence theorem
are satisfied for the mappings 𝑓 and 𝐴. So, if we apply this theorem to prob-
lem (1)–(3), then we see that problem (1)–(3) is solvable in 𝑃0 for any (ℎ, 𝜙) ∈
[𝐿2(0, 𝑇 ; (𝑊

1
2 (Ω))

*) + 𝐿 𝜌+2
𝜌+1

(𝑄𝑇 )]× 𝐿2(0, 𝑇 ;𝑊
− 1

2
2 (𝜕Ω)). �

6 On Uniqueness of the Solution to Problem (1)–(3)

In this section we investigate the uniqueness of the solution of the problem (1)–(3)
for a special case (i.e. 𝜈 = 𝜌 > −1, 𝑛 > 3).

Theorem 4. Let the following conditions be satisfied for the problem (1)–(3):
(1) Let 𝜈 = 𝜌 > −1.
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(2) The functions 𝑎, 𝑏 ∈

⎧⎪⎨⎪⎩
𝐿∞(𝑄𝑇 ), 𝜌 > 0

𝐿∞(0, 𝑇 ;𝐿𝑛
2
(Ω)), 𝜌 = 0

𝐿 2
|𝜌|
(0, 𝑇 ;𝐿 2𝑛

𝜌(2−𝑛)+4
(Ω)), 𝜌 < 0

such that 𝑎(𝑥, 𝑡) > 0,

𝑏(𝑥, 𝑡) > 0 and 𝑎(𝑥, 𝑡) > 𝑏(𝑥, 𝑡) for almost every (𝑥, 𝑡) ∈ 𝑄𝑇 .
(3) The function 𝑘 ∈ 𝐿∞(0, 𝑇 ;𝐿𝑛−1(𝜕Ω)), there exists a number 𝑘0 > 0 such that

𝑘(𝑥′, 𝑡) > 𝑘0 for almost every (𝑥′, 𝑡) ∈ Σ𝑇 .

Then the solution of problem (1)–(3) is unique if it exists in 𝑃0.
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𝜀-ENERGIES FOR WEAKLY HYPERBOLIC OPERATORS
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Abstract. Energy estimates are a fundamental tool to obtain many results for lin-
ear and nonlinear hyperbolic equations: well-posedness, dispersive estimates, regu-
larity of the solutions, . . . . Approximated energies (or 𝜀-energies) were introduced
in [1] and [2] in order to treat non regular or degenerate hyperbolic operators of
second order. There are (at least) three methods to extend the notion of 𝜀-energies
to higher order equations. We prove here that all these methods are essentially
equivalent.

1 Introduction

It is well-known that for the solutions to the wave equation

�𝑢 ≡ 𝜕2𝑡 𝑢− 𝜕2𝑥𝑢 = 0

the energy
𝐸(𝑢; 𝑡) :=

⃦⃦
𝜕𝑡𝑢(𝑡, ·)

⃦⃦2
𝐿2 +

⃦⃦
𝜕𝑥𝑢(𝑡, ·)

⃦⃦2
𝐿2

is constant, i.e. 𝐸(𝑢; 𝑡) = 𝐸(𝑢; 0). Similarly the solutions to the strictly hyperbolic
equation

𝑃𝑢 ≡ 𝜕2𝑡 𝑢− 𝑎(𝑡)𝜕2𝑥𝑢 = 0

with 𝑎 ∈ 𝒞1
(︀
[0, 𝑇 ]

)︀
such that 𝑎(𝑡) > 𝛿 > 0 for all 𝑡 ∈ [0, 𝑇 ], the energy

𝐸𝑃 (𝑢; 𝑡) :=
⃦⃦
𝜕𝑡𝑢(𝑡, ·)

⃦⃦2
𝐿2 + 𝑎(𝑡)

⃦⃦
𝜕𝑥𝑢(𝑡, ·)

⃦⃦2
𝐿2 (1)

verifies the estimate
𝐸′
𝑃 (𝑢; 𝑡) 6 𝐶 𝐸𝑃 (𝑢; 𝑡),

for some 𝐶 ∈ R depending on ‖𝑎‖𝐶1 and 𝛿.
Energy estimates are used to get many results for linear and nonlinear hyper-

bolic equations: well-posedness, dispersive estimates, stability of the solutions, . . . .
Hence it is of great importance to extend the notion of energy to general higher
order equations and systems of hyperbolic type. In this note we restrict ourselves
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to scalar equations with coefficients depending only on the time variable. Also, for
the sake of brevity, we consider only operators in one space variable.

Let

𝑃 (𝑡; 𝜕𝑡, 𝜕𝑥) = 𝜕𝑚𝑡 −
𝑚∑︁
𝑗=1

𝑎𝑗(𝑡)𝜕
𝑚−𝑗
𝑡 𝜕𝑗𝑥 (2)

be a hyperbolic operator of order 𝑚, that is

𝑃 (𝑡; 𝜏, 𝜉) =

𝑚∏︁
𝑗=1

(︀
𝜏 − 𝜏𝑗(𝑡)𝜉

)︀
(3)

and the characteristic roots 𝜏𝑗(𝑡) are real functions for 𝑗 = 1, . . . ,𝑚. Taking the
Fourier transform in the space variable we transform the Cauchy problem for 𝑃 to
an initial value problem for an ordinary differential equation depending on 𝜉:{︃

𝑃 (𝑡; 𝜕𝑡, 𝜕𝑥)𝑢 = 0

𝑢|𝑡=0 = 𝑢0
⇐⇒

{︃
𝑃 (𝑡; 𝜕𝑡, 𝑖𝜉)𝑣 = 0

𝑣|𝑡=0 = 𝑣0
,

where 𝑣(𝑡, 𝜉) := ℱ𝑥→𝜉

(︀
𝑢(𝑡, ·)

)︀
and 𝑣0(𝜉) := ℱ𝑥→𝜉

(︀
𝑢0(·)

)︀
.

Assume at first that 𝑃 is strictly hyperbolic, i.e. the functions 𝜏𝑗(𝑡) are real and
distinct

𝜏𝑗(𝑡) ̸= 𝜏𝑘(𝑡) for any 𝑗 ̸= 𝑘 and 𝑡 ∈ [0, 𝑇 ].

We define the energy (density) of 𝑣 (cf. [6, 9]) by:

𝐸𝑃 (𝑣; 𝑡; 𝜉) :=

𝑚∑︁
𝑗=1

⃒⃒
𝑃̂︀𝚥(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣(𝑡; 𝜉)⃒⃒2, where 𝑃̂︀𝚥(𝑡; 𝜏, 𝜉) := 𝑃 (𝑡; 𝜏, 𝜉)

𝜏 − 𝜏𝑗(𝑡)𝜉
.

The energy of 𝑢 is obtained by

𝐸𝑃 (𝑢; 𝑡) =

∫︁
R

𝐸𝑃 (𝑣; 𝑡; 𝜉) 𝑑𝜉.

Example 1. Let 𝑃𝑢 ≡ 𝜕2𝑡 𝑢 − 𝑎(𝑡)𝜕2𝑥𝑢 with 𝑎(𝑡) > 𝛿 > 0 for all 𝑡 ∈ [0, 𝑇 ], and
let

𝑃{1}(𝑡; 𝜏, 𝜉) := 𝜏 −
√︀
𝑎(𝑡) 𝜉 𝑃{2}(𝑡; 𝜏, 𝜉) := 𝜏 +

√︀
𝑎(𝑡) 𝜉,

hence,

𝐸𝑃 (𝑣; 𝑡; 𝜉) := |𝑃{1}(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣|2 + |𝑃{2}(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣|2 = 2
[︁
|𝑣𝑡|2 + 𝑎(𝑡)𝜉2|𝑣|2

]︁
. (4)
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Example 2 (𝑚 = 3). Let 𝑃 be as in (2)-(3) with 𝑚 = 3. Then

𝐸𝑃 (𝑣; 𝑡; 𝜉) := |𝑃{1,2}(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣|2 + |𝑃{2,3}(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣|2 + |𝑃{1,3}(𝑡; 𝜕𝑡, 𝑖𝜉)𝑣|2,

where
𝑃{𝑗,𝑘}(𝑡; 𝜏, 𝜉) := 𝜏2 − (𝜏𝑗 + 𝜏𝑘)𝜏𝜉 + 𝜏𝑗𝜏𝑘 𝜉

2.

It is not difficult to prove that if 𝑃 is strictly hyperbolic, then we have the
estimates

𝐶1

(︂𝑚−1∑︁
𝑗=0

|𝜉|2(𝑚−𝑗−1)|𝜕𝑗𝑡 𝑣|2
)︂
6 𝐸𝑃 (𝑣; 𝑡; 𝜉) 6 𝐶2

(︂𝑚−1∑︁
𝑗=0

|𝜉|2(𝑚−𝑗−1)|𝜕𝑗𝑡 𝑣|2
)︂

(5)

and
𝐸′
𝑃 (𝑣; 𝑡; 𝜉) 6 𝐶3𝐸𝑃 (𝑣; 𝑡; 𝜉), (6)

where the constants 𝐶1, 𝐶2, 𝐶3 depend only on the coefficients of 𝑃 and do not
depend on 𝑡 ∈ [0, 𝑇 ], 𝜉 ∈ R and 𝑣. From (5) and (6), via the Paley-Wiener Theorem,
we can deduce well-posedness results in a wide class of spaces (𝒞∞, Gevrey, . . . ).

In [1] the notion of 𝜀-approximate energy is introduced in order to treat strictly
hyperbolic operators with non regular coefficients. In [2] a similar notion is em-
ployed to treat also weakly (i.e. non strictly) hyperbolic operators. Both papers
considered only second order equations. The basic idea is to replace in the defini-
tion of energy (4) a suitable approximation 𝑎𝜀 of 𝑎 and to choose 𝜀 dependent on 𝜉,
so that the estimates (5) and (6) can be used again to obtain well-posedness results.

In this note we present three methods to define 𝜀-energies for higher order
operators. These methods are not entirely new, but our presentation differs slightly
from the original ones. However, our principal contribution is in showing that all
these methods are equivalent.

2 The method of Jannelli [7]

Let 𝑃 (𝑡; 𝜏, 𝜉) be as in (2), and let

𝑃𝜀(𝑡; 𝜏, 𝜉) =
𝑚∏︁
𝑗=1

(︀
𝜏 − 𝜏𝑗,𝜀(𝑡) 𝜉

)︀
, 𝜀 ∈ ]0, 1] , (7)

be a sequence of polynomials approximating 𝑃 such that⃒⃒
𝜏𝑗,𝜀(𝑡)− 𝜏𝑘,𝜀(𝑡)

⃒⃒
> 𝜀, (𝑗 ̸= 𝑘),

⃒⃒
𝜏𝑗(𝑡)− 𝜏𝑗,𝜀(𝑡)

⃒⃒
6 𝐶* 𝜀. (8)
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Then let us consider the energies

ℰ𝐽𝜀 (𝑣; 𝑡; 𝜉) := 𝐸𝑃𝜀(𝑣; 𝑡; 𝜉).

There are several methods to construct the approximated polynomials 𝑃𝜀.

Example 3 (see [10]). Let 𝑇𝜀𝑃 := 𝑃+𝜀𝜉 𝜕𝜏𝑃 . If 𝑃 is a hyperbolic polynomial
with multiplicity 6 𝑟, then 𝑇𝜀𝑃 is a hyperbolic polynomial with multiplicity 6 𝑟−1.
Then define 𝑃𝜀 := 𝑇𝜀 · · ·𝑇𝜀𝑃 (iterated 𝑟 times).

Example 4 (see [7]). Let 𝑇𝜀𝑃 := 𝑃 − (𝜀𝜉)2𝜕2𝜏𝑃 . If 𝑃 is a hyperbolic polyno-
mial with multiplicity 6 𝑟, then 𝑇𝜀𝑃 is a hyperbolic polynomial with multiplicity
6 𝑟 − 2. Then define 𝑃𝜀 := 𝑇𝜀 · · ·𝑇𝜀𝑃 (iterated 𝑟/2 times).

Example 5 (see [4]). Let 𝜏𝑗,𝜀 := 𝜏𝑗+
√
−1 𝜀 𝑗, then define 𝑃𝜀 according to (7).

Note that in this case the 𝑃𝜀 are not hyperbolic, nevertheless the corresponding
energy is positive.

3 The method of D’Ancona-Spagnolo [5]

Let

ℰ𝐷𝑆𝜀 (𝑣; 𝑡; 𝜉) := 𝐸𝑃 (𝑣; 𝑡; 𝜉) +
𝑚−1∑︁
𝑟=0

(𝜀𝜉)2(𝑚−𝑟)
∑︁

𝐸𝑅(𝑣; 𝑡; 𝜉),

where the second sum is extended over all the monic polynomials 𝑅 of degree 𝑟
which divide 𝑃 .

Example 6 (𝑚 = 3). Let 𝑃 be as in (2)-(3) with 𝑚 = 3. Then

ℰ𝐷𝑆𝜀 := |𝑃{1,2}𝑣|2 + |𝑃{2,3}𝑣|2 + |𝑃{1,3}𝑣|2

+ (𝜀𝜉)2
(︁
|𝑃{1}𝑣|2 + |𝑃{2}𝑣|2 + |𝑃{3}𝑣|2

)︁
+ (𝜀𝜉)4|𝑣|2, (9)

where

𝑃{𝑗,𝑘}(𝑡; 𝜏, 𝜉) := 𝜏2 − (𝜏𝑗 + 𝜏𝑘)𝜏𝜉 + 𝜏𝑗𝜏𝑘 𝜉
2 , 𝑗, 𝑘 ∈ {1, 2, 3} , 𝑗 ̸= 𝑘 , (10)

𝑃{𝑗}(𝑡; 𝜏, 𝜉) = 𝜏 − 𝜏𝑗 𝜉 , 𝑗 ∈ {1, 2, 3}. (11)
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4 The method of Peyser [11]

Let 𝑃 (𝑗)(𝑡; 𝜏, 𝜉) =
(𝑚− 𝑗)!

𝑚!
𝜕𝑗𝜏𝑃 (𝑡; 𝜏, 𝜉). We set

ℰ𝑃𝜀 := 𝐸𝑃 + (𝜀𝜉)2𝐸𝑃 (1) + (𝜀𝜉)4𝐸𝑃 (2) + · · ·+ (𝜀𝜉)2(𝑚−1)𝐸𝑃 (𝑚−1) .

Example 7 (𝑚 = 3). Let 𝑃 be as in (2)-(3) with 𝑚 = 3. Then

ℰ𝑃𝜀 := |𝑃{1,2}𝑣|2 + |𝑃{2,3}𝑣|2 + |𝑃{1,3}𝑣|2

+ (𝜀𝜉)2
(︁
|𝑅{1}𝑣|2 + |𝑅{2}𝑣|2

)︁
+ (𝜀𝜉)4|𝑣|2, (12)

where 𝑃{𝑗,𝑘}(𝑡; 𝜏, 𝜉) are defined in (10), whereas

𝑅(𝑡; 𝜏, 𝜉) :=
1

3
𝜕𝜏𝑃 (𝑡; 𝜏, 𝜉) =

(︀
𝜏 − 𝜆1(𝑡) 𝜉

)︀(︀
𝜏 − 𝜆2(𝑡) 𝜉

)︀
,

𝑅{1}(𝑡; 𝜏, 𝜉) = 𝜏 − 𝜆1(𝑡) 𝜉, 𝑅{2}(𝑡; 𝜏, 𝜉) = 𝜏 − 𝜆2(𝑡) 𝜉.

5 Equivalence of the 𝜀-energies

The 𝜀-energies ℰ𝐽𝜀 , ℰ𝐷𝑆𝜀 and ℰ𝑃𝜀 are equivalent. More precisely, the following state-
ment holds:

Theorem 1. There exist constants 𝐶1, 𝐶2, 𝐶3 independent of 𝑣 such that

ℰ𝑃𝜀 6 𝐶1 ℰ𝐽𝜀 , ℰ𝐽𝜀 6 𝐶2 ℰ𝐷𝑆𝜀 , ℰ𝐷𝑆𝜀 6 𝐶3 ℰ𝑃𝜀 .

Here we only sketch the proof in the case 𝑚 = 3, but the general case can be
treated in a similar way.

To show that ℰ𝑃𝜀 6 𝐶1 ℰ𝐽𝜀 we use the Newton-Lagrange interpolation formula:
If 𝑃 (𝜏) is a polynomial with simple roots and deg𝑅(𝜏) < deg𝑃 (𝜏), then

𝑅(𝜏) =
𝑚∑︁
𝑗=1

𝑅(𝜏𝑗)

𝑃̂︀𝚥(𝜏𝑗) 𝑃̂︀𝚥(𝜏), where 𝑃̂︀𝚥(𝜏) := 𝑃 (𝜏)

𝜏 − 𝜏𝑗
. (13)

Thanks to (13) and (8) we can show that the 𝑃{𝑗,𝑘} are linear combinations with
bounded coefficients of the 𝑃𝜀,{𝑗,𝑘}, since we have, e.g.,

𝑃{1,2} =
(𝜏 𝜀3 − 𝜏1)(𝜏

𝜀
3 − 𝜏2)

(𝜏 𝜀3 − 𝜏 𝜀1 )(𝜏
𝜀
3 − 𝜏 𝜀2 )

𝑃𝜀,{1,2} + · · · (similar terms).
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Thus,
|𝑃{1,2}𝑣|2 6 𝐶

(︁
|𝑃𝜀,{1,2}𝑣|2 + |𝑃𝜀,{2,3}𝑣|2 + |𝑃𝜀,{1,3}𝑣|2

)︁
.

Similarly,

𝜀𝜉𝑅{1} =
𝜀 (𝜏 𝜀3 − 𝜆1)

(𝜏 𝜀3 − 𝜏 𝜀1 )(𝜏
𝜀
3 − 𝜏 𝜀2 )

𝑃𝜀,{1,2} + · · · (similar terms).

Since 𝜏1 6 𝜆1 6 𝜏2, by using again (8) we can show that the 𝜀𝜉𝑅{𝑗} are linear
combinations with bounded coefficients of the 𝑃𝜀,{𝑗,𝑘}. A similar estimate holds
for (𝜀𝜉)4|𝑣|2.

Now we show that ℰ𝐽𝜀 6 𝐶2 ℰ𝐷𝑆𝜀 . Let 𝜀𝑗 := 𝜏𝜀,𝑗 − 𝜏𝑗 , 𝑗 = 1, 2, 3, so that |𝜀𝑗 | 6 𝜀.
We have the identity

𝑃𝜀,{𝑗,𝑘} = 𝑃{𝑗,𝑘} − 𝜀𝑗 𝜉 𝑃{𝑘} − 𝜀𝑘 𝜉 𝑃{𝑗} + 𝜀𝑗𝜀𝑗𝜉
2

which gives

|𝑃𝜀,{𝑗,𝑘}𝑣|2 6 4
(︁
|𝑃{𝑗,𝑘}𝑣|2 + (𝜀𝜉)2|𝑃{𝑘}𝑣|2 + (𝜀𝜉)2|𝑃{𝑗}𝑣|2 + (𝜀𝜉)4|𝑣|2

)︁
.

Finally, we show that ℰ𝐷𝑆𝜀 6 𝐶3 ℰ𝑃𝜀 . Comparing (9) and (12) it is sufficient
to show that the 𝑃{𝑗}, 𝑗 = 1, 2, 3, are linear combinations with bounded coefficients
of the 𝑅{𝑗}, 𝑗 = 1, 2. We use again Newton-Lagrange interpolation formula (13)
to get

𝑃{1} =
𝜏1 − 𝜆2
𝜆1 − 𝜆2

𝑅{1} +
𝜏1 − 𝜆1
𝜆2 − 𝜆1

𝑅{2},

𝑃{2} =
𝜏2 − 𝜆2
𝜆1 − 𝜆2

𝑅{1} +
𝜏2 − 𝜆1
𝜆2 − 𝜆1

𝑅{2}, 𝑃{3} = . . . .

Note that since 𝜏1 6 𝜆1 6 𝜏2 6 𝜆2 6 𝜏3 we immediately get the boundness

of
𝜏2 − 𝜆2
𝜆1 − 𝜆2

and
𝜏2 − 𝜆1
𝜆2 − 𝜆1

. To estimate the other coefficients we need the following

lemma on the location of the roots of the derivative of a hyperbolic polynomial.

Lemma 1 (Peyser [12]). Let 𝑃 (𝜏) be a hyperbolic polynomial of degree 𝑚,

and let 𝑅(𝜏) :=
1

𝑚
𝜕𝑗𝜏𝑃 (𝑡; 𝜏, 𝜉). Denote by 𝜏𝑗, 𝑗 = 1, . . . ,𝑚, the roots of 𝑃 (𝜏) and

by 𝜆𝑗, 𝑗 = 1, . . . ,𝑚− 1, the roots of 𝑅(𝜏). Then we have:

𝜏𝑗 +
1

𝑚
(𝜏𝑗+1 − 𝜏𝑗) 6 𝜆𝑗 6 𝜏𝑗+1 −

1

𝑚
(𝜏𝑗+1 − 𝜏𝑗).
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In particular, for 𝑚 = 3 we have

𝜏1 +
1

3
(𝜏2 − 𝜏1) 6 𝜆1 6 𝜏2 −

1

3
(𝜏2 − 𝜏1),

𝜏2 +
1

3
(𝜏3 − 𝜏2) 6 𝜆2 6 𝜏3 −

1

3
(𝜏3 − 𝜏2),

hence,
1

3
(𝜏3 − 𝜏1) 6 𝜆2 − 𝜆1 6

2

3
(𝜏3 − 𝜏1).

Using this inequality we get the boundness of the coefficients
𝜏1 − 𝜆2
𝜆1 − 𝜆2

,
𝜏1 − 𝜆1
𝜆2 − 𝜆1

,
. . . .

6 Applications

In this section we present some results that can been obtained by using 𝜀-energies.
Here 𝛾𝑠 is the space of the (uniform) Gevrey functions of order 𝑠 on R, i.e. the
space of 𝑓 ∈ 𝒞∞(R) for which there exists constants 𝐶,𝑅 such that

sup
𝑥∈R

⃒⃒
𝑓 (𝑗)(𝑥)

⃒⃒
6 𝐶 𝑅−𝑗 𝑗!𝑠 for any 𝑗 ∈ N.

Theorem 2 (see [5]). Assume that the coefficients of 𝑃 are 𝒞2
(︀
[0, 𝑇 ]

)︀
, and let

𝐵(𝑡, 𝑥, 𝜕𝑡, 𝜕𝑥) be any differential operator of order < 𝑚. Then the Cauchy problem
for 𝑃 +𝐵 is well-posed in 𝛾𝑠 if 𝑠 <

𝑚

𝑚− 1
.

Theorem 3 (see [5], see also [13]). Assume that the coefficients of 𝑃

are 𝒞𝑚
(︀
[0, 𝑇 ]

)︀
, and let 𝑓 be an entire analytic function. Let 𝑢 ∈ 𝛾𝑠, 𝑠 <

𝑚

𝑚− 1
, be

a Gevrey solution of the equation

𝑃𝑢 = 𝑓(𝑢).

If 𝑢|𝑡=0 is analytic, then 𝑢 is analytic.

Theorem 4 (see [3]). Assume that the coefficients of 𝑃 are 𝒞𝑚
(︀
[0, 𝑇 ]

)︀
, the

discriminant of 𝑃 , i.e.
∏︀
𝑗<𝑘

(︀
𝜏𝑗(𝑡) − 𝜏𝑘(𝑡)

)︀2, vanishes at finite order in 𝑡 = 0 and

the 𝜏𝑗(𝑡) satisfy the estimate

|𝑡|
⃒⃒
𝜏 ′𝑗(𝑡)

⃒⃒
6 𝐶

⃒⃒
𝜏𝑗(𝑡)− 𝜏𝑘(𝑡)

⃒⃒
for any 𝑗 ̸= 𝑘.
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Let

𝐵(𝑡; 𝜏, 𝜉) =
𝑚−1∑︁
𝑗=0

𝐵𝑗(𝑡; 𝜏, 𝜉) with deg(𝐵𝑗) = 𝑗,

and let us assume⃒⃒⃒
𝑡𝑚−𝑗 𝐵𝑗

(︀
𝑡; 𝜏𝑘(𝜉), 𝜉

)︀⃒⃒⃒
6 𝐶

⃒⃒⃒
𝑃 (𝑚−𝑗)(︀𝑡; 𝜏𝑘(𝜉), 𝜉)︀⃒⃒⃒ for 𝑘 = 1, . . . , 𝑗 + 1.

Then the Cauchy problem for 𝑃 +𝐵 is well-posed in 𝒞∞ in a neighborhood of 0.
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avec des coefficients qui ne dépendent que du temps, Ann. S.N.S. Pisa Cl. Sci.
(4) 6 (1979), Pp. 511–559.

2. F. Colombini, E. Jannelli, and S. Spagnolo, Well-posedness in the Gevrey classes
of the Cauchy problem for a nonstrictly hyperbolic equation with coefficients
depending on time, Ann. S.N.S. Pisa Cl. Sci. (4) 10 (1983), Pp. 291–312.

3. F. Colombini and G. Taglialatela, Well-posedness for hyperbolic higher order
operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006), Pp. 833–877.

4. P. D’Ancona and T. Kinoshita, On the wellposedness of the Cauchy problem for
weakly hyperbolic equations of higher order, Math. Nachr. 278 (2005), Pp. 1147–
1162.

5. P. D’Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and
propagation of the analytic regularity, Boll. U.M.I. (8) 1 (1998), Pp. 169–185.

6. L. G̊arding, Solution directe du problème de Cauchy pour les équations hyper-
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IV.1. Inverse problems
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USING PARALLEL COMPUTING FOR SOLVING
MULTIDIMENSIONAL ILL-POSED PROBLEMS
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Key words: Inverse problem, ill-posed problem, Tikhonov regularization, parallel
computing.
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Abstract. Solving multidimensional ill-posed problems has attracted wide inter-
ests and found many practical applications. However, the most modern applications
require processing a large amount of data that often very difficult to perform on
personal computers. In these cases usual different methods are applied for simpli-
fication of the problem statements but these simplifications degrade the accuracy
of the inverted parameters. It is supposed to solve computationally difficult appli-
cations in general form (without any simplifications) by using parallel computing
that gives us an advantage the time and the accuracy. The proposed method can be
efficiently applied for solving multidimensional Fredholm integral equations of the
1st kind in many areas of physics. In this paper we consider the main propositions
using as basis a practical problem of restoring the magnetization parameters of a
magnetic object.

1 Introduction

Key propositions of this paper we consider on the example of a practical problem of
restoring magnetization parameters over a ship body. Formulation of the problem is
as follows: a ship passes over a system of triaxial sensors (fig. 1a) which measure the
value of the induced magnetic field. According to these values of induced magnetic
fields it is necessary to restore the magnetization parameters over the hull of the
ship [1]. This formulation of the problem is equal to a problem where the ship stand
over the system of sensor arrays (fig. 1b).

The main difficulty of this problem solving (as in most of the other multidimen-
sional problems) is that general solution of the problem is extremely time-taking.
As a result, various simplifications are typically used to simplify the problem that
reduce the dimension of the problem that allows us to solve it by using simpler
methods [2].

The work was partially supported by RFBR grand 08-01-00160 and 09-01-00586-a.
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(a) (b)

Figure 1. a) The ship passes over the system of triaxial sensors. b) The ship stands
over the system of sensor arrays.

For example, it is used a partition of the vessel at sufficiently large sub-
volumes (fig. 2a) and restoring of the magnetization parameters of these particular
elements of the partition. It is obvious that this approach can reduce the dimension
of the problem but gives us only a qualitative description of the object.

Second approach is to approximate the hull of the ship by an ellipsoid of revolu-
tion (fig. 2b) for which well-known analytical transformations can be applied that
can significantly reduce the dimension of the problem. But in this case we apply an
assumption that only a hull is the magnetized part of the ship and inner magnetized
parts are not counted. Along with the often rough approximation of the hull of the
ship by ellipsoid of revolution this type of simplification also gives us only a partial
picture of the object under study.

The third approach is to approximate the hull of the ship by a plane (which
is applicable for very large ships) (fig. 2d) that leads to the need to solve two-
dimensional integral equation of convolution type for vector functions.

But in all of these cases (similar to other multidimensional inverse problems)
the simplifications decrease dimension of the problem but give us results which are
useful only in specific situations [2].

And what to do if it is need to solve the problem in general? For example, what
to do if the dimension of grids too huge (fig. 3)? In this case, there is only one way
for solving of these problems: using parallel computing [3].
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(a) (b)

(c) (d)

Figure 2. Different types of simplifications.

2 Using parallel computing

Parallel computing is a form of computation in which many calculations are carried
out simultaneously, operating on the principle that large problems can often be
divided into smaller ones, which are then solved concurrently (“in parallel”) [4], [5].
Parallel computation can be performs on multi-processor clusters or on multi-core
computers having multiple processing elements within a single machine. But not
every problem can be parallelized efficiently. The speed-up of a program as a result
of parallelization is observed as Amdahl’s law. It states that a small portion of the
program which cannot be parallelized will limit the overall speed-up available from
parallelization. Any large mathematical or engineering problem will typically con-
sist of several parallelizable parts and several non-parallelizable (sequential) parts.
This relationship is given by equation 𝑆 = 1

(1−𝑃 )+ 𝑃
𝑁

, where S is the speed-up of

the program (as a factor of its original sequential runtime), N is number of pro-
cessors and P is the fraction that is parallelizable. This puts an upper limit on
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(a) (b)

Figure 3. Example of a large segmentation of the body of the ship.

the usefulness of adding more parallel execution units. It is possible to prove that
parallelizable fraction for multidimensional Fredholm integral equation of the 1st
kind is ∼ 0.(9) that gives us very high effectiveness of parallelization [3].

3 Parallelization of multidimensional ill-posed problem

The equation describing the magnetic field B of dipole sources in term of the field
point position relative to the source 𝑟 and equivalent magnetic moment M is defined
as

B 𝑖(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) =

𝑁∑︁
𝑗=1

𝜇0
4𝜋

[︂
3(M 𝑗 , r 𝑖𝑗)r 𝑖𝑗

|r 𝑖𝑗 |5
− M 𝑗

|r 𝑖𝑗 |3

]︂
(1)

where 𝑥𝑠, 𝑦𝑠, 𝑧𝑠 are coordinates of a point located on the sensor planes in the Carte-
sian system of coordinates (𝑥, 𝑦, 𝑧) and correspond to coordinates of the sensors 𝑖, 𝑟𝑖𝑗
is a distance between the point (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) and the point of the dipole source 𝑗, 𝜇0 is
a permeability in vacuum, 𝑁 is number of the dipole sources. The equation (1) can
be expressed by equivalent mathematical model of the three-dimensional Fredholm
integral equation of the 1st kind for vector-function [3]

AM =

𝑅𝑥∫︁
𝐿𝑥

𝑅𝑦∫︁
𝐿𝑦

𝑅𝑧∫︁
𝐿𝑧

K(𝑠, 𝑡, 𝑟, 𝑥, 𝑦, 𝑧)M (𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = B(𝑠, 𝑡, 𝑟). (2)
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We assume that M ∈ 𝑊 2
2 , B ∈ 𝐿2, and operator A with kernel K is continuous

and unique. Suppose that instead of accurately known B̄ and operator A their
approximate values B𝛿 and Aℎ are known, such that ‖B𝛿 − B̄‖𝐿2 6 𝛿, ‖A −
Aℎ‖𝑊 2

2→𝐿2
6 ℎ. The problem (2) is ill-posed and it is necessary to build the

regularizing algorithm based on the minimization of the Tikhonov functional [6].
When we solve minimization problem by conjugate gradient method it is necessary
to calculate values of the Tikhonov functional 𝐹𝛼[M ] and its gradient grad𝐹𝛼[M ].

The finite-difference approximation of the Tikhonov functional is

𝐹𝛼[M ] = Φ[M ] + 𝛼Ω[M ], (3)

Φ[M ] =

𝑁𝑠∑︁
𝑗1=1

𝑁𝑡∑︁
𝑗2=1

𝑁𝑟∑︁
𝑗3=1

3∑︁
𝑛=1

ℎ𝑠ℎ𝑡ℎ𝑟×

×

⎡⎣ 𝑁𝑥∑︁
𝑖1=1

𝑁𝑦∑︁
𝑖2=1

𝑁𝑧∑︁
𝑖3=1

3∑︁
𝑚=1

ℎ𝑥ℎ𝑦ℎ𝑧𝐾
𝑛𝑚
𝑗1𝑗2𝑗3𝑖1𝑖2𝑖3𝑀

𝑚
𝑖1𝑖2𝑖3 −𝐵𝑛

𝑗1𝑗2𝑗3

⎤⎦2

, (4)

Ω[M ] = ℎ𝑥ℎ𝑦ℎ𝑧

𝑁𝑥∑︁
𝑖1=1

𝑁𝑦∑︁
𝑖2=1

𝑁𝑧∑︁
𝑖3=1

3∑︁
𝑚=1

(︀
𝑀𝑚
𝑖1𝑖2𝑖3

)︀2
+ . . .

+
ℎ𝑦ℎ𝑧
ℎ3𝑥

𝑁𝑥−1∑︁
𝑖1=2

𝑁𝑦∑︁
𝑖2=1

𝑁𝑧∑︁
𝑖3=1

3∑︁
𝑚=1

(︀
𝑀𝑚
𝑖1+1𝑖2𝑖3 − 2𝑀𝑚

𝑖1𝑖2𝑖3 +𝑀𝑚
𝑖1−1𝑖2𝑖3

)︀2
+ . . .

+
ℎ𝑥ℎ𝑧
ℎ3𝑦

𝑁𝑥∑︁
𝑖1=1

𝑁𝑦−1∑︁
𝑖2=2

𝑁𝑧∑︁
𝑖3=1

3∑︁
𝑚=1

(︀
𝑀𝑚
𝑖1𝑖2+1𝑖3 − 2𝑀𝑚

𝑖1𝑖2𝑖3 +𝑀𝑚
𝑖1𝑖2−1𝑖3

)︀2
+ . . .

+
ℎ𝑥ℎ𝑦
ℎ3𝑧

𝑁𝑥∑︁
𝑖1=1

𝑁𝑦∑︁
𝑖2=1

𝑁𝑧−1∑︁
𝑖3=2

3∑︁
𝑚=1

(︀
𝑀𝑚
𝑖1𝑖2𝑖3+1 − 2𝑀𝑚

𝑖1𝑖2𝑖3 +𝑀𝑚
𝑖1𝑖2𝑖3−1

)︀2
, (5)

approximation of its gradient is

(grad𝐹𝛼[M ])𝑚𝑖1𝑖2𝑖3 =
𝜕𝐹𝛼[M ]

𝜕𝑀𝑚
𝑖1𝑖2𝑖3

= . . .

= 2ℎ𝑥ℎ𝑦ℎ𝑧

𝑁𝑠∑︁
𝑗1=1

𝑁𝑡∑︁
𝑗2=1

𝑁𝑟∑︁
𝑗3=1

3∑︁
𝑛=1

ℎ𝑠ℎ𝑡ℎ𝑟𝐾
𝑛𝑚
𝑗1𝑗2𝑗3𝑖1𝑖2𝑖3×
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×

⎡⎣ 𝑁𝑥∑︁
𝑙1=1

𝑁𝑦∑︁
𝑙2=1

𝑁𝑧∑︁
𝑙3=1

3∑︁
𝑝=1

ℎ𝑥ℎ𝑦ℎ𝑧𝐾
𝑛𝑝
𝑗1𝑗2𝑗3𝑙1𝑙2𝑙3

𝑀𝑝
𝑙1𝑙2𝑙3

−𝐵𝑛
𝑗1𝑗2𝑗3

⎤⎦+ 𝛼
𝜕Ω[M ]

𝜕𝑀𝑚
𝑖1𝑖2𝑖3

, (6)

These formulas (4), (6) contain large groups of independent summands. It allows
to divide large problem of calculating the functional and its gradient into smaller
ones which are then solved “in parallel” [3–5].

We propose schemes of calculating value of the Tikhonov functional (resid-
ual) (fig. 4) and its gradient (fig. 5). The main idea of the schemes is that each
process calculates its own “big summands” (for examle, “square” of functional (4) at
the first schem). It is clear that all other calculations are carried out sequentially.
But since the time of the serial code is negligible for large dimensions of the grid,
the time spent on all these calculations can be considered equal to zero. It re-
mains a question whether the impact on the effectiveness of parallelizing sequential
computations of the smoothing functional Ω[M ] in the calculation of the Tikhonov
functional is or not.

From formula (4) for the finite-difference approximation of the Tikhonov func-
tional it can be seen that the residual consist of 3 × 𝑁𝑠 × 𝑁𝑡 × 𝑁𝑟 independent
summands, and the smoothing functional (5) consists of 3 × (6 4) equivalent (in
terms of time spent on computing) groups of summands. So for the calculation of the
Tikhonov functional part of parallelizable actions is 𝑃 > 3𝑁𝑠𝑁𝑡𝑁𝑟

3𝑁𝑠𝑁𝑡𝑁𝑟+12 = 𝑁𝑠𝑁𝑡𝑁𝑟
𝑁𝑠𝑁𝑡𝑁𝑟+4 ,

that shows that even with a relatively small number of input data, for example
𝑁𝑠 = 𝑁𝑡 = 𝑁𝑟 = 10 (the grids correspond to a domain of a known vector function
B), parallelized part of the computation is more than 0.97. Modern applied prob-
lems require the handling of a much larger number of input data, and therefore the
proportion of parallelizable computations tends to 1.0, which proves a very high
effectiveness of algorithms parallelization.

In our case the amount of sequential code is closer to 0.0 with increasing 𝑁𝑠,
𝑁𝑡 and 𝑁𝑟 that provides strong efficiently parallelizing of proposed algorithm that
allows to process large problems.

4 Some examples of calculations

As a result of implementation of the describing method distribution of the mag-
netization parameters over the volume of the ship was obtained. Some results of
calculations are represented (fig. 6). Typical dimensions that correspond to real
applications are 𝑁𝑥 = 100, 𝑁𝑦 = 15, 𝑁𝑧 = 15. Input data simulated a real exper-
iment and correspond to grids 𝑁𝑠 = 4000, 𝑁𝑡 = 3, 𝑁𝑟 = 2 that relevant to 67500
unknowns and 72000 equations (error of input data is equal to 1,5%).
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Figure 4. The scheme of calculating value of the Tikhonov functional for a) zero process,
b) non-zero processes.

Figure 5. The scheme of calculating value of the gradient of the Tikhonov functional for:
a) zero process; b) non-zero processes.
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Figure 6. The results of the inversion of the magnetization parameters over the volume of
the ship (it represented 5 slices of the module inverted vector function M ).

The computation time was approximately 29 hours with using 200 processors
(Intel Xeon E5472 3.0 GHz). So long computations associated with the using of
the regularizing algorithm, which requires repeated finding the minimum of the
functional to be minimized for each value of the regularization parameter 𝛼.

For calculations were used Computing Cluster of the Moscow State University.
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Abstract. We consider an inverse problem for an operator equation 𝐴𝑧 = 𝑢. The
exact operator 𝐴 and the exact right-hand side 𝑢 are unknown. Only their upper
and lower estimations are available. We provide techniques of calculating upper and
lower estimations for the exact solution belonging to a compact set in this case, as
well as a posteriori error estimations. We obtain approximate solutions with an
optimal a posteriori error estimate. We also make use of a priori information about
the exact solution, e.g. its monotonicity and convexity. The developed software
package was applied to solving practical ill-posed problems.

1 Introduction

In this paper we consider operator equations

𝐴𝑧 = 𝑢, (1)

where 𝑧 ∈ 𝑍, 𝑢 ∈ 𝑈 , 𝐴 : 𝑍 → 𝑈 is a linear injective operator, 𝑍 and 𝑈 are normed
spaces. According to J. Hadamard, the problem (1) is called well-posed, if

1) the solution exists ∀𝑢 ∈ 𝑈 ;
2) it is unique;
3) it depends continuously on the problem parameters, e.g. small perturbations

in the right hand side 𝑢 and the operator 𝐴 lead to small changes in the solution.
Unfortunately, there are many applications, for which the condition 3) does

not hold. In many cases, a stable solution of this problem can be found using the
Tikhonov regularization method [4]. This solution tends to the exact solution as
the error in the initial data tends to zero.

It is well known that it is impossible to estimate the error of an approximate so-
lution of an ill-posed problem without a priori information about the exact solution.
In this paper we consider the case when the exact solution belongs to a compact set
𝑀 ⊂ 𝑍. In this case it is possible to estimate the error of the approximate solution.

This work was supported by the RFBR grants 11-01-00040a and 09-01-00586-a.
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Other a priori information can be also used (for example, sourcewise representation
of the exact solution, see [1]).

2 A posteriori error estimates

In practice the exact operator 𝐴 and the exact right-hand side 𝑢 are unknown and
only their estimations 𝐴ℎ and 𝑢𝛿 are available, such that

‖𝑢− 𝑢𝛿‖ 6 𝛿, ‖𝐴𝑧 −𝐴ℎ𝑧‖ 6 ℎ‖𝑧‖. (2)

The pair 𝜂 = (ℎ, 𝛿) describes the error in the initial data.
If we know a priori that the exact solution belongs to a convex compact set

𝑀 ⊂ 𝑍, then the set of approximate solutions

𝑍𝜂 = {𝑧 ∈𝑀 : ‖𝐴ℎ𝑧 − 𝑢𝛿‖ 6 𝛿 + ℎ‖𝑧‖} (3)

has a finite diameter ( [8]). The set 𝑍𝜂 is not convex. Hence, we consider another
set of approximate solutions

𝑍𝐶𝜂 = {𝑧 ∈𝑀 : ‖𝐴ℎ𝑧 − 𝑢𝛿‖ 6 𝛿 + ℎ𝐶}, (4)

where 𝐶 = max𝑧∈𝑀 ‖𝑧‖. Obviously, 𝑍𝜂 ⊆ 𝑍𝐶𝜂 .

Consider the following functional on 𝑍𝐶𝜂 :

𝜙(𝑧) = max
𝜁∈𝑍𝐶

𝜂

‖𝜁 − 𝑧‖. (5)

It is interpreted as the a posteriori error estimate of the approximate solution
𝑧. We will come back to the properties of 𝜙(𝑧) later on in this paper. Note that
the value max𝑧∈𝑍𝐶

𝜂
𝜙(𝑧) is the a priori error estimate for the solution of Eqn. (1).

Alternatively, if 𝑍 and 𝑈 are ordered spaces, the approximate initial data may
by given by the following inequalities.

𝑢𝑙 6 𝑢 6 𝑢𝑢, ∀𝑧 > 0 𝐴𝑙𝑧 6 𝐴𝑧 6 𝐴𝑢𝑧, (6)

where 𝐴𝑙 and 𝐴𝑢 are linear operators. In R𝑛, for example, partial order may be
introduced as following:

𝑥 6 𝑦 ⇔ 𝑥𝑖 6 𝑦𝑖, 𝑖 = 1, . . . , 𝑛. (7)
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Another example of an ordered set is the set of integrable functions on 𝐷. We
say of two integrable functions 𝑓 and 𝑔 that 𝑓 6 𝑔 if 𝑓(𝜔) 6 𝑔(𝜔) for any subset
𝜔 ⊂ 𝐷, which has non-zero measure.

Consider an integral equation∫︁
𝐷

𝐾(𝜉, 𝑥)𝑧(𝑥)𝑑𝑥 = 𝑢(𝜉), 𝑥 ∈ 𝐷 ⊂ R𝑛, 𝜉 ∈ T ⊂ 𝑅𝑚. (8)

Here 𝐾(𝜉, 𝑥) is a continuous positive bounded function on 𝑇 ×𝐷, 𝑧 ∈ 𝐿1(𝐷),
𝑢 ∈ 𝐶(𝑇 ). If we know upper and lower estimations of 𝐾(𝜉, 𝑥)

0 6 𝐾 𝑙(𝜉, 𝑥) 6 𝐾(𝜉, 𝑥) 6 𝐾𝑢(𝜉, 𝑥) 6 𝐶, (𝜉, 𝑥) ∈ 𝑇 ×𝐷, (9)

where 𝐶 < +∞, then

𝐴𝑙𝑧 =

∫︁
𝐷

𝐾 𝑙(𝜉, 𝑥)𝑧(𝑥)𝑑𝑥, 𝐴𝑢𝑧 =

∫︁
𝐷

𝐾𝑢(𝜉, 𝑥)𝑧(𝑥)𝑑𝑥. (10)

Since 𝑢𝑙 6 𝐴𝑧 = 𝑢 6 𝑢𝑢 and 𝐴𝑙𝑧 6 𝐴𝑧 6 𝐴𝑢𝑧, we come up with following
inequalities

𝐴𝑙𝑧 6 𝑢𝑢, 𝐴𝑢𝑧 > 𝑢𝑙, (11)

which hold for the exact solution.
In this case the set of approximate solutions is

𝑍𝑎𝑝𝑝 = {𝑧 ∈𝑀 : 𝐴𝑙𝑧 6 𝑢𝑢, 𝐴𝑢𝑧 > 𝑢𝑙}. (12)

The set 𝑍𝑎𝑝𝑝 is convex since the operators 𝐴𝑙 and 𝐴𝑢 are linear.

2.1 Solutions with an optimal a posteriori error estimate

Consider the functional 𝜙(𝑧), which is defined on a convex set of approximate
solutions 𝑍 (𝑍 = 𝑍𝐶𝜂 or 𝑍 = 𝑍𝑎𝑝𝑝). The following proposition holds true.

Proposition 1. The functional 𝜙(𝑧) is convex.

Proof. Consider 𝑧 = 𝜆𝑧1 + (1− 𝜆)𝑧2, 𝑧1, 𝑧2 ∈ 𝑍, 𝜆 ∈ [0, 1]. Since 𝑍 is convex,
𝑧 ∈ 𝑍.

‖𝜁 − 𝑧‖ = ‖𝜁 − 𝜆𝑧1 − (1− 𝜆)𝑧2‖ =

= ‖𝜆(𝜁 − 𝑧1) + (1− 𝜆)(𝜁 − 𝑧2)‖ 66 𝜆‖𝜁 − 𝑧1‖+ (1− 𝜆)‖𝜁 − 𝑧2‖. (13)
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Hence,

𝜙(𝑧) = max
𝜁∈𝑍

‖𝜁 − 𝑧‖ 6 max
𝜁∈𝑍

(𝜆‖𝜁 − 𝑧1‖+ (1− 𝜆)‖𝜁 − 𝑧2‖) 6

6 𝜆max
𝜁∈𝑍

‖𝜁 − 𝑧1‖+ (1− 𝜆)max
𝜁∈𝑍

‖𝜁 − 𝑧2‖ = 𝜆𝜙(𝑧1) + (1− 𝜆)𝜙(𝑧2), (14)

which proves the proposition. �

Since a convex function achieves its minimum on a convex set, we can introduce
a solution

𝑧* = argmin
𝑧∈𝑍

𝜙(𝑧) = argmin
𝑧∈𝑍

max
𝜁∈𝑍

‖𝜁 − 𝑧‖, (15)

which has an optimal a posteriori error estimate.

3 Finite dimensional approximation

Let us return to Eqn. (8). Consider a finite family of subsets {𝜔𝑖}𝑛𝑖=1, such that
∪𝑛𝑖=1𝜔𝑖 = 𝐷, 𝜔𝑖∩𝜔𝑗 = 0, 𝑖 ̸= 𝑗. Approximate 𝑧(𝑥) by a piecewise-constant function
𝑧(𝑥), so that 𝑧(𝑥) = 𝑧𝑖 =

∫︀
𝜔𝑖

𝑧(𝑥)𝑑𝑥, 𝑥 ∈ 𝜔𝑖. Denote by 𝑧 the vector of approximation

coefficients. Introduce a grid {𝜉𝑗}𝑚𝑗=1 on 𝑇 . Then we can rewrite (11) as follows.

𝑛∑︁
𝑖=1

𝑆𝑙𝑖,𝑗𝑧𝑖 6 𝑢
𝑢
𝑗 , 𝑗 = 1, . . . ,𝑚,

𝑛∑︁
𝑖=1

𝑆𝑢𝑖,𝑗𝑧𝑖 > 𝑢
𝑙
𝑗 , 𝑗 = 1, . . . ,𝑚,

(16)

where
𝑢𝑙,𝑢𝑗 = 𝑢𝑙,𝑢(𝜉𝑗), 𝑆𝑙,𝑢𝑖,𝑗 =

∫︁
𝜔𝑖

𝐾 𝑙,𝑢(𝜉𝑗 , 𝑥)𝑑𝑥. (17)

Other approximations for 𝑧(𝑥) could be used (for example, piecewise-linear ap-
proximation). Then we would get other expressions for 𝑆𝑙,𝑢𝑖,𝑗 . Introduce vectors
𝑢𝑙,𝑢 = {𝑢𝑙,𝑢𝑗 } and matrices 𝑆𝑙,𝑢 = {𝑆𝑙,𝑢𝑖,𝑗 }. Then we can rewrite (4.1) in matrix form.

𝑆𝑙𝑧 6 𝑢𝑢, 𝑆𝑢𝑧 > 𝑢𝑙. (18)

Approximate the convex compact set of a priori restrictions 𝑀 ⊂ 𝑍 by a convex
polyhedron �̂� ⊂ R𝑛. Then the set of approximate solutions is approximated by a
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convex polyhedron

𝑍𝑎𝑝𝑝 = {𝑧 ∈ �̂� : 𝑆𝑙𝑧 6 𝑢𝑢, 𝑆𝑢𝑧 > 𝑢𝑙}. (19)

Let us find lower and upper estimations for the exact solution 𝑧𝑙 and 𝑧𝑢. Since
𝑧 ∈ 𝑍𝑎𝑝𝑝, we can take any lower and upper bound of 𝑍𝑎𝑝𝑝 as 𝑧𝑙 and 𝑧𝑢, respectively.
They solve following problems

𝑧𝑙𝑖 = arg min
𝑧∈𝑍𝑎𝑝𝑝

𝑧𝑖, 𝑖 = 1, . . . 𝑛,

𝑧𝑢𝑖 = arg max
𝑧∈𝑍𝑎𝑝𝑝

𝑧𝑖, 𝑖 = 1, . . . 𝑛.
(20)

These problems can be efficiently solved using standard linear programming
algorithms [3]. We use standard MATLABr algorithms in our computations. Note
that in general 𝑧𝑙 and 𝑧𝑢 do not belong to 𝑍𝑎𝑝𝑝 or even to �̂� .

4 Computation of the error estimate

To calculate the a posteriori error estimate (5), we need to maximize a convex
function 𝜙 on a convex polyhedron 𝑍𝑎𝑝𝑝, which is defined by

𝑍𝑎𝑝𝑝 = {𝑧 : 𝐺𝑧 6 𝑞}, (21)

where the matrix inequality 𝐺𝑧 6 𝑞 consists of two inequalities 𝑆𝑙𝑧 6 𝑢𝑢 and
−𝑆𝑢𝑧 6 −𝑢𝑙 and the inequalities which define the set of a priori restrictions �̂� . In
fact, it is a nonstandard problem of quadratic programming.

A convex function, which is defined on a polyhedron, achieves its maximum at
a vertex of this polyhedron ( [6]). So, our aim is to find all vertices of 𝑍𝑎𝑝𝑝.

We use the following algorithm to find them [7]. Start with any convex poly-
hedron 𝑊0 : 𝑍𝑎𝑝𝑝 ⊂ 𝑊0. Then find its intersection with the half-space 𝐺1𝑧 6 𝑞1
(𝐺1 is the first row of 𝐺). This intersection itself is also a convex polyhedron - 𝑊1.
We continue this procedure of finding intersections with half-spaces 𝐺𝑖𝑧 6 𝑞𝑖 until
𝑖 = 𝑘, where k is the number of rows in 𝐺. The final polyhedron 𝑊𝑘 = 𝑍𝑎𝑝𝑝.

The polyhedron is defined by its vertices 𝑧𝑖, 𝑖 = 1 . . .𝑀 and the 𝑀 ×𝑀 con-
nectivity matrix 𝐶 with logical elements

𝐶𝑖,𝑗 =

{︃
1, if there is an edge between the vertices 𝑖 and 𝑗,

0, otherwise.
(22)
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At step 𝑖, if a vertex 𝑗 does not belong to the half-space 𝐺𝑖𝑧 6 𝑞𝑖, it is deleted
from the list of vertices. For each edge that connects this vertex with another
one, which belongs the 𝑖-th half-space, we find its intersection with the hyperplane
𝐺𝑖𝑧 = 𝑞𝑖 and add it to the list of vertices. We do the same for all vertices which do
not belong to the 𝑖-th half-space.

After that it has to be cleared which pairs of new vertices are connected with
an edge. The following criterion holds true ( [5]).

Theorem 1. Let 𝑧1, 𝑧2 and 𝑧3 be vertices of a polyhedron 𝑊 . Let 𝑃1, 𝑃2 and
𝑃3 be the sets of hyperplanes where 𝑧1, 𝑧2 and 𝑧3 belong to, respectively. Then 𝑧1
and 𝑧2 are connected with an edge in 𝑊 if and only if for any 𝑧3 (different from 𝑧1
and 𝑧2)

(𝑃1 ∩ 𝑃2) ∖ 𝑃3 ̸= ∅.

When all vertices 𝑧𝑖, 𝑖 = 1, . . . ,𝑀 of 𝑍𝑎𝑝𝑝 are known, we just need to choose
the vertex 𝑧𝑘 that provides maximum of the norm ‖𝑧 − 𝑧𝑘‖ for the approximate
solution 𝑧.

The computational complexity of this algorithm depends greatly on the con-
nectivity matrix 𝐶. If at step 𝑖 the number of vertices belonging to the half-space
𝐺𝑖𝑧 6 𝑞𝑖 is 𝑛1 and 𝑛2 is the number of vertices outside of this half-space (𝑛1+𝑛2 = 𝑘
- the number of vertices in the polyhedron 𝑊𝑖−1) then there may be up to 𝑛1𝑛2 new
vertices, i.e. the polyhedron 𝑊𝑖 may have up to 𝑛1(𝑛2+1) vertices, which is about
𝑘2/4. In worst case (if the connectivity matrix is dense) the number of vertices
can grow exponentially as the number of steps increases. But if the connectivity
matrix is sparse, the growth of the number of vertices is not so grave. We usually
worked with polyhedrons defined in a 10-dimensional space (𝑘 was about 1000) on
an ordinary laptop.

If the number of vertices in the polyhedron 𝑊𝑖 is 𝑘, we need at most 𝑘(𝑘 −
1)/2 · (𝑘−2) operations to decide, which vertices are connected with an edge, which
means that at each step we need O(𝑘3) operations. We will go in detail in our
further publications.

A 3D illustration of this algorithm is provided in Fig 1. The edges of the
polyhedron 𝑊𝑖−1 are shown with a dotted line and the edges of the polyhedron 𝑊𝑖

are shown with a solid line.
To find a solution with optimal a posteriori error estimate, we have to minimize

a convex function 𝜙(𝑧) on a convex set 𝑍𝑎𝑝𝑝. Standard optimization methods such
as projections of conjugate gradients method or conditional gradient method can
be applied (see, for example, [2]).
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Figure 1. Illustration for the algorithm of finding all vertices of a polyhedron

5 Example

Consider a 1D Fredholm integral equation of the 1st kind

1∫︁
0

𝐾(𝜉, 𝑥)𝑧(𝑥)𝑑𝑥 = 𝑢(𝜉), 𝜉 ∈ [0, 1] (23)

with exact kernel 𝐾(𝜉, 𝑥) = 1
1+100(𝜉−𝑥)2 . Let 𝑧 ∈ 𝑀 ⊂ 𝑍 = 𝐿2[0, 1], 𝑢 ∈ 𝑈 =

𝐶[0, 1]. The set of a priori restrictions 𝑀 is the set convex non-increasing functions,
which is compact in 𝐿𝑝, 𝑝 > 1. Moreover, natural partial order is introduced in 𝑍
and 𝑈 . Let the exact solution be 𝑧 = 5− 𝑥𝑒1−𝑥. The exact right-hand side is 𝑢(𝜉)
(we can calculate it). Suppose that only following estimates for the kernel and the
right-hand side are available

𝐾 𝑙(𝜉, 𝑥) =
1

1 + (100 + 𝑑)(𝜉 − 𝑥)2
, 𝐾𝑢(𝜉, 𝑥) =

1

1 + (100− 𝑑)(𝜉 − 𝑥)2
,

𝑢𝑙(𝜉) = 𝑢(𝜉) * 0.999, 𝑢𝑢(𝜉) = 𝑢(𝜉) * 1.001.
(24)

where 𝑑 > 0 is the known error in the variable (𝜉− 𝑥)2 held constant. We used the
value 𝑑 = 1 in our computation.

A priori information about the exact solution (boundedness, monotonicity, con-
vexity) can be expressed with the following inequalities:

0 6 𝑧𝑖 6 5, 𝑖 = 1, . . . , 𝑛,

−𝑧𝑖 + 𝑧𝑖+1 6 0, 𝑖 = 1, . . . , 𝑛− 1,

−𝑧𝑖−1 + 2𝑧𝑖 − 𝑧𝑖+1 6 0, 𝑖 = 2, . . . , 𝑛− 1.

(25)
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In Fig. 2, the lower and upper estimates 𝑧𝑙 and 𝑧𝑢 for the exact solution are
shown with a dashdotted line, for the case when all a priori information is used.
The exact solution is the solid line. The number of segments is 10, the number of
right-hand side approximation points is also 10.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3.8

4

4.2

4.4

4.6

4.8

5

f(
x
)

x

Figure 2. Lower and upper estimations of the exact solution (dashdot line), as well as the
solution with optimal a posteriori error estimate (dashed line). the exact solution is the

solid line

The dashed line in the same figure is the solution with optimal error estimate. In
this example the optimal relative error is 𝜙(𝑧*)/‖𝑧*‖ = 0, 04. We use the following
expression for the norm: ‖𝑧‖ =

(︀∑︀
𝑖 𝑧

2
𝑖

)︀1/2.
This example shows the effectiveness of the described methods for error estima-

tions in linear ill-posed problems.

6 Conclusion

We have described methods of a posteriori error estimation of approximates solu-
tions of inverse problems in partially ordered sets. We suppose that some a priori
information about the exact solution is available, i.e. the information that it belongs
to a compact set. We also have provided numerical algorithms for the computation
of the error estimate, as well as some examples.
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IV.3. Medical mathematics

(Sessions organizers: R. Gilbert, Yu. Rappoport, V. Yakushev)



70 The 8th Congress of the ISAAC — 2011

MATHEMATICAL AND INTERNET TECHNOLOGIES UNDER
THE KERATOCONUS TREATMENT

A. A. Kasparov, E. A. Kasparova, J. M. Rappoport

Key words: Mathematical technologies, Internet technologies, keratoconus treat-
ment, morphometry, endothelium

AMS Mathematics Subject Classification: 62P10, 94A08

Abstract. The quantitative and qualitative changes in the transplant endothe-
lium after keratoplasty for keratoconus patients in various periods after surgery are
analysed. The website keratoconus.ru created under the technical support of the
Russian Academy of Sciences is described. The information about the typical re-
fractive and clinical forms of the disease, its pathogenesis, contemporary methods
of surgery and correction is collected and analyzed by means of internet. A forum
and FAQ are created also.

1 Matematical-statistical analysis of the corneal endothelium mi-
croscopy results after penetrating keratoplasty

The quantitative and qualitative changes in the transplant endothelium after ker-
atoplasty for keratoconus patients in various periods after surgery are analysed.
The criteria for the choice of donor material with consideration of endothelial sta-
tus for keratoconus patients is suggested. The method of reflecting microscopy of
the endothelium is used for differential diagnosis of tissue incompatibility reactions
and infections recurrence in patients. The influence of some endothelial protectors
for the loss of endothelial cells is analysed. The minimal count of cells necessary for
the transplant to remain transparent is estimated. The automatic image analysis is
used under the endothelium microscopy. The computer graphics is used for analysis
of keratoconus dynamics.

Electronic microscopy of corneal endothelium is important for the analysis of
donor material for keratoplasty [1,2]. Let’s investigate the dynamics of the quantity
of endothelium cells in the process of donor graft retention after the penetrating
keratoplasty [3-11].

Work was partially supported by the Ministry of Science and Technology of Russian Feder-
ation.
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The mathematical-statistical processing of the endothelial microscopy results
was performed. The purpose of this research was the establishment of the depen-
dence of density of endothelial cells and corneal thickness as surgery outcome index
in dependence from type of the surgery and endothelial protector, diagnosis, diam-
eter of donor transplant and endothelial cells loss percent. So the dynamics of the
quantity of endothelium cells in the process of donor graft retention was studied for
different cases. The averaged characteristics of cells quantity and percentage ratio
of opacities and edemas between all cases were evaluated, diagrams of average char-
acteristics (cells quantities) depending on time after the siurgery were constructed.
The results were considered satisfactory for the cells quantities more then 1200.

The sampling from 199 operated patients, 200 eys, was taken for conducted
analysis. 28 parameters were considered for every patient. So the table from 200
lines and 28 columns was constructed.

The 1st parameter was the consequent number of the patient’s line in table, 2nd
- patient’s family name, 3rd - patient’s age in the point of surgery, 4th - sex (m, f),
5th - number of ambulatory card (five digit number), 6th - transplant’s diameter
in mm, 7th - protector’s type (“h” - hansurid, “n” - healon, “0” - absent), 8th - type
of surgery (“0” - ordinary penetrating keratoplasty, “1” - penetrating keratoplasty
with intraocular lense (IOL) without reconstruction, “2” - penetrating keratoplasty
without IOL with reconstruction, “3” - penetrating keratoplasty with IOL with
reconstruction), 9th - reaction of tissue incompatibility (“0” -absent, term of onset),
10th - cells quantity of donor eye, 11th - loss percent of donor eye (in percents), 12th
- pachymetria (thickness) of donor eye in mm, 13th and 14th - thickness and cells
quantity of operated eye in term until 1st week after the keratoplasty respectively,
15th and 16th - in term 1 week - month, 17th and 18th - the same in term of 1 -
3 months, 19th and 20th - the same in term of 3 months - 1 year, 21st and 22nd -
in term of 1 - 3 years, 23rd and 24th - in term of 3 - 5 years, 25th and 26th - more
then 5 years, 27th and 28th - diagnosis and code of diagnosis.

The additional type of the surgery ((A) - autokeratoplasty, (T) - therapeutic
keratoplasty) was indicated in the second column also if it was the case.

Let’s note that a part of dates was absent in the columns 14 - 26 in the connection
with the impossibility of its measurement and all sums were calculated on the basis
of filled positions of the table only.

The following diagnoses were taken into the consideration: 00 - leukoma of
nonclear etiology, 01 - herpes leukoma - keratitus outcome, 02 - keratoconus, 03 -
inborn dystrophia, 04 - gained dystrophia, 05 - transplant’s opacity, 06 - scar, 07
- perforation, 08 - corneal opacity, 09 - corneal ulcer, 10 - keratitus, 11 - herpes
keratitus.
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Let’s clarify that the diameter of the cornea - number expressed decimal fraction
with two signes before comma and after comma; cells quantity - four digits integer
number.

A big number of samplings from general tables population was done on param-
eter values as in one column and as at once in two or three columns.

The following samplings were done and their comparative analysis between them
and with general population was carried on: on column 2 with parameter (A), with
parameter (T); on column 7 with parameters “0”, “h” and “n”; on column 8 with
parameters “0”, “1”, “2” and “3”, on column 28 with parameters “00”-“11”. The mean
value of quantities is calculated in columns 10, 14, 16, 18, 20, 22, 24, 26 for every
sampling.

Let’s introduce the following notations. Let’s 𝑎(𝑠)𝑖𝑗 - value of j-th column for

i-th patient of the sampling, 𝑎(𝑠)𝑗 - mean value in j-th column for given sampling,

𝑛(𝑠)(𝑛
(𝑠)
𝑗 ) - number of the patients of given sampling (number of the patients of

given sampling for which the dates of observations exist) for every sampling. We
take into the account the general population when symbol upwards is absent. Then
we obtain for given sampling under the assumption that missing dates supposed
equal zero

𝑎
(𝑠)
𝑗 =

1

𝑛
(𝑠)
𝑗

𝑛(𝑠)∑︁
𝑖=1

𝑎
(𝑠)
𝑖𝑗 . (1)

We obtain for general population

𝑎𝑗 =
1

𝑛𝑗

𝑛∑︁
𝑖=1

𝑎𝑖𝑗 . (2)

So we obtain, for example, for the mean value of cells quantity in term 1 - 3 years
after the surgery in the case of sampling on 8th column of patients with ordinary
penetrating keratoplasty

𝑎
(8,”0”)
22 =

1

𝑛
(8,”0”)
22

𝑛(8,”0”)∑︁
𝑖=1

𝑎
(8,”0”)
𝑖22 .

The samplings on 11th column with loss perecentage from 0 till 3, 4 - 6, 7 - 10,
11 - 15, more then 15 and on 6th column depending on the transplant’s diameter
5.0 - 6.5 mm (partial keratoplasty), 7.0 - 8.5 mm (subtotal), equal or more then 9.0
mm (total) were done also.
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The samplings were compared between themself in all terms of the dynamics
of alteration. The graphs and diagrams were used for the analysis of mentioned
alterations. The graphs and diagrams were studied separately for samplings on
values of every column and all graphs and diagrams were studied altogether for all
samplings from every column.

The percentage of favorable outcomes (without reaction of tissue incompati-
bility, edema and corneal opacity) was calculated for every sampling by formula

𝑃
(𝑠)
𝑓 =

𝑛
(𝑠)
𝑓

𝑛(𝑠)
× 100%, (3)

where 𝑛(𝑠)𝑓 - number of favorable outcomes in the sampling.

The consideration of mean values samplings graphs on column 2, i.e. therapeu-
tical and autokeratoplasty, shows that their results (on dynamics of cells quantity
alteration on time after the surgery) were not satisfactory till previous time though
therapeutical keratoplasty gives little better results.

The consideration of the samplings mean values on column 7, on protector’s
presence and type, shows that the use of healon gives significant advantages, but
the use of hansurid practically doesn’t increase the cells quantity in the comparison
with the protector’s absence.

The analysis of cells quantity mean values for the samplings on column 8 con-
firms the fact that the ordinary penetrating keratoplasty without complications
gives the best results. The presence of eye reconstruction has little bigger influ-
ence on the surgery outcome then the intraocular lense in the connection with the
decreasing of cells quantity though the results remain still good.

The consideration of mean values for samplings on 11th column shows that
the surgery result better in sense of cells quantity as percentage loss of donor eye
smaller.

Analysis of mean values for samplings on 28th column on illnesses diagnosis
certified that the keratoplasty surgery gives the best results for keratoconus. The
results were quite satisfactory and just good for all types of leukomas, gained dys-
trophia and cornea opacities. The number of patients with corneal perforation and
ulcer and herpes keratitus was not sufficient for analysis. Less succesful results were
obtained for inborn dystrophia and keratitus. The samplings on two parameters on
7th and 8th columns altogether were done also. They confirm the conclusions done
before though some from these samplings less informative in the connection with
small number of observations.
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The mean unbiased quadratic deviation (dispersion) was calculated for all sam-
plings by formulas

𝑏
(𝑠)
𝑗 =

1

𝑛
(𝑠)
𝑗

𝑛(𝑠)∑︁
𝑖=1

(𝑎
(𝑠)
𝑖𝑗 )

2, 𝜎
(𝑠)
𝑗 =

√︁
𝑏
(𝑠)
𝑗 − (𝑎

(𝑠)
𝑗 )2, 𝜎

(𝑠)
𝑁𝑗 = 𝜎

(𝑠)
𝑗

⎯⎸⎸⎷ 𝑛
(𝑠)
𝑗

𝑛
(𝑠)
𝑗 − 1

. (4)

It was interesting to calculate the confidence boundaries 𝑑(𝑠)𝑗 pointed out that the
value of cells quantity for the patient from this sampling will be with the probability
95interval (𝑎(𝑠)𝑗 − 𝑑

(𝑠)
𝑗 , 𝑎

(𝑠)
𝑗 + 𝑑

(𝑠)
𝑗 ). They were evaluated by formulas

𝑑
(𝑠)
𝑗 = 𝜎

(𝑠)
𝑁𝑗

𝑇 (𝑛
(𝑠)
𝑗 − 1)√︁
𝑛
(𝑠)
𝑗

. (5)

where 𝑇 (𝑘) = 𝑇1−𝛼(𝑘) - values of Student’s t-distribution for number of degrees
of freedom 𝑘 and probability 1− 𝛼 = 0.95.

It was necessary to perform additional comparative analisis in the connection
with small volume of some separate samplings which was necessary for the verifi-
cation of the comparison’s reliability.

Let’s You have two samplings on the same column. Then these samplings may
be distinguishable with confidence 1 − 𝛼, or they may be indistinguishable on the
Student’s criteria in other case. This analysis was used, for example, for the
analysis of samplings from 7th column.

All computations were carried on personal computers.

2 Websites for keratoconus patients

The website keratoconus.ru was created by a doctor and a keratoconus patient
in 2002 under the technical support of the Russian Academy of Sciences. It was
decided to do that due to a great amount of mistakes in diagnostics and treatment
of keratoconus. The information about typical refractive and clinical forms of the
disease, its pathogenesis, the contemporary methods of surgery and correction was
collected and analyzed. A forum and FAQ were created also. The information
about other corneal diseases - herpetic keratitis, adenovirus infection, dystrophies,
urgent help etc. was presented at the website also. According to the feedback of our
patients - the website helped them in seeking professional help for their diseases,
explained many facts about pathogenesis of the corneal pathology and demonstrated
that there are good outcomes in the situations that were regarded hopeless before.
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Later two other websites were launched - crosslinking.ru and keraring.ru that were
dedicated to collagen crosslinking and implanting of kerarings for the correction of
keratoconus. Now we are working on the website dedicated to herpetic keratitis and
adenovirus eye infection. The profiles on facebook and in livejournal are opened
also, but it is the task for the future to launch them. It’s necessary to mention in
the conclusion that internet is a very effective tool in educating of our patients and
doctors and that it’s a good source of patients for every clinic and doctor.

The creation of English version of the website is planned. The search function
exists on the website. The profiles in the social networks vkontakte.ru , odnoklass-
niki.ru , facebook.com are created also. The website is created on the basis of great
experience of ophthalmologists and surgeons of the Scientific Research Institute of
Eye Diseases of the Russian Academy of Medical Sciences. It was the purpose to
give information for the patient about the modern achievements of ophthalmol-
ogy more convenient for his concrete case under the creation of this website It’s
possible only on the basis of instant improvement of applicable technologies, use
of the modern and safe equipment, professionals of the highest qualification. The
ophthalmology is one of the most rapid developed fields of medicine so the website
was created on the basis of the latest improvements and elaborations of Russian
and foreign specialists, scientific and clinical research studies, participation in the
international meetings and educational courses. The website is designated mostly
for patients but may be useful for the ophthalmologists also. The website is not
recommended for the diagnostics of the illnesses and determination of the treatment
yourself in the connection with danger. But the page “Contacts” exists where you
can find the addresses and phone numbers for clinics and doctors. E-mail address
for contacts is given. It’s planned for the future that the patients from long-distance
regions perform their eye tests and observations on the digital medical equipment
and send them by E-mail for the investigations and recommendations. It will be
the step to the realization of the idea of virtual patient and mobile patient.

You go to the principal page of the website firstly. The following columns exist:
adenovirus eye illnesses, bullez keratopaty, herpetic eye illnesses, cornea dystrophia,
keratoconus, other cornea illnesses, emergency help. The following subwebpages
exist: principal, news, about the website, contacts, doctors with a lot of concrete
additional information.

The website keraring.ru describes the purposes of this type of eye surgery. The
following columns exist: “what is it keraring?”, mechanism of the method’s effect,
indications, contraindications, complications, FAQ, video and contacts.

The website crosslinking.ru gives information about the method of collagen
crosslinking. The following webpages exist: “what is it crosslinking?”, history of
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the method, mechanism of the method’s effect, indications, contraindications, path
of the surgery, results, complications, FAQ, riboflavin - vitamin 𝐵2 and contacts.
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equation, Saddle-point approximation, Fresnel integral

AMS Mathematics Subject Classification: 60G51, 62P05

Abstract. In this paper we obtain, for spectrally negative Lévy processes 𝑋,
uniform approximations for the finite time ruin probability

Ψ(𝑡, 𝑢) = 𝑃𝑢[𝑇 6 𝑡], 𝑇 = inf{𝑡 > 0 : 𝑋(𝑡) < 0},

when 𝑢 = 𝑋(0) and 𝑡 tend to infinity such that 𝑣 = 𝑢/𝑡 is constant, and the
so-called Cramér light-tail conditions are satisfied.

1 Introduction

Let 𝑋(𝑡) = 𝑢− 𝑌 (𝑡), 𝑢 > 0, and 𝑌 (𝑡) be a Lévy process on R with the symbol

𝜅𝑌 (𝑧) = logE𝑒𝑧(𝑢−𝑋(1))) = 𝜅𝑋(−𝑧). (1)

Define the moment of ruin with the initial capital 𝑢 as

𝜏𝑢 = inf{𝑡 : 𝑋(𝑡) 6 0}. (2)

Let Ψ(𝑡, 𝑢) = 1 − 𝑅(𝑡, 𝑢) = P{𝜏𝑢 < 𝑡} be the ruin probability, and 𝑅(𝑡, 𝑢) be the
survival probability. In contrast to [3] we want to study the asymptotics of Ψ(𝑡, 𝑢)
as 𝑡→ ∞, 𝑢→ ∞ and 𝑢/𝑡→ 𝑣.

Assume that the Cramér light tail condition holds: ∃𝛾 > 0 such that 𝜅𝑌 (𝛾) = 0,
𝜅′𝑌 (𝛾) < ∞. Let 𝑣𝑐𝑟 = 𝜅′𝑌 (𝛾). Define by 𝑧𝑣 the so-called Cramér tilt, i.e. the real
solution of equation 𝜅′𝑌 (𝑧𝑣) = 𝑣. Let 𝑧𝑣 be the so-called adjoint tilt defined by

𝑧𝑣 = max[𝑧 ∈ R : 𝑧 ̸= 𝑧𝑣, 𝜅𝑌 (𝑧) = 𝜅𝑌 (𝑧𝑣).] (3)

Finally, define the Legendre transform

𝜅*𝑌 (𝑣) = sup
𝑧
[𝑧𝑣 − 𝜅𝑌 (𝑧)]. (4)



Uniform Asymptotics of Ruin Probabilities for Lévy Processes 79

Then for 𝑣 < 𝑣𝑐𝑟

Ψ(𝑡, 𝑢) ≈ 𝑒−𝜅
*
𝑌 (𝑣)𝑡√︀

2𝜋𝑡𝜅′′𝑌 (𝑧𝑣)𝑧𝑣
+ 𝐶𝛾𝑒

−𝛾𝑢 (5)

with 𝐶𝛾 = | 𝜅
′(0)
𝜅′(𝛾) |. The coefficient 𝐶𝛾 coincides with

lim
𝑢→∞

𝑒𝛾𝑢Ψ(𝑢) = −
𝜅′𝑌 (0)

𝜅′𝑌 (𝛾)

where Ψ(𝑢) = P(𝜏𝑢 <∞). For 𝑣 > 𝑣𝑐𝑟

Ψ(𝑡, 𝑢) ≈ 𝑒−𝜅
*
𝑌 (𝑣)𝑡√︀

2𝜋𝑡𝜅′′𝑌 (𝑧𝑣)

(︁ 1

𝑧𝑣
− 1

𝑧𝑣

)︁
. (6)

This asymptotic expansion breaks down on the Stokes line 𝑣 = 𝑣𝑐𝑟.

2 The Schrödingher-Bachelier-Lévy formula for Brownian motion
with drift

Let 𝑌 (𝑡) = 𝜎𝐵(𝑡) − 𝑐𝑡, 𝜅𝑌 (𝑧) = 𝜎2𝑧2

2 − 𝑐𝑧, 𝛾 = 2𝑐
𝜎2 , 𝑧𝑣 = 𝑐+𝑣

𝜎2 , 𝑧𝑣 = 𝑐−𝑣
𝜎2 , 𝜅*𝑌 (𝑣) =

(𝑐+𝑣)2

2𝜎2 . In this case the ruin probability may be found explicitly:

Ψ(𝑡, 𝑢) = Φ̄
(︁𝑢+ 𝑐𝑡

𝜎
√
𝑡

)︁
+ 𝑒−

2𝑐𝑢
𝜎2 Φ

(︁−𝑢+ 𝑐𝑡

𝜎
√
𝑡

)︁
. (7)

If 𝑢 = 𝑣𝑡 and 𝑡→ ∞ write down the asymptotic expansion of (7) for 𝑣 < 𝑣𝑐

Ψ(𝑡, 𝑢) ≈ 1√
2𝜋𝑡

𝑒−
(𝑐+𝑣)2

2𝜎2 𝑡 𝜎

(𝑐+ 𝑣)
+ 𝑒−

2𝑐𝑣𝑡
𝜎2 (8)

and for 𝑣 > 𝑣𝑐𝑟

Ψ(𝑡, 𝑢) ≈ 1√
2𝜋𝑡

𝑒−
(𝑐+𝑣)2

2𝜎2 𝑡
(︁ 𝜎

(𝑐+ 𝑣)
+

𝜎

(𝑣 − 𝑐)

)︁
. (9)

Expressions (8),(9) form a particular case of (5),(6). As before the asymptotic
expansion breaks down on the Stokes line 𝑣𝑐𝑟 = 𝑐.
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3 Smoothing of Stokes discontinuities

Asymptotic analysis of integrals with a pole near the saddle point has roots going
back to [7]. Here we present a refined method of obtaining an asymptotic expansion
of integrals of the type

𝐼 =
1

2𝜋𝑖

∫︁
Γ

𝑓(𝑧, 𝑣)𝑒𝑡𝐹 (𝑧,𝑣)d𝑧 =
1

2𝜋𝑖

∫︁
Γ

𝑔(𝑧, 𝑣)

𝑧 − 𝑧𝑝(𝑣)
𝑒𝑡𝐹 (𝑧,𝑣)d𝑧. (10)

Let 𝐹 (𝑧, 𝑣) and 𝑔(𝑧, 𝑣) be holomorphic functions and 𝐹 (𝑧, 𝑣) possesses a single
saddle point. Denote by 𝐹𝑝, 𝐹𝑠 and 𝑔𝑝, 𝑔𝑠 the values of the phase function and
out-of-exponent function at the pole and the saddle point, respectively. Suppose
that for 𝑣 < 𝑣𝑐𝑟 the contour Γ may be deformed into a steepest descent contour Γ𝑠
by crossing only one pole 𝑧𝑠. Using an explicit expression for the modified Fresnel
integral ( [4]) we get

𝐼 ≈ 𝑔𝑝𝑒
𝑡𝐹𝑝Φ

(︁
𝑠𝑖𝑔𝑛(𝑣 − 𝑣𝑐𝑟)

√︁
2𝑡(𝐹𝑝 − 𝐹𝑠)

)︁
+
𝑒𝑡𝐹𝑠

2𝜋𝑖

∫︁
R

ℎ1(𝑠)𝑒
−𝑡𝑠2d𝑠. (11)

The standard saddle point method provides an asymptotic expansion of the last
integral in (11). Here we use the change of variables 𝑠(𝑧) =

√︀
𝐹𝑠 − 𝐹 (𝑧) and define

an inverse function 𝑧 = 𝑧(𝑠) in a neighborhood of a saddle point. Next,

ℎ(𝑠) =
𝑠− 𝑠𝑝
𝑧(𝑠)− 𝑧𝑝

𝑔(𝑧(𝑠))𝑧′(𝑠)

and
ℎ1(𝑠) =

ℎ(𝑠)− ℎ𝑝
𝑠− 𝑠𝑝

. (12)

Observe that ℎ𝑝 = 𝑔𝑝. The expression 𝑑𝑝𝑠 = 𝑠𝑖𝑔𝑛(𝑣 − 𝑣𝑐𝑟)
√︀

2(𝐹𝑝 − 𝐹𝑠) is usually
called the Dingle singulant. Substuting 𝑠 = 0 into (12) we obtain

ℎ1,𝑠 =
ℎ𝑠 − ℎ𝑝
−𝑠𝑝

=
1

−𝑠𝑝

(︂
− 𝑠𝑝
𝑧𝑠 − 𝑧𝑝

𝑔𝑠𝑧
′
𝑠 − 𝑔𝑝

)︂
=

𝑔𝑠𝑧
′
𝑠

𝑧𝑠 − 𝑧𝑝
+
𝑔𝑝
𝑠𝑝

= 𝑓𝑠

√︃
2

(−𝐹 ′′
𝑠 )

+
𝑔𝑝
𝑠𝑝
.

Combining all terms together we obtain

𝐼 ≈ 𝑔𝑝𝑒
𝑡𝐹𝑝

[︁
Φ(𝑑𝑝𝑠

√
𝑡) +

𝜙(𝑑𝑝𝑠
√
𝑡)

𝑑𝑝𝑠
√
𝑡

]︁
+

𝑓𝑠𝑒
𝑡𝐹𝑠√︀

2𝜋𝑡(−𝐹 ′′
𝑠 )

+𝑂(𝑡−3/2) (13)
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4 Cramér-Lundberg model.

Next, we derive an asymptotic expansion in the case of the classical Cramér-

Lundberg process 𝑌 (𝑡) = −𝑐𝑡 +
𝑁(𝑡)∑︀
𝑗=1

𝑌𝑗 . Here 𝑁(𝑡) is the Poisson process of rate

𝜆, the IID jumps 𝑌𝑗 ∼Exp(𝛽) with mean 𝑚 = 𝛽−1 (cf. [1]). In this case,

𝜅𝑌 (𝑧) = 𝑐𝑧
(︀ 𝜌

1−𝑚𝑧
− 1
)︀
, 𝜌 =

𝜆

𝛽𝑐
=

1

1 + 𝜗
, 𝛾 = 𝛽 − 𝜆

𝑐
. (14)

The eventual ruin probability has the form Ψ(𝑢) = 𝜌𝑒−𝛾𝑢. The critical velocity
𝑣𝑐 = 𝜅′𝑌 (𝛾) = 𝑐(𝜌−1 − 1) = 𝑐𝜗. Next, the convex conjugate of the symbol

𝜅*𝑌 (𝑣) =
(︁√︀

𝛽(𝑐+ 𝑣)−
√
𝜆
)︁2
.

The Cramér tilt equation is 𝜅′𝑌 (𝑧) = −𝑐+ 𝜆𝛽
(𝛽−𝑧)2 = 𝑣, hence 𝑧𝑣 = 𝛽

(︀
1− 1

𝑣1𝜗1

)︀
, and

the adjoint tilt 𝑧𝑣 = 𝛽
(︀
1 − 𝑣1

𝜗1

)︀
. Here 𝜗1 =

√
1 + 𝜗, 𝑣1 =

√︀
1 + 𝑣/𝑐. Finally, the

saddle-point constant

𝐷𝑣 =
1

𝑧𝑣
− 1

𝑧𝑣
=

𝜆𝑣

(
√︀
𝜆𝛽(𝑐+ 𝑣)− 𝜆)(

√︀
𝜆𝛽(𝑐+ 𝑣)− 𝑐𝛽)

.

It is convenient to specify the integral representation of the solution in terms
of the so-called Cremona equation (3): 𝜅𝑌 (𝜁) = 𝜅𝑌 (𝑧) , we denote its real solution
as 𝑧 = 𝜒(𝜁). Selecting 𝜁 as a new independent variable we obtain the integral
representation of the ruin probability in the form

Ψ(𝑡, 𝑢) =
1

2𝜋𝑖

𝜁0+𝑖∞∫︁
𝜁0−𝑖∞

𝑓(𝜁)𝑒𝑡𝐹 (𝜁)d𝜁 (15)

with the phase function
𝐹 (𝜁) = 𝜅𝑌 (𝜁)− 𝜒(𝜁)𝑣 (16)

and prefactor

𝑓(𝜁) =
𝜅′𝑌 (𝜁)

𝜅′𝑌 (𝜒(𝜁))

(︁ 1

𝜒(𝜁)
− 1

𝜁

)︁
. (17)
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Specifying (15) in the case of the symbol (14) we obtain that 𝜒(𝜁) = 𝛽 𝜁−𝛾𝜁−𝛽 , and the
phase function

𝐹 (𝜁) = 𝐹𝑠 + 𝑐
(𝜁 − 𝜁𝑠)

2

𝛽 − 𝜁
, (18)

𝐹𝑠 = −𝜅*𝑌 (𝑣) = −𝜆(𝜗1𝑣1 − 1)2, 𝜁𝑠 = 𝛽(1− 𝑣1/𝜗1). (19)

Next, specify the prefactor

𝑓(𝜁) =
𝜌

𝜁
+

1

𝜁 − 𝛾
+
𝜆/𝑐− (1 + 𝜌)(𝜁 − 𝛽)

(𝜁 − 𝛽)2
+ 𝜓(𝜁) (20)

where 𝜓(𝜁) is a regular function. In fact, 𝐹 (𝜁) has two saddle points 𝜁𝑠;1,2 =
𝛽
(︀
1± 𝑣1

𝜗1

)︀
but the contour can only be deformed to pass through the saddle point

𝜁𝑠 = 𝜁𝑠;1 = 𝛽
(︀
1 − 𝑣1

𝜗1

)︀
. The uniform asymptotics is significantly different from the

“naive saddle point approximation”

Ψ(𝑡, 𝑢) ≈ 𝑆𝑃 (𝑡, 𝑢) =
𝑓𝑠𝑒

𝑡𝐹𝑠√︀
2𝜋𝑡(−𝐹 ′′

𝑠 )

with

𝑓𝑠 =
𝜌𝑣

𝜆𝑣21(𝑣1𝜗1 − 1)(𝑣1/𝜗1 − 1)
, −𝐹 ′′

𝑠 =
2𝑐2

𝜆𝜗1𝑣1
.

The saddle point 𝑧𝑠(𝑣) = 𝛽(1− 𝑣1/𝑐1) intersects the pole 𝑧 = 0 when 𝑣𝑐𝑟 = 𝑐
(︀𝜆𝛽
𝑐 −

1
)︀
= 𝑐𝜗, and it never intersects the pole 𝑧 = 𝛾. Let us apply (11) with 𝑧𝑝 = 0, 𝑔𝑝 =

𝜌, 𝐹𝑝 = −𝛾𝑣. The uniform appoximation takes the form

Ψ(𝑡, 𝑢) ≈ 𝑆𝑃 (𝑡, 𝑢) + 𝜌𝑒−𝛾𝑣𝑡
(︁
Φ(𝑑0

√
𝑡)− 𝜙(𝑑0

√
𝑡)

𝑑0
√
𝑡

)︁
. (21)

Here the Dingle singulant 𝑑0 =
√
2
(︀√
𝑐𝛽 −

√︀
𝜆(1 + 𝑣/𝑐)

)︀
vanishes at 𝑣𝑐𝑟.

5 Laplace transform of survival probability

It is instructive to present an expression for the double Laplace tranform of the
survival probability

�̃�(𝑞, 𝑧) =

∞∫︁
0

∞∫︁
0

𝑅(𝑡, 𝑢)𝑒−𝑞𝑡−𝑧𝑢d𝑢d𝑡.
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In terms of the symbol 𝜅𝑋(𝑧) and the inverse function 𝜅−1
𝑋 (𝑞) (the unique non-

negative root is selected)

�̃�(𝑞, 𝑧) =

1
𝑧 −

1
𝜅−1
𝑋 (𝑞)

𝜅𝑋(𝑧)− 𝑞
. (22)

Finally, we present the derivation of (22) in the case of compound Poisson

process 𝑌 (𝑡) = −𝑐𝑡+
𝑁(𝑡)∑︀
𝑖=1

𝑌𝑖 where 𝑁(𝑡) is a Poisson process of rate 𝜆 and IID RVs

{𝑌𝑖} has a CDF 𝐵𝑌 (𝑦). The survival probability 𝑅 = 𝑅(𝑡, 𝑢) satisfies the equation
(cf. [6])

𝑅𝑡 − 𝑐𝑅𝑢 + 𝜆𝑅 = 𝜆𝑅 ⋆ 𝑏 (23a)

with the boundary condition

lim
𝑢→∞

𝑅(𝑡, 𝑢) = 1 ∀𝑡 (23b)

and initial condition
𝑅(0, 𝑢) ≡ 1 (23c)

where 𝑅 ⋆ 𝑏 =
∫︀ 𝑢
0 𝑅(𝑡, 𝑢 − 𝑦)d𝐵𝑌 (𝑦) and 𝐵𝑌 stands for the CDF of the claim

sizes. First, substitute 𝑡′ = 𝜆𝑡 and 𝑢′ = 𝜆𝑢/𝑐 to reduce the number of parameters.
Performing the Laplace transform with respect to 𝑢 we obtain the initial value
problem

�̃�𝑡 − 𝜅(𝑧)�̃� = −𝑔(𝑡), �̃�(0, 𝑧) =
1

𝑧
. (24)

Here 𝑔(𝑡) = 𝑅(𝑡, 0) is an unknown function and 𝜅(𝑧) = 𝑧 − 1 + �̃�(𝑧). The solution
of problem (23) has the form

�̂�(𝑞, 𝑧) =
1/𝑧 − 𝑔(𝑞)

𝑞 − 𝜅(𝑧)
. (25)

In the absense of the pole we have 1/𝑧 − 𝑔(𝑞) = 0 or 𝑔(𝑞) =
[︁
(𝜅−1(𝑞))

]︁−1
. Thus,

relation (25) coincides with (22).
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Abstract. Mathematical models, based on the SIR (susceptible-infected-removed)
process, have long been used to analyse epidemics of infectious disease. We consider
spatial aspects of interacting SIR populations by introducing a one-dimensional
lattice of SIR nodes. We obtain an accurate approximation for the propagation
speed of traveling-wave type solutions. When coupling coefficients are randomly
distributed, the average speed of propagation is shown to slow down. The critical
reaction time between initial registration of an epidemic and the actual intervention
before the number of infected reaches a critical proportion is studied in a stochastic
framework. We develop a two-stage model of developed epidemic describing the
evolution as a deterministic system with randomized initial conditions linked to
the stochastic stage when the number of infected is small and the fluctuations are
essential.

1 Travelling waves in a chain of SIR centres

A 1D lattice of susceptible/infected/removed (SIR) epidemic centers with a weak
coupling and a finite characteristic migration time is considered numerically and
analytically.

Travelling wave-like solutions preserving their shape and speed (see Figure 1)
are found over a wide parameter range, and explicit formulae for the speed of these
waves are obtained. For a nearest-neighbour interaction when the transport terms
𝑖𝑛−1→𝑛 and 𝑖𝑛+1→𝑛 are accounted only, the evolution of the system is described by

𝑑

𝑑𝑡
𝑠𝑛 = −𝜌𝑠𝑛𝑖𝑛,

𝑑

𝑑𝑡
𝑖𝑛 = (𝜌𝑠𝑛−1)𝑖𝑛+

𝑑

𝑑𝑡
𝑖𝑛−1→𝑛+

𝑑

𝑑𝑡
𝑖𝑛+1→𝑛, 𝑛 = 0,±1,±2, . . . (1)

where 𝑠𝑛 = 𝑆𝑛/𝑁, 𝑖𝑛 = 𝐼𝑛/𝑁 are shares of susceptible, 𝑆𝑛, and infected, 𝐼𝑛, re-
spectively, in the 𝑛th node (𝑁 is the total population in every node); 𝜌 = 𝛽𝑁/𝛼
is reproduction number, (here 𝛽 and 𝛼 are the contamination and recovery rates,
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Figure 1. Propagation of waves from nodes 𝑛 = −3 and 𝑛 = +3 with different initial
numbers of infected: 𝑖−3(0) = 10−2, 𝑖+3(0) = 10−3

respectively); the time is dimensionlized by the recovery rate 𝛼; the transport terms
can be written in accordance with diffusion-like model of migration:

𝑖𝑛±1→𝑛(𝑡) =

∞∫︁
−∞

𝑖𝑛±1(𝑡− 𝑡′)�̇�(𝑡′)d𝑡, 𝑔(𝑡) = 𝜀(1− 𝑒−𝑡/𝜏 ) 𝜃(𝑡). (2)

where 𝜀 is the coupling coefficient (share of time a given individual spents in the
neighbour node), 𝜏 is the characteristics migration time.

Travelling wave is a solution to (1)–(2) of the form 𝑖𝑛(𝑡) = exp (𝜆𝑡− 𝑛𝑇 ). The
velocity 𝑣 = 𝑇−1 of the travelling wave is defined by the characteristic equation

𝐿(𝑇, 𝜆) = 𝜆− (𝜌− 1)− 𝜀𝜏

𝜆𝜏 + 1

[︁
𝑒𝜆𝑇 + 𝑒−𝜆𝑇

]︁
= 0 (3)

via the relations 𝐿(𝜆, 𝑇 ) = 0, 𝜕𝐿
𝜕𝜆 (𝜆, 𝑇 ) = 0. These results are extended to a model

with a random coupling. It is interesting that in a lattice with the small random
fluctuations of the coupling constant 𝜀 the travelling wave is slowed down. The
asymptotic expansion with respect to the variance 𝜎2 = 𝜎2𝜀 has the form

𝜆0𝑇 =
(𝑊0 − 1)2

𝑊0
+ 𝜎2

𝑊0(𝑊
2
0 + 2)

8(𝑊0 + 1)5
+𝑂(𝜎4) (4)
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where 𝑊0 = 𝑊0(𝑒/𝜀) is the zeroth branch of the Lambert function (𝑊 (𝑥) is a
solution to 𝑊𝑒𝑊 = 𝑥) and 𝜀 is the mean value of the coupling constant. The
direct numerical modeling confirms analytical relations in both the deterministic
and randomized cases [2, 3].

An important observation is that, for weak coupling, the main part of the trav-
elling wave is well approximated by the limiting SIR solution which describes the
epidemic in the limit of the infinitesimally small initial contamination. In this
approximation the number of susceptibles and infected in the outbreak are, respec-
tively, 𝑠limoutb = 𝜌−1, 𝑖limoutb = 1 − 𝜌−1 (ln 𝜌+ 1). Then every solution can be approx-
imated by 𝑖 = 𝑖lim(𝑡 − 𝑡outb (𝑖0)), where the outbreak time 𝑡outb can be calculated
through the expansion by small 𝑖0 (see [3])

𝑡outb =

𝑠0∫︁
𝑠outb

d𝑠

𝜌(𝑠− 𝑠2) + 𝑠 ln(𝑠/𝑠0)
∼= − ln 𝑖0

𝜌− 1
+ Θ(𝜌) +𝑂(𝑖0),

Θ =

1−𝜌−1∫︁
0

[︂
1

(1−𝜉) [𝜌𝜉 + ln(1−𝜉)]
− 1

𝜉 (𝜌−1)

]︂
d𝜉+

2 ln(1−𝜌−1)

𝜌−1
≈ ln (𝜌− 1)

𝜌− 1
.

Numerically results depicted in Figure 2 indicate that the smaller the coupling
coefficient 𝜀, the closer the amplitude of the travelling wave to that of the limiting
solution.
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Figure 2. Numerical simulation of a lattice (first 10 nodes) for 𝜌 = 3, 𝑖0 = 0.01 and
(𝜌−1)𝜏 = 1: for 𝜀 = 0.1 (a), 𝜀 = 0.05 (b), 𝜀 = 0.01 (c). The dashed line indicates 𝑖limoutb for

𝜌 = 3
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2 Stochastic models

2.1 Critical reaction time

Consider a Markov chain on (𝑆, 𝐼), 𝑆, 𝐼 > 0, 𝑆 + 𝐼 = 𝑁 with absorption in (0, 𝑁)
and the transition rate 𝛽𝑆𝐼 for transition (𝑆, 𝐼) → (𝑆 − 1, 𝐼 + 1). Let 𝛽 = 𝛽′/𝑁
and 𝛽′ = 1 wlog. Define 𝜏 = 𝜏(𝐼1, 𝐼0, 𝑁) = inf{𝑡 : 𝐼(𝑡) = 𝐼1}. Then with 𝑆𝑖 =

𝑁 − 𝐼𝑖, 𝑖 = 1, 2 and 𝑋 = 𝑋(𝜃,𝑁) = 𝑁
2

√︁
1− 𝜃

𝑁 − 𝑁
2

𝜓(𝜃) = E𝑒𝜃𝜏 =
Γ(𝐼1)Γ(𝑆0 + 1)Γ(𝐼0 +𝑋)Γ(𝑆1 + 1 +𝑋)

Γ(𝐼0)Γ(𝑆1 + 1)Γ(𝐼1 +𝑋)Γ(𝑆0 + 1 +𝑋)
(5)

[5]. Then the scaled process (𝑆Λ(𝑡), 𝐼Λ(𝑡)) = (Λ−1𝑆(𝑡),Λ−1𝐼(𝑡)) in a population of
size ⌊Λ𝑁⌋ with the initial conditions ⌊Λ𝑆0⌋, ⌊Λ𝐼0⌋ and the re-scaled transition rate
Λ−1𝑁−1𝑆𝐼 converges in distribution as Λ → ∞ to the solution of ODEs:

𝑑

𝑑
𝑆 = −𝑁−1𝑆𝐼,

𝑑

𝑑𝑡
𝐼 = 𝑁−1𝑆𝐼.

The solution of (5) with the initial condition 𝐼0 reaches the level 𝐼1 at the moment
𝑡 = ln

(︀
𝑆0𝐼1
𝐼0𝑆1

)︀
. Let 𝑆𝑗 = 𝑠𝑗𝑁, 𝐼𝑗 = 𝑖𝑗𝑁 , 𝑗 = 1, 2. In the stochastic case we

demonstrate that

E𝜏 = ln
(︁𝑠0𝑖1
𝑖0𝑠1

)︁
+

1

2𝑁

[︁ 1
𝑖0

− 1

𝑖1
+

1

𝑠0
− 1

𝑠1

]︁
+𝑂(𝑁−2).

Central limit theorem. As 𝑁 → ∞
√
𝑁(𝜏 − 𝑡) ⇒ 𝑁(0, 𝜎2)

where 𝜎2 = 2𝑡+ 1
𝑖0
− 1

𝑖1
− 1

𝑠0
+ 1

𝑠1
.

2.2 Two-stage model of the SIR outbreak

We study the standard SIR model in the small initial contamination (SIC) approx-
imation and distinguish two stages of epidemic evolution. Stage 1 is the initial
contamination stage when the number of infected is small and the influence of their
fluctuations is vital. At this stage the system is randomized, and governed by sto-
chastic equations. Stage 2 is the developed outbreak and the standard SIR model
works well as the number of individuals in all components is large. Therefore, we
consider a deterministic system with randomized initial conditions linked to the
stochastic stage (see Figure 3), On the initial contamination stage SIR model may
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Figure 3. Schematic of proposed model: semi-randomized SIR model with a Small Initial
Contagion approximation. The discrete nature of the population and the associated

stochastic behaviour is accounted for at Stage 1 when the number of infected is small.
This leads to a stochastic initial condition (with PDF depicted between the stages) for

the Stage 2 described by deterministic equations

be approximated by an idealised SI model on Z+ with the transitions 𝐼 → 𝐼 + 1
and 𝐼 → 𝐼 − 1 with rates 𝛽′𝐼 and 𝛼𝐼 and absorption at the origin, the moment
generating function (MGF) has the form

𝐺(𝑧, 𝑡) = E𝑧𝐼(𝑡) =
[︁ (𝑧 − 1)𝑒𝜆0𝑡 − (𝜌𝑧 − 1)

𝜌(𝑧 − 1)𝑒𝜆0𝑡 − (𝜌𝑧 − 1)

]︁𝐼0
(6)

where 𝜆0 = 𝛽′−𝛼, 𝜌 = 𝛽′/𝛼 and 𝐼0 is the initial condition [1]. In the stochastic SIR
model with transitions 𝐼 → 𝐼+1, 𝑆 → 𝑆−1 with rate 𝛽𝑆𝐼 and 𝐼 → 𝐼−1, 𝑅→ 𝑅+1
with rate 𝛼𝐼 on the set 𝑆+ 𝐼 +𝑅 = 𝑁,𝑆, 𝐼,𝑅 > 0 at absorption at points (0, 𝑁, 0)
and (0, 0, 𝑁) the MGF

𝐺(𝑧, 𝑦, 𝑡) = E
[︁
𝑧𝐼(𝑡)𝑦𝑆(𝑡)

]︁
(7)

satisfies the PDE [4]

𝐺𝑡 = 𝛽𝑧(𝑧 − 𝑦)𝐺𝑧𝑦 − 𝛼(𝑧 − 1)𝐺𝑧 (8)

with the initial condition 𝐺(𝑧, 𝑦, 0) = 𝑧𝐼0𝑦𝑁−𝐼0 .
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2.3 Hydrodynamic limit

In the SI model the scaled random process 𝐼*(𝑡) = Λ−1𝐼(𝑡) on Z+ with the scaled
initial condition ⌊Λ𝐼0⌋ converges in distribution as Λ → ∞ to a deterministic func-
tion 𝐼(𝑡) satisfying the ODE

𝑑

𝑑𝑡
𝐼 = (𝛽′ − 𝛼)𝐼 (9)

with the initial condition 𝐼(0) = 𝐼0.
For the stochastic SIR model the scaled Markov chain (𝐼*(𝑡), 𝑆*(𝑡), 𝑅*(𝑡))

𝐼*(𝑡) = Λ−1𝐼(𝑡), 𝑆*(𝑡) = Λ−1𝑆(𝑡)

in a population of size ⌊Λ𝑁⌋ defined by the scaling of the transition rate 𝛽 → Λ−1𝛽
and scaling of the initial conditions

𝐼(0) = ⌊Λ𝑁⌋, 𝑆(0) = ⌊Λ𝑁⌋, 𝑅(0) = 0

converges in distribution as Λ → ∞ to the deterministic functions (𝐼, 𝑆) described
by the ODEs

𝑑

𝑑𝑡
𝑆 = −𝛽𝑆𝐼, 𝑑

𝑑𝑡
𝐼 = 𝛽𝑆𝐼 − 𝛼𝐼, �̂� = 𝑁 − 𝐼 − 𝑆. (10)

with the initial condition 𝐼(0) = 𝐼0, 𝑆(0) = 𝑆0.

2.4 Contamination of an 𝑆𝐼 node by external infected

Consider a Markov chain {𝐼(𝑡), 𝐽(𝑡)} on Z2
+ with transition rates: (𝐼, 𝐽) → (𝐼 +

1, 𝐽), the rate 𝛽′(𝐼+𝐽); (𝐼, 𝐽) → (𝐼−1, 𝐽), the rate 𝛼𝐼; (𝐼, 𝐽) → (𝐼, 𝐽−1) the rate
(𝛼 + 𝛿)𝐽 and (𝐼, 𝐽) → (𝐼, 𝐽 + 1), the rate 𝜇(𝑡). Here 𝐼 > 0 is the number of local
infected in the node, 𝐽 > 0 is the number of infective visitors from other centers.
Let 𝑃𝑚𝑛(𝑡) = P(𝐼(𝑡) = 𝑚,𝐽(𝑡) = 𝑛), introduce the MGF

𝐺(𝑡, 𝑦, 𝑧) =

∞∑︁
𝑚=0

∞∑︁
𝑛=0

𝑦𝑚𝑧𝑛𝑃𝑚𝑛(𝑡). (11)

The function 𝐺(𝑡, 𝑦, 𝑧) satisfies a PDE

𝐺𝑡 = (𝑦 − 1)(𝛽′𝑦 − 𝛼)𝐺𝑦 + [𝛽′(𝑦 − 1)𝑧 − (𝛼+ 𝛿)(𝑧 − 1)]𝐺𝑧 + 𝜇(𝑡)(𝑧 − 1)𝐺 (12)
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with the general solution

𝐺 = 𝐹

(︂
𝑧, 𝑡+

(𝛼+ 𝛿)(𝑧 − 1)

𝛽′ − 𝛼
ln(𝑦 − 1) +

1 + 𝛼+ 𝛿 − (𝛽′ + 𝛿)𝑧

𝛽′ − 𝛼
ln(𝛽′𝑦 − 𝛼)

)︂
×

× exp
(︁
−

𝑦∫︁
𝐶

d𝑦′

(𝛽′𝑦′ − 1)(𝑦′ − 1)
𝜇(𝑡+ 𝜃)

)︁
,

𝜃 =
1− 𝛼− 𝛿 + (𝛼+ 𝛿)𝑧

𝛽′ − 𝛼
ln
𝑦′ − 1

𝑦 − 1
− 1 + 𝛼+ 𝛿 − (𝛽′ + 𝛿)𝑧

𝛽′ − 𝛼
ln
𝛽′𝑦′ − 𝛼

𝛽′𝑦 − 𝛼
.

Here 𝐹 (·, ·) is an arbitrary function and 𝐶 is an arbitrary constant.
Next, by differentiation of (12) with respect 𝑦 and 𝑧, and substituting 𝑦 = 𝑧 = 1,

we obtain the following equations for 𝐼(𝑡) = E𝐼(𝑡) and 𝐽(𝑡) = E𝐽(𝑡):

𝑑

𝑑𝑡
𝐼(𝑡) = (𝛽′ − 𝛼)𝐼(𝑡) + 𝛽′𝐽(𝑡),

𝑑

𝑑𝑡
𝐽(𝑡) = 𝜇(𝑡)− (𝛼+ 𝛿)𝐽(𝑡).

In order to find the travelling wave velocity we make an assumption that 𝜇(𝑡) =
𝜀𝐼(𝑡+𝑇 ) where 𝑇 is the characteristic migration time between two centers. Solving
the second equation we obtain a closed equation for 𝐼(𝑡):

𝑑

𝑑𝑡
𝐼(𝑡) = (𝛽′ − 𝛼)𝐼(𝑡) + 𝛽′𝜀

𝑡∫︁
−∞

𝐼(𝑠+ 𝑇 )𝑒(𝑠−𝑡)(𝛼+𝛿)d𝑠.

This equation leads to the characteristic equation of the type (3);

𝐿(𝑇, 𝜆) = 𝜆− (𝛽′ − 𝛼)− 𝛽′𝜀

𝜆+ 𝛼+ 𝛿
𝑒𝜆𝑇 .

As a result we justified an effective method of computing the travelling wave velocity
in a 1D lattice of susceptible/infected/removed (SIR) epidemic centers described in
Section 1.
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Abstract. At least 12 million people all over the world are blind because of the
damaged or diseased corneas. Till recently keratoplastics was the only way to help
these people. This is a surgical procedure where a damaged cornea is replaced by
donated corneal tissue. The main problem of this approach is dficiency of donor
tissue. More universal method which allows obviating necessity for donors is kerato-
prosthesis. The main problems of existing plastic keratoprosthesis are high percent
of rejection of an artfcial cornea, its keratomalacia and opacity. So with reference
to an artificial cornea of an eye collagen is the most perspective material. Merits of
collagen keratoprosthesis are: almost absolute biological compatibility; reduction
terms of the operations performing and postoperative rehabilitation to a minimum;
reproduction biomechanical characteristics of natural cornea; wider patients base.
The main problem is that thin membranes made of collagen are optically transpar-
ent, but the single-layered samples approached on a thickness to a normal cornea,
practically lose this property. This problem can be solved by modeling of a cornea
as multilayered structure. Within the limits of this project problems of selection of
necessary quantity of lamellas, corners under which collagen lamellas are turned to
each other and a number of other parameters. Restoration of complex refraction
index was carried out using MorphoVision software, created in laboratory Optics
of nanostructures, PFUR. Obtained refractive indices were used in the designing of
multilayer model of human cornea, having sufficient transparency.

1 Introduction

Cornea is optically transparent part of the outer shell of the eyeball, which performs
approximately three-quarters of the work on refraction and focusing a beam of light
on the retina. Various damages caused by mechanical, chemical or microbiological
effects, with high probability lead to total or partial loss of vision. Small erosions
occurring on the surface of the cornea, close in several days, but in case of damaging
deeper layers, the site of the defect appears translucent haze, which can lead to a
significant reduction in vision, especially if the injury occurred in the central zone
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of the cornea. At least 10 million people all over the world are blind because of the
damaged or diseased corneas.

Till recently keratoplasty was the only way to help these people. This is a sur-
gical procedure where a damaged cornea is replaced by donated corneal tissue. The
main problem of this approach is deficiency of donor tissue. Each year over 100000
people are waiting for cornea transplants. More universal method which allows ob-
viating necessity for donors is keratoprosthesis. The most widely used keratopros-
thesis such as AlphaCor (Lions Eye Institute, Argus Biomedical Pty Ltd), Boston
K-Pro, have standard design: all models include plastic optical part and differ from
each other by fasting to the cornea. The main problems of these keratoprosthesis
are high percent of rejection of an artificial cornea, its keratomalacia and opacity.

Macroscopicaly natural cornea consists of five layers:

— Corneal epithelium: a thin epithelial multicellular tissue layer of fast-growing
and easily regenerated cells, kept moist with tears.

— Bowman’s layer: a tough layer that protects the corneal stroma.
— Corneal stroma (also substantia propria): a thick, transparent middle layer,

consisting of regularly arranged collagen along with sparsely distributed inter-
connected keratocytes, which are the cells for general repair and maintenance.
They are parallel and are superimposed like book pages The corneal stroma
consists of approximately 200 layers of mainly type I collagen fibrils. Up to
90% of the corneal thickness is composed of stroma.

— Descemet’s membrane: a thin acellular layer that serves as the modified base-
ment membrane of the corneal endothelium.

— Corneal endothelium: a simple squamous or low cuboidal monolayer. These
cells are responsible for regulating fluid and solute transport between the aque-
ous and corneal stromal compartments.

The thickness of each layer of stroma is 1500–2000 nm. These layers are arranged
at 90 degrees relative to each other and parallel to the surface of the cornea.

Collagen is one of the most promising biomaterials in medical practice, it has a
wide range of applications. And since it is a native material for the human cornea,
one of the most important applications of collagen is its use to develop an artificial
cornea, so-called keratoprosthesis.

Thus, it is necessary to know the optical properties of thin films of collagen, such
as the dependence of reflection and transmission coefficients from medium acidity,
properties of light scattering on collagen structures, etc. Spectrophotometric re-
search and multiple solving of inverse problem allow determining these parameters.
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The obtained data is used in the mathematical synthesis of collagen structures
with predetermined characteristics such as artificial cornea. Merits of collagen ker-
atoprosthesis: almost absolute biological compatibility; reducing terms of the op-
erations performing and postoperative rehabilitation to a minimum; reproducing
biomechanical characteristics of natural cornea; wider patient base.

2 Spectrophotometric research of collagen

Specialists of Fibralign Corporation, CA, USA developed the technology of syn-
thesis of collagen type II and the formation of structures with predetermined char-
acteristics, including thin films, which can be used in the problem of creating an
artificial cornea of the human eye. For the use of artificially produced collagen films
in solving this problem they need to be comprehensive researched.

Research of available samples were made using RPFU Optics Research Lab-
oratory equipment, including spectrophotometer Lambda-950, manufactured by
PerkinElmer, USA, and profilometer DekTak 150, manufactured by Veeco Instru-
ments Inc, USA.

As materials for the research were used samples of different thickness and sam-
ples consisting of different number of layers: one, two, four and six, as well as
samples with different types of fastening: on the glass substrate and the special
cassettes. Optical properties of artificial collagen were priori unknown. Measure-
ments of reflection and transmission coefficients were conducted with the help of
spectrophotometer Lambda 950. We used the visible spectrum — from 400 to 800
nm as the range of wavelengths. The sample was moistened with a solution with a
neutral pH = 7,4. In order to determine optical properties of collagen, the measure-
ments were performed for single layer sample, fixed in the cassette. This approach
has several advantages: it is easier to use the results for solving the inverse problem
of recovering, and substance by which layers in multilayer samples are fastened may
introduce error into the results of spectrophotometric measurements.

The thickness of the collagen film on the substrate was also measured using
profilometer DekTak150. Collagen layer covered the substrate not fully, so it was
possible to measure the difference in height of the sample and the substrate, which
is the film thickness.

To determine the properties of collagen, namely whether it is optically
anisotropic or isotropic material, were carried out a series of polarization scans:
at a particular wavelength at a certain angle of incidence of light on the sample,
was measured the reflection, transmission and absorption coefficients of the thin
film. After the analysis of measurement data it was concluded, that there is the
dependence of the properties of light propagation in thin film from the direction of
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propagation and the polarization of the incident wave, thus collagen is anisotropic
material with one optical axis. This conclusion was confirmed by several series
of measurements of coefficients of reflection and transmission in the visible light
spectrum.

Another series of measurements was aimed at identifying dependence of the
optical transparency of the collagen on the acidity of the environment. This problem
arose due to the fact that the intraocular fluid of the eye under normal conditions
has a definite almost neutral Ph = 7,4, but during the operation on the cornea, it
is necessary to use drugs that affect the level of acidity. For measurements were
used four-layer and two-layer samples, the incident light was unpolarized. Each
sample was placed for a while in solutions with certain pH, and then were carried
out it’s measurements on the transmission. The measurement results show that the
optical transparency of the collagen strongly depends on the acidity of the medium
in the blue and violet range of the optical spectrum, in the red range dependence
is weaker. It wasn’t revealed any dependence of the transmission of acidity on the
entire range, but it wasn’t a primary goal of this research.

As part of this experiment was also carried out a series of measurements a two-
layer collagen film, soaked in a solution with Ph 5,03. The interval between the
measurements was 3 minutes, and measurements were carried out until dry. Ac-
cording to the results of measurements, the transmittance of the film increases as
it dries, which is an atypical manifestation of the properties of collagen. Visually,
it is obvious that the dry film is not optically transparent and moisture of the sam-
ple is one of the main conditions of transparency. Nature of the curves remains
virtually unchanged as the drying, which suggests that the potential scattering on
the droplets of the solution is not happening. The results can be explained from
the standpoint that the concentration of salts, which are responsible for acidity,
gradually increases due to evaporation of water. This increase of concentration
may cause the increase in transmittance of collagen film. Also it was measured
the transmission coefficient of a two-layer collagen film, soaked in saline solution
with a neutral pH. Measurements were carried out at different angles: 0∘, 30∘, 50∘,
60∘. According to the results, the transmission decreases with increasing angle of
incidence, as it has been calculated theoretically. After a series of measurements
with different acidity — from Ph 9,18 to Ph 4,01 — was re-obtained the transmit-
tance of the film, soaked in a solution with Ph 9,18. According to the results of
measurements the repeated and prolonged exposure to fluids with different indices
of acidity did not affect the structure of the sample, since the nature of the curves
remained almost unchanged. The difference in transparency in the blue and green
parts of the spectrum can be explained by the error in the degree of moisture of
collagen, as well as by deformation of the film, embodied in the cassette.
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The results obtained during the spectrophotometric investigations of collagen,
are the basis for restoring the properties of thin films of collagen, in particular the
refractive index, as well as for select a mathematical model underlying the numerical
experiments on the synthesis of keratoprosthesis.

3 Restoration of collagen optical properties

To solve the problem of mathematical synthesis of collagen keratoprothesis it is
necessary to determine the optical properties of synthetic collagen. The problem
of restoration of the dielectric tensor and thickness of thin anisotropic films using
measurements of reflected and refracted waves is formulated as follows. Using sets of
spectrophotometric data about transmission 𝑇 (𝜆) and reflection �̃�(𝜆) it is necessary
to calculate the parameters of the dielectric tensor of the material 𝜀(𝜆) in the range
of wavelengths [𝜆𝑠𝑡𝑎𝑟𝑡;𝜆𝑒𝑛𝑑]. This is the mathematically ill-posed problem.

Using sets of measured energy coefficients of reflection and transmission and
methods of numerical optimization we can recover the dielectric tensor and thickness
for each wavelength separately and obtain the indexes of refraction and absorption,
which together constitute the complex refractive index: �̃� = 𝑛 + 𝑖𝑘. Complex
refractive index and dielectric tensor linked as following: �̃�(𝜔) =

√︀
𝜀(𝜔). However,

practice shows that the results of these calculations are unstable — the dielectric
tensor is restored in the form of a non-smooth function. Therefore, there is a need
to use any method of solving problems for all investigated range of wavelengths,
typically an optical range — 400–800 nm. Reconstruction algorithm in this case is
much more complicated, but allows using of a priori information about the decision
and apply the methods of regularization. As an a priori information there were
used the dispersion of the Kramers–Kronig — integral relation between the real and
imaginary parts of analytic complex functions [1].

The propagation of polarized light in multilayer anisotropic structure can be
described by a matrix equation for the vector of tangential components of reflected
and transmitted fields 𝜒𝑅 and 𝜒𝑇 with initial conditions — information about tan-
gential components of incident field 𝜒𝐼 .

The proposed algorithm for solving the inverse problem lies in the approxima-
tion of the imaginary part of dielectric tensor — sum of Gaussian functions (or,
otherwise, the approximation by radial basis functions) and using the Kramers–
Kronig relations to calculate the real part of this function. The objective function,
that expresses the sum of squared differences between measured and calculated en-
ergy coefficients of reflection and transmission, is minimized by the Nelder — Mead
algorithm.
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The described algorithm is implemented in software "MorphoVision", developed
in the lab "Optics of nanostructures" in People’s Friendship University. The initial
parameters of the software takes the data sets, each set must contain a sample
thickness, the angle of incidence on the sample, the polarization of light (TE or
TM), text files with energy coefficients of reflection and transmission.

The calculation procedure using the proposed algorithm is different for differ-
ent types of materials (isotropic material, a uniaxial anisotropic material, biaxial
anisotropic material). In the case of uniaxial anisotropic material, which is the col-
lagen (as identified by polarizing scanning) is sufficient to hold two-cycle recovery.
To obtain the refractive and absorption indexes along one direction it is necessary
to use data on the energy reflection and transmission coefficients obtained from the
measurements when the plane of light incidence was parallel to the optical axis. To
obtain the refractive and absorption indexes along the other direction we should use
spectrophotometric data obtained when the plane of light incidence on the sample
was perpendicular to the optical axis. We carried out a series of calculations and
obtained the coefficients of refraction and absorption of artificial collagen.

4 Synthesis algorithm

After the refractive indices of synthetic collagen were recovered, we can solve the
problem of synthesis of multilayer optical structure of collagen, which has geometric
and optical characteristics similar to the characteristics of human cornea. Problem
of mathematical synthesis of optical systems with specified characteristics are a
large class of inverse mathematical problems, and they are usually ill-posed. There
are different approaches to solve them, but the most effective of these is the method
of Tikhonov regularization [2].

As initial data we have recovered optical properties of collagen, maximum and
minimum thickness of the simulated system (the thickness of a human cornea is
about 0.5–0.7 mm), maximum and minimum thickness of one layer, the desired
spectral characteristics of reflection and transmission of the simulated system (the
transmission not less than 60% in the optical range, which corresponds to trans-
mission of adult human cornea). Our task is to determine the number of layers
of the system, the angles at which they are located relative to each other and the
thickness of the layers of the system.

Let ̂︀𝑇 (𝜆) — defined on the wavelength range [𝜆1, 𝜆2] — be energy coefficient
of transmission. We assume ̂︀𝑇 (𝜆) is a general function on 𝐿2 [𝜆1, 𝜆2]. The direct
problem of modeling of propagation of light in multilayer optical system can be
expressed as:

𝑀(ℎ, 𝜀, 𝜃𝑗)�⃗� = �⃗�; �⃗�⇒ �⃗�, 𝑇 . (1)
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Vector �⃗� includes amplitudes of reflected and transmitted waves. Energy co-
efficients of transmission and reflection can be calculated using these amplitudes.
Required properties of simulated optical system expressed as:

𝑀(𝑑0, 𝜀, 𝜃0)�⃗�0 = �⃗�; �⃗�0 ⇒ �⃗�0, 𝑇 0. (2)

Thus, to solve the problem it is necessary to minimize the functional:

𝐹 (𝑇 − 𝑇 0, �⃗�− �⃗�0) → min, (3)

where 𝑇0 and �̄�0 are required transmission and reflection of simulated optical sys-
tem, and 𝑇 and �̄� — calculated transmission and reflection. Problem is solved by
Tikhonov regularization. Let

𝛿𝑁 = inf
⃦⃦
𝐴(𝑥, 𝜆)−𝐴0(𝜆)

⃦⃦
𝐿2

(4)

be the maximum achievable accuracy of approximation on optical system consists
of 𝑁 layers. Maximum achievable accuracy satisfy the estimates 𝛿1 ≥ 𝛿2 ≥ ... ≥ 𝛿𝑁
and together they are bounded below by 𝛿 = lim

𝑁→∞
𝛿𝑁 , which we call the maximum

possible accuracy.

It is necessary to minimize the residual (2.1), approximating the desired response
with a given accuracy. Introduce an error: 𝑆(𝑛,𝑁), where 𝑛 — number of layers in
the system, and 𝑁 — the number of iterations in the computation. If the selected
number of layers at step 𝑁 is achieved the specified accuracy, the algorithm stops,
the result has been obtained. If 𝑆(𝑛) is more than a specified accuracy, then move
on to the system of (𝑛 + 1) layers, then — to a system of (𝑛 + 2) layers, and so
on. If the number of layers exceeds the maximum (or the thickness of the system
exceeds the maximum), then should be pointed out the impossibility of achieving
the required characteristics to these terms.

5 Conclusions

Using created software we have performed series of calculations and synthesized a
variety of structures with desired characteristics [3]. To select the optimal structure,
which could be used as a keratoprosthesis, further joint work of many professionals
is needed — from engineers involved in the production of stacks of synthetic collagen
and ending with scientists in the field of eye medicine.
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MATHEMATICAL MODEL OF LOCAL REGULATION OF BLOOD
FLOW AND OXYGEN TRANSPORT

A. V. Kopyltsov

Key words: oxygen transport, blood flow, regulation, modelling

AMS Mathematics Subject Classification: 11B39

Abstract. The mathematical model of a regulation of a blood flow and oxygen
transport by products of metabolism is developed. The model takes into account
construction and haemodynamic characteristics of a vascular network. Approximate
formula of dependence 𝑇 (an interval of time of transition of a local system of
blood flow and oxygen transport from one steady state in another) from oxygen
consumption rate by tissue 𝑊 and a pressure differences on the ends of a vascular
network △𝑃 is determined. It is shown that at transition from easy physical activity
to intensive and back, an interval of time spent for transients, in the second case
is more at 2.6-3.4 times, than in the first. At increase 𝑊 in 2 times a speed of a
blood flow increases at 2.2-2.8 times that corresponds to experimental data (in 2-3
times).

1 Introduction

In a lot of papers [1–12] a regulation of a blood flow and oxygen transport is
considered. The particular interest represent the local regulation of a blood flow
and oxygen transport by metabolism products [5, 10, 11]. It is important to reveal
mechanisms of dependence of oxygen consumption rate by tissue from physical
activity value of an organism [1, 9–11, 13]. For the decision of this problem the
mathematical model has been constructed [5]. With the help of this model the
calculations of time intervals of transition of a local system of blood flow and oxygen
transport from one steady state in another at various physical activity of organism
are carried out.

2 Equations Describing a Transport of Oxygen and Metabolism
Product

At modeling of oxygen transport from RBC (red blood cell, erythrocyte) in sur-
rounding tissue it is supposed that RBC moves rectilinearly, it velocity is constant,
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and in RBC is an equilibrium reaction of hemoglobin with oxygen, and in a tissue
is an equilibrium reaction of myoglobin with oxygen.

Oxygen transport is carried out from RBC through a layer (plasma, endothe-
lium, and interstitial space) in a tissue where oxygen is absorbed. In a tissue are
allocated, during biochemical reactions, metabolism products which by diffusion
and with a blood flow are deduced from a tissue. Oxygen transport is described by
the following system of the differential equations [5]. In RBC:

𝜕𝑃

𝜕𝑡
+V∇𝑃 = 𝐷𝑂2𝐸∇2𝑃 +

𝜌(𝑃, 𝑆𝑆)

𝛼𝐸
(1)

𝜕𝑆𝑆

𝜕𝑡
+V∇𝑆𝑆 = 𝐷𝐻𝑏∇2𝑆𝑆 − 𝜌(𝑃, 𝑆𝑆)

𝐶𝐻𝑏𝑇
(2)

𝐶𝐻𝑏𝑇 = 𝐶𝐻𝑏 + 𝐶𝐻𝑏𝑂2, 𝑆𝑆 =
𝐶𝐻𝑏𝑂2

𝐶𝐻𝑏𝑇

𝜌(𝑃, 𝑆𝑆) = 𝑘+𝐶𝐻𝑏𝑂2 − 𝑘−𝐶𝐻𝑏𝐶𝑂2 = 𝑘+𝐶𝐻𝑏𝑇𝑆𝑆 − 𝑘−𝐶𝐻𝑏𝑇 (1− 𝑆𝑆)𝛼𝐸𝑃

In the layer (plasma, capillary endothelium, interstitial space):

𝜕𝑃

𝜕𝑡
+V∇𝑃 = 𝐷𝑂2𝐶∇2𝑃 (3)

In the tissue:
𝜕𝑃

𝜕𝑡
= 𝐷𝑂2𝑀∇2𝑃 +

𝜎(𝑃, 𝑆)

𝛼𝑀
− 𝑊

𝛼𝑀
(4)

𝜕𝑆

𝜕𝑡
= 𝐷𝑀𝑏∇2𝑆 − 𝜎(𝑃, 𝑆)

𝐶𝑀𝑏𝑇
(5)

𝐶𝑀𝑏𝑇 = 𝐶𝑀𝑏 + 𝐶𝑀𝑏𝑂2, 𝑆 =
𝐶𝑀𝑏𝑂2

𝐶𝑀𝑏𝑇

𝜎(𝑃, 𝑆) = 𝑘1+𝐶𝑀𝑏𝑂2 − 𝑘1−𝐶𝑀𝑏𝐶𝑂2 = 𝑘1+𝐶𝑀𝑏𝑇𝑆 − 𝑘1−𝐶𝑀𝑏𝑇 (1− 𝑆)𝛼𝑀𝑃

Oxygen is absorbed by tissue, metabolism products are allocated and are trans-
ported by diffusion in a tissue and are transferred with a blood flow to a venous
part of a vascular network. Thus, formation and transport of metabolism products
in a tissue, in a layer (interstitial space and capillary endothelium), and in blood
vessels is described by the following system of the differential equations. In the
tissue:

𝜕𝐶

𝜕𝑡
= 𝐷𝑀𝑝𝑀∇2𝐶 + 𝛽𝑊𝑛 +

𝛾 𝜖

𝑃 + 𝜖
(6)
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In the layer (interstitial space and capillary endothelium):

𝜕𝐶

𝜕𝑡
= 𝐷𝑀𝑝𝐶∇2𝐶 (7)

In the capillary:
𝜕𝐶

𝜕𝑡
+V∇𝐶 = 𝐷𝑀𝑝𝐵∇2𝐶 (8)

where 𝑃 is oxygen partial pressure, 𝑉 is local velocity vector of fluid movement,
𝐷𝑂2𝐸 , 𝐷𝑂2𝐶 , 𝐷𝑂2𝑀 are diffusion coefficient of oxygen in RBC, in the layer (con-
sisting of a plasma sleeve, the capillary endothelium, and the interstitial space),
and in the tissue (muscle fiber), respectively, 𝐷𝐻𝑏, 𝐷𝑀𝑏 are diffusion coefficients
of hemoglobin and myoglobin, 𝛼𝐸 , 𝛼𝑀 are solubility coefficients for oxygen inside
RBC and the muscle fiber, 𝐶𝐻𝑏𝑂2 is oxyhemoglobin concentration in RBC, 𝐶𝐻𝑏
is hemoglobin concentration, 𝐶𝑂2 is oxygen concentration, 𝐶𝑀𝑏𝑂2 is oxymyoglobin
concentration in the muscle fiber, 𝐶𝑀𝑏 is myoglobin concentration, 𝑊 is oxygen
consumption rate by muscle tissue, 𝑘−, 𝑘+, 𝑘1−, 𝑘1+ are constants of speeds of bio-
chemical reactions, 𝑡 is time, 𝐶 is concentration of metabolism products, 𝐷𝑀𝑝𝑀 ,
𝐷𝑀𝑝𝐶 , 𝐷𝑀𝑝𝐵 are diffusion coefficients of metabolism products in a tissue, in a
layer (interstitial space and capillary endothelium), and a capillary, 𝛽, 𝛾, 𝜖, 𝑛 are
coefficients.

Thus, the equations (1) - (8) describe transport of oxygen and metabolism
products in RBC, in plasma, in a capillary endothelium, in an interstitial space and
in a tissue.

3 Regulation of Oxygen Transport and Blood Flow

The mathematical model of regulation of blood flow and oxygen transport in a
tissue take into account a structure of the vascular network including arterioles
(A2, A3, A4), venues (V2, V3, V4), and capillaries (C) between arterioles A4 and
venues V4 [5, 9]. Blood flows through arterioles (A2, A3, A4), capillaries (C), and
venues (V2, V3, V4). Total quantity of arterioles and venues in branchings 2, 3,
and 4 is designated n2, n3, and n4 accordingly. The quantity of capillaries between
arteriole A4 and venue V4 is designated n5 (Fig. 1).

The blood flow in vascular system is carried out at the expense of a pressure
difference on the ends of a network and described by the law of Poiseuille in arte-
rioles and venues, and in capillaries is used the generalized law of Poiseuille which
take into account pressure differences on RBCs and plasma columns between them.
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Figure 1. Model of a vascular network. 𝐴2, 𝐴3, 𝐴4 are the arterioles, 𝑉 2, 𝑉 3, 𝑉 4 are the
venues, 𝐶 are the capillaries connecting arterioles 𝐴4 and venues 𝑉 4 of the fourth order.

According to [8] the pressure gradient on the ends of vessel is equal to

△𝑃 = 𝑄/𝐺 (9)

where 𝑄 is a volume flow of plasma and RBCs, 𝐺 is conductance of a vessel and
for arterioles and venues

𝐺 =
(︁128𝑚𝑢𝐵 𝐿

𝜋𝑑4

)︁−1

and for capillaries

𝐺 =
(︁128𝑚𝑢𝐵 𝐿

𝜋𝑑4
+

16𝑚𝑢𝑃
𝜋𝑑3

Σ𝑗△𝑃𝑃𝑗
)︁−1

where 𝜇𝐵 and 𝜇𝑃 are viscosity of blood and blood plasma, 𝐿 and 𝑑 are lengths and
diameters of vessels, △𝑃𝑃𝑗 is dimensionless additional pressure difference on j-th
RBC.

At receipt of RBCs incite capillaries network oxygen is allocated from RBCs, it is
transported by diffusion in a tissue and is absorbed. During biochemical reactions
in tissue there is an allocation of metabolism products which are taken out by
diffusion and with a blood flow in a venous part of vascular system. One part of
metabolism products arrives with a blood flow in larger veins, and another diffuse
in arterioles. The flow of metabolism products from venues in arterioles (on unit of



Mathematical Model of Local Regulation of Blood Flow and Oxygen . . . 105

length of a vessel) is equal to [3]

𝐹 = 𝐾(𝐶𝑣 − 𝐶𝑎)𝛼 (10)

where 𝐾 is permeability of a tissue for metabolism products, 𝐶𝑣 and 𝐶𝑎 are con-
centration of metabolism products in venue and arteriole, and, according to [3]

𝛼 = 2𝜋𝑙𝑛(𝜎)

𝜎 =
𝑅𝑣
2𝑅𝑎

(𝑐𝑑− 1− ((𝑐2 − 1)(𝑑2 − 1))0.5)

𝑐 = 1 +
𝛿

𝑅𝑣
𝑑 = 1 +

𝛿 + 2𝑅𝑎
𝑅𝑣

where 𝛿 is distance between arteriole and venue, 𝑅𝑎 and 𝑅𝑣 are radiuses of arteriole
and venue.

The metabolism products receipts from venue in arteriole, influences on smooth
muscles of arteriole, and the radius of arteriole 𝑅𝑎 is changed as follows

𝑅𝑎 = 𝑅𝑚𝑎𝑥 − (𝑅𝑚𝑎𝑥 −𝑅𝑚𝑖𝑛)𝑒
−𝑎𝐶𝑎 (11)

where 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛 are the maximum and the minimum radius of arteriole, 𝐶𝑎
is concentration of a metabolism product in arteriole, 𝑎 is a constant.

Change of arteriole radius leads to change of blood flow speed in vessels, speed of
oxygen delivery in a tissue, to change of partial pressure of oxygen in a tissue, speed
of allocation of metabolism products in a tissue, to change of their concentration in
venous and arterial vessels and, hence, to change of arteriole radius. Thus, we have
the system of the equations (1) - (11). This system of the differential equations (1)
- (11) are solved at initial conditions: 𝑃 = 𝑃0, 𝑆𝑆 = 𝑆𝑆0, 𝑆 = 𝑆0, 𝐶 = 𝐶0, where
P0, SS0, S0, C0 are known functions from z and r.

As boundary conditions we use conditions of symmetry and a condition of con-
tinuity of flows of substances on borders: RBC - plasma, plasma - endothelium,
endothelium – interstitial space, interstitial space- tissue. The radial component of
a flow of all substances on a capillary axis is absent (from symmetry reasons).

The system of the equations is solved by a method of final differences [14]. At
the decision of the system of the equations the grid step got out depending on the
sizes of a capillary, RBC, and the tissue cylinder, on 𝑟 from 0.01 to 0.1 𝜇𝑚, on 𝑧
from 0.01 to 0.1 𝜇𝑚 , on 𝑡 from 0.001 to 0.1 seconds Thus, solving the system of the
equations, we have distribution of oxygen and metabolism products in the blood
vessel and the surrounding tissue. At study of a blood flow and oxygen transport to
tissue the greatest interest is represented by steady state of an organism, because
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the most part of life the organism is in a steady state (during a dream, on work,
at walking, etc.). Therefore the following section is devoted consideration of steady
state of a blood flow and oxygen transport in tissue.

4 Steady-States of Blood Flow and Oxygen Transport

At transition of the organism from one steady state to another (for example, from
a state of easy physical activity to intensive or on the contrary) all biochemical
and other processes pass from one steady state in another. Because the live or-
ganism is not ideal system on these transients some time is required. And, from
the experimental data received on human organism and animals it is known that,
this time interval is less, then the organism is more adapted physically for envi-
ronment changes (for example, sportsman). Therefore, it is important to estimate
time interval spent for the transients.

During numerical experiments on the computer the time interval necessary for
stabilization of processes at transition from entry conditions (absence of oxygen
and metabolism products in a tissue) to steady states has been calculated. We
have been received appraximate formula for 𝑇 from △𝑃 and 𝑊

𝑇 = 𝑎△𝑃 𝑊 − 𝑏 𝑊 − 𝑐 △𝑃 + 𝑑 (12)

where a=0.0016, b=0.248, c=0.037, d=6.085.
Thus, we have dependences (12) for transition from entry conditions (absence

of oxygen and metabolism products in a tissue) to a stationary blood flow and
transport of metabolism products in a tissue. However, in a human organism there
are other entry conditions. In particular, oxygen consumption in tissue is distinct
from zero. Therefore calculations on the computer which have allowed to estimate
time intervals of stabilization of processes at transition from easy physical activity
(oxygen consumption rate by tissue 𝑊 = 10𝑚𝑙/100𝑔/𝑚𝑖𝑛) to intensive (𝑊 =
20𝑚𝑙/100𝑔/𝑚𝑖𝑛) (𝑇1(𝑚𝑖𝑛)) and back (𝑇2(𝑚𝑖𝑛)) at various values of a pressure
drop △𝑃 (𝑚𝑚𝐻𝑔) on the ends of a vascular network have been carried out. So,
we have 𝑇1 = 0.7𝑚𝑖𝑛, 𝑇2 = 2.4𝑚𝑖𝑛, and 𝑇2/𝑇1 = 3.4 at △𝑃 = 75𝑚𝑚𝐻𝑔, we
have 𝑇1 = 0.6𝑚𝑖𝑛, 𝑇2 = 2.0𝑚𝑖𝑛, and 𝑇2/𝑇1 = 3.3 at △𝑃 = 90𝑚𝑚𝐻𝑔, and
we have 𝑇1 = 0.6𝑚𝑖𝑛, 𝑇2 = 1.7𝑚𝑖𝑛, and 𝑇2/𝑇1 = 2.8 at △𝑃 = 105𝑚𝑚𝐻𝑔.
These results show that time intervals of a stabilization of transients from the
entry conditions corresponding to easy physical activity (𝑊 = 10𝑚𝑙/100𝑔/𝑚𝑖𝑛),
to intensive (𝑊 = 20𝑚𝑙/100𝑔/𝑚𝑖𝑛) has value 0.6 − 0.7𝑚𝑖𝑛 at an arterio-venous
difference of pressure 75−105𝑚𝑚𝐻𝑔. It is needs 1.7-2.4 minutes for transition from
intensive to easy physical activity. These results were compared to experimentally
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observable time answers in the microvascular network which make about 2-4 mines
[1, 4, 9, 10, 12, 13]. Comparison of the time intervals of transition from easy to
intensive physical activity and back shows that in the latter case the time intervals
of transition is more at 2.8-3.4 times.

Thus, the model gives good approximation of the time intervals of stabilization
of processes in a tissue depending on oxygen consumption rate by tissue and pressure
differences on the ends of a vascular network.

5 Conclusion

Mathematical model of local regulation of blood flow and oxygen transport by
the metabolism products is developed. Model considers a structure of a vascular
network, diameters and lengths of vessels, viscosity of blood and plasma, a pressure
difference on the ends of a vascular network, a layer between RBC and a tissue
(plasma, capillary endothelium, interstitial space), a formation of a metabolism
products in tissue, a transport of oxygen from RBCs in a tissue and a metabolism
products from a tissue in vascular network, influence of a vasoactive metabolism
products on arteriolar muscles and, hence, on the arteriolar diameters, speed of
a blood flow, and oxygen transport in a tissue. On the basis of the constructed
model the problem about steady state of a blood flow and oxygen transport is
considered. The solution of the problem allows numerically estimating speed of
a blood flow, arteriolar diameters, and pressure differences in vessels at various
values of oxygen consumption rate by tissue which depends on physical activity
value on an organism. Approximate formula of the dependence of time interval of
transition of oxygen transport system from one steady state in another depending
on oxygen consumption rate by tissue and a pressure differences on the ends of
a vascular network is definite. Significance of oxygen consumption rate by tissue
(𝑊 ) is determined. It is shown that at transition from easy physical activity (𝑊 =
10𝑚𝑙𝑂2/100𝑔/𝑚𝑖𝑛) to intensive (𝑊 = 20𝑚𝑙𝑂2/100𝑔/𝑚𝑖𝑛) and back, time spent
for transients, in the second case is more in 2.6-3.4 times, than in the first. At
increase 𝑊 in 2 times the speed of a blood flow increases at 2.2-2.8 times that
corresponds to experimental data (in 2-3 times).
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Abstract. This paper is devoted to solving of dynamic problems in biomechanics
that require detailed study of fast processes. Numerical method of characteristics
is used to model the temporal development of the processes with high accuracy.

1 Introduction

This paper is devoted to dynamic biomechanical problems concerning traumato-
logic and surgical processes. These problems specific feature is that the occurring
processes often have a wave nature with very small characteristic times.

Unfortunately most papers known to the authors in this area of research give
insufficient attention to the temporal development of the processes. It is the final
state of the system that comes under close examination in mathematical model-
ing. The tools employed usually include a variety of well accepted finite elements
methods that provide high accuracy for static problems (see, for example [1–3]).

This approach could be improved. Fast mechanical processes in biological tis-
sues, such as shock wave propagation and interaction, are commonly described
by systems of hyperbolic equations as shown below. Grid-characteristic numerical
methods and difference schemes of the types devised by Godunov, Kogan, Fedorenko
can be used for studying the development of fast processes with small characteris-
tic times. These methods and schemes were initially designed for solving systems
of hyperbolic equations and take into account specific features of the equations to
achieve high accuracy for the solution of problems of wave nature including the
wavefront interactions.

Application of grid-characteristic numerical methods to biomechanical problems
will be demonstrated on the example of modeling craniocerebral injury and laser
cataract extraction. Accurate consideration of shock wave interactions allows to
predict areas of maximum damage which appear as a result of interactions of dif-
ferent waves. This process has an intrinsically dynamic nature and its examination
by any other means is highly hampered.
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2 Mathematical models and methods used

2.1 Mechanical models

Mechanical properties of biological medium under relatively small strain which is
considered as a continuous medium under the action of shock loads can be described
using common equations for deformable rigid body. This approach should be used
carefully, because biological tissues modelling often requires taking into account
fluids, cavities and rigid bodies with very specific rheology. However, for many
problems it is reasonable and allows to achieve good results.

For this research we used the equations system of the linear elasticity theory [4]:

𝜌 · 𝑣𝑖 = ▽𝑗 · 𝜎𝑖𝑗 , (2.1)

𝜎𝑖𝑗 = 𝑞𝑖𝑗𝑘𝑙 · 𝑒𝑘𝑙 + 𝐹𝑖𝑗 . (2.2)

Here (2.1) are the equations on motion and (2.2) are the rheological relations. In
these equations 𝜌 is the medium density, 𝑣𝑖 are the displacement velocity compo-
nents, 𝜎𝑖𝑗 and 𝑒𝑖𝑗 are the components of the stress tensors and the strain velocities,
▽𝑗 is the covariance derivative with respect to the 𝑗th coordinate and 𝐹𝑖𝑗 is the
right-hand side.

The tensor 𝑞𝑖𝑗𝑘𝑙 determines the rheology of the medium. In case of a linearly
elastic body its components are expressed in terms of two independent Lame con-
stants 𝜆 and 𝜇:

𝑞𝑖𝑗𝑘𝑙 = 𝜆 · 𝛿𝑖𝑗 · 𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘 · 𝛿𝑗𝑙 + 𝛿𝑖𝑙 · 𝛿𝑗𝑘).

We also used Maxwell’s viscoelastic body model.
The density is determined from the equation of state 𝜌 = 𝜌0𝑒

(𝑝/𝐾), where 𝑝 =
−1

3

∑︀
𝜎𝑘𝑘 is a pressure and 𝐾 = 𝜆+ 2

3𝜇 is a uniform compression coefficient.
These equations are suitable for modelling wave processes in continuous medium

under relatively small shock loads. Wave processes have small characteristic times,
so deformations are small during the numerical experiment. These assumptions
allow us to use the model of linear elastic body.

Equations of motion and rheological relations stated above can be written in
the matrix form:

𝜕

𝜕𝑡
𝑢+𝐴1

𝜕

𝜕𝑥1
𝑢+𝐴2

𝜕

𝜕𝑥2
𝑢+𝐴3

𝜕

𝜕𝑥3
𝑢 = 𝑓. (2.3)

Here 𝑢 = (𝑣1, 𝑣2, 𝑣3, 𝜎11, 𝜎12, 𝜎13, 𝜎22, 𝜎23, 𝜎33)
𝑇 is the vector of variables, 𝑓 is the

right-hand side of the same dimension, 𝐴𝑖 are the matrices of ninth order (their
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explicit form can be found in [7]), 𝑥𝑖 are independent three-dimensional variables
and 𝑡 is the time.

If the matrices 𝐴𝑖 have nine real eigenvalues, then the system is called hyper-
bolic and its solutions correspond to the processes that are usually called wave
processes. That is, this equation describes the propagation of perturbations along
the characteristic cones in the space (𝑥1, 𝑥2, 𝑥3, 𝑡).

2.2 Grid-characteristic numerical methods

Grid-characteristic numerical methods were used for solving the system of hyper-
bolic equations (2.3).

One of the widely used approaches to solving three-dimensional system (2.3)
is splitting it by space variables. In this case it can be replaced with four one-
dimensional systems:

𝜕

𝜕𝑡
𝑢+𝐴1

𝜕

𝜕𝑥1
𝑢 = 0,

𝜕

𝜕𝑡
𝑢+𝐴2

𝜕

𝜕𝑥2
𝑢 = 0,

𝜕

𝜕𝑡
𝑢+𝐴3

𝜕

𝜕𝑥3
𝑢 = 0,

𝜕

𝜕𝑡
𝑢 = 𝑓.

These systems should be solved in their course, where a solution of the previous
system should be used as the initial state to solve the next one. This approach allows
to simplify numerical implementation and obtain better computation performance.

Each one-dimensional system is solved using common grid-characteristic numer-
ical methods. For a system of equations with a single space variable

𝜕

𝜕𝑡
𝑢+𝐴

𝜕

𝜕𝑥
𝑢 = 𝑓, (2.4)

the solution is sought in the form of a grid function 𝑢𝑛𝑚 defined at the points of the
computational grid 𝑥𝑚 = 𝑚ℎ, 𝑡𝑛 = 𝑛𝜏 , where ℎ and 𝜏 are the grid size with respect
to space and time.

Monotonous first order scheme (Courant-Isaacson-Rees). This scheme
is constructed on the basis of the analysis of system (2.4) characteristics behavior
and yields the following formulas (see [5]):

𝑢𝑛+1
𝑚 = 𝑢𝑛𝑚 − 𝜏

ℎ
Ω−1Λ+Ω(𝑢𝑛𝑚+1 − 𝑢𝑛𝑚)−

𝜏

ℎ
Ω−1Λ−Ω(𝑢𝑛𝑚 − 𝑢𝑛𝑚−1). (2.5)

Here Ω is the matrix of left-hand eigenvectors of matrix 𝐴, Λ± is the diagonal
matrix of corresponding eigenvalues.

Scheme (2.5) has the order of approximation 𝑂(ℎ, 𝜏), it is monotone and has the
minimal approximation viscosity among the first-order monotone schemes, which is
very important for the calculation of dynamical processes in inhomogeneous media.
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Second order scheme (Lax-Wendroff). This is the only central scheme of
the second order of approximation on a three-point stencil (i.e., a standard scheme
using the values at the points 𝑚− 1,𝑚,𝑚+ 1):

𝑢𝑛+1
𝑚 = 𝑢𝑛𝑚 − 𝜏

2ℎ
𝐴(𝑢𝑛𝑚+1 − 𝑢𝑛𝑚−1)−

𝜏2

2ℎ2
𝐴2(𝑢𝑛𝑚+1 − 2𝑢𝑛𝑚 + 𝑢𝑛𝑚−1). (2.6)

The scheme (2.6) has minimum smearing between schemes on three-point tem-
plates. However, this scheme is not monotonous and it leads to non-physical oscil-
lations near discontinuities of the exact solution.

Hybrid scheme. Linear combination of these two schemes allows to overcome
the limitations of each scheme. This combination can be written as:

𝑢𝑛+1
𝑚 = 𝑢𝑛𝑚 − 𝜏

2ℎ
𝐴(𝑢𝑛𝑚+1 − 𝑢𝑛𝑚−1) +

1

2
((1− 𝑎)

𝜏

ℎ
Ω−1|Λ|Ω+

+ 𝑎
𝜏2

ℎ2
𝐴2)(𝑢𝑛𝑚+1 − 2𝑢𝑛𝑚 + 𝑢𝑛𝑚−1). (2.7)

Here |Λ| is a diagonal matrix of absolute eigenvalues of matrix 𝐴. If 𝑎 = 0 the
scheme (2.7) has the first order like the scheme (2.5). If 𝑎 = 1 the scheme (2.7) has
the second order like the scheme (2.6). The scheme (2.7) is hybrid one if 𝑎 depends
on the solution local behavior.

In this paper the local smoothness of the solution was determined from the
following condition proposed by Fedorenko:

(𝑢𝑛𝑚+1 − 2𝑢𝑛𝑚 + 𝑢𝑛𝑚−1)

2
6 𝐾

(𝑢𝑛𝑚+1 − 𝑢𝑛𝑚−1)

2
. (2.8)

In these calculations we assume that 𝐾 = 0.5. Parameter 𝑎 is 0 when inequa-
tion (2.8) is false and 1 when inequation (2.8) is true. The resulting scheme has
second order for smooth solution areas and first order near discontinuities. Differ-
ent advanced schemes comparison (see for instance [8] for Lax-Friedrichs scheme,
Rusanov’s scheme, Godunov’s scheme) shows that hybrid scheme should have good
balance between scheme accuracy, implementation simplicity and calculation speed.
However, a detailed comparison is a separate interesting task that requires addi-
tional study.

Hybrid scheme approach allows to achieve minimum smearing in the smooth
solution areas and to avoid simultaneously parasitic oscillations near discontinuities.
Figure 1 shows the velocity profile for the one-dimensional problem concerning the
propagation of a rectangular pulse obtained using these difference schemes. The
pulse width is 40 grid points, by the time depicted the pulse traveled 200 grid
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points from its initial location. The calculation was performed for the Courant
number 𝜎 = 0.7.

Figure 1. The problem of the rectangular pulse propagation : the dashed line corresponds
to the Courant-Isaacson-Rees scheme, the dotted and dashed line corresponds to the

Lax-Wendroff scheme, the solid line corresponds to the hybrid scheme and the dotted line
shows the exact solution

2.3 Contact boundaries

Modelling of bodies with substantially different rheological and mechanical prop-
erties requires accurate solving of the contact boundaries problem. It is important
to study wave interactions and reflection from the boundaries. Grid-characteristic
numerical methods allow to set contact boundaries conditions explicitly. This ap-
proach gives higher precision if compared with pass-through calculation.

The conditions on a contact boundary are set in the form of relations between
variables at two adjacent points on the contacting surfaces (see [6]). In this paper
full-adhesive

𝑣 = 𝑣
′
, 𝜎𝑛 = 𝜎

′
𝑛, 𝜎𝜏 = 𝜎

′
𝜏 (2.9)

and free-sliding
𝑣𝑛 = 𝑣

′
𝑛, 𝜎𝑛 = 𝜎

′
𝑛, 𝜎𝜏 = 𝜎

′
𝜏 = 0 (2.10)

conditions are used.
Here, variables with and without primes correspond to the opposite contacting

surfaces. The indices 𝑛 and 𝜏 denote the normal and tangent directions, respec-
tively.
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3 Solving different dynamic biomechanical problems

3.1 Modelling brain injury consequences

The main goal of brain injury modelling in this research was to study the formation
of the damage areas at early stages of cerebral trauma. It is well known in neuro-
surgery that damaged areas often do not coincide with the areas adjacent to the
impact site. In particular, in case of the skull nape area hitting the damage is often
localized in the forehead. This phenomenon referred to as a “countrecoup” can be
accounted by means of numerical simulation of skull and brain wave processes.

The scheme of cerebral system that was chosen for this study is represented in
Fig. 2. Quadrangular and triangular computational grids used are plotted in Fig. 6.

Figure 2. The scheme of cerebral system: (1) skin, (2) periosteum, (3) skull bone, (4)
longitudinal seam, (5) dura mater, (6) arachnoid, (7) pia mater, (8) subarachnoidal
cavity, (9) venous lacunae, (10) arachnoid granulations, (11) falx cerebrum, (12) the

inferior sagittal sinus (the distances between the membranes are enlarged).

This research uses the model of cerebral system containing three-layer skull (two
outer layers of compact bone tissue and internal layer of spongy bone tissue), a layer
of liquor between skull and brain tissue, ventricles filled with liquor, membranes and
gray substance.

The boundary between different layers of skull was fully adhesive. Two types
of boundary conditions, free slip and adhesion, were tested for other contacts (i.e.
surface between skull and gray substance). The free slip condition suits better to
real biomechanical process.

Rheological parameters are summarized in the table below.
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Figure 3. Quadrangular and triangular computational grids that were used in simulation

Tissue 𝜌, kg/m3 𝜆, MPa 𝜇, MPa
Compact bone tissue 1600 7900 5270
Spongy bone tissue 1500 3975 2650
Liquor 1000 1700 0.001
Grey substance 1020 1.7 0.23

Areas of positive and negative stresses after a strike from the left obtained as a
result of modelling are presented in Fig. 4 a, b.

Figure 4. Areas of positive, negative and shear stresses after a strike from the left

The hypothesis is the following: because vessels and gray substance are fibrous
they should stand longitudinal strain and pressure well but transversal load can
damage them much more easily. So, we can expect that the brain damage arises
mostly in the areas of highest shear load.
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The comparison of calculated and obtained from MRT maps brain damages
is represented in Fig. 5 a, b. Areas of calculated damage refer to the zones of
highest shear load. MRT map was provided by Burdenko Principal Military Clinical
Hospital.

Figure 5. The comparison of computational and obtained from MRT maps brain damages

3.2 Modelling of laser cataract extraction

The surgery technology supposes an intracapsular crush of opaque lens nucleus by
an energetic effect (ultrasound or laser radiation) without injuring of a retina or
a cornea and then aspiration of masses through a self-sealing incision of width up
to 3.5 mm. A detailed understanding of the energy propagation nature in the eye
depending on different parameters allows to minimize the intraoperative traumas
and patients medical rehabilitation period.

This problem of the dynamic process simulation in the eye during cataract ex-
traction can be conventionally divided into three stages. The first stage includes
the computation of impulse action on the lens. The second one supposes the cal-
culation of the acoustic pulse in vitreous body up to the retina and its impact on
the retina. This part of the process has practical interest because the retina can
exfoliate as a result of the pulse impact on it. The last stage supposes opaque lens
masses aspiration from the anterior chamber. This research is focused on the second
stage.

The intensity of absorbed laser radiation is calculated according to Lambert-
Beer law:

𝑄(𝑟, ℎ) = 𝐼(𝑟)𝑒−𝐻/ℎ, (3.1)
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𝐼(𝑟) = 𝐼0𝑒
−(𝑟/𝑅)2 . (3.2)

Here 𝑟 is the radius in the cross-section of the lightguide fiber, ℎ is the depth of
the laser pulse penetration, 𝐻 is the characteristic deepness of penetration (𝐻 =
3.2 mm), 𝐼0 is the intensity at the center of the pulse, 𝑅 is the lightguide fiber
diameter (𝑅 = 0.3 mm).

Since the first stage of the process was not the subject of modelling, the equiv-
alent stress was applied for modelling pulse impact at the second stage. The laser
pulse was a train with a 250 ms duration. The period of micropulses in the train
was 12.5 ms and micropulse duration was 3 ms. Only the first 250 ms were taken
into account because perturbation intensity is noticeably attenuated after the pulse
is over.

Pulse propagation through the lens and the vitreous humour to the retina was
modelled as described above. Computational grid and velocity field are shown at
Fig. 4.

Figure 6. Computational grid and velocity field

The distribution of ocular media particle speeds is shown at Fig. 7 at time
moments 𝑡1 = 6.24 ms, when the perturbation reached the iris and 𝑡2 = 23.6 ms
when the perturbation is reflected from the posterior surface of the eye. It can be
noted that the movement of ocular media has a rather complicated character. At
the initial moment during the pulse an expansion of bio-media occurs, after the
pulse is over, the pressure in the lens zone becomes less than in its surrounding
areas. It induces changes of speed direction and a subsequent eye contraction as
a consequence. So, the eye is periodically expanded and constricted during the
operation. Tissue ruptures as well as cavitation processes are possible in the sites
of expansion. In addition, reflected waves from ocular materials borders influence
the wave picture.

As the result the picture of potential zones of ocular structure damage risk is
rather complicated (see Fig. 8).

An eye lens pressure was also modelled using modern FEM software (ANSYS).
The results are presented at Fig. 9.
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Figure 7. Isolines of speed modulus. Numerical characteristic of speed are indicated in
m/sec

Figure 8. Zones of risk of the ocular structure damage

Figure 9. Calculation of pressure in eye lens using FEM and computational grid

It is worth paying attention to the fact that finite-element method identifies the
zone of the most probable damage near the lightguide fiber. Method of characteris-
tics allows to find also a possible damage zone near the retina and a number of small
additional risk zones in the eye frontal part. These additional zones are caused by
wave fronts interactions during initial fast dynamic part of overall process and can
not be found using static or quasi-static modelling methods.
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Abstract. The theory of the relation between evolutionary optimality and the
stability of equilibrium states in structured systems is announced. The main result
of the theory is stated in the case of quasilinear dynamical systems in normed
spaces. Applications of the theory to models of structured biological communities
are discussed. Functionals for communities with age or with spatial structure may
be computed on the basis of available information about steady-state stationary
distributions. The functionals are optimized with respect to the parameters of
evolutionary selection. The ways to use the results in several medical problems are
indicated.

1 Introduction

Extreme principles arise from the formalization of the idea of evolutionary selection
and its consequence – evolutionary optimality, which goes back to Darwin’s funda-
mental work. The fact that the competitive struggle within a limited space leads
to elimination of all the species, except for a small number of ones that are most
adapted to the given conditions, makes it possible to construct the fundamental
principles of functioning of biological systems.

These principles are based on the hypothesis that stationary states of biological
communities formed in the course of evolution are stable. Within the framework of
the simplest finite-dimensional mathematical model, one can uncover the essence of
necessary stability conditions that have the form of extreme relations. The objects
to be optimized are the values of Malthusian functions computed over formed stable
equilibrium states. Later, these functions may play the role of reference points in
the construction of functionals for more complicated systems.

This work was supported by the Russian Foundation for Basic Research, project No 09-07-
00398.
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In his previously constructed theory, the author proposed a construction that
relates the stability of steady states of distributed biological systems to the ex-
tremality of values of inherited traits in species surviving in these states. Despite
its artificial character (the purely technical hypothesis of quasilinearity i.e., the lin-
earity of unbounded components of the operators on the right-hand sides of the
equations leads to rather unnatural constraints in continuous-time problems), this
theory yields interesting and practically useful results for many important problems.

Here the most general mathematical statement of the main applied result in
the theory for the case of autonomous quasilinear systems with continuous time
in Banach spaces with unbounded operators on the right-hand side is given. At
this level of abstractness, the main result (a necessary stability condition for a
stationary distribution) can be formulated in terms of the localization properties
of the spectrum of the explicitly specified operator on the right-hand side of the
system calculated over this distribution. Further elaboration associated with the
possibility of constructing of functionals to be optimized, requires more specific
formulations.

2 Preliminaries of evolutionary optimality

As an example of the most simplest model one can consider a competition model of
the finite number biological species 𝑑𝑥𝑖/𝑑𝑡 = 𝑥𝑖𝑓𝑖(𝑥), 𝑖 = 1, . . . , 𝑛, 𝑥 = (𝑥1, . . . , 𝑥𝑛).
Here one can find as necessary condition for stability of an equilibrium of the form
�̄� = (�̄�1, . . . , �̄�𝑚, 0, . . . , 0), �̄�𝑖 > 0, 𝑖 = 1, . . . ,𝑚 the equality 𝑓𝑖(�̄�) = max(𝑓𝑗(�̄�)),
1 6 𝑖 6 𝑚, 1 6 𝑗 6 𝑛. It has the character of the extremal relationship and is
called the evolutionary optimality principle. Its biological sense is in that species,
survived in a stable equilibrium, are obliged to have the maximal values of Malthu-
sian parameters among all potentially possible ones, which may be computed at
the equilibrium. These factors characterize the “power” of species in its Darwin’s
understanding if one bears in mind the statement of the principle about survival of
the most strong.

Since in the equilibrium the species with senior numbers are absent, they may be
considered as virtual ones, i.e. one can add to their collections anyone from other
species, which have hypothetical possibility to turn out to be in the initial set.
Herewith their distinguishing parameters can have a free nature and in particular
can be chosen from a certain area in the space of parameters, so the optimization
problem already may be solved with respect to it. Such an expansion allows to find
isolated values of parameter, under which the equilibrium turns out to be stable.
On this way one can built the methods of the calculation of parameters values
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for (quasi)stationary biological systems, for determination of which the natural
measurement can turn out to be impossible or difficult.

3 Some results of general theory

Here some of fundamental results concerning the theory relating stability and evo-
lutionary optimality in models of structured biological systems are formulated. The
consideration is restricted to continuous-time autonomous systems, which are con-
structively covered by the description of quasilinear dynamical systems in Banach
spaces.

The original autonomous dynamical system has the form

𝑑𝑡𝑥 = (ℎ𝑥 + 𝑎(𝑥, 𝑦))𝑥, 𝑑𝑡𝑦 = ℎ𝑦𝑦 + 𝑏(𝑥, 𝑦)

where 𝑡 ∈ 𝐽 = [0, 𝑇 ], 𝑇 > 0, 𝑑𝑡 = 𝑑/𝑑𝑡, 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , 𝑋 and 𝑌 are Banach spaces,
𝑎 ∈ 𝐶1(𝑋 ⊕ 𝑌,𝐵(𝑋)), 𝑏 ∈ 𝐶1(𝑋 ⊕ 𝑌, 𝑌 ), and 𝐵(𝑋) is the space of bounded linear
operators in 𝑋. The linear operators ℎ𝑥,𝑦 are infinitesimal generators of strongly
continuous semigroups of linear bounded operators acting in 𝑋 and 𝑌 , respectively.
with domains 𝐷(ℎ𝑥,𝑦). Specifically, such operators are closed and their domain are
dense.

The variables of the system are initially divided into two groups: evolutionary
ones 𝑥 (their variation vanishes at zero values) and non-evolutionary 𝑦 (required
only for the generality necessary in applications; in mathematical constructions
they can be discarded for brevity). The reduced formulation of system has the
form 𝑑𝑡𝑤 = ℎ𝑤 +𝐾(𝑤), 𝑤 = (𝑥, 𝑦) ∈𝑊 = 𝑋 ⊕ 𝑌 , ℎ = diag{ℎ𝑥, ℎ𝑦}.

For the system the stability of a stationary solution �̄� = (�̄�, 𝑦) is understood in
the sense that the spectrum of the Jacobian of the mapping calculated over positive
time at �̄� lies inside the unit disk.

A projector 𝑃 , i.e., a linear bounded idempotent (𝑃 2 = 𝑃 ) operator in 𝑊 is
called admissible with respect to ℎ if the domain of the latter satisfies 𝑃𝐷(ℎ) ⊂ 𝐷(ℎ)
and, additionally, ℎ𝑃 = 𝑃ℎ𝑃 .

A projector 𝑃 in 𝑊 is called admissible with respect to 𝑤 ∈ 𝑊 if 𝑃𝑤 = 𝑤, 𝑃
is admissible with respect to ℎ and commutes with 𝐼𝑌 (projector onto 𝑌 ), and, for
some neighborhood 𝑂(𝑤) ⊂𝑊 𝑣 ∈ 𝑃𝑊 ∩𝑂(𝑤) implies 𝐾(𝑣) ∈ 𝑃𝑊 . The Jacobian
of the system calculated at the equilibrium �̄� = (�̄�, 𝑦) is decomposed into the sum
𝑙(�̄�) = 𝑙0(�̄�) + 𝑙1(�̄�) where 𝑙0(�̄�) = diag{ℎ𝑥 + 𝑎(�̄�), 0}.
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Let C−𝛿, 𝛿 > 0, be the left complex half-plane shifted to the left by 𝛿. In
the autonomous case, the most interesting result of the theory (minus some gen-
eralizations aimed at larger adequacy for biological setting) can be formulated as
follows.

Theorem. Let �̄� = (�̄�, 𝑦) be a linear stable stationary solution to the system.
Then, for any projectors 𝑃1, 𝑃2 in 𝑊 that are admissible with respect to �̄� and
such that 𝑃1𝑃2 = 𝑃2𝑃1 = 𝑃2 and 𝑃2𝐼𝑌 = 𝑃1𝐼𝑌 , there exists 𝛿 > 0 such that
𝜎((𝑄𝑙0(�̄�))𝑄𝑊 ) ⊂ C−𝛿.

Here, 𝑄 = 𝑃1−𝑃2 is a projector in 𝑊 , 𝐴𝑉 is the restriction of a linear operator
𝐴 :𝑊 →𝑊 to a subspace 𝑉 ⊂𝑊 that is invariant with respect to it, and 𝜎(𝐴) is
the spectrum of the operator 𝐴. So, �̄� ∈ Ker(ℎ𝑥 + 𝑎(�̄�)), therefore, the following
result holds in the case �̄� ̸= 0, which is of interest for applications.

Corollary (extreme principle). Equal to zero maximum of the upper bound for
the real part of the spectrum of restrictions of the operator ℎ𝑥 + 𝑎(�̄�) to 𝑄𝑊 ⊕
{𝑙�̄�} , 𝑙 ∈ R is reached at the vector �̄� ̸= 0 realized in the stable equilibrium
�̄� = (�̄�, 𝑦).

This assertion is a direct generalization of the necessary condition for external
stability (formulated in extreme form) to the structured case.

4 Continuous age-structured model

The original system of equations describing the dynamics of a community of species
with a continuous age structure has the form

𝜕𝑥𝜆 = −𝜇𝜆𝑥𝜆, 𝜆 ∈ Λ,

𝜕𝑦𝑖 = 𝑏𝑖, 𝑖 ∈ 𝐼 = {1, . . . , 𝐽1}, 𝜕𝑡𝑦𝑗 = 𝑏𝑗 , 𝑗 ∈ 𝐽 = {𝐽1 + 1, . . . , 𝐽2}

with the boundary conditions

𝑥𝜆(0, 𝑡) =

∞∫︁
0

𝛽𝜆(𝑎)𝑥𝜆(𝑎, 𝑡)𝑑𝑎, 𝜆 ∈ Λ, 𝑦𝑖(0, 𝑡) =

∞∫︁
0

𝑔𝑖(𝑎)𝑦𝑖(𝑎, 𝑡)𝑑𝑎, 𝑖 ∈ 𝐼

and with suitable initial conditions. Here, 𝑡 is time, 𝑎 is age, 𝜕𝑡 = 𝜕/𝜕𝑡, 𝜕 = 𝜕𝑡+𝜕𝑎,
𝜆 is the index (possibly from the infinite set Λ) of an evolving species with an age
population density 𝑥𝜆 = 𝑥𝜆(𝑎, 𝑡), and 𝑖 is the index (from a finite set) of a not
evolving species with an age density𝑦𝑖 = 𝑦𝑖(𝑎, 𝑡). The difference between the first
and the second is that the second can be controlled externally. Moreover, the system
can contain external (i.e., not evolving) variables 𝑦𝑗 = 𝑦𝑗(𝑡) with no age structure.
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The system is assumed to be autonomous in time, so each of the death rates
𝜇𝜆 = 𝜇𝜆(𝑎, 𝑥, 𝑦) of individuals of the species indexed by 𝜆 and the current variations
(death rate, migration, etc.) of the non-evolving species are assumed to depend only
on the age of these individuals and the values of the distribution vectors 𝑥 = 𝑥(𝑡) =
{𝑥𝜌(·, 𝑡)} , 𝜌 ∈ Λ, 𝑦 = (𝑦𝐼 , 𝑦𝐽), 𝑦𝐼 = 𝑦𝐼(𝑡) = {𝑦𝑖(·, 𝑡)} , 𝑖 ∈ 𝐼, 𝑦𝐽 = 𝑦𝐽(𝑡) = {𝑦𝑗(𝑡)},
𝑖 ∈ 𝐽 , which describe the current state of the community structure (i.e., at a fixed
time). Here and below, a dot placed instead of a distribution variable means that
the distribution is treated as a whole, i.e., as an element of a suitable function space.
More specifically, this means that the death rates are functions of the state of the
community as a whole. The birth rates 𝛽𝜆(𝑎), 𝑔𝑖(𝑎) are assumed to be independent
of the current form of the distributions (quasilinearity condition).

To use the results of the previous section, all the functions are assumed to
be twice uniformly continuously differentiable with respect to their arguments. As
suitable Banach spaces, one can use 𝑋 = 𝑙∞(Λ)⊗𝐿1(R+) and 𝑌 = R|J1|⊗𝐿1(R+)⊕
R|J2|. Here, 𝑙∞(Λ) denotes the space of real-valued functions on Λ with a countable
support that are summable on the support in the 𝑙∞ norm. Integral summability
with respect to 𝑎 ∈ R+ reflects the natural requirement that the total population
size be bounded. The operator hx is assumed to be diagonal in the structure of
𝑙∞(Λ), and its nonzero component indexed by Λ is a closed operator of the form
−𝜕𝑎 with the domain consisting of bounded absolutely continuous functions from
𝐿1(R+) that satisfy the first boundary condition. In a similar manner, the second
of these conditions defines the domain of the corresponding diagonal components
of ℎ𝑦. The remaining components on the right-hand side (death rate, etc.) are
described by bounded operators and functions. Since the general quasilinear theory
does not prevent their dependence on the phase variables, this dependence (possibly
even on the age distributions overall) is admissible in the application under study.

Let (�̄�, 𝑦) be a stationary solution of the system that is stable in the sense of
the previous section. Let �̄� ∈ supp�̄� (the subset of those values of 𝜆 ∈ Λ for which
�̄�𝜆(𝑎) does not vanish identically). For the above construction one can verify the
conditions of the above theorem. So, by the Lotka theorem, having the maximal
real part the eigenvalue of the operator ℎ𝜆 − 𝑀𝜆, where 𝑀𝜆 is the operator of
pointwise multiplication (with respect to 𝑎) by the function 𝜇𝜆(𝑎, �̄�, 𝑦), is real and
the corresponding eigenfunction is positive. This eigenvalue is determined for every
𝜆 ∈ Λ from the characteristic equation for 𝜅, which has the form 1 = Φ(𝜆, 𝜅, �̄�, 𝑦),
where the righthand side equals to

∫︀∞
0 𝛽𝜆(𝑎) exp(−𝜅𝑎−

∫︀ 𝑎
0 𝜇𝜆(𝑠, �̄�, 𝑦) 𝑑𝑠)𝑑𝑎)𝑑𝑎.

By the theorem its solution satisfies 𝜅𝜆 6 0, so Φ(𝜆, 0, �̄�, 𝑦) 6 Φ(𝜆, 𝜅𝜆, �̄�, 𝑦) =
1 = Φ(�̄�, 0, �̄�, 𝑦), and the functional 𝜙(𝜆) = Φ(𝜆, 0, �̄�, 𝑦) reaches its maximum value
at �̄�. Hence, in terms of the model of this section, the extreme principle can be
formulated as follows.
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Theorem. If the above system has a stable stationary equilibrium �̄� =
{�̄�𝜆(𝑎)} , 𝜆 ∈ Λ, then �̄� ∈ supp(�̄�) satisfies the relation 𝜙

(︀
�̄�
)︀
= max

𝜆∈Λ
(𝜙 (𝜆))

with the functional 𝜙 (𝜆) =
∞∫︀
0

𝑏𝜆(𝑎) exp

(︂
−

𝑎∫︀
0

𝑚𝜆(𝑠, �̄�) 𝑑𝑠

)︂
𝑑𝑎.

From a practical point of view, this means that the set of parameters values 𝜆
for an a priori known steady-state stationary distribution �̄� can be determined by
maximizing the above functional over 𝜆. Note that the theoretical maximum value
of this functional is equal to unity.

The biological meaning of this functional which goes back to Lotka’s fundamen-
tal constructions, is the mean number of the newborn per individual with allowance
for the age-specific death rate.

5 Models with continuous spatial structure

Starting here, the nonevolving variables 𝑦 are ignored.
For spatially distributed biological communities, the most frequently used con-

tinuous model is based on systems of second-order quasilinear parabolic equations
with homogeneous conditions on the boundary of the considered spatial domain.
In the case of an a priori known stationary distribution of biological species, the
results of the general theory can be used to construct the minimization problem for
a suitable integral functional in order to determine the selection parameters values
corresponding to surviving species.

The original system of equations has the form 𝜕𝑡𝑥𝜆 = ℎ𝜆𝑥𝜆 + �̂�𝜆(𝑥)𝑥𝜆, 𝜆 ∈ Λ
with 𝑥𝜆 = 𝑥𝜆(𝜉, 𝑡) – the spatial biomass density of the species indexed by 𝜆 at
the point 𝜉 ∈ Ω at time t (here, Ω ⊂ Rn is a connected bounded domain with
a sufficiently smooth boundary 𝜕Ω which describes the habitat of the commu-
nity), ℎ𝜆𝑥𝜆 = div (𝐴𝜆(𝜉) (grad𝑥𝜆 + 𝑥𝜆grad 𝑞𝜆(𝜉))) are the elliptic operators with
rather smooth coefficients 𝛼𝜄𝜅𝜆 (𝜉), 𝑞𝜆(𝜉), 𝜄, 𝜅 = 1, . . . , 𝑛, in the closure of Ω, and
𝐴𝜆 (𝜉) = ‖𝛼𝜄𝜅𝜆 (𝜉)‖ are symmetric matrices that are uniformly positive definite in
Ω. Here, the divergence and the gradient are calculated with respect to 𝜉, and

(𝑢, 𝑣) =
𝑛∑︀
𝑖=1

𝑢𝑖𝑣𝑖. These operators are used to describe diffusion in the case of

an anisotropic space and the presence of a spatial drift defined by the gradient of
𝑞𝜆(𝜉) (for example, in chemotaxis problems, this is a species-specific function of the
attractant concentration). On the boundary 𝜕Ω the homogeneous Dirichlet condi-
tions 𝑥𝜆|𝜕Ω = 0 or (grad𝑥𝜆 + 𝑥𝜆 grad 𝑞𝜆(𝜉), 𝐴𝜆(𝜉)𝜈)|𝜕Ω = 0 – the impermeability
conditions, where 𝜈 is the normal vector to the boundary at the point 𝜉 ∈ 𝜕Ω,
are implied. The last condition, in which the projection of the total flux (due to
diffusion and drift) of individuals of species 𝜆 through the boundary is set equal to
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zero, means that, from a biological point of view, the boundary is an insuperable
barrier for individuals.

The operator �̂�𝜆(𝑥) defines the pointwise (with respect to 𝜉) multiplication of
function 𝑥𝜆(𝜉, 𝑡) by 𝑎𝜆(𝑥(·, 𝑡), 𝜉), in which 𝑥 = 𝑥(·, 𝑡) = {𝑥𝜌(·, 𝑡)} , 𝜌 ∈ Λ . for each
spatial point 𝜉, this operator plays the role of a Malthusian function for the species
indexed by 𝜆. The collection of these operators specifies all the intraspecies and
interspecies interactions in the community.

As in the previous section, all introduced functions are assumed to be twice
uniformly continuously differentiable with respect to their arguments. As 𝑊 = 𝑋
we use the space 𝑙∞(Λ, {𝐿𝜆2(Ω)}𝜆∈Λ) of 𝑙∞-normalized finite-dimensional vectors
with the 𝜆-th component 𝑥𝜆(𝜉) from the Hilbert space 𝐿𝜆2(Ω) with the norm√︁∫︀

Ω 𝑒
𝑞𝜆(𝜉)𝑥2𝜆(𝜉)𝑑𝜉. The operatorsℎ = ℎ𝑥 and a(x) act componentwise as ℎ𝜆 and

�̂�𝜆(𝑥), and the domain of ℎ𝜆 is the space 𝑊 𝜆
2 (Ω) ⊂ 𝑊 2

2 (Ω) of functions having
second partial derivatives from 𝐿𝜆2(Ω) and satisfying the boundary conditions in
the sense of the trace. The operators ℎ𝜆 thus defined are closed and self-adjoint
in 𝐿𝜆2(Ω), which means that they are sectorial. Therefore, there exists an analyt-
ical (and, hence, strongly continuous) semigroup for which they are infinitesimal
generators.

Moreover, one can check that the variational principle holds for ℎ𝜆+�̂�𝜆(𝑥). This
means that the minimum eigenvalue of ℎ𝜆 + �̂�𝜆(𝑥) is simple and, up to the sign,
coincides at its eigenfunction 𝑣𝜆(𝜉) with the minimum of the functional

Φ (𝜆, 𝑥, 𝑣) =

⎡⎣∫︁
Ω

𝑒𝑞𝜆(𝜉)
[︀
(𝑤𝜆(𝜉), 𝐴𝜆(𝜉)𝑤𝜆(𝜉))− 𝑎𝜆(𝑥, 𝜉)𝑣

2(𝜉)
]︀
𝑑𝜉

⎤⎦⎡⎣∫︁
Ω

𝑒𝑞𝜆(𝜉)𝑣2(𝜉)𝑑𝜉

⎤⎦−1

where 𝑤𝜆(𝜉) = grad 𝑣(𝜉)+ 𝑣(𝜉) grad 𝑞𝜆(𝜉). The minimum of functional (8) is calcu-
lated over𝑣(𝜉) ̸= 0 on the Friedrichs extension of the domain of ℎ𝜆 + �̂�𝜆(𝑥), which
coincides with 𝐻1

0 (Ω) in the Dirichlet case (distributions on Ω with first partial
derivatives from 𝐿2(Ω) vanishing on the domain boundary in the sense of the trace)
and with 𝐻1(Ω) in the impermeability case (the same but without the boundary
conditions).

Let �̄� be a stationary solution to the system that is stable in sense above, and let
�̄� ∈ supp�̄�. The last inclusion means that the kernel of ℎ�̄�+�̂��̄�(�̄�) is not empty, since
it includes the nonzero distribution �̄��̄�. For it Green’s identity gives Φ�̄�, �̄�, �̄��̄�) = 0.
The variational principle also implies the inequality Φ(𝜆, �̄�, 𝑣𝜆) 6 Φ(𝜆, �̄�, �̄��̄�) and
the equality Φ(𝜆, �̄�, 𝑣𝜆) = − sup𝜎(ℎ𝜆 + �̂�𝜆(�̄�)) for 𝜆 ∈ Λ. The application of the
first theorem to 𝜆 /∈ supp�̄� yields sup𝜎(ℎ𝜆+ �̂�𝜆(�̄�)) < 0. Collecting these relations,
one obtains the chain Φ(�̄�, �̄�, �̄��̄�) = 0 < Φ(𝜆, �̄�, 𝑣𝜆) 6 Φ(𝜆, �̄�, �̄��̄�) which implies
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the extreme principle for𝜙 (𝜆) = Φ(𝜆, �̄�, �̄��̄�). More specifically, the following result
holds.

Theorem. If the system with one of the boundary conditions has a stable sta-
tionary equilibrium �̄� = {�̄�𝜆(𝜉)} , 𝜆 ∈ Λ then �̄� ∈ supp(�̄�) satisfies the relation
𝜙
(︀
�̄�
)︀
= min

𝜆∈Λ
𝜙 (𝜆).

Note that 𝜙 (𝜆) can be replaced by 𝜑(𝜆) = Φ(𝜆, �̄�, 𝑣𝜆). First, this follows for-
mally from the first inequality and Φ(�̄�, �̄�, 𝑣�̄�) 6 Φ(�̄�, �̄�, �̄��̄�). Second, assuming that
�̄� is stable with respect to spatial perturbations of the distributions for �̄� ∈ supp(�̄�),
one obtains �̄��̄� = 𝑣�̄� (otherwise, �̄��̄� is unstable with respect to 𝑣�̄�), which makes
both formulations of the extreme principle equivalent. However, in the construc-
tion of functionals, the second version allows to take into account the form of the
steady-state distribution only in the computation of the coefficients. Specifically
we do not need to determine its spatial derivatives, since, instead of the latter, we
use the functions 𝑣𝜆 computed by minimizing the functional Φ(𝜆, �̄�, 𝑣).

6 Conclusions

If there is no need to use unbounded operators to invoke the general theory, one
can use “simpler” constructions. The examples include various models for the prop-
agation of epidemics, epiphytoties, etc. Even models with a discrete structure can
be formally reduced to the problem addressed in the preliminary approach. The
same is true for discrete-time systems. The best-known population model with dis-
crete time and age is that of Leslie. Some of its generalizations associated with the
possibility of interage (more exactly, interstage) transitions also have found their
reflection in the computation of evolutionary selection functionals.

Concerning applications of these results, an example is the theory of correlation
adaptometry, constructed on the basis of the extreme properties of functionals for
spatial distributions. This theory uncovers the relation between the level of unfavor-
able actions on a population and the degree of correlation between the distributions
of physiological parameters of its terms.
V. N. Razzhevaikin
Contacts for the author: Dorodnicyn Computing Center, Russian Academy of Sciences,
Russia, 119333, Moscow, Vavilov str., 40, razzh@mail.ru
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Abstract. The intraocular pressure is an important characteristic of the human
eye. For that reason, the elaboration and development of new methods for its mea-
surement is an important direction of research in ophthalmology. In this report
the procedure of measuring the intraocular pressure by an optical analyzer is nu-
merically simulated. The cornea and the sclera are considered as axisymmetrically
deformable shells of revolution; the space between these shells is filled with incom-
pressible fluid. Nonlinear shell theory is used to describe the stressed and strained
state of the cornea and sclera. The spatial problem was decided by a method of
finite differences. For a solution of the nonlinear problems of deformation shells a
method of additional viscosity was used. The optical system is calculated from the
viewpoint of the geometrical optics. Dependences between the pressure in the air
jet and the area of the surface reflecting the light into a photo-detector are obtained.
The shapes of the regions on the cornea surface are found from which the reflected
light falls on the photo-detector. First, the light is reflected from the center of the
cornea, but then, as the cornea deforms, the light is reflected from its periphery.

1 Introduction

Presently, the use of mathematical modelling in medical research is expanding. One
field of the successful application of such models is the development of mechanical
models of the eye based on fluid dynamics. The intraocular pressure is an important
characteristic of the human eye. The deviation of this pressure from the norm is a
cause of the impairment of vision in many patients. For that reason, the elaboration
and development of new methods for its measurement is an important direction of
research in ophthalmology. The intraocular pressure has important physiological
functions - it smoothes the intraocular shells and gives the eyeball the shape required
by the optical eye system. From the level of the intraocular pressure, one can judge
the development of such pathological processes as glaucoma or opacity of aqueous
humor and vitreous body. The intraocular fluid feeds the internal structures of the
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eye. It provides for the exchange processes between the internal structures and
the tissue structures. Tonometry is the measurement of the intraocular pressure
(IOP) to determine the ability of the eyeball to deform under the influence of an
external mechanical action, which can be applied to the cornea and the sclera. The
IOP is measured using specially designed devices. There are finger, impression,
and applanation methods of tonometry. One variant of the applanation tonometry
assumes that a jet of air is directed to the cornea center (air-puff tonometry), and
the displacement of the cornea is measured by the reflected beam of light (optical
method). This displacement is then used to calculate the IOP.

2 Statement of the problem

The IOP is measured using specially designed devices. In this paper, we numeri-
cally simulate the eye deformation when the pressure is measured using ORA (the
Ocular Response Analyzer) developed by the USA company Reichert (see [1]). The
measurement procedure is as follows. A patient presses his or her forehead to the
device. A narrow beam of light is directed to the cornea center (which is depicted
in fig. 1 in the coordinates 𝑥, 𝑦, 𝑧 as a segment of a sphere) at a certain angle using
a special positioning system. A point light source is located at the point 𝑂. The
light passes through the aperture 𝐴; as a result, a part of the light flux is cut off
and an illuminated area 𝑆 emerges on the cornea.

Figure 1. The path of a narrow beam in the device

The photo-detector is located at the point 𝐵, and its axis passes through the
cornea center. Since the photo-detector has a limited size, it captures only the
part of the light flux reflected from the cornea in the region 𝑄. Then, an air jet
in which the pressure increases from zero to a certain magnitude is directed to the
center of the cornea. As a result, the cornea is deformed, and the reflected light
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flux changes depending on the cornea shape. As a result of the measurements, a
curve is shown on the device display that plots the reflected light flux against the
pressure in the jet. Based on numerous experiments on the comparison of the results
provided by the ORA with other methods for the IOP measurement, a method for
the interpretation of the result obtained by the ORA was developed that yields the
IOP value. A feature of this device is the digital signal processing, which gives more
accurate values of the IOP.

However, the experiment-based procedure of the measurement result interpre-
tation does not fully utilize the device capabilities. The mathematical modelling of
the measurement process makes it possible to justify the analysis of measurements
and calculate a more accurate value of the IOP.

A considerable difficulty in the interpretation of the measurement results is the
lack of fundamental knowledge about the bio-mechanical properties of the cornea.
Presently, there are no conventional methods for the life-time measurement of these
properties. For that reason, simplified mechanical models of the eye are often used
in the literature; these models only make it possible to draw qualitative conclusions.
From the mechanical point of view, a scheme of the human eye is described in [2,3].
The shell of the eye ball consists of two parts: the cornea and the sclera. Their
mechanical properties are quite different. The sclera and the cornea are separated
by a thin membrane. The anterior chamber between the cornea and the membrane
is filled with aqueous humor, and the posterior chamber is filled with vitreous body.

In the calculations, we assume that the eyeball is filled with incompressible fluid.
The influence of the intermediate membrane is neglected. The cornea and the sclera
are considered as shells of revolution uniformly loaded by the internal pressure 𝑝𝑖
(see fig. 2) and firmly fastened at their common points.

The uniform external pressure 𝑝𝑒 is applied at the circle of radius 𝑟𝑝 in the center
of the cornea; this pressure increases from zero to a certain magnitude. Since the
shells are firmly fastened at their common points, they affect each other because a
part of the intraocular fluid flows into the sclera as the external pressure exerted
by the air jet increases; the sclera is thrust and the intraocular pressure increases.
Its value is found from the condition that the internal volume of the eye remains
unchanged.

3 Nonlinear equations of shells of revolution theory

We assume that the cornea and the sclera are axisymmetric about the vertical axis
𝑧 and the pressure at the center is also distributed symmetrically about this axis.
Thus, we have an axisymmetric problem for the calculation of the deformation of
both shells, and we may consider only the cut of the shell at 𝑦 = 0. The coordinates
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𝑥, 𝑧 in this section are denoted by the capital letters 𝑋, 𝑍. The shell surface
can be obtained by rotating the plane curve 𝑋 = 𝑋 (𝑠0), 𝑍 = 𝑍 (𝑠0), around
the axis 𝑧, where 𝑠0 is the arc length along the cornea surface measured from its
center (see [6]). The angle between the tangent to the surface and the axis 𝑥 is
𝜙(𝑠0). The values 𝑋 (𝑠0),𝑍 (𝑠0) and 𝜙(𝑠0) are obtained by solving the problem of
the simultaneous deformation of the cornea and the sclera. Such problems were
studied in [4, 5, 7, 8]. The cornea and the sclera are considered as elastic shells
whose deformation is described by a geometrically nonlinear theory under finite
displacements and rotation angles.

Here, we give only the basic equations of the theory of shells of revolution under
the influence of an axisymmetric load. These equations are the same for the cornea
and the sclera; only their geometric and mechanical parameters are different. For
that reason, we write these equations in the general form.

In the system of coordinates 𝑋, 𝑍, consider (see [6]) an axisymmetrically loaded
shell of revolution of thickness ℎ. The coordinates of the midsurface 𝑋, 𝑍, the angle
𝜙 between the tangent to the midsurface and the axis, the curvature radii in the
meridional 𝑟1 and circumferential direction 𝑟2 are known functions of the arc length
of the midline 𝑠. The corresponding quantities in the unstrained state are marked
by subscript 0; for example, the arc length in the initial state is denoted by 𝑠0. The
normal to the midsurface is directed such that the tangent and the normal form
the righthanded system of coordinates.

Figure 2. The scheme of the cornea and the sclera
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The strains at the distance 𝜁 along the normal to the midsurface in the merid-
ional direction 𝜀𝜙 and the circumferential direction 𝜀𝜃 are determined on the basis
of the Kirchhoff-Love model as

𝜀𝜑 = 𝜀1 − 𝜁𝑘1, 𝜀𝜃 = 𝜀2 − 𝜁𝑘2, (3.1)

𝜀1 =
𝑑𝑠

𝑑𝑠0
− 1, 𝑘1 =

1

𝑟1
− 1

𝑟10
, 𝜀2 =

𝑋

𝑋0
− 1, 𝑘2 =

sin𝜙− sin𝜙0

𝑋0
. (3.2)

The coordinates of the midsurface in the strained state are determined by the
equations

𝑑𝜙

𝑑𝑠0
= 𝑘1 +

1

𝑟10
,

𝑑𝑋

𝑑𝑠0
= (1 + 𝜀1) cos𝜙,

𝑑𝑍

𝑑𝑠0
= (1 + 𝜀1) sin𝜙. (3.3)

In addition, the conformity conditions for the strains must be satisfied:

𝑑𝜀2
𝑑𝑠0

=
1

𝑋0
[(1 + 𝜀1) cos𝜙− (1 + 𝜀2) cos𝜙0] , (3.4)

𝑑𝑘2
𝑑𝑠0

=
1

𝑋0

[︂(︂
𝑑𝜙0

𝑑𝑠0
+ 𝑘1

)︂
cos𝜙−

(︂
𝑑𝜑0
𝑑𝑠0

+ 𝑘2

)︂
cos𝜙0

]︂
. (3.5)

The equations of equilibrium in the case of considerable displacements and ro-
tation angles are written for the strained state as

𝑑𝑄𝜙
𝑑𝑠0

+ (1 + 𝜀1)
𝑁𝜃 sin𝜙+𝑄𝜙 cos𝜙

𝑋
+𝑁𝜙

(︂
𝑘1 +

𝑑𝜙0

𝑑𝑠0

)︂
+ 𝑝𝑧 = 0, (3.6)

𝑑𝑁𝜙

𝑑𝑠0
+ (1 + 𝜀1)

𝑁𝜙 −𝑁𝜃

𝑋
cos𝜙−𝑄𝜙

(︂
𝑘1 +

𝑑𝜙0

𝑑𝑠0

)︂
+ 𝑝𝜙 = 0, (3.7)

𝑑𝑀𝜙

𝑑𝑠0
+ (1 + 𝜀1)

𝑀𝜙 −𝑀𝜃

𝑋
cos𝜙−𝑄𝜙 = 0, (3.8)

where 𝑄𝜙 is the transverse force, 𝑁𝜙 and 𝑁𝜃 are the normal forces, 𝑀𝜙 and are
𝑀𝜃 the bending momentums, 𝑝𝜙 and and 𝑝𝑧 are, respectively, the tangent and the
normal (with respect to the midsurface) components of the distributed load.
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We solve this problem using the additional viscosity technique (see [6]). Intro-
ducing the rheological viscosity, we obtain, expressions for the normal forces and
moments:

𝑁𝜙 =
𝐸ℎ

1− 𝑣2
[𝜀1 + 𝑣𝜀2 + 𝜏 (�̇�1 + 𝑣�̇�2)] , (3.9)

𝑀𝜙 = − 𝐸ℎ3

12 (1− 𝑣2)

[︁
𝑘1 + 𝑣𝑘2 + 𝜏

(︁
�̇�1 + 𝑣�̇�2

)︁]︁
, (3.10)

𝑁𝜃 =
𝐸ℎ

1− 𝑣2
[𝜀2 + 𝑣𝜀1 + 𝜏 (�̇�2 + 𝑣�̇�1)] , (3.11)

𝑀𝜃 =
𝐸ℎ3

12 (1− 𝑣2)

[︁
𝑘2 + 𝑣𝑘1 + 𝜏

(︁
�̇�2 + 𝑣�̇�1

)︁]︁
. (3.12)

Shell theory is an approximate one, and it does not take into account the rela-
tionship between and the shear strain. For that reason, this relation is not included
in the constitutive equations. In order to have unified expressions of type Eq. (3.9)
- (3.12) for all the force factors needed to write a resolving system of equations,
we formally introduce by analogy with Eq. (3.9), the quantity 𝛾 for the transverse
force 𝑄𝜙 (see [6]):

𝑄𝜙 =
𝐸ℎ

1− 𝑣2
(𝛾 + 𝜏 �̇�) . (3.13)

The resolving system of equations was constructed using the procedure described
in [6]. Expressions Eq. (3.9) - (3.12) and (3.13) for the forces and moments were
substituted into equilibrium Eq. (3.6) - (3.8). The derivatives 𝜕2𝜀2

⧸︀
𝜕𝑠0𝜕𝑡 and

𝜕2𝑘2
⧸︀
𝜕𝑠0𝜕𝑡 were taken from conformity relations Eq. (3.4) differentiated with re-

spect to 𝑡. Similarly, 𝜕𝜀2/𝜕𝑡 and 𝜕𝑘2/𝜕𝑡 in Eq. (3.2) were determined.

Three other equations were obtained by differentiating the expressions for the
coordinates of midsurface Eq. (3.3) with respect to 𝑡 and combining the original
equations with these derivatives.

As a result, a system of six partial differential equations was obtained. It has
the form of the canonical hyperbolic system (see [6])

𝜕2Φ

𝜕𝑠0𝜕𝑡
+A

𝜕Φ

𝜕𝑡
+

1

𝜏

{︂
𝜕Φ

𝜕𝑠0
+B

}︂
= 0. (3.14)
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The components of Φ are functions of the spatial coordinate 𝑠0 and the time 𝑡;
they are determined by the relation

Φ = [𝛾, 𝜀1, 𝑘1, 𝜙,𝑋,𝑍]
𝑇 . (3.15)

The matrices A and B of size 6× 6 and 6× 1 are functions of the components
of Φ, which, in turn, are functions of the time 𝑡 and the coordinate 𝑠0.

The static problem is described by Eq. (3.9), (3.11) and (3.13) for the zero
velocities �̇�1 = �̇�2 = �̇�1 = �̇�2 = �̇� = 0. Therefore, the static problem is described by
the equations in braces:

𝜕Φ

𝜕𝑠0
+B = 0.

Its solution is obtain from system (3.14) asymptotically when �̇�, �̇�1, �̇�1�̇�, �̇�, �̇�
tend to zero.

This problem was solved using the step-by-step method. For every set of load
values 𝑝𝜙, 𝑝𝑧, the iterative process was carried out until stabilization, i.e., until the
velocity |𝜕Φ/𝜕𝑡| became less than a prescribed value determining the computation
error.

The velocities of the unknowns can be approximately replaced with the ratio
of the increment ΔΦ𝑙 = Φ(𝑡𝑙) − Φ (𝑡𝑙−1) to the increment of time Δ𝑡𝑙 = 𝑡𝑙 − 𝑡𝑙−1,
𝑙 = 1, . . . , 𝑁𝑡, 𝑡0 = 0:

𝜕Φ

𝜕𝑡

⃒⃒⃒⃒
𝑡=𝑡𝑙

≈ ΔΦ𝑙
Δ𝑡𝑙

, (3.16)

here, 𝑁𝑡 is the number of time steps needed to obtain the solution. Then, system
(3.14) can be reduced to the form

𝑑ΔΦ𝑙
𝑑𝑠0

+ A|𝑡=𝑡𝑙 ΔΦ𝑙 +
Δ𝑡𝑙
𝜏

{︂
𝜕Φ

𝜕𝑠0
+B

}︂⃒⃒⃒⃒
𝑡=𝑡𝑙

= 0. (3.17)

With respect to 𝑡, we used a first-order finite difference scheme with a variable
step size. In this case, the components of Φ(𝑡𝑙, 𝑠0) from the preceding time level
must be stored in computer memory for certain points. The procedure of numerical
solution is described in [6] in more detail.

The choice of the viscosity parameter 𝜏 is not a problem because we can use the
dimensionless time 𝑇 = 𝑡/𝜏 , and then the solution is a function of 𝑇 .
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4 Determining the intraocular pressure

We have already mentioned in Section 1.2 that the cornea and the sclera affect each
other due to the flow of fluid inside the eye. It follows from the incompressibility
condition that

𝑉𝑟 + 𝑉𝑠 = 𝑉 0
𝑟 + 𝑉 0

𝑠 , (4.1)

where 𝑉𝑟 and 𝑉𝑠 are the volumes of the fluid between the surfaces of the cornea and
sclera and the plane passing through their common circle. As before, the subscript
0 marks the quantities corresponding to the state when the pressure in the air jet
is zero.

The calculation procedure was as follows. It was assumed that the original
shape of the eye is defined when there is neither external nor internal pressure.
Then the internal pressure in the eye was increased up to a certain value 𝑝𝑖, while
the external pressure was still zero: 𝑝𝑒 = 0; the eyes shape and the initial volume
𝑉 0
𝑟 + 𝑉 0

𝑠 were determined.
Then, the pressure 𝑝𝑒 in the jet was increased step-by-step beginning from zero,

and the shape of the cornea was determined. For each 𝑝𝑒 , the value of 𝑝𝑖 en-
suring the fulfillment of condition (4.1) was determined. This value is exactly the
intraocular pressure when the pressure in the jet is 𝑝𝑒.

5 Calculation of the optical fluxes in the system

To determine the dependence between the external pressure and the reflected light
flux that hits the photo-detector, we should consider the passage of the light rays
between the light source and the photo-detector (see fig. 3). The scheme of the
optical system is shown in fig. 1. The illuminated area on the cornea is denoted by
𝑆, and the area that reflects the light falling on the photo-detector is denoted by
𝑄.

To calculate the passage of the incident and the reflected light beams, we put a
grid on the cornea surface that is finer near the center (see [8]). First, each point of
the grid was connected by a straight line with the source and it was checked if the
ray passes through the aperture 𝐴. Thus, we constructed the illuminated region of
the cornea 𝑆 (see fig. 1). From these conditions, we constructed the reflected ray
and checked if it hits the photo-detector. As a result, we obtained the region 𝑄.
This region can be multiply connected.
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Figure 3. The passage of the light rays between the light source and the photo-detector

6 Deformation of the cornea

Since we solved the problem numerically, the shapes of the cornea and the sclera
could be defined by coordinates of some of their points. However, there is not
enough data to do so; for that reason, we assumed that their shapes were sphere
segments. In our calculations, we used the following parameters: the cornea radius
was 0.008 m, the height of the cornea segment was 0.00493 m, the radius of the
base was 0.00739 m, the sclera radius was 0.012 m, the Poisson coefficients were
0.45, the modula of elasticity were, respectively, 1.2 · 106 Pa and 6.0 · 106 Pa, the
cornea thickness was varied between 0.00045 m, 0.00055 m, and 0.00065 m, and the
sclera thickness was the constant equal to 0.001 m. The radius of the region where
the pressure was applied was 0.0015 m.

The calculations were performed for the values of the intraocular pressure from
𝑝𝑖=15 to 𝑝𝑖=50 mmHg with the interval of 5 mmHg.

Fig. 4 shows the shapes of the regions in the central part of the cornea corre-
sponding to the unlit part (black), the illuminated part that reflects the light not
hitting the photo-detector (gray), and the illuminated part that reflects the light
hitting the photo-detector (white).

Figure 4. The shapes of the regions in the central part of the cornea

It is seen that the light is first reflected from the center of the cornea; then, as the
cornea deforms, it is reflected only from its periphery. This is a very important result
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because no experiments on investigating the shape of the region for the reflected
light were earlier carried out, while this is necessary for the correct interpretation
of measurement results.

Fig. 5, 6 illustrates the dependences between the pressure in the air jet 𝑝𝑒 (in
mmHg) and the area 𝑆 (sq. mm) of the region 𝑄 that reflects the light hitting the
photo-detector for three values of the cornea thickness 0.45 mm, 0.55 mm, and 0.65
mm for the eight values of 𝑝𝑖.

It is seen that the maximum of the dependence 𝑆 − 𝑝𝑒 moves to the right as
𝑝𝑖 increases. This fact can be used to interpret the measurement results. The
results obtained in this paper provide a new look at the process of measuring the
intraocular pressure.

For more details see [8].

Figure 5. The dependence between the pressure in the air jet 𝑝𝑒 (in 𝑚𝐻𝑔) and the area S
(sq. mm) of the region Q for the cornea thickness 0.45 and 0.55 mm
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Figure 6. The dependence between the pressure in the air jet 𝑝𝑒 (in mmHg) and the area
S (sq. mm) of the region Q for the cornea thickness 0.65 mm
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Abstract. The paper is devoted to quasilinear conflict-controlled processes with a
cylindrical terminal set. A specific feature is that, instead of a dynamical system,
we start with representation of a solution in a form that allows one to include an
additive term with the initial data and a control unit. This makes it possible to
consider a broad spectrum of dynamic processes in a unified scheme. Our study
is based on the method of resolving functions. We obtain sufficient conditions for
the solvability of the pursuit problem at a certain guaranteed time in the class
of strategies that use information on the behavior of the opponent in the past,
as well as in the class of stroboscopic strategies. We also find conditions under
which information on the prehistory of the evader does not matter. The guaranteed
times of various schemes of the resolving function method are compared with the
guaranteed time of Pontryagin’s first direct method.

1 Introduction

In the theory of dynamic games, along with the Krasovskii’s extremal aiming princi-
ple [1,2] Pontryagin–Pshenichnyi backward procedures [3,4], and Isaacs ideology [5]
concerning the basic equation in the theory of differential games, there exist efficient
methods that can apparently be classified into a separate group. These are Pon-
tryagin’s first direct method [3, 6] and the method of resolving functions [7]. They
share a common principle of constructing the control of the first player on the basis
of the Filippov-Castaing measurable choice theorem [8]. The method of resolving
functions, being in this sense a development of Pontryagin’s first direct method,
stems from the solution of game problems of evading a group of pursuers [9]. In
this way, Pshenichnyi formulated in [10] necessary and sufficient conditions for the
solvability of a pursuit problem in which one group of objects aims to surround an-
other group of objects with simple motions and equal maximal velocities. This gave
impetus to the development of methods for solving group pursuit problems [7,11,13]
on the basis of the conception of resolving functions. Later, these studies have been
extended to the following problems: problems with phase constraints regarded as
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static pursuers [7, 13], game problems of successive pursuit (salesman-type prob-
lems) [7], pursuit-evasion games with interacting groups [7, 11–13]. The method
has been applied to various dynamic processes, including systems with fractional
derivatives [14].

The apparatus of resolving functions, which, as a rule, are represented in exam-
ples by large positive roots of quadratic equations, turned out to be very convenient
and universal for solving specific problems.

Note also that in the general case resolving functions can be expressed in terms
of inverse Minkowski functionals [7] of some set-valued mappings; this provides
additional possibilities for the study.

An attractive feature of the method of resolving functions is that it fully justifies
the classical rule of parallel approach and allows one to efficiently apply the modern
technique of set-valued mappings and their selections [8, 15] when validating game
constructions and obtaining meaningful results on the basis of these constructions.

When solving specific game problems with the use of resolving functions, it
is important to provide a rigorous substantiation of the method. In the proofs
of the corresponding statements, a key role is played by problems related to the
properties of special set-valued mappings and their selections. In particular, the
(𝐿×𝐵)-measurability of closed-valued mappings [15] related to the process and the
compositional measurability of their selections are decisive factors in substantiating
the scheme of the method and constructing the control of the first player. These
questions in one-to-one games, sufficient termination conditions, and a comparison
of the guaranteed times of various schemes of the method constitute the content
of this paper. The paper is related to the publications [1, 2, 4] and continues the
studies of [7].

2 Scheme of the method

Consider a conflict-controlled process whose evolution is described by the equality

𝑧(𝑡) = 𝑔(𝑡) +

𝑡∫︁
0

Ω(𝑡, 𝜏)𝜙 (𝑢(𝜏), 𝑣(𝜏)) 𝑑𝜏, 𝑡 > 0. (2.1)

Here 𝑧(𝑡) ∈ 𝑅𝑛, the function 𝑔(𝑡), 𝑔 : 𝑅+ → 𝑅𝑛, 𝑅+ = {𝑡 : 𝑡 > 0}, is Lebesgue
measurable and bounded for 𝑡 > 0, and the matrix function Ω(𝑡, 𝜏), 𝑡 > 𝜏 > 0, is
measurable in 𝑡 and integrable in 𝜏 for every 𝑡 ∈ 𝑅+. The control unit is defined by
the function 𝜙 (𝑢, 𝑣) , 𝜙 : 𝑈 × 𝑉 → 𝑅𝑛, which is assumed to be jointly continuous
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in its variables on the direct product of nonempty compacts sets 𝑈 and 𝑉 , i.e.,
𝑈 ∈ 𝐾(𝑅𝑚) and 𝑉 ∈ 𝐾(𝑅𝑙), where 𝑚, 𝑙 and 𝑛 positive integers.

The controls of the players, 𝑢 (𝜏), 𝑢 : 𝑅+ → 𝑈 , and 𝑣(𝜏), 𝑣 : 𝑅+ → 𝑉 , are
measurable functions of time.

In addition to the process (2.1), consider a terminal cylindrical set 𝑀* of the
form

𝑀* =𝑀0 +𝑀, (2.2)

where 𝑀0 is a linear subspace in 𝑅𝑛 and 𝑀 ∈ 𝐾(𝐿), with 𝐿 being the orthogonal
complement of 𝑀0 in 𝑅𝑛.

The goals of the first (𝑢) and second (𝑣) players are opposite. The first player
tries to bring the trajectory of process (2.1) to the terminal set in the shortest time,
whereas the second player tries to maximally put off the instant when the trajectory
reaches the set 𝑀*, or even avoid this meeting at all.

The representation of a solution to a dynamical system in the form (2.1) al-
lows one to consider a wide range of functional-differential systems operating under
conflict conditions within a unified scheme, including systems of integral, integro-
differential, and difference-differential equations, as well as systems of equations
with classical Riemann-Liouville fractional derivatives, regularized fractional deriva-
tives in the sense of Caputo, and the Miller–Ross sequential fractional deriva-
tives [14]. A similar representation in the discrete situation makes it possible to
analyze multistep processes and impulse systems.

A specific form of the function 𝑔(𝑡) and the matrix function Ω(𝑡, 𝜏 determines
the type of a conflict-controlled process.

Let us take the side of the first player and assume that the opponent chooses an
arbitrary 𝑉 -valued measurable function as a control. If the game (2.1), (2.2) occurs
on an interval [0, 𝑇 ], then we assume that the first player decides on its control at
time 𝑡 depending on the information about 𝑔(𝑇 ) and 𝑣𝑡(·); i.e., the control of the
first player is either a measurable function

𝑢(𝑡) = 𝑢 (𝑔 (𝑇 ) , 𝑣𝑡 (·)) , 𝑡 ∈ [0, 𝑇 ] , 𝑢(𝑡) ∈ 𝑈, (2.3)

where 𝑣𝑡 (·) = {𝑣 (𝑠) : 𝑠 ∈ [0, 𝑡]} is the prehistory of the control of the second
player up to instant 𝑡, or a countercontrol

𝑢(𝑡) = 𝑢 (𝑔 (𝑇 ) , 𝑣 (𝑡)) , 𝑡 ∈ [0, 𝑇 ] , 𝑢(𝑡) ∈ 𝑈, (2.4)

The aim of this study is to establish sufficient conditions for the termination of
a pursuit game in the guaranteed time of an analog of the method of resolving
functions [7] in the class of stroboscopic strategies for the conflict-controlled process
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(2.1), (2.2), and to compare them with analogous conditions for Pontryagin‘s first
direct method [3,6].

Denote by 𝜋 the orthogonal projection from 𝑅𝑛 to 𝐿. Setting 𝜙 (𝑈, 𝑣) =
{𝜙 (𝑢, 𝑣) : 𝑢 ∈ 𝑈}, consider the set-valued mappings

𝑊 (𝑡, 𝜏, 𝑣) = 𝜋Ω (𝑡, 𝜏)𝜙 (𝑈, 𝑣) ,𝑊 (𝑡, 𝜏) =
⋂︁
𝑣∈𝑉

𝑊 (𝑡, 𝜏, 𝑣),

on the sets Δ× 𝑉 and Δ respectively, where Δ = {(𝑡, 𝜏) : 0 6 𝜏 6 𝑡 <∞} .
Pontryagin condition. The set-valued mapping 𝑊 (𝑡, 𝜏) takes nonempty val-

ues on the set Δ.

In view of the properties of the parameters of the conflict-controlled process
(2.1), the mapping 𝜙 (𝑈, 𝑣), 𝑣 ∈ 𝑉 , is continuous in the Hausdorff metric. Therefore,
taking into account the assumptions about the matrix function Ω (𝑡, 𝜏), we can
conclude that for any fixed 𝑡 > 0 the mapping 𝑊 (𝑡, 𝜏, 𝑣) is a set-valued mapping
that is measurable in 𝜏 on the interval [0, 𝑡] and closed in 𝑣, 𝑣 ∈ 𝑉 . Then [15] the
mapping 𝑊 (𝑡, 𝜏) is a closed-valued mapping measurable in 𝜏 ∈ [0, 𝑡].

Denote by 𝑃 (𝑅𝑛) the family of nonempty closed sets of the space 𝑅𝑛. Then it
is obvious that 𝑊 (𝑡, 𝜏, 𝑣) : 𝐷𝑒𝑙𝑡𝑎 × 𝑉 → 𝑃 (𝑅𝑛) and 𝑊 (𝑡, 𝜏) : 𝐷𝑒𝑙𝑡𝑎 → 𝑃 (𝑅𝑛). In
this case, the set-valued mappings 𝑊 (𝑡, 𝜏, 𝑣) and 𝑊 (𝑡, 𝜏) that are measurable in 𝜏
are said to be normal.

The Pontryagin condition and the measurable selection theorem [15] imply that
for any 𝑡 > 0 these exists at least one selection 𝛾(𝑡, 𝜏) measurable in 𝜏 such that
𝛾 (𝑡, 𝜏) ∈𝑊 (𝑡, 𝜏), (𝑡, 𝜏) ∈ Δ. Denote the set of such selections by Γ𝑡 and introduce
a function

𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·)) = 𝜋𝑔 (𝑡) +

𝑡∫︁
0

𝛾 (𝑡, 𝜏) 𝑑𝜏, (2.5)

where 𝛾(·, ·) ∈ Γ = ∪𝑡>0Γ𝑡. By the assumptions, the selection 𝛾(𝑡, 𝜏) in integrable
in 𝜏 , 𝜏 ∈ [0, 𝑡], for any 𝑡 > 0.

Consider the set-valued mapping

A (𝑡, 𝜏, 𝑣) = {𝛼 > 0 : [𝑊 (𝑡, 𝜏, 𝑣)− 𝛾(𝑡, 𝜏)] ∩ 𝛼[𝑀 − 𝜉(𝑡, 𝑔(𝑡), 𝛾(𝑡, ·))] ̸= ∅} , (2.6)

A : Δ× 𝑉 → 2𝑅+ ,

and its support function in the direction +1, 𝛼 (𝑡, 𝜏, 𝑣) = sup{𝛼 : 𝛼 ∈ A (𝑡, 𝜏, 𝑣)},
(𝑡, 𝜏) ∈ Δ, 𝑣 ∈ 𝑉. This function is called a resolving function [7].

In order to stress the role of the Minkowski functionals and their inverses in the
scheme of the method, we express the function 𝛼 (𝑡, 𝜏, 𝑣) in a different form. To



146 The 8th Congress of the ISAAC — 2011

this end, we introduce a functions

𝛼𝑋(𝑝) = sup{𝛼 > 0 : 𝛼𝑝 ∈ 𝑋}, 𝑝 ∈ 𝑅𝑛, 𝑋 ∈ 𝑃 (𝑅𝑛), 0 ∈ 𝑋.

Then 𝛼 (𝑡, 𝜏, 𝑣) = sup𝑚∈𝑀 𝛼𝑊 (𝑡,𝜏,𝑣)−𝛾(𝑡,𝜏)(𝑚− 𝜉(𝑡, 𝑔(𝑡), 𝛾(𝑡, ·))).
Due to the Pontryagin condition, the set-valued mapping A (𝑡, 𝜏, 𝑣) on the set

Δ× 𝑉 has a nonempty closed image. Note also that if 𝜉 (𝑡, 𝑔(𝑡), 𝛾(𝑡, ·)) ∈ 𝑀, then
A (𝑡, 𝜏, 𝑣) = [0,+∞) and, hence 𝛼 (𝑡, 𝜏, 𝑣) = +∞ for all 𝜏 ∈ [0, 𝑡] and 𝑣 ∈ 𝑉 .

Taking into account the properties of the parameters of the conflict-controlled
process (2.1), (2.2) and applying the characterization and inverse image theorems,
we can show that the set-valued mapping A (𝑡, 𝜏, 𝑣) is jointly (𝐿×𝐵)- measurable
[15] in the variables 𝜏 , 𝑣, 𝜏 ∈ [0, 𝑡] , 𝑣 ∈ 𝑉 ; the resolving function 𝛼 (𝑡, 𝜏, 𝑣) is
jointly (𝐿 × 𝐵)-measurable in the variables 𝜏 , 𝑣, by the theorem on the support
function [16] for 𝜉 (𝑡, 𝑔(𝑡), 𝛾(𝑡, ·)) /∈𝑀 .

Consider the set

𝑇 (𝑔 (·) , 𝛾 (·, ·)) =

⎧⎨⎩𝑡 > 0 : inf
𝑣(·)

𝑡∫︁
0

𝛼 (𝑡, 𝜏, 𝑣(𝜏)) 𝑑𝜏 > 1

⎫⎬⎭ . (2.7)

Since the function 𝛼 (𝑡, 𝜏, 𝑣) is (𝐿 × 𝐵)-measurable in 𝜏 and 𝑣, it is composi-
tionally measurable; i.e., 𝛼 (𝑡, 𝜏, 𝑣(𝜏))) is a measurable function for any measurable
function 𝑣(𝜏), 𝑣(𝜏) ∈ 𝑉 .

If 𝜉 (𝑡, 𝑔(𝑡), 𝛾(𝑡, ·)) ∈ 𝑀, then 𝛼 (𝑡, 𝜏, 𝑣) = +∞ for 𝜏 ∈ [0, 𝑡] and 𝑣 ∈ 𝑉 ; in this
case in is natural to set the value of the integral in relation (2.7) equal to +∞, and
the related inequality holds automatically. If the inequality in braces in (2.7) fails
for all 𝑡 > 0, we set 𝑇 (𝑔 (·) , 𝛾 (·, ·)) = ∅.

Theorem 1. Suppose that the conflict-controlled process (2.1), (2.2) sat-
isfies the Pontryagin condition, the set 𝑀 is convex, and the inclusion 𝑇 ∈
𝑇 (𝑔 (·) , 𝛾 (·, ·)) ̸= ∅ holds for a given function 𝑔(·) and some selection 𝛾(·, ·) ∈ Γ.
Then a trajectory of process (2.1) can be brought to the terminal set (2.2) at time
𝑇 by a control of the form (2.3).

Proof. Let 𝑣(𝜏), 𝑣 : [0, 𝑇 ] → 𝑉, be an arbitrary measurable function.
Suppose 𝜉 (𝑇, 𝑔 (𝑇 ) , 𝛾 (𝑇, ·))∈𝑀. Introduce a test function ℎ (𝑡) = 1 −

𝑡∫︀
0

𝛼 (𝑇, 𝜏, 𝑣 (𝜏)) 𝑑𝜏 , 𝑡 ∈ [0, 𝑇 ]. As pointed out above, the function 𝛼 (𝑇, 𝜏, 𝑣) is

(𝐿 × 𝐵)-measurable in (𝜏, 𝑣) for 𝜏 ∈ [0, 𝑇 ] and 𝑣 ∈ 𝑉 ; hence it is compositionally
measurable, and 𝛼 (𝑇, 𝜏, 𝑣(𝜏)) is a measurable function of 𝜏 . This implies that ℎ(𝑡)
is absolutely continuous and, hence, continuous; it does not increase (𝛼 (𝑇, 𝜏, 𝑣) > 0
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by definition), and ℎ(0) = 1. Since, in addition, ℎ(𝑇 ) 6 0, there exists a time
instant 𝑡*, 𝑡* = 𝑡(𝑣(·)), 𝑡* ∈ (0, 𝑇 ], such that ℎ(𝑡*) = 0.

In what follows, we will call the time intervals [0, 𝑡*) active and passive intervals,
respectively. Let us describe the method of control of the first player on each of
these intervals. To this end, consider a compact-valued mapping

𝑈 (𝜏, 𝑣) = {𝑢 ∈ 𝑈 : 𝜋Ω (𝑇, 𝜏)𝜙 (𝑢, 𝑣)− 𝛾 (𝑇, 𝜏) ∈
∈ 𝛼 (𝑇, 𝜏, 𝑣) [𝑀 − 𝜉 (𝑇, 𝑔 (𝑇 ) , 𝛾 (𝑇, ·))]}, 𝜏 ∈ [0, 𝑇 ] , 𝑣 ∈ 𝑉. (2.8)

By the inverse image theorem, this mapping is (𝐿×𝐵)-measurable [15]; hence,
according to the measurable selection theorem [15], the set-valued mapping 𝑈(𝜏, 𝑣)
has at least one (𝐿× 𝐵)-measurable selection 𝑢(𝜏, 𝑣) that is compositionally mea-
surable. Denote 𝑢(𝜏) = 𝑢(𝜏, 𝑣(𝜏)). Set the control of the first player on the active
interval equal to 𝑢(𝜏).

Consider the passive time interval [𝑡*, 𝑇 ). For 𝜏 ∈ [𝑡*, 𝑇 ) and 𝑣 ∈ 𝑉 , we set the
resolving function to be 𝛼 (𝑇, 𝜏, 𝑣) ≡ 0 in expression (2.8). The yields a set-valued
mapping

𝑈0(𝜏, 𝑣) = {𝑢 ∈ 𝑈 : 𝜋Ω(𝑇, 𝜏)𝜙(𝑢, 𝑣)− 𝛾(𝑇, 𝜏) = 0}. (2.9)

Just as in the previous case, it follows from the measurable selection theo-
rem that the (𝐿× 𝐵)-measurable closed-valued mapping 𝑈0(𝜏, 𝑣) has an (𝐿× 𝐵)-
measurable selection. Denote this selection by 𝑢0(𝜏, 𝑣) and choose the control of
the pursuer on the passive interval to be 𝑢0(𝜏) = 𝑢0(𝜏, 𝑣(𝜏)).

When 𝜉 (𝑇, 𝑔 (𝑇 ) , 𝛾 (𝑇, ·)) ∈ 𝑀 we choose the control of the first player on
the whole interval [0, 𝑇 ] to be 𝑢0(𝜏) = 𝑢0 (𝜏, 𝑣(𝜏)) , where 𝑢0 (𝜏, 𝑣) is a (𝐿 × 𝐵)-
measurable selection of the set-valued mapping 𝑈0 (𝜏, 𝑣). Let us schow that when
the control of the first player on the active and passive intervals is chosen in accor-
dance with the above rules, the trajectory of system (2.1) is brought to the terminal
set at time instant 𝑇 for any admissible controls of the second player.

Consider first the case of 𝜉 (𝑇, 𝑔(𝑇 ), 𝛾(𝑇, ·)) /∈𝑀 . From (2.1) we find

𝜋𝑧 (𝑇 ) = 𝜋𝑔 (𝑇 ) +

𝑇∫︁
0

𝜋Ω (𝑇, 𝜏)𝜙 (𝑢 (𝜏) , 𝑣 (𝜏)) 𝑑𝜏. (2.10)
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Using relations (2.8) and (2.9), we obtain the following inclusion from (2.10):

𝜋𝑧 (𝑇 ) ∈ 𝜉 (𝑇, 𝑔 (𝑇 ) , 𝛾 (𝑇, ·))

⎡⎣1− 𝑡*∫︁
0

𝛼 (𝑇, 𝜏, 𝑣 (𝜏)) 𝑑𝜏

⎤⎦+

𝑡*∫︁
0

𝛼 (𝑇, 𝜏, 𝑣 (𝜏))𝑀𝑑𝜏.

(2.11)
Since 𝑀 is a convex compact set, 𝛼 (𝑇, 𝜏, 𝑣 (𝜏)) is a nonnegative function for 𝜏 ∈

[0, 𝑡*), and
𝑡*∫︀
0

𝛼 (𝑇, 𝜏, 𝑣 (𝜏)) 𝑑𝜏 = 1, it follows that
𝑡*∫︀
0

𝛼 (𝑇, 𝜏, 𝑣 (𝜏))𝑀𝑑𝜏 =𝑀 . Taking

into account these facts, from (2.11) we obtain 𝜋𝑧 (𝑇 ) ∈𝑀 , or 𝑧 (𝑇 ) ∈𝑀*.
Suppose 𝜉 (𝑇, 𝑔 (𝑇 ) , 𝛾 (𝑇, ·)) ∈𝑀 . Then, taking into account (2.9), from equal-

ity (2.10) we find that 𝜋𝑧 (𝑇 ) = 𝜉 (𝑇, 𝑔(𝑇 ), 𝛾(𝑇, ·)) ∈𝑀 .
The theorem is proved.

3 Modification of the method and sufficient conditions

The results of the previous section lead to a certain modification of the scheme of the
resolving function method. In a sense, this modification gives an exhaustive answer
to the question of solvability of pursuit game problems in the class of stroboscopic
strategies.

Consider the set-valued mapping

A(𝑡, 𝜏) =
⋂︁
𝑣∈𝑉

A(𝑡, 𝜏, 𝑣), 𝑡 > 𝜏 > 0,

which has a nonempty image because at least 0 ∈ A(𝑡, 𝜏, 𝑣) for 𝑡 > 𝜏 > 0 and 𝑣 ∈ 𝑉 ,
and its support function in the direction +1,

𝛼(𝑡, 𝜏) = sup {𝛼 > 0 : 𝛼 ∈ A(𝑡, 𝜏)} .

If 𝜉 (𝑡, 𝑔(𝑡), 𝛾 (𝑡, ·)) /∈𝑀 , then the mapping A(𝑡, 𝜏) is closed-valued and measurable
in 𝜏 , 𝜏 ∈ [0, 𝑡]; hence, by the support function theorem, the function 𝛼(𝑡, 𝜏) is also
measurable in 𝜏 .

Introduce the set

Θ(𝑔(·), 𝛾(·, ·)) =

⎧⎨⎩𝑡 > 0 :

𝑡∫︁
0

𝛼(𝑡, 𝜏)𝑑𝜏 > 1

⎫⎬⎭ . (3.1)

If 𝜉 (𝑡, 𝑔(𝑡), 𝛾 (𝑡, ·)) ∈ 𝑀 for some 𝑡 > 0, then obviously A(𝑡, 𝜏) = [0,+∞), and
𝛼(𝑡, 𝜏) ≡ +∞ for 𝜏 ∈ [0, 𝑡];therefore, in this case it is natural to set the value of the
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integral in (3.1) to be +∞, while the corresponding inequality holds automatically.
If the inequality in (3.1) does not hold for any 𝑡 > 0, then we set Θ(𝑔(·), 𝛾(·, ·)) = ∅.

Theorem 2. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition, 𝑀 = 𝑐𝑜𝑀 , and the inclusion Θ ∈ Θ(𝑔(·), 𝛾(·, ·)) ̸= ∅
holds for a given function 𝑔(·) and some selection 𝛾 (·, ·) ∈ Γ. Then a trajectory of
the process (2.1) can be brought to the terminal set (2.2) at time Θ by a control of
the form (2.4).

Corollary 1. If the conflict-controlled process (2.1), (2.2) satisfies the Pon-
tryagin condition, 𝑀 = 𝑐𝑜𝑀 , the sets 𝑇 (𝑔(·), 𝛾(·, ·)) and Θ(𝑔(·), 𝛾(·, ·)) are
nonempty for a given function 𝑔(·) and some selection 𝛾(·, ·) ∈ Γ and mapping
A (𝑇, 𝜏, 𝑣) = [0, (𝑇, 𝜏, 𝑣)], 𝑇 > 𝜏 > 0, 𝑣 ∈ 𝑉 , then 𝑇 (𝑔(·), 𝛾(·, ·)) = Θ (𝑔(·), 𝛾(·, ·)).

In the general case, the following inclusion is always valid: 𝑄 (𝑔(·), 𝛾(·, ·)) ⊂
𝑇 (𝑔(·), 𝛾(·, ·)).

In what follows, we assume that there exist minimal elements 𝑇0 (𝑔(·), 𝛾(·, ·)) and
Θ0 (𝑔(·), 𝛾(·, ·)) in the number sets 𝑇 (𝑔(·), 𝛾(·, ·)) and Θ(𝑔(·), 𝛾(·, ·)), respectively.

4 Pontryagin‘s first direct method

Pontryagin‘s first direct method is well known from the publications devoted to
the theory of diffential games [3, 6, 7]. This method gives sufficient conditions for
the termination of a differential pursuit game in a guaranteed time in the class of
stroboscopic strategies. We mean the proof of Gusyatnikov and Nikol‘skii, which
uses the Filippov-Castaing measurable choice theorem to construct a control. In
connection with the results obtained above, it is expedient to compare them with
the results of Pontryagin‘s first direct method.

Consider the Pontryagin function for the conflict-controlled process (2.1), (2.2),

𝑃 (𝑔 (·)) = inf

⎧⎨⎩ 𝑡 > 0 : 𝜋𝑔 (𝑡) ∈𝑀 −
𝑡∫︁

0

𝑊 (𝑡, 𝜏) 𝑑𝜏

⎫⎬⎭ . (4.1)

Here, as before, the integral of a set-valued mapping is the Aumann integral [15].
If the inclusion in braces does not hold for any 𝑡 > 0, then we set 𝑃 (𝑔 (·)) = +∞.

Theorem 3. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition, the greatest lower bound in (4.1) is attainable, and 𝑃 =
𝑃 (𝑔 (·)) < +∞. Then a trajectory of the process (2.1) can be brought to the terminal
set (2.2) at time 𝑃 by a control of the form (2.4).

Theorem 3, which generalizes the first direct method to conflict-controlled pro-
cesses of the form (2.1), entails the following corollaries.
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Corollary 2. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition. Then 𝜋𝑔 (𝑡) ∈ 𝑀 −

∫︀ 𝑡
0 𝑊 (𝑡, 𝜏) 𝑑𝜏 , 𝑡 > 0, if and only if

there exists a selection 𝛾 (𝑡, ·) ∈ Γ𝑡, such that

𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·)) ∈𝑀. (4.2)

Note that in the scheme of the method of resolving functions the fulfillment of
inclusion (4.2) leads to the degeneration of the above-mentioned functions; i.e.,
the values of these functions become +∞. This situation falls within the scope of
Pontryagin‘s first direct method, and the game in this case can be terminated in
the guaranteed time of Pontryagin‘s first direct method in the class of stroboscopic
strategies without any assumptions about the parameters of the conflict-controlled
process (2.1), (2.2), except, naturally,the Pontryagin conditions.

Corollary 3. Suppose that the conflict-controlled process (2.1), (2.2) sat-
isfies the Pontryagin condition. Then there exists a selection 𝛾 (·, ·) such that
𝑇0 (𝑔 (·) , 𝛾 (·, ·)) 6 𝑃 (𝑔 (·)) for any measurable function 𝑔 (𝑡) that is bounded for
𝑡 > 0 .

Corollary 4. Suppose that the conflict-controlled processes (2.1), (2.2) satis-
fies the Pontryagin condition. Then there exists a selection 𝛾 (·, ·) ∈ Γ, such that
Θ0 (𝑔 (·) , 𝛾 (·, ·)) 6 𝑃 (𝑔 (·)) for any measurable function 𝑔 (𝑡) that is bounded for
𝑡 > 0.

5 Functional form of the first direct method. Comparison of guar-
anteed times

Let us express the termination time of the game (2.1), (2.2) provided by Pontrya-
gin‘s first direct method (4.1) in terms of resolving functions. To this end, consider
the set-valued mapping

𝐵 (𝑡, 𝜏) =
{︁
𝛽 > 0 : [𝑊 (𝑡, 𝜏)− 𝛾 (𝑡, 𝜏)]

⋂︁
𝛽 [𝑀 − 𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·))] ̸= ∅

}︁
(5.1)

and its support function in the direction +1,

𝛽 (𝑡, 𝜏) = sup {𝛽 : 𝛽 ∈ 𝐵 (𝑡, 𝜏)} , 𝑡 > 𝜏 > 0. (5.2)

Here 𝛾 (𝑡, 𝜏) is a 𝜏 -measurable selection of the set-valued mapping 𝑊 (𝑡, 𝜏), intro-
duced earlier and the function 𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·)) is defined by (2.5).

If 𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·)) ∈̄𝑀 , then, according to the characterization and inverse
image theorems [15], the mapping 𝐵 (𝑡, 𝜏) is measurable and closed-valued in 𝜏 ,
𝜏 ∈ [0, 𝑡]. Hence, by the support function theorem [16], the function 𝛽 (𝑡, 𝜏) is
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measurable in 𝜏 . If 𝜉 (𝑡, 𝑔 (𝑡) , 𝛾 (𝑡, ·)) ∈𝑀 , then 𝐵 (𝑡, 𝜏) = [0,+∞), and 𝛽 (𝑡, 𝜏) =
+∞ for all 𝜏 ∈ [0, 𝑡].

Introduce a time function

𝑃 (𝑔 (·) , 𝛾 (·, ·)) = inf

⎧⎨⎩𝑡 > 0 :

𝑡∫︁
0

𝛽 (𝑡, 𝜏) 𝑑𝜏 > 1

⎫⎬⎭ , (5.3)

which is assumed to be +∞ if the inequality in braces fails for all 𝑡 > 0.
Theorem 4. Suppose that the conflict-controlled process (2.1), (2.2) sat-

isfies the Pontryagin condition, 𝑀 = co𝑀 , and the greatest lower bound in
(5.3) is attainable for a given function 𝑔 (·) and a selection 𝛾 (·, ·) ∈ Γ with
𝑃 = 𝑃 (𝑔 (·) , 𝛾 (·, ·)) < +∞. Then a trajectory of the process (2.1) can be brought
to the terminal set (2.2) at time 𝑃 by a certain countercontrol.

Theorem 5. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition, 𝑀 = co𝑀 , and the greatest lower bound in (5.3) is
attainable. Then, for any function 𝑔 (𝑡) that is measurable and bounded for 𝑡 > 0,
we have min

𝛾 (·,·)∈Γ
𝑃 (𝑔 (·) , 𝛾 (·, ·)) = 𝑃 (𝑔 (·)).

For simpler dynamics, this result was proved in [7]. The proof of the present
statement is completely analogous.

Thes cheme (5.1)–(5.3) is called [7] a functional form of Pontryagin‘s first direct
method.

Let us establish a relationship between the time functions 𝑇0 (𝑔 (·) , 𝛾 (·, ·)) and
𝑃 (𝑔 (·)) for the method of resolving functions and Pontryagin‘s first direct method.

Theorem 6. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition and Condition 1, the terminal set 𝑀* is an affine man-
ifold, i.e., 𝑀 = {𝑚} is a point, and the greatest lower bounds with respect to 𝑡 in
(2.7) and (5.3) are attainable. Then

min
𝛾 (·,·)∈Γ

𝑇0 (𝑔 (·) , 𝛾 (·, ·)) = 𝑃 (𝑔 (·))

for all functions 𝑔 (𝑡) that are measurable and bounded for 𝑡 > 0.
Corollary 5. Suppose that the conflict-controlled process (2.1), (2.2) satisfies

the Pontryagin condition, the terminal set 𝑀* is an affine manifold (𝑀 = {𝑚}),
and the greatest lower bounds with respect to 𝑡 in (3.1) and (5.3) are attainable.
Then, for all functions 𝑔 (𝑡) that are measurable and bounded for 𝑡 > 0, we have

min
𝛾 (·, ·)∈Γ

Θ0 (𝑔 (·) , 𝛾 (·, ·)) = 𝑃 (𝑔 (·)) .
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6 Scheme of the method of resolving functions with fixed aiming
points in the terminal set

As is clear from the definition of the set-valued mapping A (𝑡, 𝜏, 𝑣), the tangency of
the sets in the intersection in (2.6) for 𝛼 = 𝛼 (𝑡, 𝜏, 𝑣) occurs in general at different
points for different values of the arguments. The tangency points of the left set
define the control of the pursuer, while the tangency points of the right set are the
points of 𝑀 at which the motion is aimed. In the general scheme of the method, it
is assumed 𝑀 = co𝑀 .

Let us present another form of the method of resolving functions with (time-
independent) fixed points of the set 𝑀 , which is not generally convex.

Let 𝑚 ∈𝑀 and 𝜂 (𝑡,𝑚) = 𝜉 (𝑡, 𝑔(𝑡), 𝛾(𝑡, ·))−𝑚, 𝛾(𝑡, ·) ∈ Γ𝑡, 𝑡 > 0. Introduce a
set-valued mapping

A (𝑡, 𝜏, 𝑣,𝑚) = {𝛼 > 0 : −𝛼𝜂(𝑡,𝑚) ∈𝑊 (𝑡, 𝜏, 𝑣)− 𝛾(𝑡, 𝜏)}

and its support function in the direction +1,

𝛼 (𝑡, 𝜏, 𝑣,𝑚) = sup {𝛼 : 𝛼 ∈ A (𝑡, 𝜏, 𝑣,𝑚)} , 𝑡 > 𝜏 > 0, 𝑣 ∈ 𝑉.

Since the Pontryagin condition is supposed to hold, we have domA = Δ× 𝑉 ×𝑀 .
Note that if 𝜂(𝑡,𝑚) = 0, then A (𝑡, 𝜏, 𝑣,𝑚) = [0,+∞) for 𝜏 ∈ [0, 𝑡], 𝑣 ∈ 𝑉 , and
𝑚 ∈𝑀 , and so 𝛼 (𝑡, 𝜏, 𝑣,𝑚) ≡ +∞.

By virtue of the inverse image theorem, the set-valued mapping A (𝑡, 𝜏, 𝑣,𝑚) is
(𝐿×𝐵)-measurable in 𝜏 , 𝑣, 𝜏 ∈ [0, 𝑡], 𝑣 ∈ 𝑉 , and by the support function theorem,
the resolving function 𝛼 (𝑡, 𝜏, 𝑣,𝑚) is (𝐿 × 𝐵)-measurable in 𝜏 , 𝑣. Consider the
function

T (𝑔( · ),𝑚,𝛾( · , · )) = inf

⎧⎨⎩𝑡 > 0 : inf
𝑣(·)

𝑡∫︁
0

𝛼 (𝑡, 𝜏, 𝑣(𝜏),𝑚) 𝑑𝜏 > 1

⎫⎬⎭ . (6.1)

Condition 1. The function T (𝑔( · ),𝑚,𝛾( · , · )) is lower semicontinuous in 𝑚,
𝑚 ∈𝑀 .

Then, by the Weierstrass theorem, this function generates a marginal function
T (𝑔( · ),𝛾( · , · )) = min

𝑚∈𝑀
T (𝑔( · ),𝑚,𝛾( · , · )) and a marginal set-valued mapping

M ( 𝑔( · ), 𝛾( · , · )) = {𝑚 ∈𝑀 : T (𝑔( · ),𝛾( · , · )) = T (𝑔( · ),𝑚,𝛾( · , · ))} ⊂𝑀.
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Note [7] that the time functions can be represented as follows:

𝑇0 (𝑔(·), 𝛾 (·, ·)) = inf

⎧⎨⎩𝑡 > 0 : inf
𝑣(·)

𝑡∫︁
0

max
𝑚∈𝑀

𝛼 (𝑡, 𝜏, 𝑣(𝜏),𝑚) 𝑑𝜏 > 1

⎫⎬⎭ ,

T (𝑔(·), 𝛾 (·, ·)) = inf

⎧⎨⎩𝑡 > 0 : max
𝑚∈𝑀

inf
𝑣(·)

𝑡∫︁
0

𝛼 (𝑡, 𝜏, 𝑣(𝜏),𝑚) 𝑑𝜏 > 1

⎫⎬⎭ ,

moreover, the relation 𝛼 (𝑡, 𝜏, 𝑣) = max
𝑚∈𝑀

𝛼 (𝑡, 𝜏, 𝑣,𝑚) holds for 𝑡 > 𝜏 > 0, 𝑣 ∈ 𝑉 ,

and 𝛾 (·, ·) ∈ Γ. If 𝜂(𝑡,𝑚) = 0, then inf
𝑣∈𝑉

𝛼 (𝑡, 𝜏, 𝑣,𝑚) = +∞ for 𝜏 ∈ [0, 𝑡], and it

is natural to set the value of the untegral in (6.1) to be equal to +∞; then the
corresponding inequality will hold automatically. If the inequality in (6.1) fails for
all 𝑡 > 0 and 𝑚 ∈𝑀 , we will assume that T (𝑔( · ),𝛾( · , · )) = +∞.

Theorem 7. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition and Condition 1, and the external greatest lower bound is
attainable in (6.1) for a given function 𝑔(·) and some selection 𝛾( · , · ) ∈ Γ such
that T = T (𝑔( · ),𝛾( · , · )) < +∞. Then the projection 𝜋𝑧(𝑡) of a trajectory of the
process (2.1) can be brought to any point of the set M (𝑔( · ),𝛾( · , · )) at time T by
a control of the first player prescribed by an appropriate quasistrategy.

The proof of Theorems 2–7 is conducted on the basis of the method of resolving
functions [7] and using ideas of the Theorem 1 proof.

Corollary 6. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition. Then 𝜋𝑔(𝑡) ∈ 𝑀 −

∫︀ 𝑡
0 𝑊 (𝑡, 𝜏)𝑑𝜏 , 𝑡 > 0, if and only if

there exist a measurable selection 𝛾(𝑡, ·) ∈ Γ𝑡 and an element 𝑚 ∈ 𝑀 such that
𝜂(𝑡,𝑚) = 0.

Corollary 7. Suppose that the conflict-controlled process (2.1), (2.2) satisfies
the Pontryagin condition. Then

inf
𝛾(·,·)∈Γ

𝑇0 (𝑔(·), 𝛾(·, ·)) 6 inf
𝛾(·,·)∈Γ

T (𝑔(·), 𝛾(·, ·)) 6 𝑃 (𝑔(·))

for any function 𝑔(𝑡) that is measurable and bounded for 𝑡 > 0.
Corollary 8. Suppose that the conflict-controlled process (2.1), (2.2) satisfies

the Pontryagin condition, the terminal set 𝑀* is an affine manifold, i.e., 𝑀 = {𝑚}
is a point, and the greatest lower bounds with respect to 𝑡 in (2.7) and (6.1) are
attainable. Then, for any measurable function 𝑔(𝑡) that is bounded for 𝑡 > 0, we
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have
min

𝛾(·,·)∈Γ
𝑇0 (𝑔(·), 𝛾(·, ·)) = min

𝛾(·,·)∈Γ
T (𝑔(·), 𝛾(·, ·)) , 𝑡 > 0.
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Abstract. The exact controllability to the origin for degenerate linear evolution
control system is considered. The obtained general results are applied for the in-
vestigation of the exact controllability of the equation of free surface evolution of
filtered fluid.

Introduction

The large majority of authors investigates abstract non-generate control differen-
tial equations. Below we will consider the exact null controllability problem for
degenerate abstract control differential equations.

Let X, Y, U be Hilbert spaces. Denote by ℒ(X;Y) the Banach space of linear
continuous operators acting from X to Y. If Y = X, then the denotation will be
cutted to ℒ(X). The set of linear closed operators with dense domains in X, acting
to Y will be denoted by 𝒞𝑙(X;Y). The set 𝒞𝑙(X;X) of operators will be denoted by
𝒞𝑙(X).

Consider the abstract degenerate differential equation

𝐿�̇�(𝑡) =𝑀𝑥(𝑡) +𝐵𝑢(𝑡), 0 6 𝑡 < +∞, (0.1)

with initial conditions
𝑥(0) = 𝑥0 ∈ X, (0.2)

where 𝐿 ∈ ℒ(X;Y), ker𝐿 ̸= {0}, 𝑀 ∈ 𝒞𝑙(X;Y), 𝐵 ∈ ℒ(U;Y).

New results on the exact null controllability of the degenerate equation (0.1) in
general Hilbert space are presented. The obtained general results are applied for
the investigation of the exact controllability of the equation of free surface evolution
of filtered fluid.

Because of restrictions for the number of pages the proofs will be published in
the full version of the paper.
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1 Strongly (𝐿, 𝑝)-radial operator

This section contains some auxiliary results. Their proofs can be found in [4].
Denote 𝜌𝐿(𝑀) = {𝜇 ∈ C : (𝜇𝐿 −𝑀)−1 ∈ ℒ(Y;X)}, 𝑅𝐿𝜇(𝑀) = (𝜇𝐿 −𝑀)−1𝐿,

𝐿𝐿𝜇(𝑀) = 𝐿(𝜇𝐿−𝑀)−1, N0 = N ∪ {0},R+ = {𝑎 ∈ R : 𝑎 > 0}, R+ = R+ ∪ {0}.

Definition 1. [5]. Let 𝑝 ∈ N0. Operator 𝑀 is called strongly (𝐿, 𝑝)-radial, if
(i) ∃𝑎 ∈ R ∀𝜇 > 𝑎 𝜇 ∈ 𝜌𝐿(𝑀);
(ii) ∃𝐾 > 0 ∀𝜇 > 𝑎 ∀𝑛 ∈ N

max{‖(𝑅𝐿𝜇(𝑀))(𝑝+1)𝑛‖ℒ(X), ‖(𝐿𝐿𝜇(𝑀))(𝑝+1)𝑛‖ℒ(Y)} 6
𝐾

(𝜇− 𝑎)(𝑝+1)𝑛
,

‖(𝑅𝐿𝜇(𝑀))𝑝+1(𝜇𝐿−𝑀)−1‖ℒ(Y;X) 6
𝐾

(𝜇− 𝑎)𝑝+2
;

(iii) there exists a lineal
∘
Y dense in Y such that

‖𝑀(𝜇𝐿−𝑀)−1(𝐿𝐿𝜇(𝑀))𝑝+1𝑦‖Y 6
const(𝑦)

(𝜇− 𝑎)𝑝+2
∀𝑦 ∈

∘
Y

for all 𝜇 > 𝑎.

Theorem 1. Let 𝑝 ∈ N0, operator 𝑀 be strongly (𝐿, 𝑝)-radial. Then
(i) X = X1 ⊕ X2, Y = Y1 ⊕Y2;
(ii) 𝐿𝑘 ∈ ℒ(X𝑘;Y𝑘), 𝑀𝑘 ∈ 𝒞𝑙(X𝑘;Y𝑘), where

𝐿𝑘 = 𝐿

⃒⃒⃒⃒
X𝑘

, 𝑀𝑘 =𝑀

⃒⃒⃒⃒
dom𝑀𝑘

, dom𝑀𝑘 = dom𝑀 ∩ X𝑘, 𝑘 = 1, 2;

(iii) there exist operators 𝐿−1
1 ∈ ℒ(Y1;X1) and 𝑀−1

2 ∈ ℒ(Y2;X2);

(iv) there exists strongly continuous semigroup {𝑋(𝑡) ∈ ℒ(X) : 𝑡 ∈ R+} for the
equation 𝐿�̇�(𝑡) =𝑀𝑥(𝑡);

(v) infinitesimal generator of 𝐶0-continuous semigroup {𝑆(𝑡)=𝑋(𝑡)

⃒⃒⃒⃒
X1

∈ℒ(X1) :

𝑡 ∈ R+} is 𝐴 = 𝐿−1
1 𝑀1∈𝒞𝑙(X1);

(vi) operator 𝐻 =𝑀−1
2 𝐿2 ∈ ℒ(X2) is nilpotent of the power not greater than 𝑝.

Denote by 𝑃 (𝑄) the projector along X2 (Y2) on X1 (Y1). By conditions of
Theorem 1 the equalities

𝐿𝑃 = 𝑄𝐿, 𝑀𝑃𝑥 = 𝑄𝑀𝑥 ∀𝑥 ∈ dom𝑀 (1.1)
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hold.

Theorem 2. Let 𝑝 ∈ N0, operator 𝑀 be strongly (𝐿, 𝑝)-radial, and let the func-
tion 𝑢 be such that (𝐼 − 𝑄)𝐵𝑢 ∈ 𝐶𝑝+1([0, 𝑇 ];Y), 𝑄𝐵𝑢 ∈ 𝐶1([0, 𝑇 ];Y). Then for
every initial value

𝑥0 ∈

{︃
𝑥 ∈ dom𝑀 : (𝐼 − 𝑃 )𝑥 = −

𝑝∑︁
𝑘=0

𝐻𝑘𝑀−1
2 ((𝐼 −𝑄)𝐵𝑢)(𝑘)(0)

}︃

there exists a unique solution 𝑥 ∈ 𝐶1([0, 𝑇 ];X) ∩ 𝐶([0, 𝑇 ]; dom𝑀) of the problem
(0.1), (0.2). Besides,

𝑥(𝑡) = 𝑋(𝑡)𝑥0 +

𝑡∫︁
0

𝑋(𝑡− 𝑠)𝐿−1
1 𝑄𝐵𝑢(𝑠)𝑑𝑠−

𝑝∑︁
𝑘=0

𝐻𝑘𝑀−1
2 ((𝐼 −𝑄)𝐵𝑢)(𝑘)(𝑡). (1.2)

A function 𝑥 ∈ 𝐶([0, 𝑇 ];X) is called a mild solution of the problem (0.1), (0.2)
if it has a form (1.2).

Theorem 3. Let 𝑝 ∈ N0, operator 𝑀 be strongly (𝐿, 𝑝)-radial, and let the func-
tion 𝑢 be such that (𝐼 −𝑄)𝐵𝑢 ∈ 𝐶𝑝([0, 𝑇 ];Y), 𝑄𝐵𝑢 ∈ 𝐶([0, 𝑇 ];Y). Then for every
initial value

𝑥0 ∈

{︃
𝑥 ∈ X : (𝐼 − 𝑃 )𝑥 = −

𝑝∑︁
𝑘=0

𝐻𝑘𝑀−1
2 ((𝐼 −𝑄)𝐵𝑢)(𝑘)(0)

}︃

there exists a unique mild solution 𝑥 ∈ 𝐶([0, 𝑇 ];X) of the problem (0.1), (0.2).

Definition 2. A number 𝜇 ∈ C is called 𝐿-eigenvalue of the operator 𝑀 , if
there exists a vector 𝑥 ∈ X ∖ {0} such that 𝜇𝐿𝑥 = 𝑀𝑥. This vector 𝑥 is called
𝐿-eigenvector of the operator 𝑀 according to the 𝐿-eigenvalue 𝜇. The set of all
𝐿-eigenvalues of the operator 𝑀 is called a point (or discrete) 𝐿-spectrum 𝜎𝐿𝑑 (𝑀)
of the operator 𝑀 . The discrete spectrum of any operator 𝐶 will be denoted by
𝜎𝑑(𝐶).

It is easily to see, that the set of all 𝐿-eigenvectors of the operator 𝑀 , corre-
sponding to the same 𝐿-eigenvalue, is a linear subspace of X. If this subspace is
one-dimensional, 𝐿-eigenvalue will be called a simply eigenvalue.

Definition 3. Vectors 𝜙1, ..., 𝜙𝑘 ∈ X ∖ {0}, 𝑘 ∈ N are called 𝐿-generalized
eigenvectors, corresponding to 𝐿-eigenvalue of the operator 𝑀 , if 𝜇𝐿𝜙1 = 𝑀𝜙1,
𝜇𝐿𝜙𝑗+1 =𝑀𝜙𝑗+1 + 𝐿𝜙𝑗 , 𝑗 = 1, 2, ..., 𝑘 − 1.
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Theorem 4. Let 𝑝 ∈ N, operator 𝑀 be strongly (𝐿, 𝑝)-radial. Then all
the generalized 𝐿-eigenvectors of the operator 𝑀 belong to the subspace X1 ≡
im(𝑅𝐿𝜇(𝑀))𝑝+1, and 𝜎𝐿𝑑 (𝑀) = 𝜎𝑑(𝐿

−1
1 𝑀).

Moreover, the vector 𝜙 is 𝐿-eigenvector (generalized 𝐿-eigenvector) of the op-
erator 𝑀 if and only if it is eigenvector (generalized eigenvector) for the operator
𝐿−1
1 𝑀1 of the eigenvalue 𝜇 ∈ C.

The proof of this theorem will be published in the full version of the paper.
The additional assumptions on the operators 𝐿 and 𝑀 are listed below.
(A1) The operator 𝑀 has purely point 𝐿-spectrum 𝜎𝐿(𝑀) = 𝜎𝐿𝑑 (𝑀) with no

finite limit points. All the 𝐿-eigenvalues of the operator 𝑀 have finite multiplicities,
the sequence of multiplicities is bounded from above.

(A2) The family of generalized 𝐿-eigenvectors of the operator 𝑀 produces a
Riesz basis of the subspace X1 [1, 7].

2 Problem statement

Let X, Y, U are Hilbert spaces, operator 𝑀 is strongly (𝐿, 𝑝)-radial, 𝑝 ∈ N ∪ {0}.
By acting of the operators 𝐿−1

1 𝑄 and 𝑀−1
2 (𝐼 − 𝑄) on the Cauchy problem (0.1),

(0.2), using the equalities (1.1) and Theorem 1 we obtain equivalent system of two
problems

�̇�1 (𝑡) = 𝐴𝑥1 (𝑡) +𝐵1𝑢 (𝑡) , 𝑥1 (0) = 𝑥10, 0 6 𝑡 < +∞, (2.1)
𝐻�̇�2 (𝑡) = 𝑥2 (𝑡) +𝐵2𝑢 (𝑡) , 𝑥2 (0) = 𝑥20, 0 6 𝑡 < +∞, (2.2)

where 𝑥1 (𝑡), 𝑥10 ∈ X1, 𝑢 (𝑡) ∈ U for 𝑡 > 0; 𝐵1 = 𝐿−1
1 𝑄𝐵 : U → X1 and 𝐵2 =

𝑀−1
2 (𝐼 −𝑄)𝐵 : U → X2 are linear bounded operators, the operator 𝐴 = 𝐿−1

1 𝑀1 is
an infinitesimal generator of strongly continuous 𝐶0-semigroup {𝑆 (𝑡) : 𝑡 ∈ R+} in
X1, 𝐻 = 𝑀−1

2 𝐿2 : X2 → X2 is a linear continuous nilpotent operator of the degree
not greater than 𝑝 (i. e. 𝐻𝑝+1 = 0).

Definition 4. Equation (2.1) is said to be exact null-controllable on [0, 𝑡1], if for
each 𝑥10 ∈ X1 there exists a control 𝑢 ∈ 𝐿2 ([0, 𝑡1] ;U), such that 𝑥1 (𝑡1, 𝑥10, 𝑢) = 0.

Definition 5. Equation (2.2) is said to be exact null-controllable on [0, 𝑡1], if
for each 𝑥20 ∈ X2 there exists a control 𝑢 ∈ 𝐶(𝑝) ([0, 𝑡1] ;U), such that 𝑢(𝑝) ∈
𝐿2 ([0, 𝑡1] ;U), 𝑥2 (𝑡1, 𝑥20, 𝑢) = 0.

Definition 6. System (2.1), (2.2) is said to be exact null-controllable on [0, 𝑡1],
if for each 𝑥10 ∈ X1, 𝑥20 ∈ X2 there exists a control 𝑢 ∈ 𝐶(𝑝) ([0, 𝑡1] ;U), such that
𝑢(𝑝) ∈ 𝐿2 ([0, 𝑡1] ;U), 𝑥1 (𝑡1, 𝑥10, 𝑢) = 0, 𝑥2 (𝑡1, 𝑥20, 𝑢) = 0.
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Remark 1. Controllability in the sense of Definition 6 means the controllability
of equations (2.1) and (2.2) in the sense of Definitions 4 and 5 correspondingly by
the same control.

Below necessary and sufficient conditions of exact null-controllability for de-
generate linear evolution control system (2.1), (2.2) with scalar control functions
(U = R) and with bounded input operators 𝐵1 and 𝐵2 are presented.

3 Controllability of equation (2.2)

Denote

span {𝐵2, 𝐻𝐵2, . . . ,𝐻
𝑝𝐵2} =

{︃
𝑥 ∈ X2 : ∃𝛼0, 𝛼1, . . . , 𝛼𝑝 ∈ U : 𝑥 =

𝑝∑︁
𝑘=0

𝐻𝑘𝐵2𝛼𝑘

}︃
,

Theorem 5. Let 𝑡1 > 0. Equation (2.2) is exact null-controllable on [0, 𝑡1], if
and only if

span {𝐵2, 𝐻𝐵2, . . . ,𝐻
𝑝𝐵2} = X2. (3.1)

The complete proof based on Theorem 3 will be published in the full version of
the paper.

4 Controllability of equation (2.1) by smooth scalar controls

From the assumptions (A1), (A2) and Theorem 4 assertions (B1), (B2) follows.
(B1) The operator 𝐴 has purely point spectrum 𝜎(𝐴) = 𝜎𝑑(𝐴) with no finite

limit points. All the eigenvalues of 𝐴 have finite multiplicities, the sequence of
multiplicities is bounded from above.

(B2) The family of generalized eigenvectors of the operator 𝐴 produces a Riesz
basis of the space X1.

Denote by 𝜎(𝐴) the spectrum of operator 𝐴. Let 𝜆𝑗 ∈ 𝜎(𝐴), 𝑗 ∈ N, be eigenval-
ues, and let 𝛼𝑗 and 𝑞𝑗 be the algebraic and geometric multiplicities1 of 𝜆𝑗 ∈ 𝜎(𝐴)
correspondingly.

Let all the geometrical multiplicities 𝑞𝑗 , 𝑗 ∈ N, be equal to 1. In this case [8]
the exact null-controllable equation (2.1) on [0, 𝑡1] by scalar controls (𝑟 = 1) can

1The geometric multiplicity 𝑞𝑗 is the number of Jordan blocks corresponding to 𝜆𝑗 ∈ 𝜎(𝐴),
and 𝛽𝑚

𝑗 is the dimension of 𝑚-th Jordan block, 𝑚 = 1, 2, . . . , 𝑞𝑗 .
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be considered, and the operator 𝐵 : U → X is defined by𝐵𝑢 = 𝑏𝑢, 𝑢 ∈ R, where

𝑏 =

(︃
𝑏1

𝑏2

)︃
∈ X, 𝑏1 ∈ X1, 𝑏

2 = X2.

Let 𝜓𝑗𝑘, 𝑗 ∈ N, 𝑘 = 1, 2, . . . , 𝛼𝑗 , be the generalized eigenvectors of the ad-
joint operator 𝐴*, i. e. 𝐴*𝜓𝑗𝛼𝑗 = �̄�𝑗𝜓𝑗𝛼𝑗 , 𝑗 ∈ N, 𝐴*𝜓𝑗𝑘 = 𝜆𝑗𝜓𝑗𝑘 + 𝜓𝑗𝑘+1, 𝑗 ∈
N, 𝑘 = 1, 2, ..., 𝛼𝑗 − 1.

We use the following notations:

𝑔𝑗𝑘(𝑡) = exp(𝜆𝑗𝑡)

𝛼𝑗−𝑘∑︁
𝑙=0

𝑏𝑗(𝑘+𝑙)
𝑡𝑙

𝑙!
, 𝑡 ∈ [0, 𝑡1], 𝑗 ∈ N, 𝑘 = 1, 2, . . . 𝛼𝑗 . (4.1)

Definition 7. The sequence {𝑥𝑗 ∈ X : 𝑘 ∈ N} is said to be minimal, if there no
element of the sequence belonging to the closure of the linear span of others. By
other words, 𝑥𝑗 /∈ span {𝑥𝑘 ∈ X : 𝑘 ∈ N ∖ {𝑗}} .

Definition 8. The sequence {𝑥𝑗 ∈ X : 𝑘 ∈ N} is said to be strongly minimal, if
there exists a positive number 𝛾 > 0 such that

𝛾
𝑛∑︁
𝑘=1

|𝑐𝑘|2 6

⃦⃦⃦⃦
⃦

𝑛∑︁
𝑘=1

𝑐𝑘𝑥𝑘

⃦⃦⃦⃦
⃦
2

, 𝑛 ∈ N. (4.2)

The number 𝛾 can be found by the procedure described in [8].

Theorem 6. [8]. Let the sequence of eigenvalues of operator 𝐴 forms a Riesz
basis in X1. Equation (2.1) is exact null-controllable on [0, 𝑡1], if and only if the
sequence (4.1) is strongly minimal in 𝐿2([0, 𝑡1];R).

The proof is obtained by previous Theorem 6 and properties of strongly minimal
sequences.

Definition 9. Equation (2.1) is said to be exact null-controllable on [0, 𝑡1] by
(𝑝 + 1)-smooth controls, if for each 𝑥10 ∈ X1 and (𝛼0, 𝛼1, . . . , 𝛼𝑝) ∈ R𝑝+1 there
exists a control 𝑢 ∈ 𝐶(𝑝) [0, 𝑡1], such that 𝑢(𝑘)(0) = 𝛼𝑘, 𝑢(𝑘) (𝑡1) = 0, 𝑘 = 0, 1, . . . , 𝑝,
𝑥1 (𝑡1, 𝑥10, 𝑢) = 0.

To find exact null-controllability conditions by (𝑝+1)-smooth controls consider
the auxiliary evolution equation

�̇� (𝑡) = 𝒜𝑧 (𝑡) + 𝑏𝑝+1𝑣 (𝑡) , (4.3)
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where 𝒜 =

(︃
𝐴 𝐵𝑝+1

0 𝐸𝑝+1

)︃
, 𝐵𝑝+1 =

(︀
𝑏1 0 0 . . . 0

)︀
,

𝐸𝑝+1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1

0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

𝑢 = col(𝑢1, . . . , 𝑢𝑝) ∈ R𝑝, 𝑧 =

(︃
𝑥

𝑢

)︃
∈ X = X1 × R𝑝+1, 𝑏𝑝+1 =

(︃
0

𝑒𝑝+1

)︃
∈ X,

where 𝑒𝑝+1 = col (0, 0, . . . , 1) ∈ R𝑝+1.

It is proven that the operator 𝒜 generates strongly continuous 𝐶0-semigroup,
and the exact null-controllability of system (4.3) by (𝑝+1)-smooth control is equiv-
alent to exact null-controllability of degenerate system (2.1), (2.2) in accordance
with Definition 6.

In the case of simple eigenvalues 𝜆𝑗 of the operator 𝐴 denote by 𝜓1
𝑗 , 𝑗 ∈ N,

eigenvalues of operator 𝐴*.

Theorem 7. Let 0 be a regular point of the operator 𝐴, 𝑡1 > 0. Equation (2.1)
is exact null-controllable by scalar control on [0, 𝑡1] by (𝑝 + 1)-smooth controls, if
and only if the family

(−𝑡)𝑘

𝑘!
, 𝑘 = 0, 1, . . . , 𝑝,

1

𝜆𝑗
𝑒−𝜆𝑗𝑡(𝜓1

𝑗 , 𝑏
1), 𝑗 ∈ N, (4.4)

of generalized exponents is strongly minimal in 𝐿2([0, 𝑡1];R).

The proof uses Theorem 6 and the equivalence between exact null-controllability
of equation (4.3) and exact null-controllability of equation (2.1) by (𝑝+ 1)-smooth
controls.

Theorem 8. System (0.1) is exact null-controllable by scalar control on [0, 𝑡1]
if and only if

(i) the family (4.4) of generalized exponents is strongly minimal,
(ii) span

{︀
𝑏2, 𝐻𝑏2, . . . ,𝐻𝑝𝑏2

}︀
= X2.

The proof is obtained by using of Definition 6 and Remark 1.
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5 Exact controllability of Dzektser equation

Consider the initial boundary value problem for Dzektser equation, describing free
surface evolution of filtered fluid [2],(︂

1 +
𝜕2

𝜕𝜉2

)︂
𝜕𝑣

𝜕𝑡
(𝜉, 𝑡) =

(︂
𝜕2

𝜕𝜉2
+ 2

𝜕4

𝜕𝜉4

)︂
𝑣(𝜉, 𝑡)+ 𝑏(𝜉)𝑢(𝑡), (𝜉, 𝑡) ∈ (0, 𝜋)×R+, (5.1)

𝑣(0, 𝑡) =
𝜕2𝑣

𝜕𝜉2
(0, 𝑡) = 𝑣(𝜋, 𝑡) =

𝜕2𝑣

𝜕𝜉2
(𝜋, 𝑡) = 0, 𝑡 ∈ R+, (5.2)

𝑣(𝜉, 0) = 𝑥0(𝜉), 𝜉 ∈ (0, 𝜋).

By notations

X =
{︀
𝑥 ∈ 𝐻2(0, 𝜋) : 𝑥(0) = 𝑥(𝜋) = 0

}︀
,Y = 𝐿2(0, 𝜋), 𝐿𝑥 = 𝑥+𝑥′′,𝑀 = 𝑥′′+2𝑥′′′′,

dom𝑀 = {𝑥 ∈ 𝐻2 (0, 𝜋) :𝑥(0) = 𝑥′′(0) = 𝑥(𝜋) = 𝑥′′(𝜋) = 0}

(𝐵𝑢)(𝜉) = 𝑏(𝜉)𝑢, 𝜉 ∈ (0, 𝜋) , 𝑢 ∈ U = R, 𝑏 ∈ 𝐿2(0, 𝜋),

this problem can be reduced to the problem (0.1), (0.2).
It is easily to see, that ker𝐿 ̸= {0}. It is shown, that here 𝐻 = 0.

The 𝐿-eigenvalues of the operator 𝑀 are calculated, and it is shown that they
are simple. The sequence of generalized exponents (4.4) with 𝑝 = 0 (because of
𝐻 = 0) is also calculated. Using results of [3] and [7] the strong minimality of
sequence (4.4) has been proven, and then by Theorem 8 we obtain that

Theorem 9. Let ⟨𝑏(𝜉), sin𝑛𝜉⟩ ≠ 0 for 𝑛 ∈ N and series

∞∑︁
𝑛=2

(2𝑛4 − 𝑛2)2

|⟨𝑏(𝜉), sin𝑛𝜉⟩|2
𝑒
−𝑛2

(︁
1+ 𝑛2

𝑛2−1

)︁
𝑡0

converges for 𝑡0 > 0. Then the system (5.1), (5.2) is exact null-controllable on [0, 𝑡1]
for any 𝑡1 > 𝑡0.
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Abstract. In previous author’s works so called cascade search principle was sug-
gested. Given a multivalued functional on a metric space 𝑋 or given a finite col-
lection of multivalued mappings from 𝑋 to a metric space 𝑌 , that principle allows
one to construct some another multivalued mapping from 𝑋 to itself, generating a
multicascade (that is a multivalued discrete dynamic system) on 𝑋, with its limit
set being equal either to the nil-subspace of the given functional or to the set of
common preimages (under the actions of the given mappings) of some given closed
subspace 𝐻 ⊂ 𝑌 . Some applications were also given, and stability problems for
such multicascades were considered. This paper contains an addition to the latest
author’s results concerning local versions of the cascade search principle and their
applications.

1 Introduction

In the author’s works [1–3] several versions of so called cascade search principle were
suggested. Given a multivalued functional on a metric space 𝑋 or given a finite
collection of multivalued mappings from 𝑋 to another metric space 𝑌 (or into 𝑋
itself), that principle allows one to construct some another multivalued mapping
from𝑋 into itself, generating a multicascade (that is a multivalued disctere dynamic
system) on 𝑋. That multicascade has a nonempty limit set being equal either to
the nil-subspace of the given functional or to the set of common preimages (under
the actions of the given mappings) of some given closed subspace 𝐻 ⊂ 𝑌 . Then,
in [4–6], the stability problems of the cascade search methods were considered.
Several applications of the obtained results were given, as well, concerning the
existence and approximation problems of common fixed points and common roots
of a finite collection of multivalued mappings from 𝑋 into itself or from 𝑋 to
another metric space 𝑌 , respectively. In particular, essential generalizations of
several results of the works [7, 8] were obtained.

The latest author’s work [9] is devoted to a generalized cascade search principle,
its local versions and some applications. These results were partly represented in



166 The 8th Congress of the ISAAC — 2011

the author’s talk at the 8-th International ISAAC Congress (see [10]). In particular,
a generalization of [11, Theorem 2] was obtained as one of the consequences.

This paper is an addition to the paper [9]. Here we concentrate on the local
cascade search (that is the search near the starting point) for common roots and
for common preimages of a given closed subspace under actions of 𝑛 (𝑛 > 1) given
multivalued mappings between metric spaces.

Now, let us give necessary definitions and notations.

R>0 = {𝑡 ∈ R | 𝑡 > 0} is the set of nonnegative real numbers; (𝑋, 𝜌), (𝑌, 𝑑) are
metric spaces; 𝑃 (𝑌 ) is the totality of all nonempty subsets of the space 𝑌 ; 𝐶(𝑌 ) is
the totality of all nonempty closed subsets of 𝑌 .

𝑈(𝑀, 𝑟) = {𝑥 ∈ 𝑋 | 𝜌(𝑥,𝑀) 6 𝑟} is a closed ball neighbourhood of the set 𝑀
of the radius 𝑟 > 0 in a metric space 𝑋. In particular, if 𝑀 = {𝑥}, 𝑥 ∈ 𝑋, 𝑈(𝑥, 𝑟)
is just a closed ball of the radius 𝑟 with the center in the point 𝑥.

A metric 𝐷 in the space 𝑌 𝑛 is defined as follows: 𝐷(𝑦, 𝑧) :=
𝑛∑︀
𝑖=1

𝑑(𝑦𝑖, 𝑧𝑖), where

𝑦 = (𝑦1, . . . , 𝑦𝑛), 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ 𝑌 𝑛.

Let Δ𝑛(𝐻) = {𝑦 ∈ 𝑌 𝑛 | 𝑦 = (𝑦, . . . , 𝑦), 𝑦 ∈ 𝐻} stand for the part of the diagonal
of 𝑌 𝑛 ”over 𝐻”, where 𝐻 is a closed subspace in 𝑌 . In particular, Δ𝑛 = Δ𝑛(𝑌 ) is
the whole diagonal in 𝑌 𝑛.

We call the set 𝐹−1(𝐻) = {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ∩𝐻 ̸= ∅} full preimage of the closed
subspace 𝐻 under the action of a multivalued mapping 𝐹 : 𝑋 → 𝐶(𝑌 ).

We say the graph 𝐺(𝐹 ) = {(𝑥, 𝑦) ∈ 𝑋×𝑌 | 𝑦 ∈ 𝐹 (𝑥)} of a multivalued mapping
𝐹 : 𝑋 → 𝐶(𝑌 ) is 𝐻-complete, if any cauchy sequence {(𝑥𝑚, 𝑦𝑚)}𝑚=0,1,... ⊆ 𝐺(𝐹 )
with 𝑑(𝑦𝑚, 𝐻) −→

𝑚→∞
0 has a limit (𝜉, 𝜂) ∈ 𝐺(𝐹 ), that is 𝜂 ∈ 𝐹 (𝜉) ∩𝐻.

We say the graph 𝐺(𝐹 ) is 𝐻-closed, if all its limit points of the form of (𝑥, 𝑦)
with 𝑦 ∈ 𝐻 are contained in 𝐺(𝐹 ).

A multicascade on 𝑋 is a multivalued discrete dynamic system with the phase
space 𝑋 and the additive translation semigroup (Z>0,+) (Z>0 = {0, 1, 2, . . .}).
In other words, we say a multicascade is given on 𝑋 if a multivalued self-mapping
𝒢 : 𝑋 → 𝑃 (𝑋) is given, which nonnegative iterations make a semigroup {𝒢𝑛}𝑛=0,1,...

clearly representing the semigroup (Z>0,+) where 𝒢0 = id𝑋 is the identical mapping
of 𝑋. The mapping 𝒢 = 𝒢1 : 𝑋 → 𝑃 (𝑋) representing the generative element
1 ∈ Z>0 is called the multicascade generator. A trajectory of a multicascade is
any sequence {𝑥𝑛}𝑛=1,2,..., where 𝑥𝑛+1 ∈ 𝒢(𝑥𝑛), 𝑛 = 1, 2, . . .. So, iterations of the
generator 𝒢 being applied to a point 𝑥 ∈ 𝑋, make trajectories starting with 𝑥. The
limits of all trajectories (if exist) form the limit set of the multicascade.
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2 Generally search functionals and local cascade search
for preimages and roots.

Definiton 1. Say a multivalued nonnegative functional 𝜙 : 𝑋 → 𝑃 (R>0) is gen-
erally (𝛼, 𝛽)-search on a metric space 𝑋, 0 < 𝛽 < 𝛼, if for any pair (𝑥, 𝑡) ∈ 𝐺(𝜙)
there exists a pair (𝑥′, 𝑡′) ∈ 𝐺(𝜙) such that

𝜌(𝑥, 𝑥′) 6
𝑡

𝛼
, 𝑡′ 6

𝛽

𝛼
· 𝑡.

Let a nonnegative multivalued functional 𝜙 : 𝑋 → 𝑃 (R>0) be defined on a
metric space 𝑋. Denote 𝜙*(𝑥) = inf{𝜙|𝜙 ∈ 𝜙(𝑥)}.

In [9] the following local cascade search principle was proved.
Theorem 1 [9, Theorem 5]. Let a multivalued functional 𝜙 : 𝑋 → 𝑃 (R>0) be

generally (𝛼, 𝛽)-search, 0 < 𝛽 < 𝛼, and 𝜙*(𝑥0) < (𝛼 − 𝛽)𝑟 for some point 𝑥0 ∈ 𝑋
and some number 𝑟 > 0. Let also either the graph 𝐺(𝜙) be 0-complete or 𝑋 be
complete and the graph 𝐺(𝜙) be 0-closed. Then the following statements are true:

1)There is a multicascade on 𝐺(𝜙) with limit set 𝒜 ⊆ 𝐺(𝜙), 𝒜 ̸= ∅, 𝒜𝑋 =
𝑁𝑖𝑙(𝜙) where 𝒜𝑋 stands for the projection of 𝒜 onto 𝑋;

2)𝒜𝑋 ∩ 𝑈(𝑥0, 𝑟) ̸= ∅. In particular, for any pair (𝑥0, 𝜙0) ∈ 𝐺(𝜙) with 𝜙0 <
(𝛼− 𝛽)𝑟, there exists a limit point 𝜉 = 𝜉(𝑥0, 𝜙0) ∈ 𝑈(𝑥0, 𝑟). �

In [9] some applications of Theorem 1 were also given concerning the local
cascade search for the set 𝐶𝑜𝑖𝑛𝐻(𝐹1, . . . , 𝐹𝑛) = {𝑥 ∈ 𝑋 | 𝐹1(𝑥)∩. . .∩𝐹𝑛(𝑥)∩𝐻 ̸= ∅}
of common preimages of a given closed subspace 𝐻 ⊂ 𝑌 under the actions of given
𝑛 (𝑛 > 1) multivalued mappings 𝐹1, . . . , 𝐹𝑛 : 𝑋 → 𝐶(𝑌 ) (see [9, Theorems 6,7]).

Moreover, in [9] there was also considered the problem of the local cascade
search for the subset of such coincidence points of 𝑛 multivalued mappings in which
the images intersections are not far from a given closed subspace 𝑄 ⊂ 𝑌 (see
[9, Theorems 8,9 and Statement 1]). In particular, the obtained results imply a
generalization of the recent result [11, Theorem 2].

Let us consider here the more general problem of the local cascade search for the
subset of such common preimages of a given closed subspace 𝐻 ⊂ 𝑌 under actions
of 𝑛 (𝑛 > 1) given multivalued mappings from 𝑋 to 𝑌 that the intersection of the
images at each of that points is not far from the given closed subspace 𝑄 ⊂ 𝑌 . In
this way we obtain the following statements (Theorem 2 and Corollaries 1,2 below).

Theorem 2.Let multivalued mappings 𝐹1, . . . , 𝐹𝑛 : 𝑋 → 𝐶(𝑌 ) be given, 𝐹 =
𝐹1 × . . .× 𝐹𝑛, 𝑄 ∈ 𝐶(𝑌 ), 𝐻 ∈ 𝐶(𝑌 ). Let the graph 𝐺(𝐹 ) be Δ𝑛(𝐻)-closed and at
least one of the graphs 𝐺(𝐹𝑖) (1 6 𝑖 6 𝑛) be 𝐻-complete. Let also the following 2
conditions be fulfilled:



168 The 8th Congress of the ISAAC — 2011

1)for some numbers 𝛼, 𝛽, 0 < 𝛽 < 𝛼, 𝛾 > 0, let the mapping 𝐹 and the multival-
ued functional 𝜓, where 𝜓(𝑥) := {𝐷|𝐷 = 𝐷(𝑦) = 𝐷(𝑦,Δ𝑛(𝐻))), 𝑦 ∈ 𝐹 (𝑥)}, satisfy
the following condition: for any pair (𝑥, 𝑦) ∈ 𝐺(𝐹 ) there exists a pair (𝑥′, 𝑦′) ∈ 𝐺(𝐹 )
such that the following inequalities are fulfilled (𝑦 = (𝑦1, . . . , 𝑦𝑛), 𝑦

′ = (𝑦′1, . . . , 𝑦
′
𝑛)):

𝜌(𝑥, 𝑥′) 6
𝐷(𝑦)

𝛼
,𝐷(𝑦′) 6 𝛽 · 𝜌(𝑥, 𝑥′), 𝑑(𝑦𝑛, 𝑦′1) 6 𝛾 · 𝜌(𝑥, 𝑥′),

2)there exists a pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ), such that 𝑑(𝑦01, 𝑄) 6 (𝛼− 𝛽)𝑅, and

𝐷0 = 𝐷(𝑦0) 6
𝛽(𝛼− 𝛽)min{2𝑟,𝑅}

2𝛼+ 𝛾
;

Then a multicascade is defined on 𝐺(𝐹 ) with the nonempty limit set 𝐶 ⊆ 𝐺(𝐹 ),
which projection onto 𝑋 is 𝐶𝑋 = 𝐶𝑜𝑖𝑛𝐻(𝐹1, . . . , 𝐹𝑛), 𝐶𝑋 ∩ 𝑈(𝑥0, 𝑟) ̸= ∅. In
particular, for any pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ) satisfying the condition 2), there exists a
limit pair (𝜉, 𝜂) ∈ 𝐺(𝐹 ), 𝜂 = (𝜂, . . . , 𝜂) ∈ Δ𝑛(𝐻), reachable from (𝑥0, 𝑦0) such that
𝜉 = 𝜉(𝑥0, 𝑦0) ∈ 𝐶𝑋 ∩ 𝑈(𝑥0, 𝑟). Moreover, 𝜂 = 𝜂(𝑥0, 𝑦0) ∈ 𝑈(𝑄,𝛼𝑅). �

We don’t give here the detailed proof of Theorem 2 because it is quite similar to
the one of [9, Theorem 8]. Just note that in [9, Theorem 8] we used the functional

𝜙 where 𝜙(𝑥) := {𝜙|𝜙 = 𝜙(𝑦) =
𝑛−1∑︀
𝑖=1

𝑑(𝑦𝑖, 𝑦𝑖+1), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐹 (𝑥)}. And

in the above Theorem 2 we use another functional 𝜓, 𝜓(𝑥) := {𝐷|𝐷 = 𝐷(𝑦) =
𝐷(𝑦,Δ𝑛(𝐻))), 𝑦 ∈ 𝐹 (𝑥)}. There is the following obvious inequality between values
of the functionals:

𝑛−1∑︁
𝑖=1

𝑑(𝑦𝑖, 𝑦𝑖+1) 6 2 ·𝐷(𝑦,Δ𝑛(𝐻))), 𝑦 = (𝑦1, . . . , 𝑦𝑛)

Because of that inequality, the estimation of 𝐷(𝑦0) in the condition 2) of Theorem
2 differs a little from the one of [9, Theorem 8].

So, the above Theorem 2 is a modification of [9, Theorem 8]. Nevertheless, it
implies useful consequences.

In the case of 𝑛 = 1 we obtain the following result concerning the local cas-
cade search for preimages of a given closed subspace 𝐻 under the action of one
multivalued mapping.

Corollary 1. Let a multivalued mapping 𝐹 : 𝑋 → 𝐶(𝑌 ) be given, 𝑄 ∈
𝐶(𝑌 ), 𝐻 ∈ 𝐶(𝑌 ). Let either the graph 𝐺(𝐹 ) be 𝐻-complete or 𝑋 be complete
and 𝐺(𝐹 ) be 𝐻-closed. Let also the following 2 conditions be fulfilled:
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1)for some numbers 𝛼, 𝛽, 0 < 𝛽 < 𝛼, 𝛾 > 0, let the mapping 𝐹 and the mul-
tivalued functional 𝜓, 𝜓(𝑥) := {𝐷|𝐷 = 𝐷(𝑦) = 𝐷(𝑦,𝐻)), 𝑦 ∈ 𝐹 (𝑥)}, satisfy the
following condition: for any pair (𝑥, 𝑦) ∈ 𝐺(𝐹 ) there exists a pair (𝑥′, 𝑦′) ∈ 𝐺(𝐹 )
such that the following inequalities are fulfilled:

𝜌(𝑥, 𝑥′) 6
𝐷(𝑦)

𝛼
,𝐷(𝑦′) 6 𝛽 · 𝜌(𝑥, 𝑥′), 𝑑(𝑦, 𝑦′) 6 𝛾 · 𝜌(𝑥, 𝑥′);

2)there exists a pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ), such that 𝑑(𝑦0, 𝑄) 6 (𝛼− 𝛽)𝑅, and

𝐷(𝑦0) 6
𝛽(𝛼− 𝛽)min{2𝑟,𝑅}

2𝛼+ 𝛾
;

Then there exists a multicascade on 𝐺(𝐹 ) with the nonempty limit set 𝐶 ⊆ 𝐺(𝐹 ),
which projection onto 𝑋 is 𝐶𝑋 = 𝐹−1(𝐻), and 𝐶𝑋 ∩ 𝑈(𝑥0, 𝑟) ̸= ∅. In particular,
for any pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ) satisfying the condition 2), there exists a limit pair
(𝜉, 𝜂) ∈ 𝐺(𝐹 ), reachable from (𝑥0, 𝑦0) such that 𝜉 = 𝜉(𝑥0, 𝑦0) ∈ 𝐹−1(𝐻)∩𝑈(𝑥0, 𝑟).
Moreover, 𝜂 = 𝜂(𝑥0, 𝑦0) ∈ 𝐻 ∩ 𝑈(𝑄,𝛼𝑅). �

The following statement concerns the local cascade search for common roots of
𝑛 (𝑛 > 2) given multivalued mappings.

Corollary 2. Let multivalued mappings 𝐹1, . . . , 𝐹𝑛 : 𝑋 → 𝐶(𝑌 ) be given,
𝐹 = 𝐹1 × . . . × 𝐹𝑛, 𝑄 ∈ 𝐶(𝑌 ) and 𝑐 ∈ 𝑌 . Let the graph 𝐺(𝐹 ) be 𝑐-closed,
𝑐 = (𝑐, . . . , 𝑐) ∈ Δ𝑛 ⊂ 𝑌 𝑛, and at least one of the graphs 𝐺(𝐹𝑖) (1 6 𝑖 6 𝑛) be
𝑐-complete. Let also the following 2 conditions be fulfilled:

1)for some numbers 𝛼, 𝛽, 0 < 𝛽 < 𝛼, 𝛾 > 0, the mapping 𝐹 and the multivalued

functional 𝜓, 𝜓(𝑥) = {𝐷|𝐷 = 𝐷(𝑦) =
𝑛∑︀
𝑖=1

𝑑(𝑦𝑖, 𝑐), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐹 (𝑥)}, satisfy

the following condition: for any pair (𝑥, 𝑦) ∈ 𝐺(𝐹 ) there exists a pair (𝑥′, 𝑦′) ∈ 𝐺(𝐹 )
such that the following inequalities are fulfilled:

𝜌(𝑥, 𝑥′) 6
𝐷(𝑦)

𝛼
,𝐷(𝑦′) 6 𝛽 · 𝜌(𝑥, 𝑥′), 𝑑(𝑦𝑛, 𝑦′1) 6 𝛾 · 𝜌(𝑥, 𝑥′),

where 𝑦 = (𝑦1, . . . , 𝑦𝑛), 𝑦
′ = (𝑦′1, . . . , 𝑦

′
𝑛));

2)there exists a pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ), such that 𝑑(𝑦01, 𝑄) 6 (𝛼− 𝛽)𝑅, and

𝐷(𝑦0) 6
𝛽(𝛼− 𝛽)min{2𝑟,𝑅}

2𝛼+ 𝛾
;

Then there exists a multicascade on 𝐺(𝐹 ) with the nonempty limit set 𝐶 ⊆ 𝐺(𝐹 ),
which projection onto 𝑋 is the set 𝐶𝑋 = 𝐶𝑅𝑐(𝐹1, . . . , 𝐹𝑛) = {𝑥 ∈ 𝑋 | 𝐹1(𝑥) ∩
. . .∩𝐹𝑛(𝑥) ∋ 𝑐} of common roots of the mappings 𝐹1, . . . , 𝐹𝑛 corresponding to their
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common value 𝑐, and 𝐶𝑋 ∩𝑈(𝑥0, 𝑟) ̸= ∅. In particular, for any pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 )
satisfying the condition 2), there exists a limit pair (𝜉, 𝑐) ∈ 𝐺(𝐹 ) reachable from
(𝑥0, 𝑦0) such that 𝜌(𝑥0, 𝜉) 6 𝑟, 𝑑(𝜂,𝑄) 6 𝛼𝑅. �

Now, let us formulate the following modification of [9, Theorem 9] also (like as
Theorem 2 above) concerning the local search for common preimages of 𝑛 given
multivalued mappings.

Theorem 3. Let mappings 𝐹1, . . . , 𝐹𝑛 : 𝑋 → 𝐶(𝑌 ) be given, 𝐹 = 𝐹1× . . .×𝐹𝑛,
𝑄 ∈ 𝐶(𝑌 ), 𝐻 ∈ 𝐶(𝑌 ), 𝜓 : 𝑋 → 𝑃 (R>0), 𝜓(𝑥) = {𝐷|𝐷 = 𝐷(𝑦,Δ𝑛(𝐻)), 𝑦 ∈
𝐹 (𝑥)}, 𝑥 ∈ 𝑋. Let the graph 𝐺(𝐹 ) be Δ𝑛(𝐻)-closed and at least one of the graphs
𝐺(𝐹𝑖), 𝑖 = 1, . . . , 𝑛, be 𝐻-complete. Moreover, let for some numbers 0 < 𝛽 < 𝛼, 𝛾 >
0, 𝑟 > 0, 𝑅 > 0 the following conditions be fulfilled (where 𝑦 = (𝑦1, . . . , 𝑦𝑛), 𝑦

′ =
(𝑦′1, . . . , 𝑦

′
𝑛), 𝑦 = (𝑦′′1 , . . . , 𝑦

′′
𝑛)):

a)for any pair (𝑥, 𝑦) ∈ 𝐺(𝐹 ) there exists such a pair (𝑥′, 𝑦′) ∈ 𝐺(𝐹 ), that the
following inequalities are true:

𝜓(𝑦′) 6 𝛽 · 𝜌(𝑥, 𝑥′), 𝑑(𝑦𝑛, 𝑦′1) 6 𝛾 · 𝜌(𝑥, 𝑥′);

b)for any pair of pairs ((𝑥, 𝑦), (𝑥′, 𝑦′)) ∈ 𝐺(𝐹 ) × 𝐺(𝐹 ) there exists such a pair
(𝑥′′, 𝑦′′) ∈ 𝐺(𝐹 ), that the following inequalities are fulfilled

𝜓(𝑦′′) 6 𝛽 · 𝜌(𝑥′, 𝑥′′), 𝑑(𝑦′𝑛, 𝑦′′1) 6 𝛾 · 𝜌(𝑥′, 𝑥′′), 𝜌(𝑥′, 𝑥′′) 6 𝛽

𝛼
𝜌(𝑥, 𝑥′);

c)there exists a pair of pair ((𝑥0, 𝑦0), (𝑥1, 𝑦1)) ∈ 𝐺(𝐹 )×𝐺(𝐹 ) satisfying the condi-
tion a), that

𝑑(𝑦0𝑛, 𝑄) 6 (𝛼− 𝛽)𝑅, 𝜌(𝑥0, 𝑥1) 6
𝛽(𝛼− 𝛽)

𝛼(2𝛽 + 𝛾)
min{2𝑟,𝑅}.

Then there is a multicascade on 𝐺(𝐹 ) × 𝐺(𝐹 ) with nonempty limit set 𝒜 ⊆ Δ,
where Δ is the diagonal in 𝐺(𝐹 ) × 𝐺(𝐹 ). The projection of any trajectory of
that multicascade onto the first component is an approximating sequence in 𝐺(𝐹 ),
converging to a pair (𝜉, 𝜂) ∈ 𝐺(𝐹 ), where 𝜉 ∈ 𝐶𝑜𝑖𝑛𝐻(𝐹1, . . . , 𝐹𝑛). Besides, if such
sequence starts with the pair (𝑥0, 𝑦0) satisfying the condition c), then it converges
to such a pair (𝜉0, 𝜂0) ∈ 𝐺(𝐹 ) that 𝜉0 ∈ 𝐶𝑜𝑖𝑛𝐻(𝐹1, . . . , 𝐹𝑛) ∩ 𝑈(𝑥0, 𝑟) and 𝜂0 ∈
𝑈(𝑄,𝛼𝑅). �

The proof of Theorem 3 is rather standart and similar to the proof of [9, Theorem
9]. The only difference is that in Theorem 3 we consider Δ𝑛(𝐻) instead of Δ𝑛

and use the functional 𝜓(𝑥) := {𝐷|𝐷 = 𝐷(𝑦,Δ𝑛(𝐻)), 𝑦 ∈ 𝐹 (𝑥)} instead of the

functional 𝜙(𝑥) := {𝜙|𝜙 = 𝜙(𝑦) =
𝑛−1∑︀
𝑖=1

𝑑(𝑦𝑖, 𝑦𝑖+1), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐹 (𝑥)}. Taking
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into account the inequality
𝑛−1∑︀
𝑖=1

𝑑(𝑦𝑖, 𝑦𝑖+1) 6 2 ·𝐷(𝑦,𝐻) and proceeding by standart

way we obtain the required estimations which are slightly different from the ones
of [9, Theorem 9].

In the case of 𝐻 = 𝑌 , Theorem 3 implies a consequence concerning the local
cascade search for such coincidence points of the mappings 𝐹1, . . . , 𝐹𝑛 which have
common values lying ”not far from 𝑄.” That consequence differs from [9, Theorem
9] because of the use of another search functional 𝜓.

In the case of 𝐻 = {𝑐}, 𝑐 ∈ 𝑌 , Theorem 3 implies a corollary concerning the
local cascade search for common roots of the mappings 𝐹1, . . . , 𝐹𝑛 corresponding to
their common value 𝑐, also ”not far from 𝑄.”

In conclusion, let us formulate one more consequence from Theorem 3 similar
to [9, Statement 1].

Corollary 3.Let mappings 𝐹1, . . . , 𝐹𝑛 : 𝑋 → 𝐶(𝑌 ) be given, 𝐹 = 𝐹1× . . .×𝐹𝑛,
𝜓 : 𝑋 → 𝑃 (R>0), 𝜓(𝑥) = {𝐷|𝐷 = 𝐷(𝑦) = 𝐷(𝑦,Δ𝑛(𝐻)), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ 𝐹 (𝑥)},
𝑥 ∈ 𝑋, 𝐻 ∈ 𝐶(𝑌 ), 𝑄 ∈ 𝐶(𝑌 ). Let the graph 𝐺(𝐹 ) be Δ𝑛(𝐻)-closed and at
least one of the graphs 𝐺(𝐹𝑖) (1 6 𝑖 6 𝑛) be 𝐻-complete. Let for some numbers
0 < 𝛽 < 𝛼, 𝛾 > 0, 𝑟 > 0, 𝑅 > 0, and for some pair (𝑥0, 𝑦0) ∈ 𝐺(𝐹 ) it is true
that 𝑑(𝑦0𝑛, 𝑄) 6 (𝛼 − 𝛽)𝑅 and there exists a sequence {(𝑥𝑚, 𝑦𝑚)}𝑚=0,1,... ⊆ 𝐺(𝐹 )
starting with (𝑥0, 𝑦0) and satisfying the following inequalitites (where 𝑚 > 1, 𝑦𝑚 =
(𝑦𝑚1, . . . , 𝑦𝑚𝑛) ):

𝜌(𝑥0, 𝑥1) 6
𝛽(𝛼− 𝛽)

𝛼(2𝛽 + 𝛾)
min{2𝑟,𝑅}, 𝜌(𝑥𝑚, 𝑥𝑚+1) 6

𝛽

𝛼
𝜌(𝑥𝑚−1, 𝑥𝑚),

𝜓(𝑦𝑚+1) 6 𝛽 · 𝜌(𝑥𝑚, 𝑥𝑚+1), 𝑑(𝑦𝑚𝑛, 𝑦(𝑚+1)1) 6 𝛾 · 𝜌(𝑥𝑚, 𝑥𝑚+1).

Then every such sequence has a limit (𝜉, 𝜂) ∈ 𝐺(𝐹 ), where 𝜉 ∈ 𝐶𝑜𝑖𝑛𝐻(𝐹1, . . . , 𝐹𝑛)∩
𝑈(𝑥0, 𝑟), 𝜂 ∈ 𝐻 ∩ 𝑈(𝑄,𝛼𝑅). �

Using other suitable functionals and concrete subspaces 𝐻 and 𝑄 one can realize
local cascade search for the solving specific problems.
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Abstract. An antagonistic differential game is considered where motion occurs in
a straight line. Deviations between the first and second pursuers and the evader
are computed at the instants 𝑇1 and 𝑇2, respectively. The pursuers act together.
Their aim is to minimize the resultant miss, which is equal to the minimum of the
deviations taken at the instants 𝑇1 and 𝑇2. Numerical study of value function level
sets (Lebesgue sets) for qualitatively different cases is given.

1 Introduction and Problem Formulation

1. In the paper, a model differential game with two pursuers and one evader is stud-
ied. Three inertial objects moves in the straight line. The dynamics descriptions
for pursuers 𝑃1 and 𝑃2 are

𝑧𝑃1 = 𝑎𝑃1 , 𝑧𝑃2 = 𝑎𝑃2 ,

�̇�𝑃1 = (𝑢1 − 𝑎𝑃1)/𝑙𝑃1 , �̇�𝑃2 = (𝑢2 − 𝑎𝑃2)/𝑙𝑃2 ,

|𝑢1| 6 𝜇1, |𝑢2| 6 𝜇2,

𝑎𝑃1(𝑡0) = 0, 𝑎𝑃2(𝑡0) = 0.

(1.1)

Here, 𝑧𝑃1 and 𝑧𝑃2 are the geometric coordinates of the pursuers; 𝑎𝑃1 and 𝑎𝑃2 are
their accelerations generated by the controls 𝑢1 and 𝑢2. The time constants 𝑙𝑃1 and
𝑙𝑃2 define how fast the controls affect the systems.

The dynamics of the evader 𝐸 is similar:

𝑧𝐸 = 𝑎𝐸 , �̇�𝐸 = (𝑣 − 𝑎𝐸)/𝑙𝐸 , |𝑣| 6 𝜈, 𝑎𝐸(𝑡0) = 0. (1.2)

Let us fix some instants 𝑇1 and 𝑇2. At the instant 𝑇1, the miss of the first
pursuer with respect to the evader is computed, and at the instant 𝑇2, the miss of

This work was supported by the Russian Foundation for Fundamental Research under grants
No.10-01-96006, 11-01-12088.
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the second one is calculated:

𝑟𝑃1,𝐸(𝑇1) = |𝑧𝐸(𝑇1)− 𝑧𝑃1,𝐸(𝑇1)|, 𝑟𝑃2,𝐸(𝑇2) = |𝑧𝐸(𝑇2)− 𝑧𝑃2,𝐸(𝑇2)|. (1.3)

Assume that the pursuers act in coordination. This means that we can join
them into one player 𝑃 (which will be called the first player). This player governs
the vector control 𝑢 = (𝑢1, 𝑢2). The evader is counted as the second player. The
resultant miss is the following value:

𝜙 = min{𝑟𝑃1,𝐸(𝑇1), 𝑟𝑃2,𝐸(𝑇2)}. (1.4)

At any instant 𝑡, both players know exact values of all state coordinates 𝑧𝑃1 ,
�̇�𝑃1 , 𝑎𝑃1 , 𝑧𝑃2 , �̇�𝑃2 , 𝑎𝑃2 , 𝑧𝐸 , �̇�𝐸 , 𝑎𝐸 . The vector composed of these components is
denoted as 𝑧. The first player choosing its feedback control minimizes the miss 𝜙,
the second one maximizes it.

Relations (1.1)–(1.4) define a standard antagonistic differential game. One needs
to construct the value function (𝑡, 𝑧) ↦→ 𝒱(𝑡, 𝑧) of this game.

2. Up to now, there are a lot of publications dealing with linear differential
games where one group of objects pursues another group; see, for example, works
[1, 3, 5, 10]. The problem under consideration has two pursuers and one evader.

So, from the point of view of number of objects, it is the simplest one. On the
other hand, strict mathematical studies of problems “group-on-group” usually in-
clude quite strong assumptions onto the dynamics of objects, dimension of the state
vector, and conditions of termination. Conversely, this paper considers the problem
without any assumptions of these types.

3. Let us describe a practical problem, whose reasonable simplification gives the
model game (1.1)–(1.4). Suppose that two pursuing objects attack the evading one
on collision courses. They can be rockets or aircrafts in the horizontal plane. A
nominal motion of the first pursuer is chosen such that at the instant 𝑇1 the exact
capture occurs. In the same way, a nominal motion of the second pursuer is chosen
(the capture is at the instant 𝑇2). But indeed, the real positions of the objects
differ from the nominal ones. Moreover, the evader using its control can change
its trajectory in comparison with the nominal one (but not principally, without
sharp turns). Correcting coordinated efforts of the pursuers are computed during
the process by the feedback method to minimize the resultant miss, which is the
minimum of absolute values of deviations at the instants 𝑇1 and 𝑇2 from the first
and second pursuers, respectively, to the evader.
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The passage from the original non-linear dynamics to a dynamics, which is
linearized with respect to the nominal motions, gives [11, 12] the problem under
consideration.

2 Passage to Two-Dimensional Differential Game

At first, let us pass to relative geometric coordinates

𝑦1 = 𝑧𝐸 − 𝑧𝑃1 , 𝑦2 = 𝑧𝐸 − 𝑧𝑃2 (2.1)

in dynamics (1.1), (1.2) and payoff function (1.4). After this, we have the following
notations:

𝑦1 = 𝑎𝐸 − 𝑎𝑃1 , 𝑦2 = 𝑎𝐸 − 𝑎𝑃2 ,

�̇�𝑃1 = (𝑢1 − 𝑎𝑃1)/𝑙𝑃1 , �̇�𝑃2 = (𝑢2 − 𝑎𝑃2)/𝑙𝑃2 ,

�̇�𝐸 = (𝑣 − 𝑎𝐸)/𝑙𝑃1 , |𝑢2| 6 𝜇2,

|𝑢1| 6 𝜇1, |𝑣| 6 𝜈, 𝜙 = min{|𝑦1(𝑇1)|, |𝑦2(𝑇2)|}.

(2.2)

State variables of system (2.2) are 𝑦1, �̇�1, 𝑎𝑃1 , 𝑦2, �̇�2, 𝑎𝑃2 , 𝑎𝐸 ; 𝑢1 and 𝑢2 are
controls of the first player; 𝑣 is the control of the second one. The payoff function
𝜙 depends on the coordinate 𝑦1 at the instant 𝑇1 and on the coordinate 𝑦2 at the
instant 𝑇2.

A standard approach to study linear differential games with fixed terminal in-
stant and payoff function depending on some state coordinates at the terminal in-
stant is to pass to new state coordinates (see, for example, [6,7]) that can be treated
as values of the target coordinates forecasted to the terminal instant under zero con-
trols. Often, these coordinates are called the zero effort miss coordinates [11, 12].
In our case, we have two instants 𝑇1 and 𝑇2, but coordinates computed at these
instants are independent; namely, at the instant 𝑇1, we should take into account
𝑦1(𝑇1) only, and at the instant 𝑇2, we use the value 𝑦2(𝑇2). This fact allows us to
use the mentioned approach when solving the differential game (2.2). With that,
we pass to new state coordinates 𝑥1 and 𝑥2, where 𝑥1(𝑡) is the value of 𝑦1 forecasted
to the instant 𝑇1 and 𝑥2(𝑡) is the value of 𝑦2 forecasted to the instant 𝑇2.

The forecasted values are computed by formula

𝑥𝑖 = 𝑦𝑖 + �̇�𝑖𝜏𝑖 − 𝑎𝑃𝑖 𝑙
2
𝑃𝑖
ℎ(𝜏𝑖/𝑙𝑃𝑖) + 𝑎𝐸𝑙

2
𝐸ℎ(𝜏𝑖/𝑙𝐸), 𝑖 = 1, 2. (2.3)

Here, 𝑥𝑖, 𝑦𝑖, �̇�𝑖, 𝑎𝑃𝑖 , and 𝑎𝐸 depend on 𝑡; 𝜏𝑖 = 𝑇𝑖− 𝑡. Function ℎ is described by the
relation ℎ(𝛼) = 𝑒−𝛼 + 𝛼 − 1. Emphasize that the values 𝜏1 and 𝜏2 are connected
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to each other by the relation 𝜏1 − 𝜏2 = const = 𝑇1 − 𝑇2. It is very important
that 𝑥𝑖(𝑇𝑖) = 𝑦𝑖(𝑇𝑖). Let 𝑋(𝑡, 𝑧) be a two-dimensional vector composed of the
variables 𝑥1, 𝑥2 defined by formulae (2.1), (2.3).

The dynamics in the new coordinates 𝑥1, 𝑥2 is the following [8]:

�̇�1 = −𝑙𝑃1ℎ(𝜏1/𝑙𝑃1)𝑢1 + 𝑙𝐸ℎ(𝜏1/𝑙𝐸)𝑣, |𝑢1| 6 𝜇1, |𝑢2| 6 𝜇2,

�̇�2 = −𝑙𝑃2ℎ(𝜏2/𝑙𝑃2)𝑢2 + 𝑙𝐸ℎ(𝜏2/𝑙𝐸)𝑣, |𝑣| 6 𝜈.
(2.4)

The payoff function is 𝜙
(︀
𝑥1(𝑇1), 𝑥2(𝑇2)

)︀
= min{|𝑥1(𝑇1)|, |𝑥2(𝑇2)|}.

The first player governs the controls 𝑢1, 𝑢2 and minimizes the payoff 𝜙; the
second one has the control 𝑣 and maximizes 𝜙.

Note that the control 𝑢1 (𝑢2) affects only the horizontal (vertical) component
�̇�1 (�̇�2) of the velocity vector �̇� = (�̇�1, �̇�2)

T. When 𝑇1 = 𝑇2, the second summand
in dynamics (2.4) is the same for �̇�1 and �̇�2. Thus, the component of the velocity
vector �̇� depending on the second player control is directed at any instant 𝑡 along
the bisectrix of the first and third quadrants of the plane 𝑥1, 𝑥2. When 𝑣 = +𝜈, the
angle between the axis 𝑥1 and the velocity vector of the second player is 45∘; when
𝑣 = −𝜈, the angle is 225∘. This property simplifies the dynamics in comparison
with the case 𝑇1 ̸= 𝑇2.

Let 𝑥 = (𝑥1, 𝑥2)
T and 𝑉 (𝑡, 𝑥) be the value of the value function of game (2.4)

at the position (𝑡, 𝑥). From general results of the differential game theory, it follows
that 𝒱(𝑡, 𝑧) = 𝑉

(︀
𝑡,𝑋(𝑡, 𝑧)

)︀
. This relation allows to compute the value function of

the original game (1.1)–(1.4) using the value function for game (2.4).
For any 𝑐 > 0, a level set (a Lebesgue set)𝑊𝑐 =

{︀
(𝑡, 𝑥) : 𝑉 (𝑡, 𝑥) 6 𝑐

}︀
of the value

function in game (2.4) can be treated as the solvability set for the considered game
with the result not greater than 𝑐, that is, for a differential game with dynamics (2.4)
and the terminal set 𝑀𝑐 =

{︀
(𝑡, 𝑥) : 𝑡 = 𝑇1, |𝑥1| 6 𝑐; 𝑡 = 𝑇2, |𝑥2| 6 𝑐

}︀
. When

𝑐 = 0, one has the situation of the exact capture. The exact capture means equality
to zero, at least, one of 𝑥1(𝑇1) and 𝑥2(𝑇2). Let 𝑊𝑐(𝑡) = {𝑥 : (𝑡, 𝑥) ∈ 𝑊𝑐} be the
time section (𝑡-section) of the set 𝑊𝑐 at the instant 𝑡. Similarly, let 𝑀𝑐(𝑡) for 𝑡 = 𝑇1
and 𝑡 = 𝑇2 be the 𝑡-section of the set 𝑀𝑐 at the instant 𝑡.

Comparing dynamics capabilities of each of pursuers 𝑃1 and 𝑃2 and the
evader 𝐸, one can introduce the parameters [8, 12] 𝜂𝑖 = 𝜇𝑖/𝜈, 𝜀𝑖 = 𝑙𝐸/𝑙𝑃𝑖 , 𝑖 = 1, 2.
They define the shape of the solvability sets in the individual games 𝑃1–𝐸 and 𝑃2–𝐸.
Namely, depending on values of 𝜂𝑖 and 𝜂𝑖𝜀𝑖 (which are not equal 1 simultaneously),
there are 4 cases [12] of the solvability set evolution (see Fig. 1):

— expansion in the backward time (a strong pursuer);
— contraction in the backward time (a weak pursuer);
— expansion until some backward time instant and further contraction;
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Figure 1. Variants of the solvability set evolution in an individual game

— contraction until some backward time instant and further expansion (if the
solvability set still has not broken).

Respectively, given combinations of pursuers’ capabilities in individual games and
durations 𝑇1, 𝑇2 (equal/different), there are significant number of variants for the
problem with two pursuers and one evader.

The ideology of solving the game used by us is the following. Choose the pa-
rameters 𝜂𝑖, 𝜀𝑖, and also the instants 𝑇𝑖, 𝑖 = 1, 2; then, using some fine grid of
values of 𝑐, we compute level sets 𝑊𝑐 of the value function. After that, we can
build quasioptimal strategies of the first and second players. But in this paper, we
study only the level sets 𝑊𝑐 of the value function.

Nowadays, different workgroups suggested many algorithms for numeric solu-
tion of differential games of quite general type (see, for example, [2,4,9,13]). Prob-
lem (2.4) has the second order on the phase variable and can be rewritten as

�̇� = D1(𝑡)𝑢1 + D2(𝑡)𝑢2 + E (𝑡)𝑣, |𝑢1| 6 𝜇1, |𝑢2| 6 𝜇2, |𝑣| 6 𝜈. (2.5)

Here, 𝑥 = (𝑥1, 𝑥2)
T; vectors D1(𝑡), D2(𝑡), and E (𝑡) look like

D1(𝑡) =
(︀
−𝑙𝑃1ℎ((𝑇1 − 𝑡)/𝑙𝑃1)

T, 0
)︀
, D2(𝑡) =

(︀
0, −𝑙𝑃2ℎ((𝑇2 − 𝑡)/𝑙𝑃2)

)︀T
,

E (𝑡) =
(︀
𝑙𝐸ℎ((𝑇1 − 𝑡)/𝑙𝐸), 𝑙𝐸ℎ((𝑇2 − 𝑡)/𝑙𝐸)

)︀T
.

The control of the first player has two independent components 𝑢1 and 𝑢2. The
vector D1(𝑡) (D2(𝑡)) is directed along the horizontal (vertical) axis. The second
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player’s control 𝑣 is scalar. When 𝑇1 = 𝑇2, the angle between the axis 𝑥1 and the
vector E (𝑡) equals 45∘; when 𝑇1 ̸= 𝑇2, the angle changes in time.

Due to peculiarity of our problem, we use special methods for constructing level
sets of the value function.

3 Maximal Stable Bridge: Control with Discrimination

A level set 𝑊𝑐 of the value function 𝑉 is a maximal stable bridge (MSB), breaking
on the terminal set 𝑀𝑐 [6, 7].

Let 𝑇1 = 𝑇2. Denote 𝑇𝑓 = 𝑇1. Using the concept of MSB from [6, 7], we
can say that 𝑊𝑐 is the set maximal by inclusion in the space 𝑡 6 𝑇𝑓 , 𝑥 such that
𝑊𝑐(𝑇𝑓 ) = 𝑀𝑐(𝑇𝑓 ) and the stability property is hold: for any position (𝑡*, 𝑥*) ∈
𝑊𝑐(𝑡*), 𝑡* < 𝑇𝑓 , any instant 𝑡* > 𝑡*, 𝑡* 6 𝑇𝑓 , any constant control 𝑣 of the
second player, which obeys the constraint |𝑣| 6 𝜈, there is a measurable control
𝑡 →

(︀
𝑢1(𝑡), 𝑢2(𝑡)

)︀
of the first player, 𝑡 ∈ [𝑡*, 𝑡

*), |𝑢1(𝑡)| 6 𝜇1, |𝑢2(𝑡)| 6 𝜇2, guiding
system (2.4) from the state 𝑥* to the set 𝑊𝑐(𝑡

*) at the instant 𝑡*.
The stability property assumes a discrimination of the second player by the first

one: the choice of the first player’s control in the interval [𝑡*, 𝑡*) is made after the
second player announces his control in this interval.

It is known (see [6,7]) that any MSB is close. The set 𝑊 (2)
𝑐 (𝑡) = cl

(︀
𝑅2 ∖𝑊𝑐(𝑡)

)︀
(the symbol cl denotes the operation of closure) is the time section of MSB 𝑊

(2)
𝑐

for the second player at the instant 𝑡. The bridge terminates at the instant 𝑇𝑓
on the set 𝑀 (2)

𝑐 (𝑇𝑓 ) = cl
(︀
𝑅2 ∖𝑀𝑐(𝑇𝑓 )

)︀
. If the initial position of system (2.4) is

in 𝑊
(2)
𝑐 and if the first player is discriminated by the second one, then the second

player is able to guide the motion to the set 𝑀 (2)
𝑐 (𝑇𝑓 ) at the instant 𝑇𝑓 . Thus,

𝜕𝑊𝑐 = 𝜕𝑊
(2)
𝑐 . It is proved that for any initial position (𝑡0, 𝑥0) ∈ 𝜕𝑊𝑐, the value

𝑐 is the best guaranteed result for the first (second) player in the class of feedback
controls.

Due to symmetry of dynamics (2.4) and the set 𝑊𝑐(𝑇𝑓 ) with respect to the
origin, one gets that for any 𝑡 6 𝑇𝑓 the time section 𝑊𝑐(𝑡) is symmetric also.

If 𝑇1 ̸= 𝑇2, then there is no any appreciable complication in constructing MSBs
for the problem considered in this paper in comparison with the case 𝑇1 = 𝑇2.
Indeed, let 𝑇1 > 𝑇2. Then in the interval (𝑇2, 𝑇1] in (2.4), we take into account
only the dynamics of the variable 𝑥1 when building the bridge 𝑊𝑐 backwardly
from the instant 𝑇1. With that, the terminal set at the instant 𝑇1 is taken as
𝑀𝑐(𝑇1) = {(𝑥1, 𝑥2) : |𝑥1| 6 𝑐}. When the constructions are made up to the
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instant 𝑇2, we add the set 𝑀𝑐(𝑇2), that is, we take

𝑊𝑐(𝑇2) =𝑊𝑐(𝑇2 + 0)
⋃︁{︀

(𝑥1, 𝑥2) : |𝑥2| 6 𝑐
}︀
,

and further constructions are made on the basis of this set.

So, our tool for finding a level set of the value function in game (2.4) corre-
sponding to a number 𝑐 is the backward procedure for constructing a MSB with the
terminal set 𝑀𝑐. Presence of an idealized element (the discrimination of the oppo-
nent) allowed us to create effective numerical methods for backward construction
of MSBs.

The solvability set with the index equal to 𝑐 in the individual game 𝑃1–𝐸
(𝑃2–𝐸) is MSB built in the coordinates 𝑡, 𝑥1 (𝑡, 𝑥2) and terminating at the in-
stant 𝑇1 (𝑇2) on the set |𝑥1| 6 𝑐 (|𝑥2| 6 𝑐). Its 𝑡-section, if it is non-empty, is a
segment in the axis 𝑥1 (𝑥2) symmetric with respect to the origin. In the plane 𝑥1,
𝑥2, this segment corresponds to a vertical (horizontal) strip of the same width near
the axis 𝑥2 (𝑥1). It is evident that when 𝑡 6 𝑇1 (𝑡 6 𝑇2) such a strip is contained
in the section 𝑊𝑐(𝑡) of MSB 𝑊𝑐 of game (2.4) with the terminal set 𝑀𝑐.

Figure 2. Two strong pursuers, equal
terminal instants: time sections of the

maximal stable bridge 𝑊0

Figure 3. Two strong pursuers, different
terminal instants: time sections of the

maximal stable bridge 𝑊0
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4 Results of Numerical Constructions

Case of strong pursuers. In the case of two strong pursuers, the 𝑡-sections of
MSBs in individual games 𝑃1–𝐸 and 𝑃2–𝐸 grow with increasing of the backward
time. This gives that for any 𝑐 > 0 and any 𝑡 6 𝑡 = min{𝑇1, 𝑇2} the set 𝑊𝑐(𝑡)
includes a cross near the axes 𝑥1, 𝑥2, which expands with decreasing 𝑡.

Let us give results of constructing 𝑡-sections 𝑊𝑐(𝑡) for the following values of
the game parameters: 𝜇1 = 2, 𝜇2 = 3, 𝜈 = 1, 𝑙𝑃1 = 1/2, 𝑙𝑃2 = 1/0.857, 𝑙𝐸 = 1.

Equal terminal instants. Let 𝑇1 = 𝑇2 = 6. Fig. 2 shows results of constructing the
set 𝑊0 (that is, with 𝑐 = 0). In the figure, one can see several time sections 𝑊0(𝑡) of
this set. The bridge has a quite simple structure. At the initial instant 𝜏 = 0 of the
backward time (when 𝑡 = 6), its section coincides with the target set, which is the
union of two coordinate axes. Further, at the instants 𝑡 = 4, 2, 0, the cross thickens,
and two triangles are added to it. The widths of the vertical and horizontal parts
of the cross correspond to sizes of MSBs in the individual games with the first and
second pursuers. These triangles are located in the II and IV quadrants (where
the signs of 𝑥1 and 𝑥2 are different, in other words, when the evader is between
the pursuers). They give the zone where the exact capture is possible only under
collective actions of both pursuers.

Time sections 𝑊𝑐(𝑡) of other bridges 𝑊𝑐, 𝑐 > 0, have a shape similar to 𝑊0(𝑡).

Different terminal instants. Let 𝑇1 = 7, 𝑇2 = 5. Results of constructing the set 𝑊0

are given in Fig. 3. When 𝑡 < 5, time sections 𝑊0(𝑡) grow both horizontally and
vertically; two additional triangles appear, but in this case they are curvilinear. In
Fig. 4, the set 𝑊0 is shown in the three-dimensional space 𝑡, 𝑥1, 𝑥2.

Figure 4. Strong pursuers, different terminal instants: 3D-view of the set 𝑊0
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The given results are typical for the case of strong pursuers. When 𝑇1 = 𝑇2,
the sets 𝑊𝑐(𝑡) can be described analytically. This was done in paper [8]. Also,
there the case 𝑇1 ̸= 𝑇2 was studied. But for it, only an upper approximation of the
sets 𝑊𝑐(𝑡) was obtained.

Case of weak pursuers. Since in the case of weak pursuers the 𝑡-sections of
MSBs in individual games 𝑃1–𝐸 and 𝑃2–𝐸 contract with growth of the backward
time and become empty at some instant, the set 𝑊𝑐(𝑡) for any 𝑐 > 0 with decreasing
of 𝑡 loses infinite sizes along axes 𝑥1 and 𝑥2.

The most surprising fact discovered during the numerical study was that the
connected set 𝑊𝑐(𝑡) with decreasing of 𝑡 loses connectedness and disjoins into two
separate parts.

Take the parameters 𝜇1 = 0.9, 𝜇2 = 0.8, 𝜈 = 1, 𝑙𝑃1 = 𝑙𝑃2 = 1/0.7, 𝑙𝐸 = 1. Let
us show results for the case of different terminal instants only: 𝑇1 = 9, 𝑇2 = 7.
Since in this variant the evader is more maneuverable than the pursuers, the first
player cannot guarantee the exact capture.

The set 𝑊𝑐 in the space 𝑡, 𝑥1, 𝑥2 for 𝑐 = 2.0 is shown in Fig. 5. During evolution
of the sections 𝑊2.0(𝑡) in 𝑡, they change their structure at some instants. These
places are marked by drops in the constructed surface of the set.

Figure 5. Two weak pursuers, different terminal instants: 3D-view of the set 𝑊2.0

One strong and one weak pursuers. Let us take the following parameters:
𝜇1 = 2, 𝜇2 = 1, 𝜈 = 1, 𝑙𝑃1 = 1/2, 𝑙𝑃2 = 1/0.3, 𝑙𝐸 = 1. Now the evader is more
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maneuverable than the second pursuer, and an exact capture by this pursuer is
unavailable. Assume 𝑇1 = 5, 𝑇2 = 7.

In Fig. 6, a three-dimensional view of MSB 𝑊5.0 is shown. The horizontal
part of its time section 𝑊5.0(𝑡) contracts with decreasing of 𝜏 , and breaks further.
The vertical part grows. After breaking the individual MSB 𝑃2–𝐸 (and respective
collapse of the horizontal part of the cross), there is the vertical strip only with two
additional parts determined by the joint actions of both pursuers.

Figure 6. One strong and one weak pursuers, different termination instants: 3D-view of
the set 𝑊5.0

Varying advantage of pursuers. Consider a variant when both pursuers 𝑃1

and 𝑃2 are equal, with that at the beginning of the backward time, the bridges in
the individual games contract and further expand. Choose the game parameters
in such a way that for some 𝑐 the section 𝑊𝑐(𝑡) of MSB 𝑊𝑐 with decreasing of 𝑡
disjoins into two parts, which join back with further decreasing of 𝑡.

Parameters of the game are 𝜇1 = 𝜇2 = 1.1, 𝜈 = 1, 𝑙𝑃1 = 𝑙𝑃2 = 1/0.6, 𝑙𝐸 = 1.
Termination instants are equal: 𝑇1 = 𝑇2 = 20.

A three-dimensional view of MSB 𝑊0.526 is shown in Fig. 7.
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Figure 7. Varying advantage of the pursuers, equal termination instants: 3D-view of the
maximal stable bridge 𝑊0.526

5 Conclusion

The paper deals with numerical investigation of a differential game with two pur-
suers and one evader. With the help of the standard change of variables, the prob-
lem is reduced to a two-dimensional antagonistic game. The difficulty of solution
is connected to non-convexity of the terminal payoff function. For typical variants
of the game parameters, an analysis of the level sets (Lebesgue sets) of the value
function is done. Three-dimensional views of the level sets are given.

References

1. A. I. Blagodatskih, N. N. Petrov. Conflict Interaction Controlled Objects
Groups. Udmurt State University, Izhevsk, Russia, 2009. 266 pages. (in Russian)

2. P. Cardaliaguet, M. Quincampoix, P. Saint-Pierre. Set-valued numerical analy-
sis for optimal control and differential games. Annals of ISDG, Vol. 4: Stochas-
tic and Differential Games — Theory and Numerical Methods, M. Bardi, T. E.
Raghavan, T. Parthasarathy (Eds.), Birkhauser, Boston, 1999. Pp. 177–247.

3. A. A. Chikrii. Conflict-Controlled Processes. Mathematics and its Applications,
vol. 405. Kluwer Academic Publishers Group, Dordrecht, 1997. 424 pages.

4. E. Cristiani, M. Falcone. Fully-discrete schemes for the value function of
pursuit-evasion games with state constraints. Annals of ISDG, Vol. 10: Advances



184 The 8th Congress of the ISAAC — 2011

in Dynamic Games and Applications, P. Bernhard, V. Gaitsgory, O. Pourtallier
(eds.), Birkhauser, Boston, 2009. Pp. 177–206.

5. N. L. Grigorenko. The problem of pursuit by several objects. Differential games —
developments in modelling and computation (Espoo, 1990), Lecture Notes in
Control and Inform. Sci., vol. 156, Springer, Berlin, 1991. Pp. 71–80.

6. N. N. Krasovskii, A. I. Subbotin. Positional Differential Games. Nauka,
Moscow, 1974. 456 pages. (in Russian)

7. N. N. Krasovskii, A. I. Subbotin. Game-Theoretical Control Problems. Sprin-
ger-Verlag, New York, 1988. 518 pages.
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Abstract. In this paper we continue investigations started in [6] concerning the
extension of the variational Strong Maximum Principle for lagrangeans depending
on the gradient through a Minkowski gauge. We essentially enlarge the class of
comparison functions, which substitute the identical zero when the lagrangean is
not longer strictly convex at the origin.

1 Introduction

The Strong Maximum Principle, a well known property of the elliptic partial dif-
ferential equations (see, e.g., [5,8] and the bibliography therein), can be formulated
in the variational setting as was done by A. Cellina in 2002. Extending the main
result of his work [3] we consider the integral functional∫︁

Ω

𝑓 (𝜌𝐹 (∇𝑢 (𝑥))) 𝑑𝑥, (1.1)

where Ω ⊂ R𝑛 is an open bounded connected domain; 𝑓 : R+ → R+ ∪ {+∞},
𝑓 (0) = 0, is a lower semicontinuous convex function; 𝐹 ⊂ R𝑛 is a convex closed
bounded set with 0 ∈ int𝐹 (interior of 𝐹 ), and 𝜌𝐹 (·) is the Minkowski functional
(guage function) associated to 𝐹 ,

𝜌𝐹 (𝜉) := inf {𝜆 > 0 : 𝜉 ∈ 𝜆𝐹} . (1.2)

In the traditional sense the Strong Maximum Principle (SMP) for Eq. (1.1)
means that there is no a nonconstant continuous minimizer of this functional on

The research is fulfilled in the framework of the Project “Variational Analysis: Theory
and Applications”, PTDC/MAT/111809/2009 financially supported by the portugues institutions
FCT, COMPETE, QREN and the European Regional Development Fund (FEDER)..
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𝑢0 (·) +𝑊 1,1
0 (Ω) (with some Sobolev function 𝑢0 (·)), admitting its minimal (max-

imal) value in Ω. In the case of a rotationally invariant lagrangean (𝜌𝐹 (𝜉) = ‖𝜉‖)
and 𝑛 > 1 it was proved in [3] that this property is valid if and only if the function
𝑓 (·) is strictly convex and smooth at the origin, or, in other words, if the equalities

𝜕𝑓* (0) = {0} (1.3)

and
𝜕𝑓 (0) = {0} (1.4)

hold. Here, as usual, 𝜕𝑓 stands for the subdifferential of the function 𝑓 (·) in the
sense of Convex Analysis, and 𝑓* (·) is the Legendre-Fenchel tranform (conjugate) of
𝑓 (·). Observe that in the case 𝑛 = 1 the smoothness of 𝑓 (·) at zero (the condition
Eq. (1.4)) is not necessary, and for validity of the SMP one needs to set only the
assumption Eq. (1.3) unless the function 𝑓 (·) is not affine near the origin.

In [6] we proved that under the same hypotheses on 𝑓 (·) the Strong Maximum
Principle remains valid for a general functional Eq. (1.1), where the gauge 𝐹 is
not assumed to be either rotund or smooth or symmetric. Furthermore, we tried
to extend the SMP to the case when the condition Eq. (1.3) fails.

Since the SMP equivalently can be reformulated as a comparison property:

if a continuous nonnegative (nonpositive)
minimizer 𝑢 (·) of the functional (1.1) on

𝑢0 (·) +𝑊 1,1
0 (Ω) touches zero at some point

𝑥* ∈ Ω then necessarily 𝑢 (𝑥) ≡ 0, (1.5)

it is obviously violated whenever the lagrangean is no longer strictly convex at the
origin (see also [2]). Nevertheless, we emphasized a class C of continuous functions,
which being themselves solutions of the variational problem can substitute in some
sense the identical zero in the property Eq. (1.5). These functions (further called
test, or comparison, functions) depend certainly on the subdifferential 𝜕𝑓* (0) and
reduce to the constants when 𝜕𝑓* (0) reduces to the singleton {0}. (In the place of
the null-function in Eq. (1.5), clearly, any constant can stand).
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In the case 𝜕𝑓* (0) ̸= {0} so extended Strong Maximum Principle for a test
function �̂� (·) ∈ C can be given as follows:

each continuous minimizer of (1.1) on

𝑢0 (·) +𝑊 1,1
0 (Ω) such that 𝑢 (𝑥) > �̂� (𝑥) (respectively,

𝑢 (𝑥) 6 �̂� (𝑥) ), 𝑥 ∈ Ω, having the same points
of local minimum (respectively, local maximum)
as �̂� (·) should coincide with �̂� (·) everywhere on Ω. (1.6)

Observe that all the functions �̂� (·) ∈ C are written in terms of the polar set 𝐹 0.
Namely, in the simplest case of unique local minimum (local maximum) point 𝑥0 ∈
Ω the functions �̂�+𝑥0,𝜇 (𝑥) := 𝜇 + 𝑎𝜌𝐹 0 (𝑥− 𝑥0) and �̂�−𝑥0,𝜇 (𝑥) := 𝜇 − 𝑎𝜌𝐹 0 (𝑥0 − 𝑥)
belong to C for each real 𝜇. Here 𝑎 := sup 𝜕𝑓* (0).

If instead 𝜕𝑓* (0) = {0} (equivalently, 𝑎 = 0) then we can take 𝑥0 = 𝑥* where
𝑥* is an arbitrary “floating” point from Ω (see Eq. (1.5)), and we arrive at the
traditional SMP although the property Eq. (1.6) is not formally applicable.

In [6] also a “multipoint” version of the Strong Maximum Principle was estab-
lished when the comparison function �̂� (·) is the lower (upper) envelope of a finite
number of the functions �̂�+𝑥0,𝜇 (·) (respectively, �̂�−𝑥0,𝜇 (·)) for various 𝑥0 ∈ Ω and
𝜇 ∈ R. Notice that Eq. (1.6) takes place only for convex domains Ω ⊂ R𝑛 (or, at
least, under a kind of star-shapeness hypothesis that can not be removed, see [6]).
Another restriction, under which validity of the property Eq. (1.6) was proved, is
smoothness of the gauge function 𝜌𝐹 (·), or, equivalently, rotundity of the polar set
𝐹 0. In fact, one of the tools we use in the proofs is so named modulus of rotundity

M𝐹 0 (𝑟;𝛼, 𝛽) := inf {1− 𝜌𝐹 0 (𝜉 + 𝜆 (𝜂 − 𝜉)) :

𝜉, 𝜂 ∈ 𝜕𝐹 0, 𝜌𝐹 0 (𝜉 − 𝜂) > 𝑟, 𝛼 6 𝜆 6 𝛽
}︀

, (1.7)

which is strictly positive for all 𝑟 > 0 and all 0 < 𝛼 6 𝛽 < 1 whenever 𝐹 0 is rotund.

In this paper we essentially enlarge the class C envolving the infinite (continuous)
envelopes of the functions �̂�±𝑥0,𝜇 (·) by such a way that the generalized SMP gets an
unique extremal extension principle and unifies both properties Eq. (1.5) and Eq.
(1.6). Namely, given an arbitrary function 𝜗 (·) defined on a closed subset Γ ⊂ Ω
and satisfying a natural slope condition w.r.t. 𝐹 we prove in Section 3 that the
inf-convolution

𝑢+Γ,𝜗 (𝑥) := inf
𝑦∈Γ

{𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦)} (1.8)
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(respectively, the sup-convolution

𝑢−Γ,𝜗 (𝑥) := sup
𝑦∈Γ

{𝜗 (𝑦)− 𝑎𝜌𝐹 0 (𝑦 − 𝑥)} ) (1.9)

is the only continuous minimizer 𝑢 (·) of the functional Eq. (1.1) on 𝑢0 (·)+𝑊 1,1
0 (Ω)

such that 𝑢 (𝑥) = 𝜗 (𝑥) on Γ and 𝑢 (𝑥) > 𝑢+Γ,𝜗 (𝑥) (respectively, 𝑢 (𝑥) 6 𝑢−Γ,𝜗 (𝑥)),
𝑥 ∈ Ω. The domain Ω is always assumed to be convex.

2 Preliminaries. Auxiliary statements

In what follows we assume that 𝑎 := sup 𝜕𝑓* (0) > 0, and so the second Cellina’s
hypothesis Eq. (1.4) is automatically fulfilled. Furthermore, we introduce the
nondecreasing upper semicontinuous function 𝜙 (𝑡) := sup 𝜕𝑓* (𝑡) . So 𝜙 (0) = 𝑎
and 𝜙 (𝑡) < +∞ on the interior of the domain dom𝑓* := {𝑡 ∈ R+ : 𝑓* (𝑡) < +∞} .
The version of SMP we wish to prove is essentially based on the following a priori
local estimates of continuous minimizers of Eq. (1.1) obtained in [6] by using the
dual properties of convex sets (see, e.g., [9] or [7])) being themselves an interesting
result of Convex Analysis.

Theorem 1. Given an open bounded region Ω ⊂ R𝑛, 𝑛 > 1, and a continuous
admissible minimizer �̄� (·) of the functional Eq. (1.1) on 𝑢0 (·) +𝑊 1,1

0 (Ω), assume
a point �̄� ∈ Ω and real numbers 𝛽 > 0 and 𝜇 to be such that �̄� (𝑥) > 𝜇 ∀𝑥 ∈
�̄�− 𝛽𝐹 0 ⊂ Ω and �̄� (�̄�) > 𝜇+ 𝑎𝛽. Then for some 𝜂 > 0 the inequality

�̄� (𝑥) > 𝜇+ 𝜙 (𝜂) (𝛽 − 𝜌𝐹 0 (�̄�− 𝑥)) (2.1)

holds for all 𝑥 ∈ �̄�− 𝛽𝐹 0.
Simmetrically, if a point �̄� ∈ Ω and numbers 𝛽 > 0 and 𝜇 are such that

�̄� (𝑥) 6 𝜇 ∀𝑥 ∈ �̄�+ 𝛽𝐹 0 ⊂ Ω

and �̄� (�̄�) < 𝜇− 𝑎𝛽, then there exists 𝜂 > 0 such that

�̄� (𝑥) 6 𝜇− 𝜙 (𝜂) (𝛽 − 𝜌𝐹 0 (𝑥− �̄�)) (2.2)

for all 𝑥 ∈ �̄�+ 𝛽𝐹 0.

Roughly speaking, the statement above means that for each continuous admis-
sible minimizer �̄� (·) of Eq. (1.1) and for each point �̄� ∈ Ω, which is not local
extremum for �̄� (·), the deviation of �̄� (·) from the extremal level can be controlled
near �̄� by an affine transformation of the dual Minkowski gauge (see Eq. (2.1) and
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Eq. (2.2)). Recall that admissible minimizers are those, which give finite values to
the functional Eq. (1.1).

In the case 𝑎 > 0 (it is our standing assumption along with the paper) we have
the following simple consequence of this theorem.

Corollary 1. Given Ω ⊂ R𝑛, 𝑛 > 1, and �̄� (·) as in Theorem 1 let us assume
that for some 𝑥0 ∈ Ω and 𝛿 > 0

�̄� (𝑥) > �̄� (𝑥0) + 𝑎𝜌𝐹 0 (𝑥− 𝑥0) ∀𝑥 ∈ 𝑥0 + 𝛿𝐹 0 ⊂ Ω. (2.3)

Then
�̄� (𝑥) = �̄� (𝑥0) + 𝑎𝜌𝐹 0 (𝑥− 𝑥0) ∀𝑥 ∈ 𝑥0 +

𝛿

‖𝐹‖ ‖𝐹 0‖+ 1
𝐹 0.

Similarly, if in the place of Eq. (2.3)

�̄� (𝑥) 6 �̄� (𝑥0)− 𝑎𝜌𝐹 0 (𝑥0 − 𝑥) ∀𝑥 ∈ 𝑥0 − 𝛿𝐹 0 ⊂ Ω (2.4)

then
�̄� (𝑥) = �̄� (𝑥0)− 𝑎𝜌𝐹 0 (𝑥0 − 𝑥) ∀𝑥 ∈ 𝑥0 −

𝛿

‖𝐹‖ ‖𝐹 0‖+ 1
𝐹 0.

Here ‖𝐹‖ := sup {‖𝜉‖ : 𝜉 ∈ 𝐹} .

As the standing hypotheses in what follows we assume that 𝐹 ⊂ R𝑛 is a convex
closed bounded set, 0 ∈ int𝐹 , with the smooth boundary (the latter means that
the Minkowski functional 𝜌𝐹 (𝜉) is Fréchet differentiable at each 𝜉 ̸= 0), and that
Ω ⊂ R𝑛 is an open convex bounded region.

Let us consider an arbitrary nonempty closed subset Γ ⊂ Ω and a function
𝜗 : Γ → R satisfying the slope condition:

𝜗 (𝑥)− 𝜗 (𝑦) 6 𝑎𝜎𝐹 (𝑥− 𝑦) ∀𝑥, 𝑦 ∈ Γ, (2.5)

where
𝜎𝐹 (𝜉) := sup

𝑣∈𝐹
⟨𝑣, 𝜉⟩

is the support function of 𝐹 (⟨·, ·⟩ is the inner product in R𝑛). It is well known that

—
(︀
𝐹 0
)︀0

= 𝐹 ;
— 𝜎𝐹 (𝜉) = 𝜌𝐹 0 (𝜉) whenever 𝜉 ∈ 𝐹 0;
— the polar set 𝐹 0 is rotund (see Section 1).



190 The 8th Congress of the ISAAC — 2011

We will use also the following property of the gauge function:

1

‖𝐹‖
‖𝜉‖ 6 𝜌𝐹 (𝜉) 6

⃦⃦
𝐹 0
⃦⃦
‖𝜉‖ , 𝜉 ∈ R𝑛. (2.6)

Let us define now inf- and sup-convolutions of 𝜗 (·) with the gauge function
𝑎𝜌𝐹 0 (·) by the formulas Eq. (1.8) and Eq. (1.9). We observe first that the function
𝑢±Γ,𝜗 (·) is the minimizer of Eq. (1.1) on 𝑢±Γ,𝜗 (·) + 𝑊 1,1

0 (Ω). Indeed, it is obvi-
ously Lipschitz continuous on Ω, and for its (classical) gradient ∇𝑢±Γ,𝜗 existing by
Rademacher’s theorem we have that

∇𝑢±Γ,𝜗 (𝑥) ∈ 𝜕𝑐𝑢±Γ,𝜗 (𝑥) ⊂ 𝑎𝐹

for a.e. 𝑥 ∈ Ω (see [4, Theorem 2.8.6]). Here 𝜕𝑐 stands for the Clarke’s subdiffer-
ential of a (locally) Lipschitzean function. Consequently, 𝑓

(︁
𝜌𝐹

(︁
∇𝑢±Γ,𝜗 (𝑥)

)︁)︁
= 0

a.e. on Ω, and the function 𝑢±Γ,𝜗 (·) gives to Eq. (1.1) the minimal possible value
zero. Due to the slope condition Eq. (2.5) it follows also that 𝑢±Γ,𝜗 (𝑥) = 𝜗 (𝑥) for all
𝑥 ∈ Γ. Moreover, 𝑢±Γ,𝜗 (·) is the (unique) viscosity solution of the Hamilton-Jacobi
equation

± (𝜌𝐹 (∇𝑢 (𝑥))− 𝑎) = 0, 𝑢 |Γ = 𝜗,

(see, e.g., [1]).
Notice that Γ can be a finite set, say {𝑥1, 𝑥2, ..., 𝑥𝑚}, in which case 𝜗 (·) as-

sociates to each 𝑥𝑖 a real number 𝜗𝑖, 𝑖 = 1, ...,𝑚, and the condition Eq. (2.5)
slightly strengthened (by assuming that the inequality in Eq. (2.5) is strict for
𝑥𝑖 ̸= 𝑥𝑗) means that all the simplest test functions 𝜗𝑖+ 𝑎𝜌𝐹 0 (𝑥− 𝑥𝑖) (respectively,
𝜗𝑖 − 𝑎𝜌𝐹 0 (𝑥𝑖 − 𝑥)) are essential (not superfluous) in constructing of the respective
lower or upper envelope. Then the extremal property established below is reduced
to the extended SMP Eq. (1.6) (see [6, Theorem 6]).

On the other hand, if 𝜗 (·) is a Lipschitz continuous function defined on a closed
convex set Γ ⊂ Ω with nonempty interior then Eq. (2.5) holds iff ∇𝜗 (𝑥) ∈ 𝑎𝐹 for
almost each (a.e.) 𝑥 ∈ Γ. This immediately follows from Lebourg’s mean value
theorem (see [4, p. 41]) recalling the properties of the Clarke’s subdifferential and
from the separability theorem.

Certainly, the mixed (discrete and continuous) case can be considered as well,
and all the situations are unified by the hypothesis Eq. (2.5).

In the particular case 𝜗 ≡ 0 (Eq. (2.5) is trivially fulfilled) the function 𝑢+Γ,𝜗 (𝑥)
is nothing else than the minimal time necessary to achieve the closed set Γ from the
point 𝑥 ∈ Ω by trajectories of the differential inclusion with the constant convex
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right-hand side
−𝑎�̇� (𝑡) ∈ 𝐹 0, (2.7)

while −𝑢−Γ,𝜗 (𝑥) is, contrarily, the minimal time, for which trajectories of Eq. (2.7)
arrive at 𝑥 starting from a point of Γ. Furthermore, if 𝐹 = 𝐵 is the closed unit ball
centred at the origin then the gauge function 𝜌𝐹 0 (·) is the euclidean norm in R𝑛,
and we have 𝑢±Γ,𝜗 (𝑥) = ±𝑎𝑑Γ (𝑥) where 𝑑Γ (·) means the distance from a point to
the set Γ.

3 Generalized Strong Maximum Principle

Now we are ready to deduce the extremal property of the functions 𝑢±Γ,𝜗 (·) an-
nounced above.

Theorem 2. Under all the standing hypotheses formulated in the previous sec-
tion let us assume that a continuous admissible minimizer �̄� (·) of the functional
Eq. (1.1) on 𝑢0 (·) +𝑊 1,1

0 (Ω) is such that

(i) �̄� (𝑥) = 𝑢+Γ,𝜗 (𝑥) = 𝜗 (𝑥) ∀𝑥 ∈ Γ;
(ii) �̄� (𝑥) > 𝑢+Γ,𝜗 (𝑥) ∀𝑥 ∈ Ω.

Then �̄� (𝑥) ≡ 𝑢+Γ,𝜗 (𝑥) on Ω.
Simmetrically, if a continuous admissible minimizer �̄� (·) satisfies the conditions

(i)′ �̄� (𝑥) = 𝑢−Γ,𝜗 (𝑥) = 𝜗 (𝑥) ∀𝑥 ∈ Γ;
(ii)′ �̄� (𝑥) 6 𝑢−Γ,𝜗 (𝑥) ∀𝑥 ∈ Ω,

then �̄� (𝑥) ≡ 𝑢−Γ,𝜗 (𝑥) on Ω.

Proof. Let us prove the first part of Theorem only since the respective change-
ments in the symmetric case are obvious.

Given a continuous admissible minimizer �̄� (·) satisfying the conditions (i) and
(ii) we suppose, on the contrary, that there exists 𝑥 ∈ Ω ∖ Γ with �̄� (𝑥) > 𝑢+Γ,𝜗 (𝑥).
Notice first that without loss of generality one can assume that the latter (strict)
inequality holds for all 𝑥 ∈ Ω ∖ Γ ̸= ∅.

Indeed, denoting by Γ+ :=
{︁
𝑥 ∈ Ω : �̄� (𝑥) = 𝑢+Γ,𝜗 (𝑥)

}︁
we claim that

𝑢+Γ,𝜗 (𝑥) = inf
𝑦∈Γ+

{�̄� (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦)} (3.1)

for each 𝑥 ∈ Ω. Since Γ+ ⊃ Γ and �̄� (𝑦) = 𝜗 (𝑦), 𝑦 ∈ Γ, the inequality “>” in Eq.
(3.1) is obvious. On the other hand, given 𝑥 ∈ Ω let us take an arbitrary 𝑦 ∈ Γ+.
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Then due to the compactness of Γ we find 𝑦* ∈ Γ such that

�̄� (𝑦) = 𝜗 (𝑦*) + 𝑎𝜌𝐹 0 (𝑦 − 𝑦*) , (3.2)

and by the triangle inequality

�̄� (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦) > 𝜗 (𝑦*) + 𝑎𝜌𝐹 0 (𝑥− 𝑦*) > 𝑢+Γ,𝜗 (𝑥) . (3.3)

Passing to infimum in Eq. (3.3) we prove the inequality “6” in Eq. (3.1) as well.
Furthermore, for arbitrary 𝑥, 𝑦 ∈ Γ+ and for 𝑦* ∈ Γ satisfying Eq. (3.2) we have

�̄� (𝑥)− �̄� (𝑦) = 𝑢+Γ,𝜗 (𝑥)− 𝑢+Γ,𝜗 (𝑦) 6 𝑎𝜎𝐹 (𝑥− 𝑦) . (3.4)

Hence, we can extend the function 𝜗 : Γ → R onto the (closed) set Γ+ ⊂ Ω by
setting 𝜗 (𝑥) = �̄� (𝑥) , 𝑥 ∈ Γ+, and all the conditions remain valid (see Eq. (3.4)
and Eq. (3.1)).

Notice that the convex hull 𝐾 := coΓ is the compact set contained in Ω (due
to the convexity hypothesis). Let us choose now 𝜀 > 0 such that 𝐾 ± 𝜀𝐹 0 ⊂ Ω and
denote by

𝛿 := 2𝜀M𝐹 0

(︂
2𝜀

Δ
;

𝜀

𝜀+Δ
,

Δ

𝜀+Δ

)︂
> 0,

where M𝐹 0 is the modulus of rotundity associated to 𝐹 0 (see Eq. (1.7)) and

Δ := sup
𝜉,𝜂∈Ω

𝜌𝐹 0 (𝜉 − 𝜂)

is the 𝜌𝐹 0-diameter of the region Ω. Similarly as in [6] (see Step 1 of the proof of
Theorem 5) we show that

𝜌𝐹 0 (𝑦1 − 𝑥) + 𝜌𝐹 0 (𝑥− 𝑦2)− 𝜌𝐹 0 (𝑦1 − 𝑦2) > 𝛿 (3.5)

whenever 𝑦1, 𝑦2 ∈ Γ and 𝑥 ∈ Ω ∖
[︀(︀
𝐾 + 𝜀𝐹 0

)︀
∪
(︀
𝐾 − 𝜀𝐹 0

)︀]︀
. Indeed, we obviously

have 𝜀 6 𝜌1 := 𝜌𝐹 0 (𝑦1 − 𝑥) 6 Δ and 𝜀 6 𝜌2 := 𝜌𝐹 0 (𝑥− 𝑦2) 6 Δ, and, conse-
quently,

𝜆 :=
𝜌2

𝜌1 + 𝜌2
∈
[︂

𝜀

𝜀+Δ
,

Δ

𝜀+Δ

]︂
. (3.6)

Setting 𝜉1 := (𝑦1 − 𝑥) /𝜌1 and 𝜉2 := (𝑥− 𝑦2) /𝜌2 we can write

𝜉1 − 𝜉2 = (1/𝜌1 + 1/𝜌2) ((𝜌2/ (𝜌1 + 𝜌2)) 𝑦1 + (𝜌1/ (𝜌1 + 𝜌2)) 𝑦2 − 𝑥) ,



An Extremal Property of the inf- and sup-Convolutions Regarding . . . 193

and hence
𝜌𝐹 0 (𝜉1 − 𝜉2) > (1/𝜌1 + 1/𝜌2) 𝜀 > 2𝜀/Δ. (3.7)

On the other hand,

𝜌𝐹 0 (𝑦1 − 𝑥) + 𝜌𝐹 0 (𝑥− 𝑦2)− 𝜌𝐹 0 (𝑦1 − 𝑦2)

= (𝜌1 + 𝜌2) [1− 𝜌𝐹 0 (𝜌1/ (𝜌1 + 𝜌2) 𝜉1 + 𝜌2/ (𝜌1 + 𝜌2) 𝜉2)] >

> 2𝜀 [1− 𝜌𝐹 0 (𝜉1 + 𝜆 (𝜉2 − 𝜉1))] . (3.8)

Combining Eq. (3.6) - Eq. (3.8) and the definition of the rotundity modulus (1.7)
we arrive at Eq. (3.5).

Let us fix �̄� ∈ Ω ∖ Γ and 𝑦 ∈ Γ such that

𝑢+Γ,𝜗 (�̄�) = 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (�̄�− 𝑦) .

Then by Lemma 1 [6] the point 𝑦 is also a minimizer on Γ of the function 𝑦 ↦→
𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥𝜆 − 𝑦) where 𝑥𝜆 := 𝜆�̄�+ (1− 𝜆) 𝑦, 𝜆 ∈ [0, 1], i.e.,

𝑢+Γ,𝜗 (𝑥𝜆) = 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥𝜆 − 𝑦) . (3.9)

Define now the Lipschitz continuous function

𝑣 (𝑥) := max {�̄� (𝑥) ,min {𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦) , 𝜗 (𝑦) + 𝑎 (𝛿 − 𝜌𝐹 0 (𝑦 − 𝑥))}}
(3.10)

and claim that 𝑣 (·) minimizes the functional Eq. (1.1) on the set �̄� (·) +𝑊 1,1
0 (Ω).

In order to prove this we observe first that for each 𝑥 ∈ Ω, 𝑥 /∈ 𝐾 ± 𝜀𝐹 0, and for
each 𝑦 ∈ Γ by the slope condition Eq. (2.5) and by Eq. (3.5) the inequality

𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦)− 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑦 − 𝑥)

> 𝑎 (𝜌𝐹 0 (𝑦 − 𝑥) + 𝜌𝐹 0 (𝑥− 𝑦)− 𝜌𝐹 0 (𝑦 − 𝑦)) > 𝑎𝛿 (3.11)

holds. Passing to infimum in Eq. (3.11) for 𝑦 ∈ Γ and taking into account the basic
assumption (ii) we have

�̄� (𝑥) > inf
𝑦∈Γ

{𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦)} > 𝜗 (𝑦) + 𝑎 (𝛿 − 𝜌𝐹 0 (𝑦 − 𝑥)) ,

and, consequently, 𝑣 (𝑥) = �̄� (𝑥) ∀𝑥 ∈ Ω∖
[︀(︀
𝐾 + 𝜀𝐹 0

)︀
∪
(︀
𝐾 − 𝜀𝐹 0

)︀]︀
. In particular,

𝑣 (·) ∈ �̄� (·) +𝑊 1,1
0 (Ω). Furthermore, setting Ω′ := {𝑥 ∈ Ω : 𝑣 (𝑥) ̸= �̄� (𝑥)} by the

well known property of the support function we have ∇𝑣 (𝑥) ∈ 𝑎𝐹 for a.e. 𝑥 ∈ Ω′,
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while ∇𝑣 (𝑥) = ∇�̄� (𝑥) for a.e. 𝑥 ∈ Ω ∖ Ω′. Then∫︁
Ω

𝑓 (𝜌𝐹 (∇𝑣 (𝑥))) 𝑑𝑥 =

∫︁
Ω∖Ω′

𝑓 (𝜌𝐹 (∇�̄� (𝑥))) 𝑑𝑥

6
∫︁
Ω

𝑓 (𝜌𝐹 (∇�̄� (𝑥))) 𝑑𝑥 6
∫︁
Ω

𝑓 (𝜌𝐹 (∇𝑢 (𝑥))) 𝑑𝑥

for each 𝑢 (·) ∈ �̄� (·) +𝑊 1,1
0 (Ω).

Finally, setting 𝜇 := min
{︁
𝜀, 𝛿/

(︀
‖𝐹‖

⃦⃦
𝐹 0
⃦⃦
+ 1
)︀2}︁ we see that the minimizer

𝑣 (·) satisfies on 𝑦 + 𝜇
(︀
‖𝐹‖

⃦⃦
𝐹 0
⃦⃦
+ 1
)︀
𝐹 0 the inequality

𝑣 (𝑥) > 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦) . (3.12)

Indeed, it follows from Eq. (2.6) that

𝜌𝐹 0 (𝑥− 𝑦) + 𝜌𝐹 0 (𝑦 − 𝑥) 6 𝜇
(︀
‖𝐹‖

⃦⃦
𝐹 0
⃦⃦
+ 1
)︀2
6 𝛿

whenever 𝜌𝐹 0 (𝑥− 𝑦) 6 𝜇
(︀
‖𝐹‖

⃦⃦
𝐹 0
⃦⃦
+ 1
)︀
, implying that the minimum in Eq.

(3.10) is equal to 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦). Since, obviously, 𝑣 (𝑦) = 𝜗 (𝑦), applying
Corollary 1 we deduce from Eq. (3.12) that

𝑣 (𝑥) = 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦)

for all 𝑥 ∈ 𝑦 + 𝜇𝐹 0 ⊂ 𝐾 + 𝜀𝐹 0 ⊂ Ω. Comparing with Eq. (3.10), we have

�̄� (𝑥) 6 𝜗 (𝑦) + 𝑎𝜌𝐹 0 (𝑥− 𝑦) , 𝑥 ∈ 𝑦 + 𝜇𝐹 0. (3.13)

However, for some 𝜆0 ∈ [0, 1] the points 𝑥𝜆, 0 6 𝜆 6 𝜆0, belong to 𝑦 + 𝜇𝐹 0.
Combining with Eq. (3.13) and taking into account the equality Eq. (3.9) we
obtain

�̄� (𝑥𝜆) 6 𝑢
+
Γ,𝜗 (𝑥𝜆)

and hence (see the hypothesis (ii))

�̄� (𝑥𝜆) = 𝑢+Γ,𝜗 (𝑥𝜆) ,

0 6 𝜆 6 𝜆0. This is contradiction because the inequality in (ii) is strict outside the
set Γ. �



An Extremal Property of the inf- and sup-Convolutions Regarding . . . 195

References

1. P. Cardaliaguet, B. Dacorogna, W. Gangbo and N. Georgy, Geometric restric-
tions for the existence of viscosity solutions, Ann. Inst. Henri Poicaré 16, 1999,
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Abstract. The paper is related to Implicit Functions in Nonsmooth Analysis.
Recently Implicit Functions were treated by means of upper and lower exhausters
as new tools of Nonsmooth analysis. This notion appeared to be very useful for
solution of a number of other problems of nonsmooth analysis as well, including
research of nonsmooth implicit functions and nonsmooth equations set. Implicit
functions for continuous nondifferentiable functions have been studied by J.Warga,
for Lipschitz functions — by F.Clarke, V.Demyanov, A.Ioffe, for quasidifferentiable
functions — by V.Demyanov.

1 Introduction

Let 𝑓𝑖(𝑥, 𝑦) (𝑖 ∈ 1 : 𝑛) be continuous jointly in all variables on 𝑆 = 𝑆1 × 𝑆2 ⊂
R𝑚 × R𝑛, where 𝑆1 ⊂ R𝑚 and 𝑆2 ⊂ R𝑛 are open sets. Put 𝑓 = (𝑓1, . . . , 𝑓𝑛).

Consider the system 𝑓𝑖(𝑥, 𝑦) = 0 ∀ 𝑖 ∈ 1 : 𝑛.

In the nonsmooth case it makes sense to introduce a directional implicit function.
Fix a direction 𝑔 ∈ R𝑚, 𝑔 ̸= 0, and consider the system 𝑓𝑖(𝑥0+𝑔, 𝑦) = 0 ∀ 𝑖 ∈ 1 : 𝑛.

We say that there exists an implicit function in the direction 𝑔 if 𝛼0 > 0 and a
vector function 𝑦(𝛼) given on [0, 𝛼0] exists such that

𝑦(𝛼)
−→
𝛼↓0 𝑦0, 𝑓(𝑥0 + 𝛼𝑔, 𝑦(𝛼)) = 0𝑛 ∀𝛼 ∈ [0, 𝛼0].

2 Exhausters of the positively homogenious function

V. Demyanov (see [1]) introduced the notion of exhauster, which is helpful in solv-
ing various problems in nonsmooth analysis. It is useful to formulate necessary
and sufficient conditions of extremum, to find steepest descent (ascent) directions,
calculus of exhausters has been developed.
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Since every ℎ ∈ Λ* is a convex positively homogenious (p.h.) function then
there exists a unique convex compact set 𝐶(ℎ) ∈ R𝑛 such that

ℎ(𝑔) = max
𝑣∈𝐶(ℎ)

(𝑣, 𝑔) ∀ 𝑔 ∈ R𝑛.

Therefore (1) can be represented as ℎ(𝑔) = inf𝐶∈𝐸* max𝑣∈𝐶(𝑣, 𝑔) ∀ 𝑔 ∈ 𝒦,
where 𝐸* = {𝐶 ⊂ R𝑛 | 𝐶 = 𝐶(ℎ), ℎ ∈ Λ*}. Then the family of sets 𝐸* = 𝐸*(ℎ) is
called an upper exhauster of the function ℎ w.r. to the cone 𝒦.

Analogously, if ℎ is lower semicontinuous then there exists a family Λ* of lower
semicontinuous approximation’s (l.c.a.) satisfying (2). Since every ℎ ∈ Λ* is a
concave p.h. function, hence, there exists a unique convex compact set 𝐶(ℎ) ∈ R𝑛
such that

ℎ(𝑔) = min
𝑤∈𝐶(ℎ)

(𝑤, 𝑔) ∀ 𝑔 ∈ R𝑛.

Therefore (2) can be represented as ℎ(𝑔) = sup𝐶∈𝐸* min𝑤∈𝐶(𝑤, 𝑔) ∀ 𝑔 ∈ 𝒦, where
𝐸* = {𝐶 ⊂ R𝑛 | 𝐶 = 𝐶(ℎ), ℎ ∈ Λ*}. The family of sets 𝐸* = 𝐸*(ℎ) is called a
lower exhauster of the function ℎ w.r. to the cone 𝒦.

If a function ℎ is p.h. and continuous on 𝒦 then it is both upper and lower
semicontinuous and, hence, both an upper exhauster 𝐸*(ℎ) and a lower one 𝐸*(ℎ)
exist. The pair 𝐸(ℎ) = [𝐸*(ℎ), 𝐸*(ℎ)] is called a biexhauster of the function ℎ w.r.
to the cone 𝒦. Note that each of the sets 𝐸*(ℎ) and 𝐸*(ℎ) is a family of convex
compact sets.

M.Castellani (see [2]) demonstrates that, generally speaking, one may express
ℎ in the forms

ℎ(𝑔) = min
𝐶∈𝐸*

sup
𝑣∈𝐶

(𝑣, 𝑔) ∀ 𝑔 ∈ R𝑛

and
ℎ(𝑔) = max

𝐶∈𝐸*
inf
𝑤∈𝐶

(𝑤, 𝑔) ∀ 𝑔 ∈ R𝑛,

where 𝐸*(ℎ) and 𝐸*(ℎ) are some families of convex compact sets of R𝑛.

Thus, if ℎ : R𝑛 → R is a positively homogeneous and continuous function then
function ℎ can be represented as

ℎ(𝑔) = min
𝐶∈𝐸*

max
𝑣∈𝐶

(𝑣, 𝑔) ∀ 𝑔 ∈ R𝑛 (2.1)

and
ℎ(𝑔) = max

𝐶∈𝐸*
min
𝑤∈𝐶

(𝑤, 𝑔) ∀ 𝑔 ∈ R𝑛, (2.2)
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where 𝐸* = 𝐸*(ℎ) is an upper exhauster of function ℎ, and the family of sets
𝐸* = 𝐸*(ℎ) is a lower exhauster of function ℎ.

3 Implicit function theorems

Assume that all functions 𝑓𝑖(𝑧) are directionally differentiable at a point 𝑧0 = [𝑥0, 𝑦0]

and directional derivative ℎ̃𝑖(𝜂) = 𝑓 ′𝑖(𝑧0, 𝜂), where 𝜂 = [𝑔, 𝑞] ∈ R𝑚+𝑛, continuous
as function of 𝜂 and bounded from above. Then from (1) the following expansions
hold

𝑓𝑖(𝑧0 + 𝛼𝜂) = 𝑓𝑖(𝑧0) + 𝛼ℎ̃𝑖(𝜂) + 𝑜𝜂𝑖(𝛼) (3.1)

where

ℎ̃𝑖(𝜂) = min
𝐶𝑖∈�̃�*

𝑖

max
𝑣∈𝐶𝑖

(𝑣, 𝜂),
𝑜𝜂𝑖(𝛼)

𝛼

−→
𝛼↓0 0 ∀𝜂 ∈ R𝑚+𝑛,∀ 𝑖 ∈ 1 : 𝑛,

�̃�*
𝑖 is an upper exhauster of function ℎ̃𝑖.

Put ℎ𝑖(𝑞) = ℎ̃𝑖(𝑔, 𝑞), 𝑔 is fixed.

Thus, in order to solve the problem of existence and to study properties of an
implicit function in the direction 𝑔 one should find all solutions of the following
system

ℎ𝑖(𝑞) = min
𝐶𝑖∈�̃�*

𝑖

max
𝑣𝑖∈𝐶𝑖

[(𝑣𝑖1, 𝑔) + (𝑣𝑖2, 𝑞)] = 0 ∀ 𝑖 ∈ 1 : 𝑛, (3.2)

where 𝑣𝑖 ∈ [𝑣𝑖1, 𝑣𝑖2]. System (4) called quasilinear.

Introduce the function

𝐹𝑖(𝛼, 𝑞) =

{︃
1
𝛼𝑓𝑖(𝑥0 + 𝛼𝑔, 𝑦0 + 𝛼𝑞), 𝛼 > 0,

ℎ̃𝑖(𝑔, 𝑞), 𝛼 = 0.
(3.3)

It follows from (1) that 𝐹𝑖(𝛼, 𝑞) = ℎ̃𝑖(𝑔, 𝑞)+𝑟𝑖(𝛼, 𝑞), where 𝑟𝑖(𝛼, 𝑞) =
𝑜𝑖(𝛼𝑔,𝛼𝑞)

𝛼

−→
𝛼↓0

0 ∀ 𝑞 ∈ R𝑛, 𝑟𝑖(0, 𝑞) = 0.

Put 𝑓 = (𝑓1, . . . , 𝑓𝑛), ℎ̃ = (ℎ̃1, . . . , ℎ̃𝑛), 𝜂0 = [𝑔, 𝑞0]. Let 𝑞0 ∈ R𝑛 be a solution
of the system (4), i.e.

ℎ̃𝑖(𝜂0) = 0 ∀ 𝑖 ∈ 1 : 𝑛 (or ℎ̃(𝜂0) = 0𝑛). (3.4)
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The functions 𝐹𝑖 are continuous jointly in all variables when 𝛼 > 0, 𝑞 ∈ R𝑛.
We have 𝐹𝑖(0, 𝑞0) = 0. Denote 𝑞 = 𝑞0 +Δ𝑞 and consider

ℎ𝑖(𝑞0 +Δ𝑞) = min
𝐶𝑖2∈𝐸*

𝑖2

max
𝑣𝑖∈𝐶𝑖2

(𝑣𝑖2,Δ𝑞) + 𝑜𝑖(Δ𝑞),

where 𝐸*
𝑖2 = 𝐸*

𝑖2(𝑞0) is an upper exhauster of function ℎ at a point 𝑞0 (there is a
family of convex compact sets in R𝑛). Clearly,

Introduce the set of matrices

ℒ(𝑞0) = cl co

⎧⎪⎪⎨⎪⎪⎩𝐴 =

⎛⎜⎜⎝
𝑎𝑇1
...
𝑎𝑇𝑛

⎞⎟⎟⎠
⃒⃒⃒⃒
⃒ 𝑎𝑖 ∈ 𝐶𝑖2, 𝐶𝑖2 ∈ 𝐸*

𝑖2(𝑞0), ∀ 𝑖 ∈ 1 : 𝑛

⎫⎪⎪⎬⎪⎪⎭ . (3.5)

Here 𝑇 denotes the transposition.
Since the functions ℎ𝑖 are continuous on 𝑞 and bounded from above, then they

are Lipschitz. Then by the mean-value theorem for Lipschitz functions

ℎ𝑖(𝑞) = ℎ𝑖(𝑞0) + (𝑎𝑖(𝑞), 𝑞 − 𝑞0), (3.6)

where 𝑎𝑖(𝑞) ∈ 𝜕𝐶𝑙ℎ𝑖(𝑞0 + 𝜃𝑖(𝑞)(𝑞 − 𝑞0)), 𝜃𝑖(𝑞) ∈ (0, 1), 𝜕𝐶𝑙ℎ𝑖 is a Clarke subdiffer-
ential of function ℎ𝑖 at considered point (see [4]).

V. Demyanov, V. Roshchina [3] showed that

𝜕𝐶𝑙ℎ𝑖(𝑞) ∈ ℒ(𝑞0) = cl co{𝑎𝑖 ∈ 𝐶𝑖, 𝐶𝑖 ∈ 𝐸*(ℎ𝑖)}. (3.7)

From (7), (3) one has

𝑓𝑖(𝑥0 + 𝛼𝑔, 𝑦0 + 𝛼𝑞) = 𝑓𝑖(𝑥0, 𝑦0) + (𝑎𝑖(𝑞), 𝑞 − 𝑞0) + 𝑟𝑖(𝛼, 𝑞) + 𝑜𝑖(𝑞 − 𝑞0), (3.8)

where 𝑟𝑖(𝛼, 𝑞) =
𝑜𝑖(𝛼𝑞)
𝛼

−→
𝛼↓0 0 ∀ 𝑞 ∈ R𝑛, 𝑟𝑖(0, 𝑞) = 0.

Denote by 𝒜𝑖(𝑞) set of vectors 𝑎𝑖(𝑞) satisfying (6)–(7). At the point 𝑞0 put

𝒜𝑖(𝑞0) = ℒ𝑖(𝑞0). (3.9)

Introduce the set

𝒜(𝑞) =

⎧⎪⎪⎨⎪⎪⎩𝐴 =

⎛⎜⎜⎝
𝑎𝑇1
...
𝑎𝑇𝑛

⎞⎟⎟⎠
⃒⃒⃒⃒
⃒ 𝑎𝑖 ∈ 𝒜𝑖(𝑞), ∀ 𝑖 ∈ 1 : 𝑛

⎫⎪⎪⎬⎪⎪⎭ .
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(9) and (5) yield

𝐹 (𝛼, 𝑞) = 𝒜(𝑞)(𝑞 − 𝑞0) + 𝛾(𝛼, 𝑞), (3.10)

where 𝐹 = (𝐹1, . . . , 𝐹𝑛), 𝛾(𝛼, 𝑞) = (𝑟1(𝛼, 𝑞) + 𝑜1(𝑞 − 𝑞0), . . . , 𝑟𝑛(𝛼, 𝑞) + 𝑜𝑛(𝑞 − 𝑞0)),
𝛾(𝛼, 𝑞)

−→
𝛼↓0, 𝑞→𝑞0 0. The mapping 𝒜 is upper semicontinuous and convex.

Theorem 1. If
|det𝐴| > 𝛽 > 0 ∀𝐴 ∈ ℒ(𝑞0),

then for any 𝜀 > 0 there exist 𝛼0 > 0 and 𝑞(𝛼) ∈ R𝑛, such that

‖𝑞(𝛼)− 𝑞0‖ 6 𝜀, 𝑓(𝑥0 + 𝛼𝑔, 𝑦0 + 𝛼𝑞(𝛼)) = 0𝑛 ∀𝛼 ∈ [0, 𝛼0]. (3.11)

Proof. Upper semicontinuity of the mapping 𝒜 and (9) imply that there exists
𝜀1 > 0, such that 𝜀1 6 𝜀:

| det𝐴| > 𝛽

2
∀𝐴 ∈ 𝒜(𝑞), ∀𝑞 ∈ 𝑆2𝜀(𝑞0). (3.12)

Put 𝑞 = 𝑞 − 𝑞0,

Φ𝛼(𝑞) = −𝒜−1(𝑞)𝛾(𝛼, 𝑞) = −𝒜−1(𝑞0 + 𝑞)𝛾(𝛼, 𝑞0 + 𝑞). (3.13)

It follows from (13), the continuity of 𝛾 and relation (14) that 𝜀2 > 0 and
𝛼0 > 0 can be found such that 𝜀2 6 𝜀1 6 𝜀, ‖𝑣‖ 6 𝜀2 ∀𝑣 ∈ Φ𝛼(𝑞) ∀𝛼 ∈ [0, 𝛼0]
∀𝑞 ∈ 𝑆1𝜀2 = {𝑞 ∈ R𝑛 | ‖𝑞‖ 6 𝜀2}.

For the mapping Φ𝛼 given by (14) all the conditions of the Kakutani generalized
theorem are met (see. [3]), i.e. there exists 𝑞(𝛼) ∈ 𝑆2𝜀2 such that 𝑞(𝛼) ∈ Φ𝛼(𝑞(𝛼)).
Then, there exists 𝐴 ∈ 𝒜(𝑞0 = 𝑞(𝛼)), such that

𝑞(𝛼) = −𝐴−1𝛾(𝛼, 𝑞0 + 𝑞(𝛼)). (3.14)

Put 𝑞(𝛼) = 𝑞0 + 𝑞(𝛼). Then from (15) we have 𝑞(𝛼) − 𝑞0 = −𝐴−1𝛾(𝛼, 𝑞(𝛼)),
i.e. 𝐴(𝑞(𝛼) − 𝑞0) + 𝛾(𝛼, 𝑞(𝛼)) = 0𝑛. From here and from (15) 𝑓(𝛼, 𝑞(𝛼)) = 0𝑛
∀𝛼 ∈ [0, 𝛼0], ‖𝑞(𝛼)− 𝑞0‖ 6 𝜀. From the definition of 𝐹𝑖(𝛼, 𝑞)

𝑓(𝑥0 + 𝛼𝑔, 𝑦 + 𝛼𝑞(𝛼)) = 0𝑛 ∀𝛼 ∈ [0, 𝛼0],

which was to be proved.
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Theorem 2. Let the functions 𝑓𝑖(𝑥, 𝑦) be Lipschitz in 𝑦. If the mapping ℒ(𝑞0)
is upper semicontinuous at the point [0, 𝑞0] and besides

| det𝐴| > 𝛽 > 0 ∀𝐴 ∈ ℒ(𝑞0), (3.15)

then for any 𝜀 > 0 there exist 𝛼0 > 0 and 𝑞(𝛼) ∈ R𝑛 such that

‖𝑞(𝛼)− 𝑞0‖ 6 𝜀, 𝑓(𝑥0 + 𝛼𝑔, 𝑦0 + 𝛼𝑞(𝛼)) = 0𝑛 ∀𝛼 ∈ [0, 𝛼0]. (3.16)

Such a 𝑞(𝛼) is unique and the function 𝑞(𝛼) is continuous on [0, 𝛼0].
Proof. If 𝑓(𝑥, 𝑦0) = 0𝑛, then 𝑦(𝑥) = 𝑦0 satisfies (17). Consider the case

𝑓(𝑥, 𝑦0) ̸= 0. Since the mapping 𝒜 is upper semicontinuous and convex-valued on
𝑆, then there exist 𝛿1 > 0 and 𝜀1 6 𝜀 such that

| det𝐴| > 𝛽

2
∀𝐴 ∈ 𝒜𝑥(𝑦), ∀𝑦 ∈ 𝑆2𝜀1 , ∀𝑥 ∈ 𝑆1𝛿1(𝑥0).

Here 𝑆2𝜀1 = {𝑦 ∈ R𝑛|‖𝑦‖ 6 𝜀}.
The continuity of 𝑓 implies that one can find 𝛿2 > 0 such that 𝛿2 6 𝛿,

‖𝐴−1𝑓(𝑥, 𝑦0)‖ 6 𝜀1 ∀𝐴 ∈ 𝒜𝑥(𝑦), ∀𝑦 ∈ 𝑆2𝜀1 , ∀𝑥 ∈ 𝑆1𝛿1(𝑥0). (3.17)

Then by the definition the mapping Φ𝑥 maps the ball 𝑆2𝜀1 into a subset of 𝑆2𝜀1 .
Since all the hypotheses of the generalized Kakutani theorem are satisfied then
there exists a fixed point of the mapping Φ𝑥, i.e. one can find 𝑦(𝑥) ∈ R𝑛 such that

‖𝑦(𝑥)‖ 6 𝜀1, 𝑦(𝑥) ∈ −𝒜−1
𝑥 (𝑦(𝑥))𝑓(𝑥, 𝑦0). (3.18)

It means that for some 𝐴 ∈ 𝒜−1
𝑥 (𝑦(𝑥)) = 𝒜(𝑥, 𝑦0 + 𝑦(𝑥)), we have 𝑦(𝑥) =

−𝐴−1𝑓(𝑥, 𝑦0), i.e.
𝑓(𝑥, 𝑦0) +𝐴𝑦(𝑥) = 0𝑛.

Hence and from relation (7) follows

𝑓(𝑥, 𝑦(𝑥)) = 0𝑛, (3.19)

where 𝑦(𝑥) = 𝑦0 + 𝑦(𝑥). Relations (18)–(19) imply that

‖𝑦(𝑥)− 𝑦0‖ 6 𝜀1, 𝑓(𝑥, 𝑦(𝑥)) = 0𝑛 ∀𝑥 ∈ 𝑆1𝛿2(𝑥0). (3.20)

Thus, a function 𝑦(𝑥) satisfying (21) when 𝜀 = 𝜀1 and 𝛿 = 𝛿2 exists.
Let us prove the uniqueness of 𝑦(𝑥). To be more precise we show that there

exists 𝛿 > 0 such that 𝛿 6 𝛿2 and 𝑦(𝑥) satisfying (21) is unique for all 𝑥 ∈ 𝑆1𝛿(𝑥0).
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Assume the contrary. Then there exist sequences {𝑥𝑘}, {𝑦′𝑘}, {𝑦′′𝑘} such that

𝑥𝑘 → 𝑥0, 𝑦
′
𝑘 → 𝑦0, 𝑦

′′
𝑘 → 𝑦0, 𝑦

′
𝑘 ̸= 𝑦′′𝑘 , (3.21)

𝑓(𝑥𝑘, 𝑦
′
𝑘) = 𝑓(𝑥𝑘, 𝑦

′′
𝑘) = 0𝑛 ∀𝑘.

By the mean-value theorem for Lipschitz functions 𝑓𝑖(𝑥𝑘, 𝑦′′𝑘) = 𝑓𝑖(𝑥𝑘, 𝑦
′
𝑘) +

(𝑣𝑖𝑘, 𝑦
′′
𝑘 − 𝑦′𝑘) ∀ 𝑖 ∈ 1 : 𝑛, where 𝑣𝑖𝑘 ∈ 𝐶𝑖(ℎ(𝑥𝑘, 𝑦

′
𝑘 + 𝛾𝑖𝑘(𝑦

′′
𝑘 − 𝑦′𝑘))), 𝛾𝑖𝑘 ∈ (0, 1).

It follows from (22) that
(𝑣𝑖𝑘, 𝑦

′′
𝑘 − 𝑦′𝑘) = 0. (3.22)

Since 𝑦′𝑘 ̸= 𝑦′′𝑘 then 𝑦′′𝑘 − 𝑦′𝑘 ̸= 0𝑛 and (23) implies

(𝑣𝑖𝑘, 𝑔𝑘) = 0, (3.23)

where 𝑔𝑘 =
𝑦′′𝑘 − 𝑦′𝑘

‖𝑦′′𝑘 − 𝑦′𝑘‖
, ‖𝑔𝑘‖ = 1. Let 𝑔𝑘 → 𝑔0, ‖𝑔0‖ = 1.

Since 𝐸* is bounder, without loss of generality one can assume that 𝑣𝑖𝑘 → 𝑣𝑖0.
From (24)

(𝑣𝑖0, 𝑔0) = 0 ∀𝑖 ∈ 1 : 𝑛, (3.24)

and, by the virtue of upper semicontinuity of the mapping ℒ(𝑞0) 𝑣𝑖0 ∈ 𝐶𝑖𝑦(𝑥0, 𝑦0).
Hence 𝐴 ∈ ℒ(𝑞0). It follows from (23) that 𝐴𝑔0 = 0𝑛. Since ‖𝑔0‖ = 1, it is possible
only when det𝐴 = 0 which contradicts (16). Therefore, the uniqueness is proved.

Now we have to prove the continuity of the function 𝑦(𝑥) = 𝑦(𝑥, 𝛼) = 𝑦0+𝛼𝑞(𝛼).
Assume the contrary. Then there will be found a point 𝑥 ∈ 𝑆1𝛿 and a sequence of
points {𝑥𝑘} such that

𝑥𝑘 → 𝑥, 𝑦(𝑥𝑘) ̸→ 𝑦(𝑥),

‖𝑦(𝑥𝑘)− 𝑦0‖ 6 𝜀, 𝑓(𝑥𝑘, 𝑦(𝑥𝑘)) = 0𝑛 ∀𝑥𝑘 ∈ 𝑆1𝛿(𝑥0). (3.25)

Without loss of generality by virtue of (17) it is possible to assume that

𝑦(𝑥𝑘) → 𝑦 ̸= 𝑦(𝑥). (3.26)

It follows from the continuity 𝑓 and (27) that

𝑓(𝑥, 𝑦) = 0𝑛. (3.27)

On the other hand, by the definition of 𝑦(𝑥)

𝑓(𝑥, 𝑦(𝑥)) = 0𝑛. (3.28)
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Relations (27) – (29) contradict the already established uniqueness of the func-
tion 𝑦(𝑥) on the set 𝑆1𝛿.

Thus, to demonstrate the existence of an implicit function in the direction 𝑔
one should find all solutions of system (4), i.e. constract the set ℒ(𝑞0) for each of
them [4, 5]. If 𝑞0 is a solution of the system and the conditions of the theorem are
satisfied, then with sufficiently small 𝛼 > 0 for the given 𝑞0 there exists an implicit
function 𝑞(𝛼). If the exhauster mapping is upper semicontinuius at the point [0, 𝑞0]
and the conditions of the theorem hold, then it is possible to conclude that for
sufficiently small 𝛼 > 0 there exists a unique vector-function 𝑞(𝛼) and this function
is continuous.

If a condition of the theorem is not hold then an additional verification is needed
since it can happen that none of the implicit functions in the given direction 𝑔
conforms such 𝑞0, either it is unique or there are a lot of such functions.
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Abstract. The problem of one-dimensional two-parametric symmetric diffusion
for the case of Bernoulli scaling is studied by means of the Markov random walks
concept and the parametric crossover between the normal (Gauss) and anomalous
(Levy) cases is considered. It is shown that the conversion of Lyapunov characteris-
tic function from the trigonometric series to the power series is effectively produced
by means of the functional equation. The original method of FE solution is sug-
gested which gives the most physically obvious description of the crossover. In
particular, it is shown that the FE solution splits into regular and singular parts
while the normal diffusion is possible only asymptotically when the singular part
fully disappears.

1 Introduction

Many processes in natural system’s are not of deterministic but of stochastic char-
acter and are described by the Markov random walks (MRW) in the system’s phase,
or state, space {𝑋} with 𝑟-dimensional variable 𝑋 = {𝑥(1) . . . 𝑥(𝑟)} (here 𝑟 = 1).
We will consider RW as “jumps”, or steps, discrete in time 𝑡 (or step numbers 𝑛),
but continuous in the single state variable 𝑥. As is well known (see, e.g., [1]) MRW
are fully described by the transition probability 𝑃 (𝑥𝑛, 𝑥𝑛+1), which is taken as
𝑃 (|𝑥𝑛 − 𝑥𝑛+1|), i.e., stationary (independent upon 𝑛) and symmetric in 𝑥.

Given the function 𝑃 (|𝑥𝑛−𝑥𝑛+1|) between adjacent time moments 𝑛 and 𝑛+1
(for any 𝑛) as well as the initial distribution 𝑝(𝑥) at 𝑛 = 0, one may find the final
distribution 𝑝𝑁 (𝑥) using the Bachelier – Smoluchowski – Chapman – Kolmogorov
(BSCK) integral equation (see, e.g., [1]).

Asymptotically at large 𝑁 → ∞ the solution of BSCK describes the diffusion
process 𝑋(𝑡) of the system in the phase space {𝑋}. The nature of trajectories 𝑋(𝑡)
depends crucially upon the effective radius 0 < 𝑅 <∞ of the transition probability
𝑃 (𝑥) > 0, ∫ 𝑃 (𝑥)𝑑𝑥 = 1; the integral is taken over all accessible 𝑥 (here 0 < 𝑥 <∞).
By definition, 𝑅 = 𝜎, where 𝜎2 = ∫ 𝑦2𝑃 (𝑦)𝑑𝑦; if 𝜎2 <∞ and 𝑅 is finite, or “short”,
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diffusion is normal (ND) (Gauss, Brown, Einstein, Wiener). If 𝜎2 → ∞ and 𝑅 is
infinite, or “long”, the diffusion is anomalous (AD) (non-Gauss, Levy – Khinchine).

The principal difference between ND and AD is that for ND there exist unique
natural scale 𝑅 = 𝜎, whereas for AD it does not exist. The final distributions
𝑝𝑁 (𝑥) at 𝑁 → ∞ are, in general, not stationary — i.e., they have no definite limit
𝑝∞(𝑥). The 𝑝𝑁 (𝑥) are “narrow” (Gauss, normal, short-tailed), and “broad” (Levy
– Khinchine, stable, long-tailed), so their fluctuations are, accordingly, small and
large.

In general, transition probability 𝑃 = 𝑃 (𝑦𝜆) may contain some control param-
eter 𝜆, so 𝜎 = 𝜎(𝜆) and it is possible to obtain the transition, or crossover, between
ND and AD at some 𝜆 = 𝜆𝑐𝑟 where 𝜎(𝜆𝑐𝑟) diverges. At this point infinitely many
scales of one “jump”, or arbitrary large fluctuations, become possible. The trajecto-
ries X(t) in the phase space {𝑋} instead of continuous (though not differentiable!)
become discontinuous “Levy flights”.

It appears reasonable to calculate not the (normalized) probability density
𝑝𝑁 (𝑥𝜆), but it’s Fourier transform 𝐺𝑁 (𝑘, 𝜆)

𝐺𝑁 (𝑘𝜆) =

∫︁
𝑝𝑁 (𝑥𝜆) exp(𝑖𝑘𝑥)𝑑𝑥 ≡ ⟨exp(𝑖𝑘𝑥)⟩, (1.1)

which defines the Lyapunov’s characteristic function (CF). The function 𝐺𝑁 (𝑘𝜆)
possess two important properties: (1.1) CF is the generating function for the prob-
ability moments

𝑚2𝑠(𝜆) ≡ ⟨𝑥2𝑠⟩ = (−𝑖)2𝑠𝐺(2𝑠)(𝑘 = 0, 𝜆), 𝑠 = 0, 1, . . ., (1.2)

which may exist not for all 𝑟: only 𝑚(𝜆) ≡ 1 should exist always due to normal-
ization; (1.2) CF obeys the functional equation (FE) which follows from the BSCK
integral equation or from the explicit form of CF.

2 Bernoulli Scaling for Markov Random Walk

The interesting problem arises when some parameter 𝜆 for 𝑃 = 𝑃 (𝑥𝜆) (and thus
for 𝑝𝑁 (𝑥, 𝜆) due to BSCK) comes into play; then index 𝛼 becomes 𝛼(𝜆), and the
crossover may arise between normal (Gauss – Wiener) and anomalous (Levy –
Khinchine) regimes of diffusion. The simple — but non-trivial — choice for transition
probability 𝑃 = 𝑃 (𝑥𝜆) is the so-called Bernoulli scaling, when the radius of one-
dimensional steps 𝑗 = 0, 1, . . ., ∞, as well as their probabilities, form two concurrent
geometric progressions: ascending for step’s radius ±1,±𝑏, . . .,±𝑏𝑗 . . ., where 1 <
𝑏 < ∞, and descending for probabilities 𝑝, 𝑝/𝜆, . . ., 𝑝/𝜆𝑗 . . ., where 1 < 𝜆 < ∞,
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0 < 𝑝 <1; from normalization condition it follows that 𝑝(𝜆) = 1/2(1− 1/𝜆):

𝑃 (𝑥𝜆) = 𝑝

∞∑︁
𝑗=0

𝜆−𝑗
⃒⃒
𝛿
(︀
𝑥− 𝑏𝑗

)︀
+ 𝛿

(︀
𝑥+ 𝑏𝑗

)︀⃒⃒
, (2.1)

Clearly, the result for 𝑝𝑁 (𝑥𝜆) is determined by the relation between 𝑏 and 𝜆: at
fixed 𝑏=const, 𝑝𝑁 (𝑥𝜆) to be non-Gaussian, 𝜆 = 𝜆(𝑏) should be small “enough” —
but the true question is: how small exactly?

By definition, 𝐺(𝑥𝜆) smooths all the 𝑃 (𝑥𝜆) singularities (including the 𝛿-like
ones) and, as a rule, CF is continuous. For 𝑃 (𝑥𝜆) with Bernoulli scaling, 𝐺(𝑥𝜆) is
given by the Weierstrass function, where 𝐺(0, 𝜆) ≡ 1, 𝐺′(0, 𝜆) = 0:

𝐺(𝑘, 𝜆) = 2𝑝(𝜆)
∞∑︁
𝑗=0

𝜆−𝑗 cos
(︀
𝑘𝑏𝑗
)︀
. (2.2)

We should recall that if all terms in trigonometric (Fourier) series are present,
the oscillations in various terms are smoothed. In lacunar trigonometric series the
smoothing is absent and, as a rule,the singularities arise. So, the sum of the series
may exist (and even be continuous!), but often appears to be non-differentiable —
or, equivalently, non-analytic.

Clearly, Eq. (2.2) gives us the explicit analytic expression for CF, but only in
the form of (lacunar) trigonometric series, which was studied intensively by Hardy
and Littlewood about a century ago and then by Titchmarsh about half a century
ago; thus, many properties of the Weierstrass function are known very well.

But this form of 𝐺(𝑥𝜆) is not convenient for our goals of the asymptotic diffusion
study, and it is desirable to rebuild 𝐺(𝑥𝜆) in the form of power series in 𝑘, valid
for all values of 1 < 𝜆 < ∞. Clearly, in the limit 𝜆 → ∞ new form should exactly
reproduce the Gauss – Wiener, or normal, diffusion (ND). Physically, we need to
know the behavior of diffusion — i.e., 𝑃 (𝑥𝜆), at large 𝑥, or, mathematically — due
to Tauberian theorems — the behavior of 𝐺(𝑘, 𝜆) at small 𝑘.

Thus, finally, we need the Taylor expansion for 𝐺(𝑘, 𝜆) in the vicinity of 𝑘 = 0,
where 𝐺(0, 𝜆) ≡ 1. The most direct way is the use of Mellin integral transform,
which was done by Hughes, Montroll and Schlesinger 30 years ago [2]:

𝐺(𝑘, 𝜆) = 2𝑝(𝜆)
∞∑︁
𝑗=0

𝜆−𝑗 cos
(︀
𝑘𝑏𝑦𝑗

)︀
=

1

2𝜋𝑖

∫︁
𝑔(𝑠)|𝑘|−𝛼𝑑𝑠, (2.3)

where integration goes from 𝑐− 𝑖∞ to 𝑐+ 𝑖∞ with 0 < 𝑐 = Re𝑠 < 1; unfortunately,
this representation appear to lack physical obviousness.
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Instead, we propose to use the property 1) of CF from Eq. (1.1), which is
equivalent to the Taylor expansion of CF in all orders of 𝑘 in the vicinity of 𝑘 = 0:

𝐺(𝑘, 𝜆) = 1 +
∞∑︁
𝑠=1

1

(2𝑠)!

(︀
𝑖2𝑠
)︀
𝑚2𝑠(𝜆)𝑘

2𝑠. (2.4)

This expansion holds only if the moments 𝑚2𝑠(𝜆), or due to Eq. (1.2) the derivatives
𝐺(2𝑠)(𝑘 = 0, 𝜆), do exist for all 𝑠 ≥ 1; from Eq. (2.2) for CF (with 𝑏 > 1) it follows:

|𝑚2𝑠(𝜆)| = 2𝑝(𝜆)
∞∑︁
𝑗=0

(︃
𝜆
(𝑠)
𝑐𝑟

𝜆

)︃𝑗
, 𝜆(𝑠)𝑐𝑟 = (𝜆𝑐𝑟)

𝑠 , 𝜆𝑐𝑟 = 𝑏2. (2.5)

Clearly, all 𝑚2𝑠(𝜆) are represented by the sums of geometric progressions with
denominators 𝜆

(𝑠)
𝑐𝑟 /𝜆 and exist only if 𝜆(𝑠)𝑐𝑟 /𝜆 < 1 — i.e., for large enough 𝜆.

Threshold values 𝜆(𝑠)𝑐𝑟 form the ascending (up to ∞) geometric progression (𝜆𝑐𝑟)
𝑠,

𝑠 = 1, 2, . . . with denominator 𝜆𝑐𝑟 = 𝑏2 > 1.
Thus, all 𝑚2𝑠(𝜆) may exist only in the limit 𝜆→ ∞, when all 𝑚2𝑠(∞) ≡ 1 (only

the 𝑗 = 0 term contributes then in the sum (2.5)), so 𝐺(𝑘∞) = cos 𝑘. This is the
“trivial” case of Gauss ND; the non-trivial Levy AD arises only for finite values of 𝜆.
In the context of Tauberian theorems, the most important term in Eq. (2.4) for CF
is the lowest order one with 𝑠 = 1 — i.e., term ∼ 𝑘2 with coefficient (−1/2)𝑚2(𝜆) ≡
(–1/2)𝜎2(𝜆), 𝜎2(𝜆) ≥ 1 (sign “=” holds only for 1/𝜆 = 0).

From Eq. (2.5), 𝜎2(𝜆) = 2𝑝(𝜆)[1 − 𝜆𝑐𝑟/𝜆]
−1, and there are two regimes of dif-

fusion — ND and AD; clearly, the crossover between both takes place exactly at
𝜆 = 𝜆𝑐𝑟 = 𝑏2 > 1:

1. 𝜆𝑐𝑟/𝜆 < 1, 𝜎2 <∞ → Gauss–Wiener regime (ND) 𝐺(𝑘, 𝜆) ≈ 1−(1/2)𝜎2(𝜆)𝑘2.
2. 𝜆𝑐𝑟/𝜆 ≥ 1, 𝜎2 → ∞ → Levy – Khinchine regime (AD).

3 Functional Equation (FE) for Lyapunov Characteristic Function

Note, that nothing can be said here about the form of 𝐺(𝑘, 𝜆) in AD-regime — only
that the derivative𝐺(2)(𝑘𝜆) diverge. To find this form for𝐺(𝑘, 𝜆), the property (1.2)
of CF from Eq. (2.3) is of use: the functional equation (FE) for CF valid for all
values of 𝜆 and 𝑘. In the standard case (i.e., absence of 𝜆) the FE for 𝐺𝑁 (𝑘) is well
known (see, e.g., [2]) and possess the general solution:

𝐺𝑁 (𝑘) = exp[−𝑁𝜓(𝑘)], 𝜓(𝑘) = 𝐶𝛼|𝑘|𝛼, 𝐶𝛼 ≥ 0, 𝜓(0) = 0, 𝐺𝑁 (0) = 1.
(3.1)
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Due to Tauberian theorems, index 0 < 𝛼 ≤ 2 gives at 𝑁 → ∞ for 𝑝𝑁 (𝑥)
asymptotic for large 𝑥: 𝛼 = 2 — Gauss, exponential, exp[−𝑥2/2𝜎2] with 𝜎2 ≡ ⟨𝑥2⟩;
𝛼 < 2 — Levy–Khinchine, power-like, 𝐶𝛼𝑁𝑥−(1+𝛼). In the case with parameter 𝜆
(Eq. (2.3)) the FE is:

𝐺(𝑘, 𝜆) =
1

𝜆
𝐺(𝑏𝑘, 𝜆) + 2𝑝(𝜆) cos 𝑘. (3.2)

The most characteristic cases for FE in various domains of the parameter 1 <
𝜆 < ∞ (at 𝑏 fixed) are not evident from Eq. (3.2); we use below coefficient 𝛼 =
2 ln𝜆/ ln𝜆𝑐𝑟 (for now — formally).

1. 𝜆→ 1, 𝑝(𝜆) → 0, FE holds only for 𝑏 = 1; unphys. limit;
2. 𝜆→ ∞, 𝑝(𝜆) → 1/2, FE: 𝐺(𝑘) = cos 𝑘, trivial ND regime;
3. 𝜆 > 𝜆𝑐𝑟 > 1, 𝛼 = 2(ln𝜆)/(ln𝜆𝑐𝑟) > 2, non-trivial ND reg.;
4. 1 < 𝜆 ≤ 𝜆𝑐𝑟, 0 < 𝛼 < 2, 𝜆𝑐𝑟 = 𝑏2, non-trivial AD reg.

In both cases 3) and 4) of non-trivial ND or AD regimes it appears necessary to
solve general FE (3.2) for 𝐺(𝑘𝜆), which relative to 𝐺 is linear and inhomogeneous
one. The inhomogeneous part 2𝑝(𝜆) cos 𝑘 with 2𝑝(𝜆) > 0 is regular in 𝑘 in the
vicinity of 𝑘 = 0 for all 𝜆 > 1, but the homogeneous (1/𝜆)𝐺(𝑏𝑘, 𝜆) part of FE (3.2)
may give rise to the singular in 𝑘 behavior at finite 𝜆 < ∞. Full solution of FE
may be represented as the sum:

𝐺(𝑘, 𝜆) = 𝐺reg(𝑘, 𝜆) +𝐺sign(𝑘, 𝜆). (3.3)

According to Taylor expansion (2.4), in lowest-𝑘 order one obtains:

𝐺reg(𝑘) ≈ 1− 1

2
𝜎2𝑘2, where 𝜎2(𝜆) = 2𝑝(𝜆)

[︂
1− 𝜆𝑐𝑟

𝜆

]︂−1

(3.4)

But it is instructive for the following, to see how such an expression for 𝜎2(𝜆)
is generated by the FE (3.2) for CF. Substituting 𝐺𝑟𝑒𝑔 in FE (3.2), from l.h.s. and
inhomogeneous term we obtain (1 − 1/𝜆)(1 − (1/2)𝑘2), where as inhomogeneous
term gives (1/𝜆)(1 − (1/2)𝜎2𝑏2𝑘2); clearly, the expression (3.4) for 𝜎2(𝜆) holds.
Evidently, that by this simple calculation the mathematical mechanism of FE for
CF becomes more clear.

The “critical” factor 𝜆𝑐𝑟/𝜆 (here < 1) enters in 𝜎2(𝜆) just due to the FE term
homogeneous in 𝐺, and this fact appears to be of great importance for the whole
problem If 𝜆𝑐𝑟/𝜆 < 1, only the regular part 𝐺𝑟𝑒𝑔(𝑘, 𝜆) from Eq. (3.4) is the de-
sired solution in lowest-𝑘 approximation. But if 𝜆𝑐𝑟/𝜆 ≥ 1, then both 𝜎2(𝜆) and
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𝐺𝑟𝑒𝑔(𝑘, 𝜆) don’t exist, and only the singular part 𝐺𝑠𝑖𝑛𝑔(𝑘𝜆) describes the solu-
tion (3.3); then, by analogy with Eq. (3.1) 𝐺𝑠𝑖𝑛𝑔(𝑘, 𝜆) should be written in the
form:

𝐺𝑠𝑖𝑛𝑔(𝑘, 𝜆) = 𝐶(𝜆)𝑘𝛼(𝜆)𝑄(𝑘), where 𝑄(𝑏𝑘) = 𝑄(𝑘). (3.5)

Then, by means of only homogeneous part of FE one obtains readily: 1 =
(1/𝜆)𝑏𝛼(𝜆) → 𝛼(𝜆) = ln𝜆/ ln 𝑏 ≤ 2. For any given finite value of 𝜆 from the open
interval (1,∞) there exist always some (also finite) value of 𝑆(𝜆) from the half-open
interval [1,∞), so that 𝜆(𝑆−1)

𝑐𝑟 < 𝜆(𝑆) < 𝜆
(𝑆)
𝑐𝑟 , where 𝜆(0)𝑐𝑟 = 1 for 𝑆 = 1; here 𝑆(𝜆)

and 𝜆(𝑆) are mutually reverse functions.

4 The Solution of FE and its Correspondence with Two Regimes
of Diffusion

Then 𝑚2𝑠(𝜆) exist only for 𝑠 = 1, 2, . . ., 𝑆 − 1 and diverge for 𝑠 ≥ 𝑆; the expan-
sion (2.4) breaks, or “cuts off”, at 𝑘2(𝑆−1) term. Thus, the regular, or analytic, part
of 𝐺(𝑘𝜆) takes the form:

𝐺𝑟𝑒𝑔(𝑘, 𝜆(𝑆)) = 1 +

𝑆−1∑︁
𝑠=1

(−1)𝑠
1

(2𝑠)!
𝑚2𝑠[𝜆(𝑆)]𝑘

2𝑠. (4.1)

Clearly, the remainder of the expansion (2.4) is fully non-analytic, or singular,
because all the terms (starting from the order 2𝑆) are divergent.

𝐺𝑠𝑖𝑔𝑛(𝑘, 𝜆(𝑆)) =

∞∑︁
𝑠=𝑆

(𝑖)2𝑠
1

(2𝑠)!
𝑚2𝑠[𝜆(𝑆)]𝑘

2𝑠. (4.2)

The most remarkable is the fact that all this infinite sum may be represented by the
single term, but of fractional order instead of entire (and, moreover, even) order:
with the natural replacement 𝑘 → |𝑘| (4.2) goes over in (clarify with (3.5)):

𝐺𝑠𝑖𝑔𝑛(|𝑘|, 𝜆(𝑆)) = 𝐶[𝜆(𝑆)]|𝑘|𝛼[𝜆(𝑆)]𝑄(|𝑘|). (4.3)

The “ingredients” of 𝐺𝑠𝑖𝑛𝑔(|𝑘|𝜆(𝑆)) are the following: coefficient 𝐶[𝜆(𝑆)],
(anomalous) index 𝛼[𝜆(𝑆)] and the amplitude function 𝑄(|𝑘|); all quantities are
real and positive. The most important is index 𝛼[𝜆(𝑆)], which should satisfy the
strong inequality 2(𝑆 − 1) < 𝛼[𝜆(𝑆)] < 2𝑆: only in this case all the derivatives
𝐺

(2𝑠)
𝑠𝑖𝑛𝑔(𝑘, 𝜆) with 𝑠 ≥ 𝑆 become singular at 𝑘 = 0. Indeed, let 2𝑆 − 𝛼 = 𝜀 with

0 < 𝜀 < 2, and 𝑠 = 𝑆 + 𝑟, 𝑟 = 0, 1, . . .; then 𝐺
(2𝑠)
𝑠𝑖𝑛𝑔(|𝑘|, 𝜆) ∼ |𝑘|−(𝜀+2𝑟) → ∞ at
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𝑘 = 0 for any arbitrary small 𝜀 > 0. Note, that 𝑄(|𝑘|) may be not differentiated
here because, as will be shown, it contains only logarithmic corrections ∼ [log |𝑘|]𝑛.

Index 𝛼[𝜆(𝑆)] may be calculated exactly as in Eq. (3.5) by means of only ho-
mogeneous part of FE — i.e., scaling, or self-similar, or generalized uniform FE
𝐺(|𝑘|, 𝜆) = (1/𝜆)𝐺(𝑏|𝑘|, 𝜆). Assume additionally FE 𝑄(𝑏|𝑘|) = 𝑄(|𝑘|) for the am-
plitude function, then the FE (3.2) gives:

1 = [(1/𝜆(𝑆)]𝑏𝛼[𝜆(𝑆)], and, finally, 𝛼[𝜆(𝑆)] = ln𝜆(𝑆)/ ln 𝑏. (4.4)

Apply now the monotonous log-operation to the “input”chain inequality
(𝜆𝑐𝑟)

𝑆−1 < 𝜆(𝑆) < (𝜆𝑐𝑟)
𝑆 (all terms here exceed unity, so their log’s > 0) and

divide by ln𝜆𝑐𝑟 > 0, then (𝑆 − 1) < ln𝜆(𝑆)/ ln𝜆𝑐𝑟 < 𝑆. Recalling that 𝜆𝑐𝑟 = 𝑏2,
one comes at last to most important inequality: 2(𝑆 − 1) < 𝛼[𝜆(𝑆)] < 2𝑆, ac-
counting for the non-analyticity. Note also, that 2(1 − 1/𝑆) < 𝛼[𝜆(𝑆)]/𝑆 < 2, so
𝛼/𝑆 → 2 at 𝑆 → ∞, 𝜆(𝑆) → ∞.

Coefficient 𝐶[𝜆(𝑆)], introduced in Eq. (4.3), may be determined by the “heuris-
tic” considerations which nevertheless coincide exactly with precise Mellin transform
results from [2]. Transition from the first divergent 2𝑆-term in 𝐺𝑟𝑒𝑔(𝑘𝜆) (4.1) to
corresponding term in 𝐺𝑠𝑖𝑛𝑔(|𝑘|, 𝜆) is merely the change in power of 𝑘, namely
2𝑆 → 𝛼 < 2𝑆. The same change is applied to the coefficient 1/(2𝑆)!(𝑖)2𝑆 → 𝐶(𝛼):

1/(2𝑆)! ≡ 1/Γ[1 + (2𝑆)!] → 1/Γ[1 + 𝛼] = −(1/𝜋)Γ(−𝛼);
(𝑖)2𝑆 ≡ exp[𝑖(𝜋/2)]2𝑆 → exp[𝑖(𝜋/2)]𝛼 → cos[(𝜋/2)𝛼].

Amplitude function 𝑄(|𝑘|), introduced in Eq. (4.3), should satisfy only the func-
tional equation 𝑄(𝑏|𝑘|) = 𝑄(|𝑘|), which possess, e.g., 𝑄 = const as a possible so-
lution. But, more generally, this FE defines the so-called log-periodic functions,
which belong to the class of slowly varying functions (in Karamata’s sense). By the
“log” change of variable: |𝑘| → log(|𝑘|), 𝑏 → log 𝑏 (recall that 𝑏 > 1), the FE for
𝑄(|𝑘|) goes over to FE for periodic functions: Q(log |𝑘|) = Q(log |𝑘| + log 𝑏). This
new FE has the solution as trigonometric (Fourier) series in log(|𝑘|) with period
log 𝑏 and amplitudes 𝑞𝑚 and phases 𝜑𝑚(in general, undefined):

𝑄(|𝑘|) = 2

log 𝑏

∞∑︁
𝑚=0

𝑞𝑚 cos

[︂
2𝜋𝑚

log |𝑘|
log 𝑏

+ 𝜙𝑚

]︂
. (4.5)
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5 Conclusion

The problem of one-dimensional symmetric diffusion and the crossover between
the normal (Gauss) and anomalous (Levy) cases were considered by means of the
Markov random walks concept. The two-parametric case (Bernoulli scaling) was
considered and the functional equation (FE) for the Lyapunov characteristic func-
tion was formulated. The original method of FE solution was suggested which gives
the most physically obvious description of the crossover.
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Abstract. We show that for a family Ω of pairwise disjoint closed subsets 𝑃 of
a Banach space 𝑌 whose functions of nonconvexity 𝛼𝑃 , 𝑃 ∈ Ω admit a common
majorant 𝛼 : (0;∞) → [0; 0, 5), such that the function 2𝛼(·) is geometrically sum-
mable, there exists a generalized convex structure 𝜔 on 𝑌 such that all members of
the family Ω are convex with respect on 𝜔. The proof is based on continuous choice
of an uniform retractions of the entire space 𝑌 onto elements of Ω.

1 Introduction

In general, there exists an entire branch of mathematics devoted to various ver-
sions of the notion of convexity. Even if one simply lists the titles of “generalized
convexities” one will find at least nearly 20 different notions.

Typically, a creation of “generalized convexities”, is usually related to an extrac-
tion of several principal properties of the classical convexity which are used in one
of the key mathematical theorems or theories and, consequently deals with analysis
and generalization of these properties in maximally possible general settings. D.
Repovs and the author, based on E. Michael’s ingenious idea, [4], systematically
studied another approach to weakening or controlled omission of convexity on a
set of principal theorems of multivalued analysis and topology. Roughly speaking,
to each closed subset 𝑃 ⊂ 𝐵 of a Banach space we have associated a numerical
function, say 𝛼𝑃 : (0,+∞) → [0, 2), the so-called function of nonconvexity of 𝑃 .
The identity 𝛼𝑃 ≡ 0 is equivalent to the convexity of 𝑃 and the more 𝛼𝑃 differs
from zero the “less convex” is the set 𝑃 .

Such classical results about multivalued mappings as the Michael selection theo-
rem, the Cellina approximation theorem, the Kakutani-Glicksberg fixed point theo-
rem, the von Neumann - Sion minimax theorem, etc. are valid with the replacement
of the convexity assumption for values 𝐹 (𝑥), 𝑥 ∈ 𝑋 of a mapping 𝐹 : 𝑋 → 𝑌 by
some appropriate control of their functions of nonconvexity, see [7, 10]. Briefly, all

The author was supported in part by the RFBR grant № 11-01-00822.
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functions 𝛼𝐹 (𝑥), 𝑥 ∈ 𝑋, of nonconvexity should be “less than 1”. In such a situa-
tion all values 𝐹 (𝑥), 𝑥 ∈ 𝑋 are called paraconvex subsets of 𝑌 . A typical way for
creation paraconvex set is a Lipshitz perturbation of a closed convex set along an
additional transversal direction, see [10]

In comparison with usual ideas of “generalized convexities”, we never define in
this approach, for example, a “generalized segment” joining 𝑎 ∈ 𝑃 and 𝑏 ∈ 𝑃 . We
look only for the distances between points 𝑐 of the classical segment [𝑎, 𝑏] and the
set and look for the ratio of these distances and the size of the segment. But,
maybe paraconvexity simply is a specific case of an appropriate generalized convex
structure, i.e. paraconvexity of a set with respect to the classical convexity structure
coincides with convexity under some generalized convexity structure?

Clearly, the formal answer is negative because for example intersection of two
paraconvex sets can be even disconnected. But for a family of pairwise disjoint
paraconvex sets the answer is affirmative whenever all functions of nonconvexity
simultaneously are less than a constant, say 𝑐 < 0, 5, see [8].

At this note an analogous (partial) answer is given for the case of “good” func-
tional (non-constant) common majorant of the family of all functions of noncon-
vexity.

2 Preliminaries and statements

For a numerical function 𝛼 : (0;+∞) → (0;+∞) the geometric progression with
the (functional) coefficient 𝛼 is defined by setting for every positive 𝑡

𝑡, 𝛼(𝑡) · 𝑡, 𝛼(𝛼(𝑡) · 𝑡) · 𝛼(𝑡) · 𝑡, ..., 𝛼𝑛+1(𝑡) = 𝛼(𝛼𝑛(𝑡)) · 𝛼𝑛(𝑡), ...

and a numerical function 𝛼 : (0;+∞) → (0;+∞) is said to be geometrically
summable if the series

𝑡+ 𝛼(𝑡) · 𝑡+ ...+ 𝛼𝑛+1(𝑡) + ... = 𝛼∞(𝑡) · 𝑡

is convergent over all positive reals.
It is not too hard to check that every numerical function which all right upper

limits over [0; +∞) are less than 1 provides an example of geometrically summable
function, see [9]. Finally we say that a family {𝛼𝛾(·)}𝛾∈Γ of functions is “less than
1” and use the notation {𝛼𝛾(·)}𝛾∈Γ ≺ 1 whenever 𝛼+

𝛾 (𝑡) < 𝛼(𝑡), 𝑡 > 0, 𝛾 ∈ Γ for
some geometrically summable function 𝛼(·), where for a function 𝑔 we denote by
𝑔+ the function of right upper limits of 𝑔.

For the standard notions of multivalued analysis and topology see, for example,
books [1, 2, 5].
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Below denote by 𝐷𝑟 an arbitrary open ball with the radius 𝑟 in a metric space.
For a nonempty closed subset 𝑃 ⊂ 𝑌 of a normed space 𝑌 its function of noncon-
vexity 𝛼𝑃 (·) associates to each positive number 𝑟 the following nonnegative number

𝛼𝑃 (𝑟) = sup

{︂
sup

{︂
𝑑𝑖𝑠𝑡(𝑞, 𝑃 )

𝑟
| 𝑞 ∈ 𝑐𝑜𝑛𝑣(𝑃 ∩𝐷𝑟)

}︂
|𝐷𝑟 is an open 𝑟-ball

}︂
.

Clearly, 𝛼𝑃 (𝑟) = 0 implies 𝑞 ∈ 𝑃 , or 𝑐𝑜𝑛𝑣(𝑃 ∩ 𝐷𝑟) ⊂ 𝑃 . Hence the identity
𝛼𝑃 (·) ≡ 0 is equivalent to the convexity of the closed set 𝑃 . A closed subset
𝑃 ⊂ 𝑌 is said to be paraconvex (functionally paraconvex) if its function of
nonconvexity 𝛼𝑃 (·) doesn’t exceed some constant 𝐶 < 1 ( is “less than 1”, i.e.
𝛼𝑃 (·) ≺ 1).

Theorem 0, [9, 10]. Let 𝐹 : 𝑋 → 𝑌 be a lower semicontinuous mapping from
a paracompact space 𝑋 into a Banach space 𝑌 and let

{︀
𝛼𝐹 (𝑥)

}︀
≺ 1, 𝑥 ∈ 𝑋. Then

𝐹 admits a continuous singlevalued selection 𝑓 : 𝑋 → 𝑌, 𝑓(𝑥) ∈ 𝐹 (𝑥).
In the case 𝛼𝐹 (𝑥)(·) ≡ 0, 𝑥 ∈ 𝑋 Theorem 0 coincides with the clas-

sical Michael’s selection theorem for convexvalued mappings and in the case
sup

{︀
𝛼𝐹 (𝑥)(𝑟)| 𝑥 ∈ 𝑋, 𝑟 > 0

}︀
< 1 it coincides with Michael’s selection theorem for

paraconvexvalued mappings, see [3].
Having in mind that each retraction problem is a partial case of an extension

problem and each extension problem in turn is a partial case of a selection problem,
Theorem 1 guarantees an existence of some continuous retraction, say 𝑅 : 𝑌 → 𝑃
with 𝑅(𝑝) = 𝑝, 𝑝 ∈ 𝑃 , for each functionally paraconvex subset 𝑃 ⊂ 𝑌 . Such a
retraction induced on 𝑃 some kind of a generalized convex structure by setting

𝑐𝑜𝑛𝑣𝑅{𝑝1, ..., 𝑝𝑛} = 𝑅(𝑐𝑜𝑛𝑣{𝑝1, ..., 𝑝𝑛}).

Unfortunately, such a convex structure in 𝑃 is in general uncomplete (in the convex
sense). Namely, closed 𝑅−convex hull of a subcompacta in 𝑃 fails to be a compact
set. So, to achieve such a key point as completeness we need some special type of
a retraction onto 𝑃 .

Theorem 1. Each functionally paraconvex subset of a Banach space is its
uniform retract.

Recall that a retraction 𝑅 : 𝑌 → 𝑃 is said to be uniform, see [4], (or regular,
see [11]) at 𝑃 if for each 𝜀 > 0 there is 𝛿 > 0 , such that 𝑑𝑖𝑠𝑡(𝑥,𝑅(𝑥)) < 𝜀 whenever
𝑑𝑖𝑠𝑡(𝑥, 𝑃 ) < 𝛿. So, the set 𝑈(𝑃 ) of all uniform retraction onto an arbitrary func-
tionally paraconvex subset 𝑃 is nonempty. In the case of bounded 𝑃 the set 𝑈(𝑃 )
is closed subset of another (exponential type) Banach space 𝐵 = 𝐶𝐵(𝑌, 𝑌 ) of all
continuous bounded selfmappings of 𝑌 .
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It appears that the 𝛼−paraconvexity of a set implies 𝛽−paraconvexity of the
set of all uniform retractions onto this set with some 𝛽 = 𝛽(𝛼).

Theorem 2. If 𝛼𝑃 (·) is (strongly) majorated by 𝛼(·) then 𝛼𝑈(𝑃 ) is (strongly)
majorated by 𝛼∞(·)− 1.

For a function 𝛼(·) ≺ 1 denote 𝒫𝛼(𝑌 ) the family of all 𝑃 ⊂ 𝑌 with 𝛼𝑃 (·) <
𝛼(·). With respect to the Hausdorff distance 𝒫𝛼(𝑌 ) is a metric and, hence, is a
paracompact space.

Theorem 3. Multivalued mapping 𝑈 : 𝒫𝛼(𝑌 ) → 𝐶𝐵(𝑌 ;𝑌 ) which associates to
each 𝑃 ∈ 𝒫𝛼(𝑌 ) the subset 𝑈(𝑃 ) ⊂ 𝐶𝐵(𝑌 ;𝑌 ) is lower semicontinuous.

Note, Theorem 3 is one more reason to work with uniform retractions because
exactly uniformity implies lower semicontinuity of 𝑈 .

Corollary 4. Let 2𝛼(·) ≺ 1. Then the mapping 𝑈 : 𝒫𝛼(𝑌 ) → 𝐶𝐵(𝑌 ;𝑌 ) admits
a continuous singlevalued selection.

Corollary 5. Let 2𝛼(·) ≺ 1 and let Ω be an arbitrary family of pairwise disjoint
closed subsets 𝑃 of a Banach space 𝑌 such that 𝛼𝑃 < 𝛼, 𝑃 ∈ Ω. Then there exists
a generalized complete convex structure 𝜔 on 𝑌 such that all members of the family
Ω are convex with respect on 𝜔.

3 Proofs

Corollary 4 =⇒ Corollary 5.
Pick any continuous singlevalued selection, say 𝑢, of 𝑈 : 𝒫𝛼(𝑌 ) →

𝐶𝐵(𝑌 ;𝑌 ), 𝑢(𝑃 ) ∈ 𝑈(𝑃 ). So, 𝑢(𝑃 ) is uniform retraction of the entire space 𝑌
onto 𝑃 and, moreover, 𝑢(𝑃 ) as an element of 𝐶𝐵(𝑌 ;𝑌 ) continuously depends on
𝑃 . Hence, setting

𝑐𝑜𝑛𝑣𝜔{𝑝1, ..., 𝑝𝑛} = 𝑢(𝑃 )(𝑐𝑜𝑛𝑣{𝑝1, ..., 𝑝𝑛})

for every finite set of points 𝑝1, ..., 𝑝𝑛 from an arbitrary 𝑃 ∈ Ω one defines a needed
generalized convex complete structure 𝜔.

Theorems 0-3 =⇒ Corollary 4.
The assumption 2𝛼(·) ≺ 1 implies that 𝛼∞(·) − 1 ≺ 1. Hence the mapping

𝑈 : 𝒫𝛼(𝑌 ) → 𝐶𝐵(𝑌 ;𝑌 ) is multivalued mapping which is lower semicontinuous (see
Theorem 3) and whose values are nonempty (see Theorem 1) and 𝛽(·)− paraconvex
sets with 𝛽 = 𝛼∞ − 1 ≺ 1 (see Theorem 2). That is why Theorem 0 is applicable
to this multivalued mapping and so it gives a desired selection.

Theorems.
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Fix a functionally paraconvex subset 𝑃 ⊂ 𝑌 with 𝛼𝑃 < 𝛼 ≺ 1. To stress directly
and immediately the effect of paraconvexity let us consider the case of continuous
majorant 𝛼(·) < 1 with 𝛼(0) = 𝑙𝑖𝑚𝑡→0 𝛼(𝑡) < 1.

Let us denote by 𝑑(𝑥) = 𝑑𝑖𝑠𝑡(𝑥, 𝑃 ) the distance between a point 𝑥 ∈ 𝑌 and 𝑃 .
Clearly 𝑑(·) is continuous (Lipshitz, in fact) numerical function.

For every 𝑥 ∈ 𝑌 ∖ 𝑃 consider the intersection 𝑃 ∩ 𝐷(𝑥, 2𝑑(𝑥)) and define the
convexvalued mapping 𝐻1 : 𝑌 ∖ 𝑃 → 𝑌 by setting

𝐻1(𝑥) = 𝑐𝑜𝑛𝑣{𝑃 ∩𝐷(𝑥, 2𝑑(𝑥))}.

This mapping is lower semicontinuous (continuous, in fact) mapping defined on the
paracompact domain 𝑌 ∖𝑃 with nonempty closed convex values in Banach space 𝑌 .
So the classical Michael’s selection theorem guarantees the existence of a continuous
singlevalued selection, say ℎ1 : 𝑌 ∖ 𝑃 → 𝑌, ℎ1(𝑥) ∈ 𝐻1(𝑥).

The inequality 𝛼𝑃 < 𝛼 implies the inequalities

𝑑𝑖𝑠𝑡(ℎ1(𝑥), 𝑃 ) 6 𝛼𝑃 (2𝑑(𝑥)) · 2𝑑(𝑥) < 𝛼(2𝑑(𝑥)) · 2𝑑(𝑥) = 𝛼1(2𝑑(𝑥)),

𝑑𝑖𝑠𝑡(𝑥, ℎ1(𝑥)) 6 2𝑑(𝑥) = 𝛼0(2𝑑(𝑥)), 𝑥 ∈ 𝑌 ∖ 𝑃.

Similarly, define the convexvalued and closedvalued lower semicontinuous map-
ping 𝐻2 : 𝑌 ∖ 𝑃 → 𝑌 by setting

𝐻2(𝑥) = 𝑐𝑜𝑛𝑣{𝑃 ∩𝐷(ℎ1(𝑥), 𝛼1(2𝑑(𝑥)))}, 𝑥 ∈ 𝑌 ∖ 𝑃.

and find its continuous singlevalued selection ℎ2 : 𝑌 ∖ 𝑃 → 𝑌, ℎ2(𝑥) ∈ 𝐻2(𝑥).
Analogously we see that

𝑑𝑖𝑠𝑡(ℎ2(𝑥), 𝑃 ) 6 𝛼𝑃 (𝛼1(2𝑑(𝑥))) · 𝛼1(2𝑑(𝑥)) < 𝛼2(2𝑑(𝑥)),

𝑑𝑖𝑠𝑡(ℎ2(𝑥), ℎ1(𝑥)) 6 𝛼1(2𝑑(𝑥)), 𝑥 ∈ 𝑌 ∖ 𝑃.

once again due to the inequality 𝛼𝑃 < 𝛼 for the function of nonconvexity 𝛼𝑃 .
Arguing inductively we find a sequence {ℎ𝑛}∞𝑛=1 of continuous singlevalued map-

pings ℎ𝑛 : 𝑌 ∖ 𝑃 → 𝑌 such that

𝑑𝑖𝑠𝑡(ℎ𝑛+1(𝑥), 𝑃 ) < 𝛼𝑛+1(2𝑑(𝑥)), 𝑑𝑖𝑠𝑡(ℎ𝑛+1(𝑥), ℎ𝑛(𝑥)) 6 𝛼𝑛(2𝑑(𝑥)).

Due to the geometric summability of 𝛼(·) we see that the sequence {ℎ𝑛}∞𝑛=1 is
locally uniformly fundamental and hence its pointwise limit ℎ(𝑥) = 𝑙𝑖𝑚𝑛→∞ ℎ𝑛(𝑥)
is well-defined and continuous. Moreover, ℎ(𝑥) ∈ 𝑃, 𝑥 ∈ 𝑌 ∖𝑃 due to the closedness
of 𝑃 and convergency of {ℎ𝑛}∞𝑛=1.
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Hence the mapping 𝑅 : 𝐵 → 𝑃 defined by 𝑅(𝑥) = ℎ(𝑥), 𝑥 ∈ 𝑌 ∖ 𝑃 and
𝑅(𝑥) = 𝑥, 𝑥 ∈ 𝑃 is a retraction of 𝐵 onto 𝑃 which is continuous over the set 𝑌 ∖𝑃
just by its construction.

Moreover for every 𝑥 ∈ 𝑌 ∖ 𝑃 :

𝑑𝑖𝑠𝑡(𝑥, ℎ(𝑥)) 6 𝑑𝑖𝑠𝑡(𝑥, ℎ1(𝑥)) +
∞∑︁
𝑛=1

𝑑𝑖𝑠𝑡(ℎ𝑛(𝑥), ℎ𝑛+1(𝑥)) 6

6 𝛼0(2𝑑(𝑥)) + 𝛼1(2𝑑(𝑥)) + 𝛼2(2𝑑(𝑥)) + .. = 𝛼∞(2𝑑(𝑥)) · 2𝑑(𝑥),

So for 𝑥0 ∈ 𝑃 and for 𝑥 ∈ 𝑌 ∖ 𝑃 we have

𝑑𝑖𝑠𝑡(𝑅(𝑥0), 𝑅(𝑥)) = 𝑑𝑖𝑠𝑡(𝑥0, ℎ(𝑥)) 6 𝑑𝑖𝑠𝑡(𝑥0, 𝑥) + 𝑑𝑖𝑠𝑡(𝑥, ℎ(𝑥)) 6

6 𝑑𝑖𝑠𝑡(𝑥0, 𝑥) + 𝛼∞(2𝑑(𝑥)) · 2𝑑(𝑥) 6 (1 + 2𝛼∞(2𝑑(𝑥))) · 𝑑𝑖𝑠𝑡(𝑥0, 𝑥).

Pick a numbers 0 < 𝑞 < 1 and 𝛿 > 0 such that sup{𝛼(𝑡) |𝑡 < 2𝛿} 6 𝑞. Then for
all 𝑥 which are 𝛿−close to 𝑥0 we see that 2𝑑(𝑥) 6 2𝑑(𝑥0, 𝑥) < 2𝛿 and 𝛼∞(2𝑑(𝑥)) 6
1

1−𝑞 . Hence

𝑑𝑖𝑠𝑡(𝑅(𝑥0), 𝑅(𝑥)) = 𝑑𝑖𝑠𝑡(𝑥0, ℎ(𝑥)) 6 𝐶 · 𝑑𝑖𝑠𝑡(𝑥0, 𝑥).

for some constant 𝐶 > 0 and 𝑅 is continuous at 𝑥0. The uniformity of 𝑅 can be
proved similarly.

For the case of an arbitrary 𝛼(·) the proof above doesn’t work because there are
no chances to guarantee an appropriate type of continuity of the maps 𝐻𝑛. So, in
such a situation the proof is too much complicated and a resulting retraction can
be constructed as an uniform limit of some sequence of singlevalued 𝛿𝑛−continuous
𝜀𝑛−selections, based on a simultaneous using of the method of outside and the
method of inside approximations, see [6].

The proofs of Theorems 2 and 3 in general follow to proofs of Propositions 2.2
and 2.3 from [8] but with some additional technique as in the proof of Theorem 1,
above.

4 Open questions

Q1. Does an analytical characterization of the class of all geometrically sum-
mable functions exist?

Q2. Are Corollaries 4 and 5 true with the substitution 𝛼(·) ≺ 1 instead of
2𝛼(·) ≺ 1?
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Q3. Is it true that the graph of an arbitrary Lipshitz mapping between Eu-
clidean spaces is a paraconvex subsets of their Cartesian product?
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Abstract. The 1-st order PDE’s concave relative impulse variables are considered
as local Hamilton–Jacobi–Bellman equations. The theory of optimal control and
the nonsmooth analysis tools are applied to describe the structure of the minimax
or viscosity solutions of the PDE’s in the boundary Cauchy problem under Lips-
chitz conditions on the boundary terminal function and the right-hand side of the
corresponding Hamiltonian ODE’s.

1 Introduction

Nonsmooth global generalized solutions to PDE’s are vital to practice. The func-
tions arise in optimal control theory and differential games as the value functions
which are generalized solutions of the Bellman–Isaacs equations (see, for example
works by L.S. Pontryagin, R. Bellman, R. Isaacs, N.N. Krasovskii). The function
described the evolution of the front of a light wave in nonhomogeneous environ-
ment is a generalized solution of the eikonal equation. The functions described
the evolution of some market indexes and the functions described the evolution of
some genetic indexes are generalized solutions of corresponding Hamilton-Jacobi
equations and so on.

The foundation of the theory of the generalized solutions to PDE’s was builded
in the 50-th 60-th of the XX century in the works by O.A. Oleinik, O.A. La-
dyzhenskaya, E. Hopf, R. Courant, I.M. Gelfand, A.N. Tikhonov, A.A. Samarskii,
S.L. Sobolev, N.S. Bakhvalov, P. Lax, W.H. Fleming, C.M. Dafermos and others.

Later in 70-th S.N. Kruzhkov suggested the notion of entropy solution, based
on the integral relations.

In 80-th M. Crandall, P.L. Lions introduce viscosity solutions, A.I. Subbotin
suggested minimax solutions.

The work was supported by the Russian Foundation for Basic Researches (project No. 11-
01-00214) and by the Program of Presidium RAS for Basic Researches on Mathematical Control
Theory.
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The paper presents results obtained in the framework of the theory of minimax
solutions to PDE’s of the 1-st order.

We consider the 1-st order PDE’s concave relative impulse variables in the
boundary Cauchy problem under Lipschitz conditions on the boundary terminal
function and the right-hand side of the corresponding Hamiltonian ODE’s. It is
proven that the equations can be considered locally as the Hamilton-Jacobi-Bellman
equations. It gives possibilities to apply the theory of optimal control to describe the
minimax solutions to the PDE’s. Necessary optimality conditions (L.S. Pontrya-
gin’s maximum principle [2]) in the Hamiltonian form (following to F.H. Clarke [9])
play a key part in our researches.

The paper continues the works [10, 11]. Using results by authors on structure
of the minimax solutions of HJBE’s to optimal control problems, properties of the
minimax solutions of the considered PDE’s of the 1-st order are described. New
tools of the nonsmooth analysis (directional subdifferentials) are suggested to get
new relations for the structure. The new tools can be reduced by application of
approach suggested by B. Mordukhovich [8].

2 Statement

The paper deals with the boundary Cauchy problem for HJBE

𝜕𝜙(𝑡, 𝑥)

𝜕𝑡
+𝐻(𝑡, 𝑥,𝐷𝑥𝜙(𝑡, 𝑥)) = 0, 𝜙(𝑇, 𝑥) = 𝜎(𝑥), (2.1)

Here (𝑡, 𝑥) ∈ Π𝑇 = [0, 𝑇 ]× R𝑛, 𝐷𝑥𝜙 =
(︁
𝜕𝜙
𝜕𝑥1

, . . . , 𝜕𝜙𝜕𝑥𝑛

)︁
= 𝑠 ∈ R𝑛.

The problem is considered under the following assumptions.

A1 The Hamiltonian 𝐻(𝑡, 𝑥, 𝑠) is continuous relative to all variables in Π𝑇 × R𝑛
and concave relative to 𝑠.

A2 There exist 𝐷𝑥𝐻(𝑡, 𝑥, 𝑠), 𝐷𝑠𝐻(𝑡, 𝑥, 𝑠) satisfied the Lipschitz conditions in 𝑥, 𝑠
with a constant 𝐿 > 0:

||𝐷𝑠𝐻(𝑡, 𝑥1, 𝑠1)−𝐷𝑠𝐻(𝑡, 𝑥2, 𝑠2)|| 6 𝐿(||𝑥1 − 𝑥2||+ ||𝑠1 − 𝑠2||),

||𝐷𝑥𝐻(𝑡, 𝑥1, 𝑠1)−𝐷𝑥𝐻(𝑡, 𝑥2, 𝑠2)|| 6 𝐿(||𝑥1 − 𝑥2||+ ||𝑠1 − 𝑠2||);

A3 The terminal function 𝜎(𝑥) is local Lipschitz continuous in R𝑛:

|𝐷𝑥𝜎(𝑥1)−𝐷𝑥𝜎(𝑥2)| 6 𝐿(𝑀)(||𝑥1 − 𝑥2||,

𝑥1, 𝑥2 ∈𝑀 ⊂ R𝑛, 0 < 𝐿(𝑀)𝑡𝑒𝑥𝑡−− 𝑐𝑜𝑛𝑠𝑡.
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The problem doesn’t have a global classical solution, as a rule. We consider the
minimax solution of problem (2.1) following to A.I. Subbotin [3] and investigate its
structure. Note, that the solution is equivalent to the viscosity solution introduced
by M. Crandall and P.L. Lions [4]. Recall necessary notions.

Definition 1. The lower Dini semiderivative 𝑑−𝜙(𝑦)
ℎ of a function 𝜙 : R𝑚 → 𝑅

at a point 𝑦 in a direction (ℎ) ∈ R𝑚 is defined as follows:

𝑑−𝜙(𝑦)

ℎ
= lim inf

𝛿→0,ℎ′→ℎ

𝜙(𝑦 + 𝛿ℎ′)− 𝜙(𝑦)

𝛿
.

Similarly the upper Dini semiderivative 𝑑+𝜙(𝑦)
ℎ is defined as lim sup.

Definition 2. A function 𝜙(·, ·) : Π𝑇 → 𝑅 is called the minimax solution of
(2.1) iff

𝜙(𝑇, 𝑥) = 𝜎(𝑥), ∀𝑥 ∈ R𝑛,

sup
𝑠∈R𝑛

inf
ℎ∈R𝑛

{︂
𝑑−𝜙(𝑡, 𝑥)

1, ℎ
− ⟨𝑠, ℎ⟩+𝐻(𝑡, 𝑥, 𝑠)

}︂
6 0,

inf
𝑠∈R𝑛

sup
ℎ∈R𝑛

{︂
𝑑+𝜙(𝑡, 𝑥)

1, ℎ
− ⟨𝑠, 𝑓⟩+𝐻(𝑡, 𝑥, 𝑠)

}︂
> 0,

for all (𝑡, 𝑥) ∈ (0, 𝑇 )× R𝑛.

3 Preliminaries

The section contains some assertions followed from the theory of generalized solu-
tions to PDE’s [3, 5] and useful tools to the nonsmooth analysis.

Assertion 1. If assumptions 𝐴1–𝐴3 are true, then there exists a local Lipschitz
continuous minimax solution to problem (2.1). The minimax solution 𝜙(·) is unique
and coincides with the viscosity solution to the problem.

Definition 3. The set 𝜕𝜓 ⊂ 𝑅𝑚 is called the subdifferential of the function
𝜓(·) : R𝑚 → 𝑅 at the point 𝑦 ∈ 𝑅𝑚 if it has the form

𝜕𝜓(𝑦) = co{𝑞 ∈ 𝑅𝑚 : 𝑞 = lim
𝑦𝑘→𝑦

𝐷𝜓(𝑦𝑘)}.

Here 𝐷𝜓(𝑦𝑘) are the gradients of the function 𝜓(·) at points 𝑦𝑘. The symbol co
denotes the convex hull.

Consider the Hamiltonian system to problem (2.1)

˙̃𝑥 = 𝐷𝑠𝐻(𝑡, �̃�, 𝑠), ˙̃𝑠 = −𝐷�̃�𝐻(𝑡, �̃�, 𝑠), ˙̃𝑧 = ⟨𝐷𝑠𝐻(𝑡, �̃�, 𝑠), 𝑠⟩ −𝐻(𝑡, �̃�, 𝑠) (3.1)
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�̃�(𝑇, 𝜉) = 𝜉, 𝑠(𝑇, 𝜉) ∈ 𝜕𝜎(𝜉), 𝑧(𝑇, 𝜉) = 𝜎(𝜉), 𝜉 ∈ R𝑛. (3.2)

Solutions �̃�(·, 𝜉), 𝑠(·, 𝜉), 𝑧(·, 𝜉) satisfied (3.1)-(3.2) are called the characteristics to
problem (2.1).

Assertion 2. If assumptions 𝐴1–𝐴3 are true, then for any 𝜉 ∈ R𝑛 there exists
the unique solution of the characteristic system (3.1)-(3.2), and it is extendable on
the interval [0, 𝑇 ].

4 Applications of the theory of optimal control

Let us to introduce an auxiliary optimal control problem

�̇� = 𝐷𝑝𝐻(𝑡, 𝑥, 𝑝), 𝑝 ∈ 𝑃0, 𝑥(𝑡0) = 𝑥0, (𝑡0, 𝑥0) ∈ Π𝑇 . (4.1)

We consider the set of admissible controls

𝑈0 = {∀𝑝(·) : [0, 𝑇 ] → 𝑃0 are measurable }

and the cost functional:

𝐼𝑡0,𝑥0(𝑝(·)) = 𝜎(𝑥(𝑇 ))−
𝑇∫︁
𝑡0

⟨𝑝(𝜏), 𝐷𝑝𝐻(𝜏, 𝑥(𝜏), 𝑝(𝜏))⟩ −𝐻(𝜏, 𝑥(𝜏), 𝑝(𝜏))𝑑𝜏 =

= 𝜎(𝑥(𝑇 ))−
𝑇∫︁
𝑡0

𝐻*(𝜏, 𝑥(𝜏), 𝐷𝑝𝐻(𝜏, 𝑥(𝜏), 𝑝(𝜏)))𝑑𝜏. (4.2)

The symbol ⟨·, ·⟩ denotes the inner product, 𝑥(·) = 𝑥(·; 𝑡0, 𝑥0, 𝑝(·)) is a trajectory
of (4.1) under an admissible control 𝑝(·) ∈ 𝑈0, the symbol 𝐻* denotes

𝐻*(𝑡, 𝑥, 𝑙) = inf
𝑝∈𝑅𝑛

[⟨𝑙, 𝑝⟩ −𝐻(𝑡, 𝑥, 𝑝)].

The goal of controls 𝑝(·) in problem (4.1)-(4.2) is to minimize the cost. The
map

(𝑡0, 𝑥0) → 𝑉 (𝑡0, 𝑥0) = inf
𝑝(·)∈𝑈0

𝐼𝑡0,𝑥0(𝑝(·))

is called the value function.
The following assertion follows from results of the theory of minimax/viscosity

solutions to HJE’s [1, 3, 4].
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Assertion 3. If assumptions 𝐴1–𝐴3 are true, then the value function 𝑉 (𝑡, 𝑥)
to optimal control problem (4.1)-(4.2) coincides with the unique minimax/viscosity
solution to the problem

𝜕𝑉 (𝑡, 𝑥)

𝜕𝑡
+H(𝑡, 𝑥,𝐷𝑥𝑉 (𝑡, 𝑥)(𝑡, 𝑥)) = 0, (𝑡, 𝑥) ∈ Π𝑇 , (4.3)

𝑉 (𝑇, 𝑥) = 𝜎(𝑥), 𝑥 ∈ 𝑅𝑛. (4.4)

The Hamiltonian to problem optimal control (4.1)-(4.2) has the form

H(𝑡, 𝑥, 𝑠) = min
𝑝∈𝑃0

⟨𝑠,𝐷𝑝𝐻(𝑡, 𝑥, 𝑝)⟩ −𝐻*(𝑡, 𝑥(𝑡), 𝐷𝑝𝐻(𝑡, 𝑥(𝑡), 𝑝)). (4.5)

Note, that the Hamiltonian to problem (2.1) is of the view

𝐻(𝑡, 𝑥, 𝑠) = min
𝑝∈𝑅𝑛

⟨𝑠,𝐷𝑝𝐻(𝑡, 𝑥, 𝑝)⟩ −𝐻*(𝑡, 𝑥(𝑡), 𝐷𝑝𝐻(𝑡, 𝑥(𝑡), 𝑝). (4.6)

Let us recall the Pontryagin’s maximum principle [2] in the Hamiltonian form
by Clarke [9].

Assertion 4 If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ (0, 𝑇 )× 𝑅𝑛, 𝑝0(·) ∈ 𝑈0

and
𝐼𝑡0,𝑥0(𝑝

0(·)) = 𝑉 (𝑡0, 𝑥0),

then there exists such a function 𝑠*(·) : [𝑡0, 𝑇 ] → 𝑅𝑛, that the following conditions
are valid for all 𝑡 ∈ [𝑡0, 𝑇 ]

𝑥0(𝑡) = 𝐷𝑝𝐻(𝑡, 𝑥0(𝑡), 𝑝0(𝑡)) ∈ 𝜕𝑝H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)), 𝑥0(𝑡0) = 𝑥0; (4.7)

𝑠*(𝑡) ∈ −𝜕𝑥H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)), 𝑠*(𝑇 ) ∈ 𝜕𝜎(𝑥0(𝑇 )); (4.8)

H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)) = ⟨𝑠*(𝑡), 𝑥0(𝑡))⟩ −𝐻*(𝑡, 𝑥0(𝑡), 𝑥0(𝑡)). (4.9)

Using schemes of proofs in [5] for analogous results obtained under stronger
assumptions we get the theorem.

Theorem 1. If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ (0, 𝑇 )×𝑅𝑛, 𝑝0(·) ∈ 𝑈0,
then there exist such compact sets 𝑃0 ∈ 𝑅𝑛, Ω0 ∈ Π𝑇 , that the relations hold

(𝑡, 𝑥(𝑡; 𝑡0, 𝑥0, 𝑝(·))) ∈ Ω0, ∀ 𝑡 ∈ [𝑡0, 𝑇 ],∀ 𝑝(·) ∈ 𝑈0; (4.10)
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𝑠(𝑡, 𝜉) ∈ 𝑃0, ∀ 𝑡 ∈ [𝑡0, 𝑇 ],∀𝜉 = 𝑥(𝑇 ; 𝑡0, 𝑥0, 𝑝(·)); (4.11)

𝐻(𝑡, 𝑥, 𝑝) = H(𝑡, 𝑥, 𝑝), ∀ (𝑡, 𝑥, 𝑝) ∈ Ω0 × 𝑃0; (4.12)

𝜕𝑝H(𝑡, 𝑥, 𝑝) = {𝜕𝑝𝐻(𝑡, 𝑥, 𝑝)}, 𝜕𝑥H(𝑡, 𝑥, 𝑝) = {𝜕𝑥𝐻(𝑡, 𝑥, 𝑝)}, (4.13)

for all (𝑡, 𝑥, 𝑝) ∈ Ω0 × 𝑃0.

Remark 1. If 𝐴1–𝐴3 are true then Theorem 1 and Assertion 4 provide the
equalities

𝑥0(𝑡) = 𝐷𝑝𝐻(𝑡, 𝑥0(𝑡), 𝑝0(𝑡)) = 𝐷𝑝H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)) = 𝐷𝑝𝐻(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)); (4.14)

𝑠*(𝑡) = −𝐷𝑥H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)) = −𝐷𝑥𝐻(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)); (4.15)

𝑥0(𝑡0) = 𝑥0, 𝑠*(𝑇 ) ∈ 𝜕𝜎(𝑥0(𝑇 ));

H(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)) = ⟨𝑠*(𝑡), 𝑥0(𝑡))⟩ −𝐻*(𝑡, 𝑥0(𝑡), 𝑥0(𝑡)) = 𝐻(𝑡, 𝑥0(𝑡), 𝑠*(𝑡)) =

= ⟨𝑠*(𝑡), 𝐷𝑝𝐻(𝑡, 𝑥0(𝑡), 𝑠*(𝑡))⟩ −𝐻*(𝑡, 𝑥0(𝑡), 𝐷𝑝𝐻(𝑡, 𝑥0(𝑡), 𝑠*(𝑡))). (4.16)

Corollary 1. If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ (0, 𝑇 ) × 𝑅𝑛, 𝑝0(·) ∈
𝑈(𝐷) and

𝐼𝑡0,𝑥0(𝑝
0(·)) = 𝑉 (𝑡0, 𝑥0),

then there exist such characteristics (3.1) (3.2) �̃�(·, 𝜉), 𝑠(·, 𝜉), 𝑧(·, 𝜉), that the follow-
ing relations hold

𝑥0(𝑡) = 𝑥0(𝑡; 𝑡0, 𝑥0, 𝑝
0(·)) = �̃�(𝑡, 𝜉), ∀𝑡 ∈ [𝑡0, 𝑇 ];

𝑠*(·) = 𝑠(·, 𝜉), 𝑥0(·) = 𝑥0(·; 𝑡0, 𝑥0, 𝑠(·, 𝜉));

𝐼𝑡0,𝑥0(𝑠(·, 𝜉)) = 𝑧(𝑡0, 𝜉).

Using equality (4.12) for the Hamiltonians 𝐻(𝑡, 𝑥, 𝑝) and H(𝑡, 𝑥, 𝑝) in Ω0 × 𝑃0,
Remark 1 and Assertion 3, one can obtain equivalence for the value function to
problem (4.1)-(4.2) and the minimax solution to problem (2.1) in the domain Ω0.

Following schemes of proofs in [5] we obtain necessary and sufficient conditions
for the minimax solution 𝜙(𝑡, 𝑥) to problem (2.1).
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Theorem 2. If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ Ω0, then 𝜙(𝑡0, 𝑥0) =
𝑉 (𝑡0, 𝑥0)

min
(𝑓,𝑔)∈𝐹 (𝑡0,𝑥0)

[︂
𝑑±𝜙(𝑡0, 𝑥0)

1, 𝑓
+ 𝑔

]︂
= 0, (4.17)

where

𝐹 (𝑡0, 𝑥0) = co {(𝐷𝑝𝐻(𝑡0, 𝑥0, 𝑝), 𝐻
*(𝑡0, 𝑥0, 𝐷𝑝𝐻(𝑡0, 𝑥0, 𝑝))) : 𝑝 ∈ 𝑃0}.

Corollary 1 and the necessary optimality conditions in Assertion 4 provide the
representative formula for the minimax solution 𝜙(·, ·) in Ω0.

Theorem 3. If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ Ω0, then

𝜙(𝑡0, 𝑥0) = 𝑉 (𝑡0, 𝑥0) = min
𝜉:�̃�(𝑡0,𝜉)=𝑥0

𝑧(𝑡0, 𝜉), (4.18)

where �̃�(·, 𝜉), 𝑠(·, 𝜉), 𝑧(·, 𝜉) are characteristics (3.1)-(3.2).

5 Structure of the minimax solution

The section contains some assertions followed from the theory of generalized solu-
tions to HJB’s [10, 11] and new tools to the nonsmooth analysis.

Assertion 5. Let assumptions 𝐴1–𝐴3 be true, (𝑡0, 𝑥0) ∈ (0, 𝑇 ) × 𝑅𝑛. The
minimax solution 𝜙(𝑡, 𝑥) to problem (2.1) is not differentiable at (𝑡0, 𝑥0), iff there
exist such 𝜉1, 𝜉2 ∈ R𝑛, 𝜉1 ̸= 𝜉2 that

�̃�(𝑡, 𝜉1) = �̃�(𝑡, 𝜉2) = 𝑥, 𝑧(𝑡, 𝜉1) = 𝑧(𝑡, 𝜉2) = 𝜙(𝑡, 𝑥), 𝑠(𝑡, 𝜉1) ̸= 𝑠(𝑡, 𝜉2). (5.1)

Assertion 6. If assumptions 𝐴1-𝐴3 are valid and the state space is one-
dimensional, then all points of nondifferentiability of the minimax solution 𝜙(𝑡, 𝑥)
lie on not more than countable number of lines 𝑡→ 𝑥*(𝑡) : 0 6 𝑡* < 𝑡 6 𝑇 satisfying
the Rankine-Hugoniot condition:

𝑑𝑥*(𝑡)

𝑑𝑡
=
𝐻(𝑡, 𝑥*(𝑡), 𝐷+𝜙(𝑡, 𝑥*(𝑡)))−𝐻(𝑡, 𝑥*(𝑡), 𝐷−𝜙(𝑡, 𝑥*(𝑡)))

𝐷+𝜙(𝑡, 𝑥*(𝑡))−𝐷−𝜙(𝑡, 𝑥*(𝑡))
, (5.2)

𝐷+𝜙(𝑡, 𝑥*(𝑡)) = lim
𝑥→𝑥*(𝑡)+0

𝐷𝜙(𝑡, 𝑥),

𝐷−𝜙(𝑡, 𝑥*(𝑡))) = lim
𝑥→𝑥*(𝑡)−0

𝐷𝜙(𝑡, 𝑥),

and the inequality
𝐷−𝜙(𝑡, 𝑥*(𝑡))) < 𝐷+𝜙(𝑡, 𝑥*(𝑡)))
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is valid.
We introduce the new tool to nonsmooth analysis.
Definition 4. The set 𝜕𝜓ℎ ⊂ 𝑅𝑚 is called the partial subdifferential of the

function 𝜓(·) at the point 𝑦 in the direction ℎ if the set has the form

𝜕𝜓ℎ(𝑦) = co{𝜉 ∈ 𝑅𝑚 : 𝜉 = lim
𝑦𝑘→𝑦

𝐷𝜓(𝑦𝑘)}.

Here 𝐷𝜓(𝑦𝑘) are the gradients of the function 𝜓(·) at points 𝑦𝑘 :

lim sup
𝛿𝑘↓0

𝑦𝑘 − 𝑦 − ℎ𝛿𝑘
𝛿𝑘

= 0.

Theorem 4. If assumptions 𝐴1–𝐴3 are true, (𝑡0, 𝑥0) ∈ (0, 𝑇 )× 𝑅𝑛, and there
exist such characteristics �̃�(·, 𝜉*), 𝑠(·, 𝜉*), 𝑧(·, 𝜉*) to problem (2.1) that �̃�(𝑡0, 𝜉*) = 𝑥0,
and the following relations hold for all 𝑡 ∈ [𝑡0, 𝑇 ](︁

−𝐻(𝑡, �̃�(𝑡, 𝜉*), 𝑠(𝑡, 𝜉*)), 𝑠(𝑡, 𝜉*)
)︁
∈ 𝜕𝑉ℎ(𝑡)(𝑡, �̃�(𝑡, 𝜉*)), (5.3)

ℎ(𝑡) = (1, 𝐷𝑥𝐻(𝑡, �̃�(𝑡, 𝜉*), 𝑠(𝑡, 𝜉*))),

then the minimax solution to problem (2.1) satisfies the equalities

𝜙(𝑡0, 𝑥0) = 𝑧(𝑡0, 𝜉*) = min
𝜉:�̃�(𝑡0,𝜉)=𝑥0

𝑧(𝑡0, 𝜉).

Proof. According to Theorem 1 and 2, for any (𝑡0, 𝑥0) ∈ (0, 𝑇 ) × 𝑅𝑛, the
minimax solution 𝜙(𝑡, 𝑥) to problem (2.1) coinsides with the value function 𝑉 (𝑡, 𝑥)
to an auxiliary optimal control problem (4.1)-(4.2) in a domain Ω0 ∋ (𝑡0, 𝑥0). We
show, that the derivative in the direction 𝐷𝑠𝐻(𝑡, 𝑥, 𝑠) of the function 𝑉 equals 0.
It is essential and sufficient condition of optimality.

According to the formula, proved in the work [6], the inequalities are valid

min
(𝛼,𝑝)∈𝜕1,ℎ𝑉 (𝑡,𝑥)

⟨(𝛼, 𝑝), (1, ℎ)⟩ 6 𝑑−𝑉 (𝑡, 𝑥)

1, ℎ
6
𝑑+𝑉 (𝑡, 𝑥)

1, ℎ
6 max

(𝛼,𝑝)∈𝜕1,ℎ𝑉 (𝑡,𝑥)
⟨(𝛼, 𝑝), (1, ℎ)⟩.

Consider the expression

⟨(𝛼, 𝑝), (1, ℎ)⟩, (𝛼, 𝑝) ∈ 𝜕1,ℎ𝑉 (𝑡, 𝑥), ℎ = 𝐷𝑠𝐻(𝑡, 𝑥, 𝑠).

Remind that

𝛼 = lim
𝑘→∞

−𝐻(𝑡𝑘, 𝑥𝑘, 𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘)), 𝑝 = lim
𝑘→∞

𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘).
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Then

⟨(𝛼, 𝑝), (1, ℎ)⟩ = lim
𝑘→∞

−𝐻(𝑡𝑘, 𝑥𝑘, 𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘)) + ⟨𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘), ℎ⟩.

Note that −𝐻(𝑡𝑘, 𝑥𝑘, 𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘)) + ⟨𝐷𝑥𝑉 (𝑡𝑘, 𝑥𝑘), ℎ⟩ = 0, because 𝑡𝑘, 𝑥𝑘 are the
points of differentiability of function 𝑉 .

This theorem gives sufficient optimality conditions for the case of lipschitz con-
tinuous data.

Theorem 2 and theorem 4 imply the assertion.
Corollary 2. If assumptions 𝐴1–𝐴3 are true, then a local lipschits continuous

function 𝜙(·) : Π𝑇 → 𝑅 coincides with the minimax solution 𝜙(𝑡, 𝑥) to problem
(2.1) iff

𝜙(𝑇, 𝑥) = 𝜎(𝑥), ∀𝑥 ∈ 𝑅𝑛,

min
𝑓∈𝑅𝑛

min
(𝑝,𝛼)∈𝜕ℎ𝜙(𝑡,𝑥)

⟨𝑓, 𝑝⟩ − 𝛼−𝐻*(𝑡, 𝑥, 𝑓) = 0,

where ℎ = (1, 𝑓).
The presented results are suitable for numerical methods of constructing the

minimax solution 𝜙 to problem (2.1).

6 Example

Consider boundary Cauchy problem for Hamilton—Jacobi—Bellman equation:

𝑢𝑡 − (
√︀

1 + 𝑢2𝑥) = 0, 𝑢(2, 𝑥) = −𝑥
2

2
, 𝑡 ∈ [0, 2].

We construct the characteristic system for this problem

˙̃𝑥(𝑡) = − 𝑠√
1 + 𝑠2

, ˙̃𝑠(𝑡) = 0, ˙̃𝑧(𝑡) =
1√

1 + 𝑠2
,

with boundary condition

�̃�(𝑇, 𝜉) = 𝜉, 𝑠(𝑇, 𝜉) = −𝜉, 𝑧(𝑇, 𝜉) = −𝜉2/2.

The solution of the characteristic system has the form

�̃�(𝑡) = −𝑠(𝑡− 𝑇 )√
1 + 𝑠2

+ 𝜉, 𝑠(𝑡) = −𝜉, 𝑧(𝑡) = (𝑡− 𝑇 )√
1 + 𝑠2

− 𝜉2

2
.
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The singular set for the minimax solution

(𝑡, 𝑥) = {𝑥 = 0, 0 6 𝑡 < 1}.

Figure 1. The surface base the characteristics �̃�(𝑡), 𝑧(𝑡)
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Abstract. Metric regularity is a property for single as well as for set-valued map-
pings, which is connected with a certain Lipschitz behaviour of the solution map to
generalized equations. Even though such property possesses a purely metric nature,
it captures a so deep circle of phenomena to become soon a reference condition in
a wide veriety of topics in optimization, control theory, nonlinear and variational
analysis. The present note reports on some recent attempts to study robustness
properties of metric regularity, i.e. its persistence in the presence of perturbations,
in a purely metric setting.

1 Introduction

According to [1, 2], a mapping 𝐹 : 𝑋 −→ 2𝑌 between metric spaces (𝑋, 𝑑) and
(𝑌, 𝑑) is said to be metrically regular on 𝑈 × 𝑉 , with 𝑈 ⊆ 𝑋 and 𝑉 ⊆ 𝑌 , if there
exist constants 𝜅 > 0 and 𝛾 > 0 such that

dist (𝑥, 𝐹−1(𝑦)) 6 𝜅 dist (𝑦, 𝐹 (𝑥)), ∀(𝑥, 𝑦) ∈ 𝑈 × 𝑉 : dist (𝑦, 𝐹 (𝑥)) 6 𝛾, (1.1)

where dist (𝑥, 𝑆) denotes the distance from a point 𝑥 to a set 𝑆. Clearly inequal-
ity (1.1) provides an estimation of the distance from 𝑥 to the solution set to the
generalized equation 𝐹 (𝑥) ∋ 𝑦. A triggering achievement of modern variational
analysis was the understanding that the phenomenon captured by metric regular-
ity has deep connections with open covering and Lipschitz behaviour (alias Aubin
continuity) of multifunctions. In one form or another, such phenomenon arises in
a wide variety of situations, not only as a desirable feature that mappings may
happen to possess, but also as a requirement enabling the employment of powerful
techniques of analysis such as implicit function theorems and penalization methods
in constrained optimization, constraint qualification in deriving optimality condi-
tions, qualification conditions in subdifferential calculus, controllability of systems
in control theory (see [1, 2]). Recently metric regularity has been also exploited
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to study differential equations (see [3]) and linked to fixed and coincidence point
theory (see [4]).

The present contribution is focussed on the analysis of stability properties
of metric regularity in the presence of perturbations. Such theme of research,
which is motivated both by theoretical reasons and real-world applications (data
of generalized equations are often subject to imprecise measurements and er-
ror/approximations) can be traced back to the very foundation of functional anal-
ysis. Indeed, the so-called Banach lemma on the invertible linear operators can be
clearly regarded as a stability result, subsequently extended in several directions.

The aim of the investigations here reported is to tackle a crucial problem arisen
in the current theory: since metric regularity, despite its relevant role in more
structured settings, has a purely metric nature, it seems to be natural to conduct
a perturbation stability analysis free from any reference to linear structures. The
approach here adopted has been inspired by a research line proposed by A.V. Aru-
tyunov et al. in [3].

2 Global results

Definition 1 A mapping 𝐹 : 𝑋 −→ 2𝑌 between metric spaces is said to be globally
metrically regular if there exists 𝜅 > 0 such that

dist (𝑥, 𝐹−1(𝑦)) 6 𝜅 dist (𝑦, 𝐹 (𝑥)), ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌.

The infimum over all values 𝜅 satisfying the above inequality, called modulus of
global metric regularity of 𝐹 , is denoted by reg𝐹 , with the convention that reg𝐹 =
+∞ indicates the failure of such property.

It turns out that global metric regularity can be equivalently reformulated in
terms of global openness at a linear rate, in the sense that 𝐹 is globally metrically
regular iff there exists 𝑎 > 0 such that 𝐹 (𝐵(𝑥, 𝑟)) ⊇ 𝐵(𝐹 (𝑥), 𝑎𝑟), ∀𝑥 ∈ 𝑋, 𝑟 > 0.
Another equivalent reformulation of the same property can be given in terms of Lip-
schitz continuity for the inverse 𝐹−1 mapping to 𝐹 , requiring the existence of 𝑙 > 0
such that haus (𝐹−1(𝑦1), 𝐹

−1(𝑦2)) 6 𝑙 𝑑(𝑦1, 𝑦2), ∀𝑦1, 𝑦2 ∈ 𝑌, where haus (𝐴,𝐵)
stands for the Hausdorff distance of sets 𝐴 and 𝐵. The infimum of all values 𝑙
satisfying the above inequality is called modulus of Lipschitz continuity of 𝐹−1 on
𝑌 and will be denoted by lip (𝐹−1). To complement the equivalence between metric
regularity and Lipschitz continuity for the inverse in the global case one has the fol-
lowing quantitative relation reg𝐹 = lip (𝐹−1). According to the Banach-Schauder
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theorem (alias the open mapping principle) and its modern generalizations, impor-
tant examples of globally regular mappings acting in Banach spaces are for instance

— all bounded epimorphisms (linear and onto operators);
— all convex processes, i.e. set-valued mappings whose graph is a convex cone,

which are onto.

In order to analyze stability properties of metric regularity in a metric space
setting, general perturbations of mappings are formalized by means of mappings
ℋ : 𝑋 × 𝑌 −→ 2𝑌 acting on 𝐹 , in such a way that the correspondingly perturbed
mapping 𝐹ℋ : 𝑋 −→ 2𝑌 is defined by

𝐹ℋ(𝑥) = ℋ(𝑥, 𝐹 (𝑥)) =
⋃︁

𝑦∈𝐹 (𝑥)

ℋ(𝑥, 𝑦). (2.1)

By proper specializations of ℋ in more structured contexts, it possible to obtain
various known types of perturbations, such as additive perturbations, product per-
turbations, enlargement perturbations, composition perturbations. Given a closed-
valued mapping 𝐹 , the class of all ℋ such that the perturbed mapping 𝐹ℋ is both
closed-valued and upper semicontinuous (for short, u.s.c.) is denoted by A(𝐹 ). Be-
low a perturbation stability result for global metric regularity is provided, which
needs no reference to any linear structure.

Theorem 1 Let 𝐹 : 𝑋 −→ 2𝑌 be a mapping between metric spaces and let
ℋ ∈ A(𝐹 ). Suppose that:

i) (𝑋, 𝑑) is complete;
ii) 𝐹 is globally regular with modulus reg𝐹 ;
iii) ℋ(·, 𝑦) is Lipschitz on 𝑋 with modulus lip𝑋 ℋ, uniformly in 𝑦 ∈ 𝑌 ;
iv) ℋ(𝑥, ·) is globally regular with modulus reg𝑌 ℋ, uniformly in 𝑥 ∈ 𝑋.

Then, if reg𝐹 · reg𝑌 ℋ < 1/lip𝑋 ℋ, also 𝐹ℋ is globally metrically regular and

reg𝐹ℋ 6
reg𝐹 · reg𝑌 ℋ

1− reg𝐹 · reg𝑌 ℋ · lip𝑋 ℋ
.

Theorem 1 has been established in its open covering reformulation in [5] (see
Theorem 3.1). Its proof is based on a variational technique relying on the Ekeland
principle, which allows to avoid the use of iterative schemes connected with Newton
type methods.
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Among the consequences of Theorem 1, it is worth mentioning the following
set-valued generalization of Milyutin theorem, a fundamental result in the analysis
of perturbation stability of metric regularity for nonlinear mappings (see [6]):

Corollary 1 Let 𝐹 : 𝑋 −→ 2𝑌 and 𝐻 : 𝑋 −→ 2𝑌 be set-valued mappings between
metric spaces. Suppose that:

i) (𝑋, 𝑑) is complete and (𝑌, 𝑑) is a linear metric space, whose metric is invariant
with respect to translations;

ii) 𝐹 is u.s.c. on 𝑋 and metrically regular;
iii) 𝐻 is compact-valued and it is Lipschitz continuous on 𝑋, with modulus such

that lip𝐻 · reg𝐹 < 1.
Then the sum mapping 𝐹 +𝐻 is still globally regular and it holds

reg (𝐹 +𝐻) 6
reg𝐹

1− lip𝐻 · reg𝐹
.

Another result stemming from Theorem 1 is the following:

Corollary 2 Let 𝐹 : 𝑋 −→ 2𝑌 and 𝐻 : 𝑌 −→ 2𝑌 be set-valued mappings between
metric spaces. Suppose that:

i) (𝑋, 𝑑) is complete;
ii) 𝐹 and 𝐻 are both u.s.c. on 𝑋 and 𝑌 , respectively;
iii) 𝐹 and 𝐻 are both globally metricaly regular;

Then their composition 𝐻 ∘ 𝐹 is globally metrically regular with modulus reg (𝐻 ∘
𝐹 ) 6 reg𝐹 · reg𝐻.

Theorem 1 allows to expand in a metric space setting the concept of radius of
regularity.

Definition 2 Given a set-valued mapping 𝐹 : 𝑋 −→ 2𝑌 , let S ⊆ A(𝐹 ). The
quantity

radS(𝐹 ) = inf{𝜈(ℋ) : 𝑚𝑎𝑡ℎ𝑐𝑎𝑙𝐻 ∈ S, 𝑛𝑢(ℋ) <∞, 𝐹ℋ not globally regular},

where

𝜈(ℋ) =

{︃
lip𝑋 (ℋ) · reg𝑌 (ℋ), if reg𝑌 (ℋ), 𝑡𝑒𝑥𝑡𝑟𝑚𝑙𝑖𝑝𝑋 (ℋ) <∞,

+∞, otherwise,
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is called radius of global regularity of 𝐹 with respect to perturbations in S.

The next result, again stemming from Theorem 1, provides a one-side estimation
for the radius of global regularity in terms of modulus of metric regularity.

Proposition 1 Let 𝐹 : 𝑋 −→ 2𝑌 be a set-valued mapping between metric spaces,
with (𝑋, 𝑑) complete, and let S ⊆ A(𝐹 ). If 𝐹 is globally regular, then

radS(𝐹 ) >
1

reg𝐹
=

1

lip (𝐹−1)
.

3 Local results

When considering in a local sense the property defined by inequality (1.1), as it
will be done in the next definition, the stability analysis can not be conducted
simply by localizing results achieved for global metric regularity. For instance, a
counterexample is known, which makes vain any effort to extend Milyutin theorem
to the case of multifunctions additively perturbed by set-valued locally Lipschitz
mappings. In what fallows, only single-valued mappings will be considered.

Definition 3 A mapping 𝐹 : 𝑋 −→ 𝑌 between metric spaces is said to be metrically
regular near �̄� ∈ 𝑋 if there exist positive constants 𝜅, 𝛿 and 𝜁 such that

dist (𝑥, 𝐹−1(𝑦)) 6 𝜅 dist (𝑦, 𝐹 (𝑥)), ∀𝑥 ∈ 𝐵(�̄�, 𝛿), ∀𝑦 ∈ 𝐵(𝐹 (�̄�), 𝜁).

The infimum of 𝜅 over all such combinations of 𝜅, 𝛿 and 𝜁 satisfying the above
inequality is called local modulus of metric regularity of 𝐹 near �̄� and denoted by
reg𝐹 (�̄�).

As one expexts, such property can be characterized in terms of local open cov-
ering of 𝐹 . What changes with respect to the global case is the corresponding
Lipschitz behaviour of 𝐹−1, that turns out to be essentially weakened. It requires
the introduction of a generalization of Lipschitz continuity for set-valued mappings,
known as Lipschitz-likness (or Aubin continuity), which plays a major role in sev-
eral topics of variational analysis (see [1, 2]). In fact a mapping 𝐹 : 𝑋 −→ 𝑌 is
metrically regular near �̄� iff 𝐹−1 is Lipschitz-like near (𝐹 (�̄�), �̄�), namely there exist
positive constants 𝛿, 𝜁 and 𝑙 such that

𝐹−1(𝑦2) ∩𝐵(�̄�, 𝛿) ⊆ 𝐵(𝐹−1(𝑦1), 𝑙𝑑(𝑦1, 𝑦2)), ∀𝑦1, 𝑦2 ∈ 𝐵(𝐹 (�̄�), 𝜁).
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Given a mapping 𝐹 : 𝑋 −→ 𝑌 and a point �̄�, the set of all perturbations
ℋ : 𝑋 × 𝑌 −→ 𝑌 such that the resulting perturbed mapping 𝐹ℋ : 𝑋 −→ 𝑌 ,
defined as in (2.1), is continuous in a neighbourhood of �̄� is denoted by A(𝐹, �̄�).
Then a local counterpart of Theorem 1 can be stated as follows:

Theorem 2 Let 𝐹 : 𝑋 −→ 𝑌 be a mapping between metric spaces, and let �̄� ∈ 𝑋
and 𝑦 = 𝐹 (�̄�). Given any ℋ ∈ A(𝐹, �̄�), suppose that:

i) (𝑋, 𝑑) is metrically complete;
ii) 𝐹 is continuous at �̄� and it is metricaly regular near �̄�;
iii) ℋ(·, 𝑦) is locally Lipschitz near �̄� with modulus lipℋ(�̄�), uniformly in 𝑦 ∈

𝐵(𝑦, 𝜁), for some 𝜁 > 0;
iv) ℋ(𝑥, ·) is globally metrically regular with modulus reg𝑌 ℋ, uniformly in

𝑥 ∈ 𝐵(�̄�, 𝛿), for some 𝛿 > 0.
Then, if reg𝐹 (�̄�) · reg𝑌 ℋ < 1/lip𝑋 ℋ(�̄�), also 𝐹ℋ is metrically regular near �̄� and

reg𝐹ℋ(�̄�) 6
reg𝐹 (�̄�) · reg𝑌 ℋ

1− reg𝐹 (�̄�) · reg𝑌 ℋ · lip𝑋 ℋ(�̄�)
.

Let us mention some interesting applications of Theorem 2.

Corollary 3 Let 𝐹 : 𝑋 −→ 𝑌 be a mapping between metric spaces, let ℎ : 𝑋 −→
(0,+∞) be a positive functional, and let �̄� ∈ 𝑋. Suppose that:

i) (𝑋, 𝑑) is complete and (𝑌, 𝑑) is a linear metric space, whose metric is invariant
with respect to translations and is positively homogeneous of degree one;

ii) 𝐹 is metrically regular near �̄� and it is continuous around �̄�;
iii) ℎ is locally Lipschitz near �̄�, with modulus lipℎ(�̄�), and there exists 𝛿ℎ > 0

such that
inf

𝑥∈𝐵(�̄�,𝛿ℎ)
ℎ(𝑥) > lipℎ(�̄�) · reg𝐹 (�̄�)𝑑(𝐹 (�̄�),0),

where 0 denotes the null element of 𝑌 . Then, the product mapping ℎ𝐹 is metrically
regular near �̄� with modulus

reg (ℎ𝐹 )(�̄�) 6
reg𝐹 (�̄�)

inf𝑥∈𝐵(�̄�,𝛿ℎ) ℎ(𝑥)− reg𝐹 (�̄�)lipℎ(�̄�)𝑑(𝐹 (�̄�),0)
.

As a further application of Theorem 2, one can easily obtain the following
Lyusternik-Graves type theorem, which is valid in linear metric spaces:
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Corollary 4 Let 𝐹 : 𝑋 −→ 𝑌 be a mapping between metric spaces. Suppose that:
i) (𝑋, 𝑑) is complete and (𝑌, 𝑑) is a linear metric space, whose metric is invariant

with respect to translations;
ii) 𝐹 is continuous near �̄�;
iii) 𝐺 : 𝑋 −→ 𝑌 is metrically regular near �̄� and such that

lip (𝐹 −𝐺)(�̄�) < 𝜖, with 𝜖 ∈ (0, 1/reg𝐺(�̄�)).

Then 𝐹 is metrically regular near �̄�.

From Corollary 4 several nonsmooth versions of the celebrated Lyusternik theo-
rem1 follow as a special case. They provide full characterizations of metric regularity
of mappings acting in Banach spaces in terms of covering properties of certain first-
order approximations (generalized derivatives) (see [2]). The concept of radius of
regularity can be adapted to the local case as follows:

Definition 4 Given a mapping 𝐹 : 𝑋 −→ 𝑌 and �̄� ∈ 𝑋, let S ⊆ A(𝐹, �̄�). The
quantity radS𝐹 (�̄�) = inf{𝜈(ℋ, �̄�) : ℋ ∈ S, 𝜈(ℋ, �̄�) < ∞, 𝐹ℋ not regular near �̄�},
where

𝜈(ℋ, �̄�) =

{︃
lip𝑋 ℋ(�̄�) · reg𝑌 ℋ, if reg𝑌 ℋ, lip𝑋 ℋ(�̄�) <∞,

+∞, otherwise,

is called radius if regularity of 𝐹 near �̄� with respect to perturbations in S.

As a local counterpart of the estimation expressed by Proposition 1, one has:

Proposition 2 Let 𝐹 : 𝑋 −→ 𝑌 be a mapping between metric spaces, with (𝑋, 𝑑)
complete, let �̄� ∈ 𝑋, and let S ⊆ A(𝐹, �̄�). If 𝐹 is regular near �̄� and it is continuous
at �̄�, then

radS𝐹 (�̄�) >
1

reg𝐹 (�̄�)
. (3.1)

Remark 1 Note that, whenever 𝐹 is a mapping between Banach spaces and S is
the class of all additive perturbations defined by locally Lipschitz (single-valued)
mappings, then radS𝐹 (�̄�) reduces to the radius of regularity as introduced in [7].
If, in particular, both the spaces are finite-dimensional, it has been proved that

1a nonlinear local generalization of the Banach-Schauder theorem to smooth mappings, which
allows to get an algebraic characterization of the tangent space to smooth manifolds.
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estimation (3.1) becomes an equality, whereas this is not generally true for infinite-
dimensional spaces. Nevertheless, it is worth mentioning that results restoring
the validity of the exact estimation for radS𝐹 (�̄�) has been achieved for set-valued
mappings acting from Asplund1 to finite-dimensional spaces under the so-called
coderivative normality assumption (see, for more details, [2]).
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Abstract. We investigated conformal foliations (𝑀,𝐹 ) of codimension 𝑞 > 3 and
proved a criterion for them to be Riemannian. In particular, the application of this
criterion allowed us to proof the existence of an attractor that is a minimal set for
each non-Riemannian conformal foliation. Moreover, if foliated manifold is compact
then non-Riemannian conformal foliation (𝑀,𝐹 ) is (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation with
finitely many minimal sets. They are all attractors, and each leaf of the foliation
belongs to the basin of at least one of them. The specificity of the proper conformal
foliations is indicated. Special attention is given to complete conformal foliations.

1 Introduction

The goal of this work is to present recent results of the author [1,2] on the investi-
gation of the structure of conformal foliations.

1.1 The Lichnerowicz Conjecture

Remind that two Riemannian metrics ℎ and 𝑔 on a manifold M are called confor-
mally equivalent if there exists a positive smooth function 𝑓 on 𝑀 with ℎ = 𝑓𝑔.
Each class [𝑔] of conformally equivalent Riemannian metrics is named a conformal
structure on 𝑀 , and the pair (𝑀, [𝑔]) is said to be a conformal manifold.

Recall that a diffeomorphism 𝑓 : 𝑁1 → 𝑁2 between Riemannian manifolds
(𝑁1, 𝑔1) and (𝑁2, 𝑔2) is named conformal if there exists a smooth function 𝜆 on
𝑁1 with 𝑓*𝑔2 = 𝜆𝑔1. A conformal diffeomorphism 𝑓 from a Riemannian manifold
(𝑁, 𝑔) to (𝑁, 𝑔) is also said to be a conformal transformation.

The group of conformal transformations of a Riemannian manifold (𝑀, 𝑔) is
called inessential if it is a group of isometries of a Riemannian manifold (𝑀,ℎ)
with ℎ ∈ [𝑔]. Otherwise, the group is called essential.

The work was partially supported by the Russian Foundation of Basic Research (grant
10-01-00457).
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Lichnerowicz put forth the conjecture that for 𝑛 > 3 every 𝑛-dimensional com-
pact Riemannian manifold admitting an essential group of conformal transforma-
tions is the standard 𝑛-dimensional sphere 𝑆𝑛.

The articles by Obata [3], Alekseevskii [4,5], Ferrand [6] and others are devoted
to proving this conjecture.

It was established also that if the group of conformal transformations of a non-
compact Riemannian manifold𝑀 is essential then M is the n-dimensional Euclidean
space. In 1996 Ferrand [6] gave a complete proof of the Lichnerowicz conjecture
including the case of noncompact manifolds.

1.2 Conformal Foliations

Vaisman [7] introduced the conformal foliations (𝑀,𝐹 ) as foliations admitting a
transversal conformal structure.

Suppose that given are:
1) 𝑛-dimensional manifold 𝑀 and a possibly disconnected 𝑞-dimensional mani-

fold 𝑁 , where 0 < 𝑞 < 𝑛;
2) an open cover {𝑈𝑖 | 𝑖 ∈ 𝐽} of 𝑀 ;
3) submersions 𝑓𝑖 : 𝑈𝑖 → 𝑉𝑖 with connected fibres, 𝑉𝑖 ⊂ 𝑁 ,
and if 𝑈𝑖∩𝑈𝑗 ̸= ∅, then there exists conformal diffeomorphism 𝛾𝑖𝑗 : 𝑓𝑗(𝑈𝑖∩𝑈𝑗) →

𝑓𝑖(𝑈𝑖 ∩ 𝑈𝑗) such that 𝑓𝑖 = 𝛾𝑖𝑗 ∘ 𝑓𝑗 on 𝑈𝑖 ∩ 𝑈𝑗 .
Maximal, with respect to inclusion, 𝑁 -cocycle {𝑈𝑖, 𝑓𝑖, 𝛾𝑖𝑗}𝑖,𝑗∈𝐽 enjoying these

properties determines a new topology on 𝑀 , whose base is the set of leaves of all
submersions 𝑓𝑖. This topology is called the leaf topology, denoted by 𝜏 .

The path-connected components of the topological space (𝑀, 𝜏) form a parti-
tion 𝐹 = {𝐿𝛼 |𝛼 ∈ 𝐴} of 𝑀 , and (𝑀,𝐹 ) is named the foliation with leaves 𝐿𝛼
determined by the 𝑁 -cocycle {𝑈𝑖, 𝑓𝑖, 𝛾𝑖𝑗}𝑖,𝑗∈𝐽 .

Definition 1. A codimension 𝑞 > 3 smooth foliation (𝑀,𝐹 ) is called confor-
mal if (𝑀,𝐹 ) is determined by an 𝑁 -cocycle {𝑈𝑖, 𝑓𝑖, 𝛾𝑖𝑗}𝑖,𝑗 ∈ 𝐽 , and 𝑁 admits a
Riemannian metric 𝑔 such that each 𝛾𝑖𝑗 is the local conformal diffeomorphism of
the corresponding open subsets.

If each 𝛾𝑖𝑗 is an isometry, then (𝑀,𝐹 ) is named a Riemannian foliation.

Let 𝐶𝑜𝑛𝑓(𝑆𝑞) be the Lie group of all the conformal transformations of the
𝑞-dimensional sphere 𝑆𝑞.

Definition 2. If a foliation (𝑀,𝐹 ) is defined by 𝑁 -cocycle {𝑈𝑖, 𝑓𝑖, 𝛾𝑖𝑗}𝑖,𝑗∈𝐽 ,
where

— 𝑁 = 𝑆𝑞 and
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— each 𝛾𝑖𝑗 is a restriction of a transformation 𝑓 ∈ 𝐶𝑜𝑛𝑓(𝑆𝑞),
then refer to (𝑀,𝐹 ) as a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation.

1.3 The Tarquini – Frances Question

Tarquini [8] and then Frances and Tarquini [9] posed the following question about
conformal foliations:

Is every codimension 𝑞 > 3 conformal foliation on a compact manifold either a
Riemannian foliation or a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation?

They refer to the positive answer to this question as the foliated analogous of
the Lichnerowicz Conjecture.

As known, for 𝑞 > 3 a conformal foliation is a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation if and
only if it is transversally conformally flat.

Frances and Tarquini [9] gave a positive answer to this question under some
additional assumptions.

1.4 Attractors and Minimal Sets of Foliations

Let (𝑀,𝐹 ) be a foliation. A saturated set is a union of leaves.

Definition 3. A nonempty closed saturated subset ℳ of 𝑀 is said to be an at-
tractor of a foliation (𝑀,𝐹 ) if there exists a saturated open neighbourhood 𝐴𝑡𝑡𝑟(ℳ)
of ℳ such that the closure of every leaf from 𝐴𝑡𝑡𝑟(ℳ) includes ℳ. The set
𝐴𝑡𝑡𝑟(ℳ) is named a basin of this attractor. If an addition 𝐴𝑡𝑡𝑟(ℳ) =𝑀 then ℳ
is called a global attractor.

Definition 4. A minimal set of a foliation (𝑀,𝐹 ) is a nonempty closed satu-
rated subset of 𝑀 without proper subsets enjoying these properties.

In mathematical encyclopedia Anosov [10] said that the study of minimal sets
is one of the fundamental problems in the topological dynamics, hence also in the
qualitative theory of foliations.

1.5 Results

We consider conformal foliations as Cartan foliations and use the construction of
principal foliated bundle. Thanks this we apply the results of our previous works [11,
12]. In the foliation theory the germ holonomy groups are usually used. By analogy
to [12] we gave different interpretations for the germ holonomy group of a leaf of
a conformal foliation (Theorem 1).
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We proved a criterion for conformal foliation to be Riemannian (Theorem 2).
Application of this criterion and some results on local conformal geometry allowed us
to prove the existence of an attractor for every non-Riemannian conformal foliation
of codimension 𝑞 > 2 (Theorem 4).

As known ( [13, 14]), there are smooth foliations on non-compact manifolds
without minimal sets. We proved that any non-Riemannian conformal foliation of
codimension 𝑞 > 2 on noncompact manifold has the minimal set that is an attractor
of this foliation (Corollary 1).

We also described the structure of conformal foliations (𝑀,𝐹 ) in the cases when:
1) the foliated manifold 𝑀 is compact (Theorem 5);
2) these foliations are complete (Theorem 6);
3) foliations (𝑀,𝐹 ) are proper (Theorem 7).

1.6 The Positive Answer to the Frances — Tarquini Question
and a Proof of the Conjecture of Ghys

— Theorem 5 implies the positive answer to the Frances — Tarquini question
about conformal foliations on compact manifolds.

— Deroin and Kleptsyn [15] indicated that all known examples of a transversely
conformal foliation having a diffuse transversely invariant measure have a trans-
verse metric which is transversely invariant. According [15], for transversely
conformal foliations this has been conjectured by Ghys. A proof of this con-
jecture for conformal foliations of codimension 𝑞 > 3 (in the conforming class
of the smoothness) follows from Theorem 5.

Notations

— Let 𝐺 = 𝐶𝑜𝑛𝑓(𝑆𝑞) be the Lie group of all conformal transformations of the
𝑞-dimensional sphere 𝑆𝑞 and 𝐻 be the stabilizer in 𝐺 of an arbitrary point of
𝑆𝑞. Then 𝐻 is a semidirect product of a conformal group 𝐶𝑂(𝑞) = 𝑅+ ·𝑂(𝑞)
and the group 𝑅𝑞.

— The Lie group 𝐻 is isomorphic to the the Lie group 𝑆𝑖𝑚(𝐸𝑞) of all conformal
transformations of the 𝑞-dimensional Euclidean space 𝐸𝑞.

— We assume here that 𝑞 > 3.

2 A criterion for a conformal foliation to be Riemannian

2.1 The Foliated Bundle of a Conformal Foliation

The construction of a foliated bundle was essentially used. Foliated bundles were
introduced in works of Molino and Kamper – Tondeur.
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Remark that any conformal foliation may be considered as Cartan foliation of
the type (𝐺,𝐻), where 𝐺 = 𝐶𝑜𝑛𝑓(𝑆𝑞) is the Lie group of all conformal transfor-
mations of 𝑆𝑞 and 𝐻 be the stabilizer in 𝐺 of an arbitrary point of 𝑆𝑞.

Let g, h are the Lie algebras of the Lie groups 𝐺 and 𝐻, respectively. Then we
have the following statement [11].

Proposition 1. Let (𝑀,𝐹 ) be a conformal foliation of codimension 𝑞 > 3.
Then the following objects are defined:

1) a principal 𝐻-bundle 𝜋 : ℛ →𝑀 ;
2) an 𝐻-invariant foliation (ℛ,ℱ) which 𝜋 transforms into (𝑀,𝐹 );
3) a g-valued 1-form 𝜔 on ℛ with the properties:
(i) 𝜔(𝐴*) = 𝐴 for any 𝐴 ∈ h, where 𝐴* is the fundamental vector field corre-

sponding to 𝐴;
(ii) 𝑅*

𝑎𝜔 = 𝐴𝑑𝐺(𝑎
−1)𝜔 for any 𝑎 ∈ 𝐻, where 𝐴𝑑𝐺 is the adjoint representation

of the Lie group 𝐺 in its Lie algebra g;
(iii) the Lie derivative 𝐿𝑋𝜔 vanishes for every vector field 𝑋 tangent to the

leaves of (ℛ,ℱ).

The 𝐻-bundle 𝜋 : ℛ →𝑀 is said to be foliated. The foliation (ℛ,ℱ) is named
a lifted foliation, and (ℛ,ℱ) is a transversally parallelizable foliation, i.e., an 𝑒-
foliation.

Definition 5. A conformal foliation (𝑀,𝐹 ) of codimension 𝑞 > 3 is said to be
complete, if so is the associated lifted 𝑒-foliation (ℛ,ℱ), i.e., if complete is every
vector field 𝑋 on ℛ such that 𝜔(𝑋) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

2.2 Interpretations of the Holonomy Groups of a Conformal Foliation

An application of the foliated 𝐻-bundle over a conformal foliation (𝑀,𝐹 ) allowed
us gave the following important interpretations of the holonomy groups of leaves.

Theorem 1. Let (𝑀,𝐹 ) be an arbitrary conformal foliation of codimension
𝑞 > 3 and 𝜋 : ℛ → 𝑀 be the projection of the foliated 𝐻-bundle over (𝑀,𝐹 ) with
lifted foliation (ℛ,ℱ). For each leaf 𝐿 = 𝐿(𝑥) of (𝑀,𝐹 ) consider the leaf ℒ = ℒ(𝑢),
where 𝑢 ∈ ℛ, 𝜋(𝑢) = 𝑥, of the lifted foliation (ℛ,ℱ). Then the germ holonomy
group Γ(𝐿, 𝑥) of 𝐿 is isomorphic to the following groups:

— the subgroup 𝐻(ℒ) := {𝑎 ∈ 𝐻 |𝑅𝑎(ℒ) = ℒ} of 𝐻;
— the group of deck transformations of the regular covering 𝜋|ℒ : ℒ → 𝐿.

If in conditions of the Theorem 1 we consider an other point 𝑢′ ∈ 𝜋−1(𝑥) and
the leaf ℒ′ = ℒ′(𝑢′), then the group 𝐻(ℒ′) must be conjugated to 𝐻(ℒ) in 𝐻.
Therefore, the following definition makes sense.
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Definition 6. Refer to the holonomy group of a leaf 𝐿 of a conformal foliation
as relatively compact or inessential if the corresponding subgroup 𝐻(ℒ) of the Lie
group 𝐻 is relatively compact. Otherwise the holonomy group of a leaf is called
essential.

2.3 When a Conformal Foliation is a Riemannian one?

Thanks to well-known works of Reinhart, Molino, Haefliger, Salem, Carriere and
other authors, now Riemannian foliations form the most investigated class of folia-
tions with transverse geometric structure. Hence it is very significant to know when
a smooth foliation is Riemannian.

We established the following criterion for a conformal foliation to be Riemann-
ian.

Theorem 2. If (𝑀,𝐹 ) is a codimension 𝑞 > 3 conformal foliation modeled
on a conformal geometry (𝑁, [𝑔]), then there exists of a Riemannian metric 𝑑 ∈ [𝑔]
such that (𝑀,𝐹 ) is a Riemannian foliation modeled on (𝑁, 𝑑) if and only if every
holonomy group of this foliation be relatively compact.

Corollary 1. If a conformal foliation (𝑀,𝐹 ) is not Riemannian then it has a
leaf with essential holonomy group.

3 The Existence of Attractors of Conformal Foliations

3.1 A closure of a Leaf with Essential Holonomy Group

The following two theorems were proved without the assumptions of compactness of
foliated manifolds and completeness of conformal foliations. In proof of Theorem 3
we considered and applied a conformal geometry on non-Hausdorff manifolds.

Theorem 3. If (𝑀,𝐹 ) is a non-Riemannian conformal foliation of codimen-
sion 𝑞 > 3, then:

(i) for each leaf 𝐿 with essential holonomy group the closure �̄� = ℳ is an
attractor, while

— either ℳ is a minimal set
— or ℳ includes a closed leaf that is also an attractor;

(ii) the union 𝐾 of the closures of all leaves with essential holonomy group is a
closed saturated subset of 𝑀, and (𝑀∖𝐾,𝐹𝑀∖𝐾) is a Riemannian foliation.

According to Corollary 1 any conformal non-Riemannian foliation has a leaf 𝐿
with essential holonomy group. Therefore by Theorem 3 the closure ℳ := �̄� is an
attractor of conformal foliation (𝑀,𝐹 ). Thus we have the following assertion.
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Theorem 4. Each codimension 𝑞 > 3 conformal foliation (𝑀,𝐹 )

— either is Riemannian
— or has an attractor ℳ that is the closure ℳ = �̄� of a leaf 𝐿 with essential

holonomy group, and the restriction of the foliation to the attraction basin
(𝒜𝑡𝑡𝑟(ℳ), 𝐹 ) is a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation.

Theorems 3 and 4 imply the following statement.

Corollary 2. Each codimension 𝑞 > 3 non-Riemannian conformal foliation
has a minimal set that is an attractor of this foliation.

3.2 Conformal Foliations on Compact Manifolds

The notion of Ehresmann connection was introduced by Blumenthal and Hebda [16].
It belongs to differential topology. Using an Ehresmann connection we constructed
a "trap for the leaves" in the proof of the following assertion for conformal foliations.

Proposition 2. Let ℳ be a compact minimal set of a conformal foliation
(𝑀,𝐹 ), and all leaves from ℳ have inessential holonomy group. Then each open
neighbourhood 𝒲 of ℳ includes a saturated open neighbourhood V consisting of
leaves with inessential holonomy group.

This proposition was essentially used in the proof of Theorem 5.

Theorem 5. Every codimension 𝑞 > 3 conformal foliation (𝑀,𝐹 ) on a com-
pact manifold 𝑀 is

— either a complete Riemannian foliation, and the closure of every leaf is a min-
imal set which is an embedded submanifold of 𝑀 ,

— or a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation with finitely many minimal sets. They are all
attractors formed by the closures of leaves with essential holonomy group, and
each leaf of the foliation belongs to the basin of at least one of them.

4 Global Attractors of Complete Conformal Foliations

Denote by 𝑆𝑖𝑚(𝐸𝑞) the Lie group of all conformal transformations of the Euclidean
space 𝐸𝑞. The group 𝑆𝑖𝑚(𝐸𝑞) is equal to a semidirect product of the conformal
Lie group 𝐶𝑂(𝑞) and the normal subgroup 𝑅𝑞.

Definition 7. A foliation (𝑀,𝐹 ) defined by 𝑁 -cocycle {𝑈𝑖, 𝑓𝑖, 𝛾𝑖𝑗}𝑖,𝑗∈𝐽 is said
to be transversally similar or a (𝑆𝑖𝑚(𝐸𝑞), 𝐸𝑞)-foliation if 𝑁 = 𝐸𝑞 and each 𝛾𝑖𝑗 is a
restriction of a similar transformation from the group 𝑆𝑖𝑚(𝐸𝑞).
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Theorem 6. Let (𝑀,𝐹 ) be a complete conformal foliation of codimension 𝑞 >
3. Then one of the following three possibilities is realized:

1) the foliation (𝑀,𝐹 ) is Riemannian, and the closure of each its leaf forms a
minimal set that is an embedded submanifold of 𝑀 ;

2) (𝑀,𝐹 ) is a transversally similar foliation. It has a global attractor ℳ that
is a minimal set containing all leaves with essential holonomy group;

3) (𝑀,𝐹 ) is a (𝐶𝑜𝑛𝑓(𝑆𝑞), 𝑆𝑞)-foliation with a global attractor ℳ, and ℳ is ei-
ther one or two leaves of this foliation or else ℳ is nontrivial minimal set coincided
with the closure of every leaf having essential holonomy group.

Moreover, in the cases 2) and 3) the restriction (𝑀0, 𝐹0) of 𝐹 onto 𝑀0 :=𝑀∖ℳ
is a Riemannian foliation, and the closure of any leaf 𝐿 ⊂𝑀0 in 𝑀 is equal to the
union ℳ∪ℒ of ℳ and a closed submanifold ℒ coincided with the closure of 𝐿 in
𝑀0.

Corollary 3. If a complete conformal non-Riemannian foliation has a minimal
set ℳ different from a closed leaf, then ℳ is a global attractor of this foliation.

Remark 1. Minimal sets of complete transversally similar foliations were in-
vestigated by the author in [11]. In particular, there we found conditions guaranteed
for the global attractor of a complete transversally similar foliation (𝑀,𝐹 ) to be a
smooth submanifold of 𝑀 .

5 Specificity of Proper Conformal Foliations

Definition 8. A foliation (𝑀,𝐹 ) is called proper if all its leaves are embedded
submanifolds of 𝑀 . A leaf 𝐿 is called closed if 𝐿 is a closed subset of 𝑀 .

Emphasize that every minimal set of a proper foliation coincides with a closed leaf.
Hence as application of Theorem 3 we have the following assertion.

Corollary 4. Each proper of codimension 𝑞 > 3 non-Riemannian conformal
foliation has a closed leaf with essential holonomy group that is an attractor of this
foliation.

Theorem 7. Any complete proper conformal foliation (𝑀,𝐹 ) of codimension
𝑞 > 3 has a structure of one of the following types:

— (𝑀,𝐹 ) is a transversally complete proper Riemannian foliation with closed
leaves and its leaf space is a smooth 𝑞-dimensional orbifold;

— (𝑀,𝐹 ) is a complete proper non-Riemannian transversally similar foliation.
There exists a unique closed leaf 𝐿0, and 𝐿0 is a global attractor and has an
essential holonomy group;
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— the foliation (𝑀,𝐹 ) is not transversally similar. There exists a global attractor
ℳ that coincides with one or two leaves of (𝑀,𝐹 ). The restriction (𝑀0, 𝐹0)
of 𝐹 onto the dense open subset 𝑀0 :=𝑀∖ℳ is a Riemannian foliation, and
the leaf space 𝑀0/𝐹0 admits a structure of 𝑞-dimensional smooth orbifold. The
closure of any leaf 𝐿 ⊂𝑀0 is equal to the union ℳ∪ 𝐿.

Remark 2. As Weil foliations form a subclass of conformal foliations, so in
the case of codimension 𝑞 > 3 the main results for Weil foliations [17] follow from
Theorems 6 and 7.

Examples of conformal foliations with different kinds of attractors are con-
structed by the method of suspension of a group homomorphism.
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Abstract. Article is devoted to comparing the two criteria for complete observ-
ability of linear differential-algebraic system. The method of cascade splitting the
original space to the subspace are used. The formula for finding the state vector are
derived. The relation between input and output functions are obtained. The article
also involves the specify the conditions of the well-known criteria of observability.

1 Introduction

Here is considered the differential-algebraic system of observation:

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴𝑥(𝑡) + 𝑓(𝑡), (1.1)

𝐹 (𝑡) = 𝐵𝑥(𝑡), (1.2)

where 𝐵 : 𝑅𝑛 → 𝑅𝑚, 𝐴 : 𝑅𝑛 → 𝑅𝑛, 𝑥(𝑡) ∈ 𝑅𝑛, 𝑓(𝑡) ∈ 𝑅𝑛, 𝐹 (𝑡) ∈ 𝑅𝑚.
The vector-function 𝑥(𝑡) called the state of the system, 𝑓(𝑡) input and 𝐹 (𝑡)

output functions, respectively.
System (1.1), (1.2) is called completely observable if the system state (by

known input 𝑓(𝑡) and output 𝐹 (𝑡) functions) at any time is uniquely determined.
Formulation of problem of the complete observability problem for the dynamical

system are connected with the name of R. Kalman.
The complete observability of the different systems were studied in the works of

Krasovskii N.N, Popov V.M., Lee E.B. and Markus L.M., D’Anzhelo, Andreev J.N.,
Gurman V.I., Kvanernaak X. and Sivan R., Asmykovich I.K. and MarchenkoV.M.,
Campbell S.L., Cobb J.D., Koumboulis F.N. и Mertziоs B.G., Yip E.L. и Sincovec
R.F., Paraskevopoulos P.N., Sheglova A.A., etc.

For linear time-invariant systems as a rule consider the case of a regular pencil
(𝐵 − 𝜆𝐼).
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At the moment are known a lot of criteria complete observability for the system
(1.1), (1.2).

One of them [1]:
Criterion (A).
The system (1.1), (1.2) is completely observable if and only if the system:

𝐵𝐴𝑖𝑧 = 0, 𝑖 = 0, 𝑛 (1.3)

has only the trivial solution 𝑧.
It‘s known ([1], [2]) that the system (3) contains excessive amounts of relations.

However, the exact number (𝑙) hasn’t been determined.
Here will be formulated new criterion (B) of the complete observability of the

system;
two criteria ((A) and (B)) will be compared;
the exact number of relations in the system (3) of the well-known criterion (A)

will be set.

2 Proof of the criterion (B)

In the study of complete observability of system (1.1), (1.2) we use the method of
cascade decomposition of the original space. This method was used by the authors
to investigate the full observability and complete controllability of dynamical sys-
tems ([3] – [5]). From initial system (1.1), (1.2) we turn to equivalent systems in
the subspaces.

Next decompositions are correspond to the matrix 𝐵:

𝑅𝑛 = 𝐾𝑒𝑟𝐵+̇𝐼𝑚𝐵*, 𝑅𝑚 = 𝐾𝑒𝑟𝐵*+̇𝐼𝑚𝐵, (2.1)

where:
𝐼𝑚𝐵 - is a set of values 𝐵 in 𝑅𝑚,
𝐾𝑒𝑟𝐵 - is a set of solutions of eq. 𝐵𝑥(𝑡) = 0 in 𝐼𝑚𝑅𝑛,
𝐼𝑚𝐵* - is a direct complement to the subspace 𝐾𝑒𝑟𝐵,
𝐾𝑒𝑟𝐵* - is a direct complement to the subspace 𝐼𝑚𝐵.
Through 𝑃 (𝐵) and 𝑄(𝐵) denote the projections on the subspaces 𝐾𝑒𝑟𝐵 and

𝐾𝑒𝑟𝐵*, respectively.
Through (𝐼 − 𝑃 (𝐵)) and (𝐼 − 𝑄(𝐵)) denote the projections on the subspaces

𝐼𝑚𝐵* and 𝐼𝑚𝐵, respectively. 𝐼 - identity matrix in the appropriate space.
The restriction �̃� to the subspace 𝐼𝑚𝐵* carries a one-one correspondence be-

tween subspaces 𝐼𝑚𝐵* and 𝐼𝑚𝐵, respectively.
We introduce 𝐵− - the semi-inverse matrix: 𝐵− = �̃�−(𝐼 −𝑄(𝐵)).
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Equation (1.2) of the original system is equivalent to the system:

𝑄(𝐵)𝐹 (𝑡) = 0, (2.2)

𝑥(𝑡) = 𝐵−𝐹 (𝑡) + 𝑥1(𝑡), (2.3)

with an arbitrary vector function 𝑥1(𝑡) = 𝑃 (𝐵)𝑥(𝑡) ∈ 𝐾𝑒𝑟𝐵.
Here are three possible cases:
1) 𝐵 = 0. Equation (1.2) has the form: 𝐹 (𝑡) = 0.
The state-function 𝑥(𝑡) (here it’s the solution of the differential equation (1.1))

is not uniquely.
System (1.1), (1.2) is unobservable.
2) The matrix 𝐵 - is injective (𝑃 (𝐵) = 0).
The state-function 𝑥(𝑡) is uniquely defined by the formula:

𝑥(𝑡) = 𝐵−𝐹 (𝑡). (2.4)

The system (1.1), (1.2) is completely observable.
Taking into account the formula (2.4), the equation (1.1) takes the form:

𝐵−𝐹 (𝑡)

𝑑𝑡
= 𝐴𝐵−𝐹 (𝑡) + 𝑓(𝑡). (2.5)

This is the ratio of "input-output" – the 𝑓(𝑡) input and 𝐹 (𝑡) output functions
should satisfy of this connection.

3) 𝐵 ̸= 0 and 𝐾𝑒𝑟𝐵 ̸= {0}.
We substitute (2.3) in (1.1) and "split" it into 2 equations.
The first equation in the subspace 𝐾𝑒𝑟𝐵:

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑃 (𝐵)𝐴𝑥1(𝑡) + 𝑃 (𝐵)(𝐴𝐵−𝐹 (𝑡) + 𝑓(𝑡)). (2.6)

The second equation in the subspace 𝐼𝑚𝐵*:

𝐵−𝐹 (𝑡)

𝑑𝑡
− (𝐼 − 𝑃 (𝐵))(𝐴𝐵−𝐹 (𝑡) + 𝑓(𝑡)) = (𝐼 − 𝑃 (𝐵))𝐴𝑥.1(𝑡). (2.7)

Denote:
𝐴1 = 𝑃 (𝐵)𝐴𝑃 (𝐵) : 𝐾𝑒𝑟𝐵 → 𝐾𝑒𝑟𝐵,

𝐵1 = (𝐼 − 𝑃 (𝐵))𝐴𝑃 (𝐵) : 𝐾𝑒𝑟𝐵 → 𝐼𝑚𝐵*,
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𝑓1(𝑡) = 𝑃 (𝐵)(𝐴𝐵−𝐹 (𝑡) + 𝑓(𝑡)) ∈ 𝐾𝑒𝑟𝐵,

𝐹1(𝑡) =
𝑑𝐵−𝐹 (𝑡)

𝑑𝑡
− (𝐼 − 𝑃 (𝐵))(𝐴𝐵−𝐹 (𝑡) + 𝑓(𝑡)) ∈ 𝐼𝑚𝐵*.

The system (2.6), (2.7) now takes the form:

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝐴1𝑥1(𝑡) + 𝑓1(𝑡), (2.8)

𝐹1(𝑡) = 𝐵1𝑥1(𝑡). (2.9)

System (1.1), (1.2) is equivalent to (2.2), (2.3), (2.8) (2.9).
Next decompositions are correspond to the matrix 𝐵1 : 𝐾𝑒𝑟𝐵 → 𝐼𝑚𝐵*:

𝐾𝑒𝑟𝐵 = 𝐾𝑒𝑟𝐵1+̇𝐼𝑚𝐵
*, 𝐼𝑚𝐵* = 𝐾𝑒𝑟𝐵*

1+̇𝐼𝑚𝐵,

where:
𝐼𝑚𝐵2 - is a set of values 𝐵1 in 𝐼𝑚𝐵*,
𝐾𝑒𝑟𝐵1 - is a set of solutions of eq. 𝐵1𝑥1(𝑡) = 0,
𝐼𝑚𝐵*

1 - is a direct complement to the subspace 𝐾𝑒𝑟𝐵1,
𝐾𝑒𝑟𝐵*

1 - is a direct complement to the subspace 𝐼𝑚𝐵1.
Through 𝑃 (𝐵1) and 𝑄(𝐵1) denote the projections on the subspaces 𝐾𝑒𝑟𝐵1 and

𝐾𝑒𝑟𝐵*
1 , respectively.

Through (𝐼 −𝑃 (𝐵1)) and (𝐼 −𝑄(𝐵1)) denote the projections on the subspaces
𝐼𝑚𝐵*

1 and 𝐼𝑚𝐵1, respectively.
𝐼 - identity matrix in the appropriate space.
The restriction �̃�1 to the subspace 𝐼𝑚𝐵*

1 carries a one-one correspondence be-
tween subspaces 𝐼𝑚𝐵*

1 and 𝐼𝑚𝐵1, respectively.
We introduce 𝐵−

1 - the semi-inverse matrix: 𝐵−
1 = �̃�−

1 (𝐼 −𝑄(𝐵1)).
Equation (2.9) is equivalent to the system:

𝑄(𝐵1)𝐹1(𝑡) = 0, (2.10)

𝑥1(𝑡) = 𝐵−
1 𝐹 (𝑡) + 𝑥2(𝑡), (2.11)

with an arbitrary vector function 𝑥2(𝑡) = 𝑃 (𝐵1)𝑥1(𝑡) ∈ 𝐾𝑒𝑟𝐵1.
Here are three possible cases:
1) 𝐵1 = 0. Equation (2.9) has the form: 𝐹1(𝑡) = 0.
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The state-function 𝑥1(𝑡) (here it’s the solution of the differential equation (2.8)
is not uniquely. System (2.8), (2.9) is unobservable.

The state-function 𝑥(𝑡) of the system (1.1), (1.2) is not uniquely too.
The system (1.1), (1.2) is also unobservable.
2) The matrix 𝐵1 - injective (𝑃 (𝐵1) = 0).
Function of the state 𝑥1(𝑡) is uniquely defined by the formula:

𝑥1(𝑡) = 𝐵−
1 𝐹 (𝑡). (2.12)

The system (2.8) ,(2.9) is completely observable.
The state-function 𝑥(𝑡) of the system (1.1), (1.2) is uniquely defined by the

formula:
𝑥(𝑡) = 𝐵−𝐹 (𝑡) +𝐵−

1 𝐹1(𝑡). (2.13)

The system (1.1), (1.2) is completely observable too.
Taking into account the formula (2.13), the equation (1.1) takes the form of

ratio "input-output" between the input and output functions of the system (1.1),
(1.2).

3) 𝐵1 ̸= 0 and 𝐾𝑒𝑟𝐵1 ̸= {0}.
Continue the process of splitting cascade.
Denote:

𝐴2 = 𝑃 (𝐵1)𝐴1𝑃 (𝐵1) : 𝐾𝑒𝑟𝐵1 → 𝐾𝑒𝑟𝐵1,

𝐵2 = (𝐼 − 𝑃 (𝐵1))𝐴1𝑃 (𝐵1) : 𝐾𝑒𝑟𝐵1 → 𝐼𝑚𝐵*
1 ,

𝑓2(𝑡) = 𝑃 (𝐵1)(𝐴1𝐵
−
1 𝐹1(𝑡) + 𝑓1(𝑡)) ∈ 𝐾𝑒𝑟𝐵1,

𝐹1(𝑡) =
𝑑𝐵−

1 𝐹1(𝑡)
𝑑𝑡 − (𝐼 − 𝑃 (𝐵1))(𝐴1𝐵

−
1 𝐹1(𝑡) + 𝑓1(𝑡)) ∈ 𝐼𝑚𝐵*

1 .

(2.14)

From the system (2.8), (2.9) goes to an equivalent set of conditions (2.10), (2.11)
and the system:

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝐴2𝑥2(𝑡) + 𝑓2(𝑡), (2.15)

𝐹2(𝑡) = 𝐵2𝑥2(𝑡). (2.16)

Here again, only three cases:
1) 𝐵2 = 0;
2) 𝐾𝑒𝑟𝐵2 = {0};
3) 𝐵2 ̸= 0 and 𝐾𝑒𝑟𝐵2 ̸= {0}.
The original space has finite dimension, so the process of splitting cascade is

fully realized in a finite (equal to 𝑝, 𝑝 6 𝑛) the number of steps.
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Thus, for 𝑝 steps from the system (1.1), (1.2) we goes to an equivalent set of
conditions:

𝑥(𝑡) =
𝑖−2∑︁
𝑖=0

𝐵−
𝑖 𝐹𝑖(𝑡) + 𝑥𝑖−1(𝑡), (2.17)

𝑥𝑖−1(𝑡) = 𝐵−
𝑖−1𝐹𝑖−1(𝑡) + 𝑥𝑖(𝑡), (2.18)

𝑄(𝐵𝑖−1)𝐹𝑖−1(𝑡) = 0, 𝑖 = 0, 𝑝 (2.19)

and the system:
𝑥𝑝(𝑡)

𝑑𝑡
= 𝐴𝑝𝑥𝑝(𝑡) + 𝑓𝑝(𝑡), (2.20)

𝐹𝑝(𝑡) = 𝐵𝑝𝑥𝑝(𝑡). (2.21)

Here, the functions and the matrix coefficients are given by (2.14), replacing the
corresponding indices and 𝐵0 = 𝐵, 𝐵−

0 = 𝐵−, 𝐹0(𝑡) = 𝐹 (𝑡).
In this latter 𝑝-th step can only be two possibilities:
1) 𝐵𝑝 = 0. Equation (24) has the form: 𝐹𝑝(𝑡) = 0.
The state-function 𝑥𝑝(𝑡) (here it’s the solution of the differential equation (2.20)

is not uniquely. System (2.20), (2.21) is unobservable.
The state-function 𝑥(𝑡) of the system (1.1), (1.2) is not uniquely too.
The system (1.1), (1.2) is also unobservable.
2) 𝐾𝑒𝑟𝐵𝑝 = {0}. Equation (24) is equivalent to the system (2.18), (2.19) with

𝑖 = 𝑝+ 1 and 𝑥𝑝+1(𝑡) = 0.
The state-function 𝑥𝑝(𝑡) is uniquely defined by the formula:

𝑥𝑝(𝑡) = 𝐵−
𝑝 𝐹𝑝(𝑡). (2.22)

The system (2.20), (2.21) is completely observable.
The state-function 𝑥(𝑡) of the system (1.1), (1.2) is uniquely defined by the

formula:

𝑥(𝑡) =

𝑝∑︁
𝑖=0

𝐵−
𝑖 𝐹𝑖(𝑡). (2.23)

The system (1.1), (1.2) is completely observable too.
Thus we prove
Criterion (B). The system (1.1), (1.2) is completely observable if and only if

there exists 𝑝 such that 𝐾𝑒𝑟𝐵𝑝 = {0}.
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Taking into account the formula (2.23), the equation (1.1) takes the form of ratio
"input-output" between the 𝑓(𝑡) input and 𝐹 (𝑡) output functions of the system
(1.1), (1.2).

3 The comparison of the two criteria

Theorem 1. Solutions of the system:

𝐵𝑧 = 0,

𝐵𝐴𝑧 = 0,

𝐵𝐴2𝑧 = 0,

...

𝐵𝐴𝑙𝑧 = 0, 𝑙 6 𝑛

(3.1)

are the elements of 𝑧 ∈ 𝐾𝑒𝑟𝐵𝑙 , and only them.
Proof. Solution of the equation 𝐵𝑧 = 0 is element 𝑧 = 𝑃 (𝐵)𝑧 ∈ 𝐾𝑒𝑟𝐵.
From the equation 𝐵𝐴𝑧 = 0 we obtain 𝐴𝑧 = 𝑃 (𝐵)𝐴𝑧 and (𝐼 − 𝑃 (𝐵))𝐴𝑧 = 0,

them (𝐼 − 𝑃 (𝐵))𝐴𝑃 (𝐵)𝑧 = 0 or 𝐵1𝑧 = 0. Therefore: 𝑧 = 𝑃 (𝐵1)𝑧 ∈ 𝐾𝑒𝑟𝐵1.
From the equatin 𝐵𝐴2𝑧 = 0 we obtain 𝐴2𝑧 = 𝑃 (𝐵)𝐴2𝑧 and(𝐼−𝑃 (𝐵))𝐴2𝑧 = 0,

then (𝐼 − 𝑃 (𝐵))𝐴𝑃 (𝐵)𝐴𝑧 = 0 or 𝐵1𝐴𝑧 = 0. Therefore 𝐴𝑧 = 𝑃 (𝐵1)𝐴𝑧, then
(𝐼−𝑃 (𝐵1))𝐴𝑧 = 0 and (𝐼−𝑃 (𝐵1))𝑃 (𝐵)𝐴𝑃 (𝐵)𝑃 (𝐵1)𝑧 = 0 or 𝐵2𝑧 = 0. Therefore:
𝑧 = 𝑃 (𝐵)𝑧 = 𝑃 (𝐵1)𝑧 = 𝑃 (𝐵2)𝑧.

And so on.
Just, we obtain: 𝑧 = 𝑃 (𝐵)𝑧 = 𝑃 (𝐵1)𝑧 = ... = 𝑃 (𝐵𝑙)𝑧 so 𝑧 ∈ 𝐾𝑒𝑟𝐵𝑙.
Transformations are equivalent.
It’s true: the element 𝑧 ∈ 𝐾𝑒𝑟𝐵𝑙 is a solution of the system (3.1).
That is, the condition of 𝐾𝑒𝑟𝐵𝑙 = {0} is equivalent to the condition: the system

(3.1) has a unique solution 𝑧 = 0.
Consequently, we prove the equivalence criterion (B) and the criterion (A).
The system (3.1) contains 𝑙+1 - conditions, the remaining 𝑚− 𝑙 conditions are

redundant.
Criterion (A) specifies the following.
Theorem 2.
Let 𝐾𝑒𝑟𝐵𝑝 = 0.
The system (1.1), (1.2) is completely observable if and only if from the condition

𝐵𝐴𝑖𝑧 = 0 (𝑖 = 0, 𝑝) should be 𝑧 = 0.
That is: 𝑙 = 𝑝.
The system (3.1) contains 𝑝+ 1 - conditions.
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V.2. Approximation theory and Fourier analysis

(Sessions organizers: Z. Ditzian, B. Kashin, S. Tikhonov)
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ON 𝐽𝐾-LACUNARY SEQUENCES OF RECTANGULAR PARTIAL
SUMS OF MULTIPLE FOURIER SERIES

I. Bloshanskii, O. Lifantseva

Key words: multiple trigonometric Fourier series, weak generalized localization
almost everywhere, lacunary sequence, sets of convergence and divergence

AMS Mathematics Subject Classification: 42B05

Abstract. We study multiple trigonometric Fourier series of functions 𝑓 in the
classes 𝐿𝑝(T𝑁 ), 𝑝 > 1, which equal zero on some set A, A ⊂ T𝑁 = [−𝜋, 𝜋]𝑁 , 𝑁 ≥ 3,
𝜇A > 0. We consider the case when rectangular partial sums of the indicated Fourier
series 𝑆𝑛(𝑥; 𝑓) have index 𝑛 = (𝑛1, . . . , 𝑛𝑁 ) ∈ Z𝑁 , in which 𝑘 (𝑘 ≥ 1) components
on the places {𝑗1, . . . , 𝑗𝑘} = 𝐽𝑘 ⊂ {1, . . . , 𝑁} are elements of (single) lacunary
sequences. A correlation is found of the number 𝑘 and location (the “sample” 𝐽𝑘)
of lacunary sequences in the index 𝑛 with structural and geometric characteristics
of A. This correlation determines possibility of convergence almost everywhere of
the considered series on some subset of positive measure A1 of the set A.

1 Discussion of the problem

Let A be an arbitrary measurable set, A ⊂ T𝑁 = [−𝜋, 𝜋]𝑁 , 𝜇A > 0 (𝜇 = 𝜇𝑁 is the
𝑁 -dimensional Lebesgue measure), and let 𝑓(𝑥) = 0 on A.

I. L. Bloshanskii [1,2] obtained the necessary and sufficient conditions on struc-
ture and geometry of A that guarantee convergence almost everywhere (a.e.) on
some subset of positive measure A1 of the set A of multiple trigonometric Fourier se-
ries (of functions 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑝 > 1, 𝑁 > 2, 𝑓(𝑥) = 0 on A) which are “classically”
summed over rectangles.

In the present paper we are investigating the same problem but in the case
when rectangular partial sums 𝑆𝑛(𝑥; 𝑓) of the indicated Fourier series have index
𝑛 = (𝑛1, . . . , 𝑛𝑁 ) ∈ Z𝑁 , in which 𝑘 (𝑘 > 1) components on the places {𝑗1, . . . , 𝑗𝑘} =

𝐽𝑘 ⊂ {1, . . . , 𝑁} are elements of (single) lacunary ({𝑛(𝑠)}, 𝑛(𝑠) ∈ Z1, such that
𝑛(𝑠+1)

𝑛(𝑠) > 𝑞 > 1, 𝑠 = 1, 2, . . . ) sequences (i.e. we consider multiple Fourier series
with 𝐽𝑘-lacunary sequence of partial sums).

This work is supported by grant 11-01-00321 of the Russian Foundation for Basic Research.
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2 Convergence of Fourier series

An a priori possibility to obtain new results in the case under investigation is
connected with the following results on convergence of one-dimensional and multiple
Fourier series with “lacunary sequence of partial sums”.

In the one-dimensional case A.N. Kolmogorov even in 1922 established: for any
function 𝑓 ∈ 𝐿2(T1) the sequence of partial sums 𝑆𝑛(𝑘)(𝑥; 𝑓) (where {𝑛(𝑘)}, 𝑛(𝑘) ∈
Z1, 𝑘 = 1, 2, . . . , is a lacunary sequence) converges a.e. on T1. In 1931 this result
was extended by J. Littlewood and R. Paley on the classes 𝐿𝑝(T1), 𝑝 > 1. 1 Later
R. Gosselin and V.Totik established that in 𝐿1(T1) this result is not valid.

For multiple series (i.e. for 𝑁 ≥ 2) the first result concerning “lacunary se-
quences of partial sums” was obtained by P. Sjölin in 1971 in his paper [3], where
he proved that if 𝑓 ∈ 𝐿𝑝(T2), 𝑝 > 1, and {𝑛(𝜈1)1 }, 𝑛(𝜈1)1 ∈ Z1, 𝜈1 = 1, 2, . . . , is a
single lacunary sequence, then lim

𝜈1, 𝑛2→∞
𝑆
𝑛
(𝜈1)
1 , 𝑛2

(𝑥; 𝑓) = 𝑓(𝑥) a.e. on T2. In 1977

M. Kojima [4] extended P. Sjölin’s result and proved that if 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑝 > 1,
𝑁 > 2, and {𝑛(𝜈𝑗)𝑗 }, 𝑛(𝜈𝑗)𝑗 ∈ Z1, 𝜈𝑗 = 1, 2, . . . , 𝑗 = 1, . . . , 𝑁 − 1, are single lacu-
nary sequences, then lim

𝜈1, ..., 𝜈𝑁−1, 𝑛𝑁→∞
𝑆
𝑛
(𝜈1)
1 ,...,𝑛

(𝜈𝑁−1)

𝑁−1 , 𝑛𝑁

(𝑥; 𝑓) = 𝑓(𝑥) a.e. on T𝑁 .

In the same paper M. Kojima (using Ch. Fefferman’s counterexample) ascertained
that the result formulated above can not be improved.

3 Setting of the problem

Let us return to the problem (mentioned above) to find the structural and geometric
characteristics of the set A, which guarantee convergence on some measurable subset
A1 ⊂ A of multiple Fourier series (of 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑝 > 1, 𝑓(𝑥) = 0 on A). It
is convenient to formulate and solve this problem in terms of weak generalized
localization a.e. (WGL), which was introduced and examined by I.L. Bloshanskii
(see, e.g., [1, 2]).

Definition 1. Let A, A ⊂ T𝑁 , 𝑁 > 2, be an arbitrary set of positive measure.
We will say, that for multiple Fourier series of functions in the class 𝐿𝑝(T𝑁 ), 𝑝 > 1,
weak generalized localization almost everywhere (WGL) is valid on the set A
if for any function 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑓(𝑥) = 0 on A, there exists a subset A1 ⊂ A,
𝜇A1 > 0, such that lim

𝑛→∞
𝑆𝑛(𝑥; 𝑓) = 0 almost everywhere on A1.

Let us introduce the following notation.

1 Here we must, naturally, mention results of 1966 by L. Carleson and 1967 by R.Hunt that
one-dimensional Fourier series of any function in 𝐿𝑝(T1), 𝑝 > 1, converges a.e. on T1.



On 𝐽𝑘-lacunary Sequences of Rectangular Partial Sums of Multiple . . . 259

Let 𝑀 = {1, . . . , 𝑁} and 𝑘 ∈𝑀 . Denote: 𝐽𝑘 = {𝑗1, ..., 𝑗𝑘}, 𝑗𝑠 < 𝑗𝑙 for 𝑠 < 𝑙, and
(in the case 𝑘 < 𝑁) 𝑀 ∖ 𝐽𝑘 = {𝑚1, . . . ,𝑚𝑁−𝑘}, 𝑚𝑠 < 𝑚𝑙 for 𝑠 < 𝑙, are nonempty
subsets of the set 𝑀 . Let us consider also that 𝐽0 = ∅ and 𝑀 ∖ 𝐽𝑁 = ∅. We
expand the space R𝑁 into the sum of two subspaces R[𝐽𝑘] and R[𝑀 ∖ 𝐽𝑘], where
R[𝐽𝑘] = {𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈ R𝑁 : 𝑥𝑗 = 0 for 𝑗 ∈ 𝑀 ∖ 𝐽𝑘}, and R[𝑀 ∖ 𝐽𝑘] = {𝑥 ∈
R𝑁 : 𝑥𝑗 = 0 for 𝑗 ∈ 𝐽𝑘}. Denote also T[𝐽𝑘] = {𝑥 ∈ R[𝐽𝑘] : −𝜋 6 𝑥𝑗 6 𝜋 for 𝑗 ∈ 𝐽𝑘}
and T[𝑀 ∖ 𝐽𝑘] = {𝑥 ∈ R[𝑀 ∖ 𝐽𝑘] : −𝜋 6 𝑥𝑗 6 𝜋 for 𝑗 ∈𝑀 ∖ 𝐽𝑘}.

Let Ω, Ω ⊂ T𝑁 , be an arbitrary (nonempty) open set, and Ω[𝐽2] = 𝑝𝑟(𝐽2){Ω}
be an orthogonal projection of Ω on the space R[𝐽2], 𝐽2 ⊂𝑀 .

Let 𝑁 > 3. Assume 𝑊 [𝐽2] = Ω[𝐽2]× T[𝑀 ∖ 𝐽2], 𝐽2 ⊂ 𝑀 . 1 The sets 𝑊 [𝐽2] we
will call the “𝑁 -dimensional bars”. Further, fix an arbitrary 𝐽𝑘 = 𝐽0

𝑘 , 0 6 𝑘 6 𝑁−2,
and consider the following sets (see also [5]): the set

𝑊 =𝑊 (𝐽𝑘) =𝑊 (Ω, 𝐽𝑘) =
⋃︁

𝐽2⊂𝑀∖𝐽0
𝑘

𝑊 [𝐽2] (1)

(which we will call the “complete 𝑁 -dimensional cross”, if 𝐽𝑘 = ∅, and “incomplete
𝑁 -dimensional cross” if 𝐽𝑘 ̸= ∅) and the set

𝑊 0 =𝑊 0(𝐽𝑘) =𝑊 0(Ω, 𝐽𝑘) =
⋂︁

𝐽2⊂𝑀∖𝐽0
𝑘

𝑊 [𝐽2] (2)

(which we will call the “center” of the corresponding “𝑁 -dimensional cross”).
Definition 2. We will say that a set 𝒜 is inscribed almost everywhere in a set

ℬ if 𝜇(𝒜 ∖ ℬ) = 0.
Definition 3. Let A ⊂ T𝑁 , 𝑁 > 3, and 𝐽𝑘 ⊂ 𝑀, 1 6 𝑘 6 𝑁 − 2, or

𝐽0 = ∅, 𝑘 = 0.

1. We will say that the set A possesses the property B(𝐽𝑘)
2 if there exists a set

𝑊 = 𝑊 (𝐽𝑘) of the type (1), which is inscribed a.e. in A, moreover, the property
B(𝐽𝑘)
2 is the property B(𝐽𝑘)

2 (𝑊 0) if 𝑊 =𝑊 (𝑊 0).
2. The property B(𝐽𝑘)

2 (𝑊 0) of the set A we will call the maximal property B(𝐽𝑘)
2

of the set A, if for any set ̃︁𝑊 0 = ̃︁𝑊 0(𝐽𝑘) of the type (2) such that 𝜇(̃︁𝑊 0 ∖𝑊 0) > 0,
the set A does not possess the property B(𝐽𝑘)

2 (̃︁𝑊 0).
Note that for 𝑘 = 0 the property B(𝐽0)

2 ≡ B(∅)
2 and the maximal property

B(𝐽0)
2 (𝑊 0(𝐽0)) ≡ B(∅)

2 (𝑊 0(∅)) coincide, correspondingly, with the property B2 and

1 In this case any vector 𝑧 = (𝑧1, . . . , 𝑧2𝑁 ) ∈ 𝐴 × 𝐵, where 𝐴 ⊂ R[𝐽𝑘], 𝐵 ⊂ R[𝑀 ∖ 𝐽𝑘], we
identify with vector 𝑥 = (𝑥1, . . . , 𝑥𝑁 ) ∈ R𝑁 by formula: 𝑥𝑠 = 𝑧𝑠 as 𝑠 ∈ 𝐽𝑘 and 𝑥𝑠 = 𝑧𝑁+𝑠 as
𝑠 ∈ 𝑀 ∖ 𝐽𝑘.
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the maximal property B2(𝑊
0), which were introduced and examined earlier in the

works of I.L. Bloshanskii (see, e.g., [1, 2]). Thus, in [2, Theorem 2]) the following
criterion for validity of WGL was obtained for multiple Fourier series of functions
in 𝐿𝑝(T𝑁 ), 𝑝 > 1, in terms of B2 property.

Denote as 𝑖𝑛𝑡𝑃 the set of interior points of the set 𝑃 ⊂ R𝑁 ; as 𝑃 the closure of
the set 𝑃 and as 𝐹𝑟 𝑃 the boundary of 𝑃 .

Let A be an arbitrary measurable set, A ⊂ T𝑁 , 𝑁 > 2, 0 < 𝜇A < (2𝜋)𝑁 ,
B = T𝑁 ∖ A. Consider the following conditions on the boundary of A:

1. 𝜇(B ∖ 𝑖𝑛𝑡B) = 0; (3)
2. 𝜇2𝐹𝑟 𝑝𝑟(𝐽2){𝑖𝑛𝑡B} = 0 for all 𝐽2 ⊂𝑀 , (4)

where 𝜇2 is the measure on the plane.
Theorem A. Let A be an arbitrary measurable set, A ⊂ T𝑁 , 𝑁 > 2, 𝜇A > 0,

and let A satisfy conditions (3), (4). Then on the set A in the class 𝐿𝑝(T𝑁 ),
𝑝 > 1, weak generalized localization almost everywhere is valid if and only if this set
possesses the property B2.

Remark 1. As it was established in [2], in the part of sufficiency Theorem A
is true without restrictions (3) and (4).

Remark 2. The set A ⊂ T2, possessing the property B2 (B(∅)
2 in terms of

Definition 3), is the set for which there exists an open set Ω, Ω ⊂ T2, such that
𝜇(Ω ∖ A) = 0 (see [1, 2]).

The question arises: what structural and geometric characteristics must an
arbitrary set A, A ⊂ T𝑁 , possess in order WGL be valid on this set for multiple
Fourier series summed over rectangles, in the case when some of the components 𝑛𝑗 ,
𝑗 ∈ 𝐽𝑘, of the index 𝑛, 𝑛 ∈ Z𝑁 , of the rectangular partial sum 𝑆𝑛(𝑥; 𝑓) are elements
of (single) lacunary sequences. In particular, to what extent these structural and
geometric characteristics of the set A remain “stable” when we vary the number 𝑘
and the location (i.e. the “sample” 𝐽𝑘) of the indicated lacunary sequences in the
index 𝑛?

4 Formulation of the basic result

Let 𝛼 = 𝛼(𝐽𝑘) = (𝛼𝑗1 , . . . , 𝛼𝑗𝑘) ∈ Z𝑘, 𝑗𝑠 ∈ 𝐽𝑘, 𝑠 = 1, . . . , 𝑘, 1 6 𝑘 6 𝑁 − 2. By
the symbol 𝑛(𝛼) = 𝑛(𝛼)[𝐽𝑘] = (𝑛1, . . . , 𝑛𝑁 ) ∈ Z𝑁 let us denote the 𝑁 -dimensional
vector whose components 𝑛𝑗 with the numbers 𝑗 ∈ 𝐽𝑘 are elements of some (single
infinitely large) sequences of numbers (for 𝑗 ∈ 𝐽𝑘 : 𝑛𝑗 = 𝑛

(𝛼𝑗)
𝑗 and 𝑛

(𝛼𝑗)
𝑗 → ∞ as

𝛼𝑗 → ∞). In particular, by the symbol 𝑛(𝜆) = 𝑛(𝜆)[𝐽𝑘] ∈ Z𝑁 (where 𝜆 = 𝜆(𝐽𝑘) =

(𝜆𝑗1 , . . . , 𝜆𝑗𝑘) ∈ Z𝑘, 𝑗𝑠 ∈ 𝐽𝑘, 𝑠 = 1, . . . , 𝑘) we will denote vector whose components
𝑛𝑗 , 𝑗 ∈ 𝐽𝑘, are elements of some (single) lacunary sequences.
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Theorem 1. Let A be an arbitrary set, A ⊂ T𝑁 , 𝑁 > 3, 0 < 𝜇A < (2𝜋)𝑁 ,
and let 𝐽𝑘 be an arbitrary “sample” from 𝑀 , 1 6 𝑘 6 𝑁 − 2. If the set A satisfies
conditions (3), (4′), where

𝜇2𝐹𝑟𝑝𝑟(𝐽2){𝑖𝑛𝑡B} = 0 for all 𝐽2 ⊂𝑀 ∖ 𝐽𝑘, (4′)

then on the set A in the class 𝐿𝑝(T𝑁 ), 𝑝 > 1, for multiple Fourier series whose rect-
angular partial sums 𝑆𝑛(𝑥; 𝑓) have index 𝑛 = 𝑛(𝜆)[𝐽𝑘] weak generalized localization
almost everywhere is valid if and only if the set A possesses the property B(𝐽𝑘)

2 .
Remark 3. In the part of sufficiency Theorem 1 is true without restrictions

(3), (4′).
Theorem 1 gives no information about those subsets A1 ⊂ A on which there

exists a limit of “𝐽𝑘-lacunary sequence of rectangular partial sums” 𝑆𝑛(𝜆)[𝐽𝑘]
(𝑥; 𝑓)

under the hypothesis 𝑓(𝑥) = 0 on A, and about those subsets on which such is
not the case. Therefore it is expedient to give a more extended formulation of this
theorem (adding the case 𝑘 = 0).

Theorem 1′. Let A be an arbitrary set, A ⊂ T𝑁 , 𝑁 > 3, 0 < 𝜇A < (2𝜋)𝑁 ,
and let 𝐽𝑘 ⊂𝑀 , 1 6 𝑘 6 𝑁 − 2, or 𝐽𝑘 = ∅ for 𝑘 = 0.

1. If there exists a set 𝑊 0 =𝑊 0(𝐽𝑘) of the type (2) such that the set A possesses
the property B(𝐽𝑘)

2 (𝑊 0), then for any function 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑝 > 1, such that 𝑓(𝑥) =
0 on A,

lim
𝜆𝑗→∞,𝑗∈𝐽𝑘,

𝑛𝑗→∞,𝑗∈𝑀∖𝐽𝑘

𝑆𝑛(𝜆)[𝐽𝑘]
(𝑥; 𝑓) = 0 almost everywhere on 𝑊 0.

Let, in addition, the set A satisfy conditions (3), (4′), then
2. If the property B(𝐽𝑘)

2 (𝑊 0) of the set A is the maximal property B(𝐽𝑘)
2 , then

there exists a function 𝑓1 ∈ 𝐿∞(T𝑁 ) such that 𝑓1(𝑥) = 0 on A, but for any 𝑘

sequences of numbers {𝑛(𝛼𝑗)
𝑗 }, 𝑗 ∈ 𝐽𝑘, 𝑛

(𝛼𝑗)
𝑗 → ∞ as 𝛼𝑗 → ∞, 1

lim
𝛼𝑗→∞,𝑗∈𝐽𝑘,

𝑛𝑗→∞,𝑗∈𝑀∖𝐽𝑘

|𝑆𝑛(𝛼)[𝐽𝑘]
(𝑥; 𝑓1)| = +∞ almost everywhere on T𝑁 ∖𝑊 0.

3. In particular, if the set A does not possess the property B(𝐽𝑘)
2 at all, then there

exists a function 𝑓2 ∈ 𝐿∞(T𝑁 ) such that 𝑓2(𝑥) = 0 on A, but for any 𝑘 sequences

1 In particular, all sequences {𝑛(𝛼𝑗)

𝑗 }, 𝑗 ∈ 𝐽𝑘, can be lacunary (in this case in our notation the
index of partial sums 𝑛 = 𝑛(𝜆)[𝐽𝑘]) or, for example (if 𝑁 > 4 and 𝑘 > 2), can be termwise equal
(i.e. 𝑛

(𝛼𝑗1
)

𝑗1
= · · · = 𝑛

(𝛼𝑗𝑘
)

𝑗𝑘
= 𝑛0).
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of numbers {𝑛(𝛼𝑗)
𝑗 }, 𝑗 ∈ 𝐽𝑘, 𝑛

(𝛼𝑗)
𝑗 → ∞ as 𝛼𝑗 → ∞,

lim
𝛼𝑗→∞,𝑗∈𝐽𝑘,

𝑛𝑗→∞,𝑗∈𝑀∖𝐽𝑘

|𝑆𝑛(𝛼)[𝐽𝑘]
(𝑥; 𝑓2)| = +∞ almost everywhere on T𝑁 .

Remark 4. Theorem 1′ for 𝑘 = 0 coincides with the “extended” formulation of
Theorem A (see [2, Theorem 2′]).

So, we see that for any 𝑘, 1 6 𝑘 6 𝑁 − 2, validity or invalidity of WGL for
multiple Fourier series (summed over rectangles) in the classes 𝐿𝑝, 𝑝 > 1, on the set
A ⊂ T𝑁 are defined by the structure and geometry of the set A, which, in its turn,
are defined by the property B(𝐽𝑘)

2 , where parameter 𝑘 is the number of “lacunary
components” of the vector 𝑛 ∈ Z𝑁 (the index of the partial sum 𝑆𝑛(𝑥; 𝑓)). 1

Remark 5. Comparing Theorem A (Theorem 1′ for 𝑘 = 0) and Theorem 1
(Theorem 1′ for 1 6 𝑘 6 𝑁 − 2), we see that for validity on the measurable set
A ⊂ T𝑁 , 𝑁 > 3, of WGL (for summed over rectangles multiple Fourier series of
function 𝑓 ∈ 𝐿𝑝, 𝑝 > 1, 𝑓(𝑥) = 0 on A) in the case when all components of the vector
𝑛 ∈ Z𝑁 – the index of the partial sum 𝑆𝑛(𝑥; 𝑓) – are “free”, some “more severe”
constraints must be posed on the set A, described by the property B2 (≡ B(∅)

2 ),
more severe than constraints on the same set in the case when some components of
the vector 𝑛 are lacunary.

Further, let us note that while (under the growth of 𝑘, 1 6 𝑘 6 𝑁 − 2) the
constraints on structural and geometric characteristics of the set A (described in
Theorem 1′ by the property B(𝐽𝑘)

2 of the set A) become “more mild”, the constraints
on the sequences of partial sums 𝑆𝑛(𝜆)[𝐽𝑘]

(𝑥; 𝑓) become “more severe”, remaining
“free” (non-lacunary) less and less components in the vector 𝑛 = 𝑛(𝜆)[𝐽𝑘] – the
index of the partial sum of the multiple Fourier series under consideration. And,
finally, in the “limiting case” (when only two components of the vector 𝑛 remain
free) “only” the following constraint must be imposed on the structure and geometry
of the set A: there must exist the “𝑁 - dimensional bar” 𝑊 [𝐽2] which is inscribed
a.e. in A.

Let us emphasize that if we decrease more the number of “free” components of
the vector 𝑛 = 𝑛(𝜆)[𝐽𝑘] (thus, reducing this number to one and, naturally, remaining
lacunary all the rest components), then, as it follows from the mentioned above
results of M. Kojima [4] and P. Sjolin [3], for validity of WGL on the set A in the

1 Let us emphasize, that for the fixed 𝐽𝑘 ⊂ 𝑀 the “𝑁 -dimensional bars” 𝑊 [𝐽2], 𝐽2 ⊂ 𝑀 ∖ 𝐽𝑘,
constructing the “incomplete cross” 𝑊 (𝐽𝑘) - (1) (which satisfies condition 𝜇(𝑊 (𝐽𝑘) ∖ A) = 0),
have the “bases” Ω[𝐽2] in those planes R[𝐽2], for which the corresponding components of the index
𝑛 ∈ Z𝑁 – components 𝑛𝑗 , 𝑗 ∈ 𝑀 ∖ 𝐽𝑘, are “free” (i.e., in particular, are not components of any
lacunary sequences).
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classes 𝐿𝑝, 𝑝 > 1, no restrictions should be imposed on A (in view of its structure
and geometry), except measurability.

The “expanded” Theorem 1′ permits to find a correlation between the structural
and geometric characteristics of the set A (described by the property B(𝐽𝑘)

2 of the
set A) and the “lacunarity” of sequence of partial sums 𝑆𝑛(𝑥; 𝑓) (described by the
number and location of the lacunary components in the vector 𝑛), which determine
possibility of convergence a.e. of the considered multiple Fourier series.

Remark 6. So, let the set A possess the property B(𝐽𝑘)
2 (𝑊 0(Ω, 𝐽𝑘)), 0 6 𝑘 6

𝑁 − 2, 𝑓 ∈ 𝐿𝑝(T𝑁 ), 𝑝 > 1, 𝑓(𝑥) = 0 on A, and let a partial sum 𝑆𝑛(𝑥; 𝑓) have
an index 𝑛, in which the components 𝑗 ∈ 𝐽𝑚, 0 6 𝑚 6 𝑁 − 2, are lacunary, i.e.
𝑛 = 𝑛(𝜆)[𝐽𝑚]. Then

1) if 𝐽𝑚 = 𝐽𝑘, then the sequence 𝑆𝑛(𝜆)[𝐽𝑚](𝑥; 𝑓) converges a.e. on 𝑊 0(Ω, 𝐽𝑘),
i.e.

lim
𝜆𝑗→∞,𝑗∈𝐽𝑚,

𝑛𝑗→∞,𝑗∈𝑀∖𝐽𝑚

𝑆𝑛(𝜆)[𝐽𝑚](𝑥; 𝑓) = 0 a.e. on 𝑊 0(Ω, 𝐽𝑘)

(lacunarity “corresponds” to the given structural and geometric characteristics of A);
2) if 𝐽𝑚 such that 𝐽𝑘 ̸⊆ 𝐽𝑚, then the sequence 𝑆𝑛(𝜆)[𝐽𝑚](𝑥; 𝑓) would not converge

(generally speaking) a.e. on 𝑊 0(Ω, 𝐽𝑘) (lacunarity is “insufficient” for the given
structural and geometric characteristics of A);

3) if 𝐽𝑚 such that 𝐽𝑘 ⊂ 𝐽𝑚, 𝑘 < 𝑚, then the limit of the sequence 𝑆𝑛(𝜆)[𝐽𝑚](𝑥; 𝑓)
exists, generally speaking, on the more wide set, i.e.

lim
𝜆𝑗→∞,𝑗∈𝐽𝑚,

𝑛𝑗→∞,𝑗∈𝑀∖𝐽𝑚

𝑆𝑛(𝜆)[𝐽𝑚](𝑥; 𝑓) = 0 a.e. on 𝑊 0(Ω, 𝐽𝑚) ⊇𝑊 0(Ω, 𝐽𝑘)

(lacunarity is “excessive” for the given structural and geometric characteristics of A).
And finally, let us indicate some generalization of Theorem 1 with the object of

weakening restrictions on the set A.
Theorem 2. Let A be an arbitrary measurable set, A ⊂ T𝑁 , 𝑁 > 3, 𝜇A > 0,

B = T𝑁 ∖ A, and let 𝐽𝑘 be an arbitrary “sample” from 𝑀 , 1 6 𝑘 6 𝑁 − 2. If there
exist a subset B1 ⊂ B and an open set Ω such that

1. 𝜇(B1△Ω) = 0; (5)

2. 𝜇2𝐹𝑟𝑝𝑟(𝐽2){Ω} = 0 for all 𝐽2 ⊂𝑀 ∖ 𝐽𝑘; (6)

3. 𝜇2𝑝𝑟(𝐽2){Ω} = 𝜇2𝑝𝑟(𝐽2){B} for all 𝐽2 ⊂𝑀 ∖ 𝐽𝑘, (7)

then on the set A in the class 𝐿𝑝(T𝑁 ), 𝑝 > 1, for multiple Fourier series whose
rectangular partial sums 𝑆𝑛(𝑥; 𝑓) have the index 𝑛 = 𝑛(𝜆)[𝐽𝑘], weak generalized
localization almost everywhere is valid if and only if the set A possesses the property
B(𝐽𝑘)
2 .
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Remark 7. Restrictions on the set B in the form of conditions (5) - (7)
appeared for the first time (for 𝑁 > 2 and 𝑘 = 0) in [2]. These conditions are
satisfied, for example, for the sets B, which can be represented in the form B =
B(1)

⋃︀
B(2), B(1)

⋂︀
B(2) = ∅, where B(1) = 𝜙(𝑆1), B(2) ⊂ 𝜙(𝑆2), 𝑆1 = {𝑥 ∈ T𝑁 :

0 < 𝑟1 < |𝑥| < 𝑟2 < 𝜋}, 𝑆2 = {𝑥 ∈ T𝑁 : |𝑥| < 𝑟1} and 𝜙 is a homeomorphism,
𝜙 : T𝑁 → T𝑁 ; in this case a measurable set B(2) can have an arbitrarily “bad”
geometry and structure.
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APPROXIMATION PROPERTIES OF SYSTEMS OF ROOT
FUNCTIONS OF WELL-POSED BOUNDARY VALUE PROBLEMS

FOR THE TWO-FOLD DIFFERENTIATION OPERATOR
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pleteness of systems of root functions, resolvent of the operator
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Abstract. In this paper, we consider the two-fold differentiation operator 𝐿𝜎1𝜎2
in the function space L2(0, 1) corresponding to nonlocal problem

𝑙(𝑦) ≡ −𝑦′′(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1,

𝑈𝜈(𝑦) ≡ 𝑦(𝜈−1)(0)−
1∫︁

0

(−𝑦′′(𝑥))𝜎𝜈(𝑥)𝑑𝑥 = 0, 𝜈 = 1, 2,

where 𝜎𝜈(𝑥) is the boundary function from the space L2(0, 1), 𝜎𝜈 denotes the com-
plex conjugate, 𝑖2 = −1. We investigate the approximation properties of systems
of root functions of the operator 𝐿𝜎1𝜎2 . We obtain a sufficient condition for the
completeness of systems of root functions of the operator 𝐿𝜎1𝜎2 in terms of the
boundary function.

1 Introduction

Let 𝜎1(·) and 𝜎2(·) be arbitrary functions from the function space L2(0, 1). We
introduce the entire functions with respect to 𝜆

Δ(𝜆) = 1− 𝜆𝐴+ 𝜆2
1∫︁

0

sin
√
𝜆𝑡√
𝜆

𝐾(𝑡)𝑑𝑡, (1)

𝜅1(𝑥, 𝜆) = cos
√
𝜆𝑥− 𝜆

1∫︁
0

sin
√
𝜆(𝑡− 𝑥)√
𝜆

𝜎2(𝑡)𝑑𝑡,
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𝜅2(𝑥, 𝜆) =
sin

√
𝜆𝑥√
𝜆

− 𝜆

1∫︁
0

sin
√
𝜆(𝑥− 𝑡)√
𝜆

𝜎1(𝑡)𝑑𝑡,

where 𝐴 =
1∫︀
0

𝜎1(𝑥)𝑑𝑥+
1∫︀
0

𝑥𝜎2(𝑥)𝑑𝑥,

𝐾(𝑡) =

1∫︁
𝑡

(︁
𝜎1(𝑥) + (𝑥− 𝑡)𝜎2(𝑥)− 𝜎1(𝑥)𝜎2(𝑥− 𝑡)

)︁
𝑑𝑥+

1−𝑡∫︁
0

𝜎1(𝑥)𝜎2(𝑥+ 𝑡)𝑑𝑥.

Denote by Λ = {𝜆1, 𝜆2, . . . } the sequence of zeros of function Δ(𝜆). Each zero 𝜆𝑠
has a some multiplicity 𝑚𝑠. Then we introduce three systems of functions

𝑌 (𝜈)
𝜎1𝜎2

=

{︂
lim

𝜆→𝜆𝑠

1

𝑗!

𝜕𝑗𝜅𝜈(𝑥, 𝜆)

𝜕𝜆𝑗
: 𝜈 = 1, 2, 𝑗 = 0,𝑚𝑠 − 1, 𝜆𝑠 ∈ Λ

}︂
, 𝑌𝜎1𝜎2

= 𝑌 (1)
𝜎1𝜎2

⋃︁
𝑌 (2)
𝜎2𝜎2

.

The main problem: under which conditions on 𝜎1(·) and 𝜎2(·) from L2(0, 1)

the systems of functions 𝑌 (1)
𝜎1𝜎2 , 𝑌

(2)
𝜎2𝜎2 , and 𝑌𝜎1𝜎2 form complete systems in L2(0, 1)?

Note that 𝑌𝜎1𝜎2 is a system of root functions of the two-fold differentiation
operator, where the functions 𝜎1(·) and 𝜎2(·) are boundary functions. Details are
described in section 2 below. In the case of the usual differentiation operator, the
system of root functions is the system of exponentials; (see [5]).

Let us formulate own main results.
Theorem 1. The system of function 𝑌

(1)
𝜎1𝜎2 is complete in L2(0, 1) if the fol-

lowing conditions hold
1) family of functions {𝐷(𝑡, ·) : 𝑡 ∈ (0, 1)} is dense in L2(0, 1), where 𝐷(𝑡, ·) is
defined by

𝐷(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜎2(𝑥+ 𝑡), for 0 6 𝑥 6 𝑡;

1− 𝜎2(𝑥− 𝑡) + 𝜎2(𝑥+ 𝑡), for 𝑡 < 𝑥 6 1− 𝑡;

1− 𝜎2(𝑥− 𝑡), for 1− 𝑡 < 𝑥 6 1.

for 0 6 𝑡 6
1

2
(2)

𝐷(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜎2(𝑥+ 𝑡), for 0 < 𝑥 6 1− 𝑡;

0, for 1− 𝑡 < 𝑥 6 𝑡;

1− 𝜎2(𝑥− 𝑡), for 𝑡 < 𝑥 6 1.

for 1 > 𝑡 >
1

2

2) for some 𝜀 > 0 the boundary function 𝜎1(·) ∈ W1
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ L2(0, 1),

the boundary function 𝜎2(·) ∈ W2
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ W1

2[0, 1], and −𝜎1(1) +
𝜎1(1)𝜎2(0)− 𝜎1(0)𝜎2(1) ̸= 0.
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Theorem 2. The system of function 𝑌
(2)
𝜎1𝜎2 is complete in L2(0, 1) if the fol-

lowing conditions hold
1) family of functions {𝐵(𝑡, ·) : 𝑡 ∈ (0, 1)} is dense in L2(0, 1), where 𝐵(𝑡, ·) is
defined by

𝐵(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
−𝜎1(𝑥− 𝑡) + 𝜎1(𝑥+ 𝑡), for 0 6 𝑥 6 𝑡;

𝑥− 𝑡+ 𝜎1(𝑥+ 𝑡), for 𝑡 < 𝑥 6 1− 𝑡;

𝑥− 𝑡, for 1− 𝑡 < 𝑥 6 1.

for 0 6 𝑡 6
1

2
(3)

𝐵(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
𝜎1(𝑥+ 𝑡)− 𝜎1(𝑥− 𝑡), for 0 6 𝑥 6 1− 𝑡;

−𝜎1(𝑥− 𝑡), for 1− 𝑡 < 𝑥 6 𝑡;

𝑥− 𝑡, for 𝑡 < 𝑥 6 1.

for 1 > 𝑡 >
1

2

2) for some 𝜀 > 0 the boundary function 𝜎1(·) ∈ W1
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ L2(0, 1),

the boundary function 𝜎2(·) ∈ W2
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ W1

2[0, 1], and −𝜎1(1) +
𝜎1(1)𝜎2(0)− 𝜎1(0)𝜎2(1) ̸= 0.

Theorem 3. If the following conditions hold
1) family of functions {𝐵(𝑡, ·), 𝐷(𝑡, ·) : 0 6 𝑡 6 1} is dense in L2(0, 1).
2) for some 𝜀 > 0 the boundary function 𝜎1(·) ∈ W1

2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ L2(0, 1),

the boundary function 𝜎2(·) ∈ W2
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ W1

2[0, 1], and −𝜎1(1) +
𝜎1(1)𝜎2(0)−𝜎1(0)𝜎2(1) ̸= 0, then system of functions 𝑌𝜎1𝜎2 is dense in the function
space L2(0, 1)

All theorems are proved using the same scheme. For example, the proof of The-
orem 1 consists of two stages:
1) first, we find the criteria for density in L2(0, 1) of the family of functions
{𝜅1(·, 𝜇),∀𝜇 ∈ C},
2) second, we find sufficient conditions for a function 𝜅1(·, 𝜇) to be approximated
by linear combination of elements of 𝑌 (1)

𝜎1𝜎2 .

In fact, in the second part of the proof can be obtained by a stronger statement
than the completeness.

Statement 1. Under conditions of Theorem 1, there exists {𝑅𝑁}∞𝑁=1, 𝑅𝑁 → ∞
such that we have

𝜅1(𝑥, 𝜇) = lim
𝜆→𝜆𝑠

lim
𝑁→∞

∑︁
|𝜆𝑆 |<𝑅𝑁

2∑︁
𝜈=1

𝑚𝑠−1∑︁
𝑗=0

𝑐
(𝜈)
𝑠,𝑚𝑠−1−𝑗

1

𝑗!

𝜕𝑗𝜅𝜈(𝑥, 𝜆)

𝜕𝜆𝑗
,

where 𝑐(𝜈)𝑠,𝑚𝑠−1−𝑗 are analogies of the Fourier coefficients of 𝜅1(𝑥, 𝜇) with respect to
the system 𝑌𝜎1𝜎2 . Similar facts are true also in the case of Theorem 2 and 3.
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2 Boundary problems and the necessary notation

In [3] it is proved the following statement
Theorem 4 (M. Otelbaev)

(a) For any choice of functions 𝜎𝜈(𝑥), 𝜈 = 1, 2 from the space L2(0, 1), we consider
the nonlocal boundary value problem

−𝑦′′(𝑥) = 𝑓(𝑥), 0 < 𝑥 < 1, (4)

𝑦(𝜈−1)(0)−
1∫︁

0

(−𝑦′′(𝑥))𝜎𝜈(𝑥)𝑑𝑥 = 0, 𝜈 = 1, 2. (5)

in the space L2(0, 1), which corresponds to the operator 𝐿. Then 𝐿 has completely
continuous inverse 𝐿−1.
(b) Assume that a nonhomogeneous equation (4) with some additional conditions
for any right-hand side 𝑓(𝑥) ∈ L2(0, 1) has a unique solution 𝑦(𝑥) in the space
W2

2[0, 1], where 𝑦(𝑥) satisfies the a priori estimate ‖ 𝑦 ‖𝐿2(0,1)6 𝑐 ‖ 𝑓 ‖𝐿2(0,1) .
Then there exists a unique set of functions {𝜎𝜈(𝑥)}, 𝜈 = 1, 2 from the space L2(0, 1)
such that any additional condition is equivalent to (5).

Definition 1 The following function with respect to 𝜆

Δ(𝜆) ≡

⃒⃒⃒⃒
⃒⃒⃒⃒1− 𝜆

1∫︀
0

cos
√
𝜆𝑥𝜎1(𝑥)𝑑𝑥 −𝜆

1∫︀
0

sin
√
𝜆𝑥√
𝜆

𝜎1(𝑥)𝑑𝑥

−𝜆
1∫︀
0

cos
√
𝜆𝑥𝜎2(𝑥)𝑑𝑥 1− 𝜆

1∫︀
0

sin
√
𝜆𝑥√
𝜆

𝜎2(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒⃒⃒ (6)

is called the characteristic determinant of boundary value problem (4) and (5).
It is convenient to consider the following entire functions with respect to 𝜆

𝜅1(𝑥, 𝜆) ≡

⃒⃒⃒⃒
⃒⃒⃒ cos

√
𝜆𝑥 sin

√
𝜆𝑥√
𝜆

−𝜆
1∫︀
0

cos
√
𝜆𝜏𝜎2(𝜏)𝑑𝜏 1− 𝜆

1∫︀
0

sin
√
𝜆𝜏√
𝜆

𝜎2(𝜏)𝑑𝜏

⃒⃒⃒⃒
⃒⃒⃒ ,

𝜅2(𝑥, 𝜆) ≡

⃒⃒⃒⃒
⃒⃒⃒1− 𝜆

1∫︀
0

cos
√
𝜆𝜏𝜎1(𝜏)𝑑𝜏 −𝜆

1∫︀
0

sin
√
𝜆𝜏√
𝜆

𝜎1(𝜏)𝑑𝜏

cos
√
𝜆𝑥 sin

√
𝜆𝑥√
𝜆

⃒⃒⃒⃒
⃒⃒⃒ .

The functions 𝜅1(𝑥, 𝜆) and 𝜅2(𝑥, 𝜆) are called principal solutions of the equation
−𝑦′′(𝑥) = 𝜆𝑦(𝑥). Further on we need certain important properties of the principal
solutions 𝜅1(𝑥, 𝜆) and 𝜅2(𝑥, 𝜆).
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Lemma 1. For any complex numbers 𝜆 the following relations hold:

1) 𝜅1(0, 𝜆)− 𝜆
1∫︀
0

𝜅1(𝑥, 𝜆)𝜎1(𝑥)𝑑𝑥 = Δ(𝜆), 2)𝜅′1(0, 𝜆)− 𝜆
1∫︀
0

𝜅1(𝑥, 𝜆)𝜎2(𝑥)𝑑𝑥 = 0,

3) 𝜅2(0, 𝜆)− 𝜆
1∫︀
0

𝜅2(𝑥, 𝜆)𝜎1(𝑥)𝑑𝑥 = 0, 4)𝜅′2(0, 𝜆)− 𝜆
1∫︀
0

𝜅2(𝑥, 𝜆)𝜎2(𝑥)𝑑𝑥 = Δ(𝜆).

The following theorem gives an integral representation of the resolvent of the
operator 𝐿𝜎1𝜎2 .

Theorem 5. The resolvent of 𝐿𝜎1𝜎2 is given by

(𝐿𝜎1𝜎2 − 𝜆𝐼)−1𝑓(𝑥) = (𝐿00 − 𝜆𝐼)−1𝑓(𝑥) +
𝜅1(𝑥, 𝜆)

Δ(𝜆)
< 𝑓(·),𝑀1(·, 𝜆) > +

+
𝜅2(𝑥, 𝜆)

Δ(𝜆)
< 𝑓(·),𝑀2(·, 𝜆) >,

where 𝑀𝜈(𝑡, 𝜆) = 𝐿*
00(𝐿

*
00−𝜆𝐼)−1𝜎𝜈 , 𝜈 = 1, 2. 𝐿*

00 is adjoint to 𝐿00. Note that 𝐿00

is the operator corresponding to problem (4), (5) as 𝜎1 ≡ 𝜎2 ≡ 0.

The proof is straightforward. A complete proof of Theorem 5 can be found
in [1].

3 Properties of some families of functions

We will need the following lemma.
Lemma 2. For any complex numbers 𝜆 and 𝜇, we have the matrix identity[︃
< 𝜅1(·, 𝜆),𝑀1(·, 𝜇) > < 𝜅1(·, 𝜆),𝑀2(·, 𝜇) >
< 𝜅2(·, 𝜆),𝑀1(·, 𝜇) > < 𝜅2(·, 𝜆),𝑀2(·, 𝜇) >

]︃
=

Δ(𝜇)−Δ(𝜆)

𝜆− 𝜇

[︃
1 0

0 1

]︃
+

+Δ(𝜇)

[︃
𝜅′1(0, 𝜆) 𝜅1(0, 𝜆)

𝜅′2(0, 𝜆) 𝜅2(0, 𝜆)

]︃ [︃𝜅′1(0, 𝜇) 𝜅1(0, 𝜇)

𝜅′2(0, 𝜇) 𝜅2(0, 𝜇)

]︃−1

−

[︃
𝜅′1(0, 𝜆) 𝜅1(0, 𝜆)

𝜅′2(0, 𝜆) 𝜅2(0, 𝜆)

]︃−1

𝜆− 𝜇

We omit the proof.
Since the spectrum of 𝐿𝜎1𝜎2 is discrete then there exists indefinitely increasing

sequence {𝑅𝑁} of radii such that points of the spectrum of operator do not lie
on appropriate the circles |𝜆| = 𝑅𝑁 . Let 𝐴𝑁 = {𝜆 ∈ 𝐶 : |𝜆| = 𝑅𝑁} and 𝜎(𝐿) =
{𝜆1, 𝜆2, . . . }. Further on assume that 𝑅𝑁 are chosen so that 𝑑𝑖𝑠𝑡(𝐴𝑁 , 𝜎(𝐿)) > 𝛿 > 0
for all 𝑁. Consider the subsequence of partial sums corresponding to the selected
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circles
(𝑆𝑁𝑓)(𝑥) =

∑︁
|𝜆𝑠|<𝑅𝑁

𝑃𝑠𝑓(𝑥) = − 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

(𝐿− 𝜆𝐼)−1𝑓(𝑥)𝑑𝜆

for arbitrary function 𝑓(·) ∈ L2(0, 1) and 𝑃𝑠 is projector (see [4]).

Let 𝜆𝑠 be eigenvalue of 𝐿𝜎1𝜎2 of algebraic multiplicity 𝑚𝑠. Then

Δ(𝜆𝑠) = Δ′(𝜆𝑠) = · · · = Δ(𝑚𝑠−1)(𝜆𝑠) = 0,Δ(𝑚𝑠)(𝜆𝑠) ̸= 0.

For sufficiently small 𝛿 > 0 we define by 𝑃𝑠

𝑃𝑠𝑓(𝑥) ≡ − 1

2𝜋𝑖

∮︁
|𝜆−𝜆𝑠|=𝛿

(𝐿𝜎1𝜎2 − 𝜆𝐼)−1𝑓(·)𝑑𝜆 =

= −
2∑︁

𝜈=1

1

(𝑚𝑠 − 1)!
lim
𝜆→𝜆𝑠

𝜕𝑚𝑠−1

𝜕𝜆𝑚𝑠−1

(︂
𝜅𝜈(·, 𝜆)

(𝜆− 𝜆𝑠)
𝑚𝑠

Δ(𝜆)
< 𝑓,𝑀𝜈(·, 𝜆) >

)︂
=

= −
𝑚𝑠−1∑︁
𝑗=0

2∑︁
𝜈=1

lim
𝜆→𝜆𝑠

1

𝑗!

𝜕𝑗𝜅𝜈(·, 𝜆)
𝜕𝜆𝑗

< 𝑓(·), ℎ(𝜈)𝑠,𝑚𝑠−1−𝑗(·) > .

Thus, the projector 𝑃𝑠 is a finite-dimensional integral operator

𝑃𝑠𝑓(·) =
2∑︁

𝜈=1

𝑚𝑠−1∑︁
𝑗=0

< 𝑓(·), ℎ(𝜈)𝑠,𝑚𝑠−1−𝑗(·) > 𝑦
(𝜈)
𝑠, 𝑗(·),

where 𝑦(𝜈)𝑠, 𝑗(·) =
1
𝑗! lim𝜆→𝜆𝑠

𝜕𝑗

𝜕𝜆𝑗
𝜅𝜈(·, 𝜆) and

ℎ
(𝜈)
𝑠,𝑚𝑠−1−𝑗(·) =

1

(𝑚𝑠 − 𝑠− 𝑗)!
lim
𝜆→𝜆𝑠

𝜕𝑚𝑠−1−𝑗

𝜕𝜆
𝑚𝑠−1−𝑗

(︃
(𝜆− 𝜆𝑠)

𝑚𝑠

Δ(𝜆)
·𝑀𝜈(·, 𝜆)

)︃
.

Note that for 𝜈 = 1, 2 collection of functions {𝑦(𝜈)𝑠,𝑗 (·) : 𝑗 = 0, . . . , 𝑚𝑠 − 1} satisfies
condition (5) as well as differential relations

− 𝑑2

𝑑𝑥2
𝑦
(𝜈)
𝑠, 𝑗(𝑥) = 𝜆𝑠 · 𝑦(𝜈)𝑠, 𝑗(𝑥) + 𝑦

(𝜈)
𝑠, 𝑗−1(𝑥), 𝑗 > 1,

− 𝑑2

𝑑𝑥2
𝑦
(𝜈)
𝑠, 0(𝑥) = 𝜆𝑠 · 𝑦(𝜈)𝑠, 0(𝑥).
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If 𝑦(𝜈)𝑠, 0(·) ̸= 0 in L2 sense, then the indicated collection is a system of root functions
of 𝐿𝜎1𝜎2 . Own main goal is to study completeness of 𝑌𝜎1𝜎2 in L2(0, 1). 𝑌𝜎1𝜎2 is
called a system of root functions generated by the operator 𝐿𝜎1𝜎2 .

Denote 𝑄𝑁𝑓(·) = 𝑓(·)−𝑆𝑁𝑓(·) and then we call it the remainder of the function
𝑓(·). When 𝑓(·) = 𝜅𝜈(·, 𝜆), 𝜈 = 1, 2, it is possible to obtain an integral representa-
tion of the remainder. We have

Lemmma 3. For any complex 𝜇 such that |𝜇| < 𝑅𝑁 holds

𝑄𝑁𝜅𝜈(𝑥, 𝜇) =
1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

Δ(𝜇)

Δ(𝜆)(𝜆− 𝜇)
𝜅𝜈(𝑥, 𝜇)𝑑𝜆, 𝑓𝑜𝑟 𝜈 = 1, 2.

The proof is straightforward.
In the sequel we shall investigate the density of families of functions

{𝜅𝜈(𝑥, 𝜇),∀𝜇 ∈ C}, 𝜈 = 1, 2, {𝜅1(𝑥, 𝜇), 𝜅2(𝑥, 𝜇),∀𝜇 ∈ C} in L2(0, 1). To answer this
question, we shall study property of the family of functions {𝐷(𝑡, ·) : 0 6 𝑡 6 1},
where 𝐷(𝑡, ·) is defined by (2).

Theorem 6. If the family of functions {𝐷(𝑡, ·) : 0 6 𝑡 6 1} is dense in L2(0, 1),
the system of functions {𝜅1(·, 𝜇),∀𝜇 ∈ C} is dense in L2(0, 1). The converse state-
ment is also true.

Proof. Let ℎ(·) ∈ L2(0, 1) be orthogonal to the system of functions
{𝜅1(𝑥, 𝜇),∀𝜇 ∈ C}. We transform the integral

1∫︁
0

𝜅1(𝑥, 𝜇)ℎ(𝑥)𝑑𝑥 =

⃒⃒⃒⃒
⃒⃒⃒⃒

1∫︀
0

cos
√
𝜇𝑥ℎ(𝑥)𝑑𝑥

1∫︀
0

sin
√
𝜇𝑥√
𝜇 ℎ(𝑥)𝑑𝑥

−𝜇
1∫︀
0

cos
√
𝜇𝜏𝜎2(𝜏)𝑑𝜏 1− 𝜇

1∫︀
0

sin
√
𝜇𝜏√
𝜇 𝜎2(𝜏)𝑑𝜏

⃒⃒⃒⃒
⃒⃒⃒⃒ (7)

Using the properties of the determinant and the trigonometric formula: sin√𝜇(𝜏 −
−𝑥) = sin

√
𝜇𝜏 cos

√
𝜇𝑥 − cos

√
𝜇𝜏 sin

√
𝜇𝑥, (7) can be written in the form

1∫︀
0

𝜅1(𝑥, 𝜇)ℎ(𝑥)𝑑𝑥 =
1∫︀
0

cos
√
𝜇𝑥ℎ(𝑥)𝑑𝑥 − 𝜇

1∫︀
0

ℎ(𝑥)

(︂
1∫︀
0

𝜎2(𝜏)
sin

√
𝜇(𝜏−𝑥)√
𝜇 𝑑𝜏

)︂
𝑑𝑥. Given

the fact that cos
√
𝜇𝑥 = 1 − √

𝜇
𝑥∫︀
0

sin
√
𝜇𝑡 𝑑𝑡, we obtain from the conditions of

orthogonality

1∫︁
0

𝜅1(𝑥, 𝜇)ℎ(𝑥)𝑑𝑥 =

1∫︁
0

ℎ(𝑥)𝑑𝑥−√
𝜇

1∫︁
0

sin
√
𝜇𝑡

⎛⎝ 1∫︁
𝑡

ℎ(𝑥)𝑑𝑥

⎞⎠ 𝑑𝑡−
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−√
𝜇

1∫︁
0

sin
√
𝜇𝑡

⎛⎝ 1−𝑡∫︁
0

ℎ(𝑥) · 𝜎2(𝑡+ 𝑥)𝑑𝑥

⎞⎠ 𝑑𝑡+

+
√
𝜇

1∫︁
0

sin
√
𝜇𝑡

⎛⎝ 1∫︁
𝑡

ℎ(𝑥) · 𝜎2(𝑥− 𝑡)𝑑𝑥

⎞⎠ 𝑑𝑡 ≡ 0

for all complex 𝜇.

If 𝜇 = 0, then
1∫︀
0

ℎ(𝑥)𝑑𝑥 = 0. Since {sin√𝜇𝑡 : ∀𝜇 ∈ C} is dense in L2(0, 1), for

almost all 𝑡 ∈ (0, 1) following relations hold

1∫︁
𝑡

ℎ(𝑥)(1− 𝜎2(𝑥− 𝑡))𝑑𝑥+

1−𝑡∫︁
0

ℎ(𝑥) · 𝜎2(𝑡+ 𝑥)𝑑𝑥 ≡ 0. (8)

Formula (8) implies direct and inverse statement, of theorem 3.1.
The proof is complete.
Corollary 1. For ∀𝜇 ∈ C we have the representation

1∫︁
0

𝜅1(𝑥, 𝜇)ℎ(𝑥)𝑑𝑥 =

1∫︁
0

ℎ(𝑥)𝑑𝑥−√
𝜇

1∫︁
0

sin
√
𝜇𝑡

⎛⎝ 1∫︁
0

𝐷(𝑥, 𝑡)ℎ(𝑥)𝑑𝑥

⎞⎠ 𝑑𝑡,

where 𝐷(𝑡, ·) is defined by (2).
Example 1 (the not dense set of functions {𝐷(𝑡, ·) : 0 < 𝑡 < 1}). If 𝜎2 ≡ 1

2 ,
then family of functions with respect to 𝑥

𝐷(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
1
2 , for 0 6 𝑥 6 𝑡;

1, for 𝑡 < 𝑥 6 1− 𝑡;
1
2 , for 1− 𝑡 < 𝑥 6 1

for 0 < 𝑡 <
1

2
,

𝐷(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
1
2 , for 0 6 𝑥 6 1− 𝑡;

0, for 1− 𝑡 < 𝑥 6 𝑡;
1
2 , for 𝑡 < 𝑥 6 1

for 1 > 𝑡 >
1

2

is symmetric with respect to 1
2 , i.e 𝐷(𝑡, 𝑥) ≡ 𝐷(𝑡, 1 − 𝑥). Therefore, any function

having the property ℎ(𝑥) ≡ −ℎ(1 − 𝑥) is orthogonal to the family {𝐷(𝑡, ·) : 0 <
𝑡 < 1}. Consequently, the set of functions {𝐷(𝑡, ·) : 0 < 𝑡 < 1} is not dense in
the functional space 𝐿2(0, 1). Thus, the system of functions {𝜅1(𝑥, 𝜇), ∀𝜇 ∈ C} is
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not dense in 𝐿2(0, 1) with respect to Theorem 6. Note that in this case 𝜅1(𝑥, 𝜆) =
1
2 cos

√
𝜆𝑥+ 1

2 cos
√
𝜆(1− 𝑥).

Also we study the density of a family of functions {𝜅2(·, 𝜇), ∀𝜇 ∈ C} in the
function space L2(0, 1). To answer this question, we shall investigate property of
the family of functions {𝐵(𝑡, ·) : 0 6 𝑡 6 1}, where 𝐵(𝑡, ·) defined by (3).

Theorem 7. If the family of functions {𝐵(𝑡, ·) : 0 6 𝑡 6 1} is dense in
L2(0, 1), the system of functions {𝜅2(𝑥, 𝜇),∀𝜇 ∈ C} is dense in L2(0, 1). The
converse statement is also true.

Proof of Theorem 7 is similar to that of Theorem 6.
Corollary 2. For ∀𝜇 ∈ C has the representation

1∫︁
0

𝜅2(𝑥, 𝜇)ℎ(𝑥)𝑑𝑥 =

1∫︁
0

𝑥ℎ(𝑥)𝑑𝑥−√
𝜇

1∫︁
0

sin
√
𝜇𝑡

⎛⎝ 1∫︁
0

𝐵(𝑥, 𝑡)ℎ(𝑥)𝑑𝑥

⎞⎠ 𝑑𝑡,

where 𝐵(𝑡, ·) is defined by (3).
Example 2 (the dense set of functions {𝐵(𝑡, ·) : 0 6 𝑡 6 1}). If 𝜎1 ≡ 0, then

the system of functions

𝐵(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
0, 0 6 𝑥 6 1− 𝑡;

0, 1− 𝑡 6 𝑥 6 𝑡;

𝑥− 𝑡, 𝑡 6 𝑥 6 1

for1 > 𝑡 >
1

2
,

𝐵(𝑡, 𝑥) =

⎧⎪⎨⎪⎩
0, 0 6 𝑥 6 𝑡;

𝑥− 𝑡, 𝑡 6 𝑥 6 1− 𝑡;

𝑥− 𝑡, 1− 𝑡 6 𝑥 6 1

for 0 < 𝑡 <
1

2
.

Let the function ℎ(·) ∈ 𝐿2(0, 1) be orthogonal to the family of functions {𝐵(𝑡, ·) :
0 6 𝑡 6 1}. Then for 1 > 𝑡 > 0 we obtain the following integral relation:

1∫︁
𝑡

ℎ(𝑥)(𝑥− 𝑡)𝑑𝑥 = 0 (9)

Relation (9) can be differentiated with respect to 𝑡: −
1∫︀
𝑡

ℎ(𝑥)𝑑𝑥 = 0. Let us find the

second derivative of (9) with respect to 𝑡: ℎ(𝑡) = 0 for almost all 𝑡 ∈ (0, 1). Thus,
the family of function {𝐵(𝑡, 𝑥) : 1 > 𝑡 > 0} is dense in 𝐿2(0, 1). That is, the system
of functions {𝜅2(𝑥, 𝜇),∀𝜇 ∈ C} is dense in 𝐿2(0, 1) with respect to Theorem 7.
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Note that in the case we have 𝜅2(𝑥, 𝜆) = sin
√
𝜆𝑥√
𝜆

.

Combining Theorems 6 and 7, we have to following result.
Theorem 8 System of functions {𝐵(𝑡, ·), 𝐷(𝑡, ·) : 0 6 𝑡 6 1} is dense in function

space L2(0, 1) if and only if of the system of functions {𝜅1(𝑥, 𝜇), 𝜅2(𝑥, 𝜇), ∀𝜇 ∈ C}
is dense in function space L2(0, 1).

4 Approximation of principal solutions system of root function

In this section we investigate approximation properties of principal solutions system
of root functions 𝑌𝜎1,𝜎2 of the operator 𝐿𝜎1𝜎2 .

Lemma 4. Let for some 𝜀 > 0 the functions 𝜎1(·) ∈ W1
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩

L2(0, 1) and 𝜎2(·) ∈ W2
2([0, 𝜀] ∪ [1 − 𝜀, 1]) ∩ W1

2[0, 1]. Assume that −𝜎1(1) +
𝜎1(1)𝜎2(0)− 𝜎1(0)𝜎2(1) ̸= 0. Then for any complex number 𝜇 we have

lim𝑅𝑁→∞ ‖𝜅1(·, 𝜇)−
∑︀

|𝜆𝑠|<𝑅𝑁

2∑︀
𝜈=1

𝑚𝑠−1∑︀
𝑗=0

< 𝜅1(·, 𝜇), ℎ(𝜈)𝑠,𝑚𝑠−1−𝑗(·) > 𝑦
(𝜈)
𝑠, 𝑗(·)‖ =

= 0,

where 𝑦(𝜈)𝑠, 𝑗(·) =
1
𝑗! lim𝜇→𝜆𝑠

𝜕𝑗

𝜕𝜇𝑗
𝜅𝜈(·, 𝜇), 𝜈 = 1, 2.

Proof. Consider the norm in L2(0, 1) of remainder

‖𝑄(1)
𝑁 (𝑥, 𝜇)‖ = sup

‖𝑔‖=1
| < 𝑄

(1)
𝑁 (·, 𝜇); 𝑔(·) > | =

= sup
‖𝑔‖=1

⃒⃒⃒⃒
⃒⃒⃒ 1

2𝜋𝑖

∮︁
|𝜆|=𝑅𝑁

Δ(𝜇)

Δ(𝜆)(𝜆− 𝜇)

⎛⎝ 1∫︁
0

𝜅1(𝑥, 𝜆)𝑔(𝑥)𝑑𝑥

⎞⎠ 𝑑𝜆

⃒⃒⃒⃒
⃒⃒⃒ =

= sup
‖𝑔‖=1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒
1

2𝜋𝑖

∮︁
|𝜌|=

√
𝑅𝑁

𝐼𝑚𝜌>0

Δ(𝜇)𝑒|𝐼𝑚𝜌|

Δ(𝜌2)(𝜌2 − 𝜇)

⎛⎝𝑒−|𝐼𝑚𝜌|
1∫︁

0

𝜅1(𝑥, 𝜌
2)𝑔(𝑥)𝑑𝑥

⎞⎠ 2𝜌𝑑𝜌

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒ ,

where 𝑔(·) ∈ L2(0, 1) and Δ(𝜆) are entire functions. Applying the Cauchy-Schwarz
inequality, we obtain

‖𝑄(1)
𝑁 (𝑥, 𝜇)‖ 6 Δ(𝜇)|

𝜋

⎛⎜⎜⎜⎝
∮︁

|𝜌|=
√
𝑅𝑁

𝐼𝑚𝜌>0

⃒⃒⃒⃒
⃒ 𝜌𝑒|𝐼𝑚𝜌|

Δ(𝜌2)(𝜌2 − 𝜇)

⃒⃒⃒⃒
⃒
2

|𝑑𝜌|

⎞⎟⎟⎟⎠
1
2

·
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·

⎛⎜⎜⎜⎝
∮︁

|𝜌|=
√
𝑅𝑁

𝐼𝑚𝜌>0

⃒⃒⃒⃒
⃒⃒ 𝑒−|𝐼𝑚𝜌|

1∫︁
0

𝜅1(𝑥, 𝜌
2)𝑔(𝑥)𝑑𝑥

⃒⃒⃒⃒
⃒⃒
2

|𝑑𝜌|

⎞⎟⎟⎟⎠
1
2

(10)

Assume that for some 𝜀 > 0 functions 𝐾(𝑡) ∈ 𝐶2[1 − 𝜀, 1] and 𝐾 ′(1) ̸= 0.
Let us estimate |Δ(𝜌)| on circles |𝜌| =

√
𝑅𝑁 . Consider |Δ(𝜌2)| = |1 −

𝜌2𝐴 + 𝜌3
1−𝜀∫︀
0

sin 𝜌𝑡𝐾(𝑡)𝑑𝑡 + 𝜌3
1∫︀

1−𝜀
sin 𝜌𝑡𝐾(𝑡)𝑑𝑡|. We transform the right-hand side

of the last relation by using a formula of integration by parts. As a result

we have |Δ(𝜌2)| = = |1 − 𝜌2𝐴 + 𝜌3
1−𝜀∫︀
0

sin 𝜌𝑡𝐾(𝑡)𝑑𝑡 − 𝜌2 cos 𝜌 𝑡𝐾(𝑡)𝑟|1𝑡=1−𝜀 +

𝜌2
1∫︀

1−𝜀
cos 𝜌 𝑡𝐾 ′(𝑡)𝑑𝑡|. Note that 𝐾(1) = 0. By applying to last the integral inte-

gration by parts, we obtain

|Δ(𝜌2)| = |1− 𝜌2𝐴+ 𝜌3
1−𝜀∫︁
0

sin 𝜌𝑡𝐾(𝑡)𝑑𝑡+ 𝜌2 cos 𝜌 (1− 𝜀)𝐾(1− 𝜀)+

+𝜌 sin 𝜌𝐾 ′(1)− 𝜌 sin 𝜌(1− 𝜀)𝐾 ′(1− 𝜀)− 𝜌

1∫︁
1−𝜀

sin 𝜌 𝑡𝐾 ′′(𝑡)𝑑𝑡| > |𝜌 sin 𝜌𝐾 ′(1)|−

−|1−𝜌2𝐴+𝜌3
1−𝜀∫︁
0

sin 𝜌𝑡𝐾(𝑡)𝑑𝑡+𝜌2 cos 𝜌 (1−𝜀)𝐾(1−𝜀)−𝜌 sin 𝜌(1−𝜀)𝐾 ′(1−𝜀)−

−𝜌
1∫︁

1−𝜀

sin 𝜌 𝑡𝐾 ′′(𝑡)𝑑𝑡| > 𝑐 |𝜌|𝑒|𝐼𝑚𝜌| (11)

as |𝜌| → ∞. We estimate

Φ1(𝜇) =

∮︁
|𝜌|=

√
𝑅𝑁

𝐼𝑚𝜌>0

⃒⃒⃒⃒
⃒ 𝜌𝑒|𝐼𝑚𝜌|

Δ(𝜌2)(𝜌2 − 𝜇)

⃒⃒⃒⃒
⃒
2

|𝑑𝜌| 6
√
𝑅𝑁
𝑐

𝜋∫︁
0

𝑑𝜗

|𝑅𝑁𝑒2𝑖𝜗 − 𝜇|2
→ 0 (12)

as 𝑅𝑁 → ∞. Here we take into account the estimate of (11).
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Now we introduce a function 𝐹1(𝜌) = 𝑒−|𝐼𝑚𝜌|
1∫︀
0

𝜅1(𝑥, 𝜌
2)𝑔(𝑥) 𝑑𝑥. We write the

function 𝐹1(𝜌) given by corollary 1 in the following form

𝐹1(𝜌) = 𝑒−|𝐼𝑚𝜌|

⎛⎝ 1∫︁
0

𝑔(𝑥)− 𝜌

1∫︁
0

sin 𝜌𝑡

⎛⎝ 1∫︁
0

𝐷(𝑡, 𝑥)𝑔(𝑥)𝑑𝑥

⎞⎠ 𝑑𝑡

⎞⎠
Let 𝜎2(·) ∈ W1

2[0, 1]. Taking into account the formula for𝐷(𝑡, 𝑥), the last expression
can be transformed to

𝐹1(𝜌) = 𝑒−|𝐼𝑚𝜌|
(︁ 1∫︁

0

𝑔(𝑥) 𝑑𝑥− 𝜌

1∫︁
0

sin 𝜌 𝑡
(︁ 1∫︁
𝑡

𝑔(𝑥) 𝑑𝑥+

1−𝑡∫︁
0

𝑔(𝑥)𝜎2(𝑡+ 𝑥) 𝑑𝑥−

−
1∫︁
𝑡

𝑔(𝑥)𝜎2(𝑥− 𝑡)𝑑𝑥
)︁
𝑑𝑡
)︁
.

Applying the formula for integration by parts to the last integral, we obtain

𝐹1(𝜌) = 𝑒−|𝐼𝑚𝜌|
1∫︁

0

cos 𝜌𝑡
(︁
𝑔(𝑡) + 𝑔(1− 𝑡)𝜎2(1) + 𝑔(𝑡)𝜎2(0)

)︁
𝑑𝑡+

+ 𝑒−|𝐼𝑚𝜌|
1∫︁

0

cos 𝜌𝑡

⎛⎝ 1∫︁
𝑡

𝑔(𝑥)𝜎′2(𝑥− 𝑡) 𝑑𝑥−
1−𝑡∫︁
0

𝑔(𝑥)𝜎′2(𝑥+ 𝑡)𝑑𝑥

⎞⎠ 𝑑𝑡

As 𝐼𝑚𝜌 > 0 the function 𝐹1(𝜌) belongs to the space H2
+. Then with respect to

Lemma 1.2.5 of [5] it follows that

|𝜌|
𝜋∫︁

0

|𝐹1(|𝜌|𝑒𝑖𝜗)|2𝑑𝜗 6 𝑐1

⎛⎝ sup
𝐼𝑚𝜌>0

∞∫︁
−∞

|𝐹 (𝑅𝑒𝜌+ 𝑖𝐼𝑚𝜌)|2𝑑𝑅𝑒𝜌

⎞⎠ 1
2

, (13)

where 𝑐1 is independent of |𝜌| and 𝑔(𝑥).

Using (12) and (13) inequality (10) implies the limit relation

lim
𝑅𝑁→∞

‖𝑄(1)
𝑁 (·, 𝜇)‖ = 0.
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Lemma 4 is proved.
Similarly, for 𝑓(·) = 𝜅2(·, 𝜇) we prove the following lemma.
Lemma 5. Let some 𝜀 > 0 the functions 𝜎1(·) ∈ W1

2([0, 𝜀]∪[1−𝜀, 1])∩L2(0, 1)

and 𝜎2(·) ∈ W2
2([0, 𝜀] ∪ [1− 𝜀, 1]) ∩W1

2[0, 1]. Assume that −𝜎1(1) + 𝜎1(1)𝜎2(0)−
−𝜎1(0)𝜎2(1) ̸= 0. Then for any complex number 𝜇 we have

lim
𝑅𝑁→∞

‖𝜅2(·, 𝜇)−
∑︁

|𝜆𝑠|<𝑅𝑁

2∑︁
𝜈=1

𝑚𝑠−1∑︁
𝑗=0

< 𝜅2(·, 𝜇), ℎ(𝜈)𝑠,𝑚𝑠−1−𝑗(·) > 𝑦
(𝜈)
𝑠, 𝑗(·)‖ = 0.

5 Completeness of the systems of root functions

In this section we prove of the theorems on the completeness systems of root func-
tions in L2(0, 1). These theorems are a direct corollary of results of section 4.

Proof of Theorem 1. The fact that the family of functions {𝐷(𝑡, ·) : 0 6 𝑡 6
1} is dense in L2(0, 1) with respect to Theorem 6 follows from the density of the
systems of functions {𝜅1(·, 𝜇), ∀𝜇 ∈ C} in L2(0, 1). By Lemma 4, the elements of
the system {𝜅1(·, 𝜇),∀𝜇 ∈ C} can be arbitrarily closely approximated by a system
of root functions 𝑌𝜎1,𝜎2 . Therefore the system of functions 𝑌 (1)

𝜎1,𝜎2 is complete in the
function space L2(0, 1). Theorem 1 is proved.

Proofs of Theorem 2 and 3 are similar to the proof of Theorem 1.
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GROUP SYMMETRY BIFURCATION PROBLEM WITH SCHMIDT
SPECTRUM IN THE LINEARIZATION
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Key words: Stationary bifurcation problems, E. Schmidt spectrum, group sym-
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Abstract. With the aim of applications in electromagnetic oscillations theory 𝐺-
invariant implicit operator theorem and theorem about reduction of variational type
branching equations and branching equations in the root-subspaces on the number
of equations are proved for bifurcational problems with E.Schmidt spectrum in the
linearization.

1 Introduction

In cycle of works at the origin of XX century on linear and nonlinear integral equa-
tions E.Schmidt had introduced [1] eigenvalues 𝜆𝑘 of the operator 𝐵 : 𝐻 → 𝐻
in a Hilbert space 𝐻 taking into account their multiplicities and eigenelements
{𝑢𝑘}∞1 , {𝑣𝑘}∞1 satisfying the relations 𝐵𝑢𝑘 = 𝜆𝑘𝑣𝑘, 𝐵*𝑣𝑘 = 𝜆𝑘𝑢𝑘. This allows
to extend Hilbert-Schmidt theory on nonsymmetric completely continuous oper-
ators in abstract separable Hilbert spaces [2, 3]. Some physical applications of
E.Schmidt spectral problems are indicated in [4], in [5] the development of pseu-
doperturbiteration method for generalized E. Schmidt spectral problems is given,
in [6] the Fredholm property was proved for the problem on electromagnetic oscil-
lation eigenfrequencies in resonators without loss [7], which is typical E. Schmidt
spectral problem

rot
−→
𝐸 = 𝑖𝜔𝜇

−→
𝐻, rot

−→
𝐻 = −𝑖𝜔𝜀

−→
𝐸 ,

div
−→
𝐸 = 0, div

−→
𝐻 = 0

in 𝑉 ⊂ R3

with boundary conditions (𝑆 = 𝜕𝑉 is ideal conductor)
[︁−→𝑛 ,−→𝐸 ]︁ |𝑆 = 0, (−→𝑛 ,

−→
𝐻 )𝑆 =

0, 𝜀 and 𝜇 are dielectric and magnetic permeabilities of the medium filling the
resonator.

The work is supported by the SPPIR Goscontract No. 1122 Ministry of Education and
Science of Russia and enter to project No. 12-01-00270 of RFBR..
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This work is inspired by nonlinear problems on resonators filling by nonlinear
medium, in particular, by nonmagnetic medium when the dielectric permeability
𝜀 in the layer 0 < 𝑥 < ℎ is determined by Kerr law 𝜀 = 𝜀2 + 𝑎|

−→
𝐸 |2, 𝑎 > 0,

𝜀2 > max(𝜀1, 𝜀3) - is constant component of the dielectric permeability of 𝜀, 𝜀1 >
𝜀0, (𝜀3 > 𝜀0) are permeabilities of semispaces 𝑥 < 0 (𝑥 > ℎ), 𝜀0 – is vacuum
dielectric permeability.

The indicated applications state the problem about solutions bifurcation and
their stability for nonlinear equations under group symmetry conditions in the lin-
earization of which generalized E.Schmidt eigenvalue problems are contained. The
terminilogy, notitions and some results of [8]– [10] are used.

2 Branching Equation in the Root Subspaces and Group Symme-
try Inheritance Theorem

In Banach spaces 𝐸1 and 𝐸2, 𝐸1 ⊂ 𝐸2 ⊂ 𝐻 (𝐻- Hilbert space) the nonlinear system
is considered

𝐹1(𝑥, 𝑦, 𝜆) = 0, 𝐹2(𝑥, 𝑦, 𝜆) = 0, 𝐹𝑘(𝑥0, 𝑦0, 𝜆) ≡ 0, 𝜆 = 𝜆0 + 𝜀; 𝑘 = 1, 2;

𝐹1
′
𝑥(𝑥0, 𝑦0, 𝜆) = 𝐵0 +𝐵(𝜀), −𝐹1

′
𝑦(𝑥0, 𝑦0, 𝜆) = 𝐴0 +𝐴(𝜀),

−𝐹2
′
𝑥(𝑥0, 𝑦0, 𝜆) = 𝐴*

0 +𝐴*(𝜀), 𝐹2
′
𝑦(𝑥0, 𝑦0, 𝜆) = 𝐵*

0 +𝐵*(𝜀),

(2.1)

𝐴0, 𝐵0 are densely defined closed operators, 𝐷𝐴 = 𝐸1, 𝐷𝐴 = 𝐷𝐴(𝜀) ⊂ 𝐷𝐴0 , 𝐷𝐵 =
𝐸1, 𝐷𝐵 = 𝐷𝐵(𝜀) ⊂ 𝐷𝐵0 .

The system (2.1) allows the local presentation

𝐵0𝑋 − 𝜆0𝐴0𝑌 = 𝐴(𝜀)𝑌 −𝐵(𝜀)𝑋 +𝑅1(𝑥0, 𝑦0, 𝑋, 𝑌, 𝜀),

𝐵*
0𝑌 − 𝜆0𝐴

*
0𝑋 = 𝐴*(𝜀)𝑋 −𝐵*(𝜀)𝑌 +𝑅2(𝑥0, 𝑦0, 𝑋, 𝑌, 𝜀),

𝑅𝑗(𝑥0, 𝑦0, 0, 0, 𝜀) ≡ 0, 𝑅𝑗
′
𝑋(𝑥0, 𝑦0, 0, 0, 𝜀) ≡ 0, 𝑅𝑗

′
𝑌 (𝑥0, 𝑦0, 0, 0, 𝜀) ≡ 0,

𝑋 = 𝑥− 𝑥0, 𝑌 = 𝑦 − 𝑦0, 𝑗 = 1, 2,

(2.2)

Let 𝑛-multiple E.Schmidt eigenvalue 𝜆0 be Fredholm point of the corresponding

to (2.2) matrix-operator (B − 𝜆0A) =

(︃
−𝜆0𝐴*

0 𝐵*
0

𝐵0 −𝜆0𝐴0

)︃
in the direct sum

ℋ of two Hilbert spaces 𝐻 with eigenelements Φ
(1)
𝑘 = (𝑢

(1)
𝑘 , 𝑣

(1)
𝑘 )𝑇 and Ψ

(1)
𝑘 =

(̃︀𝑢(1)𝑘 , ̃︀𝑣(1)𝑘 )𝑇 , i.e. (B* − 𝜆0A
*)Ψ

(1)
𝑘 =

(︃
−𝜆0𝐴0 𝐵*

0

𝐵0 −𝜆0𝐴*
0

)︃(︃ ̃︀𝑢(1)𝑘̃︀𝑣(1)𝑘

)︃
= 0. Setting
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A(𝜀) =

(︃
𝐴*(𝜀) −𝐵*(𝜀)

−𝐵(𝜀) 𝐴(𝜀)

)︃
write the system (2.1) in the form

(B− 𝜆0A)

(︃
𝑋

𝑌

)︃
= A(𝜀)

(︃
𝑋

𝑌

)︃
+

(︃
𝑅2(𝑥0, 𝑦0, 𝑋, 𝑌, 𝜀)

𝑅1(𝑥0, 𝑦0, 𝑋, 𝑌, 𝜀)

)︃
=

= A(𝜀)

(︃
𝑋

𝑌

)︃
+R

(︃
𝑥0, 𝑦0,

(︃
𝑋

𝑌

)︃
, 𝜀

)︃
. (2.3)

Here it is supposed that the vectorial nonlinear operator can be presented in the
form of sufficiently smooth on (𝑋,𝑌 )𝑇 operator R.

Definition 1. The elements Φ
(𝑠)
𝑘 = (𝑢

(𝑠)
𝑘 , 𝑣

(𝑠)
𝑘 )𝑇 , 𝑠 = 1, . . . , 𝑝𝑘, 𝑘 = 1, . . . , 𝑛

form the complete canonical generalized Jordan set (GJS≡ A(𝜀)-JS), if

(B− 𝜆0A)Φ
(𝑠)
𝑘 =

𝑠−1∑︀
𝑗=1

A𝑗Φ
(𝑠−1)
𝑘 ,

A(𝜀) = A1𝜀+A2𝜀
2 + . . . , ⟨Φ(𝑠)

𝑘 ,Γ
(1)
𝑙 ⟩ℋ = 0,

𝐷𝑝 = det

[︃
𝑝𝑘∑︀
𝑗=1

⟨A𝑗Φ
(𝑝𝑘+1−𝑗)
𝑘 ,Ψ

(1)
𝑙 ⟩ℋ

]︃
̸= 0, Ψ

(1)
𝑙 = (̃︀𝑢(1)𝑙 , ̃︀𝑣(1)𝑙 )𝑇 ,

𝑘, 𝑙 = 1, . . . , 𝑛; 𝑠 = 2, . . . , 𝑝𝑘;

(2.4)

This JS bicanonical, if GJS of elements {Ψ(1)
𝑙 }𝑛1 for the conjugate operator (B* −

𝜆0A
*)−A*(𝜀) is also canonical, and three-canonical if in addition

⟨Φ(𝑗)
𝑖 ,Γ

(𝑙)
𝑘 ⟩ℋ = 𝛿𝑖𝑘𝛿𝑗𝑙,Γ

(𝑙)
𝑘 =

𝑝𝑘+1−𝑙∑︀
𝑠=1

A*
𝑠Ψ

(𝑝𝑘+2−𝑙−𝑠)
𝑘 ;

⟨𝑍(𝑗)
𝑖 ,Ψ

(𝑙)
𝑘 ⟩ℋ = 𝛿𝑖𝑘𝛿𝑗𝑙, 𝑍

(𝑗)
𝑖 =

𝑝𝑘+1−𝑗∑︀
𝑠=1

A𝑠Φ
(𝑝𝑘+2−𝑗−𝑠)
𝑖 ,

Φ = Φ(𝑥0, 𝑦0) = (Φ
(1)
1 , . . . ,Φ

(𝑝1)
1 , . . . ,Φ

(1)
𝑛 , . . . ,Φ

(𝑝𝑛)
𝑛 )

(2.5)

Φ
(𝑗)
𝑖 = Φ

(𝑗)
𝑖 (𝑥0, 𝑦0), the vectors Γ = Γ(𝑥0, 𝑦0),Ψ = Ψ(𝑥0, 𝑦0), 𝑍 = 𝑍(𝑥0, 𝑦0) are

analogously determined, 𝐾 = 𝑝1 + . . .+ 𝑝𝑛 is the root-number.

Lemma 1. Let the Fredholm operator-function (B−𝜆0A)−A(𝜀) has complete
three-canonical GJS. Then the projectors are defined

P = P(𝑥0, 𝑦0) =

𝑛∑︁
𝑖=1

𝑝𝑖∑︁
𝑗=1

⟨·,Γ(𝑗)
𝑖 ⟩ℋΦ(𝑗)

𝑖 = ⟨·,Γ⟩ℋΦ : ℋ → ℋ𝐾 =
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= 𝐾(B− 𝜆0A;A(𝜀)) = span{Φ(𝑗)
𝑖 (𝑥0, 𝑦0)}, (2.6)

Q = Q(𝑥0, 𝑦0) =
𝑛∑︁
𝑖=1

𝑝𝑖∑︁
𝑗=1

⟨·,Ψ(𝑗)
𝑖 ⟩ℋ𝑍(𝑗)

𝑖 = ⟨·,Ψ⟩ℋ𝑍 : ℋ → ℋ𝐾 = span{𝑍(𝑗)
𝑖 (𝑥0, 𝑦0)}

allowing to expand the Hilbert space ℋ into direct sums in the point (𝑥0, 𝑦0)

ℋ = ℋ𝐾
·
+ℋ∞−𝐾 , ℋ = ℋ𝐾

·
+ℋ∞−𝐾 . (2.7)

Projectors P = P(𝑥0, 𝑦0) and Q = Q(𝑥0, 𝑦0) are intertwining the operator B−𝜆0A :
(B−𝜆0A)P = Q(B−𝜆0A) on 𝐷B−𝜆0A, (B−𝜆0A)Φ = A0𝑍, (B

*−𝜆0A*)Ψ = A0Γ,
A0 = diag(𝐵1, . . . , 𝐵𝑛), 𝐵𝑖 − (𝑝𝑖 × 𝑝𝑖)–matrix with units on subsidiary subdiagonal
and zeros on other places. Operator (B − 𝜆0A) : 𝐷B−𝜆0A ∩ ℋ∞−𝐾(𝑥0, 𝑦0) →
ℋ∞−𝐾(𝑥0, 𝑦0) is isomorphism.

Lemma 2. For linear by 𝜀 operator-function (B− 𝜆0A)− 𝜀A1 three-canonical
GJS always exists and intertwining properties can be added by the following ones

A1P = QA1 on 𝐷A1 , A1Φ = A1Φ, A*
1Ψ = A1Γ,

where A1 = diag(𝐵1, . . . , 𝐵𝑛)- cell-diagonal matrix, 𝐵𝑖−(𝑝𝑖×𝑝𝑖)-matrices with units
on subsidiary diagonal and zeros on other places. Here the operators (B − 𝜆0A) :
𝐷B−𝜆0A ∩ℋ∞−𝐾 → ℋ∞−𝐾 and A1 : ℋ𝐾 → ℋ𝐾 are isomorphisms.

Theorem 1. Let to the bifurcation point (𝑥0, 𝑦0, 0) be correspond of complete
three-canonical GJS of the operator-function (B − 𝜆0A) − A(𝜀). The problem of
the finding of small solutions to the system (2.1) (or (2.3)) in a neighborhood of the
point (𝑥0, 𝑦0, 0) is equivalent to the finding of small solutions to the A.Lyapounov
branching equation in the root subspace (BEqR)

𝑓(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀) = 𝑓(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉) + u(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀)) ≡
≡ A0𝜉 − ⟨A(𝜀)(v(𝑥0, 𝑦0, 𝜉) + u(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀))+

+R(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉) + u(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀),Ψ(𝑥0, 𝑦0)⟩ℋ = 0 (2.8)

and E.Schmidt BEqR

t𝑠1(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀) ≡ −
𝑛∑︁

𝑗=1

𝜉𝑗1⟨(I−A(𝜀)Γ0)
−1A(𝜀)Φ

(1)
𝑗 (𝑥0, 𝑦0),Ψ

(1)
𝑠 (𝑥0, 𝑦0)⟩ℋ−

− ⟨(I−A(𝜀)Γ0)
−1R(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉) +w(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀)),Ψ

(1)
𝑠 (𝑥0)⟩ℋ = 0

(2.9)
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t𝑠𝜎(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀) ≡

≡ 𝜉𝑠𝜎 −
𝑛∑︁

𝑗=1

𝜉𝑗1⟨(I−A(𝜀)Γ0)
−1A(𝜀)Φ

(1)
𝑗 (𝑥0, 𝑦0),Ψ

(𝑝𝑠+2−𝜎)
𝑠 (𝑥0, 𝑦0)⟩ℋ−

−⟨(I−A(𝜀)Γ0)
−1R(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉)+w(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀)),Ψ

(𝑝𝑠+2−𝜎)
𝑠 (𝑥0)⟩ℋ = 0.

Here

Γ0 = Γ0(𝑥0, 𝑦0) = ˜(B− 𝜆0A)
−1
,

˜(B− 𝜆0A) = B− 𝜆0A+

𝑛∑︁
𝑖=1

⟨·,Γ(1)
𝑗 (𝑥0, 𝑦0)⟩ℋ𝑍(1)

𝑗 (𝑥0, 𝑦0)

is E.Schmidt regularizator [8].

Everywhere below it is supposed that the system (2.1) allows the group sym-
metry

𝐾𝑔𝐹𝑗(𝑥, 𝑦, 𝜆) = 𝐹𝑗(𝐿𝑔𝑥, 𝐿𝑔𝑦, 𝜆), 𝑘 = 1, 2

where 𝐿𝑔(𝐾𝑔) is the representation of the group 𝐺 in 𝐸1(𝐸2), expanded on 𝐻. Here
the bifurcation point (𝑥0, 𝑦0, 𝜆0) moves along its trajectory (𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜆0).

At the presence of continuous group symmetry Lie group 𝐺𝑙 = 𝐺𝑙(𝑎), 𝑎 =
(𝑎1, . . . , 𝑎𝑙) are its essential parameters, is supposed to be 𝑙-dimensional differ-
entiable manifold, satisfying the conditions [11], [12]: (c1) the representation

𝑎 ↦→

(︃
𝐿𝑔(𝑎)𝑥0

𝐿𝑔(𝑎)𝑦0

)︃
, acting from a neighborhood of 𝐺𝑙(𝑎) unit element into the

space ℋ belongs to the class 𝐶1, so that 𝒳 (𝑥0, 𝑦0) ∈ ℋ for all generating opera-
tors 𝒳 in tangent to 𝐿𝑔(𝑎) manifold 𝑇 𝑙𝑔(𝑎); (c2) stationary subgroup 𝐺𝑠 of element
(𝑥0, 𝑦0) ∈ ℋ determines the representation 𝐿(𝐺𝑠) of local Lie group 𝐺𝑠 ⊂ 𝐺𝑙, 𝑠 < 𝑙,
with 𝑠-dimensional subalgebra 𝑇 𝑠𝑔(𝑎) of generators. This means that elements
𝒳𝑘(𝑥0, 𝑦0),𝒳𝑘 ∈ 𝑇 𝑙𝑔(𝑎) from the zero-subspace of the matrix-operator (B − 𝜆0A)

form 𝜅 = (𝑙 − 𝑠)-dimensional subspace and the bases in it and in the algebra 𝑇 𝑙𝑔(𝑎)
can be ordered so that 𝒳𝑘(𝑥0, 𝑦0) = Φ𝑘(𝑥0, 𝑦0), 1 6 𝑘 6 𝜅, and 𝒳𝑗(𝑥0, 𝑦0) = (0, 0)
for 𝑗 > 𝜅+1; (c3) dense embeddings 𝐸1 ⊂ 𝐸2 ⊂ 𝐻 in Hilbert space 𝐻 are supposed
with estimates ‖𝑢‖𝐻 6 𝛼2‖𝑢‖𝐸2 6 𝛼1‖𝑢‖𝐸1 , and 𝒳 : ℋ → ℋ is bounded in 𝐿(ℋ)
topology. Further the auxiliary constructions are introduced:

10. 𝐾𝑔[B(𝑥0, 𝑦0)− 𝜆0A(𝑥0, 𝑦0)] = [B(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)− 𝜆0A(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)]𝐿𝑔.
20. 𝐾𝑔A(𝜀) = 𝐾𝑔A(𝑥0, 𝑦0, 𝜀) = [A(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜀)]𝐿𝑔;
30. 𝐾𝑔R(𝑥0, 𝑦0, 𝑥− 𝑥0, 𝑦 − 𝑦0, 𝜀) = R(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝐿𝑔(𝑥− 𝑥0), 𝐿𝑔(𝑦 − 𝑦0), 𝜀).
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Φ𝑖(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔Φ𝑖(𝑥0, 𝑦0) = (𝐿𝑔𝑢
(1)
𝑘 (𝑥0, 𝑦0), 𝐿𝑔𝑣

(1)
𝑘 (𝑥0, 𝑦0))

𝑇 ,

Γ𝑗(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿*−1
𝑔 Γ𝑗 , Γ𝑗 = Γ𝑗(𝑥0, 𝑦0), 𝑖, 𝑗 = 1, . . . , 𝑛

(2.10)

and for the range of operators 𝐹 ′
𝑘𝑥
, 𝐹 ′

𝑘𝑦
one has

ℛ(𝐹 ′
𝑘𝑥
(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜆0)) = ℛ(𝐾𝑔𝐹

′
𝑘𝑥
(𝑥0, 𝑦0, 𝜆0)𝐿

−1
𝑔 ) = 𝐾𝑔ℛ(𝐹 ′

𝑘𝑥
(𝑥0, 𝑦0, 𝜆0)),

ℛ(𝐹 ′
𝑘𝑦
(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜆0)) = ℛ(𝐾𝑔𝐹

′
𝑘𝑦
(𝑥0, 𝑦0, 𝜆0)𝐿

−1
𝑔 ) = 𝐾𝑔ℛ(𝐹 ′

𝑘𝑦
(𝑥0, 𝑦0, 𝜆0)).

Then for the kernel of adjoint operator

𝑁*(B− 𝜆0A) = span{Ψ(1)
𝑘 }𝑛1 = span{̃︀𝑢(1)𝑘 (𝑥0, 𝑦0), ̃︀𝑢(1)𝑘 (𝑥0, 𝑦0)}𝑛1 =⇒

𝑁*(B(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)− 𝜆0A(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)) = span{𝐾*−1
𝑔Ψ

(1)
1 , . . .𝐾*−1

𝑔 Ψ
(1)
𝑛 },

(2.11)
Analogously to [13], [14] it can be proved that the elements of ordered by increasing
lengths GJChs of the operator-function (B−𝜆0A)−A(𝜀) and biorthogonal to them
systems are transformating according to formulae

Φ
(𝑠)
𝑘 (𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔Φ

(𝑠)
𝑘 (𝑥0, 𝑦0) = (𝐿𝑔𝑢

(𝑠)
𝑘 (𝑥0, 𝑦0), 𝐿𝑔𝑣

(𝑠)
𝑘 (𝑥0, 𝑦0))

𝑇 ,

Ψ
(𝑠)
𝑘 (𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐾*−1

𝑔 Ψ
(𝑠)
𝑘 (𝑥0, 𝑦0) = (𝐾*−1

𝑔 𝑢
(𝑠)
𝑘 (𝑥0, 𝑦0),𝐾

*−1
𝑔 𝑣

(𝑠)
𝑘 (𝑥0, 𝑦0))

𝑇 ,

Γ
(𝑠)
𝑘 (𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿*−1

𝑔 Γ
(𝑠)
𝑘 (𝑥0, 𝑦0), 𝑍

(𝑠)
𝑘 (𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐾𝑔𝑍

(𝑠)
𝑘 (𝑥0, 𝑦0).

(2.12)

Lemma 3. Projectors (2.6) satisfy the intertwining conditions

P(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔P(𝑥0, 𝑦0)𝐿
−1
𝑔 or 𝐿𝑔P(𝑥0, 𝑦0) = P(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)𝐿𝑔

Q(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐾𝑔Q(𝑥0, 𝑦0)𝐾
−1
𝑔 or 𝐾𝑔Q(𝑥0, 𝑦0) = Q(𝐾𝑔𝑥0,𝐾𝑔𝑦0)𝐾𝑔

(2.13)

with the expansions of the space ℋ in the bifurcation point (𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜆0)

ℋ = ℋ𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)
·
+ℋ∞−𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) =

= ℋ𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0)
·
+ℋ∞−𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0), (2.14)

and relations

ℋ𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔ℋ𝐾(𝑥0, 𝑦0),ℋ∞−𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔ℋ∞−𝐾(𝑥0, 𝑦0),

ℋ𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔ℋ𝐾(𝑥0, 𝑦0),ℋ∞−𝐾(𝐿𝑔𝑥0, 𝐿𝑔𝑦0) = 𝐿𝑔ℋ∞−𝐾(𝑥0, 𝑦0).
(2.15)

Theorem 4. (Group symmetry inheritance theorem.) At three-canonical
GJS existence for the operator-function (B− 𝜆0A)−A(𝜀) A.Lyapounov (2.8) and
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E.Schmidt (2.9) BEqR inherit the group symmetry of the system (2.1)

𝑓(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝐿𝑔v(𝑥0, 𝑦0, 𝜉), 𝜀) = 𝑓(𝐿𝑔𝑥0, 𝐿𝑔𝑦0,v(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜉), 𝜀) =

= 𝐾𝑔𝑓(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀), (2.16)

𝑡(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝐿𝑔v(𝑥0, 𝑦0, 𝜉), 𝜀) = 𝑡(𝐿𝑔𝑥0, 𝐿𝑔𝑦0,v(𝐿𝑔𝑥0, 𝐿𝑔𝑦0, 𝜉), 𝜀) =

= 𝐿𝑔𝑡(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀). (2.17)

3 Basic Results

Theorem 5. (Implicit operator theorem.) Let at group symmetry conditions for
the system (2.1) the requirements (c1)–(c3) be fulfilled, in the condition (c2) 𝜅 = 𝑛
and 𝐺𝑠, 𝑠 < 𝑙 is the normal divisor of 𝐺𝑙 with the relevant ideal 𝑇 𝑠𝑔(𝑎) of generators,
and for the operator-function (B − 𝜆0A) − A(𝜀) in the Fredholm point 𝜆0 there
correspond the complete three-canonical GJS to elements of 𝑁(B−𝜆0A). Then there
exists the continuous function v(𝑥0, 𝑦0, 𝜉, 𝜀) = v(𝑥0, 𝑦0, 𝜉)+u(𝑥0, 𝑦0,v(𝑥0, 𝑦0, 𝜉), 𝜀) :

𝑇𝑛𝑔(𝑎)

(︃
𝑥0

𝑦0

)︃
× (−𝛿, 𝛿) → ℋ, invariant with respect to the factor-group 𝐺𝜅 = 𝐺𝑛 =

𝐺𝑙/𝐺𝑠 on 𝑇𝑛𝑔(𝑎)

(︃
𝑥0

𝑦0

)︃
, such that

𝐹1(𝑥0, 𝑦0, 𝑣1(𝑥0, 𝑦0, 𝜉, 𝜀), 𝑣2(𝑥0, 𝑦0, 𝜉, 𝜀)) = 0,

𝐹2(𝑥0, 𝑦0, 𝑣1(𝑥0, 𝑦0, 𝜉, 𝜀), 𝑣2(𝑥0, 𝑦0, 𝜉, 𝜀)) = 0

at v(𝑥0, 𝑦0, 𝜉) ∈ 𝑇𝑛𝑔(𝑎)

(︃
𝑥0

𝑦0

)︃
, |𝜀| < 𝛿.

Corollary. Theorem 5 is true for semisimple bifurcation points, i.e. at the
absence of GJS. Then here we have BEq.

Definition 2. BEqR (2.8) (resp. (2.9)) is the BEqR of potential type if
in a neighborhood of the point (𝑥0, 𝑦0; 0) for the vector f(𝑥, 𝑦,v(𝑥, 𝑦, 𝜉), 𝜀) =
(𝑓11, . . . , 𝑓1𝑝1 , . . . , 𝑓𝑛1, . . . , 𝑓𝑛𝑝𝑛) the equality

f(𝑥, 𝑦,v(𝑥, 𝑦, 𝜉), 𝜀) = 𝑑 · grad𝑥,𝑦𝑈(𝑥, 𝑦, 𝜉, 𝜀), (3.1)

is satisfied, where 𝑑 is an invertible operator. Then the functional 𝑈(𝑥, 𝑦, 𝜉, 𝜀) is the
potential of BEqR (2.8) (resp. (2.9)) and the operator f (resp. t) is pseudogradient
of the functional 𝑈 .
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Theorem 6. (BEqR reduction.) Let in suppositions (c1)–(c3) A.Lyapounov
BEqR (E.Schmidt BEqR) is potential type one, its potential 𝑈(𝑥, 𝑦, 𝜉, 𝜀) is invariant
of the representation 𝐿𝑔(𝑎) of the group 𝐺𝑙(𝑎) and belongs to the class 𝐶2 in some
neighborhood of the bifurcation point (𝑥0, 𝑦0; 0), 𝑠 – the dimension of stationary
subgroup of the element (𝑥0, 𝑦0) and 𝜅 = 𝑙 − 𝑠 > 0. Then:

1. if 𝜅 = 𝑛, then for all (𝜉(𝜀), 𝜀) or (v(𝑥0, 𝑦0, 𝜉(𝜀), 𝜀)) from some neighborhood of
zero in R𝐾+1 BEqR (8) (or (9)) is identically fulfilled. i.e. the situation of the
Theorem 3 arises;

2. if 𝜅 < 𝑛 and 𝑛 > 2, then the partial reduction has place: the first 𝐾𝜅 =
𝑝1 + . . .+ 𝑝𝜅 equations are linear combinations of the others 𝑝𝜅+1 + . . .+ 𝑝𝑛.

Corollary. In the case of invariant kernel the BEqR reduction realizes on
complete Jordan chains with the aid of complete system of functionally independent
invariants of the group 𝐺𝑙 action in Ξ𝐾 = {𝜉11, . . . , 𝜉1𝑝1 , . . . , 𝜉𝑛1, . . . , 𝜉1𝑛𝑝}.
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Abstract. We describe a dilation operator on a product of locally compact zero-
dimensional groups (𝐺, +̇), and build the corresponding multiresolution analysis.
Bibliography: 10 titles.

1 Introduction

In recent years there has been a considerable interest in the problem of constructing
wavelet bases on Vilrnkin groups 𝐺𝑉 and 𝑝-adic number fields Q𝑝. Yu. Farkov [2,3]
pointed out a method for constructing compactly supported orthogonal wavelets
on a locally compact Vilenkin group 𝐺𝑉 with a constant generating sequence, and
derived necessary and sufficient conditions for a solution of the refinement equation
to generate a multiresolution analysis (MRA in the sequel) of 𝐿2(𝐺𝑉 ).

A good deal of studies was devoted to the construction of an MRA on the
field Q𝑝 of all 𝑝-adic numbers. A.Khrennikov, V.Shelkovich, and M.Skopina [5]– [6]
considered the refinement equation

𝜙(𝑥) =

𝑝𝑠−1∑︁
𝑗=0

𝛽𝑗𝜙

(︂
𝑝−1𝑥−̇ 𝑟

𝑝𝑠

)︂
introduced the concept of a 𝑝-adic MRA with orthogonal refinable function, and
described a general scheme for their creation.

The problem of constructing multidimensional MRA is moor difficult. In [10]
multidimensional 2-adic orthogonal wavelet bases for 𝐿2(Q𝑑

2) was constructed by
means of the tensor product of one-dimensional MRA. Let us mention also that in [7]

This research was carried out with the financial support of the Programme for Support of
Leading Scientific Schools of the President of the Russian Federation (grant no. -4383.2010.1) and
the Russian Foundation for Basic Research (grant no. 10-01-00097).
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E.J. King and M.A. Skopina constructed a wavelet basis in 𝐿2(Q2
2). For constructing

this bases they used dilation operator with quincunx matrix

(︃
1
2

1
2

−̇1
2

1
2

)︃
.

But the general method of constructing of 𝑝-adic multidimensional MRA and
multidimensional wavelets missing. In the present paper we examine the problem
of construction of MRA on product Q𝑑

𝑝. The product Q𝑑
𝑝 is not a field of 𝑞-adic

numbers, therefore it is impossible to solve this problem within framework 𝑝-adic
analysis. But the product Q𝑑

𝑝 is a zero-dimensional locally compact abelian group
with condition 𝑝𝑔𝑛 = 𝑔𝑛+𝑑 and conversely: any zero-dimensional locally compact
abelian group with condition 𝑝𝑔𝑛 = 𝑔𝑛+𝑑 is the product Q𝑑

𝑝 of groups of all 𝑝-adic
numbers [8]. Using this fact we will to construct MRA in 𝐿2(𝐺

𝑑), where 𝐺 – is an
arbitrary zero-dimensional group. We find a condition for matrix 𝐴𝑑 under which
the operator 𝒜𝑑x = 𝐴𝑑𝑋 is a dilation operator in 𝐺𝑑. Using dilation operator we
construct MRA for 𝐿2(G𝑑). Taking 𝐺 = Q𝑝 we get MRA for 𝐿2(Q𝑑

𝑝).

2 Locally compact zero-dimensional groups, topology and charac-
ters

We proceed to give basic notions and facts in the analysis on zero-dimensional
groups. A more detailed account may be found in [1].

A topological group in which the connected component of 0 is 0 is usually
referred to as a zero-dimensional group. If a separable locally compact group (G, +̇)
is zero-dimensional, then topology on it can be generated by means of a descending
sequence of subgroups. The converse statement holds for all topological groups
(see [1, Ch. 1, § 3]). So, for a locally compact group, we are going to say “zero-
dimensional group” instead of saying “a group with topology generated by a sequence
subgroups”.

Let (G, +̇) be a locally compact zero-dimensional Abelian group with topology
generated by a countable system of open subgroups

· · · ⊃ G−𝑛 ⊃ · · · ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ G𝑛 ⊃ · · ·

where
+∞⋃︁

𝑛=−∞
G𝑛 = G,

+∞⋂︁
𝑛=−∞

G𝑛 = {0}

(0 is the null element in the group G). Given any fixed 𝑁 ∈ Z, the subgroup G𝑁 is
a compact Abelian group with respect to the same operation +̇ under the topology
generated by the system of subgroups G𝑁 ⊃ G𝑁+1 ⊃ · · · ⊃ G𝑛 ⊃ · · · .
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As each subgroup G𝑛 is compact, it follows that each quotient group G𝑛/G𝑛+1

is finite (say, of order 𝑝𝑛). We may always assume that all 𝑝𝑛 are prime numbers,
for in fact, by Sylow’s theorem (see [4]), the chain of subgroups can be refined
so that the quotient groups G𝑛/G𝑛+1 will be of prime order. We will name such
chain as basic chain. In this case, a base of the topology is formed by all possible
cosets G𝑛+̇𝑔, 𝑔 ∈ G.

We further define the numbers (m𝑛)
+∞
𝑛=−∞ as follows:

m0 = 1, m𝑛+1 = m𝑛 · 𝑝𝑛.

The collection of all such cosets G𝑛+̇𝑔, 𝑛 ∈ Z, along with the empty set form the
semiring 𝒦. On each coset G𝑛+̇𝑔 we define the measure 𝜇 by 𝜇(G𝑛+̇𝑔) = 𝜇G𝑛 =
1/m𝑛. So, if 𝑛 ∈ Z and 𝑝𝑛 = 𝑝, we have 𝜇G𝑛 · 𝜇G−𝑛 = 1. The measure 𝜇 can be
extended from the semiring 𝒦 onto the 𝜎-algebra (for example, by using Carath-
eodory’s extension). This gives the translation invariant measure 𝜇, which agrees

on the Borel sets with the Haar measure on G. Further, let
∫︁
G

𝑓(𝑥) 𝑑𝜇(𝑥) be the
absolutely convergent integral of the measure 𝜇.

Given an 𝑛 ∈ Z, consider an element 𝑔𝑛 ∈ G𝑛 ∖G𝑛+1 and fix it. Then any 𝑥 ∈ G
has a unique representation of the form

𝑥 =
+∞∑︁

𝑛=−∞
𝑎𝑛𝑔𝑛, 𝑎𝑛 = 0, 𝑝𝑛 − 1, (2.1)

the sum (2.1) containing finite number of terms with negative subscripts; that is,

𝑥 =

+∞∑︁
𝑛=𝑁

𝑎𝑛𝑔𝑛, 𝑎𝑛 = 0, 𝑝𝑛 − 1, 𝑎𝑁 ̸= 0.

We will name system (𝑔𝑛)𝑛∈Z as a basic system.
Let 𝑋 be the collection of the characters of a group (G, +̇); it is a group with

respect to multiplication too. Also let G⊥
𝑛 = {𝜒 ∈ 𝑋 : ∀𝑥 ∈ G𝑛 , 𝜒(𝑥) = 1} be

the annihilator of the group G𝑛. Each annihilator G⊥
𝑛 is a group with respect to

multiplication, and the subgroups G⊥
𝑛 form an increasing sequence

· · · ⊂ G⊥
−𝑛 ⊂ · · · ⊂ G⊥

0 ⊂ G⊥
1 ⊂ · · · ⊂ G⊥

𝑛 ⊂ · · · (2.2)

with
+∞⋃︁

𝑛=−∞
G⊥
𝑛 = 𝑋 and

+∞⋂︁
𝑛=−∞

G⊥
𝑛 = {1},
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the quotient group G⊥
𝑛+1/G

⊥
𝑛 having order 𝑝𝑛. The group of characters 𝑋 may

be equipped with the topology using the chain of subgroups (2.2), the family of
the cosets G⊥

𝑛 · 𝜒, 𝜒 ∈ 𝑋, being taken as a base of the topology. The collection
of such cosets, along with the empty set, forms the semiring 𝒳 . Given a coset
G⊥
𝑛 · 𝜒, we define a measure 𝜈 on it by 𝜈(G⊥

𝑛 · 𝜒) = 𝜈(G⊥
𝑛 ) = m𝑛 (so that always

𝜇(G𝑛)𝜈(G
⊥
𝑛 ) = 1). The measure 𝜈 can be extended onto the 𝜎-algebra of measurable

sets in the standard way (for example, using Caratheodory’s extension theorem).

One then forms the absolutely convergent integral
∫︁
𝑋

𝐹 (𝜒) 𝑑𝜈(𝜒) of this measure.

The value 𝜒(𝑔) of the character 𝜒 at an element 𝑔 ∈ G will be denoted by (𝜒, 𝑔).
The Fourier transform ̂︀𝑓 of an 𝑓 ∈ 𝐿2(G) is defined as follows

̂︀𝑓(𝜒) = ∫︁
G

𝑓(𝑥)(𝜒, 𝑥) 𝑑𝜇(𝑥) = lim
𝑛→+∞

∫︁
G−𝑛

𝑓(𝑥)(𝜒, 𝑥) 𝑑𝜇(𝑥),

the limit being in the norm of 𝐿2(𝑋).

3 Dilation operator

In this section we will consider a locally-compact zero-dimensional Abelian groups
(G, +̇) with the basic chain of subgroups

· · · ⊃ G−𝑛 ⊃ · · · ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ G𝑛 ⊃ · · ·

We will assume that (G𝑛/G𝑛+1)
♯ = 𝑝 for any 𝑛 ∈ Z. As regards the operation +̇,

we assume additionally that

𝑝𝑔𝑛 = 𝛾1𝑔𝑛+1+̇𝛾2𝑔𝑛+2+̇ · · · +̇𝛾𝜏𝑔𝑛+𝜏 ; (3.1)

here, 𝛾1, 𝛾2, . . . , 𝛾𝜏 = 0, 𝑝− 1 are fixed numbers. We set

𝐻𝑛 =

{︂
𝑞 ∈ G : 𝑞 =

𝑛−1∑︁
𝑗=𝑁

𝑎𝑗𝑔𝑗 , 𝑁 ∈ Z, 𝑎𝑗 = 0, 𝑝− 1

}︂
.

If G is a Vilenkin group, then 𝐻𝑛 is a group. This is not so in the general case (for
example, if G is the group of all 𝑝-adic numbers).

Definition 1. We define the mapping 𝒜 : G → G by 𝒜𝑥 :=
∑︀+∞

𝑛=−∞ 𝑎𝑛𝑔𝑛−1,
where 𝑥 =

∑︀+∞
𝑛=−∞ 𝑎𝑛𝑔𝑛 ∈ G. As any element 𝑥 ∈ G can be uniquely expanded
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as 𝑥 =
∑︀
𝑎𝑛𝑔𝑛, the mapping 𝐴 : G → G is one-to-one onto. The mapping 𝒜 is

called a dilation operator if 𝒜(𝑥+̇𝑦) = 𝒜𝑥+̇𝒜𝑦 for all 𝑥, 𝑦 ∈ G.
We note that if G is a Vilenkin group (𝑝 · 𝑔𝑛 = 0) or is the group of all 𝑝-

adic numbers (𝑝 · 𝑔𝑛 = 𝑔𝑛+1), then 𝐴 is an additive operator and hence a dilation
operator. Moreover, the operator 𝐴 is additive if the condition (3.1) is satisfied. It
is also clear that 𝒜G𝑛 = G𝑛−1,𝒜−1G𝑛 = G𝑛+1.

Our main objective is to construct MRA for 𝐿2(G) and 𝐿2(G
𝑑). For this we

will use a multiresolution analysis on the group G as follows [9].
Definition 2. A family of closed subspaces 𝑉𝑛, 𝑛 ∈ Z, is said to be a multi-

resolution analysis of 𝐿2(G) if the following axioms are satisfied:

1) 𝑉𝑛 ⊂ 𝑉𝑛+1;
2)
⋃︀
𝑛∈Z 𝑉𝑛 = 𝐿2(G) and

⋂︀
𝑛∈Z 𝑉𝑛 = {0};

3) 𝑓(𝑥) ∈ 𝑉𝑛 ⇐⇒ 𝑓(𝒜𝑥) ∈ 𝑉𝑛+1 (𝒜 is a dilation operator);
4) 𝑓(𝑥) ∈ 𝑉0 =⇒ 𝑓(𝑥−̇ℎ) ∈ 𝑉0 for all ℎ ∈ 𝐻0 (𝐻0 is a set of shifts);
5) there exists a function 𝜙 ∈ 𝐿2(G) such that the system (𝜙(𝑥−̇ℎ))ℎ∈𝐻0 is an

orthonormal basis for 𝑉0.

A function 𝜙 occurring in Axiom 5) is called a refinable function.
Next we will follow the conventional approach. Let 𝜙(𝑥)∈𝐿2(G), and suppose

that (𝜙(𝑥−̇ℎ))ℎ∈𝐻0 is an orthonormal system in 𝐿2(G). With the function 𝜙 and the
dilation operator 𝐴, we define the linear subspaces 𝐿𝑗 = (span𝜙(𝒜𝑗𝑥−̇ℎ))ℎ∈𝐻0 and
closed subspaces 𝑉𝑗 = 𝐿𝑗 . If the subspaces 𝑉𝑗 form an MRA, then the function 𝜙 is
said to generate an MRA in 𝐿2(G). We will look up a function 𝜙 ∈ 𝐿2(G), which
generates an MRA in 𝐿2(G), as a solution the refinement equation

𝜙(𝑥) =
∑︁
ℎ∈𝐻

𝑐ℎ𝜙(𝐴𝑥−̇ℎ), (3.2)

where 𝐻 ⊂ 𝐻0 is a finite set.
Next theorem was prowed in [9]
Theorem 1. Let 𝜙 ∈ 𝐿2(G) be a solution of the equation (3.2). Suppose

that |̂︀𝜙(𝜒)| = 1G⊥
0
(𝜒). Then 𝜙 generates an MRA in 𝐿2(G).

4 The dilation operator on the product of zero-dimensional group

Let (G, +̇) be a locally compact zero-dimensional abelian group with a basic chain

· · · ⊂ G𝑛 ⊂ · · · ⊂ G1 ⊂ G0 ⊂ G−1 ⊂ · · · ⊂ G−𝑛 ⊂ . . . , (G𝑛/G𝑛+1)
♯ = 𝑝,

(𝑔𝑛)𝑛∈Z – be a basic system, i.e. 𝑔𝑛 ∈ G𝑛 ∖G𝑛+1.



Multiresolution Analysis on Product of p-adic Number Fields 293

We denote by 𝐺 = G𝑑 = G×G× · · ·×G the direct sum of 𝑑 copies of group G.
The base of neighborhood of zero in G𝑑 consist of all products G𝑛1×G𝑛2×· · ·×G𝑛𝑑

.
We can take the chain of 𝑑-dimensional cubes G𝑛 × G𝑛 × · · · × G𝑛 as a base of
neighborhood of zero in G𝑑. We note that the chain

· · · ⊂ G𝑑
𝑛 ⊂ · · · ⊂ G𝑑

1 ⊂ G𝑑
0 ⊂ G𝑑

−1 ⊂ · · · ⊂ G𝑑
−𝑛 ⊂ . . . (4.1)

is not a basic chain, since (G𝑑
𝑛/G

𝑑
𝑛+1)

♯ = 𝑝𝑑 is not a prime number. Denote G𝑑
𝑛 as

𝐺𝑛𝑑. Using the Silovs theorem we will refine the chain (4.1) to obtain a basic chain
𝐺𝑛 with condition (𝐺𝑛/𝐺𝑛+1)

♯ = 𝑝. Let g𝑛 = (𝑔(𝑛1), 𝑔(𝑛2), . . . , 𝑔(𝑛𝑑)) ∈ (𝐺𝑛/𝐺𝑛+1)
𝑑

be a basic system in 𝐺 = G𝑑. Using this basic system we can define the dilation
operator 𝒜𝑑 as

𝒜𝑑x =
∑︁
𝑛∈Z

𝑎𝑛g𝑛−1 if x =
∑︁
n∈Z

angn.

If the operator 𝒜𝑑 is additive, then 𝒜𝑑 is a dilation operator. We wont to write the
operator 𝒜𝑑 in the form

(𝒜𝑑x)
𝑇 = 𝐴x𝑇 ,

where 𝐴 is 𝑑× 𝑑 matrix, x𝑇 is a vector-column (𝑥(1), 𝑥(2), . . . , 𝑥(𝑑))𝑇 . Let 𝑍𝑝 be a
residue-class field on modulo 𝑝 i.e. 𝑍𝑝 = {0, 1, . . . , 𝑝− 1} with operations 𝑚+ 𝑛 =
(𝑚+𝑛)mod p, 𝑚 ·𝑛 = 𝑚+𝑚+ · · ·+𝑚⏟  ⏞  

𝑛

. By 𝐴 denote a 𝑑×𝑑 matrix with elements

𝑎𝑖,𝑗 ∈ 𝑍𝑝 (𝑖, 𝑗 = 1, 𝑝), by 𝐸𝒜 – the matrix

𝐸𝒜 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 𝒜
1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝒜 is one dimensional dilation operator in group (G, +̇). Using this matrix 𝐴
we define vectors g(𝑛+1)𝑑−𝑙 and subgroups 𝐺(𝑛+1)𝑑−𝑙 as

g(𝑛+1)𝑑−𝑙 = (𝑎1,𝑙𝑔𝑛, 𝑎2,𝑙𝑔𝑛, . . . , 𝑎𝑑,𝑙𝑔𝑛), 𝑙 = 1, 𝑑,

𝐺(𝑛+1)𝑑−𝑙 =

𝑝−1⨆︁
𝑗=0

(𝐺(𝑛+1)𝑑−𝑙+1+̇𝑗g(𝑛+1)𝑑−𝑙).
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Lemma 1. Let 𝐴 – be a nonsingular matrix over the field 𝑍𝑝. Define the
operator the operator 𝒜𝑑 as

𝒜𝑑

⎛⎝∑︁
𝑛,𝑙

𝑎(𝑛+1)𝑑−𝑙g(𝑛+1)𝑑−𝑙

⎞⎠ =
∑︁
𝑛,𝑙

𝑎(𝑛+1)𝑑−𝑙g(𝑛+1)𝑑−𝑙−1.

Then
1) 𝐺(𝑛+1)𝑑 ⊂ 𝐺(𝑛+1)𝑑−1 ⊂ · · · ⊂ 𝐺(𝑛+1)𝑑−𝑑+1 ⊂ 𝐺𝑛𝑑,
2) sets 𝐺(𝑛+1)𝑑−𝑙 are subgroups for any 𝑙 = 1, 𝑑,
3) (𝐺(𝑛+1)𝑑−𝑙/𝐺(𝑛+1)𝑑−𝑙+1)

♯ = 𝑝,
4) g(𝑛+1)𝑑−𝑙 ∈ 𝐺(𝑛+1)𝑑−𝑙 ∖𝐺(𝑛+1)𝑑−𝑙+1,
5) the operator 𝒜𝑑 is additive,
6) if X = (𝑥(1), 𝑥(2), . . . , 𝑥(𝑑))𝑇 = x𝑇 , then (𝒜𝑑(x))

𝑇 = 𝐴𝐸𝒜𝐴
−1X.

From lemma 1 follow
Theorem 2. Let 𝒜 – be an one dimensional dilation operator in (G, +̇). The

equality
(𝒜𝑑(x))

𝑇 = 𝐴𝐸𝒜𝐴
−1x𝑇

define a dilation operator in G𝑑 for any nonsingular matrix 𝐴 = 𝐴𝑑×𝑑 over the
residue-class field 𝑍𝑝.

Theorem 3. Let 𝑝 be a prime number and let

𝐸𝑝 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 1
𝑝

1 0 0 . . . 0 0

0 1 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
be a 𝑑× 𝑑 matrix. Then the equality

(𝒜𝑑(x))
𝑇 = 𝐴𝐸𝑝𝐴

−1x𝑇

define a dilation operator in Q𝑑
𝑝.

Let as denote

𝐻
(𝑆)
0 = {x = 𝑎−1g−1+̇𝑎−2g−2+̇ . . . +̇𝑎−𝑆g−𝑆}, 𝐻0 =

⋃︁
𝑆∈N

𝐻
(𝑆)
0 .

𝐻0 is a set of shifts in group 𝐺 = G𝑑.
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Theorem 4. Let 𝜙 be a solution of the refinement equation

𝜙(x) =
∑︁

h∈𝐻(𝑆)
0

𝛽h𝜙(𝒜𝑑x−̇h).

Suppose |𝜙(𝜒)| = 1(G𝑑
0)

⊥(𝜒). Then 𝜙 generate a MRA in 𝐿2(G
𝑑). If G = Q𝑝 we

get MRA in 𝐿2(Q𝑑
𝑝).
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APPLICATIONS OF THE FUNCTION 𝑀𝑈𝑃𝑆(𝑋)
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Abstract. We consider applications of the solution with a compact support
of some functional differential equation to the theory of generalized Taylor series,
approximation theory and wavelet theory.

1 Introduction

In this paper we assume that 𝑠 = 2, 3, 4, . . . and 𝛼 ∈ (1, 2𝑠).

Consider the function 𝑚𝑢𝑝𝑠(𝑥) =
1
2𝜋

∞∫︀
−∞

𝑒−𝑖𝑡𝑥 ·
∞∏︀
𝑘=1

sin2
(︁

𝑠𝑡

(2𝑠)𝑘

)︁
𝑠2· 𝑡

(2𝑠)𝑘
·sin 𝑡

(2𝑠)𝑘

𝑑𝑡. This func-

tion, which is a solution with a compact support of the equation

𝑦′(𝑥) = 2 ·
𝑠∑︁

𝑘=1

(𝑦(2𝑠 · 𝑥+ 2𝑠− 2𝑘 + 1)− 𝑦(2𝑠 · 𝑥− 2𝑘 + 1)) ,

was used by V.A. Rvachev and G.A. Starets in [1] to construct basic functions of
the generalized Taylor series for some classes of differentiable functions.

By 𝐻𝑠,𝛼 denote a class of functions 𝑓 ∈ 𝐶∞
[−1,1] such that⃦⃦⃦

𝑓 (𝑛)(𝑥)
⃦⃦⃦
𝐶[−1,1]

6 𝑐(𝑓) · 𝛼𝑛 · 2𝑛 · (2𝑠)
𝑛(𝑛−1)

2 , 𝑛 = 0, 1, 2, . . . .

Let 𝑁𝑠,0 = {−1, 0, 1} and 𝑥𝑠,0,𝑘 = 𝑘 for 𝑘 ∈ 𝑁𝑠,0;

𝑁𝑠,𝑛 =
{︀
−𝑠 · (2𝑠)𝑛−1,−𝑠 · (2𝑠)𝑛−1 + 𝑠, . . . , 𝑠 · (2𝑠)𝑛−1

}︀
and

𝑥𝑠,𝑛,𝑘 =
𝑘

𝑠 · (2𝑠)𝑛−1
for 𝑘 ∈ 𝑁𝑠,𝑛 and 𝑛 ̸= 0;

𝐼𝑠,𝑛 =
{︀
1, 2, . . . , (2𝑠)𝑛+1 − 1

}︀
for 𝑛 = 0, 1, 2, . . . ;

𝐷𝑠,𝑛 = {𝑝 ∈ 𝐼𝑛 : 𝑝 ̸= 0 (mod 𝑠)} and
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𝑥*𝑠,𝑛,𝑝 = −1 +
𝑝

𝑠 · (2𝑠)𝑛
for 𝑝 ∈ 𝐷𝑠,𝑛 and 𝑛 = 0, 1, 2, . . . ;

△2
ℎ(𝑓 ;𝑥) = 𝑓(𝑥+ ℎ)− 2 · 𝑓(𝑥) + 𝑓(𝑥− ℎ).

It was shown in [1] that if 𝑓(𝑥) belongs to the class 𝐻𝑠,𝛼, then 𝑓(𝑥) expands in
generalized Taylor series, which is uniformly convergent on [−1, 1]:

𝑓(𝑥) =

∞∑︁
𝑛=0

⎛⎝ ∑︁
𝑘∈𝑁𝑠,𝑛

𝑎𝑠,𝑛,𝑘 · 𝜙𝑠,𝑛,𝑘(𝑥) +
∑︁

𝑝∈𝐷𝑠,𝑛

𝑏𝑠,𝑛,𝑝 · 𝜓𝑠,𝑛,𝑝(𝑥)

⎞⎠ ,

where 𝑎𝑠,𝑛,𝑘 = 𝑓 (𝑛) (𝑥𝑠,𝑛,𝑘), 𝑏𝑠,𝑛,𝑝 = △2
1

𝑠·(2𝑠)𝑛

(︀
𝑓 (𝑛);𝑥*𝑠,𝑛,𝑝

)︀
. Basic functions 𝜙𝑠,𝑛,𝑘(𝑥)

and 𝜓𝑠,𝑛,𝑝(𝑥) are the finite linear combinations of translations of the function
𝑚𝑢𝑝𝑠(𝑥).

Thus the following problems are of interest:
1) asymptotic behavior of basic functions 𝜙𝑠,𝑛,𝑘(𝑥) and 𝜓𝑠,𝑛,𝑝(𝑥) as 𝑛→ ∞;
2) approximation properties of translations of the function 𝑚𝑢𝑝𝑠(𝑥).
In this paper we consider these two problems and applications of 𝑚𝑢𝑝𝑠(𝑥) to

wavelet theory.
The author is grateful to professor V.A. Rvachev for attention to this work.

2 Asymptotics of the basic functions of the generalized Taylor
series

Consider the following functions:

Φ𝑠(𝑧) =
∞∑︁
𝑘=0

𝑚𝑢𝑝𝑠

(︂
−1 +

1

𝑠 · (2𝑠)𝑘

)︂
· 𝑧𝑘,

Λ𝑠(𝑧) =

∞∑︁
𝑘=0

𝑚𝑢𝑝𝑠

(︂
−1 +

1

(2𝑠)𝑘+1

)︂
· 𝑧𝑘,

𝑇𝑠(𝑧) =

∞∑︁
𝑘=0

𝑚𝑢𝑝𝑠

(︂
−1 +

1

𝑠 · (2𝑠)𝑘+1

)︂
· 𝑧𝑘.

Theorem 1. The function Φ𝑠(𝑧) has a unique root 𝜆𝑠 in the domain 𝐺𝑠 ={︀
𝑧 ∈ 𝐶 : |𝑧| < 4 · 𝑠2

}︀
. Besides, 𝜆𝑠 is real and belongs to the interval

(︀
−3 · 𝑠2,−1

)︀
.

Furthermore, Λ𝑠 (𝜆𝑠) ̸= 0 and Λ𝑠 (𝜆𝑠)− 𝑠 · 𝑇𝑠 (𝜆𝑠) ̸= 0.
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Consider the function

𝑎𝑏𝑠(𝑥) =
∞∑︁
𝑗=0

𝜆𝑗𝑠 ·𝑚𝑢𝑝𝑠
(︂
𝑥− 1 +

1

𝑠 · (2𝑠)𝑗

)︂
,

which is defined on (−∞, 0].

Let

Φ𝑠,0,0(𝑥) =

{︃
𝑎𝑏𝑠(𝑥), 𝑥 6 0

𝑎𝑏𝑠(−𝑥), 𝑥 > 0
, Φ𝑠,1,0(𝑥) =

{︃
𝑎𝑏𝑠(𝑥), 𝑥 6 0

−𝑎𝑏𝑠(−𝑥), 𝑥 > 0

and Ψ𝑠,0(𝑥) =

{︃
𝑎𝑏𝑠(𝑥), 𝑥 6 0

0, 𝑥 > 0
.

Using these functions we can formulate the following statement:

Theorem 2. For any nonnegative integer 𝑖 functions 22𝑛·(2𝑠)𝑛(2𝑛−1)

𝑐𝑠,2𝑛
· 𝜙(𝑖)

𝑠,2𝑛,0(𝑥),

22𝑛−1·(2𝑠)(2𝑛−1)(𝑛−1)

𝑐𝑠,2𝑛−1
·𝜙(𝑖)
𝑠,2𝑛−1,0(𝑥) and 2𝑛·(2𝑠)

𝑛(𝑛−1)
2

𝑏𝑠,𝑛
·𝜓(𝑖)
𝑠,𝑛,𝑠·(2𝑠)𝑛−1(𝑥) converge uniformly

on [−1, 1] respectively to functions Φ
(𝑖)
𝑠,0,0(𝑥), Φ

(𝑖)
𝑠,1,0(𝑥) and Ψ

(𝑖)
𝑠,0(𝑥), where 𝑐𝑠,𝑛 =

𝑅𝑒𝑠
(︁

Λ𝑠(𝑧)
Φ𝑠(𝑧)

,𝜆𝑠
)︁

𝜆𝑛𝑠
and 𝑏𝑠,𝑛 =

𝑅𝑒𝑠
(︁

𝑠·𝑇𝑠(𝑧)−Λ𝑠(𝑧)
Φ𝑠(𝑧)

,𝜆𝑠
)︁

𝜆𝑛𝑠
. Moreover, for any 𝜌 ∈ [3𝑠2, 4𝑠2) the

following inequalities are true:

1)
⃦⃦⃦
22𝑛·(2𝑠)𝑛(2𝑛−1)

𝑐𝑠,2𝑛
· 𝜙(𝑖)

𝑠,2𝑛,0(𝑥)− Φ
(𝑖)
𝑠,0,0(𝑥)

⃦⃦⃦
𝐶[−1,1]

6𝑀1 · (2𝑛−𝑖)·|𝜆𝑠|
2𝑛

𝜌2𝑛
for 2𝑛 > 𝑖+5;

2)
⃦⃦⃦
22𝑛−1·(2𝑠)(2𝑛−1)(𝑛−1)

𝑐𝑠,2𝑛−1
· 𝜙(𝑖)

𝑠,2𝑛−1,0(𝑥)− Φ
(𝑖)
𝑠,1,0(𝑥)

⃦⃦⃦
𝐶[−1,1]

6 𝑀2 · (2𝑛−1−𝑖)·|𝜆𝑠|2𝑛−1

𝜌2𝑛−1

for 2𝑛− 1 > 𝑖+ 5;

3)
⃦⃦⃦⃦
2𝑛·(2𝑠)

𝑛(𝑛−1)
2

𝑏𝑠,𝑛
· 𝜓(𝑖)

𝑠,𝑛,𝑠·(2𝑠)𝑛−1(𝑥)−Ψ
(𝑖)
𝑠,0(𝑥)

⃦⃦⃦⃦
6𝑀3 · (𝑛−𝑖)·|𝜆𝑠|𝑛

𝜌𝑛 for 𝑛 > 𝑖+ 5.

Let

Φ𝑠,𝑖, ℎ
𝑠(2𝑠)𝑞

(𝑥) = Φ𝑠,𝑖,0

(︂
𝑥− ℎ

𝑠 · (2𝑠)𝑞

)︂
−

𝑞∑︁
𝑙=0

∑︀
𝑗∈𝑁𝑠,𝑙

Φ
(𝑙)
𝑠,𝑖,0

(︁
𝑥𝑠,𝑙,𝑗 − ℎ

𝑠·(2𝑠)𝑞

)︁
· ̂︀𝜙𝑠,𝑙,𝑗(𝑥)

2𝑙 · (2𝑠)
𝑙(𝑙−1)

2

−

−
𝑞∑︁
𝑙=0

∑︀
𝑝∈𝐷𝑠,𝑙

△2
1

𝑠·(2𝑠)𝑙

(︁
Φ
(𝑙)
𝑠,𝑖,0;𝑥

*
𝑠,𝑙,𝑝 −

ℎ
𝑠·(2𝑠)𝑞

)︁
· ̂︀𝜓𝑠,𝑙,𝑝(𝑥)

2𝑙 · (2𝑠)
𝑙(𝑙−1)

2
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for 𝑖 ∈ {1; 2} and integer ℎ such that ℎ ̸= 0 (mod 2𝑠),

Ψ𝑠, ℎ
𝑠(2𝑠)𝑞

(𝑥) = Ψ𝑠,0

(︂
𝑥− ℎ

𝑠 · (2𝑠)𝑞

)︂
−

𝑞∑︁
𝑙=0

∑︀
𝑗∈𝑁𝑠,𝑙

Ψ
(𝑙)
𝑠,0

(︁
𝑥𝑠,𝑙,𝑗 − ℎ

𝑠·(2𝑠)𝑞

)︁
· ̂︀𝜙𝑠,𝑙,𝑗(𝑥)

2𝑙 · (2𝑠)
𝑙(𝑙−1)

2

−

−
𝑞∑︁
𝑙=0

∑︀
𝑝∈𝐷𝑠,𝑙

△2
1

𝑠·(2𝑠)𝑙

(︁
Ψ

(𝑙)
𝑠,0;𝑥

*
𝑠,𝑙,𝑝 −

ℎ
𝑠·(2𝑠)𝑞

)︁
· ̂︀𝜓𝑠,𝑙,𝑝(𝑥)

2𝑙 · (2𝑠)
𝑙(𝑙−1)

2

for integer ℎ such that ℎ ̸= 0 (mod 2𝑠).

Theorem 3. Let 𝑥* = ℎ
𝑠·(2𝑠)𝑞 ∈ [−1, 1], where 𝑞 is a nonnagative integer and ℎ

is an integer such that ℎ ̸= 0 (mod 2𝑠). Then

— if 𝑘
𝑠·(2𝑠)2𝑛−1 = 𝑥* and 2𝑛− 1 > 𝑞, then

22𝑛 · (2𝑠)𝑛(2𝑛−1)

𝑐𝑠,2𝑛
· 𝜙𝑠,2𝑛,𝑘(𝑥) = Φ𝑠,0, ℎ

𝑠(2𝑠)𝑞
(𝑥) +𝑅𝑠,2𝑛,𝑞(𝑥),

— if 𝑘
𝑠·(2𝑠)2𝑛−2 = 𝑥* and 2𝑛− 2 > 𝑞, then

22𝑛−1 · (2𝑠)(𝑛−1)(2𝑛−1)

𝑐𝑠,2𝑛−1
· 𝜙𝑠,2𝑛−1,𝑘(𝑥) = Φ𝑠,1, ℎ

𝑠(2𝑠)𝑞
(𝑥) +𝑅𝑠,2𝑛−1,𝑞(𝑥),

— if −1 + 𝑘
(2𝑠)𝑛 = 𝑥* and 𝑛− 1 > 𝑞, then

2𝑛 · (2𝑠)
𝑛(𝑛−1)

2

𝑏𝑠,𝑛
· 𝜓𝑠,𝑛,𝑠·𝑘−1(𝑥) = Ψ𝑠, ℎ

𝑠(2𝑠)𝑞
(𝑥) + 𝑟𝑠,𝑛,𝑞(𝑥),

where 𝑐𝑠,𝑛 and 𝑏𝑠,𝑛 are defined in the previous theorem,

|𝑅𝑠,𝑛,𝑞(𝑥)| 6𝑀1(𝑠, 𝜌, 𝑞) ·
𝑛 · |𝜆𝑠|𝑛

𝜌𝑛
and |𝑟𝑠,𝑛,𝑞(𝑥)| 6𝑀2(𝑠, 𝜌, 𝑞) ·

𝑛 · |𝜆𝑠|𝑛

𝜌𝑛

for any 𝜌 ∈
[︀
3𝑠2, 4𝑠2

)︀
.

These theorems were proved in [2, 3] (for the case in which 𝑠 = 2) and [4] (for
the general case in which 𝑠 = 2, 3, 4, . . .).
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3 Approximation properties of 𝑚𝑢𝑝𝑠(𝑥)

In this section we assume that 𝑛 is a nonnegative integer. By 𝑀𝑈𝑃𝑠,𝑛 denote the
space of functions 𝑓(𝑥) such that

𝑓(𝑥) =
∑︁
𝑘

𝑐𝑘 ·𝑚𝑢𝑝𝑠
(︂
𝑥− 𝑘

(2𝑠)𝑛

)︂
, 𝑥 ∈ [−1, 1].

Theorem 4. For any 𝑘 = 0, 1, . . . , 𝑛 the function 𝑓(𝑥) = 𝑥𝑛 belongs to 𝑀𝑈𝑃𝑠,𝑛.
Consider the function

𝐹𝑚𝑢𝑝𝑠,𝑛(𝑥) =
1

2𝜋
·

∞∫︁
−∞

𝑒−𝑖𝑡𝑥 ·

(︃
sin 𝑡

2·(2𝑠)𝑛
𝑡

2·(2𝑠)𝑛

)︃𝑛
·

∞∏︁
𝑘=𝑛+1

sin2
(︁

𝑠𝑡
(2𝑠)𝑘

)︁
𝑠2 · 𝑡

(2𝑠)𝑘
· sin 𝑡

(2𝑠)𝑘

𝑑𝑡.

The support of this function is
[︁
− 𝑛+2
𝑠·(2𝑠)𝑛 ,

𝑛+2
𝑠·(2𝑠)𝑛

]︁
.

Theorem 5. The system of functions{︂
𝐹𝑚𝑢𝑝𝑠,𝑛

(︂
𝑥− 𝑗

(2𝑠)𝑛
+ 1 +

𝑛+ 2

2 · (2𝑠)𝑛

)︂}︂2·(2𝑠)𝑛+𝑛+1

𝑗=1

is a basis of the linear space 𝑀𝑈𝑃𝑠,𝑛.
Thus the space 𝑀𝑈𝑃𝑠,𝑛 combines the good approximation properties and the

existence of local basis.
Let ̃︁𝑊 𝑟

2 be a class of functions 𝑓 ∈ 𝐶𝑟−1
[−𝜋,𝜋], such that 𝑓 (𝑘)(−𝜋) = 𝑓 (𝑘)(𝜋) for

any 𝑘 = 0, 1, . . . , 𝑟 − 1, 𝑓 (𝑟−1)(𝑥) is absolutely continuous and
⃦⃦
𝑓 (𝑟)

⃦⃦
𝐿2[−𝜋,𝜋] 6 1.

And let 𝑀𝑈𝑃 𝑠,𝑛 ⊂ 𝐶[−𝜋,𝜋] be a space of functions of the following type:

𝜙(𝑥) =
∑︁
𝑘

𝑐𝑘 ·𝑚𝑢𝑝𝑠
(︂
𝑥

𝜋
− 𝑘

(2𝑠)𝑛

)︂
,

such that 𝜙(𝑙)(−𝜋) = 𝜙(𝑙)(𝜋) for any 𝑙 = 0, 1, 2, . . .. It is easy to prove that
dim𝑀𝑈𝑃 𝑠,𝑛 = 2 · (2𝑠)𝑛.

Theorem 6. For any natural 𝑟 there exists a constant 𝐶 > 0 and an integer
𝑛0 > 0 such that for any 𝑛 > 𝑛0

𝐸𝐿2

(︁̃︁𝑊 𝑟
2 ,𝑀𝑈𝑃 𝑠,𝑛

)︁
6 𝑑2·(2𝑠)𝑛

(︁̃︁𝑊 𝑟
2 , 𝐿2

)︁
·
√︀

1 + 𝐶 · 2−𝑛,
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where 𝐸𝑋(𝐴,𝐿) = sup
𝜙∈𝐴

inf
𝜓∈𝐿

‖𝜙 − 𝜓‖𝑋 and 𝑑𝑁 (𝐾,𝑋) = inf
𝑑𝑖𝑚 𝐿=𝑁

𝐸𝑋(𝐾,𝐿) is the

Kolmogorov width.
That is spaces𝑀𝑈𝑃 𝑠,𝑛 are asymptotically extremal for approximation of classes̃︁𝑊 𝑟

2 in norm of 𝐿2.

4 Applications of 𝑚𝑢𝑝𝑠(𝑥) to wavelet theory

Let 𝑉𝑠,𝑛 be a space of funcions 𝑓(𝑥) such that

𝑓(𝑥) =
∑︁
𝑘∈𝐼(𝑓)

𝑐𝑘 · 𝐹𝑚𝑢𝑝𝑠,𝑛
(︂
𝑥− 2𝑘 − 𝑛

2 · (2𝑠)𝑛

)︂
,

where 𝐼(𝑓) is a finite subset of the integers.
It is true that 𝑉𝑠,0 ⊂ 𝑉𝑠,1 ⊂ . . . ⊂ 𝑉𝑠,𝑛 ⊂ . . ..
Define the inner product of two functions 𝑓, 𝑔 ∈ 𝐿2(𝑅) as the integral∫︁

𝑅

𝑓(𝑥) · 𝑔(𝑥)𝑑𝑥.

Let 𝑊𝑠,𝑛 = {𝑓 ∈ 𝑉𝑠,𝑛 : 𝑓 ⊥ 𝑉𝑠,𝑛−1} for any natural 𝑛.
Theorem 7. For any natural 𝑛 there exists functions 𝜙𝑠,𝑛,1(𝑥), . . . , 𝜙𝑠,𝑛,2𝑠−1(𝑥)

such that
1) the system of functions{︂

𝜙𝑠,𝑛,𝑝

(︂
𝑥− 𝑗

(2𝑠)𝑛−1

)︂}︂
𝑝=1,...,2𝑠−1,𝑗∈𝑍

is a basis of the linear space 𝑊𝑠,𝑛;
2) 𝑠𝑢𝑝𝑝 𝜙𝑠,𝑛,𝑘 ⊆

[︁
− 𝑘+1

(2𝑠)𝑛 ,
𝑛+1

(2𝑠)𝑛−1 + 𝑛+1
(2𝑠)𝑛

]︁
for any 𝑘 = 1, . . . , 2𝑠− 1;

3) for any 𝑘 = 1, . . . , 2𝑠−1 and 𝑝 = 0, 1, . . . , 𝑛−1 the following equality is true:∫︁
𝑅

𝑥𝑝 · 𝜙𝑠,𝑛,𝑘(𝑥)𝑑𝑥 = 0.

As can be seen from this theorem the basis of 𝑊𝑠,𝑛 consists of translations of
2𝑠 − 1 functions. It would be more convenient, if there exists a basis consisting of
translations of one function. It can be proved that this function does not exist.

Consider the case 𝑠 = 2.
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Let

𝑓𝑛(𝑥) =
1

2𝜋
·

∞∫︁
−∞

𝑒𝑖𝑡𝑥 · 𝐹𝑛(𝑡)𝑑𝑡 and 𝑔𝑛(𝑥) =
1

2𝜋
·

∞∫︁
−∞

𝑒𝑖𝑡𝑥 ·𝐺𝑛(𝑡)𝑑𝑡,

where

𝐹𝑛(𝑡) =

(︃
sin 2𝑡

4𝑛+1

2𝑡
4𝑛+1

)︃𝑛
· 𝐹
(︂
𝑡

4𝑛

)︂
, 𝐺𝑛(𝑡) =

(︃
sin 𝑡

4𝑛+1

𝑡
4𝑛+1

)︃𝑛+1

· 𝐹
(︂

𝑡

4𝑛+1

)︂

and 𝐹 (𝑡) =
∞∏︀
𝑘=1

sin 2𝑡

4𝑘
2𝑡

4𝑘

· cos 𝑡
4𝑘
, 𝑛 = 0, 1, 2, . . ..

Note that 𝑓0(𝑥) = 𝑚𝑢𝑝2(𝑥).
Functions 𝑓𝑛(𝑥) and 𝑔𝑛(𝑥) are smooth functions with a compact support.
Let 𝑣2𝑘(𝑥) = 𝑓𝑘

(︀
𝑥− 𝑘+2

2·4𝑘
)︀

and 𝑣2𝑘+1(𝑥) = 𝑔𝑘
(︀
𝑥− 𝑘+2

4𝑘+1

)︀
for any 𝑘 = 0, 1, 2, . . ..

By 𝑉𝑛 denote the space of funcions 𝑓(𝑥) such that

𝑓(𝑥) =
∑︁
𝑘∈𝐼(𝜙)

𝑐𝑘 · 𝑣𝑛
(︂
𝑥− 𝑘

2𝑛

)︂
, 𝑥 ∈ 𝑅,

where 𝐼(𝑓) is a finite subset of the integers.
It can be shown that 𝑉0 ⊂ 𝑉1 ⊂ . . . ⊂ 𝑉𝑛 ⊂ . . ..
Let 𝑊𝑛 = {𝑓 ∈ 𝑉𝑛 : 𝑓 ⊥ 𝑉𝑛−1}.
Theorem 8. For any natural 𝑛 there exists a function 𝑤𝑛(𝑥) such that
1) the system of functions

{︁
𝑤𝑛

(︁
𝑥− 𝑗

2𝑛−1

)︁}︁
𝑗∈𝑍

is a basis of the linear space

𝑊𝑛;
2) 𝑠𝑢𝑝𝑝 𝑤𝑛(𝑥) ⊆

[︀
0, 𝑛+2

2𝑛−1

]︀
;

3) for any 𝑚 = 0, 1, . . . ,
[︀
𝑛+1
2

]︀
− 1 the following equality is true:∫︁

𝑅

𝑥𝑚 · 𝑤𝑛(𝑥)𝑑𝑥 = 0.

The linear space 𝑊𝑛 is a space of wavelets. The system of functions{︂
𝑚𝑢𝑝2(𝑥− 𝑗), 𝑤𝑛

(︂
𝑥− 𝑗

2𝑛−1

)︂}︂
𝑛∈𝑁,𝑗∈𝑍

is a system of nonstationary smooth wavelets with a compact support.
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The same method can be used for construction of nonstationary smooth wavelets
with a compact support for the case 𝑠 = 2𝑘.
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Abstract. Several recent results will be presented on the study of Feichtinger’s
conjecture: each bounded frame is a finite union of Riesz bases. This conjecture is
equivalent to many unsolved problems in various areas of Mathematical Analysis.
and naturally connected with the new concept of the so-called simple frames.

A frame for a Hilbert space ℋ is a family of vectors {𝑓𝑖}𝑖∈𝐼 in ℋ so that there
are constants 𝐴,𝐵 > 0 satisfying:

𝐴‖𝑓‖2 6
∑︁
𝑖∈𝐼

|⟨𝑓, 𝑓𝑖⟩|2 6 𝐵‖𝑓‖2, for all 𝑓 ∈ ℋ.

The constants 𝐴 and 𝐵 are called lower and upper frame bounds, respectively. If
we can choose 𝐴 = 𝐵 we say that {𝑓𝑖}𝑖∈𝐼 is a 𝐵-tight frame. Parseval Frame
is a 1-tight frame. If only the upper frame condition is satisfied we call {𝑓𝑖}𝑖∈𝐼
a Bessel sequence, with Bessel constant 𝐵. A sequence {𝑓𝑖}𝑖∈𝐼 in ℋ is bounded if
0 < inf𝑖∈𝐼 ‖𝑓𝑖‖ 6 sup𝑖∈𝐼 ‖𝑓𝑖‖ <∞.

A bounded unconditional basis for ℋ is called a Riesz basis for ℋ. A sequence
{𝑓𝑖}𝑖∈𝐼 which is a Riesz basis for its closed linear span in ℋ is called a Riesz basic
sequence in ℋ. {𝑓𝑖}𝑖∈𝐼 is a Riesz basis for ℋ ⇐⇒ ∃𝐴,𝐵 > 0 : for all finite families
of scalars {𝑎𝑖}𝑖∈𝐼′⊂𝐼

𝐴
∑︁
𝑖∈𝐼′

|𝑎𝑖|2 6

⃦⃦⃦⃦
⃦∑︁
𝑖∈𝐼′

𝑎𝑖𝑓𝑖

⃦⃦⃦⃦
⃦
2

6 𝐵
∑︁
𝑖∈𝐼′

|𝑎𝑖|2.

In this inequalities we call 𝐴 a lower Riesz basis bound of {𝑓𝑖}𝑖∈𝐼 and 𝐵 an upper
Riesz basis bound.

Original conjecture by H. Feichtinger is as following;
Conjecture 1. Every bounded frame can be written as a finite union of Riesz

basic sequences.
Given 𝑁 ∈ N, let ℓ𝑁2 denote C𝑁 equipped with ℓ2-norm. The next conjecture

concerns frames for ℓ𝑁2 and is usually called as finite Feichtinger conjecture.
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Conjecture 2 (Finite Feichtinger Conjecture). For every 𝐵,𝐶 > 0 there is a
natural number 𝑀 = 𝑀(𝐵,𝐶) and an 𝐴 = 𝐴(𝐵,𝐶) > 0 : whenever {𝑓𝑖}𝑖∈𝐼 is a
frame for ℓ𝑁2 with upper frame bound 𝐵 and ‖𝑓𝑖‖ > 𝐶 for all 𝑖 ∈ 𝐼, then 𝐼 can
be partitioned into {𝐼𝑗}𝑀𝑗=1 so that for each 1 6 𝑗 6 𝑀, {𝑓𝑖}𝑖∈𝐼𝑗 is a Riesz basic
sequence with lower Riesz basis bound 𝐴 and upper Riesz basis bound 𝐵.

Conjecture 2 PF. For every 𝑁 there are 𝜀 > 0 and 𝑀 ∈ N : whenever
{𝑓𝑖}2𝑁𝑖=1 is an equal norm Parseval frame for ℓ𝑁2 , then the set {1, 2, . . . , 2𝑁} can
be partitioned into {𝐼𝑗}𝑀𝑗=1 so that for each 1 6 𝑗 6 𝑀, {𝑓𝑖}𝑖∈𝐼𝑗 has the Bessel
constant 6 1− 𝜀 for all 𝑗 = 1, 2, . . . ,𝑀.

The corresponding conjectures for Bessel sequences are
Conjecture 3. Every bounded Bessel sequence can be written as a finite union

of Riesz basic sequences.
It’s obvious, that Conjecture 3 implies Conjecture 1.
Conjecture 4. For every 𝐵 > 0 there is a natural number 𝑀 = 𝑀(𝐵) and

an 𝐴 = 𝐴(𝐵) > 0 : every Bessel sequence {𝑓𝑖}𝑛𝑖=1 with Bessel constant 𝐵 > 0 and
‖𝑓𝑖‖ = 1, for all 1 6 𝑖 6 𝑛, can be written as a union of 𝑀 Riesz basic sequences
each with lower Riesz basis bound 𝐴.

Conjecture 1 implies Conjecture 4.
Let {𝑒𝑖} be an orthonormal basis for Hilbert space we are working in.
Kashin [2], Bourgain and Tzafriri [3] proved the following result known as the

Restricted-Invertibility Theorem:

Theorem 1. There is a universal constant 𝑐 > 0: whenever 𝑇 : ℓ𝑛2 −→ ℓ𝑛2 is
a linear operator for which ‖𝑇𝑒𝑖‖ = 1 for 1 6 𝑖 6 𝑛, then there exists a subset
𝜎 ⊂ {1, 2, . . . , 𝑛} of cardinality |𝜎| > 𝑐𝑛

‖𝑇‖2 so that⃦⃦⃦∑︁
𝑗∈𝜎

𝑎𝑗𝑇𝑒𝑗

⃦⃦⃦2
> 𝑐

∑︁
𝑗∈𝜎

|𝑎𝑗 |2 ,

for all choices of scalars {𝑎𝑗}𝑗∈𝜎.

Theorem 1 gave rise to the following conjecture which is still open:
Conjecture 5. For every 𝐵 > 0 there is a natural number 𝑀 =𝑀(𝐵) and an

𝐴 = 𝐴(𝐵) > 0 so that if 𝑇 : ℓ𝑛2 −→ ℓ𝑛2 is a linear operator for which ‖𝑇𝑒𝑖‖ = 1 for
1 6 𝑖 6 𝑛, and ‖𝑡‖ 6

√
𝐵, then there exists a partition {𝐼𝑗}𝑀𝑗=1 of {1, 2, . . . .𝑛} so

that for each 1 6 𝑗 6𝑀 and all choices of scalars ‖𝑎𝑖}𝑖∈𝐼𝑗 we have:⃦⃦⃦∑︁
𝑖∈𝐼𝑗

𝑎𝑖𝑇𝑒𝑖

⃦⃦⃦2
> 𝐴

∑︁
𝑖∈𝐼𝑗

|𝑎𝑖|2 .
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It was proved in [7] that conjectures 1, 2 and 5 are equivalent in the sense
that all three have positive answers or allthree have negative answers. All three
conjectures are true if the well known Paving Conjecture holds. For given subset 𝐼
of the integers we denote by 𝑃𝐼 the orthogonal projection in ℓ2 onto the subspace
spanned by {𝑒𝑖}𝑖∈𝐼 .

Conjecture 6 (The Paving Conjecture [1]). For any 𝜀 > 0, there is a constant
𝑀 = 𝑀(𝜀) such that for every integer 𝑛 and every linear operator 𝑆 on ℓ𝑛2 whose
matrix with respect to {𝑒𝑖}𝑛𝑖=1 has zero diagonal, one can find a partition {𝜎𝑗}𝑀𝑗=1

of {1, 2, . . . , 𝑛}, such that⃦⃦
𝑃𝜎𝑗𝑆𝑃𝜎𝑗

⃦⃦
6 𝜀‖𝑆‖ for all 𝑗 = 1, 2. . . . ,𝑀.

The paving conjecture is known to be equivalent to the Kadison–Singer conjec-
ture [1]. Deep analysis of the paving conjecture was made in [5].

The long history of these conjectures will most likely lead us to negative answers
to all of them in general. Nevertheless there are rather wide classes of frames for
which these conjectures are true.

The equivalence of all these conjectures was proved in [7].
The Paving Conjecture (Conjecture 6) implies Conjecture 4. The conjecture is

known to be true for various classes of operators on ℓ𝑛2 ; in particular it is proved for
the operators whose matrices have small entries, 𝑂

(︀
1/ log1+𝛾 𝑛

)︀
for some 𝛾 > 0.

Theorem 2 (Bourgain-Tzafriri, 1991). Let 𝜀 > 0 and 𝑆 be a linear operator
on ℓ𝑛2 whose matrix has zero diagonal and all enries are bounded by 1/ log1+𝛾 𝑛 for
some 𝛾 > 0. Then 𝑆 satisfies the conclusion of the Paving Conjecture: there exists
a partition {𝜎𝑘}𝑘6𝑀 of {1, 2, . . . , 𝑛}, where 𝑀 =𝑀(𝛾, 𝜀), and such that

‖𝑃𝜎𝑘𝑆𝑃𝜎𝑘‖ 6 𝜀‖𝑆‖ for all 𝑘 = 1, 2. . . . ,𝑀.

The partition {𝜎𝑘} constructed by Bourgain and Tzafriri is random, the conclu-
sion holds with probability close to one. Non-probabilistic proof of the Restricted-
Invertibility Theorem was found recently by D.Spielman and N. Srivastava [9].

Theorem 2 implies the positive answer to Conjecture 4 for sequences which are
“well separated”.

Corollary 1. Let {𝑓𝑖}𝑛𝑖=1 be a Bessel sequence with Bessel constant 𝐵 > 0 and
with ‖𝑓𝑖‖ = 1 for all 𝑖. If

|⟨𝑓𝑖, 𝑓𝑗⟩| 6
1

log1+𝛾 𝑛
for all 𝑖 ̸= 𝑗,
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then the sequence {𝑓𝑖}𝑛𝑖=1 can be written as a union of 𝑀 = 𝑀(𝐵, 𝛾) Riesz basic
sequences each with lower Riesz basis bound 1/2 and upper Riesz basis bound 3/2.

Let’s continue some positive results in this direction. First, it is proved in [7],
that bounded Bessel sequences can be decomposed into a finite union of linearly
independent sets.

For this, we need a result of Christensen and Lindner.

Proposition 1. Let𝑀 ∈ N, 𝐼 a finite subset of N and let {𝑓𝑖}𝑖∈𝐼 be a sequence
of nonzero elements in a Hilbert space. The following are equivalent:

(1) 𝐼 can be partitioned into 𝑀 disjoint sets 𝐼1, 𝐼2, . . . , 𝐼𝑀 so that each family
{𝑓𝑖}𝑖∈𝐼𝑗 (𝑗 = 1, 2, . . . ,𝑀) is linearly independent.

(2) For any nonempty subset 𝐽 ⊂ 𝐼 we have

|𝐽 |
𝑑𝑖𝑚 𝑠𝑝𝑎𝑛{𝑓𝑗}𝑗∈𝐽

6𝑀.

Theorem 3. Every Bessel sequence {𝑓𝑖}𝑖∈𝐼 with Bessel bound 𝐵 and ‖𝑓𝑖‖ >
𝐶 > 0, for every 𝑖 ∈ 𝐼, can be decomposed into ⌈𝐵/𝐶2⌉ linearly independent sets.

In the same paper the generalized Bourgain–Tzafriri invertibility theorem was
proved up to a logarithmic factor, which leads to the following result concerning
finite Feichtinger Conjecture.

Theorem 4. There is a universal constant 𝑐 > 0 and a 𝐷 = 𝐷(𝐵) so that
whenever {𝑓𝑖}𝑘𝑖=1 is a Bessel sequence in an 𝑛-dimensional Hilbert space ℋ with
‖𝑓𝑖‖ = 1 for all 1 6 𝑖 6 𝑘 and Bessel constant 𝐵, then there is a partition of so
that for each is a Riesz basic sequence with lower Riesz basis bound 𝑐.

Feichtinger Conjecture is true for certain Weyl–Heisenberg frames.
If 𝑔 ∈ 𝐿2(R), 𝑎, 𝑏 > 0 we define for all 𝑚, 𝑛 ∈ Z :

𝐸𝑚𝑏𝑔(𝑡) = 𝑒2𝜋𝑖𝑚𝑏𝑡𝑔(𝑡) and 𝑇𝑛𝑎𝑔(𝑡) = 𝑔(𝑡− 𝑛𝑎).

If {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈Z is a frame for 𝐿2(R), it is called a Weyl–Heisenberg or Gabor
frame.

Theorem 5. If {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈Z is a frame for 𝐿2(R) and 0 < 𝑎𝑏 < 1 with 𝑎𝑏
rational, then it can be written as a finite union of Riesz basic sequences.

Another possibilities of such a representation of Gabor frames are presented in
the K. Grochenig paper [6].
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Definition 1. A Parseval frame 𝐹 = {𝑓𝑖}𝑀𝑖=1 in ℓ𝑁2 , (𝑀 > 𝑁) is called compos-
ite, if there exists a set of non-negative constants {𝛼𝑖}𝑀𝑖=1, with at least one zero,
such that the system of vectors 𝐹𝛼 = {𝛼𝑖𝑓𝑖}𝑀𝑖=1 forms a Parseval frame again. The
set {𝛼𝑖}𝑀𝑖=1 from this definition is called transformation coefficients.

Parseval frames 𝐹 = {𝑓𝑖}𝑀𝑖=1 , which are not composite, will be called simple.
Property 1. Simple frames are invariant under orthogonal transformations.
The reduction transformation (RT) 𝑇 for an arbitrary frame 𝐹 = {𝑓𝑖}𝑀𝑖=1 is

defined in the following way. Suppose there exists a pair of vectors

𝑓𝑘 ∈ 𝐹, 𝑓𝑝 ∈ 𝐹, |⟨ 𝑓𝑘, 𝑓𝑝 ⟩| = ‖𝑓𝑘‖ ‖𝑓𝑝‖ , 𝑘 ̸= 𝑝 .

Then the RT maps the frame by the following rule:

𝑇 (𝐹 ) = 𝐹 ∖ {𝑓𝑘, 𝑓𝑝} ∪
{︂√︁

‖𝑓𝑘‖2 + ‖𝑓𝑝‖2
𝑓𝑘

‖𝑓𝑘‖

}︂
.

If such pair of vectors does not exist, then 𝑇 (𝐹 ) = 𝐹 . The action of the RT on
a frame can be simplified

𝑇 (𝐹 ) = 𝐹 ∖ {𝑓𝑘, 𝑓𝑝} ∪ 𝑇 ( {𝑓𝑘, 𝑓𝑝} ) .

It is easy to see that this operator does not change the boundaries of the frame
and actually replaces a pair of collinear vectors by a single vector.

When applying RT 𝑇 sufficiently many times we get a frame without collinear
vectors. We call such transformation a full reduction transform (FRT) and denote
by 𝑇∞. So,

𝑇∞ = 𝑇 ∘ 𝑇 ∘ 𝑇 ∘ . . . ∘ 𝑇.

The number of such compositions depends on the numser of collinear vectors
in the frame. The FRT allows to transform a frame with collinear vectors to the
frame without them maintaining its boundaries.

The weight-union of two Parseval frames 𝐹1 =
{︁
𝑓𝐹1
𝑖

}︁𝑀1

𝑖=1
and 𝐹2 =

{︁
𝑓𝐹2
𝑖

}︁𝑀2

𝑖=1
is, by definition, the following system of vectors

𝑤U(𝐹1, 𝐹2) = 𝑇∞

(︂{︁
𝜆𝐹1 𝑓

𝐹1
𝑖

}︁𝑀1

𝑖=1
∪
{︁
𝜆𝐹2 𝑓

𝐹2
𝑖

}︁𝑀2

𝑖=1

)︂
,

provided that 𝜆2𝐹1
+ 𝜆2𝐹2

= 1. The number of vectors in the resulting frame does
not exceed 𝑀1 +𝑀2.
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Similarly, we can determine the weight-union of a finite number of Parseval
frames.

𝐾
𝑤U
𝑘=1

(𝐹𝑘) = 𝑇∞

(︃
𝐾⋃︁
𝑘=1

{︁
𝜆𝐹𝑘

𝑓 𝐹𝑘
𝑖

}︁𝑀𝑘

𝑖=1

)︃
, 𝐹𝑘 =

𝐾⋃︁
𝑘=1

{︁
𝑓 𝐹𝑘
𝑖

}︁𝑀𝑘

𝑖=1
,

𝐾∑︁
𝑘=1

𝜆2𝐹𝑘
= 1 .

The weight-union of Parseval frames is the Parseval frame again.

Theorem 6. Any Parseval frame 𝐹 = {𝑓𝑖}𝑀𝑖=1 can be written as the finite
weight-union of simple Parseval frames.

Proof. We begin by proving that any composite Parseval frame can be repre-
sented as a sum of two simple or composite frames. Indeed, according to definition
of composite frame there exists a set of constants {𝛼𝑖}𝑀𝑖=1, such that ∃𝑘 : 1 6 𝑘 6𝑀 ,
for which 𝛼𝑘 = 0, and the system of vectors {𝛼𝑖𝑓𝑖}𝑀𝑖=1 is a Parseval frame.

Consider the dual set {𝛽𝑖}𝑀𝑖=1 for transformation coefficients

𝛽𝑖 =

√︃
𝛼2
max − 𝛼2

𝑖

𝛼2
max − 1

, 𝛼max = max
16𝑖6𝑀

|𝛼𝑖| .

The dual system 𝐹𝛽 = {𝛽𝑖𝑓𝑖}𝑀𝑖=1 is a Parseval frame. Indeed,

𝑀∑︁
𝑖=1

⟨𝑥, 𝛽𝑖𝑓𝑖 ⟩𝛽𝑖𝑓𝑖 =
𝑀∑︁
𝑖=1

⟨𝑥,
√︂

𝛼2
max−𝛼2

𝑖
𝛼2
max−1

𝑓𝑖 ⟩
√︂

𝛼2
max−𝛼2

𝑖
𝛼2
max−1

𝑓𝑖 =

= 1
𝛼2
max−1

𝑀∑︁
𝑖=1

(︀
𝛼2
max − 𝛼2

𝑖

)︀
⟨𝑥, 𝑓𝑖 ⟩ 𝑓𝑖 = 1

𝛼2
max−1

(︀
𝛼2
max𝑥− 𝑥

)︀
= 𝑥 .

We show now that a set {𝛽𝑖}𝑀𝑖=1 is well-defined. To see this, we remark, that
∀𝑘 : 1 6 𝑘 6 𝑀 a constant 𝛽𝑘 has sense and is a real number, and the set {𝛼𝑖}𝑀𝑖=1

does not coincide with the set {𝛽𝑖}𝑀𝑖=1. It suffices to prove that 𝛼max > 1 for any
choice of {𝛼𝑖}𝑀𝑖=1, since the numerator is non-negative by definition.

Suppose the opposite, that there exists a set of constants {𝛼𝑖}𝑀𝑖=1, such that
∃𝑘 : 1 6 𝑘 6 𝑀 , for which 𝛼𝑘 = 0, and the system {𝛼𝑖𝑓𝑖}𝑀𝑖=1 is a Parseval frame,
but 𝛼max 6 1. We’ll estimate the upper boundary of the frame {𝛼𝑖𝑓𝑖}𝑀𝑖=1

𝑀∑︁
𝑖=1

|⟨𝑥, 𝛼𝑖𝑓𝑖 ⟩|2 =
𝑀∑︁
𝑖=1

|𝛼𝑖|2 |⟨𝑥, 𝑓𝑖 ⟩|2 < 𝛼2
max

𝑀∑︁
𝑖=1

|⟨𝑥, 𝑓𝑖 ⟩|2 = 𝛼2
max .
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Strict inequality is ensured by the presence of zero components in the set {𝛼𝑖}𝑀𝑖=1.
From here we see, that 𝛼max > 1.

It’s rather important to notice the following property of dual sets. For any pair
of dual sets of {𝛼𝑖}𝑀𝑖=1 and {𝛽𝑖}𝑀𝑖=1 there exist numbers 1 6 𝑘 6𝑀 and 1 6 𝑝 6𝑀 ,
such that 𝑘 ̸= 𝑝 and thus

𝛼𝑘 = 0, 𝛽𝑘 ̸= 0, 𝛼𝑝 ̸= 0, 𝛽𝑝 = 0 .

This property follows from the definition of the appropriate sets. So the numbers
{𝛽𝑖}𝑀𝑖=1 are well-defined.

Any composite frame can be decomposed into a weight-union of Parseval frames
{𝛼𝑖𝑓𝑖}𝑀𝑖=1 и {𝛽𝑖𝑓𝑖}𝑀𝑖=1. Indeed, we take specific values 𝜆𝛼 и 𝜆𝛽

𝜆𝛼 =
1

𝛼max
, 𝜆𝛽 =

√︀
𝛼2
max − 1

𝛼max
, 𝜆2𝛼 + 𝜆2𝛽 =

1

𝛼2
max

+
𝛼2
max − 1

𝛼2
max

= 1 ,

and calculate 𝑤U(𝐹𝛼, 𝐹𝛽). Since the frame 𝐹 contains no collinear vectors, then
the only pairs of collinear vectors in the sum can only be an 𝛼𝑘𝑓𝑘 and 𝛽𝑘𝑓𝑘 для
1 6 𝑘 6𝑀 . We apply RT 𝑇 to this pair.

𝑇 ({𝜆𝛼𝛼𝑖𝑓𝑖, 𝜆𝛽𝛽𝑖𝑓𝑖}) =
√︁

‖𝜆𝛼𝛼𝑖𝑓𝑖‖2 + ‖𝜆𝛽𝛽𝑖𝑓𝑖‖2
𝜆𝛼𝛼𝑖𝑓𝑖
‖𝜆𝛼𝛼𝑖𝑓𝑖‖

=
√︁
𝜆2𝛼𝛼

2
𝑖 + 𝜆2𝛽𝛽

2
𝑖 𝑓𝑖 = 𝑓𝑖 ,

𝜆2𝛼𝛼
2
𝑖 + 𝜆2𝛽𝛽

2
𝑖 =

𝛼2
𝑖

𝛼2
max

+
𝛼2
max − 1

𝛼2
max

· 𝛼
2
max − 𝛼2

𝑖

𝛼2
max − 1

=
𝛼2
𝑖 + 𝛼2

max − 𝛼2
𝑖

𝛼2
max

= 1 .

Thus we have a representation of frame 𝐹 in the form 𝐹 = 𝑤U(𝐹𝛼, 𝐹𝛽). If the
received frames 𝐹𝛼 и 𝐹𝛽 are simple, than the decomposition process is completed.
Otherwise, to obtain a representation in the sum of simple Parseval frames, you
need to use the above method several times.

We introduce the operator 𝐷 by the following recursive formula

𝐷 (𝐹, 𝑘) =

{︃
𝑤U (𝐷 (𝐹𝛼, 𝑘 + 1) , 𝐷 (𝐹𝛽, 𝑘 + 1)) , 𝐹 — composite frame,

𝐹 , 𝐹 — simple frame.

It remains to prove that the recursion depth 𝑘 does not exceed a certain constant.
According to Property 1, with an increasing 𝑘 on the unit, so reduces the number
of vectors in each frame 𝐹𝛼 and 𝐹𝛽

|𝐹𝛼| 6 |𝐹 | − 1 , |𝐹𝛽| 6 |𝐹 | − 1 .
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Based on the fact that the Parseval frames with the smallest number of vectors are
orthonormal bases, we obtain 𝑘 6𝑀 −𝑁 , where 𝑀 is the volume (quantity of the
elements) of the original frame, and 𝑁 is the dimension of the space.

A trivial example of a simple frame is an orthonormal basis. Now we’ll give
more interesting examples, such as equiangular tight frames.

A frame 𝐹 = {𝑓𝑖}𝑀𝑖=1 , ‖𝑓𝑖‖ = 1, 𝑖 = 1′ . . . ,𝑀 is equiangular, if there exists a
constant 𝑐 ∈ [ 0, 1), such that for all 𝑖 6 𝑗 holds the following equation

|⟨𝑓𝑖, 𝑓𝑗⟩| =

⎧⎨⎩ 1, 𝑖 = 𝑗 ,

± 𝑐, 𝑖 ̸= 𝑗 .

In the paper [8] proved that a equiangular system is a tight frame if and only if

𝑐 =

√︃
𝑀 −𝑁

𝑁 (𝑀 − 1)
.

Known examples of equiangular tight frames are an orthonormal basis, of Mercedes-
Benz and others [8].

Any equiangular tight frame 𝐹 = {𝑓𝑖}𝑀𝑖=1 after renormalization
{︁√︁

𝑁
𝑀 𝑓𝑖

}︁𝑀
𝑖=1

becomes a Parseval frame, and this frame is simple. However, there are simple
frames which are not equiangular. �
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Abstract. In this paper we prove equivalence between mixed modulus of smooth-
ness, its constructive characteristics, and the corresponding 𝐾-functional.

1 Introduction

In [1] and [2], S.M. Nikolskii and N.S. Bakhvalov introduced classes of functions
with dominating mixed modulus of smoothness of integer order. Since then the
topic of embedding theorems for these classes as well as properties of mixed moduli
of smoothness was extensively investigated (see e.g. [3]).

Recently it turned out that moduli of smoothness of positive orders play an
important role in the theory of embedding theorems and some other problems (see
e.g. [4]).

In this paper we prove equivalence between mixed modulus of smoothness of
an 𝐿𝑝-function, 1 6 𝑝 6 ∞, and its constructive characteristics (section 3). In
particular, this allows to show equivalence between mixed modulus of smoothness
and the corresponding 𝐾-functional (section 4). Finally, we list the main properties
of mixed modulus of smoothness in section 5.

2 Notations and auxiliary results for functions on T2

We define by
— 𝐿𝑝(T2), 1 6 𝑝 6∞, the set of measurable functions 𝑓(𝑥, 𝑦), 2𝜋-periodic in each

variable, such that ‖𝑓‖𝐿𝑝(T2) =

(︂
2𝜋∫︀
0

2𝜋∫︀
0

|𝑓(𝑥, 𝑦)|𝑝𝑑𝑥𝑑𝑦
)︂ 1

𝑝

< ∞ for 1 6 𝑝 < ∞

and for 𝑝 = ∞ 𝑓 is continuous, ‖𝑓‖𝐿𝑝(T2) = max
06𝑥,𝑦62𝜋

|𝑓(𝑥, 𝑦)|;

The paper was partially supported by RFFI 12-01-00169, 12-01-00170, NSH 979.2012.1,
RYC-2011-09302, and MTM 2011-27637.
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— 𝐿0
𝑝(T2) the set of functions 𝑓 ∈ 𝐿𝑝(T2) such that

2𝜋∫︀
0

𝑓(𝑥, 𝑦)𝑑𝑦 = 0 for a.e. 𝑥,

and
2𝜋∫︀
0

𝑓(𝑥, 𝑦)𝑑𝑥 = 0 for a.e. 𝑦;

— 𝑉𝑚1,∞(𝑓), 𝑉∞,𝑚2(𝑓), 𝑉𝑚1,𝑚2(𝑓) de la Vallée Poussin sums of the Fourier series
of 𝑓 , i.e.,

𝑉𝑚1,∞(𝑓) =
1

𝜋

2𝜋∫︁
0

𝑓(𝑥+ 𝑡1, 𝑦)𝑉
2𝑚1
𝑚1

(𝑡1)𝑑𝑡1,

𝑉∞,𝑚2(𝑓) =
1

𝜋

2𝜋∫︁
0

𝑓(𝑥, 𝑦 + 𝑡2)𝑉
2𝑚2
𝑚2

(𝑡2)𝑑𝑡2,

𝑉𝑚1,𝑚2(𝑓) =
1

𝜋2

2𝜋∫︁
0

2𝜋∫︁
0

𝑓(𝑥+ 𝑡1, 𝑦 + 𝑡2)𝑉
2𝑚1
𝑚1

(𝑡1)𝑉
2𝑚2
𝑚2

(𝑡2)𝑑𝑡1𝑑𝑡2,

where 𝑉 0
0 (𝑡) = 𝐷0(𝑡), 𝑉

2𝑛
𝑛 (𝑡) = 𝐷𝑛(𝑡)+...+𝐷2𝑛−1(𝑡)

𝑛 , 𝑛 = 1, 2...,

𝐷𝑚(𝑡) =
sin (𝑚+ 1

2
)𝑡

2 sin 𝑡
2

, 𝑚 = 0, 1, 2...;

— 𝑓 (𝜌1,𝜌2) — derivative in the sense of Weyl of the function 𝑓 of order 𝜌1 > 0 with
respect to 𝑥 and of order 𝜌2 > 0 with respect to 𝑦,

— 𝑌𝑚1,𝑚2(𝑓)𝐿𝑝(T2) the best approximation by a two-dimensional angle of the func-
tion 𝑓 ∈ 𝐿𝑝(T2), i.e., 𝑌𝑚1,𝑚2(𝑓)𝐿𝑝(T2) = inf

𝑇𝑚1,∞,𝑇∞,𝑚2

‖𝑓−𝑇𝑚1,∞−𝑇∞,𝑚2‖𝐿𝑝(T2),

where the function 𝑇𝑛1,∞(𝑥, 𝑦) ∈ 𝐿𝑝(T2) is a trigonometric polynomial of de-
gree at most 𝑛1 in 𝑥, and the function 𝑇∞,𝑛2(𝑥, 𝑦) ∈ 𝐿𝑝(T2) is a trigonometric
polynomial of degree at most 𝑛2 in 𝑦.

For the function 𝑓 ∈ 𝐿𝑝(T2) we define the difference of order 𝛼1 > 0 with respect
to the variable 𝑥 and the difference of order 𝛼2 > 0 with respect to the variable 𝑦
as follows:

Δ𝛼1
ℎ1
(𝑓) =

∞∑︁
𝜈1=0

(−1)𝜈1
(︀
𝛼1
𝜈1

)︀
𝑓(𝑥+ (𝛼1 − 𝜈1)ℎ1, 𝑦),

Δ𝛼2
ℎ2
(𝑓) =

∞∑︁
𝜈2=0

(−1)𝜈2
(︀
𝛼2
𝜈2

)︀
𝑓(𝑥, 𝑦 + (𝛼2 − 𝜈2)ℎ2),

where (𝛼𝜈 ) = 1 for 𝜈 = 0, (𝛼𝜈 ) = 𝛼 for 𝜈 = 1, (𝛼𝜈 ) =
𝛼(𝛼−1)...(𝛼−𝜈+1)

𝜈! for 𝜈 > 2.
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Denote by 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) the mixed modulus of smoothness of a function
𝑓 ∈ 𝐿𝑝(T2) of orders 𝛼1 и 𝛼2 with respect to the variables 𝑥 and 𝑦, i.e.,

𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) = sup
|ℎ𝑖|6𝛿𝑖,𝑖=1,2

‖Δ𝛼1
ℎ1
(Δ𝛼2

ℎ2
(𝑓))‖𝐿𝑝(T2).

Define by
— 𝑊

(𝛼1,0)
𝑝 the set of functions 𝑓 ∈ 𝐿0

𝑝(T2) such that 𝑓 (𝛼1,0) ∈ 𝐿0
𝑝(T2),

— 𝑊
(0,𝛼2)
𝑝 the set of functions 𝑓 ∈ 𝐿0

𝑝(T2) such that 𝑓 (0,𝛼2) ∈ 𝐿0
𝑝(T2),

— 𝑊
(𝛼1,𝛼2)
𝑝 the set of functions 𝑓 ∈ 𝐿0

𝑝(T2) such that 𝑓 (𝛼1,𝛼2) ∈ 𝐿0
𝑝(T2).

The K-functional of the function 𝑓 ∈ 𝐿0
𝑝(T2) is given by

𝐾𝛼1,𝛼2(𝑓, 𝑡1, 𝑡2)𝐿𝑝(T2) ≡ 𝐾(𝑓, 𝑡1, 𝑡2, 𝛼1, 𝛼2)𝐿𝑝(T2) = inf
𝑔1∈𝑊

(𝛼1,0)
𝑝 ,𝑔2∈𝑊

(0,𝛼2)
𝑝 ,𝑔∈𝑊 (𝛼1,𝛼2)

𝑝[︁
‖𝑓 − 𝑔1 − 𝑔2 − 𝑔‖𝐿𝑝(T2) + 𝑡𝛼1

1 ‖𝑔(𝛼1,0)
1 ‖𝐿𝑝(T2) + 𝑡𝛼2

2 ‖𝑔(0,𝛼2)
2 ‖𝐿𝑝(T2)

+𝑡𝛼1
1 𝑡𝛼2

2 ‖𝑔(𝛼1,𝛼2)‖𝐿𝑝(T2)

]︁
.

If 𝐹 (𝑓, 𝛿1, 𝛿2), 𝐺(𝑓, 𝛿1, 𝛿2) > 0, then 𝐹 (𝑓, 𝛿1, 𝛿2) ≪ 𝐺(𝑓, 𝛿1, 𝛿2) means that there
exists a constant 𝐶, independent of 𝑓, 𝛿1, 𝛿2 such that 𝐹 (𝑓, 𝛿1, 𝛿2) 6 𝐶𝐺(𝑓, 𝛿1, 𝛿2).
If 𝐹 (𝑓, 𝛿1, 𝛿2) ≪ 𝐺(𝑓, 𝛿1, 𝛿2) and 𝐺(𝑓, 𝛿1, 𝛿2) ≪ 𝐹 (𝑓, 𝛿1, 𝛿2), then 𝐹 (𝑓, 𝛿1, 𝛿2) ≍
𝐺(𝑓, 𝛿1, 𝛿2).

Lemma 1 (see [5]). Let 𝑓 ∈ 𝐿0
𝑝(T2), 1 6 𝑝 6 ∞, 𝑘𝑖 ∈ 𝑁 , 𝑛𝑖 = 0, 1, 2 . . .,

𝑖 = 1, 2. Then ‖𝑓 − 𝑉𝑛1,∞(𝑓) − 𝑉∞,𝑛2(𝑓) + 𝑉𝑛1,𝑛2(𝑓)‖𝐿𝑝(T2) ≪ 𝑌𝑛1,𝑛2(𝑓)𝐿𝑝(T2) ≪
𝜔𝑘1,𝑘2(𝑓,

𝜋
𝑛1+1 ,

𝜋
𝑛2+1)𝐿𝑝(T2).

Lemma 2 (see [6]). Let 1 6 𝑝 6∞, 𝛼𝑖 > 0, 𝑛𝑖 = 0, 1, 2 . . ., 𝑖 = 1, 2. Then

‖𝑇 (𝛼1,0)
𝑛1,∞ ‖𝐿𝑝(T2) ≪ (𝑛1 + 1)𝛼1‖𝑇𝑛1,∞‖𝐿𝑝(T2),

‖𝑇 (0,𝛼2)
∞,𝑛2

‖𝐿𝑝(T2) ≪ (𝑛2 + 1)𝛼2‖𝑇∞,𝑛2‖𝐿𝑝(T2),

‖𝑇 (𝛼1,𝛼2)
𝑛1,𝑛2

‖𝐿𝑝(T2) ≪ (𝑛1 + 1)𝛼1(𝑛2 + 1)𝛼2‖𝑇𝑛1,𝑛2‖𝐿𝑝(T2).

3 Notations and auxiliary results for functions on T

Define by
— 𝐿𝑝(T), 1 6 𝑝 6 ∞, the set of 2𝜋-periodic measurable functions 𝑓 such that

for 1 6 𝑝 < ∞, ‖𝑓‖𝐿𝑝(T) =

(︂
2𝜋∫︀
0

|𝑓(𝑥)|𝑝 𝑑𝑥
)︂1/𝑝

< ∞, and for 𝑝 = ∞ 𝑓 is

continuous and ‖𝑓‖𝐿𝑝(T) = max
06𝑥62𝜋

|𝑓(𝑥)|;
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— 𝐿0
𝑝(T) the set of functions 𝑓 ∈ 𝐿𝑝(T) such that

2𝜋∫︀
0

𝑓(𝑥)𝑑𝑥 = 0;

— 𝑉𝑛(𝑓) de la Vallée Poussin sums of function 𝑓 ∈ 𝐿𝑝(T), i.e.,

𝑉𝑛(𝑓) =
1
𝜋

2𝜋∫︀
0

𝑓(𝑥+ 𝑡)𝑉 2𝑛
𝑛 (𝑡)𝑑𝑡;

— 𝑓 (𝜌) the Weyl derivative of 𝑓 of order 𝜌(𝜌 > 0).
For the function 𝑓 ∈ 𝐿𝑝 let us define the difference of positive order 𝛼 as follows

Δ𝛼
ℎ(𝑓) =

∞∑︁
𝜈=0

(−1)𝜈
(︂
𝛼

𝜈

)︂
𝑓(𝑥+ (𝛼− 𝜈)ℎ).

Lemma 3 (see [3]). Let 𝑓 ∈ 𝐿0
𝑝, 1 6 𝑝 6∞. Then ‖𝑉𝑛(𝑓)‖𝐿𝑝(T) ≪ ‖𝑓‖𝐿𝑝(T).

Lemma 4 (see [7]). Let 𝛼 > 0. Then
∞∑︀
𝜈=0

(−1)𝜈 (𝛼𝜈 ) = 0.

Lemma 5 (see [7]). Let 𝑓 ∈ 𝐿0
𝑝,𝑔 ∈ 𝐿0

𝑝, 1 6 𝑝 6∞, 𝛼 > 0, 𝛽 > 0. Then
(a) △𝛼

ℎ(𝑓 + 𝑔) = △𝛼
ℎ𝑓 +△𝛼

ℎ𝑔;
(b) △𝛼

ℎ(△
𝛽
ℎ𝑓) = △𝛼+𝛽

ℎ 𝑓 ;
(c) ‖△𝛼

ℎ𝑓‖𝐿𝑝(T) ≪ ‖𝑓‖𝐿𝑝(T).

Lemma 6 (see [7]). Let 1 6 𝑝 6 ∞, 𝛼 > 0, and 𝑇𝑛 be a trigonometric poly-
nomial of degree at most 𝑛 ∈ 𝑁 . Then

(a) for any ℎ : 0 < |ℎ| 6 𝜋
𝑛 , we have ‖△𝛼

ℎ𝑇𝑛‖𝐿𝑝(T) ≪ 𝑛−𝛼‖𝑇 (𝛼)
𝑛 ‖𝐿𝑝(T);

(b) ‖𝑇 (𝛼)
𝑛 ‖𝐿𝑝(T) ≪ 𝑛𝛼‖△𝛼

𝜋
𝑛
𝑇𝑛‖𝐿𝑝(T).

Lemma 7. Let 𝑓 ∈ 𝐿0
𝑝(T), 1 6 𝑝 6∞, 𝛼 > 0. Then

‖𝑉2𝑚+1(𝑓)− 𝑉2𝑚(𝑓)‖𝐿𝑝(T) ≪ 2−𝑚𝛼‖𝑉 (𝛼)
2𝑚+1(𝑓)− 𝑉

(𝛼)
2𝑚 (𝑓)‖𝐿𝑝(T).

This lemma follows from lemmas 3.3 and 3.4 of the paper [8].

4 Constructive characteristics of mixed moduli of smoothness

Theorem 1. Let 𝑓 ∈ 𝐿0
𝑝(T2), 1 6 𝑝 6∞, 𝛼𝑖 > 0, 𝑛𝑖 ∈ N, 𝑖 = 1, 2. Then

𝜔𝛼1,𝛼2

(︁
𝑓,

𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1

)︁
𝐿𝑝(T2)

≍ 𝑛−𝛼1
1 𝑛−𝛼2

2

⃦⃦
𝑉 (𝛼1,𝛼2)
𝑛1,𝑛2

(𝑓)
⃦⃦
𝐿𝑝(T2)

+
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+ 𝑛−𝛼1
1

⃦⃦
𝑉 (𝛼1,0)
𝑛1,∞ (𝑓 − 𝑉∞,𝑛2(𝑓))

⃦⃦
𝐿𝑝(T2)

+ 𝑛−𝛼2
2

⃦⃦
𝑉 (0,𝛼2)
∞,𝑛2

(𝑓 − 𝑉𝑛1,∞(𝑓))
⃦⃦
𝐿𝑝(T2)

+

+
⃦⃦
𝑓 − 𝑉𝑛1,∞(𝑓)− 𝑉∞,𝑛2(𝑓) + 𝑉𝑛1,𝑛2(𝑓)

⃦⃦
𝐿𝑝(T2)

.

Proof. For any ℎ𝑖 и 𝑛𝑖 ∈ 𝑁, 𝑖 = 1, 2 we have

‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝑓))‖𝐿𝑝(T2) 6 ‖△𝛼1

ℎ1
(△𝛼2

ℎ2
(𝑓−𝑉𝑛1,∞(𝑓)−𝑉∞,𝑛2(𝑓)+𝑉𝑛1,𝑛2(𝑓)))‖𝐿𝑝(T2)+

+ ‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝑉𝑛1,∞(𝑓 − 𝑉∞,𝑛2)))‖𝐿𝑝(T2) + ‖△𝛼1

ℎ1
(△𝛼2

ℎ2
(𝑉∞,𝑛2(𝑓 − 𝑉𝑛1,∞)))‖𝐿𝑝(T2)+

+ ‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝑉𝑛1,𝑛2(𝑓)))‖𝐿𝑝(T2) ≡ 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4.

Let us first estimate 𝐼1 from above. Denote 𝜙(𝑥, 𝑦) = 𝑓−𝑉𝑛1,∞(𝑓)−𝑉∞,𝑛2(𝑓)+
𝑉𝑛1,𝑛2(𝑓). By lemma 5 c), we have:(︃ 2𝜋∫︁

0

|△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝜙))|𝑝𝑑𝑥

)︃ 1
𝑝

≪

(︃ 2𝜋∫︁
0

|△𝛼2
ℎ2
(𝜙)|𝑝𝑑𝑥

)︃ 1
𝑝

a.e. 𝑦 and 1 6 𝑝 <∞;

and
max

06𝑥62𝜋
|△𝛼1

ℎ1
(△𝛼2

ℎ2
(𝜙))| ≪ max

06𝑥62𝜋
|△𝛼2

ℎ2
(𝜙)| a.e. 𝑦 and 𝑝 = ∞.

Then for 1 6 𝑝 6∞ we get

‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝜙))‖𝐿𝑝(T2) ≪ ‖△𝛼2

ℎ2
(𝜙)‖𝐿𝑝(T2).

Therefore, 𝐼1 ≪ ‖△𝛼2
ℎ2
(𝜙)‖𝐿𝑝(T2) ≡ 𝐼5. Using similar arguments we have

‖△𝛼2
ℎ2
(𝜙)‖𝐿𝑝(T2) ≪ ‖𝜙‖𝐿𝑝(T2), 1 6 𝑝 6∞. Then 𝐼5 ≪ ‖𝜙‖𝐿𝑝(T2) and hence

𝐼1 ≪ ‖𝑓 − 𝑉𝑛1,∞(𝑓)− 𝑉∞,𝑛2(𝑓) + 𝑉𝑛1,𝑛2(𝑓)‖𝐿𝑝(T2).

Estimating 𝐼2, we denote 𝜓 = 𝑓 − 𝑉∞,𝑛2(𝑓). Using lemma 5 (c), we have for
1 6 𝑝 6∞

‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝑉𝑛1,∞(𝜓)))‖𝐿𝑝(T2) ≪ ‖△𝛼1

ℎ1
(𝑉𝑛1,∞(𝜓))‖𝐿𝑝(T2).

This yields
𝐼2 ≪ ‖△𝛼1

ℎ1
(𝑉𝑛1,∞(𝜓))‖𝐿𝑝(T2) = 𝐼6.

Using lemma 6 (a), we get:⎛⎝ 2𝜋∫︁
0

|△𝛼1
ℎ1
(𝑉𝑛1,∞(𝜓))|𝑝𝑑𝑥

⎞⎠
1
𝑝

≪ 𝑛−𝛼1
1

⎛⎝ 2𝜋∫︁
0

|𝑉 (𝛼1,0)
𝑛1,∞ (𝜓)|𝑝𝑑𝑥

⎞⎠
1
𝑝
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for a.e. 𝑦, all ℎ1 such that 0 < |ℎ1| 6 𝜋
2𝑛1−1 and 1 6 𝑝 <∞; and

max
06𝑥62𝜋

|△𝛼1
ℎ1
(𝑉𝑛1,∞(𝜓))| ≪ 𝑛−𝛼1

1 max
06𝑥62𝜋

|𝑉 (𝛼1,0)
𝑛1,∞ (𝜓)|

for a.e. 𝑦, all ℎ1 such that 0 < |ℎ1| 6 𝜋
2𝑛1−1 and 𝑝 = ∞.

Then for 1 6 𝑝 6∞ we get ‖△𝛼1
ℎ1
(𝑉𝑛1,∞(𝜓))‖𝐿𝑝(T2) ≪ 𝑛−𝛼1

1 ‖𝑉 (𝛼1,0)
𝑛1,∞ (𝜓)‖𝐿𝑝(T2).

Therefore, 𝐼6 ≪ 𝑛−𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1,∞ (𝜓)‖𝐿𝑝(T2) and for 0 < |ℎ1| 6 𝜋
2𝑛1−1 and 1 6 𝑝 6 ∞

we get
𝐼2 ≪ 𝑛−𝛼1

1 ‖𝑉 (𝛼1,0)
𝑛1,∞ (𝑓 − 𝑉∞,𝑛2(𝑓))‖𝐿𝑝(T2).

Similarly we have for 0 < |ℎ1| 6 𝜋
2𝑛1−1 , 0 < |ℎ2| 6 𝜋

2𝑛2−1 and 1 6 𝑝 6∞ we write

𝐼3 ≪ 𝑛−𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2
(𝑓 − 𝑉𝑛1,∞(𝑓))‖𝐿𝑝(T2); 𝐼4 ≪ 𝑛−𝛼1

1 𝑛−𝛼2
2 ‖𝑉 (𝛼1,𝛼2)

𝑛1,𝑛2
(𝑓)‖𝐿𝑝(T2).

Hence,

𝜔𝛼1,𝛼2(𝑓,
𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1
)𝐿𝑝(T2) ≪ ‖𝑓−𝑉𝑛1,∞(𝑓)−𝑉∞,𝑛2(𝑓)+𝑉𝑛1,𝑛2(𝑓)‖𝐿𝑝(T2)+

+ 𝑛−𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1,∞ (𝑓 − 𝑉∞,𝑛2(𝑓))‖𝐿𝑝(T2)+

+ 𝑛−𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2
(𝑓 − 𝑉𝑛1,∞(𝑓))‖𝐿𝑝(T2) + 𝑛−𝛼1

1 𝑛−𝛼2
2 ‖𝑉 (𝛼1,𝛼2)

𝑛1,𝑛2
(𝑓)‖𝐿𝑝(T2).

Thus, the proof of the above estimate in theorem 1 is complete.
Let us estimate 𝜔𝛼1,𝛼2(𝑓,

𝜋
2𝑛1−1 ,

𝜋
2𝑛2−1)𝐿𝑝(T2) from below. Using lemma 1 and

properties of moduli of smoothness of integer order, we get

𝐴1 ≡ ‖𝑓 − 𝑉𝑛1,∞(𝑓)− 𝑉∞,𝑛2(𝑓) + 𝑉𝑛1,𝑛2(𝑓)‖𝐿𝑝(T2) ≪

≪ 𝜔[𝛼1]+1,[𝛼2]+1(𝑓,
𝜋

𝑛1 + 1
,

𝜋

𝑛2 + 1
)𝐿𝑝(T2) ≪

≪ 𝜔[𝛼1]+1,[𝛼2]+1

(︁
𝑓, 𝜋/(2𝑛1 − 1), 𝜋/(2𝑛2 − 1)

)︁
𝐿𝑝(T2)

.

By lemma 5 (b),

𝐴1 6 sup
|ℎ𝑖|6 𝜋

2𝑛𝑖−1
,𝑖=1,2

‖△[𝛼1]+1−𝛼1

ℎ1
(△[𝛼2]+1−𝛼2

ℎ2
(△𝛼1

ℎ1
(△𝛼2

ℎ2
(𝑓))))‖𝐿𝑝(T2).

Also, be lemma 5 (c), we get

𝐴1 6 sup
|ℎ𝑖|6 𝜋

2𝑛𝑖−1
,𝑖=1,2

‖△𝛼1
ℎ1
(△𝛼2

ℎ2
(𝑓))‖𝐿𝑝(T2) = 𝜔𝛼1,𝛼2

(︁
𝑓,

𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1

)︁
𝐿𝑝(T2)

.
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Let us estimate
𝐴2 = ‖𝑉 (𝛼1,0)

𝑛1,∞ (𝑓 − 𝑉∞,𝑛2(𝑓))‖𝐿𝑝(T2).

Denote 𝛾(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)− 𝑉∞,𝑛2(𝑓). Then using lemma 6 (b), we have

⎛⎝ 2𝜋∫︁
0

|𝑉 (𝛼1,0)
𝑛1,∞ (𝛾)|𝑝𝑑𝑥

⎞⎠
1
𝑝

≪ 𝑛𝛼1
1

⎛⎝ 2𝜋∫︁
0

|△𝛼1
𝜋

2𝑛1−1
(𝑉𝑛1,∞(𝛾))|𝑝𝑑𝑥

⎞⎠
1
𝑝

for a.e. 𝑦 and 1 6 𝑝 <∞ and

max
06𝑥62𝜋

|𝑉 (𝛼1,0)
𝑛1,∞ (𝛾)| ≪ 𝑛𝛼1

1 max
06𝑥62𝜋

|△𝛼1
𝜋

2𝑛1−1
(𝑉𝑛1,∞(𝛾))|

for any 𝑦 and 𝑝 = ∞. Then for 1 6 𝑝 6∞ we have

‖𝑉 (𝛼1,0)
𝑛1,∞ (𝛾)‖𝐿𝑝(T2) ≪ 𝑛𝛼1

1 ‖△𝛼1
𝜋

2𝑛1−1
(𝑉𝑛1,∞(𝛾))‖𝐿𝑝(T2).

This gives 𝐴2 ≪ 𝑛𝛼1
1 ‖𝑉𝑛1,∞(△𝛼1

𝜋
2𝑛1−1

(𝛾))‖𝐿𝑝(T2). Also, lemma 3 implies

𝐴2 ≪ 𝑛𝛼1
1 ‖△𝛼1

𝜋
2𝑛1−1

(𝑓 − 𝑉∞,𝑛2(𝑓))‖𝐿𝑝(T2).

Denoting △𝛼1
𝜋
𝑛1

(𝑓) ≡ 𝐹 , we have 𝐴2 ≪ 𝑛𝛼1
1 ‖𝐹 − 𝑉∞,𝑛2(𝐹 )‖𝐿𝑝(T2). Since

𝑉0,∞(𝐹 ) = 𝑉0,𝑛2(𝐹 ) = 0, then

𝐴2 ≪ 𝑛𝛼1
1 ‖𝐹 − 𝑉0,∞(𝐹 )− 𝑉∞,𝑛2(𝐹 ) + 𝑉0,𝑛2(𝐹 )‖𝐿𝑝(T2).

Using lemma 2.1 and properties of the modulus of smoothness, we get

𝐴2 ≪ 𝑛𝛼1
1 𝜔[𝛼1]+1,[𝛼2]+1(𝐹, 𝜋,

𝜋

2𝑛2 − 1
)𝐿𝑝(T2).

By lemma 5 (b), we get

𝐴2 ≪ 𝑛𝛼1
1 sup

|ℎ1|6𝜋,|ℎ2|6 𝜋
2𝑛2−1

‖△[𝛼1]+1
ℎ1

(△[𝛼2]+1−𝛼2

ℎ2
(△𝛼2

ℎ2
(𝐹 )))‖𝐿𝑝(T2).

Further, lemma 5 (c) gives

𝐴2 ≪ 𝑛𝛼1
1 sup

|ℎ2|6 𝜋
2𝑛2−1

‖△𝛼2
ℎ2
(𝐹 )‖𝐿𝑝(T2) = 𝑛𝛼1

1 sup
|ℎ2|6 𝜋

2𝑛2−1

‖△𝛼2
ℎ2
(△𝛼1

𝜋
2𝑛1−1

(𝑓))‖𝐿𝑝(T2)
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≪ 𝑛𝛼1
1 𝜔𝛼1,𝛼2(𝑓,

𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1
)𝐿𝑝(T2).

Similarly we can show

‖𝑉 (0,𝛼2)
∞,𝑛2

(𝑓 − 𝑉𝑛1,∞(𝑓))‖𝐿𝑝(T2) ≪ 𝑛𝛼2
2 𝜔𝛼1,𝛼2(𝑓,

𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1
)𝐿𝑝(T2),

‖𝑉 (𝛼1,𝛼2)
𝑛1,𝑛2

(𝑓)‖𝐿𝑝(T2) ≪ 𝑛𝛼1
1 𝑛𝛼2

2 𝜔𝛼1,𝛼2(𝑓,
𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1
)𝐿𝑝(T2).

Thus,

‖𝑓−𝑉𝑛1,∞(𝑓)−𝑉∞,𝑛2(𝑓)+𝑉𝑛1,𝑛2(𝑓)‖𝐿𝑝(T2)+𝑛
−𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1,∞ (𝑓−𝑉∞,𝑛2(𝑓))‖𝐿𝑝(T2)+

+ 𝑛−𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2
(𝑓 − 𝑉𝑛1,∞(𝑓))‖𝐿𝑝(T2)+

+ 𝑛−𝛼1
1 𝑛−𝛼2

2 ‖𝑉 (𝛼1,𝛼2)
𝑛1,𝑛2

(𝑓)‖𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2

(︂
𝑓,

𝜋

2𝑛1 − 1
,

𝜋

2𝑛2 − 1

)︂
𝐿𝑝(T2)

,

i.e., the proof of theorem 1 is complete.

5 Equivalence between mixed moduli of smoothness and 𝐾-
functionals

Theorem 2. Let 𝑓 ∈ 𝐿0
𝑝(T2), 1 6 𝑝 6∞, 𝛼𝑖 > 0, 0 < 𝛿𝑖 6 𝜋, 𝑖 = 1, 2. Then

𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) ≍ 𝐾𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2). (5.1)

Proof. For any 𝛿𝑖 ∈ (0, 𝜋] there exist integers 𝑛𝑖 such that 𝜋
2𝑛𝑖+1 < 𝛿𝑖 6

𝜋
2𝑛𝑖−1 , 𝑖 = 1, 2. If 𝑓 ∈ 𝐿0

𝑝(T2), then 𝑉𝑛1+1,𝑛2+1(𝑓) ∈𝑊
(𝛼1,𝛼2)
𝑝 ,

(𝑉𝑛1+1,∞(𝑓)−𝑉𝑛1+1,𝑛2+1(𝑓)) ∈𝑊 (𝛼1,0)
𝑝 ; (𝑉∞,𝑛2+1(𝑓)−𝑉𝑛1+1,𝑛2+1(𝑓)) ∈𝑊 (0,𝛼2)

𝑝 .

Therefore,

𝐾(𝑓, 𝛿1, 𝛿2, 𝛼1, 𝛼2)𝐿𝑝(T2) 6

66 ‖𝑓 − (𝑉𝑛1+1,∞(𝑓)− 𝑉𝑛1+1,𝑛2+1(𝑓))− (𝑉∞,𝑛2+1(𝑓)− 𝑉𝑛1+1,𝑛2+1(𝑓))−

− 𝑉𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2) + 𝛿𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1+1,∞(𝑓)− 𝑉
(𝛼1,0)
𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2)+

+ 𝛿𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2+1(𝑓)− 𝑉
(0,𝛼2)
𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2) + 𝛿𝛼1

1 𝛿𝛼2
2 ‖𝑉 (𝛼1,𝛼2)

𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2) =

= ‖𝑓 − 𝑉𝑛1+1,∞(𝑓)− 𝑉∞,𝑛2+1(𝑓) + 𝑉𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2)+
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+ 𝛿𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1+1,∞(𝑓 − 𝑉∞,𝑛2+1(𝑓))‖𝐿𝑝(T2) + 𝛿𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2+1(𝑓 − 𝑉𝑛1+1,∞(𝑓))‖𝐿𝑝(T2)+

+ 𝛿𝛼1
1 𝛿𝛼2

2 ‖𝑉 (𝛼1,𝛼2)
𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2) ≪

≪ ‖𝑓 − 𝑉𝑛1+1,∞(𝑓)− 𝑉∞,𝑛2+1(𝑓) + 𝑉𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2)+

+ 𝑛−𝛼1
1 ‖𝑉 (𝛼1,0)

𝑛1+1,∞(𝑓 − 𝑉∞,𝑛2+1(𝑓))‖𝐿𝑝(T2)+

+ 𝑛−𝛼2
2 ‖𝑉 (0,𝛼2)

∞,𝑛2+1(𝑓 − 𝑉𝑛1+1,∞(𝑓))‖𝐿𝑝(T2) + 𝑛−𝛼1
1 𝑛−𝛼2

2 ‖𝑉 (𝛼1,𝛼2)
𝑛1+1,𝑛2+1(𝑓)‖𝐿𝑝(T2).

By theorem 1, we then arrive at

𝐾(𝑓, 𝛿1, 𝛿2, 𝛼1, 𝛼2)𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2

(︁
𝑓,

𝜋

2𝑛1 + 1
,

𝜋

2𝑛2 + 1

)︁
𝐿𝑝(T2)

≪

≪ 𝜔𝛼1,𝛼2

(︀
𝑓, 𝛿1, 𝛿2

)︀
𝐿𝑝(T2)

,

which gives the estimate from below in (5.1).

Let us show estimate from above. Considering 𝑔1 ∈ 𝑊
(𝛼1,0)
𝑝 , 𝑔2 ∈ 𝑊

(0,𝛼2)
𝑝 and

𝑔 ∈𝑊
(𝛼1,𝛼2)
𝑝 , by lemma 5 (a) we get:

𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) ≪
≪ 𝜔𝛼1,𝛼2(𝑓 − 𝑔1 − 𝑔2 − 𝑔, 𝛿1, 𝛿2)𝐿𝑝(T2) + 𝜔𝛼1,𝛼2(𝑔1, 𝛿1, 𝛿2)𝐿𝑝(T2)+

+ 𝜔𝛼1,𝛼2(𝑔2, 𝛿1, 𝛿2)𝐿𝑝(T2) + 𝜔𝛼1,𝛼2(𝑔, 𝛿1, 𝛿2)𝐿𝑝(T2) ≡ 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.

First, Lemma 5 (c) implies 𝐽1 ≪ ‖𝑓 − 𝑔1 − 𝑔2 − 𝑔‖𝐿𝑝(T2).

Second, estimating 𝐽2, for any 𝛿𝑖 ∈ (0, 𝜋] we find integers 𝑛𝑖 such that 𝜋
2𝑛𝑖+2−1

<

𝛿𝑖 6 𝜋
2𝑛𝑖+1−1

, 𝑖 = 1, 2. Consider 𝐵2 = 𝜔𝛼1,𝛼2

(︀
𝑔1,

𝜋
2𝑛1+1−1

, 𝜋
2𝑛2+1−1

)︀
𝐿𝑝(T2)

.

Lemmas 5 (a) and (b) give

𝐵2 ≪ 𝜔𝛼1,𝛼2

(︀
𝑔1 − 𝑉2𝑛1 ,∞(𝑔1),

𝜋

2𝑛1+1 − 1
,

𝜋

2𝑛2+1 − 1

)︀
𝐿𝑝(T2)

+

+ 𝜔𝛼1,𝛼2

(︀
𝑉2𝑛1 ,∞(𝑔1),

𝜋

2𝑛1+1 − 1
,

𝜋

2𝑛2+1 − 1

)︀
𝐿𝑝(T2)

≪

≪ ‖𝑔1 − 𝑉2𝑛1 ,∞(𝑔1)‖𝐿𝑝(T2) + sup
|ℎ1|6 𝜋

2𝑛1+1−1

‖Δ𝛼1
ℎ1
(𝑉2𝑛1 ,∞(𝑔1))‖𝐿𝑝(T2) = 𝐽21 + 𝐽22.

Using lemma 6 (a) and then lemma 3, for a.e. 𝑦 and ℎ1 : 0 < ℎ1 6 𝜋
2𝑛1+1−1

, we
have
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(︁ 2𝜋∫︁
0

⃒⃒
Δ𝛼1
ℎ1
𝑉2𝑛1 ,∞(𝑔1)

⃒⃒𝑝
𝑑𝑥
)︁1/𝑝

≪ 2−𝑛1𝛼1

(︁ 2𝜋∫︁
0

⃒⃒
𝑉

(𝛼1,0)
2𝑛1 ,∞ (𝑔1)

⃒⃒𝑝
𝑑𝑥
)︁1/𝑝

≪

≪ 2−𝑛1𝛼1

(︁ 2𝜋∫︁
0

⃒⃒
𝑔
(𝛼1,0)
1

⃒⃒𝑝
𝑑𝑥
)︁1/𝑝

, 1 6 𝑝 <∞.

Also,

max
06𝑥62𝜋

⃒⃒
Δ𝛼1
ℎ1
𝑉2𝑛1 ,∞(𝑔1)

⃒⃒
≪ 2−𝑛1𝛼1 max

06𝑥62𝜋

⃒⃒
𝑉

(𝛼1,0)
2𝑛1 ,∞ (𝑔1)

⃒⃒
≪ 2−𝑛1𝛼1 max

06𝑥62𝜋

⃒⃒
𝑔
(𝛼1,0)
1

⃒⃒
.

Thus, for 0 < ℎ1 6 𝜋
2𝑛1+1−1

, 𝐽22 ≪ 2−𝑛1𝛼1
⃦⃦
𝑔
(𝛼1,0)
1

⃦⃦
𝐿𝑝(T2)

, 1 6 𝑝 6∞.

Using Lemmas 3 and 7, and similar arguments, we get for 1 6 𝑝 6∞

𝐽21 ≪
∞∑︁

𝑚1=𝑛1

‖𝑉2𝑚1 ,∞(𝑔1)− 𝑉2𝑚1+1,∞(𝑔1)‖𝐿𝑝(T2) ≪

≪
∞∑︁

𝑚1=𝑛1

2−𝑚1𝛼1‖
(︀
𝑉2𝑚1 ,∞(𝑔1)− 𝑉2𝑚1+1,∞(𝑔1)

)︀(𝛼1,0)‖𝐿𝑝(T2) ≪

≪ 2−𝑛1𝛼1
⃦⃦
𝑔
(𝛼1,0)
1

⃦⃦
𝐿𝑝(T2)

.

Collecting estimates for 𝐽21 and 𝐽22 yields 𝐵2 ≪ 2−𝑛1𝛼1‖𝑔(𝛼1,0)
1 ‖𝐿𝑝(T2).

By definition of the moduli of smoothness, we have 𝜔𝛼1,𝛼2

(︀
𝑔1, 𝛿1, 𝛿2

)︀
𝐿𝑝(T2)

≪

𝜔𝛼1,𝛼2

(︀
𝑔1,

𝜋
2𝑛1+1−1

, 𝜋
2𝑛2+1−1

)︀
𝐿𝑝(T2)

, we have 𝐽2 ≪ 2−𝑛1𝛼1‖𝑔(𝛼1,0)
1 ‖𝐿𝑝(T2). Similarly,

𝐽3 ≪ 2−𝑛2𝛼2‖𝑔(0,𝛼2)
2 ‖𝐿𝑝(T2) and 𝐽4 ≪ 2−𝑛1𝛼1−𝑛2𝛼2‖𝑔(𝛼1,𝛼2)‖𝐿𝑝(T2). Collecting esti-

mates for 𝐽1, 𝐽2, 𝐽3 и 𝐽4, we get

𝜔𝛼1,𝛼2

(︀
𝑓, 𝛿1, 𝛿2

)︀
𝐿𝑝(T2)

≪ ‖𝑓 − 𝑔1 − 𝑔2 − 𝑔‖𝐿𝑝(T2) + 𝛿𝛼1
1 ‖𝑔(𝛼1,0)

1 ‖𝐿𝑝(T2)+

+ 𝛿𝛼2
2 ‖𝑔(0,𝛼2)

2 ‖𝐿𝑝(T2) + 𝛿𝛼1
1 𝛿𝛼2

2 ‖𝑔(𝛼1,𝛼2)‖𝐿𝑝(T2).

Since the last inequality holds for any 𝑔1 ∈𝑊
(𝛼1,0)
𝑝 , 𝑔2 ∈𝑊

(0,𝛼2)
𝑝 , and 𝑔 ∈𝑊

(𝛼1,𝛼2)
𝑝 ,

then

𝜔𝛼1,𝛼2

(︀
𝑓, 𝛿1, 𝛿2

)︀
𝐿𝑝(T2)

≪ 𝐾(𝑓, 𝛿1, 𝛿2, 𝛼1, 𝛼2)𝐿𝑝(T2), (5.2)

which is the above estimate in (5.1). The proof is now complete.
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Remark that for integers 𝛼𝑖 (𝑖 = 1, 2) theorem 5.1 was proved in [9] when 1 6
𝑝 6∞ and in [10] when 𝑝 = ∞.

6 Basic properties of the mixed moduli of smoothness

Theorem 3. Let 𝑓 ∈ 𝐿0
𝑝(T2), 𝑔 ∈ 𝐿0

𝑝(T2), 1 6 𝑝 6 ∞, 𝛽𝑖 > 𝛼𝑖 > 0, 𝑛𝑖 ∈ 𝑁 ,
𝑖 = 1, 2. Then

(1) 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 0)𝐿𝑝(T2) = 𝜔𝛼1,𝛼2(𝑓, 0, 𝛿2)𝐿𝑝(T2) = 𝜔𝛼1,𝛼2(𝑓, 0, 0)𝐿𝑝(T2) = 0.

(2) 𝜔𝛼1,𝛼2(𝑓 + 𝑔, 𝛿1, 𝛿2)𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) + 𝜔𝛼1,𝛼2(𝑔, 𝛿1, 𝛿2)𝐿𝑝(T2).

(3) 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2(𝑓, 𝑡1, 𝑡2)𝐿𝑝(T2), for 0 < 𝛿𝑖 6 𝑡𝑖, 𝑖 = 1, 2.

(4)
𝜔𝛼1,𝛼2 (𝑓,𝛿1,𝛿2)𝐿𝑝(T2)

𝛿
𝛼1
1 𝛿

𝛼2
2

≪
𝜔𝛼1,𝛼2 (𝑓,𝑡1,𝑡2)𝐿𝑝(T2)

𝑡
𝛼1
1 𝑡

𝛼2
2

, for 0 < 𝑡𝑖 6 𝛿𝑖 6 𝜋, 𝑖 = 1, 2.
(5) 𝜔𝛼1,𝛼2(𝑓, 𝜆1𝛿1, 𝜆2𝛿2)𝐿𝑝(T2) ≪ (𝜆1+1)𝛼1(𝜆2+1)𝛼2 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2), for 𝜆𝑖 >

0, 𝑖 = 1, 2.
(6) 𝑌𝑛1−1,𝑛2−1(𝑓)𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2(𝑓,

1
𝑛1
, 1
𝑛2
)𝐿𝑝(T2)

≪ 1

𝑛𝛼1
1

1

𝑛𝛼2
2

𝑛1+1∑︁
𝑣1=1

𝑛2+1∑︁
𝑣2=1

𝑣𝛼1−1
1 𝑣𝛼2−1

2 𝑌𝑣1−1,𝑣2−1(𝑓)𝐿𝑝(T2).

(7) 𝜔𝛽1,𝛽2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2) ≪ 𝜔𝛼1,𝛼2(𝑓, 𝛿1, 𝛿2)𝐿𝑝(T2).

(8)
𝜔𝛼1,𝛼2 (𝑓,𝛿1,𝛿2)𝐿𝑝(T2)

𝛿
𝛼1
1 𝛿

𝛼2
2

≪
𝜔𝛽1,𝛽2

(𝑓,𝛿1,𝛿2)𝐿𝑝(T2)

𝛿
𝛽1
1 𝛿

𝛽2
2

, for 0 < 𝛿𝑖 6 𝜋, 𝑖 = 1, 2.

The proof of theorem 3 uses theorem 1 and 3.
Remark that using properties (3) and (4) of the mixed moduli of smooth-

ness, in the statement of theorem1 𝜔𝛼1,𝛼2

(︁
𝑓, 𝜋

2𝑛1−1 ,
𝜋

2𝑛2−1

)︁
𝐿𝑝(T2)

can be replaced

by 𝜔𝛼1,𝛼2

(︁
𝑓, 1

𝑛1
, 1
𝑛2

)︁
𝐿𝑝(T2)

.
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SPECTRAL CLUSTERING APPLIED TO HURRICANE TRACK
PREDICTION

Maximilian F. Hasler
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Abstract. We apply the method of spectral clustering to the problem of prediction
of tracks of Atlantic hurricanes. An emerging trajectory is classified, using this
method, among a large number of earlier hurricanes from a historical database [1].
The “similarity” of tracks is determined without imposing ad hoc criteria. We use
a Thick-Restart variant of Lanczos’ method due to Wu & Simon for the principal
component analysis. A few of the closest tracks are selected and finally adjusted by
a geometrical transformation, to provide a channel of confidence for the evolution
of the given nascent hurricane.

1 Introduction

This project aims at making predictions about the evolution of the trajectory for
hurricanes of the atlantic ocean. It is conducted in collaboration with Richard Nock,
professor of computer science at Université des Antilles et de la Guyane (University
of French West Indies).

The idea is to identify similarities between the tracks of past hurricanes. To
achieve this goal, we apply methods of data mining to a large “historical” database
of hurricane tracks.

The similarities are detected by spectral clustering, i.e. , data partitioning by
principal component analysis (PCA), a method of unsupervised classification for
statistical data analysis.

1.1 About atlantic hurricanes

Atlantic (or “Cape Verde”) hurricanes begin their existence as areas of low pressure
or tropical depressions near Cape Verde to the west of Africa. They move along the
equator to the west and may reinforce to become tropical storms and subsequently
hurricanes of various strengths.

The author is grateful to Prof. Richard Nock for introducing him into the subject of unsuper-
vised classification by spectral clustering. We also wish to thank the organizers of the 2011 ISAAC
Congress for the invitation to present these results in a stimulating interdisciplinary atmosphere.
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Figure 1. Typical North Atlantic Tropical Hurricanes in September

Then they usually turn to the north, but it makes obviously a big difference
whether this happens before they approach the Caribbean islands and/or East
coast of the U.S., or after, i.e. , over the Caribbean sea, with possible landfall on
Haiti, Cuba, Florida or the Mississippi region.

2 Spectral clustering

2.1 The data

We have a collection of data {𝑇𝑗}𝑗∈𝐽 which are the hurricane tracks

𝑇𝑗 = {(𝑡𝑗𝑘, 𝑥𝑗𝑘, 𝑦𝑗𝑘); 𝑘 = 1, ..., 𝑘𝑗}

i.e. , sequences of values of time, longitude and latitude, and possibly also other
data as wind speed, central pressure, etc.

We constitute our database using as source a file of consolidated data of about
2000 hurricanes ranging back to the 1850’s and up to the present, elaborated by
specialists of the National Hurricane Center of NOAA [1].

We make a selection of hurricanes from the database to be used for the study: We
prefer to retain only the trajectories where the wind (or, equivalently, the central
pressure) exceedes a certain threshold, since it cannot be expected that tropical
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Figure 2. Our database of Atlantic Tropical Hurricanes

storms have dynamics similar to hurricanes, so they would only pollute the results.
At the same time, this reduces the size of data to be processed.

2.2 The similarity matrix

We define the similarity matrix

𝑆𝑖𝑗 = 𝑓( 𝑑(𝑇𝑖, 𝑇𝑗) )

where 𝑑(·, ·) measures a distance between two tracks, and 𝑓 is the so-called kernel
function. For both functions, different choices are possible.

We chose the kernel function of the form

𝑓(𝑥) = 𝑒−𝑘𝑥
2

or 𝑓(𝑥) =
1

1 + 𝑘 𝑥2
.

The parameter 𝑘 can be adjusted interactively in our software implementation,
which also allows to chose among the first and second of these functions.

For the distance, we initially made the simple, most natral and unbiased choice
to use the Euclidean distance of the measured points of the trajectories,

𝑑(𝑇𝑖, 𝑇𝑗) =

min(𝑘𝑖,𝑘𝑗)∑︁
𝑘=1

‖(𝑥𝑖𝑘 − 𝑥𝑗𝑘, 𝑦𝑖𝑘 − 𝑦𝑗𝑘)‖2.



330 The 8th Congress of the ISAAC — 2011

2.3 Principal component analysis

Once the similarity matrix is computed, we determine eigenvalues and eigenvectors
of the matrix. After discarding the largest eigenvalue, always equal to 1, we consider
the position of the objects of our collection, i.e. , the hurricane tracks, in the
eigenspaces associated to other dominant eigenvalues.

We assume that the trajectories with a neighboring position in this space are
of similar kind in nature, and will use this to predict the evolution of an emerging
trajectory. To check this hypothesis, we calculate the coordinates of the tracks in the
eigenbasis, and create a graphical visualization.We choose 3 among the coordinates
(𝑥2, 𝑥3, 𝑥4, ...) to be kept for this visualization, since is difficult to represent a higher-
dimensional space graphically.

Figure 3. Graphical representation of the database in the space spanned by eigenvectors
of principal components of the similarity matrix
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Figure 4. Two tracks located closely together with regard to their principal components

Figure 5. “Similar” tracks turn out not to be only spatially close, but also to have a
similar evolution, e.g. concerning the wind speed (plotted as z-values here).

2.4 Lanczos’ method

To compute the similarity matrix using the given formula, our program allows
to choose interactively among different kernel functions 𝑓(𝑥), and to adjust the
associated parameters 𝑘. It allows also to truncate the data of the individual tracks,
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in order to consider it only starting from the point where the wind speed exceeds
some adjustable threshold.

It is a nontrivial problem to calculate the eigenvalues and eigenvectors of this
similarity matrix of considerable size, ∼ 103×103, but there are efficient algorithms
for this. We used a variant of Lanczos’ method (based on the power method) with
“Thick-Restart” [2], which needed, however, to be implemented / interfaced, and
adapted to the given problem.

2.5 Normalization of the matrix 𝑆

The 𝑆 matrix must also be normalized, as to get a markovian one,

𝑊𝑖𝑗 = 𝐷−1
𝑗𝑗 𝑆𝑖𝑗 , 𝐷𝑗𝑗 =

∑︁
𝑗

𝑆𝑖𝑗 ,

but then it is no more symmetric, and Lanczos’ method cannot be applied directly.
Therefore we switch to

𝑊 ′ = 𝐷1/2𝑊 𝐷−1/2 = 𝐷−1/2 𝑆 𝐷−1/2

and get the eigenvectors as 𝑉 = 𝐷1/2 𝑉 ′ .

In view of applying the method to the prediction of an emerging but still in-
complete track, I implemented a procedure to see the evolution of a trajectory in
this abstract space, when more and more points are included.

We can see that the chosen hurricane quickly approaches its definitive position
in the cloud of all other hurricanes, when its track is less and less truncated. This
is obviously important and promising for further consideration.

3 The final step: The prediction

To complete the last step, which is the prediction of a given, supposed to be in-
complete track, we have implemented an algorithm which selects a given numbers
of tracks “close” to the one to be extrapolated.

In a future version of our algorithm, it is planned to consider rather those close
to the point (in the space of principal components) towards which the not yet
completely known hurricane appears to be moving.

Usually the trajectories found in the same region are indeed similar. If not, we
have several competing hypotheses for the path to expect. For the known paths
believed to be relevant, we will then use a geometric transformation that best
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Figure 6. “Similar” tracks before geometrical transformation

approximates the trajectory of the nascent, in order to obtain, finally, a prediction
about the spatial evolution of the latter.

Figure 7. Prediction given as channel spanned by “similar” tracks after geometrical
transformation
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3.1 Other presentations of this work

Parts of this work have already been presented at other international conferences
as follows:

— Mathematical methods for modeling natural risks. Vth Interdisciplinary Con-
gress of Scientific Research, (Santo Domingo, República Dominicana), June
1–5, 2009

— Propagation of singularities in nonlinear PDE and forecast of hurricane tracks.
META 2007: Mathematical modelling of tropical and amazonian ecosystems
(Kourou, Guyane), Oct. 29–31, 2007.

4 Summary & Conclusions

In this project we apply methods of data mining (PCA; spectral clustering) to a
database of trajectories of hurricanes. The project combines conceptual and obvious
practical points of interest.

One conceptual novelty is to apply this method to this kind of natural phenom-
ena. The challenge is to try to classify objects for which the “correct” criteria for
classification are not known.

The practical interest, namely the prediction of hurricane tracks, is obvious.
However, the model is still a bit oversimplified, and several directions should be
explored to make it phenomenologically competitive. In particular, probably not
only the position (𝑥𝑖, 𝑦𝑖) of the hurricane should be considered, but also other
data (pressure, winds, sea temperature, geography,...). Nevertheless, in spite of the
simplicity of the model, the first results are sufficiently remarkable to encourage us
to pursue investigating this promising interdisciplinary project.
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