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Foreword 
This textbook is written by the author based on many years (more than 

50 years) of lecturing and conducting higher mathematics classes on the 

non-mathematical faculties of the RUDN University. Many years of the 

author’s experience in the Faculty of Science are taken into account.  

In this textbook, the basics of the higher mathematics are presented. 

The content of the textbook is necessary for students studying different 

specialties. In particular, these are economics, medicine, chemistry and 

engineering, agricultural, humanitarian specialties.  

The author tried to give the material strictly but simple to not just share 

the information about the higher mathematics but to interest students in 

mathematics, to open their minds and to inculcate the mathematical culture 

on them. 

While writing this textbook the author has used some materials, tricks 

and finds from the author’s textbooks and tutorials published in 2006-2019. 

However, the amount of such tricks and finds in this textbook is 

significantly replenished with the new ones which were not mentioned 

before in the author’s publications. But, first of all, it is important to 

mention the chapters and sections of this textbook which have not been 

published by the author.  

In particular, these are the following materials: 

The chapter “The surfaces of the second-order”; 

The examples of the application of the derivative and the differential 

in biology and chemical engineering; 

Biological applications of the definite integral; 

The application of the integral calculus to the study of chemical 

processes, the process of radioactive decay and the calculation of a mean 

lifetime of a radioactive atom; 
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The Chapter “Double integrals”; 

The Chapter “Triple integrals”; 

The Chapter “Fourier series”, etc. 

Experience has shown that for many students starting to study a 

university course in mathematics, problem-solving is a significant 

difficulty. That is why this textbook shows how to solve typical examples 

and problems which illustrate and explain the theoretical material.  

A few words should be said about the exposition of the material – it is 

heterogeneous. At the beginning of the course, as well as when it comes to 

basic mathematical concepts and theorems of mathematical analysis and 

analytical geometry, the author adhered to a detailed presentation. It might 

seem to be too detailed and simple for a strong student. The author thinks 

that the basic definitions and theorems are the minimum that has to be 

learnt by all readers without any exceptions. The other parts of the book 

touching more complicated and deep theoretical questions are presented by 

the author in a shorter style. 

The whole content of this textbook might be given approximately 144 

academic hours. 

The material of this textbook was tested by the author while giving 

lectures to students of RUDN University at the Engineering Academy, 

Agrarian and Technological Institute, Institute of Medicine and the Faculty 

of Humanities and Social Sciences. 

The author hopes that this book, written as a textbook for students, will 

be useful to all teachers of higher mathematics and all applying its 

apparatus. 
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Chapter 1. The basics of set 

theory 

1.1. The definition of a set 

In mathematics, a set is a well-defined collection of distinct objects in 

its own right. The definition of a set is known to be a basic mathematical 

principle, which means it has no strict definition. G. Cantor once said: “A 

set is gathering together into a whole of definite, distinct objects of our 

perception or of our thought- which are called elements of the set”. 

There are some examples of sets: a set of vertices or diagonals of a 

polygon, a set of all solutions of an equation, a set of all the books that 

form a library and etc. A set might consist of a finite or infinite amount of 

objects. Those objects that form a set are called elements or points. 

Usually (but not always) a set is denoted using capital letters, while its 

elements are denoted using lower case. A set can be specified by 

enumerating its elements or by indicating the characteristic properties of 

its elements, or, in other words, by properties that every single element has. 

For instance, 𝐴 = {2,4,7,8} is a set that consists of number 2,4,7,8. Or 𝐴 =

{𝑥: 𝑥 > 0} which is a set of all positive real numbers. 

If a is an element of a set A, then it’s denoted as: 𝑎 ∈ 𝐴; overwise if a 

is not an element of a set A, then it’s denoted 𝑎 ∉ 𝐴. The symbol ∈ is called 

set membership. 

A set that consists of no elements is called empty and denoted as ∅. 

For instance, a set of real solutions of the equation 𝑥2 + 1 = 0 is empty. 

A set is called finite if it consists of a finite amount of elements. 

Overwise its called infinite. 
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A set A is called a subset of the set B, if each element of the set A is 

also an element of the set B (denoted as 𝐴 ⊂ 𝐵). An empty set is a subset 

of any set by definition. The symbol ⊂ is called an inclusion. 

Two sets are called equal if they consist of the same elements. Equality 

is denoted as 𝐴 = 𝐵, which also means that 𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴. 

1.2. Basic operations. Countable and 

uncountable sets 

Definition. The union (or addition) of two sets A and B is the set C of 

all elements of either A or B; it’s denoted by 

𝐶 = 𝐴 ∪ 𝐵. 

Definition. The intersection of sets A and B is the set C of all elements 

that are members of both A and B; it’s denoted by 

𝐶 = 𝐴 ∩ 𝐵. 

Definition. The complement of B in A is the set of all elements that 

are members of A but not members of B; it’s denoted as: 

𝐶 = 𝐴. 

Example1.1. Sets𝐴 = {2,3,4,7} and 𝐵 = {1,3,5,8} are given. Find the 

union and the intersection of sets A and B. 

Solution: 𝐴 ∪ 𝐵 = {1,2,3,4,5,7,8}, 𝐴 ∩ 𝐵 = {3}, 𝐴 = {2,7}. 

Properties of ∪ and ∩: 

1. 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 and 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 (commutativity); 

2. (𝐴 ∪ 𝐵) ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶) and (𝐴 ∩ 𝐵) ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶) 

(associativity); 

3. 𝐴 ∪ 𝐴 = 𝐴 and 𝐴 ∩ 𝐴 = 𝐴 (idempotency); 

4. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶) and 𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪

(𝐴 ∩ 𝐶) (distributivity). 

An infinite set is called countable if all its elements can be enumerated 

by natural numbers. Overwise it is uncountable. It’s known      that a set 
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of real numbers is countable and the set of real numbers between 1 and 0 

is uncountable. 

1.3. Numerical sets and numerical line 

The set of all real numbers is denoted as R. It’s worth mentioning the 

following subsets of R: N is a set of all-natural numbers (in other words 

positive integer), Z is a set of all integers (both positive and negative and 

zero), Q is a subset of all the numbers ration, I is a subset of all the numbers 

irrational.  Recall that a number 
𝑚

𝑛
,(where 𝑚 and 𝑛 - integers, 𝑛 ≠ 0.) can 

be defined as rational. Any rational number is either an integer, or 

represented by a finite decimal fraction, or by a periodic infinite decimal 

fraction. Any real number that is not rational is called irrational. An 

irrational number is a non-periodic decimal fraction, numbers like √2, √3, 

𝜋, lg7. are irrational. For example, let’s prove, that lg7 is an irrational 

number. Suppose it is a real number: lg7 =
𝑚

𝑛
,where m and n are integers. 

Then, 10
𝑎

𝑏 = 7 or, 10𝑎 = 7𝑏 which is impossible, since the left side of this 

equality is an even number and the right one is odd. 

Obviously,  N ⊂ Z ⊂ Q ⊂ R, I ⊂ R, Q ∩ I = ∅, R = Q ∩ I. . Note that 

the sets N, Z, Q are countable, and the sets I are R are uncountable. 

Note the continuity property of the set R of all real numbers: 

Let 𝑋 and 𝑌 be two sets of real numbers. Then, if the inequality 𝑥 ≤ 𝑦, 

is verified for any numbers 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then there exists at least one 

such number 𝑐, that for all 𝑥 and 𝑦 the inequalities 𝑥 ≤ 𝑐 ≤ 𝑦 is verified. 

It is easy to see that the set Q of all rational numbers is not continuous. 

For instance, if 𝑋 is the set of all rational numbers 𝑥 that are less than 𝜋, 

and 𝑌 is the set of all rational numbers y greater than 𝜋, there is no rational 

number 𝑐, such that for all 𝑥 and𝑦the inequalities 𝑥 ≤ 𝑐 ≤ 𝑦 is verified. 
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A numerical line (or numerical axis) is a line on which a reference 

point, a positive direction and a scale are selected, in other words unit of 

length: 

 
 

Fig. 1.1. Number line 

There is a one-to-one correspondence between the set R of all real 

numbers and the set of all points of the number line: to each real number 

there corresponds one definite point of the number line, and vice versa, to 

each point of the line there corresponds one definite real number. Having 

established this one-to-one correspondence, we identify the points of the 

number line and the corresponding real numbers. The concepts of "number 

x" and "point x" become indistinguishable. Therefore, often instead of 

“point x”, they say “number x” and vice versa. We can say, for example: 

“Take point 5,” or, pointing to a point on a number line, say: “Take this 

number.” 

Let’s note the simplest numerical sets. Let a and b be two numbers, 

and 𝑎 < 𝑏 then: 

line segment [𝑎, 𝑏] is a set of all the numbers x, that satisfy 𝑎 ≤ 𝑥 ≤

𝑏 ; 

interval (𝑎, 𝑏) is a set of all the numbers x, that satisfy 𝑎 < 𝑥 < 𝑏; 

half-intervals  (𝑎, 𝑏]and [𝑎, 𝑏) are the set of all the numbers that 

correspond to𝑎 < 𝑥 ≤ 𝑏 and 𝑎 ≤ 𝑥 < 𝑏. 

In particular intervals and half-intervals can be infinite: (−∞, 𝑎), 

(𝑏, +∞), (−∞, +∞), (−∞, 𝑎], [𝑏, +∞) (Obviously, the interval 

(−∞, +∞) is the whole number line.) 

The general term for all the above sets is the gap. By saying “interval”, 

we mean either a segment, or an interval, or a half-shaft. 
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The neighborhood of a point is any interval containing this point a. 

The interval (𝑎 − 𝜀, 𝑎 + 𝜀) is called the 𝜀-neighborhood of a. 

1.4. Module of the real number 

Definition. The module (or absolute value) of a real number x is 

called the number x itself      if it is positive, and the number opposite to 

the number x, if x is negative:  

|𝑥| = {
𝑥,    если 𝑥 ≥ 0,
−𝑥,  если 𝑥 < 0.

  Obviously, |𝑥| ≥ 0. 

In particular the following properties of modules are known: 

|𝑥 + 𝑦| ≤ |𝑥| + |𝑦|; |𝑥 − 𝑦| ≥ |𝑥| − |𝑦|; |𝑥𝑦| = |𝑥| ⋅ |𝑦|;  

|
𝑥

𝑦
| =

|𝑥|

|𝑦|
. 

The modulus of the difference of two numbers |𝑥 − 𝑎| is the distance 

between points x and a of the number line, in particular, |𝑥|  is the distance 

from point 0 to point x. The set of points x satisfying the condition 

|𝑥 − 𝑎| < 𝜀 is, obviously, the  -neighborhood of a. 

1.5. Mathematical induction 

The method of mathematical induction is one of the most important 

methods of mathematical proof. It is used to prove statements that depend 

on a positive integer n.  

The method of mathematical induction: in order to prove a statement 

depending on a positive integer n, one must:  

1) verify if statement is true at 𝑛 = 1 (or at least at n, where the 

statement makes sense);   

2) verify if statement is true at 𝑛 = 𝑘, and then the same for 𝑛 = 𝑘 + 1. 

Then we make a conclusion is the statement true for any n. 

Example 1.2. Prove that  1 + 3 + 5 + ... + (2𝑛 − 1) = 𝑛2. 

Solution. Denote 1 + 3 + 5 + ... + (2𝑛 − 1) = 𝑆𝑛. 
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1. Obviously, when 𝑛 = 1 the statement is verified: 1 = 12. 

2. We assume that 𝑆𝑘 = 𝑘2, let’s prove that 𝑆𝑘+1 = (𝑘 + 1)2. Really, 

𝑆𝑘+1 = 𝑆𝑘 + [2(𝑘 + 1) − 1] = 𝑘2 + (2𝑘 + 1) = (𝑘 + 1)2, 

 Using the mathematical induction, we make a conclusion that  

𝑆𝑛 = 𝑛2. 

Example 1.3. Prove that the compound interest formula  

𝑆𝑛 = 𝑆0(1 +
𝑖

100
)𝑛, where 𝑆0 is initial capital, i – interest rate, n is the 

number of accrual periods is verified. 

Solution. 1. When 𝑛 = 1 we have 𝑆1 = 𝑆0 + 𝑆0 ·
𝑖

100
= 𝑆0(1 +

𝑖

100
), i.e. 

the formula is true. 

2. Assume that 𝑆𝑘 = 𝑆0(1 +
𝑖

100
)𝑘.  

Let’s prove that 𝑆𝑘+1 = 𝑆0(1 +
𝑖

100
)𝑘+1: 

𝑆𝑘+1 = 𝑆0 (1 +
𝑖

100
)

𝑘

+ 𝑆0 (1 +
𝑖

100
)

𝑘

·
𝑖

100
= 

= 𝑆0(1 +
𝑖

100
)𝑘(1 +

𝑖

100
) = 𝑆0(1 +

𝑖

100
)𝑘+1, 

Q.E.D. The formula is verified. 

1.6. Union and Newton’s binomial 

Union 

Let Х a set consisting of n elements: 𝑋 = {𝑥1, 𝑥2, . . . . , 𝑥𝑛}. We will 

form various subsets out of the elements of Х, which are called the union. 

Depending on whether the union contains all the elements of the set X or 

part of them, and whether the arrangement of the elements plays a role, 

three types of compounds are distinguished: 

• variations; 

• permutation; 

• combinations. 
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Definition. Unions containing each m elements from the data of n 

elements of the set X, which differ from each other either by the elements 

themselves or by the order of their arrangement, are called variations of n 

elements in m 

For example, when scheduling a specific day in a class where 10 

subjects are studied and 5 lessons each day, placement of 5 elements out 

of 10 is considered. 

The number of placements of n elements in m is denoted by 
m

nA . Let 

us prove that the formula is valid: 

𝐴𝑛
𝑚 = 𝑛(𝑛 − 1)(𝑛 − 2)...[𝑛 − (𝑚 − 1)], 1 ≤ 𝑚 ≤ 𝑛. (1.1) 

 Let 𝑚 = 1. 

We can pick 1 element from 𝑛 by  𝑛 ways: 𝐴𝑛
1 = (𝑛 − 1 + 1) = 𝑛 

We assume that the formula is valid for 𝑚 = 𝑘: 𝐴𝑛
𝑘 = 𝑛(𝑛 − 1)...(𝑛 −

𝑘 + 1). 

Let 𝑚 = 𝑘 + 1.  

Considering, that after picking 𝑘 elements elements left. And we can 

pick 1 element 𝑛 − 𝑘 ways,  𝑛 − 𝑘 = 𝑛 − (𝑘 + 1) + 1, we obtain 

𝐴𝑛
𝑘+1 = 𝑛(𝑛 − 1)...(𝑛 − (𝑘 + 1) + 1) 

Q.E.D.  

Definition. Compounds, each of which contains n elements of the set 

X and which differ only in the order of elements, are called permutations 

of n elements.  

The number of permutations of n elements is denoted by nP . 

Permutations are a special case of variations when nm = .According 

to formula (1.1) 

𝑃𝑛 = 𝐴𝑛
𝑛 = 𝑛(𝑛 − 1)(𝑛 − 2) ⋅⋅⋅ 1, or 𝑃𝑛 = 1 ⋅ 2 ⋅⋅⋅ (𝑛 − 1)𝑛. (1.2) 

Multiplication 1 ⋅ 2 ⋅⋅⋅ (𝑛 − 1)𝑛 is «n factorial» and denoted n!. When 

𝑛 = 0 we consider 0! = 1. Formula (12.2) can be represented as: 



1.6. Union and Newton’s binomial  

11 

𝑃𝑛 = 𝑛!. (1.3) 

We can represent formula (1.1) using the symbol 𝑛! in the form 

𝐴𝑛
𝑚 =

𝑛!

(𝑛−𝑚)!
. (1.1') 

Definition. Unions containing each m elements from given n elements 

of the set X that different from each other by at least one element are called 

combinations of n elements by m. 

The arrangement of elements within the combination is not taken into 

account. The number of combinations of n elements in m is denoted 𝐶𝑛
𝑚. 

From the definition, it follows that 

𝐴𝑛
𝑚 = 𝐶𝑛

𝑚𝑃𝑚. 

Thus 

𝐶𝑛
𝑚 =

𝐴𝑛
𝑚

𝑃𝑚
=

𝑛(𝑛−1)(𝑛−2)⋅⋅⋅[𝑛−(𝑚−1)]

𝑚!
, (1.4) 

or 

𝐶𝑛
𝑚 =

𝑛!

𝑚!(𝑛−𝑚)!
. (1.4') 

It follows from the last formula: 𝐶𝑛
𝑚 = 𝐶𝑛

𝑛−𝑚 for all  0 ≤ 𝑚 ≤ 𝑛. 

It can be proved that 

𝐶𝑛
𝑚+1 + 𝐶𝑛

𝑚 = 𝐶𝑛+1
𝑚+1. (1.5) 

 

Newton's binomial formula 

For any real n the formula 

(𝑎 + 𝑏)𝑛 = 𝐶𝑛
0𝑎𝑛 + 𝐶𝑛

1𝑎𝑛−1𝑏 + ... + 𝐶𝑛
𝑚𝑎𝑛−𝑚𝑏𝑚 + ... + 𝐶𝑛

𝑛𝑏𝑛 (1.6) 

is called Newton's binomial formula. 

To prove the validity of formula (1.6), we apply the method of 

mathematical induction. 

1. Let 𝑛 = 1. 

 (𝑎 + 𝑏)1 = 𝐶1
0𝑎 + 𝐶1

1𝑏 = 𝑎 + 𝑏 
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(we used 𝐶1
0 =

1

0!
= 1, 𝐶1

1 =
1

1!
= 1). 

2. Assuming that formula (1.6) is true for 𝑛 = 𝑘, we prove that it is true 

for𝑛 = 𝑘 + 1, i.e. prove that 

 

(𝑎 + 𝑏)𝑘+1 = 𝐶𝑘+1
0 𝑎𝑘+1 + 𝐶𝑘+1

1 𝑎𝑘𝑏 + ... + 𝐶𝑘+1
𝑚+1𝑎𝑘−𝑚𝑏𝑚+1 + ... +

𝐶𝑘+1
𝑘 ab

𝑘 + 𝐶𝑘+1
𝑘+1𝑏𝑘+1. (1.7) 

Next: 

(𝑎 + 𝑏)𝑘+1 = (𝑎 + 𝑏)𝑘(𝑎 + 𝑏) = (𝐶𝑘
0𝑎𝑘 + 𝐶𝑘

1𝑎𝑘−1𝑏 + … +

+𝐶𝑘
𝑚𝑎𝑘−𝑚𝑏𝑚 + ... + 𝐶𝑘

𝑘𝑏𝑘)(𝑎 + 𝑏) =

𝐶𝑘
0𝑎𝑘+1 + 𝐶𝑘

1𝑎𝑘𝑏 + … + 𝐶𝑘
𝑚+1𝑎𝑘−𝑚𝑏𝑚+1 + … + 𝐶𝑘

𝑘ab
𝑘 + 𝐶𝑘

0𝑎𝑘𝑏 +

+... + 𝐶𝑘
𝑚𝑎𝑘−𝑚𝑏𝑚+1 + ... + 𝐶𝑘

𝑘−1ab
𝑘 + 𝐶𝑘

𝑘𝑏𝑘+1

 

We obtain: 

(𝑎 + 𝑏)𝑘+1 = 𝐶𝑘
0𝑎𝑘+1 + (𝐶𝑘

0 + 𝐶𝑘
1)𝑎𝑘𝑏 + ... + (𝐶𝑘

𝑚 + 𝐶𝑘
𝑚+1)𝑎𝑘−𝑚𝑏𝑚+1 +

+ ⋯ + (𝐶𝑘
𝑘−1 + 𝐶𝑘

𝑘)ab
𝑘 + 𝐶𝑘

𝑘𝑏𝑘+1.
 

Considering 𝐶𝑘
0 = 1 = 𝐶𝑘+1

0 , 𝐶𝑘
0 + 𝐶𝑘

1 = 𝐶𝑘+1
1 , 𝐶𝑘

𝑚 + 𝐶𝑘
𝑚+1 = 𝐶𝑘+1

𝑚+1, 

𝐶𝑘
𝑘−1 + 𝐶𝑘

𝑘 = 𝐶𝑘+1
𝑘 , 𝐶𝑘

𝑘 = 1 = 𝐶𝑘+1
𝑘+1 [see formulas (1.4'), (1.5)], we obtain 

(1.7). Using the method of mathematical induction we obtain that (1.6) is 

valid for all n. 

The coefficients 𝐶𝑛
0, 𝐶𝑛

1, ..., 𝐶𝑛
𝑚, ..., 𝐶𝑛

𝑛 in (12.6) are called binomial 

coefficients. 

 

Questions 

1. Does any set contain an infinite number of elements 

2. Can the following statements be true for sets A and B: “A is a subset 

of the set B” and “B is a subset of the set A”? 

3. In what case does the union of two sets coincide with their 

intersection? 
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4. What is the difference between set A and set B?

5. What is the complement of the set A to the set B?

6. Is a countable set finite or infinite?

7. What numbers are called rational? Is the set of all rational numbers

countable or is it uncountable?

8. What is the one-to-one correspondence between the set of all real

numbers and the set of all points of the number line?

9. What general term is used for the name of a numerical set, which

is either a segment, or an interval, or a half-interval?

10. Is equality always true√𝑎2 = 𝑎? If not, what is this root  √𝑎2 equal

to?

11. What is the geometric meaning of the module of a real number?

12. Is it possible to say that the modulus of the sum of two real

numbers is equal to the sum of their modules? Is a similar

statement

13. What double inequality is equivalent to inequality | 𝑎 | < 𝑏?
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ELEMENTS OF 

ANALYTICAL GEOMETRY 

Chapter 2. Lines on the plane 

2.1. Basic concepts 

Let a coordinate system be given on the plane, and let we have on the 

plane some line (a straight line or a curve). 

Definition The following equation is called the equation of a line: 

𝐹(𝑥, 𝑦) = 0. (2.1) 

Coordinates of any point belonging to this line satisfy this equation, 

and the coordinates of any point not belonging to this line do not satisfy 

this equation. 

In short, equation (7.1) is the equation of a line if it satisfies the 

coordinates of all those and only those points that belong to this line. 

Example 2.1. Write the equation of the set of points equidistant from 

the axis Ox и and point А(0, 2). 

Solution. It’s known that distance between 

𝑀1(𝑥1, 𝑦1) and 𝑀2(𝑥2, 𝑦2) is calculated using:

𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2,

and the distance from a point to the Ox axis is the ordinate of that point, 

taken with the corresponding sign. 

Let 𝑀(𝑥, 𝑦) – random point on a line. Then MM0 = MA (fig. 2.1) or

𝑦 = √𝑥2 + (𝑦 − 2)2. 

(Here, obviously, 𝑦 > 0.) Square both sides of the equation: 

𝑦2 = 𝑥2 + 𝑦2 − 4𝑦 + 4,
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We obtain: 

𝑦 =
𝑥2

4
+ 1. 

This line is a parabola with a vertex at a point (0, 1). 

 

Fig. 2.1. Parabola 𝑦 =
𝑥2

4
+ 1 

Note that in many cases, from equation (2.1), we can explicitly express 

y in terms of x. Then we get the equation of the line in the form 𝑦 = 𝑓(𝑥). 

In those cases when the line is defined by an algebraic equation of the 

nth order (in particular, of the first or second-order), then this line is called 

a line of the nth order (respectively, of the first or second-order). For 

example, lines 𝑦 = 3𝑥2, 𝑥2 + 𝑦2 − 4 = 0 are  lines of the second order, 

2𝑥 − 5𝑦 + 3 = 0 are lines of the first order 𝑦 = 𝑥3 + 3𝑥 + 1, 𝑥2𝑦 + 𝑦2 −

1 = 0  lines of the third order. 
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2.2. General equation of a line of first 

order. Direct on the plane 

The concept of a vector is well known from school mathematics. Recall 

that on a plane, a vector is defined by its coordinates: �̅� = (𝑎1, 𝑎2) the 

addition and the multiplication of the vector by a number are defined by 

coordinates.  The scalar product (�̅�, �̅�)of vectors  �̅� = (𝑎1, 𝑎2) and �̅� =

(𝑏1, 𝑏2) is the product of their modules by the cosine of the angle between 

them, in other words, it is a number |�̅�| ⋅ |�̅�|cos𝜙, where 𝜙 is the angle 

between  the vectors, (�̅�, �̅�) = 𝑎1𝑏1 + 𝑎2𝑏2. The scalar product of nonzero 

vectors is equal to zero if and only if the vectors are perpendicular. 

The lines of the first order are the lines that are defined by the equation 

(2.1) that is linear, i.e. an algebraic equation that contains the variables x 

and y only to the first degree: 

Ax + By + 𝐶 = 0. (2.2) 

Here 𝐵 ≠ 0, than y will be: 

𝑦 = −
𝐴

𝐵
𝑥 −

𝐶

𝐵
, 

Or by denoting 𝑘 = −
𝐴

𝐵
, 𝑏 = −

𝐶

𝐵
: 

𝑦 = kx + 𝑏. (2.3) 

Equation (2.3) is called the equation of a line with an angular 

coefficient k. Here 𝑘 = tg𝜙, where 𝜙 is the angle between the direct and 

positive direction of the Ox axis (Fig. 7.2). 
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Fig. 2.2. Line with an angular coefficient 𝑘 = tg𝜙 

 If 𝐵 = 0 in equation (2.2), then the straight line is perpendicular to the 

Ox axis, its angular coefficient is not defined, and the equation has the form 

𝑥 = 𝑎. 

It might be handy to know some varieties of the equation of the line. 

1. If the angular coefficient k and the point 𝑀(𝑥0, 𝑦0) through which 

the line passes are known, then obviously the identity 

𝑦0 = kx0 + 𝑏. (*) 

Subtracting this identity from equation (2.3), we obtain the equation 

of a line with a given angular coefficient and passing through a given 

point: 

𝑦 − 𝑦0 = 𝑘(𝑥 − 𝑥0). (2.4) 

2. If the line passes through two points 𝑀0(𝑥0, 𝑦0) and 𝑀1(𝑥1, 𝑦1) , 

then in addition to the identity (*), the identity also holds: 

𝑦1 = kx1 + 𝑏. (**) 

From  (*) and (**) we obtain: 

𝑘 =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
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and taking into account (7.4) we obtain the equation of a line passing 

through given points: 

𝑦 − 𝑦0 =
𝑦1−𝑦0

𝑥1−𝑥0
(𝑥 − 𝑥0). (2.5) 

Example 2.2. Make an equation of a line passing through points 

𝑀0(−2, −1) and 𝑀1(1,5). 

Solution. Apply those coordinates to (2.5): 

𝑦 + 1 =
5+1

1+2
(𝑥 + 2), or 𝑦 = 2𝑥 + 3. 

3. If the point 𝑀0(𝑥0, 𝑦0) through which the line passes and the vector 

�̅� = (𝐴, 𝐵) perpendicular to this line is known, then the equation of the line 

has the form: 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) = 0. (2.6) 

Let us prove this. Let 𝑀(𝑥, 𝑦) be a random point of a given line. Then 

𝑀0𝑀̅̅ ̅̅ ̅̅ ̅ = (𝑥 − 𝑥0, 𝑦 − 𝑦0). By condition 𝑀0𝑀̅̅ ̅̅ ̅̅ ̅ ⊥ �̅�, and this is equivalent 

to  (𝑀0𝑀̅̅ ̅̅ ̅̅ ̅, �̅�) = 0. Writing this equation in coordinate form, we obtain: 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) = 0, 

Q.E.D. 

Reveal the brackets in the last equation: 

Ax + By − Ax0 − By
0

= 0. 

Denote −Ax0 − By
0

= 𝐶, we obtain: 

Ax + By + 𝐶 = 0. (2.7) 

So, the equation of a line is a linear equation. 

Let us prove that every first-order equation of the form (2.7) is an 

equation of some straight line in the plane. 

Let us assume that we have an equation of the first degree (2.7). Let at 

least one of the coefficients, A or B, be nonzero (otherwise it would not be 

an equation of the first degree). Let, for example, be 𝐴 ≠ 0. This equation 

always has a solution (for example, assuming 𝑦0 = 1, we find 𝑥0 =
−𝐵−𝐶

𝐴
). 

Let (𝑥0, 𝑦0) be some solution of equation (2.7), i.e. 
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Ax0 + By
0

+ 𝐶 = 0. (2.7) 

Subtracting (2.7) from (2.7), we obtain 

𝐴(𝑥 − 𝑥0) + 𝐵(𝑦 − 𝑦0) = 0. 

This equation is equivalent to equation (2.7) since it is obtained from 

(2.7) using identical transformations. At the same time, it is a direct 

equation, as proved above. Therefore, equation (2.7) is the equation of the 

line. 

Equation (2.7) is called the general equation of the line, and any 

nonzero vector perpendicular to the line is called its normal vector. In 

particular, �̅�(𝐴, 𝐵) the vector is the normal vector of the line (7.7). 

Consider the cases when the equation is incomplete, i.e. when one of 

the coefficients is zero. 

Consider the cases when the equation Ах + Ву + С = 0 is incomplete, 

i.e. when one of the coefficients is zero. 

С=0; the equation has the form Фх + Ву = 0 and determines a straight 

line passing through the origin. 

𝐵 = 0 (𝐴 ≠ 0); the equation Ax + 𝐶 = 0 has the form and defines a 

line parallel to the ordinate axis. This equation is reduced to the form 𝑥 =

𝑎 where.𝑎 = −
𝐶

𝐴
. 

𝐴 = 0 (𝐵 ≠ 0); the equation has the form By + 𝐶 = 0 and defines a 

straight line parallel to the abscissa axis. 

Now suppose that none of the coefficients in the equationAx + By +

𝐶 = 0 is equal to zero. Convert it to 
𝑥

−
𝐶

𝐴

+
𝑦

−
𝐶

𝐵

= 1. 

Assuming 𝑎 = −
𝐶

𝐴
, 𝑏 = −

𝐶

𝐴
, we obtain 

𝑥

𝑎
+

𝑦

𝑏
= 1. 

This equation is called the equation of the line in the "segments". This 

line intersects the coordinate axes at points (𝑎, 0) and (0, 𝑏). 
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The angle between the lines 

I. Let us assume that we have two lines 𝑦 = 𝑘1𝑥 + 𝑏1 и 𝑦 = 𝑘2𝑥 + 𝑏2, 

where 𝑘1 = tg𝜙1, 𝑘2 = tg𝜙2. Let 𝜙 be the angle between the lines (fig. 

2.3). 

 
Fig. 2.3. The angle  φ between the lines 

Then 𝜙 = 𝜙2 − 𝜙1, and using the well-known formula: 

 tg𝜙 = tg(𝜙2 − 𝜙1) =
tg𝜙2−tg𝜙1

1+tg𝜙1tg𝜙2
 

or 

tg𝜙 =
𝑘2−𝑘1

1+𝑘1𝑘2
. (2.8) 

From here, in particular, immediately follows the parallelism 

condition: 

𝑘1 = 𝑘2. 

It is also easy to obtain the condition of perpendicularity of the lines: 

𝑘1𝑘2 = −1. 

Example 2.3. Find the angle between the lines: 

𝑦 = 3𝑥 + 2, 𝑦 = −2𝑥 + 1. 

Solution. Apply 𝑘1 = 3, 𝑘2 = −2 to (2.8), we obtain 

tg𝜙 =
−2−3

1−6
= 1. 
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Thus 𝜙 =
𝜋

4
. 

Note that formula (2.8) defines one of two angles between intersecting 

straight lines; the other angle is 𝜋 − 𝜙. 

II. Now let two lines 𝑙1 and 𝑙2 be given by general equations: 

 𝑙1 : 𝐴1𝑥 + 𝐵1𝑦 + 𝐶1 = 0 

𝑙2: 𝐴2𝑥 + 𝐵2𝑦 + 𝐶2 = 0. 

The angle between these lines is equal to the angle between their 

normal vectors (or complements it to 180 °). Therefore, one of the two 

angles α between these lines can be calculated by the formula 

cos𝛼 =
(�̅�1,�̅�2)

|�̅�1||�̅�2|
=

𝐴1𝐴2+𝐵1𝐵2

√𝐴1
2+𝐵1

2·√𝐴2
2+𝐵2

2
. (2.9) 

Example 2.4. Find the angle between the lines given by the general 

equations 

3𝑥 − 4𝑦 + 7 = 0, 8𝑥 − 6𝑦 + 15 = 0. 

Solution. Using (2.9): 

cos𝛼 =
3·8+4·6

√32+42√82+62
=

24

25
. 

Therefore, one of the angles between these lines is arccos
24

25
. 

The parallelism condition for lines 𝑙1 and 𝑙2 is the parallel condition 

for their normal vectors �̅�1(𝐴1, 𝐵1) and �̅�2(𝐴2, 𝐵2): 

𝐴1

𝐴2
=

𝐵1

𝐵2
. (2.10) 

The parallelism condition for lines is the parallel condition for their 

normal vectors and: 

𝐴1𝐴2 + 𝐵1𝐵2 = 0. (2.11) 
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Half-plane 

Let the line l be given by equation (2.7). Let �̅�(𝐴, 𝐵) be its normal 

vector. We divide all points of the plane that do not belong to l into two 

sets 𝜋1 and 𝜋2 as follows: 

𝑀(𝑥, 𝑦) ∈ 𝜋1 ⇔ Ax + By + 𝐶 > 0, 

𝑀(𝑥, 𝑦) ∈ 𝜋2 ⇔ Ax + By + 𝐶 < 0. 

The set 𝜋1 is called the positive half-plane with respect to the equation 

of the line (2.7), and the set 𝜋2 is called the negative half-plane. Not that 

that the concept of positive and negative half-planes is defined with respect 

to the equation of the line, and not to the line itself. Obviously, if we 

multiply both sides of equation (2.7) by –1, we get the equation of the same 

straight line, however, in this case, the positive half-plane becomes 

negative, and the negative becomes positive. 

It can be proved (we will not do this here) that the vector �̅�(𝐴, 𝐵) is 

directed to that part of the plane that is positive with respect to the equation 

of the line (2.7): 

Ax + By + 𝐶 = 0. 

Distance from point to line 

We derive the formula for the distance d from an arbitrary point 

𝑀0(𝑥0, 𝑦0) to the line (2.7). 

The distance from the point 𝑀0 to the line (2.7) is equal to the length 

of the perpendicular dropped from 𝑀0 to line. We denote by𝑁(𝑥1, 𝑦1) the 

base of this perpendicular, i.e. the point of intersection of the perpendicular 

with the line (2.7). Then according to the formula of the distance between 

two points 

𝑑 = √(𝑥1 − 𝑥0)2 + (𝑦1 − 𝑦0)2. (2.12) 

The angular coefficient k of the line (2.7) is obviously equal to 

𝑘 = −
𝐴

𝐵
. 
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According to the perpendicularity condition, the angular coefficient of 

the perpendicular MN is equal to 𝑘′ =
𝐵

𝐴
, and the equation of this 

perpendicular (considering that it passes through a point 𝑀0(𝑥0, 𝑦0)) has 

the form 

𝑦 − 𝑦0 =
𝐵

𝐴
(𝑥 − 𝑥0). (2.13) 

It’s possible, by solving equations (2.7) and (2.13) together to find the 

coordinates (𝑥1, 𝑦1) of the point N and substitute them in (2.12). However, 

despite the simplicity of this solution, we will obtain bulky expressions. 

Therefore, we will apply another method. We use the fact that the point N 

belongs to 𝑀0𝑁. Thus, the unknown so far  coordinates 𝑥1, 𝑦1,  points N 

satisfy equation (2.13): 

𝑦1 − 𝑦0 =
𝐵

𝐴
(𝑥1 − 𝑥0). 

We obtain 
𝑦1−𝑦0

𝐵
=

𝑥1−𝑥0

𝐴
. 

Denote the total value of these fractions by δ: 
𝑥1−𝑥0

𝐴
=

𝑦1−𝑦0

𝐵
= 𝛿. 

This value of δ is unknown, since 𝑥1 and 𝑦1 are unknown. Let’s find 

it: 

𝑥1 − 𝑥0 = 𝐴𝛿, 𝑦1 − 𝑦0 = 𝐵𝛿. (*) 

Apply these differences to the formula (2.12), we obtain 

𝑑 = √(𝐴𝛿)2 + (𝐵𝛿)2 = √(𝐴2 + 𝐵2)𝛿2 = |𝛿|√𝐴2 + 𝐵2. (2.14) 

Note that we do not know whether the number  is positive or 

negative. 

Express 𝑥1 and 𝑦1 from (*): 

𝑥1 = 𝑥0 + 𝐴𝛿, 𝑦1 = 𝑦0 + 𝐵𝛿 

and apply these values to (2.7). (Recall that the point 𝑁(𝑥1, 𝑦1) belongs 

to perpendicular to the line  (2.7), and to line to itself.) We obtain 
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𝐴(𝑥0 + 𝐴𝛿) + 𝐵(𝑦0 + 𝐵𝛿) + 𝐶 = 0, 

and 

𝛿 = −
Ax0+By0+𝐶

𝐴2+𝐵2 . 

We apply the found value of  to formula (2.14) and make the 

necessary reductions: 

𝑑 = |−
Ax0+By0+𝐶

𝐴2+𝐵2 | √𝐴2 + 𝐵2 =
|Ax0+By0+𝐶|√𝐴2+𝐵2

𝐴2+𝐵2 =  

=
|Ax0+By0+𝐶|

√𝐴2+𝐵2
.  

And finally, we obtain: 

𝑑 =
|Ax0+By0+𝐶|

√𝐴2+𝐵2
. (2.15) 

So, the distance to the line defined by the general equation can be 

found by substituting the coordinates of the point on the left side of this 

equation, and then dividing the module of the resulting number by the 

square root of the sum of the squares of the coefficients of this equation of 

the line. 

Example 2.5. Find distance from point 𝑀0(2,3) to line  

4𝑥 + 3𝑦 + 8 = 0. 

Solution. Use (7.15): 

𝑑 =
|4·2+3·3+8|

√42+32
= 5. 

Example 2.6. Find the distance between parallel lines 𝑙1 and 𝑙2: 

𝑙1: 4𝑥 + 3𝑦 − 8 = 0 

𝑙2: 8𝑥 + 6𝑦 + 9 = 0. 

Solution. The distance between two parallel lines is obviously equal to 

the distance from any point on one of these lines to the other line. By 

assuming 𝑦 = 0 in the equation the first line, we get 𝑥 = 2. Therefore, the 

point 𝑀0(2,0) belongs to the first line. Find the distance from 𝑀0 to the 

line 𝑙2: 

𝑑 =
|8·2+6·0+9|

√64+36
=

1

4
. 



2.2. General equation of a line of first order. Direct on the plane  

25 

Example 2.7. Obtain the bisector equation of the angle between the 

lines 𝑙1 and 𝑙2: 

𝑙1: 3𝑥 − 4𝑦 + 7 = 0, 

𝑙2: 5𝑥 + 12𝑦 − 21 = 0. 

Solution. It is known that any point of the bisector is at the same 

distance from the sides of the corner. Therefore, if 𝑀(𝑥, 𝑦) is a point that 

belongs to the bisector of the angle between the straight lines 𝑙1 and 𝑙2, 

then 
|3𝑥−4𝑦+7|

√9+16
=

|5𝑥+12𝑦−21|

√25+144
. 

It yields 

13|3𝑥 − 4𝑦 + 7| = 5|5𝑥 + 12𝑦 − 21|, 

or 

13(3𝑥 − 4𝑦 + 7) = ±5(5𝑥 + 12𝑦 − 21). 

We get two bisector equations: 

1) 39𝑥 − 52𝑦 + 91 = 25𝑥 + 60𝑦 − 105, 

14𝑥 − 112𝑦 + 196 = 0, 

𝑥 − 8𝑦 + 14 = 0; 

2) 39𝑥 − 52𝑦 + 91 = −25𝑥 − 60𝑦 + 105, 

64𝑥 + 8𝑦 − 14 = 0, 

32𝑥 + 4𝑦 − 7 = 0. 

So, the bisectors of the angles formed by intersecting straight lines 𝑙1 

and 𝑙2 are the lines 

𝑥 − 8𝑦 + 14 = 0 and 32𝑥 + 4𝑦 − 7 = 0. 

Example 2.8. Obtain the bisector equation of the internal angle at 

vertex B of triangle ABC, where 𝐴(1,1), 𝐵(5, −2), 𝐶(2,2). 

Solution. We compose the equations of the parties AB and BC using 

(7.5): 

АВ: 𝑦 − 1 =
−2−1

5−1
(𝑥 − 1), or 3𝑥 + 4𝑦 − 7 = 0; 

BC: 𝑦 + 2 =
2+2

2−5
(𝑥 − 5), or 4𝑥 + 3𝑦 − 14 = 0. 
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We write the equations of both bisectors of the angle between lines AB 

and BC: 
|3𝑥+4𝑦−7|

√9+16
=

|4𝑥+3𝑦−14|

√16+9
, 

|3𝑥 + 4𝑦 − 7| = |4𝑥 + 3𝑦 − 14|, 

3𝑥 + 4𝑦 − 7 = ±(4𝑥 + 3𝑦 − 14), 

It yields 

𝑙1: 𝑥 − 𝑦 − 7 = 0, 

𝑙2: 𝑥 + 𝑦 − 3 = 0. 

One of these bisectors is the bisector of the inner corner of the triangle, 

and the other is the bisector of the outer corner. 

Next, we reason as follows: 

1. If the point belongs to the bisector of the inner corner of the triangle 

and is located on the other side from point B where the triangle ABC is 

located, then the point 𝑀0is in the same half-plane as point C with respect 

to line AB, as well as in the same half-plane as point A with respect to line 

BC. 

2. If the point 𝑀0 lies on the other side of B, then it lies in opposite 

planes both with respect to the line AB and with respect to the line BC (see 

Fig. 2.4). 

 
Fig. 2.4. The bisector of the inner corner of the triangle ABC 
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Let’s take a random point, for instance let’s take (4, −3), on a line 𝑙1. 

Apply its coordinates in the equation of the line АВ: 3 · 4 + 4 · (−3) −

7 = −7 < 0. Apply coordinates of the point С to the same line: 3 · 2 + 4 ·

2 − 7 = 7 > 0. Now let’s apply coordinates of a point (4, −3) to the line 

ВС: 4 · 4 − 3 · 3 − 14 = −7 < 0. Apply coordinates of a point А to: 4 +

3 − 14 = −7 < 0. 

So, the point (4, −3) is in the same half-plane as point A in relation to 

the BC line, but with respect to the line AB, it is not in the same half-plane 

in which point C. Therefore, the point (4, −3) belongs to the bisector of 

the external, not internal angle of the triangle. 

So, the line 𝑙1: 𝑥 − 𝑦 − 7 = 0 is the bisector of the external angle at 

the vertex B. Therefore, the desired bisector is the straight line 𝑙2: 𝑥 + 𝑦 −

3 = 0. 

Questions 

1. What is a line equation on a plane? Give examples of line 

equations. 

2. What is the order of an algebraic line? 

3. What is the angular coefficient of a straight line in the plane? Is 

the slope of a straight line parallel to the axis Oy defined? 

4. What is the normal line vector on a plane? How to determine 

normal vectors using the general equation of a line? 

5. How to determine the acute angle between the lines that are given 

by the general equations? 

6. How to calculate the distance between two parallel lines on a plane 

that is given by general equations? 
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Chapter 3. Second order curves 

3.1. Circle. Ellipse 

Definition. A circle is the set of all points of the plane located at the 

same distance (which is also called the radius) from a fixed point      called 

the center of the circle. 

Let the radius of the circle be equal to R and the center is a point 

𝐶(𝑥0, 𝑦0). We derive the equation of this circle. 

 
Fig. 3.1. Circle centered at point C and radius R = CM 

For any point 𝑀(𝑥, 𝑦) on a circle the equality CM = 𝑅 is verified, in 

other words √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅. 

Hence, we obtain the equation of the circle 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅2. 

In particular, if the center of the circle coincides with the origin, then 

the equation of the circle has the form: 

𝑥2 + 𝑦2 = 𝑅2. (3.1) 

Equation (3.1) is called the canonical equation of a circle. 

Definition An ellipse is a line, for all points of which the sum of the 

distances to two fixed pointscalled foci, is a constant and greater than the 

distance between the foci. 
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Let’s obtain the ellipse equation. We choose a coordinate system such 

as that the Ox axis passes through the foci 𝐹1 and 𝐹2, and the axis Oy in the 

middle between the foci (Fig. 3.2).  

 

Fig. 3.2. Ellipse 1
2

2
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Suppose that the distance between the foci is equal to 2𝑐, and the sum 

of the distances of an arbitrary point 𝑀(𝑥, 𝑦) of the ellipse from the foci is 

2𝑎: (according to the definition, 𝑎 > 𝑐). Express the distance from the 

point 𝑀(𝑥, 𝑦) to the foci 𝐹1(−𝑐, 0) and 𝐹2(𝑐, 0),  accordingly: 𝑟1 = 𝐹1𝑀 =

√(𝑥 + 𝑐)2 + 𝑦2, 𝑟2 = 𝐹2𝑀 = √(𝑥 − 𝑐)2 + 𝑦2. Since, 𝑟1 + 𝑟2 = 2𝑎then 

√(𝑥 + 𝑐)2 + 𝑦2 + √(𝑥 − 𝑐)2 + 𝑦2 = 2𝑎. (3.2) 

This is an ellipse equation. Convert it. 

√(𝑥 + 𝑐)2 + 𝑦2 = 2𝑎 − √(𝑥 − 𝑐)2 + 𝑦2, 

(𝑥 + 𝑐)2 + 𝑦2 = 4𝑎2 − 4𝑎√(𝑥 − 𝑐)2 + 𝑦2 + (𝑥 − 𝑐)2 + 𝑦2, 

𝑎√(𝑥 − 𝑐)2 + 𝑦2 = 𝑎2 − cx, 

𝑎2[(𝑥 − 𝑐)2 + 𝑦2] = (𝑎2 − cx)2, 

𝑎2𝑥2 − 2𝑎2cx + 𝑎2𝑐2 + 𝑎2𝑦2 = 𝑎4 − 2𝑎2cx + 𝑐2𝑥2, 

𝑎2𝑥2 − 𝑐2𝑥2 + 𝑎2𝑦2 = 𝑎4 − 𝑎2𝑐2. 
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Because 𝑎2 − 𝑐2 > 0, we can denote 𝑎2 − 𝑐2 = 𝑏2. 

We obtain: 

𝑏2𝑥2 + 𝑎2𝑦2 = 𝑎2𝑏2  

𝑥2

𝑎2 +
𝑦2

𝑏2 = 1. (3.3) 

It’s important to verify that equation (3.3) is the equation of the ellipse. 

So far, we can only assert that each point 𝑀(𝑥, 𝑦) satisfying the ellipse 

equation (3.2) also satisfies equation (3.3). However, equation (3.3) was 

obtained after double squaring, and we know that when squaring both sides 

of the equation, an equation can be obtained that is not equivalent to the 

original. Make sure that this did not happen here. We must prove that every 

point 𝑀(𝑥, 𝑦)  that satisfy the equation (8.3) is an ellipse point, i.e. that the 

condition 𝑟1 + 𝑟2 = 2𝑎 is fulfilled for her. 

So, let 𝑀(𝑥, 𝑦) be an arbitrary point whose coordinates satisfy equation 

(3.3). Let’s find the distances 𝑟1 and 𝑟2 points M from the foci 𝐹1 and 𝐹2, 

respectively. 

We obtain 

𝑟1 = √(𝑥 + 𝑐)2 + 𝑦2. (*) 

Express 𝑦2 from (3.3): 

𝑦2 = 𝑏2(1 −
𝑥2

𝑎2). 

But 𝑏2 = 𝑎2 − 𝑐2, therefore, 

𝑦2 = (𝑎2 − 𝑐2)(1 −
𝑥2

𝑎2) = 𝑎2 − 𝑐2 − 𝑥2 +
𝑐2

𝑎2 𝑥2. 

Apply this value 𝑦2 to (*): 

𝑟1 = √𝑥2 + 2cx + 𝑐2 + 𝑎2 − 𝑐2 − 𝑥2 +
𝑐2

𝑎2 𝑥2 =  

= √2cx + 𝑎2 +
𝑐2

𝑎2 𝑥2 = √(𝑎 +
𝑐

𝑎
𝑥)2.  
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The value e that is determined by the ratio 𝑒 =
𝑐

𝑎
 is called the 

eccentricity of the ellipse, in this case 0 < 𝑒 < 1. It is defined as the 

measure of elongation of an ellipse. The greater the eccentricity, the more 

elongated the ellipse is. The eccentricity is zero if and only if the focal 

points of the ellipse coincide: 𝐹1 = 𝐹2. In this case, the ellipse turns into a 

circle of radius a. 

We obtain 𝑟1 = ± (𝑎 +
𝑐

𝑎
𝑥) = ±(𝑎 + 𝑒𝑥). 

On the left is a positive number 𝑟1. Therefore, on the right you need to 

choose a sign so that the right side is also positive. It follows from (3.3) 

that |𝑥| ≤ 𝑎. In addition. 0 < 𝑒 < 1, therefore |𝑒𝑥| < 𝑎. So, regardless of, 

𝑥 > 0 or 𝑥 < 0, always 𝑎 + 𝑒𝑥 > 0, therefore, you need to take the “plus 

sign “on the right: 

𝑟1 = 𝑎 + 𝑒𝑥. (**) 

Similarly, way, we obtain 

𝑟2 = 𝑎 − 𝑒𝑥. (***) 

From (**) and (***) we obtain 

𝑟1 + 𝑟2 = 2𝑎, 

therefore, the point 𝑀(𝑥, 𝑦) belongs to an ellipse. 

We have proved that equation (3.3) is an ellipse equation. It is called 

the canonical equation of the ellipse. 

Here a is the semimajor axis of the ellipse, b is the semimajor axis (𝑏 =

√𝑎2 − 𝑐2). It follows from equation (3.3) that the axes 𝑂𝑥 and 𝑂𝑦 are the 

axes of symmetry of the ellipse, and the point of their intersection, the point 

O (0, 0), is the center of symmetry. 

In the particular case when 𝑎 = 𝑏, the focal points of the ellipse merge, 

𝑐 = 0 and we have a circle of radius a centered at the origin. 

It is known that planets move along elliptical trajectories, while the 

eccentricities of planetary orbits are small. In particular, for instance, the 
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eccentricity of the orbit of Venus is 0.007. Thus, the planets move almost 

in circles. Some comets also move in elliptical orbits, but their 

eccentricities are large, i.e. are close to one. For example, the eccentricity 

of Halley's comet is 0.9671429. Comets are either approaching the Sun, 

which is in one of the foci, then moving away from it for many years. 

The vertical lines 𝑥 = −
𝑎

𝑒
 and 𝑥 =

𝑎

𝑒
𝑥  are called the directrices of the 

ellipse defined by equation (3.3). It is easy to prove that if r is the distance 

from an arbitrary point 𝑀of an ellipse to some foci, and 𝛿 is the distance 

from the same point to the directrix corresponding to the same foci, then 

the ratio 
𝑟

𝛿
 is a constant, equal to the eccentricity of the ellipse. Let’s take 

the right focus and the right director. 

We obtain: 

𝑟 = 𝑟_2 = 𝑎 − 𝑒𝑥   - see (***), 

𝛿 =
𝑎

𝑒
− 𝑥, 

 therefore 

 
𝑟

𝛿
=

𝑎−𝑒𝑥 
𝑎

𝑒
−𝑥

=
(𝑎−𝑒𝑥 )𝑒

𝑎−𝑒𝑥 
= 𝑒. 
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Fig.3.3 

3.2. Hyperbola 

Definition. A hyperbola is a line for all points of which the modulus 

of the difference in distances to two fixed points, which are called foci, is 

a constant and smaller than the distance between the foci. 

Denote, as in the previous case, the distance between the foci 𝐹1 and 

𝐹2 as 2𝑐, choose the coordinate system such that the axis Ox passes through 

the foci and the axis Oy in the middle between them (Fig. 3.3). We denote 

the distances from an arbitrary point 𝑀(𝑥, 𝑦) of the hyperbola to the foci 

𝐹1 and 𝐹2, respectively, by 𝑟1 and 𝑟2, we obtain: 

|𝑟1 − 𝑟2| = 2𝑎. 
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Fig. 3.4. Hyperbola 
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 

Assuming 𝑟1 = 𝐹1𝑀 = √(𝑥 + 𝑐)2 + 𝑦2, 𝑟2 = 𝐹2𝑀 =

√(𝑥 − 𝑐)2 + 𝑦2, we obtain the hyperbola equation: 

√(𝑥 + 𝑐)2 + 𝑦2 − √(𝑥 − 𝑐)2 + 𝑦2 = ±2𝑎. 

By performing calculations similar to those we conducted with the 

ellipse equation (see § 8.1), we obtain the canonical hyperbola equation: 

𝑥2

𝑎2 −
𝑦2

𝑏2 = 1, (3.4) 

where 𝑏2 = 𝑐2 − 𝑎2. 

A hyperbola has two axes of symmetry, the intersection point of which 

is its center of symmetry. 
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Let’s show that with an increase of x in the branch of the hyperbola, 

they come close to the lines 𝑦 = ±
𝑏

𝑎
𝑥, are called the asymptotes1 

hyperbola. 

For instance, let’s take 𝑦 =
𝑏

𝑎
𝑥 and the hyperbole branch lying in the 

first quadrant. We obtain the equation of this branch by expressing y from 

equation (3.4): 

𝑦 =
𝑏

𝑎
⋅ √𝑥2 − 𝑎2. For each 𝑥 consider the difference in the ordinates 

of the specified line and the branch of the hyperbola: 

𝑏

𝑎
𝑥 −

𝑏

𝑎
⋅ √𝑥2 − 𝑎2 =

𝑏

𝑎
(𝑥 − √𝑥2 − 𝑎2) =

𝑏

𝑎
⋅

[𝑥2−(𝑥2−𝑎2)]

(𝑥+√𝑥2−𝑎2)
=

ab

𝑥+√𝑥2−𝑎2
. 

We see that with increasing of x this difference becomes arbitrarily 

small. 

The lines 𝑦 = ±
𝑎

𝑒
𝑥 are called the directrix of the hyperbola given by 

the canonical equation (3.4). If r is the distance from an arbitrary point 𝑀 

of the hyperbola to some foci, and 𝛿 is the distance from the same point to 

the directrix corresponding to this focus, then the ratio 
𝑟

𝛿
 is a constant value 

equal to the eccentricity of the hyperbola. The proof of this statement does 

not differ from the above proof of a similar statement for an ellipse. 

 

                                                      
1More on asymptotes in § 11.3. 
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Fig.3.5 

 

3.3. Parabola 

Definition. A parabola is a line for all points at which the distance to 

a fixed point, called the focus, is equal to the distance to a fixed line called 

the directrix, which is not passing through the focus. 

Let a point F and a line d not passing through this point be given on 

the plane. We derive the parabola equation with focus F and directrix d. 

Let the distance from the point F to the line d be equal to p. We choose the 

coordinate system as follows. Draw the Ox axis through the point F 

perpendicular to the line d, and the Oy axis in the middle between the point 

F and the line d (Fig. 3.6). 
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Fig. 3.6. Parabola 𝑦2 = 2𝑝𝑥 

Let 𝑀(𝑥, 𝑦) be an arbitrary point on a parabola. Denote by 𝛿 the 

distance from this point to the directrix and by r the distance to the focus. 

According to the definition: 

𝑟 = 𝛿. 

Given that 𝑟 = √(𝑥 −
𝑝

2
)2 + 𝑦2, 𝛿 =

𝑝

2
+ 𝑥, we obtain: 

√(𝑥 −
𝑝

2
)2 + 𝑦2 =

𝑝

2
+ 𝑥 

𝑥2 − 𝑝𝑥 +
𝑝2

4
+ 𝑦2 =

𝑝2

4
+ 𝑝𝑥 + 𝑥2 

𝑦2 = 2𝑝𝑥. (3.5) 

This is a canonical equation of a parabola. A number p is called the 

parameter of a parabola. 

Example 3.1. A space object is launched from the Earth’s surface 

along a tangent to the Earth’s surface and flies along a parabolic path. The 
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top of the parabola is on the surface of the Earth, the focus is in the center 

of the globe. Find the speed of flight. 

Solution. We choose a coordinate system so that the abscissa axis 

passes through the focus and the ordinate axis is perpendicular to the 

abscissa axis, which is tangent to the Earth. The radius of the Earth is 

6370000 𝑚 ≈ 6400000𝑚. The equation of the parabola is 𝑦2 = 2px, 

where 
𝑝

2
= 6400000. The object is launched in the direction of the ordinate 

axis, but under the influence of gravity it shifts towards the center of the 

globe. It is known that in one second a freely falling object flies 4.9𝑚. We 

substitute in equation (3.5) 2𝑝 = 4 ⋅ 640000, 𝑥 = 4,9. We obtain 𝑦 =

√4 ⋅ 640000 ⋅ 4,9 =  11200. So, in the first second, the object flies 11,200 

meters, that is, its speed is 11.2 kilometers per second. This is the second 

cosmic velocity. 

The eccentricity of the parabola is equal to one: 
𝑟

𝛿
= 1. So, all three 

considered second-order curves are characterized by the ratio 
𝑟

𝛿
, where 𝑟 is 

the distance from an arbitrary point of the curve to the focus and is the 

distance from the same point to the corresponding directrix. If this ratio is 

less than one, then the curve is an ellipse, if it is greater than one, then the 

hyperbola, if equal to one, then the parabola. 

We note that the canonical parabola equation (3.5) differs from the 

equation familiar from the school course. This is due to the choice of the 

coordinate system. If we change the coordinate axes, then instead of 

equation (3.5) we get the usual equation of the form 𝑦 = ax2, where a is a 

constant number. A similar remark applies to the hyperbola equation (3.4). 

For example, if for the hyperbola 
𝑥2

2
−

𝑦2

2
= 1 we take its asymptotes as the 

axes of the new coordinate system, then in this new coordinate system its 

equation will have a familiar form 𝑦 =
1

𝑥
. 
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3.4. General equation of a second order 

line 

A general equation of a second-order line has the following form: 

𝑎11 𝑥2 + 2𝑎12 𝑥𝑦 + 𝑎22 𝑦2 + 2𝑎13 𝑥 + 2𝑎23 𝑦 + 𝑎33 = 0; (3.6) 

Where 𝑎11
2 + 𝑎12

2 + 𝑎22
2 ≠ 0. 

Let us prove that there exist 9 different types of second-order lines. 

These are: 

• ellipses; 

• hyperbole; 

• parabolas; 

• curves degenerating into a pair of straight lines. 

In this case, ellipses and pairs of lines can be both real and imaginary. 

Thus, among the second-order lines, the curves in the usual sense of 

the word are only an ellipse, a hyperbola, and a parabola. Therefore, they 

are called the most important second-order curves. 

The proof of the statement above is based on the transformation of the 

general equation (3.6). We give this proof here. But for this we must first 

study how the coordinates of the points and the equations of the lines 

change when the coordinate system is changed. 

3.5. Coordinate transformation 

Before we write a line equation on a plane, we need to select a specific 

coordinate system. Obviously, the same line will have different equations 

in different coordinate systems. We know, for example, that the equation 

of a circle of radius R, the center of which has coordinates 𝑥0 and 𝑦0 in the 

selected system 𝑂𝑥𝑦 , looks like this: 

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝑅2. 
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In another coordinate system 𝑂′𝑥′𝑦′where the center 𝑂′ coincides with 

the center of this circle, the equation of this circle will have the form 

𝑥′2 + 𝑦′2 = 𝑅2. 

It will be so if the coordinate systems Oxy and 𝑂′𝑥′𝑦′ are connected 

by the relations 

𝑥 = 𝑥′ + 𝑥0, 

𝑦 = 𝑦′ + 𝑦0. 

Let us consider one more example. Let a line be given in a coordinate 

system Oxy by the equation 

𝑥 − 𝑦 + 2 = 0, 

and let us choose another coordinate system 𝑂′𝑥′𝑦′ which is connected 

to the previous system by the relations 

𝑥 =
𝑥′

√2
−

𝑦′

√2
− 1, 

𝑦 =
𝑥′

√2
+

𝑦′

√2
+ 1. 

Then the equation of a considered line in the system 𝑂′𝑥′𝑦′ will have 

a quite simple form: 

𝑦′ = 0. 

So, we see that a successful choice of a coordinate system allows to 

simplify the equation of a considered line. 

In analytic geometry, the transition from one rectangular coordinate 

system to another is usually carried out with the rotation and parallel 

transfer. 

The parallel transfer of the coordinate system 𝑂𝑥𝑦  to a point 

𝑀0(𝑥0, 𝑦0) is defined by the formulas 

{
𝑥 = 𝑥 ′ + 𝑥0,

𝑦 = 𝑦 ′ + 𝑦0,
 (3.7) 

which express old coordinates 𝑥, 𝑦 through new 𝑥 ′, 𝑦 ′. 

Rotation of the coordinate system by the angle 𝛼 (counter 

clockwise) is defined with the formulas  
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{
𝑥 = 𝑥 ′ 𝑐𝑜𝑠 𝛼 − 𝑦 ′ 𝑠𝑖𝑛 𝛼 ,

𝑦 = 𝑥 ′ 𝑠𝑖𝑛 𝛼 + 𝑦 ′ 𝑐𝑜𝑠 𝛼 .
 (3.8) 

Let us derive these formulas. 

1. We start with the parallel transfer. Let two rectangular coordinate 

systems be defined on the plane: the "old" system 𝑂𝑥𝑦 and the "new"1  

system 𝑂′𝑥 ′𝑦 ′, with the axis 𝑂′𝑥 ′ parallel to the axis 𝑂𝑥 and the axis 𝑂′𝑦 ′ 

parallel to the axis 𝑂𝑦, and in addition, the directions of the corresponding 

old and new axes coincide. In other words, the new system 𝑂′𝑥 ′𝑦 ′ is 

obtained from the old one by parallel transfer, or shift, at which the origin 

of coordinates 𝑂 moves to a point 𝑂′.  

Let the point 𝑂′ have coordinates 𝑥0 and 𝑦0in the old system. Let us 

for definiteness consider𝑥0 > 0, 𝑦0 > 0. We take an arbitrary point M on 

the plane (Fig. 3.5), and let its coordinates be (𝑥, 𝑦) in the old system, and 

let it be (𝑥′, 𝑦′) in the new system. 

 
Fig. 3.5. Parallel transfer of a coordinate system 

Let us consider fig. 3.5 (we took 𝑀(𝑥, 𝑦) with the coordinates 𝑥 > 0, 

𝑦 > 0). So 𝑂𝑂1 = 𝑥0, 𝑂𝑂2 = 𝑦0, 𝑂𝑀1 = 𝑥, 𝑂𝑀2 = 𝑦, 𝑂′𝑀1
′ = 𝑥′, 

                                                      
1 From here quotes in words "old" and "new" are omitted 
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𝑂′𝑀2
′ = 𝑦′. Then we have 𝑥 = 𝑂𝑀1 = 𝑂𝑂1 + 𝑂1𝑀 = 𝑥0 + 𝑥′, 𝑦 =

𝑂𝑀2 = 𝑂𝑂2 + 𝑂2𝑀 = 𝑦0 + 𝑦′. Therefore we obtain (3.7). 

The case when the points 𝑂′ and M have negative coordinates is 

considered similarly. 

Remark. One could reason differently: consider vectors𝑂𝑀, 𝑂′𝑀 and 

𝑂𝑂′. Obviously, 𝑂𝑀 = 𝑂′𝑀 + 𝑂𝑂′. Adding the vectors coordinate-wise, 

we obtain (3.7). 

2. Now we move to a rotation of the coordinate system. Consider the 

case when the new system 𝑂𝑥 ′𝑦 ′ is obtained from the old one 𝑂𝑥𝑦 by 

rotating by a certain angle α, counted counterclockwise. Moreover, both 

systems have a common origin O. 

Suppose that, as in the previous case, the point M has coordinates (𝑥, 𝑦) 

in the old system, and (𝑥 ′, 𝑦 ′) in the new, respectively. 

For definiteness, we consider the case when the angle 𝛼 = ∠𝐵𝑂𝐶 is 

acute. Let 𝑀1 be the projection of the point M onto 𝑂𝑥, B the projection of 

the same point M onto 𝑂𝑥 ′ (Fig. 3.6). The sides of the angle formed by the 

straight lines 𝑀𝑀1 and MB are perpendicular to the sides of the angle 

formed by the axes 𝑂𝑥, 𝑂𝑥 ′ and equal to α. Hence, ∠𝐴𝑀𝐵 = 𝛼. 

 
Fig. 3.6. The rotation of a coordinate system 

According to the notation on fig. 3.6: 

𝑥 = 𝑂𝑀1, 𝑦 = 𝑀1𝑀; 𝑥 ′ = 𝑂𝐵, 𝑦 ′ = 𝐵𝑀. 
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However 

𝑂𝑀1 = 𝑂𝐶 − 𝑀1𝐶 = 𝑂𝐶 − 𝐴𝐵. 

From the triangle OBC (in which OC is a cathetus adjacent to the angle 

α) we find: 

𝑂𝐶 = 𝑂𝐵 𝑐𝑜𝑠 𝛼 = 𝑥 ′ 𝑐𝑜𝑠 𝛼. 

From the triangle AMB (in which AB is a cathetus opposite to the angle 

α) we find: 

𝐴𝐵 = 𝐵𝑀 𝑠𝑖𝑛 𝛼 = 𝑦 ′ 𝑠𝑖𝑛 𝛼. 

Thus, 

𝑥 = 𝑂𝑀1 = 𝑥 ′ 𝑐𝑜𝑠 𝛼 − 𝑦 ′ 𝑠𝑖𝑛 𝛼. (*) 

Analogically we find y: 

𝑦 = 𝑀1𝑀 = 𝑀1𝐴 + 𝐴𝑀 = 𝐶𝐵 + 𝐴𝑀, 

𝐶𝐵 = 𝑂𝐵 𝑠𝑖𝑛 𝛼 = 𝑥 ′ 𝑠𝑖𝑛 𝛼, 𝐴𝑀 = 𝐵𝑀 𝑐𝑜𝑠 𝛼 = 𝑦 ′ 𝑐𝑜𝑠 𝛼. 

Thus, 

𝑦 = 𝑀1𝑀 = 𝑥 ′ 𝑠𝑖𝑛 𝛼 + 𝑦 ′ 𝑐𝑜𝑠 𝛼. (**) 

From (*) and (**) we obtain (3.8). 

Note that for the case when the angle α is not acute, the arguments are 

similar. Formulas (3.8) are valid for any angle α. 

So, we derived formulas (3.7) and (3.8) expressing the old coordinates 

through the new ones. It might seem that formulas expressing new 

coordinates through old ones would be more useful. These formulas are 

easy to obtain. From (3.7) we immediately find: 

{
𝑥 ′ = 𝑥 − 𝑥0,

𝑦 ′ = 𝑦 − 𝑦0.
 (3.7') 

Further, multiplying in (3.8) the first equality by 𝑐𝑜𝑠 𝛼, and the second 

by 𝑠𝑖𝑛 𝛼 and adding them, we obtain 

𝑥 ′ = 𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑠𝑖𝑛 𝛼. 
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Similarly, multiplying the second equality by 𝑐𝑜𝑠 𝛼 and subtracting 

from it the first multiplied by 𝑠𝑖𝑛 𝛼, we get 

𝑦 ′ = −𝑥 𝑠𝑖𝑛 𝛼 + 𝑦 𝑐𝑜𝑠 𝛼. 

Finally we have  

{
𝑥 ′ = 𝑥 𝑐𝑜𝑠 𝛼 + 𝑦 𝑠𝑖𝑛 𝛼 ,

𝑦 ′ = −𝑥 𝑠𝑖𝑛 𝛼 + 𝑦 𝑐𝑜𝑠 𝛼 .
 (3.8') 

However, in practice, it is rarely necessary to find new coordinates of 

points by their old coordinates. Much more often, it is required to obtain 

the equation in the new system from the equation of the line in the old 

coordinate system. And for this it is necessary to replace the old 

coordinates with new ones, i.e. apply formulas (3.7) and (3.8), not (3.7') 

and (3.8'). 

Let us now consider the general case of coordinate transformation, 

when it is necessary to move from a rectangular system 𝑂𝑥𝑦 to a new 

rectangular system 𝑂′𝑥 ′𝑦′, at which the origin 𝑂′ does not coincide with 

the point O, and the axes 𝑂′𝑥 ′ and 𝑂′𝑦 ′ are not parallel to the axes 𝑂𝑥 and 

𝑂𝑦, respectively. Let the new origin 𝑂′ have coordinates (𝑥0, 𝑦0) in the old 

𝑂𝑥𝑦 system, and the axis 𝑂′𝑥 ′ form an angle α with the axis 𝑂𝑥. Then the 

transition from the 𝑂𝑥𝑦 system to the system 𝑂′𝑥 ′𝑦 ′can be carried out in 

two stages: 

1) make a parallel transfer of the 𝑂𝑥𝑦 system so that the origin is at a 

point 𝑂′(𝑥0, 𝑦0); 

2) rotate around a point 𝑂′by the angle α. 

It is easy to make sure that in this case the old coordinates will be 

expressed through the new ones using formulas 

{
𝑥 = 𝑥 ′ 𝑐𝑜𝑠 𝛼 − 𝑦 ′ 𝑠𝑖𝑛 𝛼 + 𝑥0,

𝑦 = 𝑥 ′ 𝑠𝑖𝑛 𝛼 + 𝑦 ′ 𝑐𝑜𝑠 𝛼 + 𝑦0.
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3.6. Transformation of a general equation 

of a second-order line 

Let us the general equation of a second-     order line be given 

𝑎11𝑥2 + 2𝑎12𝑥𝑦 + 𝑎22𝑦2 + 2𝑎13𝑥 + 2𝑎23𝑦 + 𝑎33 = 0, (3.6) 

where 𝑎11
2 + 𝑎12

2 + 𝑎22
2 ≠ 0. 

We denote the left part of the equation (3.6) as 𝐹(𝑥, 𝑦): 

𝐹(𝑥, 𝑦) = 𝑎11𝑥2 + 2𝑎12𝑥𝑦 + 𝑎22𝑦2 + 2𝑎13𝑥 + 2𝑎23𝑦 + 𝑎33. 

In this polynomial, second-order terms form a quadratic form: 

𝜙(𝑥, 𝑦) = 𝑎11𝑥2 + 2𝑎12𝑥𝑦 + 𝑎22𝑦2. (3.9) 

The first step of the transformation is to transform the quadratic 

form (3.9) to the canonical form  

𝑎11
′ 𝑥′2 + 𝑎22

′ 𝑦′2. 

by turning the coordinate system by an angle α. 

Note that the transformation (3.8) is a non-degenerate linear 

transformation. 

So we make a transformation (3.8). We obtain 

𝐹(𝑥, 𝑦) = 𝑎11(𝑥 ′2 cos2 𝛼 2𝑥 ′𝑦 ′ cos 𝛼 sin 𝛼 + +𝑦 ′2 sin2 𝛼) +  

+2𝑎12(𝑥 ′2 cos 𝛼 sin 𝛼 − 𝑥 ′𝑦 ′ sin2 𝛼 − 𝑦 ′2 sin 𝛼 cos 𝛼 + 𝑥 ′𝑦 ′ cos2 𝛼) + 

+𝑎22(𝑥′2 𝑠𝑖𝑛2 𝛼 + 2𝑥 ′𝑦 ′ 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 + 𝑦 ′2 𝑐𝑜𝑠2 𝛼) + 

+2𝑎1𝑥′ 𝑐𝑜𝑠 𝛼 − 2𝑎1𝑦 ′ 𝑠𝑖𝑛 𝛼 + 2𝑎2𝑥 ′ 𝑠𝑖𝑛 𝛼 + 2𝑎2𝑦 ′ 𝑐𝑜𝑠 𝛼 + 𝑎33 = 

𝑎11
′ 𝑥′2 + 2𝑎12

′ 𝑥′𝑦 ′ + 2𝑎23
′ 𝑦 ′ + 𝑎33 = 𝐹(𝑥 ′, 𝑦 ′) , 

where the new coefficients are as follows: 

𝑎11
′ = 𝑎11 𝑐𝑜𝑠2 𝛼 + 2𝑎12 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 + 𝑎22 𝑠𝑖𝑛2 𝛼,  

𝑎12
′ = −𝑎11 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 + 𝑎12(𝑐𝑜𝑠2 𝛼 − 𝑠𝑖𝑛2 𝛼) + 𝑎22 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼, 

𝑎22
′ = 𝑎11 𝑠𝑖𝑛2 𝛼 − 2𝑎12 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛼 + 𝑎22 𝑐𝑜𝑠2 𝛼, 

𝑎13
′ = 𝑎13 𝑐𝑜𝑠 𝛼 + 𝑎23 𝑠𝑖𝑛 𝛼, 

𝑎23
′ = −𝑎13 𝑠𝑖𝑛 𝛼 + 𝑎23 𝑐𝑜𝑠 𝛼. (3.10) 
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The angle α is determined by the requirement that 𝑎12
′ = 0,  i.e. so 

that in the transformed equation there is no term containing the product of 

unknowns. According to (8.10), the requirement 𝑎12
′ = 0 means 

𝑎12cos2𝛼 + (𝑎22 − 𝑎11)cos𝛼sin𝛼 − 𝑎12sin
2𝛼 = 0. (3.11) 

So, when rotating by the angle α, which satisfies equality (3.11), the 

quadratic form (3.9) will have a canonical form. 

In equation (3.11) it is natural to assume that 𝑎12 ≠ 0 (if 𝑎12 = 0, then 

nothing would have to be transformed because the quadratic form 𝜙(𝑥, 𝑦) 

would already have the form 𝑎11𝑥2 + 𝑎22𝑦2. 

Dividing (3.11) by cos2𝛼 we obtain 

𝑎12 + (𝑎22 − 𝑎11)tg𝛼 − 𝑎12tg2𝛼 = 0  

or 

𝑎12tg2𝛼 − (𝑎22 − 𝑎11) · tg𝛼 − 𝑎12 = 0. 

Solving this quadratic (with respect to tg𝛼) equation, we get: 

tg𝛼 = 
𝑎22−𝑎11±√(𝑎22−𝑎11)2++4𝑎12

2

2𝑎12
. (3.12) 

Assuming(𝑎22 − 𝑎11)2 + 4𝑎12
2 > 0, we can always find the necessary 

angle α from (3.12). 

Denote for shorter notation 𝑎11
′ = 𝜆1, 𝑎22

′ = 𝜆2. Now we state the 

obtained result. 

By rotating the coordinate system by the angle α, determined by 

formula (3.12), one can transform the quadratic form 

𝜙(𝑥, 𝑦) = 𝑎11𝑥2 + 2𝑎12xy + 𝑎22𝑦2
 

to the canonical form 

𝜙′(𝑥′, 𝑦′) = 𝜆1𝑥′2 + 𝜆2𝑦′2. 

Meanwhile the polynomial 𝐹(𝑥, 𝑦) is transformed to the form 

𝐹′(𝑥′, 𝑦′) = 𝜆1𝑥′2 + 𝜆2𝑦′2 + 2𝑎13
′ 𝑥′ + 2𝑎23

′ 𝑦′ + 𝑎33. (3.13) 
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Note that both coefficients 𝜆1 and 𝜆2 cannot simultaneously vanish: if 

there were  𝜆1 = 𝜆2 = 0, then the quadratic form (3.9) as a result of a linear 

non-degenerate transformation would turn into an identical zero, which is 

impossible. 

So two basic cases are possible: 

I. 𝜆1 ≠ 0, 𝜆2 ≠ 0. 

II. One of the coefficients 𝜆1, 𝜆2 is nonzero, the other one is equal to 

zero (parabolic case). 

We consider case I, i.e. first basic case: 𝜆1 ≠ 0, 𝜆2 ≠ 0. When 

transferring the origin to some point 𝑂′(𝑥0
′ , 𝑦0

′ ), i.e. when converting 

𝑥′ = 𝑥′′ + 𝑥0
′ ,

𝑦′ = 𝑦′′ + 𝑦0
′ ,

 

the polynomial (3.13) takes the form 

𝐹′′(𝑥′′, 𝑦′′) = 𝜆1𝑥′′2 + 𝜆2𝑦′′2 + 2(𝜆1𝑥0
′ + 𝑎13

′ )𝑥′′ +  

+2(𝜆2𝑦0
′ + 𝑎23

′ )𝑦′′ + 𝑎33
′ , (3.14) 

where a free term 

𝑎33
′ = 𝜆1𝑥0

′2 + 𝜆2𝑦0
′2 + 2𝑎13

′ 𝑥0
′ + 2𝑎23

′ 𝑦0
′ + 𝑎33 = 𝐹′(𝑥0

′ , 𝑦0
′ ). 

The second part of the transformation is as follows. We select such 

coordinates (𝑥0
′ , 𝑦0

′ ) of the new origin so that the coefficients by 𝑥′′ and 

𝑦′′ in (3.14) turn to zero, i.e. to satisfy the inequalities: 

𝜆1𝑥0
′ + 𝑎13

′ = 0,    𝜆2𝑦0
′ + 𝑎23

′ = 0. 

Since𝜆1 ≠ 0, 𝜆2 ≠ 0, then we can find 𝑥0
′  and 𝑦0

′ : 

𝑥0
′ = −

𝑎13
′

𝜆1
,     𝑦0

′ = −
𝑎23

′

𝜆2
. (3.15) 

So, rotating the coordinate axes through an angle α, defined by formula 

(3.12), and moving the origin of the coordinate system to a point which 

coordinates 𝑥0
′ , 𝑦0

′  are determined by equalities (3.15), we transform 

equation (3.6) to the form 

𝜆1𝑥′′2 + 𝜆2𝑦′′2 + 𝑎33
′ = 0. (3.16) 
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Here two cases are possible: 

𝜆1 and 𝜆2are of different signs (so called hyperbolic case); 

𝜆1 and 𝜆2are of the same sign (so called elliptic case). 

Consider the first case (hyperbolic). 

Let 𝑎33
′ ≠ 0. Obviously, one of the coefficients has the same sign as 

𝑎33
′ ; let, for example, 𝜆2 and 𝑎33

′  be of the same sign; then 𝜆1 and 𝑎33
′  are 

opposite in sign. 

Rewrite the equation (3.16) as 

𝑥′′2

−
𝑎33

′

𝜆1
−

𝑎33
′

𝜆2

= 1. 

The denominator −
𝑎33

′

𝜆1
 in the first term in a positive number which we 

denote as 𝑎2; the denominator −
𝑎33

′

𝜆2
 in negative, we denote it as −𝑏2. Then 

we obtain an equation 

𝑥′′2

𝑎2 −
𝑦′′2

𝑏2 = 1. 

This is the canonical expression of a hyperbola. 

Let now 𝑎33
′ = 0. Then (3.16) takes the form 

𝜆1𝑥′′2 + 𝜆2𝑦′′2 = 0. (3.17) 

We assume that 𝜆1 > 0, 𝜆2 < 0 (if not, we multiply both parts of (8.17) 

by –1). Denote 𝜆1 = 𝑎2, 𝜆2 = −𝑏2 and then obtain the equation 

𝑎2𝑥′′2 − 𝑏2𝑦′′2 = 0. 

It can be rewritten in the form 

(𝑎𝑥′′ + 𝑏𝑦′′)(𝑎𝑥′′ − 𝑏𝑦′′) = 0. 

It is an equation of a pair of straight lines 

𝑎𝑥′′ + 𝑏𝑦′′ = 0, 𝑎𝑥′′ − 𝑏𝑦′′ = 0, 

which intersect in the origin. 
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Similarly, we consider the elliptic case when both 1  and 2  are of 

the same sign and the parabolic case, when one of the coefficients, 1  or 

2 , is zero. 

In the elliptic case we obtain either ellipse
𝑥′′2

𝑎2 +
𝑦′′2

𝑏2 = 1, or imaginary 

ellipse 
𝑥″2

𝑎2 +
𝑦″2

𝑏2 = −1, or a pair of imaginary intersecting lines 
𝑥′′2

𝑎2 +

𝑦′′2

𝑏2 = 0.  

In the parabolic case we obtain either parabola 𝑦′′2 = 2𝑝𝑥′′, or a pair 

of parallel lines 𝑦′′2 + 𝑎2 = 0, or a pair of coinciding straight lines 𝑦′′2 =

0. 

Questions 

1) What are the semi-axes of an ellipse? 

2) What is the eccentricity of an ellipse? What characterizes the 

eccentricity of the ellipse and what is the range of its value? 

3) How many axes of symmetry does an ellipse have? 

4) What curve is called a hyperbola? 

5) How many axes of symmetry does a hyperbola have? 

6) What are the asymptotes of a hyperbola? How many asymptotes does 

a hyperbola have? 

7) What are the main properties of a hyperbola? 

8) What is the parameter of a hyperbola? Is it possible to find a parameter 

of a parabola knowing the distance from its focus to its vertex? 

9) How many axes of symmetry does a parabola have? 

10) How many different types of second-order curves exist there? 
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Chapter 4. Straight lines and 

planes in the space 

4.1. Plane in the space 

Let the coordinate system Oxyz be given in space and let the plane Π 

pass through the point M0(x0,y0,z0) perpendicular to the vector  

𝑁 = (𝐴, 𝐵, 𝐶). These two conditions determine the only plane in the space 

Oxyz. A vector 𝑁 is called a normal plane vector. We derive the equation 

of this plane. 

Let 𝑀(𝑥, 𝑦, 𝑧) be an arbitrary point on a plane 𝛱. Then a vector 𝑀0𝑀̅̅ ̅̅ ̅̅ ̅ =

(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) and a vector �̅� = (𝐴, 𝐵, 𝐶) are mutually 

perpendicular. Hence, their scalar product is equal to zero: (�̅�, 𝑀0𝑀̅̅ ̅̅ ̅̅ ̅) = 0. 

We write this last equation in a scalar form: 

𝐴 ⋅ (𝑥 − 𝑥0) + 𝐵 ⋅ (𝑦 − 𝑦0) + 𝐶 ⋅ (𝑧 − 𝑧0) = 0. (4.1) 

This is the equation of a plane passing through the point 𝑀0(𝑥0, 𝑦0, 𝑧0) 

perpendicular to the given vector �̅� = (𝐴, 𝐵, 𝐶). From (4.1) we obtain 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 − 𝐴𝑥0 − 𝐵𝑦0 − 𝐶𝑧0 = 0. 

Denoting −𝐴𝑥0 − 𝐵𝑦0 − 𝐶𝑧0 = 𝐷 we obtain a general equation of a 

plane: 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0. (4.2) 

So, the equation of a plane is a linear equation or a first-order equation 

with three variables. 

It is easy to prove that any first-order equation with three variables is 

an equation of a plane. 

It is known that a plane is uniquely defined by three points which are 

not on the same line. Let 𝑀0(𝑥0, 𝑦0, 𝑧0), 𝑀1(𝑥1, 𝑦1, 𝑧1) and 𝑀2(𝑥2, 𝑦2, 𝑧2) 

be three points not lying on the same line. Then vectors 𝑀0𝑀1
̅̅ ̅̅ ̅̅ ̅̅ = (𝑥1 −



4.1. Plane in the space  

51 

𝑥0, 𝑦1 − 𝑦0, 𝑧1 − 𝑧0) and 𝑀0𝑀2
̅̅ ̅̅ ̅̅ ̅̅ = (𝑥2 − 𝑥0, 𝑦2 − 𝑦0, 𝑧2 − 𝑧0) are not 

parallel to the same line (not collinear). Let 𝑀(𝑥, 𝑦, 𝑧) be an arbitrary point 

on the plane 𝛱. Then the vector 𝑀0𝑀̅̅ ̅̅ ̅̅ ̅ can be decomposed into vectors 

𝑀0𝑀1
̅̅ ̅̅ ̅̅ ̅̅  and 𝑀0𝑀2

̅̅ ̅̅ ̅̅ ̅̅ . Therefore, these three vectors 𝑀0𝑀1
̅̅ ̅̅ ̅̅ ̅̅ , 𝑀0𝑀2

̅̅ ̅̅ ̅̅ ̅̅  and 

𝑀0𝑀̅̅ ̅̅ ̅̅ ̅are linearly dependent and that why 

|

𝑥 − 𝑥0 𝑦 − 𝑦0 𝑧 − 𝑧0

𝑥1 − 𝑥0 𝑦1 − 𝑦0 𝑧1 − 𝑧0

𝑥2 − 𝑥0 𝑦2 − 𝑦0 𝑧2 − 𝑧0

| = 0. (4.3) 

This is an equation of a plane passing through three points 

𝑀0(𝑥0, 𝑦0, 𝑧0), 𝑀1(𝑥1, 𝑦1, 𝑧1) and 𝑀2(𝑥2, 𝑦2, 𝑧2) which are not on the 

same straight line. 

Example 4.1. Write an equation of a plane which passes through points 

0M (1, 2, 1), 
1M (3, 3, 1), 

2M (2, 3, 2). 

Solution. We substitute the coordinates on these points into the 

equation (4.3): 

|
𝑥 − 1 𝑦 − 2 𝑧 − 1
3 − 1 3 − 2 1 − 1
2 − 1 3 − 2 2 − 1

| = 0, |
𝑥 − 1 𝑦 − 2 𝑧 − 1

2 1 0
1 1 1

| = 0 

𝑥 − 1 − 2 ⋅ (𝑦 − 2) + 𝑧 − 1 = 0  

𝑥 − 2𝑦 + 𝑧 + 2 = 0. 

We consider the relative position of two planes. Given two planes: 

𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 + 𝐷1 = 0, 

𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 + 𝐷2 = 0. 

Their normal vectors are �̅�1 = (𝐴1, 𝐵1, 𝐶1) и �̅�2 = (𝐴2, 𝐵2, 𝐶2). 

The angle between these two planes is the angle between �̅�1 and �̅�2 

which is defined by the formula 

cos𝜙 =
𝐴1𝐴2+𝐵1𝐵2+𝐶1𝐶2

√𝐴1
2+𝐵1

2+𝐶1
2√𝐴2

2+𝐵2
2+𝐶2

2
. (4.4) 
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The parallelism condition for two planes is the condition of 

proportionality of their normal vectors: 

𝐴1

𝐴2
=

𝐵1

𝐵2
=

𝐶1

𝐶2
. (4.5) 

The coinciding planes condition looks as follows: 

𝐴1

𝐴2
=

𝐵1

𝐵2
=

𝐶1

𝐶2
=

𝐷1

𝐷2
. (4.6) 

The perpendicular planes condition is the conditioncos𝜙 = 0, i.e. 

𝐴1𝐴2 + 𝐵1𝐵2 + 𝐶1𝐶2 = 0. (4.7) 

4.2. Line in space. Line and a plane in the 

space 

Let the straight line L pass through the point 𝑀0(𝑥0, 𝑦0, 𝑧0) parallel to 

the vector �̅� = (𝑙, 𝑚, 𝑛). In this case, the vector �̅�is called the directing 

vector of the straight line. Let 𝑀(𝑥, 𝑦, 𝑧) be an arbitrary point of the line L. 

Obviously, the vectors 𝑀0𝑀̅̅ ̅̅ ̅̅ ̅ = (𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧 − 𝑧0) and �̅� are 

proportional. Having written down the condition of their proportionality in 

coordinate form, we obtain the canonical equation of the straight line L: 

𝑥−𝑥0

𝑙
=

𝑦−𝑦0

𝑚
=

𝑧−𝑧0

𝑛
. (4.8) 

From (4.8) we obtain: 

𝑥 − 𝑥0 = 𝑙𝑡,  𝑦 − 𝑦0 = 𝑚𝑡,  𝑧 − 𝑧0 = 𝑛𝑡, 

where t is a proportionality coefficient. These equations give: 

𝑥 = 𝑥0 + 𝑙𝑡,  𝑦 = 𝑦0 + 𝑚𝑡,  𝑧 = 𝑧0 + 𝑛𝑡. (4.9) 

These are the parametrical equations of a line L. (Sometimes these 

are called in a singular form as a parametric equation of the line.) 

A line in the space also can be defined as an intersection of two planes, 

i.e. as a set of points, the coordinates of which satisfy the conditions: 
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{
𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑧 + 𝐷1 = 0
𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 + 𝐷2 = 0.

 (4.10) 

The canonical equation (4.8), however, can also be considered as a pair 

of plane equations, considered together. It is easy to derive the canonical 

or parametric equation of a line defined in the form (4.10). To do this, it is 

enough to find some point 𝑀0(𝑥0, 𝑦0, 𝑧0) that belongs to the line and the 

direction vector. The coordinates of 𝑀0are easy to find since this is any 

solution to the system (9.10). For example, putting, 𝑧0 = 0 from the system 

(9.10) we find 𝑥0,𝑦0and obtain 𝑀0(𝑥0, 𝑦0, 0). The coordinates of the 

direction vector �̅� may be numbers: 

𝑙 = |
𝐵1 𝐶1

𝐵2 𝐶2
|,  𝑚 = |

𝐶1 𝐴1

𝐶2 𝐴2
|,  𝑛 = |

𝐴1 𝐵1

𝐴2 𝐵2
|. 

Let us consider now the relative position of the line and the plane in 

space. Let the line L be given: 
𝑥−𝑥0

𝑙
=

𝑦−𝑦0

𝑚
=

𝑧−𝑧0

𝑛
  

and a plane Π: 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0. 

Obviously, the line L is parallel to the plane 𝛱 when the direction 

vector of the line �̅� = (𝑙, 𝑚, 𝑛) is perpendicular to the normal vector of the 

plane �̅� = (𝐴, 𝐵, 𝐶), i.e. the parallel condition of the line L and the plane 

𝛱is the condition: 

𝐴𝑙 + 𝐵𝑚 + 𝐶𝑛 = 0. (4.11) 

The condition for the proportionality of these vectors is the 

perpendicularity condition of the line L and the plane 𝛱: 

𝐴

𝑙
=

𝐵

𝑚
=

𝐶

𝑛
. (4.12) 

The angle between the line and the plane is the angle between the 

line and its projection onto the plane, and this is the angle additional to the 

angle between the direction vector �̅� of the line L and the normal vector �̅� 

of the plane 𝛱: 
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sin 𝜙 = |cos   �̄�, �̄�
∧

| =
𝐴𝑙+𝐵𝑚+𝐶𝑛

√𝐴2+𝐵2+𝐶2⋅√𝑙2+𝑚2+𝑛2
. (4.13) 

The distance from a point to a plane is calculated using a formula 

similar to the formula for the distance from a point to a line on a plane [see 

(7.15)]. We show that the distance d from the point 𝑀0(𝑥0, 𝑦0, 𝑧0) to the 

plane 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0. (4.2) 

is calculated using the formula 

𝑑 =
|𝐴𝑥0+𝐵𝑦0+𝐶𝑧0+𝐷|

√𝐴2+𝐵2+𝐶2
. (4.14) 

We write the equation of a line passing through a point 𝑀0(𝑥0, 𝑦0, 𝑧0) 

perpendicular to the plane (4.2). To do this, we use the parametric 

equations (4.9): 

𝑥 = 𝑥0 + 𝑙𝑡, 𝑦 = 𝑦0 + 𝑚𝑡, 𝑧 = 𝑧0 + 𝑛𝑡. (4.9) 

In order for the line (4.9) to be perpendicular to the plane (4.2), it is 

necessary that its direction vector�̄� = (𝑙, 𝑚, 𝑛) be parallel to the vector �̄� =

(𝐴, 𝐵, 𝐶), i.e. so that the coordinates of the vectors �̄� and �̄� are 

proportional. The easiest way, of course, is to take vector �̄�as the vector �̄� 

, i.e. take 𝑙 = 𝐴, 𝑚 = 𝐵, 𝑛 = 𝐶. Then the parametric equations (4.9) will 

look like this: 

𝑥 = 𝑥0 + 𝐴𝑡, 𝑦 = 𝑦0 + 𝐵𝑡, 𝑧 = 𝑧0 + 𝐶𝑡. (4.9') 

The straight line (4.9 ') is perpendicular to the plane (4.2) and passes 

through a point 𝑀0. Consequently, the distance from the point 𝑀0 to the 

plane (4.2) is the distance between the point 𝑀0 and the point M of the 

intersection of the line (4.9 ') with the plane (4.2). Let us find the 

coordinates of this point M. For this, it is necessary to solve equations (4.2) 

and (4.9 ') together. The easiest way to do this is substitute the expressions 

for x, y, and z from (4.9 ') into (4.2). We obtain: 

𝐴(𝑥0 + 𝐴𝑡) + 𝐵(𝑦0 + 𝐵𝑡) + 𝐶(𝑧0 + 𝐶𝑡) + 𝐷 = 0, 
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(𝐴2 + 𝐵2 + 𝐶2)𝑡 + (𝐴𝑥0 + 𝐵𝑦0 + 𝐶𝑧0 + 𝐷) = 0. 

From these we find t: 

𝑡 = −
𝐴𝑥0+𝐵𝑦0+𝐶𝑧0+𝐷

𝐴2+𝐵2+𝐶2 . 

This value of t determines the coordinates of the point M which is the 

base of the perpendicular dropped from the point 𝑀0 onto the plane (4.2). 

Substitute the found t in (4.9'): 

𝑥 = 𝑥0 + 𝐴(−
Ax0+By0+Cz0+𝐷

𝐴2+𝐵2+𝐶2 ),  

𝑦 = 𝑦0 + 𝐵(−
Ax0+By0+Cz0+𝐷

𝐴2+𝐵2+𝐶2 ), (4.9") 

𝑧 = 𝑧0 + 𝐶(−
Ax0+By0+Cz0+𝐷

𝐴2+𝐵2+𝐶2 ).  

The distance d from the point 𝑀0 to the plane (4.2) is the length of the 

perpendicular 𝑀0𝑀 or, which is the same, the distance between the points 

𝑀0(𝑥0, 𝑦0, 𝑧0) and 𝑀(𝑥, 𝑦, 𝑧), i.e. 

𝑑 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2. 

Since x, y and z are defined in (4.9"), we obtain 

𝑑 = √(𝐴2 + 𝐵2 + 𝐶2) (−
𝐴𝑥 0+𝐵𝑦 0+𝐶𝑧 0+𝐷

𝐴2+𝐵2+𝐶2 )
2

=

= √𝐴2 + 𝐵2 + 𝐶2 |𝐴𝑥 0+B𝑦 0+𝐶𝑧0+𝐷|

𝐴2+𝐵2+𝐶2 ,

or 

𝑑 =
|Ax0+By0+Cz0+𝐷|

√𝐴2+𝐵2+𝐶2
. 

That completes the proof. 

Example 4.2. Find the distance between a point 𝑀0(1,0,2) and a plane 

𝑥 + 2𝑦 − 2𝑧 + 9 = 0. 

Solution. 

𝑑 =
|1+2·0−2·2+9|

√12+22+(−2)2
=

6

3
= 2. 

Example 4.3. Find the distance between a line 

𝑥 + 1

2
=

𝑦 − 2

2
=

𝑧

1
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and a plane 4𝑥 − 2𝑦 − 4𝑧 + 9 = 0. 

Solution. The line is parallel to the plane. Indeed, the scalar product of 

its direction vector and the normal plane vector is zero: 2 · 4 + 2 · (−2) +

1 · (−4) = 0. Therefore, the distance from a straight line to a plane is equal 

to the distance from any point 𝑀0 of this straight line to a plane. The most 

convenient way is to take a point 𝑀0 = (−1,2,0) whose coordinates appear 

in the equation of a line. We obtain 

𝑑 =
|4·(−1)−2·2−4·0+9|

√42+(−2)2+(−4)2
=

1

6
. 

Example 4.4. Find the distance between a point 𝑀0(1,2,3) and a line 
𝑥−6

2
=

𝑦

−2
=

𝑧−7

1
. 

Solution. We write the equation of the plane that passes through the 

given point 𝑀0 and is perpendicular to the given line, and find the 

coordinates of the point M of the intersection of the line and the plane. 

Obviously, 𝑀0𝑀 is a perpendicular dropped from a point 𝑀0 to a given 

line. Its length is the distance we want to find. 

The equation of a plane passing through 𝑀0 perpendicular to a given 

line is 

2 · (𝑥 − 1) − 2 · (𝑦 − 2) + 1 · (𝑧 − 3) = 0, 

or 

2𝑥 − 2𝑦 + 𝑧 − 1 = 0. (*) 

Write the equation of this straight line in a parametrical form: 

𝑥 = 6 + 2𝑡, 𝑦 = −2𝑡, 𝑧 = 7 + 𝑡. (**) 

Find the intersection point of the line (**) and the plane (*). To do this, 

first we substitute x, y and z from (**) into (*) and find t: 

2 · (6 + 2𝑡) − 2 · (−2𝑡) + 7 + 𝑡 − 1 = 0, 

9𝑡 + 18 = 0, 𝑡 = −2. 
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Now, substituting the value 𝑡 = −2 in (**), we obtain 𝑥 = 2, 𝑦 = 4, 

𝑧 = 5. So, the point 𝑀(2,4,5) is the base of the perpendicular 𝑀0𝑀. 

Therefore 

𝑑 = 𝑀0𝑀 = √(2 − 1)2 + (4 − 2)2 + (5 − 3)2 = 3. 

Note that there is another way to solve this and similar problems, based 

on the concept of a vector product of vectors, which is not considered here. 

Questions 

1) What is a normal vector to a plane in space? 

2) Will the angle between the planes 3𝑥 + 𝑦 − 𝑧 = 0 and 𝑥 − 𝑦 + 2𝑧 +

5 = 0be the right angle? 

3) Will the planes 3𝑥 − 2𝑦 + 𝑧 = 0 and 6𝑥 − 3𝑦 + 2𝑧 + 12 = 0 be 

parallel? 

4) Does a point 𝑀0(1,2,3) belong to a plane 2𝑥 − 3𝑦 + 𝑧 + 1 = 0? 

5) What is the distance between the origin and a plane 2𝑥 − 𝑦 + 2𝑧 +

9 = 0? 

6) What are the coordinates of a point on a line 

{
𝑥 = 2 + 𝑡,

𝑦 = 1 − 2𝑡,
𝑧 = 3 + 2𝑡,

corresponding to the value 𝑡 = −1? 

7) Does the point 𝑀0(1,  3,  2) belong to a line {
𝑥 = 3 − 𝑡,
𝑦 = 1 + 𝑡,

𝑧 = −4 + 3𝑡?
If it 

belongs, what is the corresponding value of a parameter t? 

8) Will the vector �̄� = (2, −1,  3) be parallel to a line {
𝑥 = 3 − 4𝑡,
𝑦 = 1 + 2𝑡,
𝑧 = 5 − 6𝑡?

 

9) What point of a line {
𝑥 = 1 + 𝑡,

𝑦 = 2 − 3𝑡,
𝑧 = −3 + 2𝑡

 corresponds to the parameter value 

𝑡 = 2? 
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10) Do a line {
𝑥 = 2 + 𝑡,

𝑦 = 3 + 2𝑡,
𝑧 = −1 − 2𝑡

 and a plane 𝑥 + 2𝑦 − 5𝑧 + 2 = 0 intersect? 

If they intersect, what are the coordinates of the intersection point? 

11) Is the line 
𝑥−1

2
=

𝑦+2

−1
=

𝑧−3

−2
 parallel to a plane 𝑥 + 2𝑦 + 2𝑧 − 7 = 0? 

12) How to determine the coordinates of a direction vector of a line given 

by a pair of planes {
𝐴1𝑥 + 𝐵1𝑦 + 𝐶1𝑥 + 𝐷1 = 0,
𝐴2𝑥 + 𝐵2𝑦 + 𝐶2𝑧 + 𝐷2 = 0 ? 

13) How to find the distance between the parallel planes? 

14) Does a plane 
𝑥−1

2
=

𝑦+1

−1
=

𝑧−3

3
 go through points 𝑀1(−1,  0,  0) and 

𝑀2(5, −3,  9)? 
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Chapter 5. Function 

5.1. Definition of function 

One of the most important definitions in mathematics and its 

applications is the definition of a function. 

Definition. Let us be given two numerical sets X and Y. Suppose that 

each element Xx  according to some law f is associated with some 

(unique) element Yy . Then we say that a function1 ( )xfy =  is given 

on the set X. 

Moreover, x is called an independent variable (or argument), y is a 

dependent variable, and the set ( ) XfD =  is called the domain of the 

function. The set ( )fR  of all values of the function is called the scope of 

the function. Obviously ( ) YfR  . 

So, the definition of a function consists of three parts: 

a domain ;)( XfD =  

a scope )()( xffR = ; 

a rule f which associates each point Xx  with a unique point 

).()( fRxfy =  

                                                      
1 More precisely, a numerical function. 



Chapter 5. Function  

60 

A graph of a function )(xfy =  is a set of points with coordinates 

)),(,( xfx  Xx . 

If the set X is not specifically stated, then the domain of the function is 

the set of all such values of x for which the function ( )xfy =  makes sense 

at all (this is the so-called natural domain of definition). 

Note that we use different letters to denote a function and its argument, 

for example: 

( )xyy = , ( )xFy = , ( )tss = , ( )xy = . 

The most common are the following methods for setting the function: 

1) analytical – the relationship between the argument and the function 

is given in the form of a formula (or formulas). So, the functions 

32 += xy , 
2

1

x
y =

, 1

2

2

3

+
+=

x

x
xy

 are given analytically.  

Note that one function can be defined with a set of formulas: different 

functions (different analytical expressions) describe different parts of the 

domain. For example: 

 
2) tabular – a function is given with a table containing the values of 

the argument x and corresponding values of a function f(x). Examples of 

such functions are tables of financial statements, a table of logarithms. 

Databases are also essentially based on the tabular method of specifying, 

storing and processing information, therefore, they are also based on the 

tabular form of functional dependence; 

3) graphical – the function is given graphically if its graph is drawn, 

i.e. the correspondence between the argument and the function is set by 
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means of a graph. The advantages of this method include its visibility, the 

disadvantages include its low accuracy. 

There are other less common ways of defining functions, for example, 

verbal, which consists in the fact that the function is described by the rule 

of its compilation. 

Consider an example of a function defined verbally or descriptively. 

This is the Dirichlet function, usually denoted as )(x . It is equal to one 

of its argument x is a rational number and to zero if x is an irrational 

number. The Dirichlet function is defined on the whole number line, and 

the set of its values consists of two points: 0 and 1. It is impossible to 

graphically depict it: 





=
.if,0

,,1

irrationalisx

rationalisxif
y

 

We move on to consider the basic properties of functions. 

1) parity and oddness. A function ( )xfy =  defined on an interval 

symmetric with respect to the coordinate origin is called an even function 

if, for any values x from its domain, equality ( ) ( )xfxf =−  holds. If 

( ) ( )xfxf −=− , then the function is called an odd function. A function 

that is not even or odd is called a general function. 

For example: 1) 
4xy =  is an even function since 

( ) ( ) ( )xfxxxf ==−=− 44 ; 2) xy sin=  is an odd function since 

( ) ( ) ( )xfxxxf −=−=−=− sinsin ; 3) xxy sin2 +=  is a general 
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function since ( ) ( ) ( ) −=−+−=− 22
sin xxxxf  xsin− , 

( ) ( )xfxf − , ( ) ( )xfxf −− . 

The graph of an even function is symmetric relative to the axis Ox , 

and the graph of an odd function is relative to the origin. 

2) monotony. The function ( )xfy =  is called increasing on the 

interval X if for any 1x  , Xx 2  from the inequality 12 xx   follows that 

( ) ( )12 xfxf  ; a function is called decreasing if from 12 xx   it follows 

that ( ) ( )12 xfxf  . 

A function is called monotonic on the interval X if it either grows on 

the entire interval      or decreases on it. 

Note that we gave a definition of a monotonic function in the strict 

sense. In general, monotonic functions include non-decreasing functions, 

i.e. those for which from 𝑥2 > 𝑥1 it follows that 𝑓(𝑥2) ≥ 𝑓(𝑥1) and non-

increasing functions, i.e. those for which from 𝑥2 > 𝑥1 it follows that 

𝑓(𝑥2) ≤ 𝑓(𝑥1). 

3) boundedness. A function 𝑦 = 𝑓(𝑥) is called bounded in a given 

domain if there exists a number 𝑀 > 0 such that |𝑓(𝑥)| ≤ 𝑀 for all x from 

this domain. 

For example, the function 
1

𝑥2+1
 is bounded on the whole number line 

since |
1

𝑥2+1
| ≤ 1 for any 𝑥 ∈R. 

4) periodicity. A function 𝑦 = 𝑓(𝑥) is called periodic if there exists a 

number 𝑇 ≠ 0 such that 𝑓(𝑥 + 𝑇) = 𝑓(𝑥) for all x from the domain of the 

function. 
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In this case, T is called the period of the function. Obviously, if T is 

the period of a function 𝑦 = 𝑓(𝑥), then the periods of this function are also 

2𝑇, 3𝑇 etc. Therefore, usually, the period of the function is called the 

smallest positive period (if it exists). For example, function 𝑦 = 𝑠𝑖𝑛 𝑥 has 

a period 𝑇 = 2𝜋, and function 𝑦 = tg 3𝑥 has a period 𝑇 =
𝜋

3
. It should be 

noted that not every periodic function has the shortest period. In particular, 

the Dirichlet function is periodic and any real number is its period, but it 

does not have the smallest period. 

5.2. Basic elementary functions 

We list the basic elementary functions and briefly recall their basic 

properties known from the school course in mathematics. 

1. A power function, 
axy = , here a is any real number. 

Consider this function for different values of a: 

1) a is a natural number. The domain of the function is the entire 

number line. The function is odd if a is odd and even if a is even. 

If a is odd, then the function increases on (-∞; +∞); if a is even, then it 

decreases on (-∞, 0) and increases on (0. +∞). 

2) a is a negative integer. In this case, the function is defined for all 

values of x except x=0. 

A function is odd if a is an odd number and even if a is an even number. 

If a is odd, then the function decreases on (-∞, 0) and (0, + ∞). 

3) 𝑎 =
1

𝑛
, 𝑛 ≠ 0. If n is an even number, then the function is defined 

on [0, +∞); if n is an odd number, then on (−∞, +∞). The function 

increases throughout the definition area. 

Fig. 5.1–5.4 show graphs of the power function for various values of 

a. 
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Fig. 5.1. Graph of the power function y=xa if a = 2 

 

 
Рис. 5.2 Graph of the power function y=xa if a =1 and a = 3 
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Рис. 5.3. Graph of the power function y=xa if a = –1 

 

 

Рис. 5.4. Graph of the power function y=xa if a=½ 

The power function is non-periodic for any a. 

2. Exponential function 
xay = , 0a , 1a . This function is 

defined on the whole number line. It is a general function; increases on
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( )+− , at 1a  (Fig. 5.5, a), decreases on ( )+− ,  at 10  a  

(Fig. 5.5, b). Non-periodic. 

 
Fig. 5.5. Graph of the exponential function y=ax 

at a>1 (a) and 0<a<1 (b) 

3. Logarithmic function xy alog= , 0a , 1a . Logarithmic 

function defined on ( )+,0 , it is a function of a general form; increases 

on ( )+,0  at 1a ; decreases on ( )+,0  at 10  a . Non-periodic. 

 
Fig. 5.6. Graph of the logarithmic function y=logax at a>1 (a)  

and 0<a<1 (b) 
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Recall that the exponential function 
xay =  and the logarithmic 

function xy alog=  are mutually inverse functions. 

4. Trigonometric functions: 

1) xy sin=  (Fig. 5.7). Odd periodic function with the period = 2T

, defined on ( )+− , . 

 
Fig. 5.7. Graph of the function y=sin x 

2) xy cos=  (Fig. 5.8). Even periodic function with the period 

= 2T ,defined on ( )+− , . 

 

Fig. 5.8. Graph of the function y=cos x 
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3) xy tg=  (Fig. 5.9). The domain is 








+


+


− nn

2
,

2 , n Z. 

The function is odd, increases on 








+


+


− nn

2
,

2 , n Z. It is 

periodic with the period =T . 

 
Fig. 5.9. The graph of the function y=tg x 

4) xy ctg=  (Fig. 5.10). The domain: ( )nn + , , n Z. An odd 

periodic function, decreases on ( )nn + , , n Z; the period is =T . 
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Fig. 5.10. The graph of the function y=ctg x 

5. Inverse trigonometric      function: 

1) xy arcsin= ; 2) xy arccos= ; 

3) xy arctg= ; 4) xy arcctg= . 

The functions xarcsin  and xarccos  are defined on  1,1− , functions 

xarctg  and xarcctg  are defined on the whole number line. 

5.3. Elementary functions 

Let function ( )xfy =  be defined on interval X, its range of variation 

is Y, and let different values of x correspond to different values of y. Then 

for each value Yy  there is a single number Xx  at which f(x)=y. 

Then the resulting function ( )yx =  defined on X with the range of 

variation of Y is called the inverse function. 
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Since an independent variable is usually denoted by x and a function 

by y, the function inverse to the function ( )xfy =  is also denoted as 

( )xfy 1−= . 

Mutually inverse functions are, in particular, 
xay =  and xy alog=  

(Fig. 10.11), xy sin=  and xy arcsin= , etc. The graphs of mutually 

inverse functions are symmetric with respect to the line xy = . 

 
Рис. 5.11. Graphs of mutually inverse      functions 

xay =  and xy alog=  

It is well known that arithmetic operations can be performed on 

functions: addition, subtraction, multiplication, division. 
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Consider another action on functions called taking a function from a 

function or constricting a complex function. Let a function ( )ufy =  be 

defined on a set U and its range of variation is Y, its argument u be a 

function of x: ( )xu = , defined on a set X with a range of U. Then 

function ( )( )xfy =  defined on X is called a composite function or a 

function of a function (a superposition of functions) 

For example, two functions uy lg=  and 
21 xu −=  define a 

composite function ( )21lg xy −=  with domain ( )1,1− . 

Note that the operation of taking a function from a function can be 

performed any number of times. For example, a function 
2sinlg xy =  

is obtained as a result of the following operations: 

uy = , vu lg= , wv sin= , 
2xw = . 

Definition. An elementary function is called a function that is 

obtained from the basic elementary functions and constants using a finite 

number of operations of addition, subtraction, multiplication, division, and 

taking a function of a function. 

Elementary functions are divided into algebraic and transcendental. 

Algebraic functions include: 

a) polynomials: 

n

nn axaxay +++= − ...1

10 ; 

b) fractional rational functions: 

m

mm

n

nn

bxbxb

axaxa
y

+++

+++
=

−

−

...

...
1

10

1

10

, 
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i.e. functions defined as the ratio of two polynomials; 

c) irrational functions, i.e. functions obtained by a finite number of 

superpositions and arithmetic operations on power functions with integer 

and fractional exponents and which are not rational. 

The examples of the irrational functions are 
32 xxy += , 

xx

x
y

+

+
=

3

2 1

, etc. 

Generally, function ( )xfy =  is called algebraic if it satisfies the 

equations of form 0...1

10 =+++ −

n

nn PyPyP , 

where 0P , 1P , …, nP  are polynomials depending on x. 

A function that is not algebraic is called transcendental. 

Transcendental functions include exponential, logarithmic and      

trigonometric functions. 

5.4. Application of functions in the 

economics 

Functions are widely used in economic theory. Here we give the most 

commonly used functions of a single argument. 

The utility function (see Fig. 5.12) is a subjective numerical 

assessment by a given individual of the utility u of the quantity x of a 

certain product for him. In a broad sense, the utility function is the 

dependence of the utility (effect) of a certain action on its level (intensity). 
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Fig. 5.12. Graph of the utility function 

The output function (one-factor production function; see Fig. 5.13) is 

the dependence of the volume y of the output on the volume x of the 

processed resource. The output function is a particular type of production 

function that expresses the dependence of the result of production activity 

on the factors that caused it. 

 
Fig. 5.13. Graph of the output function 

The cost function is the dependence of production costs on the volume 

of products. The cost function is also a particular type of production 

function. 

The supply and demand function is the dependence of the volume of 

demand D and supply S on the price of goods p. 

Consider some product. Let ( )pD  be the quantity (number of units) of 

a product that a buyer wants to buy at a given price p per unit. The function 
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( )pDD =  is called the demand function for the product. This function is 

decreasing. Usually, it has the form: 

ckpD a += , (5.1) 

where 0a  (Fig. 5.14). 

 
Fig. 5.14. Graph of the demand function 

On the other hand, let ( )pS  be the number of units of goods offered 

by the sellers in the market at the price p. Obviously, supply increases with 

rising prices. Therefore, the function of the proposal ( )pSS =  is an 

increasing function. It usually has the form: 

dpS b += , (5.2) 

where 1b  (Fig. 5.15). 

 
Fig. 5.15. Graph of the proposal function 
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For the economics of interest is the condition when demand is equal to 

the supply: 

( )pD  = ( )pS . (5.3) 

The price 0pp =  at which equality (5.3) holds is called equilibrium. 

The intersection point of the curves D and S (graphs of functions 

( )pDD =  and ( )pSS = ) is called the equilibrium point. 

With an increase in the well-being of the population, the constant c in 

formula (5.1) increases, curve D rises, the equilibrium point shifts to the 

right (Fig. 5.16). 

 
Fig. 5.16. The position of the equilibrium point  

depending on the welfare of the population 

Questions 

1) What is the natural domain of a function? 

2) What are the ways to define functions? 

3) What property does the graph of an odd function have? 

4) What is the general term used to refer to increasing and decreasing 

functions? 

5) How many different periods does a periodic function have? 
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6) Let function ( )xfy =  have the smallest period T. Is function 

( )xfy 3=  periodic and if so, what is its smallest period? 

7) How to get the graph of the inverse function from the graph of the 

function itself? 

8) Which function is the inverse of function 
3xy = ? 

9) Does function 32 += xy  belong to the basic elementary functions? 

10) How can one get elementary functions from basic elementary 

functions? 

11) Will the sum of elementary functions be an elementary function? And 

the square root of the elementary function? 

12) What functions of one variable are most often used in economics? 
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Chapter 6. Limits 

6.1. Sequence. Limit of a sequence 

If according to some law, each positive integer n is assigned one 

specific real number xn, then they say that a numerical sequence is given: 

1x , 2x , …, nx
, … . (6.1) 

In other words, a numerical sequence is a function of a natural 

argument: ( )nfxn = , i.e. function defined on the set of natural numbers. 

Sequence (6.1) is written briefly in the form  nx . Numbers 1x , 2x , 

…, nx , … are called the members of the sequence and the nth member nx  

is called the general member of the sequence. 

A sequence is considered given if its general member is specified or a 

method for obtaining any of its elements is specified. For example, a 

formula 
25

12

+

+
=

n

n
xn

 defines a sequence 

7

3

, 12

5

, 17

7

, 22

9

, …, 25

12

+

+

n

n

, … . (6.2) 

The sequence may be monotonic or nonmonotonic, limited or 

unlimited. (There is no need to define these concepts since in § 5.1 

definitions of a monotone and bounded function have already been given.) 

In particular, sequence (6.2) is monotonically decreasing. Indeed, 

consider the difference 1+− nn xx : 
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( )
( )

( ) ( ) ( ) ( )
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So, 01 − +nn xx , i.e. nn xx +1  for any n. 

Consider the same sequence (6.2). If, for example, 100=n , then 

502

201
=nx

; if 000100=n , then 002500

001200
=nx

. We see that with 

increasing n, the members of the sequence nx  are less and less different 

from 5

2

      and this difference can become arbitrarily small. 

In particular, if 000100=n  

000001,0...0000003999,0
5

2

002500

001200

5

2
=−=−nx

. 

Definition The number a is called the limit of the sequence  nx  if 

for any (arbitrarily small) number 0  there exists      number N such 

that for all Nn   
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axn
n

=
→

lim . (6.4) 

If a sequence  nx  has      limit a, then it is called convergent (to the 

number a). In this case, we write: 

axn
n

=
→

lim . (6.4) 

Sometimes instead of (6.4), it can be written: axn →  as →n . 

If we return to      sequence (6.2), then we see that for 000001,0=       

inequality (6.3) holds as 000100n . 

Let us find out the geometric meaning of the limit of the numerical 

sequence. Inequality (6.3) is equivalent to the double inequality: 

−− axn , or +− axa n . 

This means that for all Nn   all members of the sequence  nx  are 

in  -neighborhood of the point a (Fig. 6.1). 

  

Fig. 6.1. ε-neighborhood of a 

Therefore, there can be only a finite number of members of this 

sequence outside this neighborhood. 
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6.2. Limit of a function 

Limit of a function at infinity 

Considering the limit of sequence ( )nfxn = , we were dealing with a 

function whose argument n increasing, assumed only natural values. Now 

consider the function ( )xfy = . Its argument x in the process of change 

can take any (not only natural and not only integer) values. 

Definition Number b is called the limit of the function ( )xfy =  as x 

tends to infinity if for any (arbitrarily small) 0  there is a number 

0M  such that for all x satisfying the condition 
Mx 

the inequality 

( ) −bxf
 holds. 

In this case, we write:  

( ) bxf
x

=
→

lim . (6.5) 

Sometimes instead of (6.5), it can be written: ( ) bxf →  as →x . 

The meaning of the definition of the limit of a function at infinity is 

basically the same as for the limit of a sequence: 

axn
n

=
→

lim
means that the members of the sequence differ arbitrarily 

little from a if n is large enough; 

( ) bxf
x

=
→

lim
means that the values of the function differ arbitrarily 

little from b if x is large enough in absolute value. 
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Remark. If in the definition stated above we replace the condition 

Mx 
 with the condition Mx  , then we obtain the definition of the 

limit of the function as +→x . If we replace it with a condition 

Mx − , then we obtain the definition of the limit as −→x . 

Limit of a function at a point 

Let function ( )xfy =  be defined in some neighborhood of the point 

a, except, perhaps, the point a itself. 

Definition . N     umber b is called the limit of the function ( )xfy =  

as x tends to a if for any (arbitrarily small) number 0  there is a number 

0  such that for all 0xx   satisfying the condition 
−ax

 

inequality 

( ) −bxf  holds. 

In this case, we write: 

( ) bxf
ax

=
→

lim . (6.6) 

The geometric meaning of this definition is as follows: for any 

ε-neighborhood of point b (on the Oy axis) there exists a -neighborhood 

of  point a (on the Ox axis) such that as soon as x falls into this -

neighborhood of the point a, the corresponding value of function ( )xf  

belongs to an ε-neighborhoods of b: ( )+− aax ,

( ) ( ) +− bbxf , . 
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6.3. Infinitely small quantities. Infinitely 

big quantities. 

Definition. A function ( )x=  is called an infinitely small quantity 

(or simply infinitesimal) as 0xx →  (as →x ) if its limit is zero: 

( ) 0lim
0

=
→

x
xx
  ( ( ) 0lim =

→
x

x
 ). 

An infinitesimal sequence is defined similarly. 

Let us now consider the relationship of a variable with its limit. 

Theorem 6.1. N     umber b is the limit of the function ( )xf  as 0xx →  

(as →x ) if and only if 

( ) ( )xbxf += , (6.7) 

where ( )x  is infinitesimal as 0xx →  (as →x ). 

Proof. 1. Necessity. Let ( ) bxf
xx

=
→ 0

lim  . Denote ( ) ( ) bxfx −= . Let 

0 . Then there exists such 0  that for all 0xx   satisfying the 

condition 
− 0xx

 inequality 
( ) −bxf

 holds, i.e. 
( )  x

      and 

this means that ( )x  is infinitely small. 

2. Sufficiency. Let ( ) ( )xbxf +=  where ( )x  is infinitesimal. Then 

the difference ( ) bxf −  is infinitesimal, i.e. for every 0  there exists 
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such 0  that for all 0xx   satisfying the condition 
− 0xx

 the 

inequality 
( ) −bxf

 holds and this means that 
( ) bxf

xx
=

→ 0

lim
. 

We proved the theorem for the case 0xx → . The proof is similar if 

→x . 

Definition Function ( )xfy =  is called an infinitely large quantity 

(or simply infinitely large) as 0xx →  if for every 0M  there exists 

such 0  that for all x not equal to 0x  and satisfying the condition 

− 0xx
 inequality 

( ) Mxf 
 holds. 

In this case, we also say that ( )xf  has an infinite limit as 0xx →  or 

that ( )xf  tends to infinity as 0xx → . We write: 
( ) =

→
xf

xx 0

lim
, or 

( ) →xf  as 0xx → . 

Infinitely large is determined similarly as →x . 

There is an obvious connection between the concepts of infinitesimal 

and infinitely large: if ( )x  is infinitely small as 0xx →  ( →x ), then 

( )
( )x

xf


1
=  is infinitely large as 0xx →  ( →x ); if ( )xf  infinitely 

large, then ( )
( )xf

x
1

=  is, infinitely small. 

Properties of infinitesimal: 
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1. The algebraic sum of a finite number of infinitesimals is infinitely 

small. 

2. The product of an infinitesimal quantity by a limited quantity is 

infinitely small. 

The corollary of this statement is the following statements: 

1) the product of an infinitesimal by a constant is infinitely small; 

2) the product of two infinitesimal is infinitesimal. 

Let us prove property 2 as an example. Let ( )x=  be infinitesimal 

as 
0xx→  and let y be a bounded quantity, i.e. 

My 
. Let 0 . Then 

for M


=

 there exists such 0  that for all 0xx   satisfying the 

condition 
− 0xx

 the following inequality holds: 

M


=

. 

Then 

=


 M
M

y
, i.e. 

y
. 

And this means that 
y

 is infinitesimal. 

 

Infinitesimal can be compared. In particular, if 

( )
( )

0lim
0

=




→ x

x

xx
, then we 

say that ( )x  is infinitesimal of a higher order than ( )x       and write 

( ) ( )( )xox = . 
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6.4. Basic theorems about limits 

Uniqueness of a limit 

Theorem 6.2. If a function has a limit, then this limit is unique. 

Proof. Assume the opposite: 
( ) 1lim bxf

ax
=

→ , 
( ) 2lim bxf

ax
=

→  and 

21 bb  . Then, according to Theorem 6.1: 

( ) ( )xbxf 11 +=  and ( ) ( )xbxf 22 +=  

here ( )x1  and ( )x2  are infinitesimal. Subtracting these equalities 

term by term, we obtain 

( ) ( ) xxbb 21210 −+−=  

This gives 

( ) ( ) 0const2121 ==−=− cbbxx . 

This equality is impossible since the difference ( ) ( )xx 21 − is 

infinitesimal. Therefore, the assumption of the existence of two different 

limits is false. 

The limit of the sum, product, quotient 

We will consider the limits of functions ( )xuu = and ( )xvv =  as 

ax →  or as →x . A short notation ulim  will mean either 
( )xu

ax→
lim

 

or 
( )xu

x →
lim

. vlim  is similar. 

1. The limit of the algebraic sum is equal to the algebraic sum of the 

limits: 



Chapter 6. Limits  

86 

( ) vuvu limlimlim +=+ . 

2. The limit of the product is equal to the product of the limits: 

( ) vuuv limlimlim = . 

3. The limit of the quotient is equal to the quotient of the limits 

(provided that the limit of the divisor is nonzero): 

v

u

v

u

lim

lim
lim =

. 

We state these statements more clearly as ax →  and prove it. (The 

proof in case of →x  is similar.) 

1. If ( )xuu =  and ( )xvv =  have limits 
( ) 1lim bxu

ax
=

→ , 
( ) 2lim bxv

ax
=

→  

as ax → , then its sum ( ) ( )xvxu +  has a limit 
( ) ( )  21lim bbxvxu

ax
+=+

→

. 

Proof. Since
( ) 1lim bxu

ax
=

→ , 
( ) 2lim bxv

ax
=

→ , then by Theorem 14.1 the 

functions ( )xu  and ( )xv  can be written in the form ( ) ( )xbxu 11 += , 

( ) ( )xbxv 22 += , where ( )x1  and ( )x2  are infinitesimals, 

( ) 0lim 1 =
→

x
ax , 

( ) 0lim 2 =
→

x
ax . Hence, 

( ) ( ) ( )  ( )  ( ) ( ) ( ) xxbbxbxbxvxu 21212211 +++=+++=+

. 

Here 21 bb +  is a constant, ( ) ( )xx 21 +  is infinitesimal. Applying 

Theorem 6.1 again, we obtain 
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( ) ( )  21lim bbxvxu
ax

+=+
→ , i.e. 

( ) ( )  ( ) ( ).limlimlim xvxuxvxu
axaxax →→→

+=+
 

2. If the functions ( )xuu =  and ( )xvv =  have limits 
( ) 1lim bxu

ax
=

→ , 

( ) 2lim bxv
ax

=
→ as ax → , then the product ( ) ( )xvxu  has a limit and 

( ) ( )  21lim bbxvxu
ax

=
→ . 

Proof. Since
( ) 1lim bxu

ax
=

→ , 
( ) 2lim bxv

ax
=

→ , according to Theorem 14.2 

( ) ( )xbxu 11 += , ( ) ( )xbxv 22 +=  where ( )x1  and ( )x2  are 

infinitesimal as ax → . We have: 

( ) ( ) ( )  ( )  ( ) ( ) ( ) ( ).211221212211 xxxbxbbbxbxbxvxu +++=++=  

Denote ( ) ( ) ( ) ( ) ( )xxxxbxb =++ 211221 . As defined above, 

( )xb 21 , ( )xb 12  and ( ) ( )xx 21   are infinitesimals, therefore, its sum 

( )x  is also infinitesimal. So, 

( ) ( ) ( )xbbxvxu += 21 , 

where ( )x  is infinitesimal. That means that ( ) ( )xvxu  has a limit 

which is equal to 21bb . That completes the proof. 

Corollary. A constant multiplier can be taken out of the limit sign: 

( ) ( )xucxcu
axax →→

= limlim
. 
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Indeed, if ( ) bxu
ax

=
→

lim , const=c , then cc
ax

=
→

lim . Then 

( )  ( ) ( )xucxucxcu
axaxaxax →→→→

== lim·lim·limlim
 

3. If ( )xuu =  and ( )xvv =  have limits 
( ) 1lim bxu

ax
=

→ , 
( ) 2lim bxv

ax
=

→  

as ax →  and 02 b , then the function 

( )
( )xv

xu

 also has the limit as ax →  

and 

( )
( ) 2

1lim
b

b

xv

xu

ax
=

→
. 

Proof. Let 
( ) 1lim bxu

ax
=

→ , 
( ) 0lim 2 =

→
bxv

ax . By Theorem 6.1 

( ) ( )xbxu 11 += , ( ) ( )xbxv 22 += , where ( )x1  and ( )x2  are 

infinitesimals. We do simple identity transformations: 

( )
( )

( )
( )

( )
( )

( ) ( )
( ) xbb

xbxb

b

b

b

b

xb

xb

b

b

xb

xb

xv

xu

222

2112

2

1

2

1

22

11

2

1

22

11

+

−
+=








−

+

+
+=

+

+
=

. 

So, 

( )
( )

( ) ( )
( )( )xbb

xbxb

b

b

xv

xu

222

2112

2

1

+

−
+=

. 

Here 2

1

b

b

 is a constant, and a fraction 

( ) ( )
( ) xbb

xbxb

222

2112

+

−

 is 

infinitesimal. It follows from the properties of infinitesimals: 

( ) ( )xbxb 2112 −  is infinitesimal, and ( ) xbb 222

1

+  is bounded. 
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The limit passage in inequalities  

We will assume that the inequalities discussed below are fulfilled in 

some neighborhood of point a (excluding, perhaps, this point) or for 

sufficiently large x. 

4. If function ( )xuu =  is non-negative: 0u , then 0lim u . 

5. If inequality vu   holds for      functions ( )xuu =  and ( )xvv = , 

then vu limlim  . 

6. If the inequality wvu   holds for functions ( )xuu = , ( )xvv = , 

( )xww =  and bwu == limlim , then bv =lim . 

For example, we state the last statement in more detail and prove it. 

Theorem 6.3. If conditions ( ) ( ) ( )xwxvxu   are satisfied  in some 

neighborhood of a and functions ( )xuu =  and ( )xww =  have the same 

limit as ax → : 
( ) ( ) bxwxu

axax
==

→→
limlim

, then the function ( )xv  has the 

same limit: 
( ) bxv

ax
=

→
lim

. 

Proof. Let an arbitrary 0  be given. Then since 
( ) bxu

ax
=

→
lim

, then 

there exists 01   such that for all ax   satisfying the condition 

1−ax
 the following inequality holds: 

|u(x)-b<ε|. (*) 
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Since 
( ) bxw

ax
=

→
lim

, then there exists such 02   that for all ax   

satisfying the condition 2−ax
 the inequality holds: 

( ) −bxw
. (**) 

If  is the smallest of 1  and 2 , then for all ax   satisfying the 

condition 
−ax

 both inequalities (*) and (**) hold simultaneously, 

i.e. at the same time 

( ) +− bxub , ( ) +− bxwb . 

From the last inequalities we get: 

( ) ( ) ( ) +− bxwxvxub , 

therefore ( ) +− bxvb , i.e. 

( ) −bxv
. 

And that means that 
( ) bxv

ax
=

→
lim

. (The proof is similar for →x .) 

One-side limits 

If ( )xf  tends to the limit b as x tends to a and ax  , then b is called 

the limit of      function ( )xf  as x approaches a from the left      or left-

side limit. In this case, we write 
( ) bxf

ax
=

−→ 0
lim

 (or 
( ) bxf

ax
=

−→
lim

). 
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Similarly, the limit of ( )xf  as ax → , ax   is called the right-side limit 

and is written in the form 
( ) bxf

ax
=

+→ 0
lim

 (or 
( ) bxf

ax
=

+→
lim

). 

It is easy to prove that a function ( )xf  has a limit as ax →  if and 

only if there are simultaneously left-side and right-side limits and they are 

equal to each other: 

( ) ( ) bxfxf
axax

==
+→−→

limlim
. 

In this case, the limit in the usual sense is also equal to b: 

( ) bxf
ax

=
→

lim
. 

A sufficient criterion of the existence of a limit 

Theorem 6.4. A monotonic bounded sequence has a finite limit. 

In particular, if a sequence  nx  increases and is bounded above (i.e., 

there exists an M such that Mxn   for all n), then it has a limit. Similarly, 

decreasing and bounded below sequence also has a limit. Moreover, the 

increase and decrease can be understood in a broad sense (i.e. nn xx +1  

and nn xx +1  respectively for all n). 

The validity of this theorem seems almost obvious, but we do not give 

a strict proof of it since it is based on information from the theory of real 

numbers that are not considered in this book. 

Let's look at some examples. Moreover, we take into account that the 

quantities 
,

1

n  
2

1

n  (and generally 
n

1

 for> 0) are infinitesimals. 
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Example 6.1. Find 
.

435

32
lim

2

2

−+

+−

→ nn

nn

n  

Solution. The numerator and denominator of the fraction tend to 

infinity as →x . This is the so-called " 



" uncertainty. Therefore, it is 

impossible to apply the limit theorem. We first convert this expression by 

dividing the numerator and denominator by 
2n . Then we apply the 

statement about the limit of the quotient and about the limit of the sum. 

5

2

005

002

43
5

31
2

lim
435

32
lim

2

2

2

2

=
−+

+−
=

−+

+−

=
−+

+−

→→

nn

nn

nn

nn

nn

. 

Example 6.2. 
.

34

21
lim

2

+

++

→ n

nx

n  

Solution. n

n

n

nn

nn 3
4

2
1

1

lim
34

21
lim

22

+

++

=
+

++

→→

= 4

3

 

Here we divide the numerator and denominator by n and note that 

22

22 1
1

11

nn

n

n

n
+=

+
=

+

. 

Example 6.3. Find
).14(lim 22 +−+

+→
xxx

x  

Solution. Here is the uncertainty of the form " − ". We multiply 

and divide this difference of radicals by their sum (i.e., by the conjugate 

expression). We get: 
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=+−+
+→

14(lim 22 xxx
x

=
+++

++++−+

+→ 14

14()14(
lim

22

2222

xxx

xxxxxx

x
 

=

2
1

1
4

1

1
4

lim
14

14
lim

2

22
=

+++

−

=
+++

−

+→+→

xx

x

xxx

x

xx

 

6.5. Two remarkable limits 

1. Let us prove that there exists the limit of function x

xsin

 as 0→x

, and this limit is equal to 1: 

1
sin

lim
0

=
→ x

x

x . (6.8) 

This limit is usually called the first remarkable limit. 

Proof. 

Consider a circle of radius R: ROMOA ==  (Fig 6.2 shows its 

section). Let x  be a radial measure of acute angle AOM : 2
0


 x

. 

Then xRxOMMB sinsin == , xRxOANA tgtg == . 
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Fig. 6.2 

Let 1S be the area of triangle OMA: 
xRMBOAS sin

2

1

2

1 2

1 ==
. 

Denote as 2S  the area of sector OMA . Then 
xRS 2

2
2

1
=

. Denote as 3S  

the area of      sector AON . Then 
xRNAOAS tg

2

1

2

1 2

3 ==
. 

Obviously, 

321 SSS  , 

hence, 

xRxRxR tg
2

1

2

1
sin

2

1 222 
. 

This gives 

xxx tgsin  . 

Dividing the last inequality by xsin , we obtain: 
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xx

x

cos

1

sin
1 

, or 
1

sin
cos 

x

x
x

. 

So, the function x

xsin

 is located between the functions ( ) xxu cos=  

and ( ) 1=xw       which have the same limit 1 as 0→x  1. According to 

Theorem 6.3 we obtain the equality: 

1
sin

lim
0

=
→ x

x

x . 

The proof is similar for 0x . 

Example 6.4. Find ax

ax

x

sin
lim

0→ . 

Solution. Make a substitution ax= . Obviously, 0→x  equals to

0→ . We obtain 

1
sin

lim
sin

lim
00

=



=

→→ ax

ax

x . 

Example 6.5. Find bx

ax

x

sin
lim

0→ . 

Solution. b

a

b

a

ax

ax

b

a

b

a

ax

ax

bx

ax

xxx
====

→→→
1

sin
lim

sin
lim

sin
lim

000 . 

Example 6.6. Find x

x

x

tg
lim

0→ . 

                                                      
1  tends to 1 as  since . 
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Solution. 111
cos

1
lim

sin
lim

cos

1sin
lim

tg
lim

0000
====

→→→→ xx

x

xx

x

x

x

xxxx
. 

Note that: 

1
tg

lim
0

=
→ x

x

x . 

Example 6.7. Find 
20

cos1
lim

x

x

x

−

→ . 

Solution. 

( ) ( )
( ) ( )

=
+

−
=

+

+−
=

−

→→→ xx

x

xx

xx

x

x

xxx cos1

cos1
lim

cos1

cos1cos1
lim

cos1
lim

2

2

02020
 

( ) 2

1

2

1
1

cos1

1sin
lim

cos1

sin
lim

2

02

2

0
==

+








=

+
=

→→ xx

x

xx

x

xx
. 

(We can calculate this example using the formula 

2
sin2cos1 2 x

x =−
 
.) 

2. Consider the sequence na  with the general term: 

n

n
n

a 







+=

1
1

. 

We prove that this sequence increases monotonously and is bounded. 

Hence, it has a limit by Theorem 6.4. 

Using the binomial expression, we obtain 
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( ) ( )( )

( ) ( ) ( ) 
.

1

321

121

...
1

321

211

21

11
1

1
1

32

n

n

nn

nnnnn

n

nnn

n

nn

n
n

n












−−−−
+

++










−−
+











−
++=








+

 

Transform the expression 

( ) ( ) ( )

( ) ( ) ( ) 

.
1

1
2

1
1

1
321

1
...

2
1

1
1

321

1

1
1

21

1
11

121

321

1

...
21

321

11

21

1
11

1
1

32








 −
−








−








−


++








−








−


+

+







−


++=

−−−−


+

++
−−


+

−


++=








+

n

n

nnnnn

nn

nnnnn

n

n

nnn

n

nn

n

n

n

 (*) 

The last equality gives 

2
1

1 







+

n

n  and it shows that the considered 

sequence increases as n increases. 

Indeed, each term of the last sum (starting from the third one) increases 

as the index increases from n to 1+n : 










+
−











−

 1

1
1

21

11
1

21

1

nn  etc. 

adding another term (positive). 

So, the sequence  na  increases monotonously. 
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Let us prove now that  na  is bounded. Obviously, 
1

1
1 −

n , 

1
2

1
1

1 







−








−

nn  etc. Therefore from (*) we obtain the inequality: 

nn

n


++


+


++








+

321

1
...

321

1

21

1
11

1
1

. 

Noting that 

22

1

321

1


 , 
32

1

4321

1


 , …, 
12

1

321

1
−


 nn , 

we obtain: 

12 2

1
...

2

1

2

1
11

1
1

−
+++++








+

n

n

n . 

The terms of the right part (starting from the second term) form the 

geometric progression: 

2
2

1
2

2

1
1

2

1
1

2

1
...

2

1

2

1
1

1

12









−=

−









−

=++++

−

−

n

n

n

. 

Hence, 

3
1

1 







+

n

n . 

So, 

3
1

12 







+

n

n . 
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We have proved that the sequence  na , where 

n

n
n

a 







+=

1
1

     is 

increasing and bounded. It has a limit by Theorem 6.4. 

Definition The limit 

n

n n








+

→

1
1lim

 is called the number e: 

e
1

1lim =







+

→

n

n n . (6.9) 

The limit (6.9) is called the second remarkable limit. 

The number e is an irrational number. Moreover, it is a transcendental 

number, i.e. is not the root of any algebraic equation with integer 

coefficients. 

It is known that 

...7182818284,2e =  

In most cases, in practice it is believed. 

Consider an example. Let the initial contribution to the bank be 0S  

monetary units. The bank pays annually p%. Then after the end of the year, 

the deposit amount will be 








+=+

100
1

100
000

p
SS

p
S

, i.e. multiplied 

by 








+

100
1

p

. In two years it will again be multiplied by 








+

100
1

p

 and 

will be 

2

0
100

1 







+

p
S

, etc. Thus, at p% per annum after n years, the 

deposit amount will be equal to: 
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n

n

p
SS 








+=

100
10

. (6.10) 

This is a compound interest formula (see Example 1.3). 

It should be noted that interest on a deposit may not be accrued once a 

year but, for example, quarterly, monthly, every day. Formula (6.10) 

allows you to calculate the amount of the deposit nS  after n periods at an 

interest rate of p% per period (regardless of how long these periods are). 

Imagine that a bank located in Moscow having finished a working day 

transfers (taking into account the time difference) a certain amount 0S  to 

a bank located in Vladivostok for 12 hours from 20 hours of the current 

day to 8 hours of the next day Moscow time. Vladivostok Bank returns 

money to the beginning of the work of the Moscow Bank, paying 1% for 

the use of this short-term loan. Then, the next day, the Moscow bank 

repeats this operation      but with the received amount of 101% of 0S  etc. 

(Such an agreement between banks is hardly possible in practice but the 

rate of 1% per day in the early 1990s was real.) 

After 300 days, the Moscow bank will receive the amount: 

0

3

0

3

0

3
100

0

300

0300 68,197,2e
100

1
1

100

1
1 SSSSSS 




















+=








+=

, 

i.e. the initial amount will increase almost 20 times over the year. 

In general, let amount 0S  be placed in the bank for t years at p% per 

annum and interest accrued n times a year. Then the interest rate for the n

1
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part of the year will be n

p

%, and the deposit for t years (with nt charges) 

will be: 

nt

n
n

p
SS 








+=

100
10

, 

or      denoting 
r

p
=

100 : 

nt

n
n

r
SS 








+= 10

. 

Convert this last expression: 

rt

r

n

n
n

r
SS























+= 10

. 

We introduce the notation: 
m

r

n
=

. Let →n , then →m . We 

obtain 

rt

rt
m

m
n

n
S

m
SSS e

1
1limlim 00 =




















+==

→→

. 

This formula 

rtSS e0=  or 
100

0e

pt

SS =  

is called the continuous interest formula. 

Now consider the function: 
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( )
x

x
xf 








+=

1
1

. 

Here x changes continuously, taking any (and not only natural) values. 

Theorem 6.8. The limit of function 

( )
x

x
xf 








+=

1
1

 as →x  exists 

and is equal to e. 

Proof. Let +→x . For each value x there exists a natural number n 

such that 

1+ nxn . 

From these inequalities we obtain: 

1

111

+


nxn , 

1

1
1

1
1

1
1

+
+++

nxn , 

nxn

nxn









+
+








+








+

+

1

1
1

1
1

1
1

1

. 

Obviously, if →x , then →n . We find the limits of the variables 

between which the function 

x

x








+

1
1

 is enclosed: 

e1e
1

1lim
1

1lim
1

1
1

1lim
1

1lim

1

==







+








+=








+








+=








+

→→→

+

→ nnnnn n

n

n

n

n

n

n
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e
1

e
...

1

1
1

1

1
1

lim
1

1
1lim

1

===

+
+










+
+

=








+
+

+

→→

n

n

n

n

n

n

n

. 

So, both variables      between which the function 

x

x








+

1
1

 is enclosed      

have the same limit e. Therefore, by Theorem 6.3 

e
1

1lim =







+

→

x

x x . 

For the case of −→x  making the substitution yx −= , it is easy to 

prove that also 

e
1

1lim =







+

−→

x

x x . 

So, 

e
1

1lim =







+

→

x

x x . (6.11) 

We make a replacement 
=

x

1

 in (6.11). Then →x  is equivalent 

to 0→ . We obtain  

( ) e1lim
1

0
=+ 

→ . (6.12) 

We have obtained three formulas for the number e: (6.9), (6.11) and 

(6.12). 
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Number e is one of the fundamental quantities in mathematics. 

Exponential function with base e (Fig. 6.3) 

xy e=  

(and generally the function of the form 
axy e= ) plays an important 

role in mathematics and its applications. It is used in statistics, physics, 

chemistry, in the study of demographic processes, etc. This function (and 

its graph) is called the exponent. 

 
Fig. 6.3. Exponent 

The logarithm with base e is called the natural logarithm and is 

denoted by the symbol ln  : xxe lnlog = . 

Let's look at some examples. 

Example 6.9. Find 

x

x x








+

→

4
1lim

. 
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Solution. We apply the substitution of variable by setting 
.

4
=

x  Then 



4
=x

. We get 
( )




4

0
1lim +

→ =
 ( ) 4

1

0
1lim 


+

→ = .4e  

Example 6.10. Find .
5

1lim

2x

x x








+

→
 

Solution. 

.
5

1lim
5

1lim
5

1lim 10

10

5

2
5

5
2

e
xxx

x

x

x
xx

x

x

x
=























+=























+=








+





→→

 

Example 6.11. Find 

.
1

1lim

x

x x








−

→
 

Solution. 

( )
.

1
1lim

1
1lim 1

1
1

0

1

e
e

x

x

x
==





+=




















− −

−

→

−
−

→





 

(Here we applied the substitution 
=−

x

1

). 

Example 6.12. Find 

1

12

32
lim

+

→









+

+
x

x x

x

. 

Solution. Divide the numerator and denominator by 2x: 

=



















+

+

+

→

1

2

1
1

2

3
1

lim

x

x

x

x .

2

1
1

2

1
1

2

3
1

2

3
1

lim

2

1

2

3

e

e

e

xx

xx
x

x

x
==









+








+









+








+

→
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Questions 

1) What is a general term of a sequence? 

2) Can the same numbers correspond to different numbers in a numerical 

sequence? 

3) Let all members of the monotonic sequence be multiplied by –1. Will 

the resulting sequence be monotonic? 

4) Let number 4 be the limit of the number sequence. Is it possible to say 

that outside the interval (3, 5) there is only a finite number of members 

of the sequence? 

5) Does the sequence of 1, 0, 1, 0, 1, 0, ... have a limit? 

6) Let the number 5 be the limit of the number sequence. Can this 

sequence have negative terms? 

7) Can the number –1 be the limit of a numerical sequence, all members 

of which are positive? 

8) Can a sequence have two different limits? 

9) Let the inequality ( ) 001,5xf  hold for all x. Could it be 

( ) 5lim
1

=
→

xf
x ? 

10) What is number e? 

11) What function is called the exponent? Which curve is called the 

exponent? 
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Chapter 7. Continuity 

of a function 

7.1. Main definitions 

The concept of continuity of function is one of the basic concepts of 

mathematical analysis. 

Definition 1. A function ( )xf  is called continuous at a point 0x  if the 

following three conditions are satisfied: 1) ( )xf  is defined in a certain 

neighborhood of the point 0x ; 2) there is a finite limit of ( )xf  as 0xx →

; 3) this limit is equal to the value of the function at the point 0x , i.e. 

( ) ( )0
0

lim xfxf
xx

=
→ . (7.1) 

Note that equality (7.1) and the continuity condition of ( )xf  at a point 

0x  can be written in the form: 

( ) 





=

→→
xfxf

xxxx 00

limlim
. 

From a geometric point of view, a continuous function is a function 

whose graph is a continuous curve. 

There are several equivalent definitions of continuity. 

Denote the difference 0xx −  as x . We say that when passing from 

value 0x  to value x, the argument receives an increment x  = 0xx − . In 

this case, the function ( )xfy =  receives a corresponding increment 
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( ) ( )00 xfxxfy −+= . In view of the above, equality (7.1) is 

equivalent to equality 

0lim
0

=
→

y
x . 

Definition 2. A function ( )xfy =  is called continuous at a point 0x  

if it is defined at this point and some neighborhood of it and  

0lim
0

=
→

y
x . (7.2) 

(This definition is easy to remember in the following form: a function 

is continuous if an infinitesimal increment of the argument corresponds to 

an infinitely small increment of the function.) 

Example 7.1. We show that the function xy sin=  is continuous at an 

arbitrary point x. Give the argument an increment x . Then the function 

will get the increment 

( )
( ) ( )

.
2

sin
2

cos2

2
sin

2
cos2sinsin








 







 
+=

=
−+++

=−+=

xx
x

xxxxxx
xxxy

 

If 0→x , then 
0

2
sin →

x

 (since 22
sin

xx 




); while 








 
+

2
cos

x
x

 is limited. Therefore 

0
2

sin
2

cos2limlim
00

=









 
+=

→→

xx
xy

xx
 



7.1. Main definitions  

109 

Therefore, the function xy sin=  is continuous. 

In a similar way, one can prove that any basic elementary function is 

continuous at every point at which it is defined. 

The following statements are true: 

1. If the functions ( )xf  and ( )xg  are continuous at a point 0x , then 

their sum ( ) ( ) ( )xgxfx +=  is also continuous at this point. 

2. The product of two continuous functions is a continuous function. 

3. The quotient of two continuous functions is a continuous function if 

the denominator at the point in question does not vanish (that is, if both 

( )xf  and ( )xg  are continuous at 0x  and ( ) 00 xg , then 
( )

( )
( )xg

xf
x =

 

is continuous at 0x ). 

4. If ( )xu =  is continuous at 0xx =  and ( )uf  is continuous at a 

point ( )00 xu = , then the complex function ( )( )xfy =  is continuous 

at a point 0x . 

The proofs of these statements are simple and based on the properties 

of the limits. 

Let us prove, for example, statement 2. Let ( )xf  and ( )xg  be 

continuous at the point 0x : 
( ) ( )0

0

lim xfxf
xx

=
→ , 

( ) ( )0
0

lim xgxg
xx

=
→ , and let 

( ) ( ) ( )xgxfx = . Since the limit of the product is equal to the product of 

the limits, then 
( ) ( ) ( )==

→→→
xgxfx

xxxxxx 000

limlimlim
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( ) ( ) ( )000 xxgxf == . So, 
( ) ( )0

0

lim xx
xx

=
→  i.e. ( )x  is continuous at 

a point 0x . 

Theorem 7.1. Every elementary function is continuous at every point 

at which it is defined. 

The proof follows from statements 1–4 formulated above1. 

If the function ( )xf  is not continuous at a point 0x , then the point 0x  

is called the discontinuity point of the function ( )xf . There are 

removable discontinuities when there are finite limits 
( )xf

xx −→ 0

lim
 and 

( )xf
xx +→ 0

lim
 and jump discontinuities when at least one of these one-sided 

limits is infinite or does not exist. Among the points of discontinuity of the 

first kind, it should also be noted the essential discontinuities, when the 

limit of the function ( )xf  as 0xx →  exists, but either it is not equal to 

( )0xf  or the function is not defined at 0xx = . 

Example 7.2. 

1. 
( )

x
xf

1
arctg=

. Here 00 =x  is the removable discontinuity since 

2

1
arctglim

0


−=

−→ xx , 2

1
arctglim

0


=

+→ xx . 

                                                      
1 Given that the basic elementary functions are continuous. 
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2. 
( )

x
xf

1
=

. Here 00 =x  is the and jump discontinuity since 

+=
+→ xx

1
lim

0 , 
−=

−→ xx

1
lim

0 . 

3. 

( )








=


=

.0,0

0,
sin

x

x
x

x

xf

 Here 00 =x  is the essential discontinuity as 

the limit 
1

sin
lim

0
=

→ x

x

x  exists. This discontinuity can be eliminated by 

changing the value of the function at a point 0=x  by setting ( ) 10 =f . 

If a function ( )xfy =  is continuous at every point of a certain 

interval, then it is said this function to be continuous on this interval. 

7.2. Properties of continuous functions on 

a segment 

Theorem 7.2 (the first Weierstrass theorem). If the function f(x) is 

continuous on a segment [a,b], then it is bounded on this segment. 

Theorem 7.3 (the second Weierstrass theorem). If the function f(x) 

is continuous on the segment [a,b], then on this segment it reaches the 

smallest value m and the largest value M (i.e., there exists a point 𝑐1 on this 

segment at which 𝑓(𝑐1) = 𝑚 and a point 𝑐2 at which 𝑓(𝑐2) = 𝑀). 

Theorem 7.4 (the first Bolzano-Cauchy theorem). Let the function  

f(x) be continuous on a segment [a,b] and at its ends takes values of 

different signs1*. Then inside of [a,b] there exists a point c such that f(c)=0. 

                                                      
1* For instance, , . 
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Theorem 7.5 (the second Bolzano-Cauchy theorem). Let the 

function f(x) be continuous on [a,b] and let m be the smallest and M the 

largest values of f(x) on [a,b]. Then, for any C satisfying the condition 𝑚 <

𝐶 < 𝑀, there exists a point c from [a,b] such that 𝑓(𝑐) = 𝐶. 

It is not easy to prove these theorems, and we will not do this. However, 

all of them are special cases of the following statement (which intuitively 

seems obvious): if a function f(x) is continuous on a segment [a,b], then 

the area of its change is a segment. 

7.3. Economic interpretation of continuity 

Most of the functions used in the economics are continuous. Such, in 

particular, the previously mentioned functions of supply and demand, the 

utility function, the output function (see § 5.4). Among the functions used 

in the economics, there are discontinuous functions. 

1. The tax rate (Fig. 7.1) is a function expressing the dependence of the 

tax rate N as a percentage of the annual income q. This function is 

discontinuous at the ends of the gaps, and these discontinuities are of the 

first kind. 

 
Fig. 7.1. Tax rate 

However, the value of income tax P itself is a continuous function of 

annual income q (Fig. 7.2): 
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Fig. 7.2. Income tax 

From the continuity of the function ( )qPP =  it follows, in particular, 

that if the income of taxpayers does not differ significantly, then the 

difference in their income tax is also small. 

2. As you know, there are two main categories of market relations: 

supply and demand. Both that and another depends on many factors, among 

which the main thing is the price of the goods. Let us denote the price of 

the goods p (price), the volume of demand as D (demand), the value of 

supply as S (supply). By their meaning, the functions ( )pDD =  and 

( )pSS =  continuously depend on p. This means that with small price 

fluctuations, supply and demand change insignificantly. However, 

sometimes demand changes spasmodically. This usually happens for 

reasons of a psychological nature, in particular, when “breaking through” 

the round price. It happens that when the price of a certain product rises, 

demand decreases slightly for some time, but as soon as the price exceeds 

a certain amount (for example, 100 monetary units), demand drops sharply. 

In this case, the function ( )pdd =  has a discontinuity at the indicated 

value of p. 
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In the analysis of functions1 ( )pDD =  and ( )pSS =  (if we consider 

them on such a price segment, where they have no discontinuities), we can 

use the properties of continuous functions (see § 15.2). Consider the 

difference ( ) ( )pSpD − . 

For small p, obviously ( ) ( ) 0− pSpD  (demand exceeds supply), 

and for large p, on the contrary, ( ) ( ) 0− pSpD . Applying the first 

Bolzano-Cauchy theorem to the difference ( ) ( )pSpD − , we conclude 

that there exists such a price 0p  for which ( ) ( ) 000 =− pSpD , i.e. 

( ) ( )00 pSpD = . This price is called the equilibrium price (we mentioned 

it in § 13.4). 

7.4. Comparison of the infinitesimals 

Let simultaneously consider several infinitesimal quantities α, β, γ, …, 

which are functions of the same argument x, and these quantities are 

infinitesimals when x tends to some finite limit a or to infinity. 

In many cases, it is of interest to compare these infinitely small with 

each other in the nature of their tendency to zero. It is a question of the 

comparative “speed” of their tendency to zero: which of the infinitely small 

tends to zero “faster” and which is “slower”. 

To compare two infinitesimals, we usually study their ratio. Moreover, 

considering the fraction 



 (or 



), it is assumed that the variable standing 

                                                      
1 We consider these functions on a segment where the functions don’t have 

discontinuities. 
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in the denominator does not vanish, at least for values of x sufficiently close 

to a (or for sufficiently large in absolute value as →x ). 

I. If the relation 



 has a finite limit other than zero, then the infinitely 

small α and β are called infinitesimal of the same order. 

In this case, obviously, the relation 



 has a finite limit. 

Example 7.3. Infinitesimals x3=  and x2sin= are infinitesimals 

of the same order as 0→x  since (see Example 6.2) 

3

2

3

2sin
limlim

00
==





→→ x

x

xx . 

Example 7.4. Infinitesimals x=  and 11 −+= x are also 

infinitesimals of the same order, since 

2

1

11

1
lim

11
lim

11
limlim

0000
=

++
=

++
=

−+
=





→→→→ xx

x

x

x

xxxx
. 

II. If the ratio 



 itself turns out to be infinitesimal, i.e. 

( )
( )

0lim =




→ x

x

ax
 

(

( )
( )

=




→ x

x

ax
lim

), then they say that an infinitesimal β is an infinitesimal 

of a higher order with respect to an infinitesimal α (and an infinitesimal 

α is an infinitesimal of a lower order with respect to an infinitesimal β). 

Example 7.5. Infinitesimal x2cos1−=  is infinitesimal of a higher 

order with respect to x= . Indeed, 
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0
sin2

lim
2cos1

lim
2

00
==

−

→→ x

x

x

x

xx . 

Note that if β is an infinitesimal of a higher order with respect to an 

infinitesimal α, then this circumstance is written as follows: 

( )= o . 

In particular, Example 7.5 shows that 

( )xox =− 2cos1 . 

III. An infinitesimal β is called an infinitesimal of kth order with 

respect to an infinitesimal α if β and 
ka  are infinitesimal of the same order, 

i.e. if there is a finite limit of the ratio 
k



 other than zero. 

Example 7.6. If x= and xcos1−= , then infinitesimal β is an 

infinitesimal of the second order with respect to infinitesimal α as 0→x

. Indeed, 

2

12
sin2

lim
cos1

limlim
2

2

02020
==

−
=





→→→ x

x

x

x

xxx . 

Example 7.7. If x=  and 11 3 −+= x , then infinitesimal β is an 

infinitesimal of the third order with respect to infinitesimal α as 0→x . 

Make sure of this: 

( ) 2

1

11
lim

11
limlim

33

3

03

3

030
=

++
=

−+
=





→→→ xx

x

x

x

xxx

. 
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IV. Infinitesimal α and β are called equivalent if the limit of their ratio 

is unity: 




lim

 = 1. 

If α and β are equivalent, then we write  ~ . 

Theorem 7.6. Infinitesimals α and β are equivalent, if and only if their 

difference γ=β-α  is infinitely small of higher order with respect to α and 

β. 

Proof. 1. Necessity. Let ( )= o , ( )= o . Then 
1−




=





, 

therefore 
1lim =





 (since 
1lim =





). 

2. Sufficiency. Let  ~ , i.e. 
1lim =





. Then from the equality 

1−



=





 we obtain 
011lim =−=





. 

Note that the limit of the ratio of infinitesimal may not exist at all. In 

this case, they say that the infinitesimals are incomparable. Consider a 

traditional example. 

Example 7.8. Infinitesimals x=  and x
x

1
sin=

 (as 0→x ) are 

incomparable. Indeed, the relation of these infinitesimals x

1
sin=





 has 

no limit as 0→x . 
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Questions 

1) Which of the basic elementary functions are continuous? 

2) How are discontinuities of a function classified? 

3) Is the tax rate a continuous function of the amount of income? 

4) Is income tax a continuous function of annual income? 

5) Let ( )pDD =  be a function expressing the dependence of demand d 

on price p. What kind of discontinuity does the function ( )pDD =  

have in case of a spasmodic change in demand? 

6) What is the comparison of infinitesimal based on? 

7) Are equivalent infinitesimals of the same order? 

8) Let α and β be two infinitesimals of different orders. Which of them tends 

to zero faster - the one of a higher order, or the one of a lower order? 

Are any two infinitesimals comparable with each other?  
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DIFFERENTIAL CALCULUS 

Chapter 8. Derivative 

functions. Differential 

8.1. Derivative 

Let the function ( )xfy =  be defined on some interval X. We give the 

argument Xx 0  an arbitrary increment x  such that a point xx +0  is 

also in X. Then the function ( )xf  will receive the corresponding 

increment ( ) ( )00 xfxxfy −+= . 

Definition. The derivative of the function ( )xfy =  at a point is 

called a limit of the ratio of the function increment to the argument 

increment at the point 0x   as 0→x : 

( ) ( )
x

xfxxf

x

y

xx 

−+
=





→→

00

00
limlim

 

(if this limit exists). 

The derivative is denoted by ( )0xf  , or ( )0xy , or y , or dx

dy

. 

(Economists also use the notation ( )xMf  for the derivative ( )xf   and the 

term «marginal value of the function f  at the point x»). 

By definition: 
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( )
( ) ( )

x

xfxxf

x

y
xf

xx 

−+
=




=

→→

00

00
0 limlim

. (8.1) 

If the function ( )xf  has a derivative at each point of the set X, then 

the derivative ( )xf   is also a function of the argument of x, defined on X. 

Geometric meaning of the derivative 

To clarify the geometric meaning of the derivative, it is necessary to 

formulate a definition of a tangent to the graph of the function at a given 

point. 

Definition. The tangent to the graph of the function ( )xfy =  at the 

point 0M  is the limit position of the secant MM0  as the point M tends to 

the point 0M  along the curve ( )xfy = . 

Let the point 0M ( )00 , yx  be fixed on the curve ( )xfy = , where 

( )00 xfy =  (fig. 8.1). We give the argument the increment x , i.e. move 

from 0xx =  to xx +0 . 

We get ( )yyxxM ++ 00 ,  on the curve. From the triangle MAM0  

we have: 

( ) ( )
x

xfxxf

x

y

AM

MA
tg



−+
=




== 00

0 . 
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Fig. 8.1. The geometric meaning of the derivative 

Let 0→x . Then the point M will move along the curve and coincide 

with the point 0M  in the limit. Here 

x

y
tg

xx 


==

→→ 00
limtglim

. 

If the derivative ( )xf   at the point 0x  exists, then, according to the 

definition of the derivative, we obtain: 

( )0tg xf = . 



Chapter 8. Derivative functions. Differential  

122 

So, the derivative ( )0xf   is equal to the angular coefficient1 of the 

tangent to the graph of the function ( )xfy =  at the point ( )( )000 , xfxM  . 

Physical meaning of the derivative 

Suppose that the function ( )tfs =  describes the law of motion of a 

point at a straight line as the dependence of the distance s on time t. By the 

time 0t  the distance is ( )00 tfs = , and by the time tt +0  distance

( )ttfs += 0 . Then, over a      period of time t  the distance 0sss −=  

is passed and the average speed over time t  is the ratio t

s





. The limit of 

this ratio as 0→t  

( )tf
t

s

t
=





→ 0
lim

, 

defines the instantaneous speed of a point at the time 0t  as a derivative of 

the distance with respect to time. 

8.2. Application of a derivative in 

economy 

1. Labor productivity. Let the function  ( )tqq =  be a value of q 

products produced over time t and let it be required to find labor 

                                                      
1 The angular coefficient is the tangent of the angle of inclination to the positive 

direction of the axis Ox. 
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productivity at the moment 0t . Consider the time period from 0t   to 

tt +0 . During this period, the volume of production  

( ) ( )00 tqttqq −+= . The average productivity for this period is t

q





. 

Then, labor productivity at the moment 0t  can be defined as the marginal 

value of average productivity as 0→t : 

( )
t

q
tq

t 


=

→ 0
lim

. 

As we can see, mathematically the problem at the moment 0t  does not 

differ from the problem of finding the instantaneous speed of movement 

(see § 8.1). 

Another formulation of the problem is also possible. Let the quantity 

of products q be dependent only on the applied labor x (for a company it’s 

just the number of employees): ( )xqq = . 

The average productivity is used to evaluate production efficiency. It 

denoted by x

q

. 

However, the question arises: how will the volume of production 

change when the number of personnel changes? The answer to this 

question can be obtained by introducing the concept of marginal 

productivity. The marginal productivity is a derivative of products q by 

the amount of labor x: 

dx

dq
q =

. 
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The marginal productivity with this formulation of the problem is 

approximately equal to the change in the volume of products with the     

change in the number of personnel per unit. 

If the number of employees a is large, then the increment 1=a  can 

be considered small enough to take advantage of the approximate equality 

( )
( ) ( )

( ) ( )aqaq
aqaq

a

q
aq −+=

−+
=




 1

1

1

, which gives 

( ) ( ) ( )aqaqaq +=+1 . In this case, ( )aq  is an additional product 

produced by new employees per unit of time. 

Let v be the product price and p is employee salary per unit of time. If 

( ) paqv  , then we need to hire another employee as he brings the 

company more than it pays him. This rule is called the "golden" rule of 

Economics. 

2. Production cost. Consider the dependence of cost С manufactured 

products on its volume q: ( )qCC = . 

Marginal cost is the value 

( )qC
q

C
MC

q
=






→ 0
lim

. 

Along with the cost price in microeconomics, an important role is 

played by another marginal indicator - elasticity. We consider it later - in 

the study of so-called logarithmic derivative (see § 20.2). 
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8.3. Differentiability of a function. 

Communication between differentiability 

and continuity 

Definition. A function ( )xfy =  is called a differentiable function at 

the point 0x , if its increment at this point can be represented as 

xxAy += , (8.2) 

here A is an arbitrary number (independent of x ) and ( )x=  is 

the infinitesimal as 0→x . 

Theorem 8.1. The function ( )xfy =  is differentiable at the point 0x       

if and only if it has a finite derivative at that point. 

Proof. 1. Necessity. Let the function ( )xf  be differentiable at the point 

0x , i.e. its increment can be represented as (8.2). Dividing this equality by 

0x , we obtain: 

+=



A

x

y

. 

Passing to the limit as 0→x  ( 0→  as 0→x ), we obtain 

( ) ( ) AAxf
x

y

xx
=+==





→→ 0
0

0
limlim

, 

i.e. the derivative of the function ( )xf  exists at the point 0x  and equals 

to A. 
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2. Sufficience. Now let the function ( )xf  have the derivative at the 

point 0x , i.e. there is a limit 

A
x

y

x
=





→ 0
lim

. 

Then, in accordance with Theorem 6.1: 

+=



A

x

y

, 

here α is the infinitesimal as 0→x . Hence 

xxAy += . 

Therefore, ( )xf  is differentiable. 

Theorem 8.1 allows us to call a function of one argument 

differentiable if it has a derivative. The operation of finding the derivative 

is called differentiation. 

 Continuity of a differentiable function 

Theorem 8.2. If a function is differentiable at the point 0x       then the 

function is continuous at this point. 

Proof. Since ( )xf  is differentiable at the point 0x , then its increment 

at this point has the form (8.2). Passing to the limit in this equality as 

0→x , we obtain: 

( ) 0limlim
00

=+=
→→

xxAy
xx , 

i.e. 
0lim

0
=

→
y

x , which means that the function is continuous. 
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8.4. Calculating the derivative 

The scheme of calculating the derivative of the function ( )xf : 

1. Give x an increment x  and find the corresponding value of the 

function ( )xxf + . 

2. Find the increment of the function ( ) ( )xfxxfy −+= . 

3. Сompose the ratio x

y





. 

4. Calculate the limit of this ratio as 0→x : 

x

y
y

x 


=

→ 0
lim

. 

Example 8.1. If const== cy , then 0=y . Indeed, 0=y  for any 

x , so that 0=y . So, if const=c , then 

0=c . 

Example 8.2. Find the derivative of 
2xy = . 

Solution. 1. Give x an increment x  and find ( )=+ xxf  

( )2xx += . 

2. Find the increment of the function: 

( ) 222222
22 xxxxxxxxxxxy +=−++=−+= . 

3. Сompose the ratio 
xx

x

y
+=




2

. 

4. Calculate the limit: 
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( ) xxx
x

y
y

xx
22limlim

00
=+=




=

→→ . 

So, xx 2)( 2 = . 

Example 8.3. Find the derivative of xy sin= . 

1. ( ) ( )xxxxf +=+ sin . 

2. 

( )
( ) ( )








 
+


=

=
−+++

=−+=

2
cos

2
sin2

2
sin

2
cos2sinsin

x
x

x

xxxxxx
xxxy

. 

3. 








 
+





=

=






 
+





=









 
+



=




2
cos

2

2
sin

2
cos2

sin2
2

cos
2

sin2

x
x

x

x

x
x

x

x

x

x
x

x

x

y

. 

4. xx
x

x
x

x

x

y
y

xxx
coscos1

2
coslim

2

2
sin

limlim
000

==






 
+





=



=

→→→

 

(taking into account the first remarkable limit (see § 14.5) and 

the continuity of the function xcos ). 

Then, xx cos)(sin = . 
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Rules of differentiation 

Assume that ( )xuu =  and ( )xvv =  are differentiable functions, 

const=c . 

I. uccu =)( . III. vuvuuv +=)( . 

II. vuvu = )( . IV. 
2v

vuvu

v

u −
=












. 

Let us formulate these rules in more detail and prove them. 

I. If ( )xcuy = , const=c , then ( )xucy = , 

i.e. the constant multiplier can be taken out of the sign of the derivative. 

Proof. 1. Give x an increment x . Then 

( )xxcuyy +=+ . 

2. Find the increment of the function: 

( ) ( ) ( ) ( ) xuxxucxcuxxcuy −+=−+= . 

3. Сompose the ratio x

y





: 

( ) ( )
x

xuxxu
c

x

y



−+
=





. 

4. Calculate the limit of this ratio as 0→x , i.e. find y : 

( ) ( )
( )xuc

x

xuxxu
c

x

y
y

xx
=



−+
=




=

→→ 00
limlim

. 

(We took advantage of the fact that the constant multiplier can be 

carried beyond the limit sign (see § 6.4).) 

II. If ( ) ( )xvxuy = , то ( ) ( )xvxuy = , 



Chapter 8. Derivative functions. Differential  

130 

i.e. the derivative of the algebraic sum of differentiable functions is 

equal to the algebraic sum of the derivatives of these functions. 

Proof. 1. Give x an increment x . Then functions ( )xuu = , ( )xvv =  

take corresponding values ( )xxuuu +=+ , ( )xxvvv +=+ , then 

( ) ( )vvuuyy ++=+ . 

2. Find the increment of the function y: 

( ) ( ) ( ) vuvuvvuuy =−++= . 

3. Сompose the ratio x

y





: 

x

v

x

u

x

y









=





. 

4. Calculate the limit of this ratio as 0→x  

vu
x

v

x

u

x

y
y

xxx
=









=




=

→→→ 000
limlimlim

. 

So, vuvu = )( . 

(We took advantage of the fact that the limit of the algebraic sum is 

equal to the algebraic sum of the limits (see § 6.4).) 

This statement can be extended to any number of terms. In particular, 

wvuwvu ++=++ )( . 

III. If ( )xuu = , ( )xvv = , then vuvuuv +=)( , 

i.e. the derivative of product of two differentiable functions is equal to 

the product of the first derivative of these functions and the second function 

plus the product of the first function and the derivative of the second 

function. 
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Proof. 1. Give x an increment x . Then functions u and v take 

corresponding values uu + , vv + , and their composition uvy =  

takes value ( ) ( )vvuu ++ . 

2. Find the increment of the function y: 

( ) ( ) =−+++=−++= uvvuvuuvuvuvvvuuy

vuvuuv ++ . 

3. Сompose the ratio x

y





: 

x

v
u

x

v
uv

x

u

x

y




+




+




=





. 

4. Calculate the limit of this ratio as 0→x : 

.0

limlimlimlimlim)(
00000

vuvuvvuvu

x

v
u

x

v
uv

x

u

x

y
uvy

xxxxx

+=++=

=



+




+




=




==

→→→→→

 

(Here 
0lim

0
=

→
u

x , since u is continuous      function.) 

Then, vuvuuv +=)( . 

 According to this statement it is easy to obtain the rule of 

differentiation of the product of three and, in general, any finite number of 

functions. 

Let uvwy =  be the product of three functions. Let us present this 

composition in the form of ( )vwu : 

wuvwvuvwuwvwvuvwuvwuvwuy ++=++=+= )()()( . 

It is easy to understand that for the case of 𝑛 terms, the same method 

can be used to obtain a similar formula for the derivative of the product: 
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nnnnn uuuuuuuuuuuuuuuuuuuu ++++= 321321321321321 ...)(

. 

IV. If v

u
y =

, then 
2v

vuvu
y

−
=

, 

i.e. the derivative of a fraction (the ratio of two functions) is equal to a 

fraction whose denominator is the square of the denominator of the given 

fraction, the numerator is the difference between the product of the 

denominator on the derivative of the numerator and the product of the 

numerator on the derivative of the denominator. 

Proof. 1. Give x an increment x . Then functions u and v take 

corresponding values uu + , vv +  and their ratio v

u
y =

 takes value 

vv

uu
yy

+

+
=+

. 

2. ( )vvv

vuuv

v

u

vv

uu
y

+

−
=−

+

+
=

. 

3. ( ) ( )vvv

x

v
uv

x

u

vvv

x

vuuv

x

y

+




−





=
+



−

=




. 

4. 
( )vvv

x

v
u

x

u

x

y
y

x

x

xx +




−





=



=

→

→

→→

0

0

00 lim

lim

limlim

. 

Hence, since 
0lim

0
=

→
v

x  (since the function v is continuous), we 

obtain 
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2v

vuvu
y

−
=

, or 
2v

vuvu

v

u −
=












. 

Derivative of a complex function 

Now we formulate and prove the rule V. 

V. Let the function ( )xu =  have the derivative ( )0xux =  at the 

point 0x , and let the function ( )ufy =  have the derivative ( )0ufyu
=  

at the point ( )00 xu = . Then the complex function ( )( )xfy =  has a 

derivative at the point 0x  and the following formula holds: 

xux uyy = . 

Proof. Give x an increment x . Let u  be the corresponding 

increment of  ( )xu = , here y  is the increment of ( )ufy =  caused by 

the increment u . Replacing x with u we rewrite (8.2) in the form: 

uuyy u +=  

(here α depends on u ; 0→  as 0→u ). Dividing this equality by 

x , we obtain: 

x

u

x

u
y

x

y
u




+




=





. 

If 0→x , then 0→u  (since u is continuous), therefore 0→ . 

Hence, there is a limit 
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xu
x

u
x

uy
x

u
y

x

y
=




=





→→ 00
limlim

, 

i.e. 

xux uyy = . 

Example 8.4. Find the derivative of the function xy 2sin= . 

Solution. 
2uy = , here xu sin= . Using the rule V and taking into 

account examples 8.2 and 8.3 we obtain: 

xxxxxuuy x 2sincossin2)(sinsin22 ==== . 

Derivative of the inverse function 

Let ( )xfy =  be differentiable and strictly monotone function on some 

interval X and the function ( )yx =  is the inverse function. We can show 

that ( )y  is the continuous function on the corresponding interval Y. 

Theorem 8.3. Let a function ( )xf  be strictly monotone      and 

continuous on X and have a finite and non-zero derivative ( )0xf   at the 

point 0x . Then there also exists a derivative of the inverse function 

( )yx =  at the corresponding point ( )00 xfy =  and 

( )
( )0

0

1

xf
y


=

. (8.3) 
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Proof. Give 0yy =  an arbitrary increment y . Then the function 

( )yx =  takes the corresponding increment x . Note, if 0y  then 

0x  due to the uniqueness of the function ( )xfy = . We have 

x

yy

x




=



 1

. 

Now let 0→y . Then 0→x  since ( )y  is a continuous function. 

But the denominator of the right side of the written equality tends to the 

limit ( ) 00  xf
. Therefore, there is a limit for the left side of the equality. 

This limit is equal to ( )0

1

xf   and it is a derivative ( )y . So, 

x

y
y

x


=
1

. (8.4) 

The last equality can be rewritten in the following form: 

y

x
x

y


=
1

. (8.5) 

That completes the proof 
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8.5. Derivatives of the basic elementary 

functions 

Derivative of logarithmic function 

Let us first derive the formula for the derivative of xy ln= . 

( ) 






 
+=

+
=−+=

x

x

x

xx
xxxy 1lnlnlnln

 








 
+


=





x

x

xx

y
1ln

1

 








 
+


=




=

→→ x

x

xx

y
y

xx
1ln

1
limlim

00
. 

Denote 
t

x

x
=



; hence txx = . Obviously, 0→x  if and only if 

0→t . We obtain 

( ) ( ) t

tt
t

x
t

tx
y

1

00
1lnlim

1
1ln

1
lim +=+=

→→ . 

Hence, taking into account the second remarkable limit (see § 6.5) and 

the continuity of the logarithmic function, we obtain: 

( )
xx

t
x

y
t

t

1
eln

1
1limln

1 1

0
==+=

→ , 

i.e. 

x
x

1
)(ln =

. 

Now let xy alog= . Obviously a

x
xa

ln

ln
log =

. We obtain 
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ax
x

aa

x
xy a

ln

1
)(ln

ln

1

ln

ln
)(log ==











==

, 

i.e. 

ax
xa

ln

1
)(log =

. 

Derivative of exponential function 

Let xay = . Take a logarithm of this function 

axy lnln = . (*) 

According to the rule of differentiation of a complex function 

y

y
y

y
y


==

1
)(ln

. 

Differentiating the equality (*), we obtain 

a
y

y
ln=



, ayy ln= , 

or 

aay x ln= , 

i.e.  

aaa xx ln)( = . 

As e=a , obviously, 

xx e)e( = . 

The derivative of the exponential function 

Let 
nxy = , where n is any real number. Take a logarithm of this 

function: 
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xny lnln = . 

Differentiating both parts of equality, we get 

x
n

y

y 1
=



, 

1−=== n
n

nx
x

nx

x

ny
y

, 

i.e. 

1)( −= nn nxx . 

Derivatives of trigonometric functions 

Now we derive formulas for trigonometric functions: 

1. xy sin= . We have already found a derivative of this function 

(example 8.3): 

xx cos)(sin =  

2. xy cos= . 

( )








 
+


−=

=
−+++

−=−+=

2
sin

2
sin2

2
sin

2
sin2coscos

x
x

x

xxxxxx
xxxy

, 








 
+





−=




2
sin

2

2
sin

x
x

x

x

x

y

 

By virtue of continuity of xsin  and passing to the limit as 0→x  

we obtain: 

xy sin−= , i.e. xx sin)(cos −= . 

3. xy tg= . 
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xx

xx

x

xxxx

x

x
y

22

22

2 cos

1

cos

sincos

cos

)(cossincos)(sin

cos

sin
=

+
=
−

=











=

, 

i.e. 

x
x

2cos

1
)(tg =

. 

4. xy ctg= . Similarly, we get 

x
x

2sin

1
)ctg( −=

. 

Derivatives of inverse trigonometric functions 

Finally, we derive formulas for derivatives of inverse trigonometric 

functions: 

1. xy arcsin= . This function is the inverse function for yx sin= . 

By the inverse function derivative Theorem (see § 8.4) 

yyx
y

y

x
2sin1

1

cos

11

−
==


=

 

(the root is taken with a plus sign, since 0cos y  as 22





− y

). 

Since xy =sin , then finally we obtain 

21

1
)(arcsin

x
x

−
=

. 

2. xy arccos= : 

21

1
)(arccos

x
x

−
−=

. 

The calculation is similar to the previous one. 



Chapter 8. Derivative functions. Differential  

140 

3. xy arctg= . This function is the inverse function for yx tg= . 

Since y
xy 2cos

1
=

, then 

2222

2
2

1

1

tg1

1

sincos

cos
cos

1

xyyy

y
y

x
y

y

x
+

=
+

=
+

==


=

, 

i.e. 

21

1
)arctg(

x
x

+
=

. 

4. xy arcctg= . 

21

1
)arcctg(

x
x

+
−=

. 

The calculation is similar to the previous one. 

We have derived formulas for derivatives of all basic elementary 

functions. Let us now tabulate them and recall once again the rules of 

differentiation. 

Table of derivatives 

1. 0=c . 

2. 
1)( −= nn nxx  (n – is any real number). 

3. 
ax

xa
ln

1
)(log = ; 

x
x

1
)(ln = . 

4. aaa xx ln)( = ; 
xx e)e( = . 

5. xx cos)(sin = . 9. 
21

1
)(arcsin

x
x

−
= . 

6. xx sin)(cos −= . 10. 
21

1
)(arccos

x
x

−
−= . 
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7. 
x

x
2cos

1
)tg( = . 11. 

21

1
)arctg(

x
x

+
= . 

8. 
x

x
2sin

1
)ctg( −= . 12. 

21

1
)arcctg(

x
x

+
−= . 

Rules of differentiation 

I. uccu =)( . III. vuvuuv +=)( . 

II. vuvu = )( . IV. 
2v

vuvu

v

u −
=











. 

 V. If ( )ufy = , ( )xu = , then 
xux uyy = . 

Formulas 1-12 and rules I-V form the basis for practical differentiation. 

8.6. Differential 

The function ( )xfy =  is called differentiable at the point 0x
, if its 

increment y  can be presented in a form (8.2): 

xxAy += , 

where 0→  as 0→x . 

The quantity xA  is the main term of the decomposition y  as 

0A  . 

Definition. The differential dy of the function ( )xfy =  at the point 

0x
 is called a main linear part of the increment of the function with respect 

to x at that point: 

xAdy = . 



Chapter 8. Derivative functions. Differential  

142 

For 0=A  the differential is also determined by the formula (*), i.e. in 

this case, 0=dy . 

It follows from Theorem 8.1 that 
( )0xfA = , then 

( ) xxfdy = 0 . (8.6) 

The differential dx  of the independent variable x is the increment x  

of this variable, and we can write equality (8.6) in the form: 

( )dxxfdy 0
=

, (8.6') 

which gives 
( )

dx

dy
xf =

0

. Now we see that dx

dy

 is not just a symbolic 

designation of the derivative but the ratio of the differential of a function 

dy  to the differential of its argument dx . Due to (8.6), formula (8.2) can 

be rewritten in the form 

( ) ( )xoxxfy += 0  
or 

( ) ( ) ( )xoxxfxf += 00  . (8.2) 

Geometrical meaning of the differential 

Let the point M on the graph of the function ( )xfy =  correspond to 

the value of the argument 0xx =
, let the point N correspond to the value 

of the argument 
xxx += 0  (fig. 8.2). Then xMA = , yAN = . Draw 

a tangent to the curve ( )xfy =  at the point M. Let α be the angle between 

this tangent and the axis Ox. We know that 
( )0tg xf =

. 
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Fig. 8.2. The geometric meaning of the differential 

Consider a right triangle MAB . Obviously, xMA = , 

( ) dyxxfxMAAB ==== 0tgtg
. 

 Hence, while y  is the increment of the ordinate of the curve, dy  is 

the corresponding increment of the ordinate of the tangent. 

Application of differential in approximate calculations. 

Approximate differential calculations are based on the approximate 

replacement of the function increment by its differential. Since the 

differential is the main part of the increment of the function, then 

dyy  , 

or 

( ) ( ) ( ) ( ) xxfxfxxfxf −+= 0000 . 

Hence 

( ) ( ) ( ) xxfxfxxf ++ 000 . 

Example 8.5. Calculate approximately 
3 24,8

. 
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Solution. Let ( ) 3 xxf = , 80 =x , 
( ) 20 =xf , 24,0=x . Due to 

( ) xxfdyy = 0 : 

( )
3 2

3231

3

1

3

1
)(

x
xxxf === −

. 

( )
12

1

83

1
3 2

0 == xf

, 
02,024,0

12

1
== dyy

. Hence 

( ) 02,202,0224,83
0 =+=+ xxf

. 

The problem of finding the differential of a function is obviously 

reduced to finding derivative and multiplying it by the differential of the 

argument. Therefore, the majority of theorems and formulas related to the 

derivatives holds for the differentials. In particular: 

I. ( ) cducud =  ( const=c ). III. ( ) udvvduuvd += . 

II. ( ) dvduvud = . IV. 
2v

udvvdu

v

u
d

−
=








. 

Let us deduce, for example, the differential of a fraction: 

,
2v

vuvu

v

u −
=











2v

dxvuvdxu
dx

v

u

v

u
d

−
=











=








, 

Since ,dudxu =   dvdxv = , then 

2v

udvvdu

v

u
d

−
=









. 

Let us find the expression for the differential of a complex function. 

Let ( )ufy = , ( )xu =  or ( )( )xfy = . If ( )ufy =  and ( )xu =  are 

differentiable functions of 𝑢 and 𝑥 respectively, then ( )uufy = . 

The differential of the function 

( ) ( ) ( )duufdxuufdxxfdy === , 
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since dudxu = . Thus 

( )dxxfdy =  and ( )duufdy = , 

i.e. the differential does not depend on the function argument - an 

independent variable or a function of another argument. This property of 

the differential is called the invariance of the differential form. 

From the invariance of the differential form it follows that we can apply 

formulasⅠ-Ⅳ when vu,  are functions of an independent variable and 

when they are complex functions.  

Higher order derivatives and differentials 

If a function ( )xf  is defined on X and has a derivative ( )xf   at all 

points of X, then this derivative itself is a function of the argument x: 

( ) ( )xgxf = . Derivative of the first derivative function ( )xf , i.e. 

))((  xf , is called the second derivative, or second-order derivative, and 

denoted by ( )xf  , or y  . So, 

( ) ( )( )= xfxf , or 
( )= yy . 

The third order derivative is defined similarly: 

( ) ))(( = xfxf  , or )( = yy  and so on. 

N-th derivative is denoted by 
( )( )xf n

 (or 
( )ny ) and it is defined in 

accordance with the described scheme: 

( )( ) ( ) ))(( 1 = − xfxf nn

, 

here 
( )( )xf n 1−

 is the derivative of order ( )1−n . 

Examples 8.6: 

1) 
kxy e= , 

kxky e= , 
kxky e2= , …, 

( ) kxnn ky e= ; 
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2) xy sin= , xy cos= , xy sin−= , xy cos−= , 
( ) xy sin4 =  

It is easy to show that 

( )( )







 
+= nxx

n

2
sinsin

. 

A differential of the second order (or second differential) of the 

function ( )xfy =  is called the differential of the differential of this 

function, i.e. ( )dyd , and denoted by yd 2

: 

( )dydyd =2

. (8.7) 

Obviously, ( ) ( )( ) ( ) 22 ))(( dxxfdxdxxfdxxfddydyd ==== , 

where ( )22 dxdx = . We consider dx  to be a constant since xdx =  is 

independent of x. Hence, 

( ) 22 dxxfyd = . (8.8) 

The third differential is defined similarly ( )yddyd 23 = ; finally, n-th 

differential is the differential from the differential of the order ( )1−n : 

( )yddyd nn 1−= . (8.9) 

We find the expression for yd n

 in the same way as it was done above 

for yd 2

: 

( )( ) nnn dxxfyd = . (8.10) 

Hence 

( )( )
n

n
n

dx

yd
xf =

. 
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It should be noted that second and higher order differentials do not have 

the form invariance property, in contrast to the first order differential. Let 

us show it. 

Let ( )ufy = , ( )xu = , or ( )( )xfy = , then 

)))((())((22 xdfdxfdyd == . 

By condition, ( )( ) ( )duufxdf = , ( )xu = . Hence 

( )( ) ( )( ) ( ) ( )dudufduufdduufd += . (  ) 

Let ( ) ( )uguf = , then 

( )( ) ( ) ( ) ( )duufduufduugudgufd ==== ))(( . 

Moreover, ( ) ( )xduddud == 22

. 

Thus, from (**) we obtain 

( ) ( )( ) ( ) udufduufufd 222 += , ( )xu = . (8.11) 

Obviously, the second differential of a complex function ( )( )xf   

exists if functions ( )uf  and ( )x  have finite derivatives up to the second 

order. 

It follows from the formula (8.11) that the second differential of a 

complex function does not have form invariance: 

if ( )xfy = , x is an independent argument, then 

( ) 2dxxfdy = ; 

if ( )ufy = , u is a dependent argument, ( )xu = , then 

( ) ( ) udufduufdy 22 += . 



Questions  

148 

Questions 
1) What is the geometric meaning of the derivative? 

2) Let ( ) 33 =f  be a derivative of the function ( )xfy = . What is the 

angle between Ox axis and the tangent to the graph at the point 3=x

? 

3) What is the marginal productivity? How is this concept related to the 

concept of derivative? 

4) What is the "Golden" rule of Economics? 

5) What is the marginal cost of production? 

6) How the concept of differentiability of a function ( )xfy =  is defined 

at the point 0x ? 

7) Why the function ( )xf  is called differentiable at the point 0x ? 

8) Suppose a function have a derivative at the point 2=x . Is this 

function continuous at that point? 

9) Let the function ( )xfy =  be continuous at the point 5=x . Is it 

possible to say that this function has a derivative at that point? 

10) Is the line 44 −= xy  tangent to the parabola
2xy = ? And the line 

44 −−= xy ? 

11) Are the statements equivalent: «the function ( )xfy =  is 

differentiable at the point 0x » and «the function ( )xfy =  has a finite 

derivative at the point 0x »? 
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12) What is the algorithm for finding the derivative of an arbitrary 

function? 

13) Is any of the basic elementary functions differentiable at each point at 

which it is defined? 

14) What rule defines the differentiation of a complex function? Give 

examples other than those listed in the book. 

15) What is the geometric meaning of the differential? 

16) Can the differential of a function ( )xf  be greater than the increment 

of that function? 

17) The derivative y  is often denoted as dx

dy

. What is the meaning of this 

notation? 

18) What is the basis of the differential application in approximate 

calculations? 

19) What is the invariance of the form of the differential of a complex 

function? 
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Chapter 9. Properties of 

differentiable functions  

9.1. Basic theorems of the differential 

calculus 

Theorem 9.1 (Fermat theorem). Let the function 𝑦 = 𝑓(𝑥) be defined 

on (𝑎,  𝑏) and have the largest (smallest) value at some point 𝑥0 ∈ (𝑎,  𝑏). 

Then if there exists a finite derivative 𝑓 ′(𝑥0) at this point, this derivative is 

equal to zero, i.e. 𝑓 ′(𝑥0) = 0. 

Proof. Let us prove the theorem for the case when the function has the 

greatest value at the point 𝑥0 (for the smallest value, the proof is similar). 

In this case, for every 𝑥 ∈ (𝑎,  𝑏) inequality𝑓(𝑥) ≤ 𝑓(𝑥0) holds. It means 

that 𝛥𝑦 = 𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0) ≤ 0 for any point 𝑥 = 𝑥0 + 𝛥𝑥 ∈ (𝑎,  𝑏). 

If 𝛥𝑥 > 0, then 
𝛥𝑦

𝛥𝑥
≤ 0, therefore, 

𝑙𝑖𝑚
𝛥𝑥→0+

𝛥𝑦

𝛥𝑥
≤ 0; (*) 

if 𝛥𝑥 < 0, then 
𝛥𝑦

𝛥𝑥
≥ 0, therefore, 

𝑙𝑖𝑚
𝛥𝑥→0−

𝛥𝑦

𝛥𝑥
≥ 0. (**) 

By definition of the derivative 

𝑓 ′(𝑥0) = 𝑙𝑖𝑚
𝛥𝑥→0

𝛥𝑦

𝛥𝑥
, 

moreover, this limit does not depend on whether 𝛥𝑥 tends to zero, 

being positive or negative. But limits (*) and (**) coincide only when they 

are zero: 

𝑙𝑖𝑚
𝛥𝑥→0

𝛥𝑦

𝛥𝑥
= 𝑙𝑖𝑚

𝛥𝑥→0+

𝛥𝑦

𝛥𝑥
= 𝑙𝑖𝑚

𝛥𝑥→0−

𝛥𝑦

𝛥𝑥
= 0; 

which gives  𝑓 ′(𝑥0) = 0. That completes the proof. 
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The geometric meaning of Fermat theorem is obvious (fig. 9.1): a 

differentiable function takes the largest (smallest) value at the point x0, then 

the tangent to the graph of this function is parallel to the axis Ox at the 

point M(x0,f(x0)). 

 
Fig. 9.1. Geometric meaning of Fermat theorem 

Theorem 9.2 (Rolle theorem). Let a function 𝑓(𝑥) satisfy the 

following three conditions: 

1) continuous on [𝑎, 𝑏]; 

2) differentiable on (𝑎, 𝑏); 

3) takes equal values at the ends of the segment: 𝑓(𝑎) = 𝑓(𝑏). 

Then there is at least one point 𝜉 ∈ (𝑎,  𝑏) at which the derivative is 

equal to zero inside the segment: 

𝑓 ′(𝜉) = 0. 

Proof. Since 𝑓(𝑥) is continuous on [𝑎,  𝑏], then, by virtue of the second 

Weierstrass theorem (see § 7.2), it reaches its largest value M and its lowest 

value m on [𝑎,  𝑏]. 

There are two possible cases.: 
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1. mM = . Then ( ) const=== mMxf ; so ( ) 0= xf  at all points, 

so that we can take any point   on ( )ba, . 

2. mM  . Both of these values cannot be reached at the ends of the 

segment (since ( ) ( )bfaf = ). Therefore, at least one of these values is 

reached at some internal point ( )ba,  and by virtue of Fermat theorem 

( ) 0=f . That completes the proof. 

The geometric meaning of Roll theorem is as follows: if the extreme 

ordinates of the curve ( )xfy =  are equal, then there is a point on the curve 

where the tangent is parallel to the axis Ox (fig. 9.2). 

 
Fig. 9.2. Geometric meaning of Roll theorem 

It should be noted that all the conditions of Rolle theorem are essential, 

and if at least one of them fails, the conclusion of the theorem may turn out 

to be incorrect. 

Theorem 9.3 (Lagrange theorem). Let a function 𝑓(𝑥) be continuous 

on [𝑎,  𝑏]and differentiable on (𝑎,  𝑏). Then there exists a point 𝜉 ∈

(𝑎,  𝑏), such that: 
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𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓 ′(𝜉). 

Proof. Consider a function: 

𝐹(𝑥) = 𝑓(𝑥) − 𝑓(𝑎) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎). 

The function F(x) satisfies all the conditions of Roll theorem: it is 

continuous on [a,b] (since f(x) is continuous), differentiable on (𝑎, 𝑏): 

𝐹′(𝑥) = 𝑓′(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
, 

and also takes the same values at the ends of the segment [a,b]: 

( ) ( ) 0== aFbF . 

According to Rolle theorem, there exists a point ( )ba, , such that 

( ) 0=F , i.e. 

( )
( ) ( )

0=
−

−
−

ab

afbf
f

. 

Hence 

( ) ( )
( )=

−

−
f

ab

afbf

. 

That completes the proof. 

Note that the Lagrange theorem implies the equality: 

𝑓(𝑏) − 𝑓(𝑎) = 𝑓 ′(𝜉) ⋅ (𝑏 − 𝑎), (9.1) 

called the Lagrange formula. 

Rolle's theorem is a special case of the Lagrange theorem. 

The geometric meaning of the Lagrange theorem is seen on Fig. 9.3. 

The chord passing through the points ( )( )afaM ,1  and ( )( )bfbM ,2  has 

the angular coefficient which is equal to: 

( ) ( )
ab

afbf

NM

NM

−

−
==

1

2tg

. 
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The Lagrange theorem states that there exists a point ( )( ) fM ,  on 

( )ba, , where the tangent to the graph of the function is parallel to the 

chord 21MM : its angular coefficient 
( )f  is equal to the angular 

coefficient of the chord 21MM . 

 
Fig. 9.3. Geometric meaning of the Lagrange theorem 

In the previous chapter, we talked about approximate calculations 

based on replacing the increment of a function with a differential. Let us 

find out what is the accuracy of this replacement. 

Evaluation of the accuracy of the equality Δy≈dy. 

Let a function 𝑓(𝑥) have continuous derivatives ( )xf   and 𝑓′′(𝑥) on 

 ba, . Let 0x
 and

xx +0  be points on  .,ba  According to the Lagrange 

formula 

( ) ( ) ( ) ( ) ,~
000 xxfxfxxfxf =−+=

 

where x~  lies between 0x
 and 

.0 xx +
 

On the other hand,  
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( ) ( ) .00 xxfxdf =  
Repeated application of the Lagrange formula gives 

( ) ( ) ( )( ),~ˆ~
00 xxxfxfxf −=−

 

here x̂  lies between 0x  and .~x  Therefore, 

( ) ( ) ( )( ) .~ˆ
000 xxxxfxdfxf −=−  

Denote by M  the highest value 
( )xf 

. Since 
,~

0 xxx −
 then, 

replacing 0x  for ,x  we obtain the estimate 

( ) ( ) ( ) .
2

xMxdfxf −
 

Theorem 9.4 (Cauchy theorem). Let functions ( )xf  and ( )xg  be 

continuous on  ba,  and differentiable on ( )ba, , where ( ) 0 xg . Then 

there exists a point ( )ba, , such that 

𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓′(𝜉)

𝑔′(𝜉)
. (9.2) 

Proof. First of all, we verify that the denominator in the left-hand side 

of equality (9.2) is not equal to zero. Indeed, if ( ) ( ) 0=− agbg , i.e. 

( ) ( )agbg = , then by Rolle theorem ( ) 0=g  at some point ( )ba,  

and this contradicts the condition of the theorem being proved. 

Consider a function: 

𝐹(𝑥) = 𝑓(𝑥) − 𝑓(𝑎) −
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
⋅ [𝑔(𝑥) − 𝑔(𝑎)]. 

It is easy to verify that this function satisfies all the conditions of Rolle 

theorem on  ba, : it is continuous on  ba,  (due to the continuity of ( )xf  

and ( )xg ), differentiable on ( )ba, , so, its derivative has the form: 



Chapter 9. Properties of differentiable functions  

156 

( ) ( )
( ) ( )
( ) ( )

( )xg
agbg

afbf
xfxF 

−

−
−=

 

and ( ) ( ) 0== bFaF . Therefore, there exists a point ( )ba,  such 

that ( ) 0=F , i.e. 

( )
( ) ( )
( ) ( )

( ) 0=
−

−
− g

agbg

afbf
f

. 

From here (taking into account that ( ) 0g ) we obtain the formula: 

( ) ( )
( ) ( )

( )
( )


=
−

−

g

f

agbg

afbf

. 

That completes the proof. 

Formula (9.2) is called the Cauchy formula. 

The Lagrange theorem is a special case of the Cauchy theorem as

( ) xxg = . 
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9.2. L’Hospital’s rule 

Indeterminate form 
𝟎

𝟎
 

Assume the following ratio 
𝑓(𝑥)

𝑔(𝑥)
 is an indeterminate form 

0

0
, if 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) = 𝑙𝑖𝑚
𝑥→𝑎

𝑔(𝑥) = 0. 

Theorem 9.5. Let functions 𝑓(𝑥) and 𝑔(𝑥) satisfy Cauchy’s theorem 

on interval [𝑎,  𝑏] , and let 𝑓(𝑎) = 𝑔(𝑎) = 0. If there exists the limit 

𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
, then the limit 𝑙𝑖𝑚

𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
 exists too. Moreover 

𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
. (9.3) 

Proof. Let [𝑎,  𝑥] ⊂ [𝑎,  𝑏]. Apply Cauchy’s theorem to functions 𝑓(𝑥) 

and 𝑔(𝑥) on[𝑎,  𝑥]: 
𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
=

𝑓′(𝜉)

𝑔′(𝜉)
, 

where 𝜉   is a point between a and x. As we stated 𝑓(𝑎) = 𝑔(𝑎) = 0, 

so 

𝑓(𝑥)

𝑔(𝑥)
=

𝑓′(𝜉)

𝑔′(𝜉)
. 

Let 𝑥 → 𝑎. Then 𝜉 → 𝑎 (because 𝑎 < 𝜉 < 𝑥). If the limit 𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
=

𝐾 exists, and 𝑙𝑖𝑚
𝑥→𝑎

𝑓′(𝜉)

𝑔′(𝜉)
exits too and it’s equal to K, thus 

( )
( )

( )
( )

( )
( )

( )
( )

K
xg

xf

g

f

g

f

xg

xf

axaaxax
=




=




=




=

→→→→
limlimlimlim

. 

Or,  

( )
( )xg

xf

ax→
lim

( )
( )xg

xf

ax 


=

→
lim

, 

Q.E.D. 
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This theorem is known as L’Hospital’s rule 

Remark 1. Theorem 9.5 remains valid even w     hen functions 
( )xf  

and 
( )xg  are not defined when ax = , but 

( ) ( ) 0limlim ==
→→

xgxf
axax . In 

this case, it suffices to redefine the functions at the point a using 

( ) ( ) 0lim ==
→

xfaf
ax , 

( ) ( ) 0lim ==
→

xgag
ax , so they become continuous at 

this point and satisfy the theorem. 

Remark 2. L’Hospital’s rule might be reapplied       if both 
( )xf 

 and 

suffice theorem, as do the source      functions 
( )xf  and 

( )xg . 

Example 9.1. Calculate limits: 

а) x

x

x 4

3sin
lim

0→ ; б) x

x

x

1e
lim

3

0

−

→ ; в) x

xx

x cos1

2ee
lim

0 −

−+ −

→ . 

Solution: 

а) 

( )

( ) 4

3

4

3cos3
lim

4

3sin
lim

4

3sin
lim

000
==





=
→→→

x

x

x

x

x

xxx

; 

б) 
3

1

e3
lim

1e
lim

3

0

3

0
==

−

→→

x

x

x

x x ; 

в) 
2

1

2

cos

ee
lim

sin

ee
lim

cos1

2ee
lim

000
==

+
=

−
=

−

−+ −

→

−

→

−

→ xxx

xx

x

xx

x

xx

x
. 

Remark 3. L’Hospital’s rule could be applied even if 

( ) 0lim =
→

xf
x  and 

( ) 0lim =
→

xg
x . 

To proof it, let z
x

1
=

. Then 0→z  while →x , therefore, 
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0
1

lim
0

=







→ z

f
z

, 

0
1

lim
0

=







→ z

g
z

. 

Now we can apply theorem 9.5 to functions of variable z 










z
f

1

 and 










z
g

1

. So, we obtain 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑧→0

𝑓(
1

𝑧
)

𝑔(
1

𝑧
)

= 𝑙𝑖𝑚
𝑧→0

𝑓′(
1

𝑧
)⋅(−

1

𝑧2)

𝑔′(
1

𝑧
)⋅(−

1

𝑧2)
= 𝑙𝑖𝑚

𝑧→0

𝑓′(
1

𝑧
)

𝑔′(
1

𝑧
)

= 𝑙𝑖𝑚
𝑥→∞

𝑓′(𝑥)

𝑔′(𝑥)
, 

or 

𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→∞

𝑓′(𝑥)

𝑔′(𝑥)
. (9.4) 

Indeterminate form 



 

The L’Hospital’s rule can be applied even when functions 
( )xf

 and 

( )xg
 tend to infinity while ax → . 

Let 
( ) =

→
xf

ax
lim

, 
( ) =

→
xg

ax
lim

 and let’s assume that ratio 

( )
( )xg

xf





 

has a limit 

( )
( )

K
xg

xf

ax
=

→
lim

. Then ratio 

( )
( )xg

xf

 also has a limit while ax →  

and equation (17.3) is verified: 

( )
( )

( )
( )xg

xf

xg

xf

axax 


=

→→
limlim

. 

(We accept this statement without proof.) 

Note that functions 
( )xf

 and 
( )xg

, tend to infinity with →x , 

L’Hospital’s rule is verified: 
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( )
( )

( )
( )xg

xf

xg

xf

xx 


=

→→
limlim

. 

9.3. Taylor series 

Let us assume that function 
( )xfy =  has derivative in point 0xx =

 

and has derivatives up to  ( 1+n ) order including. 

The n-order Taylor polynomial for function 
( )xfy =  can be defined 

by the following equation: 

 𝑃𝑛(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
⋅ (𝑥 − 𝑥0) +

𝑓″

2!
⋅ (𝑥 − 𝑥0)2 + 

+. . . +
𝑓(𝑛)(𝑥0)

𝑛!
⋅ (𝑥 − 𝑥0)𝑛. (9.5) 

This polynomial and its derivatives in the point 0xx =
 have the same 

values as the function 
( )xf

 and its derivatives respectively: 

𝑓(𝑥0) = 𝑃𝑛(𝑥0), 𝑓′(𝑥0) = 𝑃𝑛
′(𝑥0), 𝑓″(𝑥0) = 𝑃𝑛

″(𝑥0), …,  

𝑓(𝑛)(𝑥0) = 𝑃𝑛
(𝑛)(𝑥0). (9.6) 

(it is easy to obtain these equalities). So, we can consider polynomial 

(9.5) an approximation of a function 𝑓(𝑥). The order of the approximation 

is measured by difference 𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥). We obtain 

( ) ( ) ( )xRxPxf nn +=
 

or: 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
⋅ (𝑥 − 𝑥0) +

𝑓″(𝑥0)

2!
⋅ (𝑥 − 𝑥0)2+. . . +  

+
𝑓(𝑛)(𝑥0)

𝑛!
⋅ (𝑥 − 𝑥0)𝑛 + 𝑅𝑛(𝑥). (9.7) 

The equation (9.7) is called a Taylor formula, and 
( )xRn  is a 

remainder term. 
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Next, we are going to find the difference between function 
( )xf  and 

polynomial 
( )xPn  with different values of variable x, in other words we 

will estimate the value
( )xRn . 

Rewrite  remainder term as  

𝑅𝑛(𝑥) =
𝑄(𝑥)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1, (9.8) 

where 
( )xQ  is the function which we will find. 

Considering (9.8) formula (9.7) becomes   

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
(𝑥 − 𝑥0) +

𝑓″(𝑥0)

2!
(𝑥 − 𝑥0)2+. . . +  

+
𝑓(𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 +

𝑄(𝑥)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1.. (9.9) 

Fix x variable. Let us assume that 0xx 
. Then function 

( )xQ
 will 

have a fixed valued. Denote it as Q. 

Denote the variable with values ranging from 0x
 to x as t and consider 

a new function on interval 
 xx ,0   

 𝐹(𝑡) = 𝑓(𝑥) − 𝑓(𝑡) −
𝑓′(𝑡)

1!
(𝑥 − 𝑡) −

𝑓″(𝑡)

2!
(𝑥 − 𝑡)2−. . . − 

−
𝑓(𝑛)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 −

𝑄

(𝑛+1) !
(𝑥 − 𝑡)𝑛+1, (9.10) 

where Q has a numerical values which can be defined by (9.9) with 

fixed x. 

Let’s find derivative 
( )tF 

: 

𝐹′(𝑡) = −𝑓 ′(𝑡) −
𝑓″(𝑡)

1!
(𝑥 − 𝑡) + 𝑓 ′(𝑡) −

𝑓‴(𝑡)

2!
(𝑥 − 𝑡)2 +

2𝑓″(𝑡)

2!
(𝑥 − 𝑡) − 

… −
𝑓

(𝑛+1)
(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 +

𝑛𝑓
(𝑛)

(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛−1 +

(𝑛 + 1) ⋅ 𝑄

(𝑛 + 1) !
(𝑥 − 𝑡)𝑛. 
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Here, the corresponding terms with mutually opposite signs are 

mutually annihilated. And we obtain 

𝐹′(𝑡) = −
𝑓(𝑛+1)(𝑡)

𝑛!
(𝑥 − 𝑡)𝑛 +

𝑄

𝑛!
(𝑥 − 𝑡)𝑛. (9.11) 

Function 
( )tF  has a derivative (9.11) on 

 xx ,0 . Moreover, it follows 

from (9.10) that 
( ) ( ) 00 == xFxF

. Therefore we can apply Rolle’s 

theorem to function 
( )tF

 on 
 xx ,0 , thus there exists 

( )xx ,0
, such as 

( ) 0=F . Thence with respect to (9.11) we obtain: 
( )( )

( ) ( ) 0
!!

1

=−+−


−
+

nn
n

x
n

Q
x

n

f

, 

therefore, 
( )( )= +1nfQ

. 

Appling this to (9.8), we obtain: 

𝑅𝑛(𝑥) =
𝑓(𝑛+1)(𝜉)

(𝑛+1) !
(𝑥 − 𝑥0)𝑛+1. (9.12) 

The expression (9.12) is called remainder term in Lagrange form. 

Appling 
( )xRn  to (9.7), we obtain: 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1⥂!
(𝑥 − 𝑥0) +

𝑓″(𝑥0)

2⥂!
(𝑥 − 𝑥0)2+. . . +  

+
𝑓(𝑛)(𝑥0)

𝑛!
(𝑥 − 𝑥0)𝑛 +

𝑓(𝑛+1)(𝜉)

(𝑛+1)!
(𝑥 − 𝑥0)𝑛+1. (9.13) 

The formula (9.13) is called a Taylor formula with a remainder term 

in Lagrange form. 

The formula (9.13) is used when we need to substitute 
( )xf

 with 

polynomial 
( )xPn  (when x≠x0) and find the value of the error which 

occurs during this substitution. However, in so     me cases it is necessary 
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to know the behavior of the remainder term when x is tending to 0x
, rather 

than certain values of x. To do so we need to rewrite the remainder term in 

different form 

Let’s proof that, when 0xx →
 the remainder term 

( )xRn  is 

infinitesimal with order higher then 
( )nxx 0−

: 

( ) ( )( )n

n xxoxR 0−=
. (9.14) 

This is the remainder term in the form of Peano. 

Let us assume, that in some neighborhood of a point 0x
 exist 

derivatives of functions 
( )xf

 up to order n  and
( )( )xf n

 is continuous at 

0x
. 

In formula  (9.13) substitute n to 1−n : 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1⥂!
(𝑥 − 𝑥0) +

𝑓″(𝑥0)

2⥂!
(𝑥 − 𝑥0)2+. . . +  

+
𝑓(𝑛−1)(𝑥0)

(𝑛−1)!
(𝑥 − 𝑥0)𝑛−1 +

𝑓(𝑛)(𝜉)

𝑛!
(𝑥 − 𝑥0)𝑛, (9.15) 

where   is in between 0x
 and x. We represent the last term in the form 

𝑓(𝑛)(𝜉)

𝑛!
=

𝑓(𝑛)(𝑥0)

𝑛!
+ 𝛼(𝑥). (9.16) 

If 0xx →
, then 0x→

 (because 


 is in between 0x
 and x). Then 

( )( ) ( )( )0xff nn →
, because 

( )( )xf n

 is continuous.
( ) 0→ x

 in because 

of (17.16). It means that 
( )( ) ( )( )nn

xxoxxx 00 −=−
. 

Thus 
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( )( )
( )

( )( )
( ) ( )( )nn

n
n

n

xxoxx
n

xf
xx

n

f
00

0
0

!!
−+−=−



. 

It follows from (17.15) that 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1⥂!
(𝑥 − 𝑥0) +

𝑓″(𝑥0)

2⥂!
(𝑥 − 𝑥0)2+. . . +  

+
𝑓(𝑛)(𝑥0)

𝑛 !
(𝑥 − 𝑥0)𝑛 + 𝑜((𝑥 − 𝑥0)𝑛) . (9.17) 

Where 

( ) ( )( )n

n xxoxR 0−=
, 

Q.E.D. 

If we assume that 
00 =x

 in formula (9.13), then we obtain the 

Maclaurin formula (which is a special case of the Taylor formula) 

𝑓(𝑥) = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓″(0)

2!
𝑥2+. . . +

𝑓(𝑛)

𝑛 !
𝑥𝑛 +

𝑓(𝑛+1)(𝜉)

(𝑛+1)!
𝑥𝑛+1,(9.18) 

where   is a point with values between 0 and x. 

The Maclaurin formula with the remainder term in the form of Peano 

can be defined by the following equation 

𝑓(𝑥) = 𝑓(0) +
𝑓′(0)

1!
𝑥 +

𝑓″

2!
𝑥2+. . . +

𝑓(𝑛)

𝑛!
𝑥𝑛 + 𝑜(𝑥𝑛). (9.19) 

 

Maclaurin expansion of some elementary functions 

The simplest elementary functions are polynomials. The Taylor and 

Maclaurin formulas make it possible to represent the function  
( )xf

  as a 

polynomial, the coefficients of which can be easily calculated. These 

expansions are used for the approximate calculation of functions.  

In particular, the following approximate equalities hold (when 𝑥 → 0): 

𝑒𝑥 ≈ 1 +
𝑥

1!
+

𝑥2

2!
+. . . +

𝑥𝑛

𝑛 !
; 
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𝑙𝑛   (1 + 𝑥) ≈ 𝑥 −
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+. . . +(−1)𝑛+1 𝑥𝑛

𝑛
; 

𝑠𝑖𝑛 𝑥 ≈ 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+. . . +

(−1)𝑘𝑥2𝑘+1

(2𝑘+1) !
; 

𝑐𝑜𝑠 𝑥 ≈ 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+. . . +

(−1)𝑘𝑥2𝑘

(2𝑘) !
; 

(1 + 𝑥)𝛼 ≈ 1 +
𝛼

1!
𝑥 +

𝛼(𝛼−1)

2!
𝑥2+. . . +

𝛼(𝛼−1)⋅⋅⋅(𝛼−𝑛+1)

𝑛!
𝑥𝑛. 

In those approximations the error is infinitesimal of a higher order than 
nx  (in case of sinus function 12 += kn , and for cosines kn 2= ). 

Let’s take a closer look at the expansion of the exponent and sinus. 

1. 
( ) x
xf e= . Obviously, 

( ) xxf e=
, 

( ) xxf e=
, …, 

( )( ) xn xf e=

; 
( ) 10 =f , 

( ) 10 =f , …, 
( )( ) 10 =nf . Apply those equations to (9.19), 

we obtain 

( )n
n

x xo
n

xxx
+++++=

!
...

!2!1
1e

2

. 

2. 𝒇(𝒙) = 𝐬𝐢𝐧𝒙. Differentially differentiating and Appling 0=x , we 

obtain: 
( ) 00 =f

, 
( ) xxf cos=

, 
( ) 10 =f

, 
( ) xxf sin−=

, 
( ) 00 =f

, 𝑓‴(𝑥) = − 𝑐𝑜𝑠 𝑥, 𝑓‴(0) = −1, …, 𝑓(𝑛)(𝑥) = 𝑠𝑖𝑛   (𝑥 + 𝑛
𝜋

2
), 

( )( )
2

sin0


= nf n

. Apply it to (9.19), we obtain 

( )
( )

( )12
12753

!12

1
...

!7!5!3
sin +

+

+
+

−
++−+−= k

kk

xo
k

xxxx
xx

. 

Consider another form of Taylor's formula. In formula (9.17), we 

transfer 
( )0xf

 to the left hand side of the equality and denote as 𝑥 − 𝑥0 =

𝛥𝑥. Then the difference 𝑓(𝑥) − 𝑓(𝑥0) = 𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥) = 𝛥𝑓(𝑥0). 

We obtain 
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Δ𝑓(𝑥0) = 𝑓′(𝑥0)Δ𝑥 +
𝑓″(𝑥0)

2!
Δ𝑥2+. . . +

𝑓(𝑛)(𝑥0)

𝑛!
Δ𝑥𝑛 + 𝑜(Δ𝑥𝑛).(9.17') 

This formula is a generalization of the formula (8.2'): 

( ) ( ) ( )xoxxfxf += 00 , 

which, obviously, is obtained from (17.17 '), if put 1=n . Similarly, 

from (9.13) we obtain: 

Δ𝑓(𝑥0) = 𝑓′(𝑥0)Δ𝑥 +
𝑓″(𝑥0)

2!
Δ𝑥2+. . . +

𝑓(𝑛)(𝑥0)

𝑛!
Δ𝑥𝑛 +

𝑓(𝑛+1)(𝜉)

(𝑛+1)!
Δ𝑥𝑛+1. (9.12') 

If we replace the increment of the independent variable x  with dx  

in the formulas (9.13 ') and (9.17') (because xdx = ) and consider that 

𝑓 ′(𝑥0)𝑑𝑥 = 𝑑𝑓(𝑥0), 𝑓″(𝑥0)𝑑𝑥2 = 𝑑2𝑓(𝑥0), …, 𝑓(𝑛)(𝑥0)𝑑𝑥 =

𝑑𝑛𝑓(𝑥0), 

𝑓(𝑛+1)(𝜉)𝑑𝑥𝑛+1 = 𝑑𝑛+1(𝜉), 

then after Applying those equations to (9.13') and (9.17'), we obtain 

Δ𝑓(𝑥0) = 𝑑𝑓(𝑥0) +
1

2!
𝑑2𝑓(𝑥0) + ⋯ +

1

𝑛!
𝑑𝑛𝑓(𝑥0) +  

+
1

(𝑛+1)!
𝑑𝑛+1𝑓(𝜉), (9.13") 

Δ𝑓(𝑥0) = 𝑑𝑓(𝑥0) +
1

2!
𝑑2𝑓(𝑥0)+. . . +

1

𝑛!
𝑑𝑛𝑓(𝑥0) + 𝑜(Δ𝑥𝑛). (9.17") 

Thus (when 𝛥𝑥 → 0) with formulas (9.13") and (9.17") it is possible to 

extract from the infinitesimal increment  
( )0xf

 not only its main term 

(the first differential) but also members of higher orders of smallness. They 

are successive differentials of the second, third, etc. orders with 

coefficients respectively 

!2

1

, 
!3

1

, …, 
!

1

n
. 
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Each of the formulas (9.13 ") and (9.17") is called a Taylor formula 

in differential form. In studying the multivariable functions, we will use 

just such a representation of the Taylor formula. 

Questions 

1. What is the geometric meaning of the Lagrange theorem? 

2. Is the Lagrange theorem a special case of the Cauchy’s theorem? 

3. Let 
( ) 1lim

2
=

→
xf

x , 
( ) 0lim

2
=

→
xg

x . Can the L’Hospital’s rule be 

applied to find the limit 

( )
( )xg

xf

x 2
lim
→

? 

4. Let 
( ) +=

→
xf

x 1
lim

, 
( ) −=

→
xg

x 1
lim

. Can the L’Hospital’s rule be 

applied to find the limit 

( )
( )xg

xf

x 1
lim
→

? 

5. What is the Taylor polynomial? What are its properties? 

6.  How is the Taylor polynomial of a function 
( )xf

 related to the 

Taylor formula for this function? 

7. What is the Maclaurin formula? 

8. What is the mathematical equation of the Taylor formula in 

differential form for function 
( )xf

? 
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Chapter 10. Curve sketching 

with the use of the first 

derivative 

10.1. Monotonic test 

Theorem 10.1. Let 
( )xf  continuous on interval X and has a finite 

derivative inside it. In order for function 
( )xf  to be monotonically 

increasing (decreasing) on X, the condition 
( ) 0 xf  (

( ) 0 xf ) is 

sufficient on X. 

Proof (monotonically increasing) Let 
( ) 0 xf

; 1x , 2x X , 

12 xx 
. Apply Lagrange’s theorem to 

( )xf
 on 

 21, xx
: 

( ) ( ) ( )( )1212 xxcfxfxf −=−
, 

where 21 xcx 
.  

( ) ( )12 xfxf 
 because 

( ) 0 cf
, therefore, 

( )xf  is an increasing function. 

Note that the proved condition is not necessary.  For example, the 

theorem remains verified if the derivative vanishes at a finite number of 

interior points of the interval X. 
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10.2. Extremum 

Definition. The point 0x
 is called the local maximum point of the 

function 
( )xf , if in some neighborhood of the point 0x

 the inequality 

( ) ( )xfxf 0  is verified. 

The point 0x
 is called local minimum point of the function 

( )xf , if 

in some neighborhood of the point 0x
 the inequality 

( ) ( )xfxf 0  is 

verified. 

If 0x
 is the point of local maximum (minimum), then the value of the 

function 
( )0xf

 is called the local maximum (minimum). 

The general term for a local maximum and a local minimum is a local 

extremum. 

The necessary condition for the extremum of a differentiable function 

follows from Fermat's theorem proved in § 9.1: in order for the 

differentiable function 
( )xf  to have a local extremum at the point 0x

, it 

is necessary that the equality 
( ) 00 = xf

 is verified at this point. 

Since 0x
 is an extremum, then there is an interval containing a point 

0x
, where the value

( )0xf
 is largest or smallest. Then by Fermat’s theorem 

we obtain that 
( ) 00 = xf

. 

Note that the condition 
( ) 00 = xf

 is not a sufficient condition for the 

extremum. For instance, function 
3xy =
 increases on the whole number 

line and has no extremum, but its derivative is equal to zero at the point 

00 =x
: 

( ) 03 2

00 == xxf
. 
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In addition, the function may have an extremum at some point, but not 

be differentiable at this point. 

Points at which the derivative of the function is equal to zero or does 

not exist are called critical (or stationary). Obviously, if there is an 

extremum at any point, then this point is critical.  

Points at which the derivative of the function is equal to zero or does 

not exist are called critical (or stationary). Obviously, if there is an 

extremum1 at any point, then this point is critical. 

10.3. The first sufficient condition of 

extremum 

Theorem 10.2. Let 
( )xf  function be continuous on any interval 

containing a critical point 0x
, and differentiable at all points of this 

interval, except, perhaps, the point itself 0x
. If, when passing through a 

point 0x
, the derivative changes sign from plus to minus, then the point 0x

 

has a local maximum, and if from minus to plus, then the minimum. 

Proof. For definiteness, let the derivative change sign from plus to 

minus: 
( ) 0 xf  when 0xx 

, 
( ) 0 xf  when 0xx 

 (for all x, on the 

considered interval). We apply the Lagrange’s theorem to 
( )xf

 on
 0, xx

: 

( ) ( ) ( ) ( )xxcfxfxf −=− 00 , 
( )0, xxc

. 

Because 
( ) 0 cf

 and 
00 − xx

, then 
( ) ( )0xfxf 

. 

                                                      
1 Often we simply say extremum (maximum, minimum), referring to the local extremum (local 

maximum, a local minimum). 
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We apply the Lagrange’s theorem  on interval 
 xx ,0 , where 0xx 

, 

we obtain: 

( ) ( ) ( ) ( )00 xxcfxfxf −=−
, 

( )xxc ,0
. 

Since point c is now on the right of 0x
, then 

( ) 0 cf . Moreover, 

00 − xx
. Thus 

( ) ( ) 00 − xfxf
. We obtain 

( ) ( )0xfxf 
. So, for all 

x on the considered interval, the following equation is verified: 

( ) ( )xfxf 0 . 

Thus, there is a local maximum at the point 0x
. 

The case of a local minimum is similar. 

Based on Theorems 10.1 and 10.2, the following scheme is used to find 

the extremum of the function using the first derivative. 

1. Calculate the derivative 
( )xfy = . 

2. Find critical points. 

3. Determine the sign of the derivative to the left and right of each 

critical point and conclude that there are local extrema of the function. 

4. Find function values at local extremum points. 

Example 10.1. Find the extremum 
( ) 101243 234 +−−= xxxxf . 

Solution. Calculate the derivative: 

( ) ( ) ( ) ( )2112212241212 223 −+=−−=−−= xxxxxxxxxxf

. 

By solving equation 
( ) 0= xf

, or 
( ) ( ) 021 =−+ xxx

, we find 

critical points: 
11 −=x

, 
02 =x

, 
23 =x

. After determining the sign of the 

derivative (fig. 10.1), we obtain: 1−=x , 2=x  are local minimum points, 

( ) 51 =−f
, 

( ) 222 −=f
 are minimum function values; 0=x is a point of 
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local maximum, 
( ) 100 =f  is a maximum value of the function at this 

point.. 

 
Fig. 10.1 

10.4. Largest and smallest values of the 

function on the interval 

Many economic problems are formulated as problems of finding the 

largest (smallest) value of a function on a certain set. Let us consider the 

simplest case when it is required to find the largest (smallest) value on an 

interval 
 ba, . According to the second Weierstrass’s theorem, if a 

function is continuous on an interval 
 ba, , then it takes on it the largest 

and smallest values. Note that the largest or smallest value of the function 

can be achieved both at the points of the local extremum and      the ends 

of the segment. 

The following scheme is used to find the largest and smallest values 

of a function on a segment. 

1. Calculate the derivative 
( )xf 

. 

2. Find critical points. 

3. Find the values of the function at critical points and at the ends of 

the segment and choose the largest and smallest from them. 

Note that in this case there is no need to find an extremum at critical 

points. 

Example 10.2. Find the largest and smallest values of the function 

( ) xxxf e2=
 on 

 1,3−
. 
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Solution. 1. ( ) ( ) xxx xxxxxf e2ee2 2 +=+=
. 

2. 
( ) 0= xf : 

( ) 0e2 =+ xxx . critical points: 01 =x , 22 −=x . 

3. ( ) 3e93 −=−f , ( ) 2e42 −=−f , 
( ) 00 =f

, 
( ) e1 =f . 

( ) e1наиб == ff
, 

( ) 00наим == ff
. 

So, the greatest value is achieved at the right end of the segment, and 

the smallest - at one of the critical points. 

Example 10.3. At point A is a deposit of raw materials. The distance 

from point A to the nearest point B on the railway is 200 km. The railway 

passes through city C, where the processing plant for the mentioned raw 

materials is located. The distance from B to C is 1000 km. To deliver raw 

materials to the plant, the AD highway is being built, connecting the field 

with the railway. The cost of transportation on the highway is double that 

of the railway. At what distance should point D be from A so that the total 

cost of transporting raw materials from field A to city C along the ADC 

route is minimal? 

Fig. 10.2 

Solution. Denote: xBD = . Then xDC −=1000 . 

Let a monetary unit cost the transportation of one ton of cargo by rail. 

Then transportation of one ton on the highway costs. By the Pythagorean’s 
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theorem, we calculate the length of the highway AD: 
22 200+= xAD . 

The cost of transporting one ton on the ADC route is 

( ) ( )xaxaxf −++= 10002002 22

. 

Obviously, we need to find the smallest value on the interval  1000,0

. In this case, the ABC route corresponds to the value 0=x , while the AC 

route corresponds to the value 1000=x . 

We calculate the derivative: 

( ) a
x

ax
xf −

+
=

22 200

2

. 

Find the critical points, equating the derivative to zero: 

0
200

2

22
=−

+
a

x

ax

, 

0
200

2002

22

22

=
+

+−

x

xaax

, 

22 2002 += xx , 
22 2003 =x . 

We need only positive value x: 

3

200
=x

. 

It means that 
4,115BD

 km. 
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Let’s make sure that the value at the point 3

200
=x

 is the smallest. To 

do so we calculate the values 
( )xf  at the considered point, at points 0=x

, 1000=x  and compare them:

af 1346
3

200










, 

( ) af 14000 =
, 

( ) aaf 2000104000021000 = . 

So, the smallest value is reached at the critical point 3

200
=x

. 

Questions 

1) Let us assume that function 𝑦 = 𝑓(𝑥) is increasing on [0, +∞). Is it 

inequality 𝑓′(𝑥) > 0 verified for all  𝑥 ∈ [0, +∞)? 

2) What is a local extremum? 

3) What point is called the critical (stationary) point of a given function? 

4) Can a function have two local minimums? 

5) Does the function 𝑦 = 4 − 𝑥2 has a local minimum? 

6) Let the function 𝑓(𝑥) be continuous on X, 𝑥0 ∈ 𝑋, 𝑓′(𝑥) < 0 when 

𝑥 < 𝑥0 and 𝑓′(𝑥) > 0 when 𝑥 > 𝑥0, and at the point 𝑥 = 𝑥0 

derivative 𝑓′(𝑥) does not exist. Is there an extremum at the point 𝑥0, 

and if so, which one is it? 

7) How many extreme points does the function have 𝑦 = sin𝑥 on [0,2𝜋]? 

8) Let the derivative of the function 𝑦 = 𝑓(𝑥) be 1 on (−1,3). Will the 

function increase in this interval? 

9) The function 𝑦 = 𝑓(𝑥) is differentiable on (𝑎, 𝑏) and𝑓′(𝑥) = 0 at six 

points of this interval. Can 𝑓(𝑥) have (𝑎, 𝑏) four minimums? 
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10) If a function 𝑦 = 𝑓(𝑥) has a maximum at a point 𝑥0 then will the 

function  𝑦 = (𝑓(𝑥))2 have a maximum at this point? 

11) Does the function𝑦 = 3𝑥 − 4 have extremum? 

12) Can a function 𝑦 = 𝑓(𝑥) at some point 𝑥 ∈ (𝑎, 𝑏) have a value less 

than any of the minima of this function on (𝑎, 𝑏)? 

13) Can the smallest function value 𝑦 = 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏] be at the point 

𝑥 = 𝑏? 

14) Let a function 𝑦 = 𝑓(𝑥) have a local maximum and a local minimum 

on [𝑎, 𝑏]. Can its greatest value not coincide with a local maximum, 

and the smallest - with a local minimum? 

15) Is it possible to find the largest and smallest values of a function on 

an interval without finding a local extremum, but knowing only its 

values at critical points? 
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Chapter 11. Curve sketching 

with the use of the second 

derivative.  

Full curve sketching and 

plotting 

11.1. Second sufficient condition of 

extremum 

 

Theorem 11.1. Let 
( )xf

 and derivatives 
( )xf 

 and 
( )xf 

 exist and 

are continuous in some neighborhood of the point 0x
 and 

( ) 0= xf
. 

Then: 

1) if 
( ) 00  xf

, then 0x
 is a local maximum point 

2) if 
( ) 00  xf

, then 0x
 is a local minimum point. 

Proof. Let 
( ) 00 = xf

, 
( ) 00  xf

. Because 
( )xf 

 is continuous, 

then 
( ) 0 xf

 not only at the point 0x
, but in its neighborhood. But 

( )xf 
 is the first derivative of the first derivative. Thus, it follows from 

( ) 0 xf
 that the first derivative is decreasing in that neighborhood. But 

at the point 0x
 derivative equals zero, it means that, 

( )xf 
 is positive on 
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the left of 0x
 and negative on the right. According to theorem 18.2 the 

local maximum exists at the point 0x
. 

The case 
( ) 00  xf

 is similarly. 

Note that if both derivatives are zero 
( ) 00 = xf

 and 
( ) 00 = xf

 at the 

point 0x
, then this theorem does not answer the minimum and maximum 

question. In this case, one can either apply the first sufficient condition for 

the extremum, or involve higher derivatives. 

11.2. Convexity and concavity of the function graph. Inflection 

point 

Consider a curve
( )xfy =

 on the plane, that is a graph of a function 

( )xf . 

A curve 
( )xfy =

 on 
( )ba,

 has an upward convexity, if all points of 

the curve lie below its tangent in this interval. 

A curve 
( )xfy =

  
( )cb,

 has a downward convexity, if all points of 

the curve lie above its tangent in this interval. 

In fig. 11.1 the convexity of the curve on  
( )ba,  is directed upward, 

and on 
( )cb,

 is downward.  

If the convexity of the curve is directed upwards, then the curve is 

called convex; if the bulge is directed downward is called concave. 

The curve shown in fig. 11.1 is convex on 
( )ba,

 and concave on 

( )cb,
.  
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Fig. 11.1. Graph convexity direction 

Theorem 11.2. If function 
( )xfy =  has a second derivative on the 

interval 
( )ba,

 and 
( ) 0 xf

 on 
( )ba,

, then the graph of this function 

has a convexity directed downward on 
( )ba,

;  if 
( ) 0 xf

 on 
( )ba,

, 

then the graph has a bulge upward on 
( )ba,

.  

Proof. Here we consider the case where 
( ) 0 xf

. Let 0x
 a random 

point on 
( )ba,

. Еhe equation of the tangent to the graph of the function 

( )xfy =
 passing through the point 

( )( )000 , xfxM
: 

𝑌 = 𝑓(𝑥0) + 𝑓 ′(𝑥0)(𝑥 − 𝑥0). (11.1) 

Where Y is a current ordinate of tangent. 

We represent the function 
( )xf

 in a neighborhood of a point 0x
 using 

the Taylor formula with 1=n : 

𝑦 = 𝑓(𝑥) = 𝑓(𝑥0) +
𝑓′(𝑥0)

1!
(𝑥 − 𝑥0) +

𝑓″(𝜉)

2!
(𝑥 − 𝑥0)2,  

𝜉 ∈ (𝑎,  𝑏). (11.2) 
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(where 

( )
( )201

!2
xx

f
RRn −


==

.) 

Subtract (11.1) from (11.2): 

𝑦 − 𝑌 =
𝑓″(𝜉)

2!
(𝑥 − 𝑥0)2. (11.3) 

We know that 
( ) 0 xf  on 

( )ba, , therefore Yy   for all 
( )bax ,

. And this means that the curve 
( )xfy =   is below the tangent. q.e.d. 

Definition. The point separating the convex part of the curve from the 

concave is called an inflection point. 

The necessary condition for the inflection at point 0x
 for a graph of 

a function 
( )xf  which has at this point a continuous second derivative is 

that  

( ) 00 = xf
. 

Assume the contrary, that 
( ) 0 xf

, we obtain that in the 

neighborhood of the point 0x
 the curve has a convexity directed 

downward, and the point 0x
 cannot be an inflection point. 

The sufficient condition for the inflection is to change the sign of the 

second derivative of the function 
( )xfy =

 when passing through a point 

0x
. In other words, if the second derivative has different signs to the left 

and to the right of 0x
, then the graph of the function has an inflection at 

0xx =
. 
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In this case, the directions of the convexity of the graph to the left and 

to the right of 0x
 are different, and this means the presence of an inflection 

at the point 0x
. 

To sum it up the following scheme is used to find the inflection 

points: 

1) Find the points where 
( )xf   is zero or does not exist (points like 

this also known as critical points); 

2) Find the sign of the second derivative to the left and right of each 

such point. 

Example 11.1. Find the inflection points and convex directions of the 

function graph 
( ) ( ) xxxf e1−= . 

Solution. Let’s find the first and second derivatives: 

( ) ( ) xxx xxxf ee1e −=−+−=
, 

( ) ( ) xxx xxxf e1ee +−=−−=
. 

Equating the second derivative to zero, we find the critical point 

1−=x . Obviously, the second derivative is positive to the left of this 

point, and negative to the right. Thus, when 1−x  the convexity of the 

graph is directed down, and when 1−x  it is directed up. Point 1−=x   

is the inflection point. 

11.3. Asymptotes 

Definition.  A straight line is called the asymptote of the graph of the 

function 
( )xfy =

  if the distance from the point M lying on the graph to 

this straight line tends to zero when the point M is unboundedly from the 

origin.  

There are three types of asymptotes: vertical, horizontal and oblique. 
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The line ax =  is called vertical asymptote for 
( )xfy = , if at least 

one of the limit values 
( )xf

ax +→
lim

 or 
( )xf

ax −→
lim

 equals +  or − . 

The line by =  is called horizontal asymptote for 
( )xfy =  when 

→x  ( −→x ), if 
( ) bxf

x
=

+→
lim

 (
( ) bxf

x
=

−→
lim

). 

The line bkxy +=   is called oblique asymptote for 
( )xfy =  when 

+→x  ( −→x ), if function 
( )xf  can be represented as 

( ) ( )xbkxxf ++= , where 
( ) 0→ x  when +→x  ( −→x ). 

The presence of an oblique asymptote is due to the existence of two 

limits: 

( )
k

x

xf

x
=

→
lim

, 
( )  bkxxf

x
=−

→
lim

. 

(the cases +→x  and −→x  should be considered separately). 

Examples of vertical and horizontal asymptotes are well known from      

school mathematics course. In particular, the graph of the function x
y

1
=

 

has a vertical asymptote 0=x  and a horizontal asymptote 0=y ; the 

graph of the function 
xy tg=

 has infinitely many vertical asymptotes: 

𝑥 = ±
𝜋

2
, 𝑥 = ±

3𝜋

2
, … . 

Example 11.2. Find the oblique asymptote for 𝑦 =
𝑥3

𝑥2−𝑥+1
. 

Solution. The oblique asymptote’s equation is 𝑦 = 𝑘𝑥 + 𝑏, find k and 

b: 

( )
( )

1
1

lim
1

limlim
2

2

2

3

=
+−

=
+−

==
→→→ xx

x

xxx

x

x

xf
k

xxx
, 
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( )  1
1

lim
1

limlim
2

2

2

3

=
+−

−
=








−

+−
=−=

→→→ xx

xx
x

xx

x
kxxfb

xxx

. 

Asymptote’s equation: 1+= xy . 

Example 11.3. The model of consumer demand uses, in particular, the 

Tornquist functions, which model the relationship between the value of 

income and the value of consumer demand for: a) essential goods; b) 

essential goods; c) luxury goods: 

a) 

( )

1

11

cx

axb
y

−

−
=

 
( )1ax  ; 

b) 

( )

2

22

cx

axb
y

−

−
=

 
( )2ax  ; 

c) 

( )

3

33

cx

axxb
y

−

−
=

 
( )3ax 

. 

The graphs of the first two of these functions have horizontal 

asymptotes 1by =  and 2by = : 

( )
1

1

11lim b
cx

axb

x
=

−

−

+→

; 

( )
2

2

22lim b
cx

axb

x
=

−

−

+→

, 

while the last graph has oblique asymptote: 

( ) ( )
( ) 32

2

3

33

1
limlimlim b

xx

x

cxx

axxb

x

xf
k

xxx
=

+−
=

−

−
==

→+→+→

, 

𝑏 = 𝑙𝑖𝑚
𝑥→+∞

[
𝑏3𝑥⋅(𝑥−𝑎3)

𝑥−𝑐3
− 𝑏3𝑥] =  

= 𝑙𝑖𝑚
𝑥→+∞

𝑏3𝑥2−𝑏3𝑎3𝑥−𝑏3𝑥2+𝑏3𝑐3𝑥

𝑥−𝑐3
= 𝑏3𝑐3 − 𝑏3𝑎3.  

Oblique asymptote’s equation: 
( )3333 acbxby −+=

. 



Chapter 11. Curve sketching with the use of the second derivative.  

184 

Here we traditionally denote the argument by x, and the function by y. 

Note that other notations are usually used for these functions: 

a) +


=

I

I
x

;    b) 

( )
+

−
=

I

I
x

;     c) 

( )
+

−
=

I

II
x

.) 

11.4. Curve sketching and function plotting scheme  

Let’s give curve sketching and function plotting scheme below. 

1. Find the domain of the function. 

2. Find the break points of the function. 

3. Find the intervals of functions increasing and decreasing. 

4. Find the minimums and maximums 

5. Find the direction of convexity of the function graph, inflection 

point. 

6. Find the asymptotes. 

In addition, we might consider the parity (or oddness) of the function, 

its periodicity, the points of intersection of the graph with the coordinate 

axes  

Based on the curve sketching the graph is plotted. It might be handy to 

outline the elements of the graph in parallel with the curve sketching. 

Example 11.4. Perform curve sketching on ( )2
3

12 −
=

x

x
y

 and plot the 

graph. 

Solution.  

1. Domain of the function: 
( ) ( )+− ,11, 

, i.е. 1x . 

2. 1=x  – second degree break points because 

( ) ( )
+=

−
=

− +→−→
2

3

1
2

3

1 12
lim

12
lim

x

x

x

x

xx

. 

3. Calculate the derivative 



11.3. Asymptotes  

185 

𝑓 ′(𝑥) =
3𝑥2(𝑥−1)2−2𝑥3(𝑥−1)

2 (𝑥−1)4 =
3𝑥2(𝑥−1)−2𝑥3

2 (𝑥−1)3 =
𝑥3−3𝑥2

2 (𝑥−1)3 =
𝑥2(𝑥−3)

2 (𝑥−1)3. 

Find the areas of increasing and decreasing functions: 

𝑥 ∈ (−∞,  1)  𝑓 ′(𝑥) > 0  function increasing; 

𝑥 ∈ (1,  3)  𝑓 ′(𝑥) < 0  function decreasing; 

𝑥 ∈ (3,  ∞)  𝑓 ′(𝑥) > 0  function increasing. 

4. Equating the derivative to zero, we find the critical point 3=x . The 

derivative changes sign from minus to plus at the point 3=x  (
( ) 0 xf  

when 31  x ; 
( ) 0 xf

 when 3x ). Thus, there is a minimum 

( )
8

27
3min == ff

 at the point 3=x . 

5. Calculate the second derivative: 

( )
( )( ) ( )( )

( )

( )( ) ( )
( ) ( )

.
1

3

12

33163

12

133163

44

232

6

22332

−
=

−

−−−−
=

=
−

−−−−−
=

x

x

x

xxxxx

x

xxxxxx
xf

 
Define the direction of the convexity and the inflection point: 

0x   
( ) 0 xf

  upward convexity; 

0x   
( ) 0 xf

  downward convexity; 

0=x   
( ) 0= xf

  
( )0,0

 is inflection point. 

6. Find the asymptotes. Obviously, 1=x  is the vertical asymptote. 

Find the oblique asymptote:  

𝑘 = 𝑙𝑖𝑚
𝑥→±∞

𝑓(𝑥)

𝑥
= 𝑙𝑖𝑚

𝑥→±∞

𝑥3

2𝑥 (𝑥−1)2 = 𝑙𝑖𝑚
𝑥→±∞

𝑥2

2 (𝑥−1)2 =
1

2
, 

𝑏 = 𝑙𝑖𝑚
𝑥→±∞

[
𝑥3

2 (𝑥−1)2 −
1

2
𝑥] = 𝑙𝑖𝑚

𝑥→±∞

2𝑥2−𝑥

2 (𝑥−1)2 = 1. 

So, 𝑦 =
1

2
𝑥 + 1 is oblique asymptote. 
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The graph of the considered function is shown in Fig. 11.2.

 

Fig. 11.2. function 𝑦 =
𝑥3

2 (𝑥−1)2 

Example 11.5. In probability theory and statistics, a differential 

function of the normal distribution plays a very important role: 

( )
2

2

2e
2

1


−
−


=

ax

y

. 

Let’s perform curve sketching by the methods of differential calculus 

using the scheme above and plot its graph. Note that this graph is called 

the normal curve (Gaussian curve) 

Solution.  

1. Domain of the function is the Ox axis. 

2. Function is continuous on the Ox axis. 

3. Calculate the first derivative: 
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( )
( ) ( ) ( )

2

2

2

2

2

32

2

2 e
22

e
2

1


−
−



−
−



−
−=



















−
−


=

axax
axax

xf

. 

Obviously, 
( ) 0 xf  while ax  , 

( ) 0 xf  when ax  . 

Therefore, in the interval 
( )a,−  the function increases, and in the 

interval 
( )+,a , it decreases  

4. Equating the derivative to zero, we find the critical point ax = . At 

the point ax = , the derivative changes sign from plus to minus, therefore, 

it has a maximum 

( )


==
2

1
max aff

. 

5. Calculate the second derivative: 

( )
( ) ( ) ( )

( ) ( )
.1e

2

1

2
e

2
e

2

1

2

2

2

3

2

2

2

3

2

3

2

2

2

2

2

2

















−
−


−=

=



















−
−



−
−


−=



−
−



−
−



−
−

ax

axax
xf

ax

axax

 
Еhe second derivative is zero when 

( )
01

2

2

=


−
−

ax

, 

i.е. when += ax  and −= ax . 

Next 

( ) ( ) −− 0, xfax
 downward convexity; 

( ) ( ) +− 0, xfaax
 downward convexity; 

( ) ( ) ++ 0, xfax
 downward convexity. 
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When passing through points += ax , −= ax , the second 

derivative changes sign. The value of the function at both of these points 

is the same: 

𝑓(𝑎 + 𝜎) = 𝑓(𝑎 − 𝜎) =
1

𝜎√2𝜋
𝑒−

1

2 =
1

𝜎√2𝜋𝑒
. 

Thus, inflection point is 

(𝑎 − 𝜎,
1

𝜎√2𝜋𝑒
) и (𝑎 + 𝜎,

1

𝜎√2𝜋𝑒
). 

6. There are obviously no vertical asymptotes. The limit of the function 

when →x  equals to zero: 

( ) ( ) 0limlim ==
−→+→

xfxf
xx . 

Therefore, the O axis is the horizontal asymptote of the graph 

(obviously, 

( )
0lim =

+→ x

xf

x  there are no inclined asymptotes). 

While plotting, we additionally take into account that for all values of 

the argument 
( ) 0xf

, i.e. the curve is located above the Ox axis, as well 

as the fact that the curve is symmetric with respect to the straight line 
ax =   (Fig. 11.3), since the difference  ax − in the analytical expression 

of the function is squared. 

 
Fig. 11.3. The normal curve 
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11.5. FINDING MAXIMUM AND MINIMUM USING HIGH 

ORDER DERIVATIVES 

If at some point 0x
 both the first and second derivatives equal zero: 

( ) 00 = xf
, 

( ) 00 = xf
, then at this critical point there can be either a 

maximum or a minimum, or there is neither one nor the other. In this case, 

higher derivatives can be used. 

Let the function 
( )xf  have derivatives up to the n order 

( )( )xf n

 in a 

neighborhood of a point 0xx =
 and be continuous. Let all derivatives up 

to the (n – 1) order inclusively at this point equal zero: 

𝑓′(𝑥0) = 𝑓″(𝑥0) =. . . = 𝑓(𝑛−1)(𝑥0) = 0, (*) 

and 
( )( ) 00 xf n

. Represent the difference 
( ) ( )0xfxf −

 in powers 

of the difference 0xx −
 using Taylor formula with the remainder term in 

the form of Peano: 

𝑓(𝑥) − 𝑓(𝑥0) =
𝑓′(𝑥0)

1!
(𝑥 − 𝑥0) +

𝑓″(𝑥0)

2!
(𝑥 − 𝑥0)2 + ⋯ +  

+
𝑓(𝑛−1)(𝑥0)

(𝑛−1) !
(𝑥 − 𝑥0)𝑛−1 + +

𝑓(𝑛)(𝑥0)

𝑛 !
(𝑥 − 𝑥0)𝑛 + 𝑜((𝑥 − 𝑥0)𝑛).  

Here 
( )( )n

xxo 0−
 is 

( ) ( )nxxx 0−
, where 

( ) 0→ x
 where 0xx →

. Moreover, according to (*) first 
( )1−n

 terms on the right side of the last 

equality vanish. Therefore 

𝑓(𝑥) − 𝑓(𝑥0) =
𝑓(𝑛)(𝑥0)

𝑛 !
(𝑥 − 𝑥0)𝑛 + 𝛼(𝑥) (𝑥 − 𝑥0)𝑛. 

Let 𝛼(𝑥) =
𝛽(𝑥)

𝑛!
. Obviously, 𝛽(𝑥) infinitesimal when 𝑥 → 𝑥0: 

𝑙𝑖𝑚
𝑥→𝑥0

𝛽(𝑥) = 0. 

We obtain 
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𝑓(𝑥) − 𝑓(𝑥0) =
𝑓(𝑛)(𝑥0)+𝛽(𝑥)

𝑛 !
(𝑥 − 𝑥0)𝑛. (**) 

Because 
( ) 0→ x  when 0xx →

, then for values of x, sufficiently 

close to 0x
,  the sign of the sum 

( )( ) ( )xxf n +0 , in the numerator 

coincides with the sign 
( )( )0xf n

 for both 0xx 
 and 0xx 

.  0xx 
. 

Let’s consider two cases. 

1) n is an odd number, n = 2k + 1. Then, when passing from x values 

smaller than 0x
, to x values larger than 0x

, the expression 
( ) 12

0

+
−

k
xx

 

will change its sign to the opposite: 

( ) 0
12

0 −
+k

xx
 when 0xx 

, 

( ) 0
12

0 −
+k

xx
 when 0xx 

. 

In this case, the sign of the first factor in (**), coinciding with the sign 

of 
( )( )0xf n

, will not change. Thus, the sign of the difference 

( ) ( )0xfxf −
 will change. Therefore, at a point 0x

, the function 
( )xf

 

cannot have an extremum, since near this point it takes values both less 

than 
( )0xf

 and greater than 
( )0xf

; 

2) n is an even number, n = 2k. In this case, the difference 

( ) ( )0xfxf −
 does not change sign when passing from x smaller than 0x

 

to values greater than 0x
, since, obviously 

( ) 0
2

0 −
k

xx
, for all values 

of x. Obviously, near 0x
 both left and right, the sign of the difference

( ) ( )0xfxf −
 coincides with the sign of 

( )( )0xf n

. Therefore, if 
( )( ) 00 xf n

, then 
( ) ( )0xfxf 

 in some neighborhood of the point 0x
, 
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therefore, the function 
( )xf  has a minimum at the point 0x

; if 
( )( ) 00 xf n

, then the function has a maximum. 

We introduced the next rule: if when 0xx =
 

𝑓′(𝑥0) = 𝑓″(𝑥0) =. . . = 𝑓(𝑛−1)(𝑥0) = 0, (*) 

And  
( )( ) 00 xf n

 when  n is odd, then 
( )xf  has neither maximum 

or minimum at the point 0xx =
. 

If the first derivative that is not equal to zero at the point 0x
 is a 

derivative of even order, then the function has an extremum at the point 0x

; maximum if 
( )( ) 00 xf n

, and minimum if 
( )( ) 00 xf n

. 

Example 11.6. Find maximum and minimum of the following function 

( ) xxxxxf 24248 234 +++= . 

Solution. Find the critical points: 

( ) ( )812642448244 2323 +++=+++= xxxxxxxf
. 

From 
( ) 081264 23 =+++ xxx

 we obtain critical point 2−=x . 

Consider the values of the derivatives at the point 2−=x : 

( ) 484812 2 ++= xxxf
, 

( ) 02 =−f
; 

( ) 4824 += xxf
, 

( ) 02 =−f
 

( )( ) 0244 =xf
. 

Thus, 
( )xf

has minimum at 2−=x . 

Example 11.7. Find the extremum of the following function 

( ) xxf xx sin2ee −−= −

. 
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Solution. Let’s calculate the derivative: 

( ) xxf xx sin2ee −−= −

. 

Obviously, the point 0=x is critical: 
( ) 00 =f . Next: 

( ) xxf xx sin2ee +−= −

, 
( ) 00 =f ; 

( ) xxf xx cos2ee ++= −

, 
( ) 40 =f . 

Here, the first derivative that does not vanish at a critical point has a 

third, i.e. it is odd order. Therefore, at this critical point there is no 

extremum. 

Questions 

1. Let 𝑥0 – critical point of 𝑦 = 𝑓(𝑥) and let 𝑓′′(𝑥0) = 0. Is there an 

extremum at a point? 

2. Let the graph of the function 𝑦 = 𝑓(𝑥) have a convexity directed 

upwards. Where is the convexity of the curve  𝑦 = 𝜆𝑓(𝑥) directed: а) when 

 > 0, б) when  < 0? 

3. Let the graph of the function 𝑦 = 𝑓(𝑥) have three inflection points 

𝑥1, 𝑥2 и 𝑥3 (𝑥1 < 𝑥2 < 𝑥3) on (𝑎, 𝑏) and let𝑦 = 𝑓(𝑥) is convex curve on 

(𝑎, 𝑥1). Is this curve convex or concave on (𝑥3, 𝑏)? 

4. Let 𝑓′′(𝑥0) = 0. Is point 𝑥0 the inflection? 

5. Let 𝑦 = 𝑓(𝑥) have a horizontal asymptote for 𝑥 → +∞. What is 

the limit 𝑙𝑖𝑚
𝑥→+∞

𝑓(𝑥)

𝑥
? 

6. Can a graph of a function 𝑦 = 𝑓(𝑥) have two different oblique 

asymptotes? 

7. How to find an extremum of the function 𝑦 = 𝑓(𝑥) at a point 𝑥0, if 

𝑓′(𝑥0) = 0 and 𝑓′′(𝑥0) = 0? 
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Chapter 12. Derivative 

applications in economic theory 

12.1. Profit Maximization 

Consider the economic interpretation of Fermat's theorem. 

Let 
( )xSS =

 be a function of costs, 
( )xDD =

 be a function of 

income, 
( )xPP =  be a function of profit. Then 

( ) ( ) ( )xSxDxP −= . The 

optimal level of production is the level such that the profit 
( )xP

is 

maximum, i.e. the value of output 0x
 at which the profit function 

( )xP
 has 

a maximum. By virtue of Fermat's theorem, at this point 0xx =
 the 

derivative is equal to zero 
( ) 00 = xP

:. But  
( ) ( ) ( )xSxDxP −=

 

therefore 

𝐷′(𝑥0) = 𝑆′(𝑥0). (*) 

The derivative 
( )xS

 expresses marginal costs MS , and the derivative 

( )xD
 expresses marginal revenue MD . Thus, equality (*) obtained using 

Fermat's theorem takes the form: 

( ) ( )00 xMDxMS =
. 

The last equality is an expression of one of the basic laws of 

microeconomics: maximum profit is achieved when the marginal cost and 

marginal revenue are equal. 
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12.2. Elasticity 

Now let’s consider the logarithmic derivative and its applications. Let 

the function 
( )xfy =  be positive and differentiable at the point x. As it 

was noted, in particular, in deriving the derivative formula for an 

exponential function (see § 8.5), the derivative of the function 

( )xfy lnln =
 has the form 

( ) 
( )

( )
( )
( )xf

xf
xf

xf
xf


==

 1
ln

, or y

y
y


=)(ln

. 

This expression is called the logarithmic derivative of the function 

( )xf
. The logarithmic derivative is also called the rate of change yT

 of 

the function y: 

𝑇𝑦 = (𝑙𝑛 𝑦)′ =
𝑦′

𝑦
. (12.1) 

Let 
( )tSS =

 be the value of the contribution at a time .t . Let us find 

out whether it is possible to approximately determine the nominal annual 

rate of bank i interest by function 
( )tS

. If interest is accrued once per 

period of time t , then interest for the specified period will amount to 

tSi  (here t  is the share of the year). Then the increment of the deposit 

and the interest on the deposit are one and the same .tSiS = , then 

tS

S
i




=

 

If 
( )tS

 is a differentiable function, then we can replace the increment 

S  with a differential .tSdS =  We obtain 

( ) .ln


=


=



 S

S

S

tS

tS
i
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And this means that the bank interest rate i  coincides with the 

logarithmic derivative of the contribution. 

In many problems, the concept of elasticity of a function is used. 

Definition. The elasticity 
( )yEx  of a function

( )xfy =   is the limit 

of the ratio of the relative increment of the function y to the relative 

increment of the argument x for 0→x : 

𝐸𝑥(𝑦) = 𝑙𝑖𝑚
Δ𝑥→0

(
Δ𝑦

𝑦
:

Δ𝑥

𝑥
) =

𝑥

𝑦
𝑙𝑖𝑚

Δ𝑥→0

Δ𝑦

Δ𝑥
=

𝑥

𝑦
⋅ 𝑦′ = 𝑥 ⋅

𝑦′

𝑦
. (12.2) 

The elasticity of the function approximately expresses the percentage 

change in the function 
( )xfy =  when the argument x changes by 1%. 

From the formula (12.2) it follows that the elasticity of the function is 

equal to the product of the independent variable x by the rate of change of 

the function yT
: 

𝐸(𝑦) = 𝐸𝑥(𝑦) = 𝑥𝑇𝑦. (12.3) 

Note the elasticity properties: 

𝐸(𝑢𝑣) = 𝐸(𝑢) + 𝐸(𝑣), (12.4) 

𝐸 (
𝑢

𝑣
) = 𝐸(𝑢) − 𝐸(𝑣), (12.5) 

obviously following from the corresponding properties of logarithms. 

The elasticity of the function is used in the analysis of supply and 

demand. Let 
( )pDD =

 be a function of demand on the price of goods p. 

The elasticity of demand relative to price is determined by the ratio: 

𝐸 =
Процентное изменение спроса

Процентное изменение цены
. (11.6) 
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Percent change in demand is 
100



D

D

 , and percent change in price 

is 

100


p

p

. Therefore 























= 100:100

p

p

D

D
E

, 

or 

𝐸 =
𝑝

𝐷

Δ𝐷

Δ𝑝
. (12.7) 

With a continuous dependence D  on p  the difference ratio in the 

expression (20.7) is replaced by the limit at 0→p : 

𝐸(𝐷) = 𝑝
𝐷′(𝑝)

𝐷(𝑝)
. (12.8) 

Due to the fact that the demand function 
( )pDD =  is a decreasing 

function of price (see Fig. 7.14), its derivative is negative and the elasticity 

of demand is also negative. (Some authors define elasticity as a positive 

value, putting a minus sign in front of the right side of formulas (20.6) - 

(20.8).) 

There are three types of demand: 

1) elastic, if |𝐸(𝐷)| > 1; 

2) neutral, if |𝐸(𝐷)| = 1; 

3) inelastic, if |𝐸(𝐷)| < 1. 

Example 12.1. The demand function has the form 
pD −= 240

. 

Find the elasticity of demand at a price 
176=p

. 
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Solution: 

( )
( )p

p
D

D
pDE

−−
=


=
2402

1

. Using 176=p , we 

obtain 
( ) 375,1

128

176
−=−=DE

; 

( ) 1375,1 =DE
 – demand is elastic. 

 

Similarly, the concept of elasticity of supply is introduced as the ratio 

of the percentage change in supply to the percentage change in price. Since 

the function of the proposal 
( )pSS =

 is increasing (see. Fig. 7.15), then 

( )
S

S
pSE


=

 
there is a positive value. 

12.3. Optimization of taxation 

Let t be the tax per unit of output,  
( )xSS = is the cost function, 

( )xDD =
 is  the income function, 

( )xPP =
 is the profit function. Then 

the profit function has the form: 

( ) ( ) ( ) txxSxDxP −−=
. 

For instance, let the price of products 
( ) bxaxv −=

, i.e. linearly 

decreases with increasing volume of production, and the cost function has 

the form 
( ) cxxS += 2

. Here a, b, c are some positive constants. The 

profit function in this case has the form: 

( ) ( ) txcxbxaxxP −−−−= 2

. 

To maximize profits, the company needs the optimal output. The 

condition for maximum profit:,  



Chapter 12. Derivative applications in economic theory  

198 

( ) 0= xP , or. 022 =−−− xbxta , next 

22
0

+

−
=

b

ta
x

. 

With this value of the volume of production, the total tax T has the form 

𝑇 =
𝑡 (𝑎−𝑡)

2 (𝑏+1)
. The interests of the state are that the value of T be maximum. 

We differentiate T and, equating the derivative to zero: 0=T , 02 =− ta

, we obtain 

2
0

a
t =

. 

We consider this problem for specific numerical values of the constants 

a, b, and c. Let be  𝑎 = 80, 𝑏 = 1, 𝑐 = 10. Then 𝑡0 = 40, 𝑥0 = 10. With 

these values, the maximum value of profit 𝑃0 = 190, and state revenue 

𝑇0 = 𝑡0𝑥0 = 400. (Note that in the absence of taxes, maximum profit 

would be achieved with twice as much production 𝑥0 = 20 and would be 

𝑃0 = 790.) 

Questions 

1. At what ratio between marginal cost and marginal revenue the 

maximum profit  is achieved? 

2. What is the rate of change of function? 

3. What is called function elasticity? What is the connection between 

the elasticity and the rate of change of function? 

4. How to determine the elasticity of demand relative to price? 

5. When the demand is considered elastic? 

6. How to define the concept of elasticity of supply? Is a supply 

elasticity positive or negative?  
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INTEGRAL. 

Chapter 13. Indefinite integral. 

Integration methods. 

13.1. Antiderivative and indefinite 

integral. 

Definition. Function ( )xFy =  is called an antiderivative for function 

( )xf  in between X if for any Xx  holds true: 

( ) ( )xfxF = . 

For example: 

Function ( ) xxF ln=  is an antiderivative for function 
( )

x
xf

1
=

 on 

an infinite interval (0, ),0 + , so for any x from this interval the equality 

will be 
( )

x
x

1
ln =



; 

Function ( ) xxF arcsin=  is an antiderivative for function 

( )
21

1

x
xf

−
=

 ( )xf  in between ( )1,1− , so at each point of this 

interval, the equality is: 
21

1
)(arcsin

x
x

−
=

. 
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Obviously, if for this function ( )xf  there exists an antiderivative, then 

this antiderivative is not the one; if ( )xF  – antiderivative for ( )xf  and C 

– random constant, then ( ) CxF +  is antiderivative for ( )xf . 

Theorem 13.1. If )(xf  is differentiable between X  and if ( ) 0= xf  

throughout this gap, then ( )xf  is constant along X segment. 

 

Proof. It is enough to prove that for any two different points 1x , 

Xx 2  equality ( ) ( )21 xfxf =
 is true.  As function )(xf is 

differentiable on X , а ,),( 21 Xxx   then )(xf  differentiable (and is 

continuous) over the entire interval  21, xx , and we can apply the 

Lagrange theorem to function ( )xf  for  21, xx  (see. § 9.1), according to 

which inside this segment there is a point c:

( ) ( ) ( ) ( )1212 xxcfxfxf −=− . 

 ( ) 0= xf  at any point, then in particular ( ) 0= cf , consequently, 

( ) ( )21 xfxf = , Q.E.D. 

Theorem 13.2. If ( )xF  is antiderivative for a function ( )xf  in 

between X, then any other antiderivative for ( )xf  at X can be represented 

as ( ) CxF + , where  C is a number. 

Proof. Let ( ) ( )xfxF =  and ( ) ( )xfx =  for all Xx .  Then  

( ) ( ) 0][ =− xFx . 

From the above proved Theorem 13.1 it follows that  

( ) ( ) const==− CxFx , i.е. ( ) ( ) CxFx += , Q.E.D.. 
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Definition. If ( )xF  is an antiderivative for ( )xf , equation ( ) CxF +  

where C is a random constant is called an indefinite integral for function

( )xf  and signed as 
( ) dxxf

. 

So, if ( ) ( )xfxF = , then 

( ) ( ) CxFdxxf += . (13.1) 

The indefinite integral for function ( )xf  is the totality of all primitives 

for function 
( )xf

. 

In equation (13.1), the sign   is called an integral sign, ( )xf  – 

integrand function ( )dxxf  - an integrand, C – constant integration. 

The operation of seeking the indefinite integral of a given function is 

called the integration of this function. Integration is the inverse of 

differentiation. The correctness of integration is verified by differentiation. 

Properties of the indefinite integral: 

1. 
( )( ) ( )xfdxxf =


 , 

i.е. the derivative of the indefinite integral is equal to the integrand. 

2. 
( ) ( )dxxfdxxfd = , 

i.е. the differential from the indefinite integral is equal to the integrand. 

3. 
( ) ( ) CxFxdF += . 

These properties automatically follow from the definition of the 

integral. 

Integration Rules: 
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I. If ,0= constC  then 
( ) ( ) = dxxfcdxxcf

, i.е. the constant 

factor can be taken out from under the integral sign. 

II. ∫[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 ± ∫ 𝑔(𝑥)𝑑𝑥, i.е. the indefinite 

integral of the algebraic sum of two functions is equal to the algebraic sum 

of the integrals of these functions. 

III. If 𝐹′(𝑥) = 𝑓(𝑥),then ∫ 𝑓(𝑎𝑥 + 𝑏)𝑑𝑥 =
1

𝑎
𝐹(𝑎𝑥 + 𝑏) + 𝐶. 

Rules I and II follow from the corresponding differentiation rules (see 

§ 8.4). We verify the validity of equality III: 

(
1

𝑎
𝐹(𝑎𝑥 + 𝑏) + 𝐶)

′

=
1

𝑎
𝑓(𝑎𝑥 + 𝑏) ⋅ (𝑎𝑥 + 𝑏)′ =  

=
1

𝑎
𝑓(𝑎𝑥 + 𝑏) ⋅ 𝑎 = 𝑓(𝑎𝑥 + 𝑏). 

Integral table 

1. ∫ 0 ⋅ 𝑑𝑥 = 𝐶. 

2. ∫ 𝑥𝛼𝑑𝑥 =
𝑥𝛼+1

𝛼+1
+ 𝐶(𝛼 ≠ −1). 

3. ∫
𝑑𝑥

𝑥
= 𝑙𝑛   |𝑥| + 𝐶. 

4. ∫ 𝑎𝑥𝑑𝑥 =
𝑎𝑥

𝑙𝑛 𝑎
+ 𝐶. 4'. ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝐶. 

5. ∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑠𝑖𝑛 𝑥 + 𝐶. 6. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 = − 𝑐𝑜𝑠 𝑥 + 𝐶. 

7. ∫
𝑑𝑥

𝑐𝑜𝑠2 𝑥
= tg 𝑥 + 𝐶. 8. ∫

𝑑𝑥

sin2 𝑥
= −𝑐𝑡𝑔 𝑥 + 𝐶. 

9. ∫
𝑑𝑥

√1−𝑥2
= 𝑎𝑟𝑐𝑠𝑖𝑛 𝑥 + 𝐶. 9'. ∫

𝑑𝑥

√𝑎2−𝑥2
= 𝑎𝑟𝑐𝑠𝑖𝑛

𝑥

𝑎
+ 𝐶. 

10. ∫
𝑑𝑥

1+𝑥2 = 𝑎𝑟𝑐𝑡𝑔 𝑥 + 𝐶 . 10'. ∫
𝑑𝑥

𝑎2+𝑥2 =
1

𝑎
⋅ 𝑎𝑟𝑐𝑡𝑔 

𝑥

𝑎
+ 𝐶. 

11. ∫ ctg 𝑥𝑑𝑥 = 𝑙𝑛   |𝑠𝑖𝑛 𝑥| + 𝐶. 

12. ∫ tg 𝑥𝑑𝑥 = − 𝑙𝑛   |𝑐𝑜𝑠 𝑥| + 𝐶. 

13. ∫
𝑑𝑥

√𝑥2+𝐴
= 𝑙𝑛   |𝑥 + √𝑥2 + 𝐴| + 𝐶. 

14. ∫
𝑑𝑥

𝑥2−𝑎2 =
1

2𝑎
𝑙𝑛   |

𝑥−𝑎

𝑥+𝑎
| + 𝐶(𝑎 ≠ 0). 
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Most of the formulas given in the table directly follow from the table 

of derivatives (see § 8.5). The validity of any of the formulas is easily 

verified by differentiating the right-hand side. 

Check the formula 10 '. By the rule of differentiation of a complex 

function (
1

𝑎
arctg 

𝑥

𝑎
+ 𝐶)

′

=
1

𝑎

1

1+(
𝑥

𝑎
)

2 (
𝑥

𝑎
)

′

=
1

𝑎

1

1+
𝑥2

𝑎2

1

𝑎
=

1

𝑎2+𝑥2. 

Formula 9 ′ is verified in a similar way. 

Check formula 11. If 0sin x , then 

( ) ( ) ( ) x
x

x
x

x
xCx ctg

sin

cos
sin

sin

1
sinlnsinln ==


=


=


+
. 

If 0sin x , then 

( ) ( )( ) ( ) x
x

x
x

x
xCx ctg

sin

cos
sin

sin

1
sinlnsinln =

−

−
=


−
−

=


−=


+

. 

Formula 12 is checked similarly. 

We verify formula 13. Let 02 ++ Axx .  Then  

(𝑙𝑛   |𝑥 + √𝑥2 + 𝐴|)
′

= [𝑙𝑛   (𝑥 + √𝑥2 + 𝐴)]
′

=  

=
1

𝑥+√𝑥2+𝐴
(𝑥 + √𝑥2 + 𝐴)

′
=

1

𝑥+√𝑥2+𝐴
(1 +

𝑥

√𝑥2+𝐴
) =  

1

𝑥+√𝑥2+𝐴

√𝑥2+𝐴+𝑥

√𝑥2+𝐴
=

1

√𝑥2+𝐴
. 

The case is treated similarly𝑥 + √𝑥2 + 𝐴 < 0. Formula 14 is also 

verified similarly. 



Chapter 13. Indefinite integral. Integration methods.  

204 

13.2. Basic integration methods 

Direct integration 

The calculation of integrals based on the application of formulas 1–14 

and rules I – III is called direct integration. Consider the following 

examples: 

1. ∫ (6𝑥2 + 2 𝑐𝑜𝑠 𝑥 −
3

𝑥
) 𝑑𝑥 = 6 ∫ 𝑥2𝑑𝑥 + 2 ∫ 𝑐𝑜𝑠 𝑥 𝑑𝑥 − 3 ∫

𝑑𝑥

𝑥
= 

= 2𝑥3 + 2 𝑠𝑖𝑛 𝑥 − 3 𝑙𝑛   |𝑥| + 𝐶.  

It should be noted that at the end of the solution one general constant 

C is written, without writing out the constants from the integration of the 

individual terms. 

2. ∫ 𝑥√𝑥𝑑𝑥 = ∫ 𝑥
3

2𝑑𝑥 =
𝑥

5
2

5

2

+ 𝐶 =
2𝑥2√𝑥

5
+ 𝐶. 

3. ∫
3𝑥2+1

𝑥2(𝑥2+1)
𝑑𝑥 = ∫

𝑥2+1+2𝑥2

𝑥2(𝑥2+1)
𝑑𝑥 = ∫

𝑥2+1

𝑥2(𝑥2+1)
𝑑𝑥 + ∫

2𝑥2

𝑥2(𝑥2+1)
𝑑𝑥 = 

= ∫
𝑑𝑥

𝑥2 + 2 ∫
𝑑𝑥

𝑥2+1
= −

1

𝑥
+ 2arctg 𝑥 + 𝐶. 

Substitution method (variable replacement method). 

Replacing the integration variable is one of the most common and 

effective methods of reducing an indefinite integral to a combination of 

tabular ones.  

Let the integral be given 
( ) dxxf

. We introduce a new variable by 

the formula ( )tx = , where ( )t  – differentiable  function/  Then we 

substitute these expressions into the integral: 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝜙(𝑡))𝜙′(𝑡)𝑑𝑡. (13.2) 

Formula (13.2) is called the variable replacement formula. 
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Example 13.1. Find: а) 
 +

dx
x

x

1 ; б) 
( ) − dxxx

9
1

. 

Decision. а) Let's make a variable change: 
2tx = , xt = .  Then  

tdtdx 2= .  

( ) ( ) .arctg2arctg2

1
2

1

11
2

1
2

1

2

1 22

2

2

2

2

CxxCtt

t

dt
dtdt

t

t
dt

t

t

t

dttt
dx

x

x

+−=+−=

=








+
−=

+

−+
=

+
=

+


=

+ 

 

b) Put 1+= tx .  Then  tx =−1 , dtdx = . 

∫ 𝑥(𝑥 − 1)9𝑑𝑥 = ∫(𝑡 + 1)𝑡9𝑑𝑡 = ∫(𝑡10 + 𝑡9) 𝑑𝑡 =  

=
𝑡11

11
+

𝑡10

10
+ 𝐶 =

(𝑥−1)11

11
+

(𝑥−1)10

10
+ 𝐶.  

Often, changing a variable is not done in the form ( )tx = but 

( )xt = . 

Example 13.2. Find: а)  dxxxcossin2

; б) 
 + 41

2

x

dxx

. 

Decision. а) Make a replacement xt sin= .  Then  dxxdt cos= . We 

get 

C
x

C
t

dttdxxx +=+==  3

sin

3
cossin

33
22

. 

b) Put 
2xt = .  Then  dxxdt 2= . We get 

CxСt
t

dt

x

xdx
+=+=

+
=

+ 
2

24
arctgarctg

11

2

. 

Note that a new variable can and not be written out explicitly. In such 

cases, they talk about summing up under the sign of the differential. 
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In particular, the calculation of the integral in Example 13.2 can be 

written in the following form: 

( )
( )

Cx
x

xd

x

dxx
+=

+
=

+ 
2

22

2

4
arctg

11

2

. 

Example 13.3. 
( ) C

x
xdx

x

dxx
+==  2

ln
lnln

ln 2

. 

Part Integration 

Let ( )xuu =  and ( )xvv =  – differentiable functions.  Then  

( ) udvvduuvd += , or 

( ) vduuvdudv −= . 

Integrating both sides of the last equality, we obtain the integration 

formula by parts: 

 −= vduuvudv
. (13.3) 

Example 13.4. Find: а)  dxx xe
; б) 

( ) + dxxx cos32
; в)  xdxx ln

. 

Decision. а) Let ux = , dvdxx =e .  Then  dxdu = , 
xu e= . By the 

formula (21.3) we obtain. 

( ) CxCxdxxdxx xxxxxx +−=+−=−=  1eeeeee
. 

b) Let  32 += xu , dvdxx =cos .  Then  dxdu 2= , xv sin= . We 

get 

( ) ( ) ( ) Cxxxdxxxxdxxx +++=−+=+  cos2sin32sin2sin32cos32

. 
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c) Let  xu ln= , dxxdv = .  Then  x

dx
du =

, 2

2x
v =

. And get 

C
x

x
x

xdxx
x

dx
x

x
x

x
dxxx +−=−=−=  4

ln
22

1
ln

2

1

2
ln

2
ln

22222

. 

In some cases, the integration formula is applied in parts several times, 

gradually simplifying the integrand. 

Example 13.5. Find  dxxx cos2

. 

Decision. Let 
2xu = , dvdxx =cos .  Then  xdxdu 2= , xv sin= . 

Получаем 

 −= xdxxxxxdxx sin2sincos 22

. 

The resulting integral is not tabular, but it is simpler than the original, 

the degree of the variable x has decreased. We reuse the integration 

formula in parts by setting xu = , dvdxx =sin .  Then  dxdu = , 

xv cos−= . We get 

( )
.sin2cos2sin

coscos2sinsin2sincos

2

222

Cxxxxx

dxxxxxxdxxxxxdxxx

+−+=

=+−−=−= 
 

We indicate the most common types of integrals, for finding which the 

integration formula by parts is applied. 

1. 
( ) dxxP ax

n e
, 

,)( dxaxP x

n ( ) dxaxxPn sin
, 

( ) dxaxxPn cos

. 

2. 
( ) dxxxPn ln

, 
( ) dxxxPn arcsin

, 
( ) dxxxPn arccos

, 

( ) dxxxPn arctg
, 

( ) dxxxPn arcctg
. 
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Here 
( )xPn  is polynomial of degree n. 

For finding the integrals of the first group 
( ) uxPn =  (and the 

remaining factors are dv ). For finding the integrals of the second group, 

( ) dvdxxPn = (the remaining factors are taken as u). 

Obviously, the integrals a), b) in Example 13.4 and the integral in 

Example 13.5 refer to the first type and the integral c) in Example 13.4 to 

the second. 

Example 13.6. Calculate integral  .cos xdxe x

 

Decision. Note that this integral does not apply to any of the two types 

mentioned. Let .xeu =  Then  .cos dxdv =  We have 

( ) ;dxedxedu xx =


=  .sin xv =  
Using formula 13.3, we obtain 

∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑒𝑥 𝑠𝑖𝑛 𝑥 − ∫ 𝑒𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥. (*) 

Applying formula 13.3 to the integral on the right-hand side, we again 

apply the method of integration by parts setting xdxdveu x sin, ==  and 

.cos, xvedu x −==  We get 

∫ 𝑒𝑥 𝑠𝑖𝑛 𝑥 𝑑𝑥 = −𝑒𝑥 𝑐𝑜𝑠 𝑥 + ∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥. (**) 

Knowing (*) and (**), we get 

∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑒𝑥 𝑠𝑖𝑛 𝑥 − (−𝑒𝑥 𝑐𝑜𝑠 𝑥 + ∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥) =   

= 𝑒𝑥 𝑠𝑖𝑛 𝑥 + 𝑒𝑥 𝑐𝑜𝑠 𝑥 − ∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥.  

Move the integral from the right to the left so we get 

2 ∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑒𝑥(𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥) + 𝐶. 

We divide both sides of the last equality at 2 and, given that C is a 

random constant, we obtain 
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∫ 𝑒𝑥 𝑐𝑜𝑠 𝑥 𝑑𝑥 =
𝑒𝑥

2
(𝑠𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥) + 𝐶. 

It is easy to see that if we took u  not as 
xe , we would get the same 

result. 

13.3. Integration of rational shots 

Equation 

( )
( )xQ

xP

, where ( )xP  and ( )xQ   are polynomials that called 

rational fraction. A rational fraction is called correct if the degree of the 

numerator is less than the degree of the denominator. If the degree of the 

numerator is greater than or equal to the degree of the denominator, then 

the fraction is called incorrect. 

An irregular fraction can be represented as the sum of a polynomial 

and a regular fraction dividing the numerator by the denominator: 

( )
( )

( )
( )
( )xQ

xS
xR

xQ

xP
+=

. 

Here ( )xR  – some polynomial, and the second term is a regular 

fraction. 

For Example, 1

323
2

1

323
23

2
2

23

2345

+−+

+−
++=

+−+

++++

xxx

xx
xx

xxx

xxxx

. 

In order to       integrate the right fraction, it is decomposed at       simple 

fractions, having previously expanded the denominator at the elementary 

factors. 

Without proof, we give a decomposition formula for a regular 

fraction. Let the denominator ( )xQ  be factorized ( ) ( )
++− qpxxax 2

.  

Here ax =  – valid root ( )xQ  multiplicities α, qpxx ++2

 – square 

trinomial with negative discriminant. Then the correct fraction is 
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decomposed at the sum of the elementary fractions using the so-called 

method of indefinite coefficients as follows: 

( )

( ) ( ) ( ) ( )

( ) ( )
,...

......

212

22

2

11

1

21

2

qpxx

NxM

qpxx

NxM

qpxx

NxM

ax

A

ax

A

ax

A

qpxxax

xP

++

+
++

++

+
+

++

+
+

++
−

++
−

+
−

=
++−



−



−

 
where the coefficients are to be clarified in the process of fraction 

decomposition. 

In connection with the above decomposition, it is necessary to consider 

the so-called simple fractions: 

I. ax

A

− . III. qpxx

NMx

++

+
2

. 

II. ( )− ax

A

. IV. ( )++

+

qpxx

NMx
2

, 

where a, p, q, A, M, N – real numbers; α, β – integers; in addition, it is 

assumed that the denominators of fractions III and IV do not have valid 

кщщеы, i.е. 

0
2

2

−







q

p

. 

Consider the integrals of these simple fractions. 

Fractions of types I and II are easy to integrate: 

CaxAdx
ax

A
+−=

− ln
, 

( ) ( )
C

ax

A
dx

ax

A
+

−


−
−=

−
− 1

1

1

. 

For calculating the integral of a fraction of type III from the trinomial 

in the denominator, a full square is extracted: 
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2

222

2

242
a

p
x

p
q

p
xqpxx +








+=








−+








+=++

; 

( )

( )

.
4

2
arctg

4

2

ln
2

42

2

2

2

2
2

2

22

2

22

222

C
pq

px

pq

MpN

qpxx
M

p
q

p
x

dxMp
N

dx
qpxx

pxM
dx

qpxx

Mp
Npx

M

dx
qpxx

NMx

+
−

+

−

−
+

+++=









−+








+









−+

+
++

+
=

++









−++

=
++

+





 

Example 13.6. Find 
 ++

+
dx

xx

x

52

43
2

. 

Decision. You can use the      formula of the integral of a fraction of 

type III derived above, but we will once again repeat the process of its 

derivation at this specific example 

( )
( )

( )
( ) .

2

1
arctg

2

1
52ln

2

3

41

52

52

2

3

4152

22

2

3

52

43

2

2

2

2

222

C
x

xx
x

dx

xx

xxd

x

dx
dx

xx

x
dx

xx

x

+
+

+++=
++

+

+
++

++
=

++
+

++

+
=

++

+





 
IV. We proceed to the calculation of the integrals of a fraction of type 

IV, i.e. integrals ( ) 
++

+
dx

qpxx

NMx
2

 when 2 . 

Apply the same substitution 
t

p
x =+

2  which is  in the case of a 

fraction of type III: 
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( ) ( ) ( )

( )
.

2

2

2

2

22

22222









+








−+

+
+

=
+









−+

=
++

+

at

dtMp
N

at

tdtM
dt

at

Mp
NMt

dx
qpxx

NMx

 

The first of the obtained integrals is taken by substitution zat =+ 22

, dztdt =2 : 

( ) ( )
C

at
C

zz

dz

at

tdt
+

+−
−=+

−
−==

+
−−  122122

1

1

11

1

12

. 

The calculation of the second of the remaining integrals requires some 

effort. So, we need to calculate the integral 

( ) 

+
=

22 at

dt
J

 (  = 1, 2, 3, …). 

We apply the integration formula in parts. 

Let ( )+
=

22

1

at
u

, dtdv = ; then  ( ) 122

2
+

+


−=

at

tdt
du

, tv = . 

We get 

( ) ( )
dt

at

t

at

dt
J  +

+
+

+
=

122

2

22
2

. (*) 

Convert last integral: 

∫
𝑡2

(𝑡2+𝑎2)𝛽+1 𝑑𝑡 = ∫
𝑡2+𝑎2−𝑎2

(𝑡2+𝑎2)𝛽+1 𝑑𝑡 = ∫
𝑑𝑡

(𝑡2+𝑎2)𝛽 − 𝑎2 ∫
𝑑𝑡

(𝑡2+𝑎2)𝛽+1 =  

= 𝐽𝛽 − 𝑎2𝐽𝛽+1. 

Substitute the last expression into equality (*): 
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( )
1

2

22
22 + −+

+
= JaJ

at

t
J

. 

Express from here 1+J
: 

𝐽𝛽+1 =
1

2𝛽𝑎2

𝑡

(𝑡2+𝑎2)𝛽 +
2𝛽−1

2𝛽

1

𝑎2 𝐽𝛽. (**) 

The resulting formula reduces the calculation of the integral 

( ) ++

+
=

122
1

at

dt
J

 
To calculate  

( ) 

+
=

22 at

dt
J

. 

(Recall that b is a positive integer.) 

Obviously 

C
a

t

aat

dt
J +=

+
=  arctg

1
221

. 

We take one of its values, namely, when 0=C . By the formula (**) 

at 1=  find 

( ) a

t

aat

t

aat

dt
J arctg

2

1

2

1
3222222

2 +
+

=
+

= 
. 

If now take  2= ,then 

( ) ( )

( ) a

t

aat

t

aat

t

a

J
aat

t

aat

dt
J

arctg
8

3

8

3

4

1

4

3

4

1

52242222

222222322
3

+
+

+
+

=

=+
+

=
+

= 
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etc. Now it remains only to recall that 2

p
xt +=

 and return to the 

variable x. Note that formulas of the form (**), which allow us to reduce 

the calculation 1+J
  to the calculation J

 with less than one sign, are 

called recurrence formulas. We will further encounter recurrence relations  

in linear algebra while studying determinants. 

Now consider the integration of rational fractions that are not simple. 

As mentioned above, a rational fraction if it is not correct is transformed 

and represented as the sum of a polynomial and a regular fraction. Then 

the correct fraction is decomposed at simple fractions. The method of 

uncertain coefficients is used. After the fraction is represented as the sum 

of simple fractions, the integral of it is calculated as the sum of the integrals 

of these simple fractions. Consider this with examples. 

Example 13.7. Calculate integral 
dx

xxxx

xxx
 +−+−

++−

1222

122
234

23

. 

Decision. The integral function is the right fraction. We decompose it 

into simple fractions. For this, first expand the denominator at factors: 

( ) ( )111222 22234 +−=+−+− xxxxxx . . (This can be done, for 

example, by finding the root 1=x  and divide at ( )1−x .) We apply the 

decomposition formula: 

( ) ( ) ( ) 11111

122
2

2

2

1

22

23

+

+
+

−
+

−
=

+−

++−

x

NMx

x

A

x

A

xx

xxx

. 

Multiply both sides of this equality by the denominator of the left side: 

( ) ( )( ) ( )( )22

2

2

1

23 1111122 −+++−++=++− xNMxxxAxAxxx

. 

After reduction of similar terms, we get 
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( ) ( )

( ) .2

2122

212

2

21

3

2

23

NAAxNMA

xNMAAxMAxxx

+−+−++

++−−++=++−

 
We equate the coefficients for the same powers of x on the left and on 

the right: 

.1

,22

,12

,2

21

2

21

2

0

1

2

3

=+−

=−+

−=+−−

=+

NAA

NMA

NMAA

MA

x

x

x

x

. 

Solving the system, we find: 21 =A , 12 =A , 1=M , 0=N . So, 

( ) ( ) ( ) 11

1

1

2

11

122
2222

23

+
+

−
+

−
=

+−

++−

x

x

xxxx

xxx

. 

We integrate: 

( )

( ) .1ln
2

1
1ln

1

2

111
2

1222

122

2

22234

23

Cxx
x

x

xdx

x

dx

x

dx
dx

xxxx

xxx

+++−+
−

−=

=
+

+
−

+
−

=
+−+−

++−
 

 
Example 13.8. Calculate integral 

 −+−+−

+−+−+−
= dx

xxxxx

xxxxxx
I

2422

153810652
2345

23456

. 

Decision. The integral function is the wrong rational fraction. Dividing 

the numerator by the denominator, select the integer part: 

2𝑥6 − 5𝑥5 + 6𝑥4 − 10𝑥3 + 8𝑥2 − 3𝑥 + 15 =  

= (2𝑥 − 1) (𝑥5 − 2𝑥4 + 2𝑥3 − 4𝑥2 + 𝑥 − 2) + 2𝑥2 + 2𝑥 + 13. 

Consequently, the integrand function has the form 
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2422

1322
12

2345

2

−+−+−

++
+−

xxxxx

xx
x

. 

The denominator of the remaining correct fraction is factorized: 

( ) ( )

( ) ( ) ( ) ( ) .12122

22222422

2224

242345

+−=++−=

=−+−+−=−+−+−

xxxxx

xxxxxxxxxx

 
(One could have done otherwise - by finding; find the root of the 

denominator 2=x , and then divide the denominator by ( )2−x .) 

So, 

( )
( ) ( )

+−

++
+−= dx

xx

xx
dxxI

22

2

12

1322
12

. 

The first of these two integrals is calculated immediately: 

( ) Cxxdxx +−=−
212

, 

and for computing the second integral, we expand its integrand, which 

is a regular fraction, at simple fractions: 

( ) ( ) ( ) 11212

1322
2

22

22

11

22

2

+

+
+

+

+
+

−
=

+−

++

x

NxM

x

NxM

x

A

xx

xx

. 

Bringing the fractions on the right side to a common denominator, we 

equate the numerators: 

2𝑥2 + 2𝑥 + 13 = 𝐴(𝑥2 + 1)2 + (𝑀1𝑥 + 𝑁) (𝑥 − 2) +  

+(𝑀2𝑥 + 𝑁2) (𝑥2 + 1)(𝑥 − 2). 

Equating the coefficients at the same degrees x  left and right, we arrive 

at a system of five linear equations: 
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.1322

,222

,222

,02

,0

21

2121

221

22

2

0

2

4

3

=−−

=++−−

=−++

=+−

=+

NNA

NNMM

NMMA

NM

MA

x

x

x

x

x

 

Solving this system, we find: 

1=A , 31 −=M , 41 −=N , 12 −=M , 22 −=N . 

We get 

( ) ( ) ( ) 1

2

1

43

2

1

12

1322
22222

2

+

+
−

+

+
−

−
=

+−

−+

x

x

x

x

xxx

xx

. 

We calculate the integrals of each of the terms to the right: 

Cx
x

dx
+−=

− 2ln
2 , 

( ) Cxxdx
x

x
+++=

+

+
 arctg21ln

2

1

1

2 2

2
, 

( ) ( ) ( ) ( ) ( )
+

+
+

−=
+

+
+

=
+

+
222222222 1

4
12

3

1
4

1

2

2

3

1

43

x

dx

xx

dx

x

xdx
dx

x

x

. 

The last integral is calculated using the recurrence formula (**): 

( )
x

x

x

x

dx
arctg

2

1

12

1

1
222

+
+

=
+


. 

Taking into account the coefficients after obvious transformations, we 

obtain 
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( )
.arctg4

1

2
ln

2

1

1

43

2

1

2422

153810652

2

2

2

2

2345

23456

Cx
x

x

x

x
xx

dx
xxxxx

xxxxxx

+−
+

−
+

+

−
+−=

=
−+−+−

+−+−+−


 

13.4. Integration of irrational functions 

Consider the cases when the change of variable allows us to reduce the 

integrals of irrational functions to the integrals of rational functions (i.e., 

rationalizes the integral). Denote by ( )vuR ,  a rational function of u and v, 

i.e. a function that is obtained using only arithmetic operations on the 

variables u and v. 

1. Consider the integrals of the form
 













dx...,x,xx,R s

r

n

m

. Let k be 

the common denominator of fractions n

m

, s

r

, … . Let's make a 

substitution: 

ktx = , dtktdx k 1−= . 

 Then , obviously, the integrand function is transformed into a rational 

function of t. 

Example 13.9. Calculate integral 


+14 3x

dxx

. 

Decision. The smallest common multiple of the root indices is 4. 

Therefore, we substitute 
4tx = , dttdx 34= : 
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( ) ( )( ) .1ln
3

4
1ln

3

4

3

4

1

1

3

4
4

1
4

1
4

1
4

1

4 34 333

3

3
2

3

2
2

3

5
3

3

2

4 3

CxxCtt
t

td
dtt

dt
t

t
tdt

t

t
dtt

t

t

x

dxx

++−=++−=
+

+
−=

=








+
−=

+
=

+
=

+





 
2. We now consider the integral of the form 



























+

+









+

+
dx...,

dcx

bax
,

dcx

bax
x,R

s

r

n

m

. 

Such integrals are calculated by substitution 

kt
dcx

bax
=

+

+

, 

where k – common denominator of fractions n

m

, s

r

, … . 

Example 13.10. Calculate ( )
+++ 155 4 xx

dx

. 

Decision. Here 1=a , 5=b , 0=c , 1=d ; 4

1
=

n

m

, 2

1
=

s

r

. We do 

the substitution 
45 tx =+ , dttdx 34= . We get 

( ) ( )

( ) ( )  .15ln541ln4

1

1
14

1
4

1
4

155

44

2

3

4

CxxCtt

dt
tt

tdt

tt

dtt

xx

dx

+++−+=++−=

=








+
−=

+
=

+
=

+++


 
Some integrals of irrational functions are rationalized by trigonometric 

permutations. In particular, when calculating the integral 
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( ) − dxxax,R
22

 wildcard applies tax sin= , and an integral of the 

form 
( ) + dxxax,R

22

 – substitution tax tg= . 

Example 13.11. Find ( )


−
324 x

dx

. 

Decision. Let tx sin2= .  Then  dttdx cos2= , 

( ) ( )

.
44

1

sin1

sin

4

1

cos

sin

4

1
tg

4

1

cos4

1

cos8

cos2

sin44

cos2

4

2

233232

C
x

x
C

t

t
C

t

t
Ct

t

dt

t

dtt

t

dtt

x

dx

+
−

=+
−

=+=+=

===

−

=

−


 

13.5. Integration of trigonometric 

functions 

Consider an integral of the form 
( ) dxxx,R cossin

. We show that it 

reduces to the integral of a rational function by substituting 

2
 tg
x

t =
, 

called universal trigonometric substitution. 

Indeed, expressing xsin , xcos  and dx  through 
t

x
=

2
 tg

,we get : 

21

2
sin

t

t
x

+
=

, 
2

2

1

1
cos

t

t
x

+

−
=

, tx arctg2= , 
21

2

t

dt
dx

+
=

. 

Substituting the obtained expressions into the integral, we obtain 
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( ) ( ) =
+









+

−

+
= dttR

t

dt

t

t

t

t
RdxxxR 122

2

2 1

2

1

1
,

1

2
cos,sin

. 

Example 13.16. Find 
 + x

dx

sin1 . 

Decision. Using Universal Substitution 2
 tg
x

t =
 after obvious 

transformations we get: 

( )
C

x
C

tt

dt

x

dx
+

+

−=+
+

−=
+

=
+ 

2
tg1

2

1

2

1
2

sin1 2

. 

It should be noted, however, that universal trigonometric substitution 

often leads to very complex rational functions. Therefore, in many cases, 

instead of a universal substitution, other substitutions are used, which make 

it faster and easier to achieve the goal. 

Example 13.17. Find   dxxx 34 cossin
. 

Decision. Let xt sin= .  Then  dxxdt cos= . We get  

( )

.
7

sin

5

sin

75

1coscossincossin

7575

242434

C
xx

C
tt

dtttdxxxxdxxx

+−=+−=

=−== 

 

In general, an integral of the form   dxxx nm cossin
 where m and n 

are natural numbersis more convenient to calculate using the following 

substitutions: 

а) if m is even, n is odd, then the permutation xt sin= ; 

b) i f m is odd, n is even, then the permutation xt cos= ; 

c) if m and n are odd, then any of the substitutions “a” or “b”; 
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d) if m and n are even, then degree reduction formulas are applied: 

2

2cos1
sin2 x

x
−

=
, 2

2cos1
cos2 x

x
+

=
. 

Integrals of the following types:   dxnxmx coscos
, 

  dxnxmx cossin
,   dxnxmx sinsin

 taken using the following 

formulas known from trigonometry: 

( ) ( ) −++= coscos
2

1
coscos

, 

( ) ( ) −++= sinsin
2

1
cossin

, 

( ) ( ) −++−= coscos
2

1
sinsin

. 

Example 13.18. Find   dxxx 3cos5cos
. 

Decision. We use the cosine product formula: 

( ) C
xx

dxxxdxxx ++=+=  4

2sin

16

8sin
2cos8cos

2

1
3cos5cos

. 

“Non-countable" integrals 

It is known that the differentiation operation does not derive a function 

from the class of elementary functions. The integration operation is more 

complicated. Not every integral of an elementary function is expressed in 

a finite form in terms of elementary functions. Such integrals are called 

“non-countable”. We indicate some of these integrals: 

 dx
x

xsin

 – integral sine; 
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 dx
x

xcos

 – integral cosine; 

 x

dx

ln  – integral logarithm; 


− dxx2

e
 – Poisson integral; 

 dxx2sin
,  dxx2cos

 – Fresnel integrals. 

These integrals play an important role in applied sciences. For the 

calculation of “unshifted” integrals, approximate methods are used that 

allow us to estimate and calculate such integrals with any degree of 

accuracy. 

Questions 

1) What is the derivative of the antiderivative for a given function? 

2) How can two antiderivatives of the same function differ? 

3) How is the antiderivative function different from the indefinite 

integral from this function? 

4) What is the derivative of the indefinite integral? 

5) What is the differential from the indefinite integral? 

6) What are the main integration methods? 

7) On what formula is the method of replacing a variable in an indefinite 

integral based? 

8) What is a piecemeal integration method? What is the integration 

formula in parts? 

9) What is a differential sign? 

10) What function is called rational fraction? 

11) Which rational fraction is called correct and which incorrect? 

12) How to reduce the integration of the wrong rational fraction to the 

integration of the right rational fraction? 
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13) What rational fractions are called simple? 

14) What is the procedure for integrating a rational fraction that is not 

simple? 

15) What method is used to decompose a regular rational fraction at 

simple? 

16) What is the universal trigonometric substitution? 

17) Why does an integration of trigonometric expressions not suffice to 

own only universal trigonometric substitution? 

18) Is the integral of an elementary function always expressed in its final 

form in terms of elementary functions? 

19) What are “non-tilting” integrals? Give Examples of "unshifted" 

integrals. 

Chapter 14. Definite integral 

and its properties 
  

14.1. The concept of a specific integral 

Let function ( )xf  be defined on the line  ba, and cut the line  ba,  

randomly at n parts with dots: 

bxxxxxa nn == −1210 ...
. 

We choose in each of the partial segments 
 ii xx ,1−  random dot i : 

iii xx −1 , ni 1 . 
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Denote by ix the length of the i-th partial segment: 1−−= iii xxx , 

ni 1 . Consider the amount: 

𝜎𝑛 = 𝑓(𝜉1)Δ𝑥1 + 𝑓(𝜉2)Δ𝑥2+. . . +𝑓(𝜉𝑛)Δ𝑥𝑛 = ∑ 𝑓(𝜉𝑖)Δ𝑥𝑖
𝑛
𝑖=1 . (14.1) 

This sum (14.1) is called the integral sum of the function ( )xf  on the 

line  ba, . 

If ( ) 0xf , then its integral sum is the sum of the areas of the 

rectangles with bases ix  and heights 
( )if  , i = 1, 2, …, n, i.e., the area 

of the stepped figure formed by these rectangles (Pic. 14.1). 

 
Pic. 14.1. Stepped figure 

  

Denote by   the length of the largest partial segment of this partition: 

i
ni

x=
1

max
. 

Definition. The final limit of the integral sum (14.1) for 0→  if it 

exists and does not depend on either the method of splitting the segment
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 ba,  nor from the choice of points i is called the definite integral of a 

function ( )xf  on the line  ba,  and denoted as 

( )
b

a

dxxf

: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑙𝑖𝑚

𝜆→0
𝜎𝑛 = 𝑙𝑖𝑚

𝜆→0
∑ 𝑓(𝜉𝑖)Δ𝑥𝑖

𝑛
𝑖=1 . (14.2) 

If a definite integral (14.2) exists, then function ( )xf  is called 

integrable at segment  ba, . The number a in formula (14.2) is called the 

lower limit of the integral, and the number b is called the upper limit of the 

integral, ( )xf  – integrand, x is the integration variable, and the segment 

 ba,  – segment of integration. 

Note the differences in the concepts of definite and indefinite integrals: 

indefinite integral 
( ) dxxf

 is a family of functions, and a certain integral 

( )
b

a

dxxf

 is a certain number. 

  

Giving a Definition of the concept of a definite integral, we assumed 

ba  .By definition: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= − ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. (14.3) 

The geometric meaning of a certain integral 

In accordance with the Definitions of the concept of a definite integral, 

in the case when Function ( )xf  is non-negative at  ba, , integral 

( )
b

a

dxxf

 is numerically equal to the area S of the figure bounded above 
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the curve ( )xfy = , bottom - axis Ox, lateral - straight ax = , bx =  (Pic. 

14.2). This figure is called a curved trapezoid. 

 
Pic. 14.2. The geometric meaning of a certain integral 

The economic meaning of a certain integral 

Let function ( )tzz =  describe performance versus time t, then the 

volume v of products produced over the period from the moment 0tt =
 till 

the moment is expressed by the integral of ( )tz  on the segment
 Tt ,0 : 

( )


=

0t

dttzv

. 

Integrable Function Classes 

A sufficient condition for the existence of a definite integral is given 

by the following Theorem (we give it without proof). 

Theorem 14.1. If function ( )xfy =  is continuous on a segment  ba,

, then it is integrable on this segment. 

As can be seen from Theorem 14.1, the class of integrable functions is 

wider than the class of differentiable functions. We know that every 

differentiable function is continuous, but not every continuous function is 

differentiable. So, the continuity of a function is not enough for its 

differentiability but enough for integrability. Moreover, there are classes 
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of functions that are not continuous but are integrable. We give without 

proof a theorem on these functions. 

Theorem 14.2. If function ( )xf  is bounded at  ba,  and has at it only 

a finite number of discontinuity points, then it is integrable at this interval. 

Theorem 14.3. If function  is monotonically bounded at interval 

 ba,
,  then it is integrable at this interval. 

Boundedness of integrable function 

Theorem 14.4. If function ( )xf  is integrable on  ba, , then it is 

limited to  ba, . 

Proof. Let function ( )xf  be unlimited at  ba, .  Then it is not limited 

to at least one of the partial segments
 ii xx ,1− . And then, by choosing a 

point, you can make a product of function 
( ) ii xf 

 arbitrarily large and 

consequently so the integral sum n  ; under these conditions n  has no 

limit. Consequently, ( )xf  not integrable. From this we conclude that the 

assumption is false. 

14.2. Properties of a specific integral 

We first consider the properties of a certain integral expressed by 

equalities. 

  

1. By definition, we assume 

∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑎
= 0, (14.4) 

i.e.. a certain integral with the same integration limits is equal to zero. 
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2. By definition, when rearranging the upper and lower limits of 

integration, the integral changes to the opposite sign at: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= − ∫ 𝑓(𝑥)𝑑𝑥

𝑎

𝑏
. (14.5) 

3. The constant factor can be taken out of the integral sign: 

∫ 𝑐𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑐 ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. (14.6) 

4. The integral of the algebraic sum of two functions is equal to the 

algebraic sum of the integrals of these functions: 

∫ (𝑓(𝑥) ± 𝑔(𝑥)) 𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
± ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. (14.7) 

5. For any numbers a, b and c, equality holds: 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑐
. (14.8) 

We state properties 3–5 in more detail and prove them. 

Property 3. If function ( )xf  is integrable on  ba,  and const=c

,then function ( )xcf   is integrable on  ba,  and the following equality 

holds true: 

( ) ( ) =

b

a

b

a

dxxfcdxxcf

. 

Proof. For integral sums the following equality holds true: 

( ) ( )
==

=
n

i

ii

n

i

ii xfcxcf
11 . 

This equality is valid for any partition of a segment  ba,  at partial 

segments and any choice of points i . Designating, as before, 

ix= max
, we pass to the limit at 0→ : 
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( ) ( ) ( ) ( ) ===
=

→
=

→

b

a

n

i

ii

n

i

ii

b

a

dxxfcxfcxcfdxxcf
1

0
1

0
limlim

. 

Property 4. If ( )xf  and ( )xg  integrable on  ba, then their algebraic 

sum is also integrable at  ba,  and the equality is valid: 

( ) ( )( ) ( ) ( ) =

b

a

b

a

b

a

dxxgdxxfdxxgxf

. 

Proof. For any segment partition  ba,  and any choice of points i  for 

integral sums, the equality runs: 

( ) ( )( ) ( ) ( )
===

=
n

i

ii

n

i

ii

n

i

iii xgxfxgf
111 . 

Therefore 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) .

limlimlimlim

lim

1
0

1
0

1
0

1
0

1
0







=

==







=

==

=
→

=
→

=
→

=
→

=
→

b

a

b

a

n

i

ii

n

i

ii

n

i

ii

n

i

ii

n

i

iii

b

a

dxxgdxxf

xgxfxgxf

xgfdxxgxf

 
Property 5. For any three numbers a, b and c the equality holds: 

( ) ( ) ( ) +=

b

c

c

a

b

a

dxxfdxxfdxxf

, 

if all these three integrals exist. 
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Proof. We first consider the case when point c is located between the 

points a and b, i.e. bca  . We compose the integral sum of the function

( )xf  on the segment  ba, . 

 For the integrable function the limit of the integral sum does not 

depend on the method of partitioning the segment at partial segments, then 

we will divide the segment  ba,  apart, so that one of the division points 

(one of the ends of the partial segment) is point c. Denote by  


b

a integral 

sum according to the segment  ba, , through 


c

a – integral sum according 

to the segment  ca, , and through 


b

c – according to the segment  bc, .  

Then , obviously: 

( ) ( ) ( ) +=
b

c

ii

c

a

ii

b

a

ii xfxfxf
. 

Passing in the last equality to the limit at 0→ , we get 

( ) ( ) ( ) +=

b

c

c

a

b

a

dxxfdxxfdxxf

. 

Now, let point c be to the right of point b: cba  .  Then  on the 

basis of the proved equality: 

( ) ( ) ( ) +=

b

b

b

a

c

a

dxxfdxxfdxxf

. 

Thus 
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( ) ( ) ( ) −=

c

b

c

a

b

a

dxxfdxxfdxxf

. 

However, in accordance with property 2 

( ) ( ) −=

b

c

c

b

dxxfdxxf

; 

therefore 

( ) ( ) ( ) +=

b

c

c

a

b

a

dxxfdxxfdxxf

. 

This property of the case is proved similarly when the point c is to the 

left of the segment  ba, and in general for another arrangement of points 

a, b and c. 

Comment. We formulated and proved property 5 under the 

assumption that all three integrals under consideration exist. One could 

relax this requirement and prove property 5 under the assumption that only 

for the largest of the three segments under consideration does the integral 

exist. 

  

Now we consider the properties of a certain integral expressed by 

inequalities. 

6. If function ( )xf  is integrable on  ba, , ba   and ( ) 0xf , then 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≥ 0. (14.9) 

(This follows from the fact that all terms in the integral sum are non-

negative.) 

7. If functions ( )xf  and ( )xg  integrable on  ba, , ba   and 

( ) ( )xgxf  , then 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≥ ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
. (14.10) 

Proof.  ( ) ( ) 0− xgxf ,then property 6 implies 

( ) ( )( ) 0−
b

a

dxxgxf

. 

From here, taking into account property 4, we obtain 

( ) ( ) 0− 
b

a

b

a

dxxgdxxf

, или 

( ) ( ) 

b

a

b

a

dxxgdxxf

. 

8. Let function ( )xf  be integrable on  ba,  and satisfy on   ba,  the 

condition ( ) Mxfm  .  Then  

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎). (14.11) 

Proof. By virtue of property 7 

∫ 𝑚𝑑𝑥
𝑏

𝑎
≤ ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≤ ∫ 𝑀𝑑𝑥

𝑏

𝑎
, 

but ∫ 𝑚𝑑𝑥
𝑏

𝑎
= 𝑚 ∫ 𝑑𝑥

𝑏

𝑎
= 𝑚(𝑏 − 𝑎), ∫ 𝑀𝑑𝑥

𝑏

𝑎
= 𝑀 ∫ 𝑑𝑥

𝑏

𝑎
= 𝑀(𝑏 −

𝑎), therefore 

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
≤ 𝑀(𝑏 − 𝑎). 

9 (Theorem on average). If function ( )xf  is continuous on  ba,

,then  ba, exists, and 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝑓(𝜉) ⋅ (𝑏 − 𝑎). (14.12) 

Proof. By the second Weierstrass theorem, continuous function ( )xf  

reaches on  ba,  its largest value M and its lowest value m. 
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( ) Mxfm  ,then inequality (14.11) holds. Dividing this inequality 

term by ( )ab − ,we get  

𝑚 ≤
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
≤ 𝑀. 

By the second theorem of Bolzano - Cauchy Function, ( )xf  takes on

 ba,  all intermediate values between m and M. In particular, there is such 

 ba, , that 

𝑓(𝜉) =
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. 

And so we get (14.12). 

14.3. Basic formula for integral 

calculation 

Variable upper limit integral 

If function is integrable on the segment  ba, ,then it is integrable on 

any segment  xa, , where x  ba, . 

Note that it does not matter which letter denotes the integration variable 

in a certain integral: 

( ) ( ) ( ) ...=== 
b

a

b

a

b

a

dttfdzzfdxxf

, 

 change of notation does not affect the value of the integral. 

  

Consider the argument function x: 

Φ(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
. (14.13) 
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Call the function ( )x  integral with a variable upper limit. (In 

formula (14.13), the integration variable is denoted by t in order not to mix 

it with the upper limit x.) 

It was previously established that every differentiable function is 

continuous (see Theorem 8.2), however, a function continuous at a point 

may not have a derivative at this point. We prove now that each continuous 

on a given segment function ( )xf  has an antiderivative in this segment. 

Theorem 14.5. If function ( )xf  continuous on  ba, ,then function 

( )x  is antiderivative for ( )xf : 

( ) ( ) ( )xfdttfx

x

a

=
















= 

. 

Proof. Let x  so ( )  baxx ,+ .  Then  

( ) ( ) ( ) ( ) ( )
++

=−=−+=

xx

x

x

a

xx

a

dttfdttfdttfxxx

. 

By the mean value theorem (see 14.12): 

( ) ( ) xfdttf

xx

x

=
+

,  xxx + , . 

And 

( ) ( )
( )=



−+
=




f

x

xxx

x . 

When 0→x , Obviously, x→ , and  ( )xf  is continuous at x,then 

( ) ( )xff
x

=
→

lim
. We get 
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( )
( ) ( )

( ) ( ) ( )xfff
x

xxx

x
x

xxxx
===



−+
=




=

→→→→
limlimlimlim

000

. 

Q.E.D. 

The proved theorem can also be formulated as follows: the derivative 

of a certain integral with respect to the variable upper limit is equal to the 

integrand (in which the value of the upper limit is substituted for the 

integration variable). 

Newton-Leibniz Formula 

According to Theorem 14.5, the integral for function  continuous 

on  ba,  is 

( ) ( )=

x

a

dttfx

 

and this integral is antiderivative. Let ( )xF  be any antiderivative for 

( )xf .  Then  

( ) ( ) CxFx += . 

 Constant С is found from ax =  (Obviously, ( ) 0= a ): 

( ) ( ) CaFa +==0 , when  ( )aFC −= . 

Then 

( ) ( ) ( )aFxFx −= . 

If bx =  get ( ) ( ) ( )aFbFb −= , i.е. 

( ) ( ) ( )aFbFdttf

b

a

−=
, 

Or, which is the same: 
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎). (14.14) 

Formula (14.14) is called the Newton-Leibniz formula. This is the 

basic formula for integral calculus. 

Difference ( ) ( )aFbF −  is written as 
( )b

a
xF

 (« double substitution 

from a to b "). Then the formula (14.14) takes the form 

( ) ( )b

a

b

a

xFdxxf =
. (14.15) 

Example 14.1. 

1) ∫ 𝑥2𝑑𝑥
3

0
=

𝑥3

3
|

0

3

=
33

3
−

03

3
= 9; 

2) ∫
𝑑𝑥

𝑥

𝑒

1
= 𝑙𝑛𝑥|1

𝑒
= 𝑙𝑛 𝑒 − 𝑙𝑛 1 = 1; 

3) ∫
𝑑𝑥

1+𝑥2

1

0
= arctg 𝑥|0

1 = arctg 1 − arctg 0 =
𝜋

4
. 

14.4. Change variable and integration by 

parts in definite integrals 

Variable replacement 

Let the integral be given 

( )
b

a

dxxf

, where ( )xf  is a function 

continuous on the segment  ba,  . We introduce a new variable by setting 

( )tx = . 

If ( ) a= , ( ) b=  , and the values ( )t  don't go beyond  ba,  

when t differs on  , . Moreover, let ( )t  and ( )t  be continuous      

 , .  Then   
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∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= ∫ 𝑓(𝜙(𝑡))𝜙′(𝑡)𝑑𝑡

𝛽

𝛼
. (14.16) 

 if ( ) ( )xfxF = ,then at the same time 

( ) ( ) ( ) ( )aFbFxFdxxf
b

a

b

a

−==
 

And  

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )aFbFFFtFdtttf −=−==









, 

hence the proved equality follows (14.16). 

  

It should be noted that when calculating a certain integral by replacing 

a variable, there is no need to return to the old variable, i.e. make a reverse 

replacement. 

Example 14.2. Calculate


−
1

2/1

2

21
dx

x

x

. 

Decision. Replace tx sin= .  Then  dttdx cos= , xt arcsin= , 

6


=t

 if 2

1
=x

 and 2


=t

 if 1=x . We get 

( ) .
3

3
6

3
2

ctg

sin

sin1

sin

cos
cos

sin

sin11

2

6

2/

6/

2

22/

6/

2

22/

6/

2

21

2/1

2

2


−=


++


−=−−=

=
−

==
−

=
−



















tt

dt
t

t
dt

t

t
dtt

t

t
dx

x

x

 

Part Integration 

Let functions ( )xuu =  and ( )xvv =  have continuous derivatives on 

the segment  ba, .  Then  
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vuvuuv +=)( . 

We integrate both sides of this equality: 

 +=
b

a

b

a

b

a

dxvudxvudxuv)(

. 

 
Cuvdxuv += )(

,then 

b

a

b

a

vudxuv = )(

. We get 

 +=

b

a

b

a

b

a
udvvduvu

. 

Consequently, 

∫ 𝑢𝑑𝑣
𝑏

𝑎
= 𝑢𝑣|𝑎

𝑏 − ∫ 𝑣𝑑𝑢
𝑏

𝑎
. (14.17) 

Equality (14.17) is called the integration formula by parts in a 

certain integral. 

Example 14.3. Calculate

e

1

ln dxxx

. 

Decision. Let 𝑢 = 𝑙𝑛 𝑥, 𝑑𝑣 = 𝑥𝑑𝑥.  Then  𝑑𝑢 =
𝑑𝑥

𝑥
, 𝑣 =

𝑥2

2
. We get 

∫ 𝑥 𝑙𝑛 𝑥 𝑑𝑥
𝑒

1
=

𝑥2

2
𝑙𝑛𝑥|1

𝑒 − ∫
𝑥2

2

𝑑𝑥

𝑥

𝑒

1
=

𝑒2

2
−

1

4
𝑥2|1

𝑒 =  

=
𝑒2

2
−

𝑒2

4
+

1

4
=

𝑒2+1

4
. 

14.5. Approximate calculation of definite 

integrals 

When solving a number of applied problems, one often has to deal with 

certain integrals of functions for which antiderivatives are not elementary 

functions. For the calculation of such integrals, there are various methods 
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of approximate calculation. Here we give the simplest of them: the 

rectangle formula, the trapezoid formula and the Simpson formula. 

Let there be a function on the segment  ba,
.  Calculation of 

definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
is needed. 

1. The formula of the rectangles Divine the segment  ba,  with the 

dots 0xa = , 1x , 2x , …, bxn =  into n equal parts long x : 

n

ab
x

−
=

. 

We denote as: 
( )00 xfy = , ( )11 xfy = , …, 

( )nn xfy = . 

Sums are: 

xyxyxy n +++ −110 ... , 

xyxyxy n+++ ...21 . 

Each of these sums is an integral sum for ( )xf  at  ba, . Therefore: 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
≈

𝑏−𝑎

𝑛
(𝑦0 + 𝑦1 + 𝑦2+. . . +𝑦𝑛−1), (14.18) 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
≈

𝑏−𝑎

𝑛
(𝑦1 + 𝑦2+. . . +𝑦𝑛). (14.18') 

Each of the formulas (22.18) and (22.18 ') is called a rectangle 

formula. 

The error made if calculating the integral by the formula of rectangles 

will be the smaller, the greater the number n (i.e., the smaller the partial 

segments at which the segment is divided  ba, ). 

2. Trapezoid formula. 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
≈

𝑏−𝑎

𝑛
(

𝑦0+𝑦𝑛

2
+ 𝑦1 + 𝑦2+. . . +𝑦𝑛−1). (14.19) 
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3. Simpson's formula. Divide the line  ba,  into an even number of 

equal parts mn 2= . 

∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
≈

𝑏−𝑎

6𝑚
[𝑦0 + 𝑦2𝑚 + 2(𝑦2 + 𝑦4 + ⋯ + 𝑦2𝑚−2) +  

+4(𝑦1 + 𝑦3+. . . +𝑦2𝑚−1)]. (14.20) 

Note that for the same step the division of the segment n

ab
x

−
=

 the 

trapezoid formula gives a slightly more accurate value of a certain integral 

than the rectangle formula, and the Simpson formula gives a much more 

accurate value than the trapezoid formula. 

Example 14.4. Consider the well-known integral 

...785398,0
41

1

0

2
=


=

+ x

dx

 

Divine the line  1,0  into four equal parts: 
00 =x

; 25,01 =x ; 

5,02 =x ; 
75,03 =x

; 14 =x .  Then  
0000,10 =y

; 9412,01 y ; 

8000,02 =y ; 
6400,03 =y

; 5000,04 =y . 

By the formulas of the rectangles we have: 

( ) 8453,064,08,09412,01
4

1
=+++

, 

( ) 7203,05,064,08,09412,0
4

1
=+++

, 

 

according to the trapezoid formula 

7828,064,08,09412,0
2

5,01

4

1
=








+++

+

, 

according to the simpson formula 
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( ) 78539,056,26,176471,35,01
12

1
=++++

. 

(We took an accuracy of 0.00001 76471,34 1 y .) 

We see that the Simpson formula gives a very accurate result: all five 

signs are correct. The trapezoid formula gives an error already in the third 

digit. If we split the line  1,0  by 10 parts, then the trapezoid formula 

would give a result that differs from the true value less than at 0,0005. For 

then, in order to obtain a satisfactory result using the formula of rectangles, 

it is necessary to divide the segment into a significantly larger number of 

parts. 

In general, in order to know how many division points you need to take 

in order to calculate the integral with a given degree of accuracy, you need 

to use the error estimation formulas. These estimates can be found in more 

detailed courses in mathematical analysis. 

Questions 

1) What is the integral sum for a given function at a given interval? 

2) What is called a certain integral of the function on the segment? 

3) What are the differences in the concepts of definite and indefinite 

integrals? 

4) What is the geometric meaning of a certain integral? 

5) What is the economic meaning of a certain integral? 

6) Is any integrable function differentiable? Is every differentiable 

function integrable? 

7) What is the derivative of a certain integral equal to its variable upper 

limit? 

8) What is the difference between the application of the method of 

replacing a variable to calculate a certain integral from the application 

of the same method for     calculating an indefinite integral? 
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9) What methods are used to calculate certain integrals of functions for 

which there are no primitives expressed in terms of elementary 

functions? 

10) Which of the approximate formulas gives the more accurate value of 

a certain integral by the same step of dividing the integration interval: 

the rectangle formula, the trapezoid formula, or the Simpson formula? 
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Chapter 15. Applications of the 

definite integral 

15.1. Geometrical and mechanical 

applications of the definite integral 

Area of a plain figure  

As we mentioned before, for a continuous on [𝑎,  𝑏] function 𝑓(𝑥) ≥

0 the area S of a curvilinear trapezoid, bounded by the lines 𝑦 = 𝑓(𝑥), 

0=y , ax = , bx =  (Fig 15.2), is expressed by the integral 

𝑆 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎
. (15.1) 

Example 15.1. Evaluate the area of a figure, bounded by the graph of 

the function xy ln= , axis Ox and lines e=y , 
2e=x  (Fig. 23.1). 

Solution. According to formula (23.1) the area is 

𝑆 = ∫ 𝑙𝑛 𝑥 𝑑𝑥
𝑒2

𝑒
= 𝑥(𝑙𝑛 𝑥 − 1)|𝑒

𝑒2
= 𝑒2. 

 
Fig. 15.1 



15.1. Geometrical and mechanical 

applications of the definite integral  

245 

Let 
( )xfy 1= , 

( )xfy 2=  be continuous on  ba,  functions and let 

( ) ( )xfxf 12   be on the specified segment. Then area S of the figure 

bounded by the graphs of the functions 
( )xfy 1= , 

( )xfy 2=  and vertical 

lines ax = , bx =  is evaluated by formula: 

𝑆 = ∫ (𝑓2(𝑥) − 𝑓1(𝑥)) 𝑑𝑥
𝑏

𝑎
. (15.2) 

Proof. 1. Let 
( ) 01 xf , 

( ) 02 xf . Then formula (15.2) is an obvious 

consequence of the fact that the area of the figure is equal to the difference 

of the areas of curvilinear trapezoids (Fig. 15.2): 

( ) ( ) ( ) ( )( ) −=−=

b

a

b

a

b

a

dxxfxfdxxfdxxfS 1212

. 

 
Fig. 15.2. The area of the figure bounded by the lines 

𝑦 = 𝑓1(𝑥), 𝑦 = 𝑓2(𝑥), 𝑥 = 𝑎, 𝑥 = 𝑏 

2. Let the graphs of functions
( )xfy 1=

, 
( )xfy 2=

 be fully or partially 

located below the axis Ox. Since these functions are bounded, there exists 

a number M such that 
( ) 01 + Mxf

, 
( ) 02 + Mxf

. Obviously, a 
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figure bounded by the lines 
( ) Mxfy += 1 , 

( ) Mxfy += 2  (located 

above Ox), is obtained by parallel transfer of a figure bounded by the lines 

( )xfy 1= , 
( )xfy 2= , and has the same area: 

( )( ) ( )( ) ( ) ( )( ) −=+−+=

b

a

b

a

b

a

dxxfxfdxMxfdxMxfS 1212

. 

Example 15.2. Calculate the area of a shape bounded by the lines 

xxy 22 −= , 
24 xxy −= . 

Solution. Equating the right sides of these equations, we find the 

abscissas of the intersection points of these curves: 01 =x , 32 =x . 

Consequently, 

𝑆 = ∫ (4𝑥 − 𝑥2 − (𝑥2 − 2𝑥)) 𝑑𝑥
3

0
= ∫ (6𝑥 − 2𝑥2) 𝑑𝑥

3

0
=  

= (3𝑥2 −
2

3
𝑥3)|

0

3
= 9. 

Volume of the body of rotation 

Consider a body that is formed by rotation around the axis Ox of a 

curvilinear trapezoid, limited by a graph of a non-negative function

( )xfy =
 continuous on the segment 

 ba,
 and the lines 0=y , ax = , 

bx = . The volume of this body is expressed by the formula 

𝑉 = 𝜋 ∫ 𝑓2(𝑥) 𝑑𝑥
𝑏

𝑎
. (15.3) 

Proof. Let us divide the segment 
 ba,

 arbitrarily into n parts by points 

bxxxxa n == ...210  and on every segment 
 ii xx ,1−  arbitrarily 

choose a point i . When the curve 
( )xfy =

 rotates around axis Ox, each 
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rectangle with base 1−−= iii xxx
 and height 

( )if 
 describes a cylinder 

of radius 
( )if 

 and height ix
 (Fig. 15.3). 

 
Fig. 15.3. Evaluation of the volume of a body of rotation 

The sum of the volumes of such cylinders has the form: 

𝑉𝑛 = ∑ 𝜋𝑓2(𝜉𝑖)Δ𝑥𝑖
𝑛
𝑖=1 . (15.4) 

With a smaller partition, this sum gives an approximate value of the 

desired volume. On the other hand, this sum is an integral sum for the 

continuous function ( )xfy 2= . Passing to the limit as 
0max → ix

, we 

obtain formula (23.3). 

Example 15.3. Evaluate the volume of the cone with radius R and 

height H. 

Solution. The cone whose volume we evaluate, can be obtained as a 

result of the rotation of triangle OAB around axis Ox. Here RAB = , 

HOB =  (Fig. 23.4). 

 
Fig. 15.4 
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Obviously, tg 𝐴𝑂𝐵 =
𝑅

𝐻
. Therefore, the equation of the line OA has 

form 
x

H

R
y =

. By  formula (15.3) we obtain 

33

2

0

3

2

2

0

2

2

2

0

2
HR

x
H

R
dxx

H

R
dxx

H

R
V

H
HH


=


=


=








= 

. 

This formula is well known from the geometry school course. 

Example 15.4. Evaluate the volume of the body formed by the rotation 

of a figure bounded by lines 
xy e= , 0=y , 1−=x , 0=x  around axis 

Ox (Fig. 23.5). 

 
Fig. 15.5 

Solution:  

( ) 







−


===

−
−

 2

0

1

2

0

1

2

e

1
1

2
e

2

1
e xx dxV

. 

Arc length of a flat curve 

Let the curve on the plane Oxy be given by the equation 
( )xfy =

 and 

( )xf
 have a continuous derivative 

( )xf 
 on segment 

 ba,
. Then length 

l of its arc is equal to: 
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𝑙 = ∫ √1 + (𝑦′)2𝑑𝑥
𝑏

𝑎
, (15.5) 

where a and b are abscissas of the ends of the arc. 

(We accept this statement without proof.) 

Example 15.5. Find the arc length of curve xy sinln=  from 3


=x

 

to 3

2
=x

. 

Solution. Let us evaluate derivative xy ctg=  and substitute it in 

formula (23.5): 

3ln
2

tgln
sin

ctg1
3

2

3

32

3

32

3

2 ===+=














x

x

dx
dxxl

. 

Mechanical and physical applications of an integral 

It is well known that the distance travelled is the integral of the speed 

of motion. This fact is a consequence of the fact that speed is the derivative 

of the path over time.  

Mechanical work is also calculated using the integral. Suppose that 

under the influence of a certain force F a material point moves along the 

straight line Os, and the direction of the force coincides with the direction 

of motion. It is required to find the work of force F in moving the point 

from position as =  to position bs = . If force F is constant, then  work A 

is equal to the product of force F by the path length: 
( )abFA −=

. If the 

force continuously changes, i.e. 
( )sFF =

 is a continuous function on 

 ba,
, then work A is expressed by the formula: 
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( )=
b

a

dssFA

. 

Example 15.6. Let there be an inhomogeneous rod of length l  and its 

density at each point is known. Then we can find the mass of any part of it 

and, in particular, the entire core. To do this, we place the axis Ox  along 

the rod so that its left end is at the origin and denote by
( )x

 its density at 

point .x  Density 
( )x  is the derivative of mass 

( )xM  of the rod segment 

from 0 to x . Therefore, for any segment 
   lba ,0,   we have 

( ) ( ) ( ) .dxxaMbM

b

a

=− 

 
In particular, 

( ) ( ) ( ) .0
0

dxxMlMm

l

=−= 

 

15.2. Applications of the definite integral 

in economy 

In § 14.1, we noted that knowing the function of labor productivity we 

can use the      definite integral to express the volume of output.  

Consider an example. 

Example 15.7. Find the daily output P for a working day from 8 to 14 

hours, if labor productivity is given by an empirical formula 

( ) 155
4

2

−+−== t
t

tPP
. 

(This formula reflects a process in which productivity rises for the first 

two hours and then drops.) 
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Solution. Considering the performance function (Fig. 23.6) on the 

segment 
 14,8 , we express the daily output by the integral: 

5415
2

5

12
155

4

14

8

2314

8

2

=







−+−=








−+−=  t

tt
dtt

t
A

. 

 
Fig. 15.6 

So, over a specified period of time 54 units of production were 

produced. 

In § 12.1, we considered, in particular, the marginal cost given by the 

derivative of the cost function:
( )xS : 

( )xSMS = . This derivative 

characterizes the cost of producing a unit of additional products. Consider 

the problem of finding the cost function for a given function of marginal 

cost. 

Example 15.8. The marginal cost function is given: 

125403 2 +−= xxMS , 
 30,0x

. Find the cost function 
( )xS

 and 

evaluate the costs in the production of 20 units of production, if the costs 

for the production of the first unit of production are known to be 100 

monetary units. 

Solution. The cost function is found by integration: 
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( ) CMSdxxS

x

+= 
1 . 

In this case, constant C is determined by condition
( ) 1001 =S , so that 

100=C , since the integral vanishes.  

We obtain the cost function: 

( ) 10012520 23 ++−= xxxxS . 

Substituting 20=x  we find: 

( ) 260020 =S . 

Another example of the application of a definite integral is a 

discontinuity. Discounting is a determination of the initial monetary 

amount S by its final value tS
 after time t at an interest rate p. The problems 

of discounting are encountered in determining the economic efficiency of 

capital investments. 

As was established earlier (see § 6.5), with continuous accrual of 

interest, the final amount is calculated according to formula 
rt

t SS e=
, 

where 100

p
r =

. If 
( )tfS t = , then the discounted amount at time t will 

be equal to ( ) rttfS −= e . 

The total discounted amount dS
 over time T is calculated by the 

formula: 

( )
−

 =

T

rtdtetfS
0 . (15.6) 
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15.3 Applications of the definite integral 

in biology and chemical technique 

Let us start with biological applications. We will consider the 

population size, population biomass, etc. as continuous functions of time. 

Population size. The number of individuals in a population changes 

over time. If the living conditions of the population are favorable, then the 

birth rate exceeds mortality, and the total number of individuals in the 

population grows with time. We denote by 
( )tv  the population growth rate, 

i.e., the increase in the number of individuals per unit of time. In the "old", 

established populations that have long lived in this area, the growth rate 

( )tv  is low and slowly tends to zero. However, if the population is young, 

its relationship with other local populations has not yet been established, 

or there are external causes that change these relationships (for example, 

conscious human intervention), then 
( )tv

 can fluctuate significantly, 

decreasing or increasing. 

If the population growth rate 
( )tv  is known, then we can find the 

population growth over a period of time from 1t to 2t . Indeed, it follows 

from the determination of 
( )tv

 that it is a derivative of size 
( )tN

at moment 

t , and, therefore, size 
( )tN

 is the primitive for 
( )tv

. Hence 

( ) ( ) ( ) .
2

1

12 dttvtNtN

t

t

=−

                                                                                    
(15.7) 

Under conditions of unlimited nutritional resources, the growth rate of 

many populations is known to be exponential: ( ) .ktaetv =  The population 

in this case, as it were, “does not age”. Such conditions can be created, for 
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example, for microorganisms, replanting the developed culture from time 

to time in new containers with a nutrient medium. Applying formula 

(15.7), in this case we obtain 

( ) ( ) ( ) ).(
01

1

0

001

ktkt

t

t

kt ee
k

a
tNdteatNtN −+=+= 

                                              
(15.8) 

According to a formula similar to (15.8), in particular, the number of 

cultivated mold fungi that secrete penicillin is calculated. 

The biomass of the population. Consider a population in which the 

weight of an individual changes appreciably throughout life and evaluate 

the total population mass. 

           Let   be the age in various units of time,
( )tN

 be the number 

of individuals of the population whose age equals  , аnd
( )M  is the 

biomass of all individuals aged  0 to .  

          Obviously, the product
( ) ( ) PN

 is equal to the biomass of all 

individuals of age .  Consider the difference 
( ) ( ) MM −+

. 

Obviously, this difference, equal to the biomass of all individuals aged  

to  + , satisfies inequalities 

( ) ( ) ( ) ( ) ( ) ( )  −+ PNMMpn ,                                                     

(15.9) 

where 
( ) ( ) mn

 is the smallest, аnd ( ) ( ) MN


 is the largest values 

of function 
( ) ( ) MN

 in the segment 
 .,  +

 

          Let T be the maximum age of an individual in the given 

population. As 

( ) ( ) ( ) ( ) ,0
0

 dPNMTM

T

=−
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and 
( )0M , obviously, equals 0, then 

( ) ( ) ( ) .
0

 dPNTMM

T

==

 
          Let us move on to chemical engineering. Many chemical 

reactions and physical processes are characterized by the fact that the rate 

of change of a variable is proportional to the value of the same variable in 

the first degree. Such processes are called first-order processes. 

          These processes are described by the equation: 

kx
d

dx
=

                                                                                                                     
(15.10) 

          In the case of a chemical reaction, the values included here mean: 
x  - amount of substance; 

k  - constant value (reaction rate constant); 
  - time. 

          Radioactive decay. Radioactive decay occurs in such a way that 

the decrease in the number of atoms dN− over time d  is proportional to 

the number N  of remaining atoms, i.e.: 

NddN =− ,                                                                                                          

(15.11) 

where  is inherent to the given substance constant called a constant 

of radioactivity. It is required to calculate the number N  of atoms that 

have not decayed by moment  , if at the moment 0=  there were 0N
 

atoms. 

          We divide both sides of (15.11) by N  and integrate: 

 −=  d
N

dN

, 
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Whence 

CN +−= ln                                                                                                        
(15.12) 

The value of the integration constant C  is found from the condition 

that 0NN =
 at 0= . Hence 0ln NC =

. Substituting this value in 

(15.12), we obtain: 

−=
0

ln
N

N

;   
eNN 0=

                                                                                     

(15.13) 

          Of particular interest is the determination of the time t=

during which the number of atoms is halved. For this, it is necessary to put 

in formula (15.13)  

2

1

0

=
N

N

. 

          Then we have  

2

1
ln=− t

,  

whence:  



693,0
2ln

1
==t

                                                                                                    
(15.14) 

          Time t  is called half-life. For instance, for radon 
610084,2 −=  sec⁻1. Substituting this value in (15.14), we obtain the 

half-life of radon, which is =t 3, 15 days. 

          The average lifetime of an atom of a radioactive substance. 

Let 0N
 be the number of atoms of a radioactive substance at time 0= . 
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Based on the previous example, we calculate the average lifetime of one 

atom. 

          The number of atoms that have survived over time   and 

decayed in a subsequent period of time d , based on equations (15.11) 

and (15.13) is equal to: 

  deNdN −= 0 .   

          This expression represents the number of atoms having a 

duration of existence equal to  . In order to obtain the average duration of 

the existence of an atom, it is necessary to multiply this number dN  of 

atoms by time  , during which these atoms existed, integrate over   in 

range from 0=  to =  and divide by the initial number of atoms 0N

. We denote the desired average duration by  . We have:  





  1

0

0

0

== 


− deN
N

. 

          Since for radon 

 the average lifetime of a radon atom is: 

. 
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Questions: 

1. How is the area of a flat figure expressed using a definite integral? 

2. The volume of which bodies and how can be evaluated with the 

help of definite integrals? 

3. Is it possible to express the volume of output in case the function 

of labor productivity is known and a definite integral is used? 

5. How is the full discounted amount expressed with continuous 

interest accrual?  



16.1. Improper integrals with infinite integration limits  

259 

Chapter 16. Improper integrals 

16.1. Improper integrals with infinite 

integration limits   

Introducing the concept of a definite integral, we assumed that the 

segment of integration is finite, and the integrand is bounded on this 

segment. Now we will consider cases when at least one of these conditions 

is not satisfied. 

Definition. Let the function 
( )xfy =  be defined on the infinite 

interval 
 )+,a  and integrable on any finite segment 

 ba, , ab  , i.e. 

for any ab   there exists a definite integral 

( ) ( )=

b

a

dxxfb

. 

Then an improper integral 

( )
+

a

dxxf

 of function 
( )xf  on the 

interval 
 )+,a

 is limit 

( ) ( )+→+→
=

b

a
bb

dxxfb limlim

. 

Therefore, by definition 

( ) ( ) +→

+

=

b

a
b

a

dxxfdxxf lim

. (16.1) 

If the limit on the right-hand side of equality (16.1) exists and is finite, 

then an improper integral is called converging, otherwise diverging. If 
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improper integral (16.1) converges (i.e., is convergent), then the function 

is called integrable on  )+,a . 

Example 16.1. Evaluate integrals: а) 

+

1

2x

dx

; б) 

+

1 x

dx

. 

Solution. 

а) 

11
1

lim
1

limlim
11

2

1

2
=








+−=








−==

+→+→

−

+→

+

 bx
dxx

x

dx

b

b

b

b

b

, 

i.e. the integral converges to 1. 

б) 

( ) =−==
+→

−

+→

+

 1lim2lim
1

2

1

1

bdxx
x

dx

b

b

b

, 

i.e. the integral diverges. 

Example 16.2. Establish at what values   the integral 

+



1
x

dx

 

converges, and at what diverges. 

Solution. At 1  we have 

( )1
1

1

1

1 1

1

1

1

−
−

=
−

= −−

 bx
x

dx b
b

; 

at 1= : 

bx
x

dx b
b

lnln
1

1

==
. 

That’s why at 1 : 

( )1
1

1
lim 1

1

−
−

= −

→



 b
x

dx

b

, 

at 1= : 
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b
x

dx

b
lnlim

1
+→

+

=
. 

So, we can draw the following conclusions: 

if 1 , then 
1

1

1
−

=
+

x

dx

, the integral converges; 

if 1 , then 

=
+



1
x

dx

, the integral diverges; 

if 1= , then 

=
+

1
x

dx

, the integral diverges. 

Similarly to the improper integral defined by equality (16.1), an 

improper integral with an infinite lower limit is determined, namely: 

( ) ( ) −→
−

=

b

a
a

b

dxxfdxxf lim

. (16.2) 

Finally, we can consider an improper integral with infinite lower and 

upper limits: 

( )
+

−

dxxf

. 

To do so, we take an arbitrary point с. It will split the number line into 

two half-lines. If improper integrals 

( )
−

c

dxxf

 и 

( )
+

c

dxxf

exist, then by 

definition the improper integral 

( )
+

−

dxxf

exists as well. In this case, we 

say  
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( ) ( ) ( )
+

−

+

−

+=
c

c

dxxfdxxfdxxf

. (16.3) 

It can be proved that the right-hand side of equality (16.3) does not 

depend on the choice of point с. 

Example 16.3. Evaluate 

+

−
+ 21 x

dx

. 

Solution: 

+

−

+

−
+

+
+

=
+

0

2

0

22 111 x

dx

x

dx

x

dx

. 

We calculate each of the integrals on the right-hand side of the last 

equality: 

( )
2

arctg0arctglimarctglim
1

lim
1

0
0

2

0

2


=−==

+
=

+ −→−→−→
−

 ax
x

dx

x

dx

aaa
a

a

, 

( )
2

0arctgarctglimarctglim
1

lim
1 0

0

2

0

2


=−==

+
=

+ +→+→+→

+

 bx
x

dx

x

dx

b

b

b

b

b

. 

Consequently, 

=


+


=
+

+

−
221 2x

dx

. 

Improper integrals with infinite limits, i.e. integrals (16.1), (24.2) and 

(24.3) are called improper integrals of the first kind. 
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16.2. Improper integrals of unbounded 

functions 

Let function 
( )xfy =  be defined on interval  )ba, . The point bx =  

will be called singular, if 
( )xf  is not bounded in any neighborhood of this 

point, but is bounded and integrable on any segment enclosed in the 

interval 
 )ba, . 

Definition. If 
( )xf

 is not bounded on 
 )ba,

, but is integrable on any 

interval 
 −ba, , ab −0 , then by an improper integral 

( )
b

a

dxxf

 of function 
( )xf  over 

 ba,  the following limit is called: 

( )
−

→

b

a

dxxf
0

lim

. (16.4) 

Thus 

( ) ( )
−

→
=

b

a

b

a

dxxfdxxf
0

lim

. (16.5) 

If the limit (24.4) exists and is finite, then integral (16.5) is called 

convergent, otherwise the integral is called divergent. 

An improper integral is defined in a similar way when the left end of 

the interval is a singular point: 

( ) ( )
+

→
=

b

a

b

a

dxxfdxxf
0

lim

. (16.6) 

Finally, if c is the only internal singular point on 
 ba,

, then by 

definition 
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( ) ( ) ( ) +=

b

c

c

a

b

a

dxxfdxxfdxxf

. (16.7) 

Improper integrals of unbounded functions are called improper 

integrals of the second kind. 

Example 16.4. Evaluate the improper integral 


−

1

0 1 x

dx

. 

Solution. By formula (24.5) we obtain 

( ) 21lim21lim2
1

lim
1 0

1

00

1

0
0

1

0

=−−=−−=
−

=
− →

−

→

−

→  x
x

dx

x

dx

. 

Example 16.5. Evaluate the improper integral 

1

0 x

dx

. 

Solution: 

( ) 222lim2limlim
0

1

0

1

0

1

0

=−===
→→


→  x

x

dx

x

dx

. 

Note that the improper integral 
 

1

0
x

dx

, where 0 , converges at 

10   (and equals −1

1

) and diverges at 1 . (Check it out 

yourself.) 

16.3. Improper integrals convergence tests 

In the calculation and study of improper integrals, a significant place 

is occupied by the study of their convergence. In many cases, it is sufficient 

to establish whether a given integral converges or diverges and evaluate its 

value. To study convergence, in particular, comparison tests are used, 
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based on the comparison of a given integral with an integral, the 

convergence of which is known. 

We accept without proof the following statement (comparison test). 

Theorem 16.1. Let the functions 
( )xf  и 

( )xg  are continuous on the 

interval  )+,a  and satisfy the following condition on it:

( ) ( )xgxf 0 . Then: 

1) from convergence of

( )
+

a

dxxg

 convergence of 

( )
+

a

dxxf

 follows; 

2) from divergence of 

( )
+

a

dxxf

 divergence of 

( )
+

a

dxxg

 follows. 

Let us look at some examples.  

Example 16.6. Investigate convergence of the integral 

+

+

1

2

3 1
dx

x

x

. 

Solution. Obviously, 

xx

x

x

x 11
2

3

2

3

=
+

. 

But the integral

+

1 x

dx

 diverges (see Example 16.1). Consequently, this 

integral also diverges. 

Example 16.7. Investigate convergence of the integral 
( )

+

−3 1xxx

dx

. 
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Solution. Compare the integrand 

( )
( )1

1

−
=

xxx
xf

 with the function 

( )
xx

xg
1

=

 on 
 )+,3 . Obviously, 

( ) xxxxx

1

1

1


− . 

But the integral 


+

3 xx

dx

 converges (see Example 16.2 allowing 

2

3
=

). Consequently, this integral also converges. 

A similar comparison test also holds for improper integrals of the 

second kind: if  functions
( )xf  and 

( )xg  are continuous on interval 

 )ba,
 and for all x in some neighborhood of the singular point b the 

conditions 
( ) ( )xgxf 0  are satisfied, then 

1) from convergence of 

( )
b

a

dxxg

 convergence of 

( )
b

a

dxxf

 follows; 

2) from divergence of 

( )
b

a

dxxf

 divergence of 

( )
b

a

dxxg

 follows. 

Example 16.8. Investigate convergence of the integral 


+

1

0

23xx

dx

. 

Solution. The singular point here is 0=x . Let us compare the 

integrand with the function: x

1

: 
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xxx

1

3

1
2


+ . 

The improper integral

1

0 x

dx

 converges (see Example 16.5). Therefore, 

this integral converges. 

We give, without proof, one more comparison test also commonly used 

in practice. 

Theorem 16.2. If 
( )xf  and 

( )xg  are non-negative functions and there 

exists a finite limit

( )
( )

0lim =
+→

A
xg

xf

x
, then improper integrals 

( )
+

a

dxxf

 

and 

( )
+

a

dxxg

 converge or diverge simultaneously. 

Example 16.9. The improper integral

+

−
3

2 2xx

dx

 converges. Indeed, 

the limit of the relation of a function 
( )

xx
xf

2

1
2 −

=
 to a function 

( )
2

1

x
xg =

 is finite: 

( )
( )

1
2

limlim
2

2

=
−

=
+→+→ xx

x

xg

xf

xx
, and the integral


+

3

2x

dx

 

converges. 

Absolute and conditional convergence of improper integrals 

We note an important property of improper integrals that distinguishes 

them from ordinary definite integrals. 
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For a definite integral, as is known, the following statement is true: if 

( )
b

a

dxxf

 , then 

( )
b

a

dxxf

 exists. 

In the case of improper integrals, the following statement holds: if the 

improper integral 

( )
+

a

dxxf

 converges, then 

( )
+

a

dxxf

 converges as 

well. 

We accept this statement also without proof. The converse statement, 

generally speaking, is not true: the convergence of the integral 

( )
+

a

dxxf

 

does not imply the convergence of the integral 

( )
+

a

dxxf

. 

If the improper integral

( )
+

a

dxxf

 converges, then the integral 

( )
+

a

dxxf

 is said to converge absolutely. 

If the integral

( )
+

a

dxxf

 converges, but the integral

( )
+

a

dxxf

 

diverges, then the integral 

( )
+

a

dxxf

 is said to converge conditionally. 

It follows from the above that the absolute convergence of the integral 

implies its convergence (in the usual sense): an absolutely convergent 

integral converges. 
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Example 16.10. Investigate convergence of the integral 

+

1

2

cos
dx

x

x

. 

Solution. Obviously, 
22

1cos

xx

x


. We know that the integral 

+

1

2x

dx

 

converges. Consequently, 

+

1

2

cos
dx

x

x

 converges, i.e. the given integral 


+

1

2

cos
dx

x

x

 converges absolutely. It follows that it converges. 

Questions 

How is the improper integral of a function on an infinite half-interval 

of the form
 )+,a

 defined? In which case is the integral called 

convergent, and in which – 

 divergent? 

2. How is the improper integral of a function on an infinite interval 

of the form 
( b,−

 determined? 

3. How to determine the improper integral of a function on an infinite 

interval 
( )− ,

? 

4. What improper integrals are called improper integrals of the first 

kind? 

5. How is the improper integral of an unbounded function determined 

in the case when the singular point is one of the ends of the integration 

segment? 

6. How is the improper integral of an unbounded function defined 

when the singular point is the inner point of the integration segment? 
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7. What are the comparison tests for improper integrals of the first 

and second kind?      

8. Does an absolutely convergent improper integral always 

converge? 

9. Which improper integral is called conditionally convergent? 
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Chapter 17. Elements of 

analytical geometry in space 

17.1. Vectors 

Many physical quantities or characteristics of the phenomena around 

us are determined by setting a number. For example, the body weight, its 

temperature, the cost of goods, the number of seats in the classroom, etc. 

Such values are called scalar values, or simply scalars. But there are also 

such quantities, which are determined not only by the number      but also 

by indicating the direction. For example, when studying the action of a 

force, it is necessary to specify not only the value of this force, but also the 

direction of its action. Such quantities are called vector quantities, or 

simply vectors. 

A directed segment on which the beginning, end, and direction are 

specified is called a vector. A vector is denoted either by a symbol AB , 

where A  is its beginning and B  is its end, or by one letter with a line at 

the top, for example a . The length of a vector (or its modulus, or its 

magnitude) is the distance between its beginning and end. Usually, the 

length of the vector is denoted by 
AB

 or a .  

Vectors a  and b  are called collinear if they lie on the same line or on 

parallel lines. 

Vectors a  and b  are called equal if they are collinear, have the same 

direction and their magnitudes are equal. 

Let a rectangular coordinate system be given in space and let the 

coordinates of the beginning and end of the vector AB are 
( )111 ,, zyxA
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and 
( )2 2 2, ,B x y z

 respectively. Then the coordinates of this vector are 

determined by the formulas 

,12 xxX −=   ,12 yyY −=   .12 zzZ −=  

Obviously, the magnitude 
AB

 of the vector AB  is determined by the 

formula 

222 ZYXAB ++=
. 

A vector is called zero vector if its beginning and end coincide. The 

zero vector has no definite direction and has a length equal to zero. We can 

assume that the zero vector is directed identically with any vector. When 

writing, we will identify the zero vector 
( )0,0,00  with the real number 

zero.  

Two linear operations are defined over vectors - addition of vectors and 

multiplication of a vector by a number. Let two vectors 
( )321 ,, aaaa =

 

and 
( ).,, 321 bbbb =

be given. 

The sum of the vectors is the following vector  

 
( ).,, 332221 babababa +++=+

 

          The product of a vector a  by a number k  is the following 

vector  

          
( ).,, 321 kakakaak =

 
          Let us give the basic properties of linear operations (they are 

easily verified). Here 
,a
 b , с  are vectors, 

,k 1k
, 2k

 are numbers. 

          1. .abba +=+  

          2. 
( ) ( ).cbacba ++=++

  



17.2. Scalar product of vectors  

273 

          3. 
( ) ( ) .2121 akkakk =  

          4. ( ) .2121 akakakk +=+  

          5. 
( ) .bkakbak +=+  

          From the definition of collinearity of vectors and the definition 

of the product of a vector and a number, it follows that two vectors 

( )321 ,, aaaa =
 and 

( )32,1 ,bbbb =
 are collinear if and only if their 

coordinates are proportional: 

          3

3

2

1

1

1

b

a

b

a

b

a
==

.                                                                                                  

(17.1) 

          Denoting the general value of relations (17.1) by ,k  we obtain 

the collinearity condition in the form 

          .bka =  
          Vectors are called coplanar if they lie either in the same plane 

or in parallel planes. 

          

17.2. Scalar product of vectors 

          Let a  and b  be vectors,  - the angle between them. 

          The scalar product 
( )ba,

 of vectors a  and b  is the number 

defined by the formula 

          
( ) cos, baba =

                                                                                              
(17.2) 
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          Let us list the main properties of scalar products (they can easily 

be deduced from the definition). 

          1. 
( ) ( )abba ,, =  - commutativity. 

          2. 
( ) ( )bakbak ,, =  - associativity with respect to multiplication 

by a number. 

          3. 
( )( ) ( ) ( )cabacba ,,, +=+  - distributivity. 

          4. 
( ) 2

, aaa =
 - the formula of a scalar square. 

          5.  
( ) 0, =ba  for nonzero vectors a  and b  if and only if vectors 

a  и b  are mutually perpendicular.  

          Let the vectors 
,i
 

,j
 k  be the unit vectors of the coordinate axes. 

Then, obviously, 
( ) ( ) ( ) ,1,,, === kkjjii  

( ) ( ) ( ) 0,,, === kjkiji , and 

the scalar product of vectors 
( )321 ,, aaaa =

 and 
( )321 ,, bbbb =

 is 

expressed via their coordinates as follows: 

          
( ) 332211, babababa ++=

                                                                                 
(17.3) 

          From formulas (17.2) and (17.3) we obtain the formula for 

determining the angle between vectors: 

          

( )
ba

bababa

ba

ba



++
=


= 332211,

cos

                                                                 
(17.4) 
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17.3 Equations of a surface and a line.  

          Let an equation  

                                                                                                           
(17.5) 

be given in a rectangular coordinate systemOxyz .  

          Equation (17.5) is called the equation of the surface L if the 

coordinates of any point lying on the surface L satisfy this equation and the 

coordinates of any point not lying on this surface do not satisfy. 

          A line in space can be considered as the intersection of two 

surfaces, i.e. as a set of points located simultaneously on two surfaces. 

Therefore, a system of two equations of the form (17.5)  

          

( )
( )




=

=

0,,

0,,

2

1

zyxF

zyxF

                                                                                         
(17.6) 

is called the equation of the line in space if this equation satisfies the 

coordinates of all those and only those points that lie on the line L . In 

particular, if the equations in system (17.6) are equations of planes, then 

system (17.5) is an equation of a line. 

17.4. Plane in space 

Let the coordinate system Oxyz be given in space and let the plane  

pass through the point 
( )0000 ,, zyxM

 perpendicularly to the vector 

( )CBAN ,,= . These two conditions determine the only plane in space 

Oxyz. Vector N  is called the normal vector of the plane . Let us derive 

the equation of this plane. 
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We take an arbitrary point  in plane  . Then 

vectors 
( )0000 ,, zzyyxxMM −−−=

 and ( )CBAN ,,=  will be 

mutually perpendicular. Therefore, their scalar product is equal to zero: 

( ) 0, 0 =MMN
. Let us write the last equality in scalar form: 

( ) ( ) ( ) 0000 =−+−+− zzCyyBxxA
. (17.7) 

This is the equation of a plane passing through a point 
( )0000 ,, zyxM

 

perpendicularly to a given vector ( )CBAN ,,= . From (17.7) we obtain 

0000 =−−−++ CzByAxCzByAx
. 

Denoting 
DCzByAx =−−− 000 , we obtain the general equation of 

the plane: 

0=+++ DCzByAx . (17.8) 

So, the plane equation is a linear equation, or an equation of the first 

degree with three variables. 

It is not difficult to prove the converse statement: any equation of the 

first degree with three variables is an equation of the plane. 

Equation (17.8) is called complete if all its coefficients CBA ,, , and 

D  are nonzero. Consider the different types of incomplete equations. 

If ,0=D  the plane passes through the origin. 

If 
,0=A
 the plane is parallel to the axis .Ox  The situation is similar 

with the condition that the plane (17.8) is parallel to other coordinate axes, 

i.e. if one of the coordinates does not enter into the equation of the plane, 

then the plane is parallel on the corresponding axis. 

If two coordinates in the equation are missing, then the plane is parallel 

to the corresponding coordinate plane, moreover, if 0=D , then the 
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equation 0=x  (resp., )0,0 == zy  is the equation of the coordinate plane 

itself. 

          Suppose that in equation (17.8) all the coefficients (and the free 

term) are nonzero, i.e. the equation is complete. Transform this equation: 

          
1=

−
+

−
+

−

−=++

D

Cz

D

By

D

Ax

DCzByAx

  
Let 

          
,a

A

D
=−

   
,b

B

D
=−

   
c

C

D
=−

. 

Then the equation of a plane (17.8) takes the form  

         
1=++

c

z

b

y

a

x

                                                                                                  
(17.9) 

The last equation is called the equation of the plane in segments. This 

name is explained by the fact that the denominators ba, , and c  are the 

segments cut off by the plane from the coordinate axes. 

Consider the relative position of two planes. There are two planes 

given: 

01111 =+++ DzCyBxA
, 

02222 =+++ DzCyBxA
. 

          Their normal vectors are, obviously, ( )1111 ,, CBAN =  and 

( )2222 ,, CBAN = . 

The angle between these planes is the angle between 1N  and 2N  and 

is determined by the formula: 
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2

2

2

2

2

2

2

1

2

1

2

1

212121cos
CBACBA

CCBBAA

++++

++
=

. (17.10) 

The condition for the parallelism of two planes is the condition for the 

proportionality of their normal vectors:  

2

1

2

1

2

1

C

C

B

B

A

A
==

. (17.11) 

The condition for the coincidence of the planes is the following: 

2

1

2

1

2

1

2

1

D

D

C

C

B

B

A

A
===

. (17.12) 

The condition for their perpendicularity is the condition 0cos = , i.e. 

0212121 =++ CCBBAA . (17.13) 

17.5. Straight line in space. straight line 

and plane in space 

Let a straight line L pass through a point 
( )0000 ,, zyxM

 parallel to the 

vector 
( )nmls ,,=

. In this case, the vector s  will be called the directing 

vector of the straight line. Let 
( )zyxM ,,

 be an arbitrary point of straight 

line L. Obviously, the vectors 
( )0000 ,, zzyyxxMM −−−=

 and s  are 

proportional. Having written down the condition of their proportionality in 

coordinate form, we obtain the canonical equation of a straight line: 

n

zz

m

yy

l

xx 000 −
=

−
=

−

.                                                                              

(17.14) 
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          If the line passes through the points 
( )0,000 , zyxM

 and 

( )1111 ,, zyxM , then we can take  10MM
as the directing vector and 

equation (17.14) will have the form 

          

.
01

0

01

0

01

0

zz

zz

yy

yy

xx

xx

−

−
=

−

−
=

−

−

                                                                      

( )41.17 
 

From equation (17.14) we obtain: 

ntzzmtyyltxx =−=−=− 000 ,,
, 

where t is the coefficient of proportionality. Hence 

ntzzmtyyltxx +=+=+= 000 ,,
. (17.15) 

These are parametric equations of a line L. (Sometimes they are 

called in the singular - the parametric equation of the line.) 

A straight line in space can also be defined as the line of intersection 

of two planes, i.e. as a set of points whose coordinates satisfy the system: 





=+++

=+++

.0

0

2222

1111

DzCyBxA

DzCyBxA

 (17.16) 

Canonical equation (17.13), however, can also be viewed as a pair of 

plane equations considered together. It is easy to derive the canonical or 

parametric equation of a line defined in the form (17.16). To do this, it is 

enough to find some point 
( )0000 ,, zyxM

 belonging to a straight line and 

a directing vector. Coordinates of point 0M
 are easy to find - this is any 

solution to the system (17.16). For example, setting 
00 =z

, from the 

system (17.16) we find 0x
 and 0y

, and obtain 
( )0,, 000 yxM

. Let now 

11 =z
. From the system, we find  1x

 and 1y
. We obtain 

( )1,, 111 yxM
. 
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The vector 10MM
 is the directing vector of the line (17.16), and we can 

write its canonical equation. 

Example 17.1.  Write the canonical equation of a line that is the 

intersection of the planes  

.012

,03532

=−++

=−++

zyx

zyx

 

Solution. Let .0=z  Then the previous equations will take the form 

.1

,332

=+

=+

yx

yx

 

Solving this system of equations, we find ,0=x  .1=y  Thus, a point 

( )0,1,00M
 lies on our line. Let now .1=z  Then to define x  and y  we 

obtain equations  

          
,1

,232

−=+

−=+

yx

yx

 

from which we find ,1−=x  .0=y  Therefore, the other point of our 

line is the point 
( ).1,0,11 −M

 Applying formula (17.14), we obtain the 

canonical equation 

          
.

11

1

1

zyx
=

−

−
=

−    
           

Let us now consider the relative position of a line and a plane in space. 

Let line L be given as 

n

zz

m

yy

l

xx 000 −
=

−
=

−

 

and plane   as  

0=+++ DCzByAx
. 
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Obviously, line L is parallel to plane   when the directing vector 

( )nmls ,,=  of the line is perpendicular to the normal vector 

( )CBAN ,,=  of the plane, i.e. the condition of parallelism of a straight 

line L and a plane   is the following : 

0=++ CnBmAl . (17.17) 

The condition for the proportionality of these vectors is the condition 

for the perpendicularity of line L and tlane  : 

n

C

m

B

l

A
==

. (17.18) 

The angle between a line and a plane is the angle between the line and 

its projection onto the plane, and this is the angle additional to the angle 

between the vector director s  of the line L and the normal vector N  of 

the plane  : 

222222
,cossin

nmlCBA

CnBmAl
sN

++++

++
==



. (17.19) 

The distance from a point to a plane is calculated using a formula 

similar to the formula for the distance from a point to a line on a plane. Let 

us show that the distance d from  point 
( )0000 ,, zyxM

 to the plane 

0=+++ DCzByAx
. (17.8) 

is calculated by the formula  

222

000

CBA

DCzByAx
d

++

+++
=

. (17.20) 

Let us write the equation of a line passing through point
( )0000 ,, zyxM

 

perpendicularly to the plane (17.8). To do so, we use parametric equations 

(17.15) (17.15): 
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ltxx += 0 , 
mtyy += 0 , 

ntzz += 0 .  

In order for the line (17.8) to be perpendicular to the plane (4.2), it is 

necessary that its directing vector 
( )nmls ,,=  is parallel to the vector 

( )CBAN ,,= , i.e. so that the coordinates of the vectors s  and N  are 

proportional. The easiest way, of course, is to take as a s  vector N , i.e. 

we take Al = , Bm = , Cn = . Then parametric equations (17.15) will 

look like as follows: 

Atxx += 0 , 
Btyy += 0 , 

Ctzz += 0 . (17.21) 

The straight line (17.21) is perpendicular to the plane (17.8) and passes 

through point 0M
. Therefore, the distance from point 0M

 to the plane 

(17.8) is the distance between point 0M
 and point M of the intersection of 

the line (17.21) with the plane (17.8). Let us find the coordinates of point 

M. To do so, it is necessary to solve equations (4.2) and (4.9 ') together. 

The easiest way to do it is by substituting the expressions for x, y, and z 

from (17.21) into (17.8). In turn: 

( ) ( ) ( ) 0000 =++++++ DCtzCBtyBAtxA
, 

( ) ( ) 0000

22 =++++++ DCzByAxtCBA
. 

Hence, we find t: 

222

000

CBA

DCzByAx
t

++

+++
−=

. 

This value of t determines the coordinates of point M, which is the base 

of the perpendicular dropped from point 0M
 to the plane (17.8). Substitute 

the sought t in (17.21): 










++

+++
−+=

222

000
0

CBA

DCzByAx
Axx

, 
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++

+++
−+=

222

000
0

CBA

DCzByAx
Byy

, (17.22) 










++

+++
−+=

222

000
0

CBA

DCzByAx
Czz

. 

The distance d from the point 0M
 to the plane (17.8) is the length of 

the perpendicular 
MM 0 , or, which is the same, the distance between the 

points 
( )0000 ,, zyxM

 and 
( )zyxM ,, , i.e. 

( ) ( ) ( )20

2

0

2

0 zzyyxxd −+−+−=
. 

Considering x, y and z are determined by equalities (17.22), we obtain 

( )

,
222

000222

2

222

000222

CBA

DCzByAx
CBA

CBA

DCzByAx
CBAd

++

+++
++=

=








++

+++
−++=

 
or 

222

000

CBA

DCzByAx
d

++

+++
=

, 

Q.E.D. 

Example 17.2. Find the distance from point 
( )2,0,10M

 to the plane 

0922 =+−+ zyx
. 

Solution. 

( )
2

3

6

221

92·20·21

222
==

−++

+−+
=d

. 

Example 17.3. Find the distance from the straight line 
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12

2

2

1 zyx
=

−
=

+

 

to the plane 09424 =+−− zyx . 

Solution. The line is parallel to the plane. Indeed, the scalar product of 

its directing vector and the normal plane vector is zero: 

( ) ( ) 04·12·24·2 =−+−+ . Therefore, the distance from a straight line to a 

plane is equal to the distance from any point 0M
 of this straight line to the 

plane. It is most convenient to take as 0M
 the point 

( )0,2,1− , whose  

coordinates appear in the equation of the line. We obtain 

( )

( ) ( ) 6

1

424

90·42·21·4

222
=

−+−+

+−−−
=d

. 

Example 17.4.  Find the distance from the point 
( )3,2,10M

 to the 

straight line 

1

7

22

6 −
=

−
=

− zyx

. 

Solution. We write the equation of the plane that passes through the 

given point 0M
 and is perpendicular to the given line and find the 

coordinates of point M of the intersection of the line and the plane. 

Obviously, 
MM 0  is the perpendicular dropped from the point 0M

 to a 

given line. Its length is the desired distance. 

The equation of a plane passing through 0M
 and perpendicular to the 

given line is 

( ) ( ) ( ) 03·12·21·2 =−+−−− zyx
, 

or 

0122 =−+− zyx
. (*) 
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Let us write the equation of this line in parametric form: 

tx 26 += , ty 2−= , tz += 7 . (**) 

Let us now find the intersection point of the line (**) and the plane (*). 

To do it, we first substitute x, y and z from (**) into (*) and find t: 

( ) ( ) 0172·226·2 =−++−−+ ttt , 

0189 =+t , 2−=t . 

Now, substituting the found value 2−=t  into (**), we obtain 2=x , 

4=y , 5=z . So, the point
( )5,4,2M  is the base of the perpendicular 

MM 0 . Therefore 

( ) ( ) ( ) 3352412
222

0 =−+−+−== MMd
. 

Note that there is another way to solve this and similar problems, based 

on the concept of a vector product of vectors, which is not considered here. 

 

17.6. The second order surfaces 

Second-order surfaces are surfaces in three-dimensional space, which 

are determined by algebraic equations of the second degree. A brief study 

of second-order surfaces is carried out according to their equations by the 

method of parallel sections. The simplest of these surfaces are second-

order cylindrical surfaces.  

Let a line L  lie in plane 
Oxy

. Its equation is 

( ) 0, =yxF
.                                                                                                    (17.23) 

Draw a line parallel to the axis   through each point of line L . 

The set of these lines forms a certain surface 
,S
called a cylindrical one. 

The mentioned lines are called generatrices of surface 
,S
 and the initial 

line L  is called its directrix. Obviously, equation (17.23) is also the surface 
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equation of S . So, the equation of a cylindrical surface with generatrix 

parallel to the axis Oz  does not contain coordinate z  and coincides with 

the equation of the directrix.  

In particular, if the directrix is an ellipse defined on plane Oxy  by the 

equation 

1
2

2

2

2

=+
b

y

a

x

,                                                                                                   (17.24) 

then the corresponding cylindrical surface is called an elliptical 

cylinder and equation (17.24) is its equation in space Oxyz . Similarly, a 

parabolic cylinder is defined as 

          pxy 22 = ,                                                                                                      

(17.25) 

and a hyperbolic cylinder as 

          
.1

2

2

2

2

=−
b

x

a

x

                                                                                                  
(17.26)  

          Second order cone. The canonical equation of the cone of the 

second order: 

          
0

2

2

2

2

2

2

=−+
c

z

b

y

a

x

.                                                                                         

(17.27) 

          In sections of this surface by horizontal planes hz =  we obtain 

ellipses 

          
,hz =
   

2

2

2

2

2

2

c

h

b

y

a

x
=+

. 
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          As 0=h  the section degenerates to the point 
( )0,0,00 . In 

sections of the given surface by coordinate planes, we obtain pairs of 

intersecting lines 

          







=

=

,0

,0

c

z

a

x

y


        








=

=

.0

0

c

z

b

y

x

 
 

 

Fig. 17.1 

 

          Ellipsoid. The canonical equation of an ellipsoid: 

          
.1

2

2

2

2

2

2

=++
c

z

b

y

a

x

                                                                                          
(17.28) 

          In sections of the ellipsoid in the planes Oxy and Oxz  we obtain 

ellipses    

           
1

2

2

2

2

=+
b

y

a

x

,   
.1

2

2

2

2

=+
c

z

a

x

 

          Positive numbers ,a  ,b c  are called the semi-axes of the 

ellipsoid (17.28). 

          An ellipsoid lies inside a rectangular parallelepiped 

          ,axa −    
,bxb −
   .cxc −  

          The general view of the ellipsoid is shown in Fig. 17.2 
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Fig.17.2 

          One-sheeted hyperboloid. The canonical equation for a one-

sheeted hyperboloid: 

          
1

2

2

2

2

2

2

=−+
c

z

b

y

a

x

                                                                                           
(17.29) 

          The view of this surface is shown in Fig. 17.3. In sections of the 

given surface by coordinate planes Oxz  и Oyz  hyperbolas are obtained, 

the equations of which respectively have the form 

          
,1

2

2

2

2

=−
c

z

a

x

   

.1
2

2

2

2

=−
c

z

b

y

 

          In sections of a given hyperboloid by planes 
,hz =
 parallel to 

the coordinate plane 
,Oxy
ellipses are obtained whose semi-axes increase 

as moving away from the plane .Oxy  The smallest ellipse lies in the plane 

;Oxy
 its equation has the form of 

          
.1

2

2

2

2

=+
b

y

a

x
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          If ,ba =  then the surface (17.29) is called a hyperboloid of 

revolution. Positive numbers ba,  and c  are called semi-axes of a 

hyperboloid of one sheet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.17.3 

 Hyperboloid of two sheets. The canonical equation of a two-

sheeted hyperboloid: 

1
2

2

2

2

2

2

−=−+
c

z

b

y

a

x

                                                                                         
(17.30) 

Positive numbers 
ba,

 and c  are called the semi-axes of the two-

sheeted hyperboloid. In sections of this hyperboloid by coordinate planes 

Oxz  and 
Oyz

 hyperbolas are obtained: 
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,1
2

2

2

2

−=−
c

z

a

x

   
1

2

2

2

2 −=−
c

z

b

y

. 

In the sections of this hyperboloid by planes hz =  ellipses are 

obtained: 

,hz =    
.1

2

2

2

2

2

2

−=+
c

h

b

y

a

x

 

These equations make sense when 
.ch 
 

          Thus, the two-sheeted hyperboloid (17.30) is a surface 

consisting of two separate cavities, having the appearance of convex 

bowls, which are located symmetrically with respect to plane Oxy ,  the 

vertices of which are located at the distance c  from their vertices to this 

plane (Fig. 17.4). 
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Fig. 17.4. 

          Elliptical paraboloid. The canonical equation of an elliptic 

paraboloid: 

          

z
q

y

p

x
2

22

=+

,                                                                                                

(17.31) 

where ,0p  0q  are the parameters of an elliptic paraboloid. 

          In sections of this paraboloid, the coordinate planes Oxz  and 

Oyz  give parabolas with the axis of symmetry .Oz  Their equations, 

respectively, have the form 

          ,22 pzx =    .22 qzy =  

          Sections of a given surface by planes hz =  lead to ellipses 

          ,hz =    

.2
22

h
q

y

p

x
=+

 

          The point 
( )0,0,0O

 is called the top of the elliptic paraboloid 

(17.31). As qp =  equation (17.31) determines the paraboloid of 

revolution formed by the rotation of a parabola pzx 22 =  around axis Oz

. 
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Fig.17.5 

           

          Hyperbolic paraboloid. The canonical equation of a hyperbolic 

paraboloid: 

          

.2
22

z
q

y

p

x
=−

                                                                                                
(17.32) 

Here numbers ,0p  0q  are the parameters of a hyperbolic 

paraboloid.  

          In the section of this paraboloid, plane 
Oxy

 produces a parabola 

          .22 pzx =  

The axis of symmetry of this parabola is the positive axis Oz . Sections 

hy =
 also produce parabolas, whose branches are directed upwards.  

          The section by plane Oyz  also gives a parabola 

          ,22 qzy −=  
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but its axis of symmetry is the negative axis ,Oz i.e. the branches of 

this parabola are directed downward. The sections hx =  also produce 

parabolas, the branches of which are directed downwards. 

          Finally, in the section of this paraboloid by planes parallel to the 

planeOxy  hyperbolas are obtained: 

          ,hz =    

.2
22

h
q

y

p

x
=−

 
           

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17.6 

          Earlier, we considered the straight-line generatrices of 

cylindrical surfaces and cones. Let us now consider the rectilinear 

generatrices of a hyperbolic paraboloid. We rewrite equation (17.32) in 

the form 

          

z
q

y

p

x

q

y

p

x
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and consider for each pair of numbers  ,  , non-zero at the same 

time, the equations of two planes: 

          














=













−

=













+





q

y

p

x

z
q

y

p

x
2

                                                                             
(17.33) 

These planes intersect in a straight line lying entirely on the paraboloid 

(17.32). The straight lines (17.33), each of which is defined by the relation 

 : , form one family of rectilinear generatrices of a paraboloid. We 

obtain the second family if we consider (for each pair of numbers ,, 
 

not equal to zero at the same time) the system of equations 

          














=













+

=
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q

y

p

x

z
q

y

p

x
2

                                                                            
(17.34) 

Through each point of the hyperbolic paraboloid (17.32) passes along 

one rectilinear generatrix of each family. 

          Let us return to the one-sheeted hyperboloid. Let a one-sheeted 

hyperboloid be defined by its canonical equation 
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1
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=−+
c

z

b

y

a

x

                                                                                           
(17.29) 

Consider the rectilinear generatrix of a one-sheeted hyperboloid. 

Let us rewrite equation (17.29) in the form  

        
2

2

2

2

2

2

1
b

y

c

z

a

x
−=−

 
or 

          

.11 
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Let us now consider a pair of real numbers ,,  that are not equal to 

zero simultaneously, and for each such pair we write a system of equations 
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( ) 

          For each pair of numbers 
 ,

 these equations define a pair of 

intersecting planes and, therefore, the straight line of their intersection. 

This line lies entirely on the hyperboloid. In particular, as 
,0,0 = 
 

1=== cba  we obtain 

          



=−

=+

,01

,0

y

zx

 

and as 
1,0,0 ==== cba
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          Similarly to equations 
( ) , for any pair of simultaneously non-

zero numbers ,, 
 we can write the system of equations 
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z
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(  ) 

Which defines a straight line lying on the hyperboloid (17.29). 

          It is easy to verify that through each point of the hyperboloid 

(17.29) there pass two rectilinear generatrices, one of which belongs to the 

family 
( ) , and the other to the family 

( ) .   

          As already noted, with, as ba =  hyperboloid (17.29), it is a 

hyperboloid of revolution - it is obtained by rotating the hyperbola 

,1
2

2

2

2

=−
c

z

a

x

 0=y  (or 
,1

2

2

2

2

=−
c

z

a

y

  0=x )  around the axis .0z  The 

Shukhov Tower on Shabolovka, built in 1922 by the brilliant engineer 

Academician V.G.Shukhov, is well known (and is clearly visible from 

almost any district of Moscow). This television and radio tower consists of 

six sections, each of which is a hyperboloid of revolution and is made of 

rectilinear rods. There is no other element in it (except for the rings 

separating one section from another). 
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Fig.17.7                                                           
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FUNCTIONS OF SEVERAL VARIABLES 

Chapter 18. Euclidean space. 

The concept of the function of 

several variables. Limit, 

continuity 

18.1. Euclidean space 

Definition. The set of all possible ordered collections n  of real 

numbers 
( )nxxx ...,,, 21  is called the n-dimensional coordinate space 

nA . 

Moreover, each ordered collection 
( )nxxx ...,,, 21  is called a point1 of 

this space and is denoted by one letter (for example, M). The numbers 

( )nxxx ...,,, 21  are called the coordinates of the point. The note 

( )nxxxM ...,,, 21  means that point M has coordinates 
( )nxxx ...,,, 21 . 

Definition. A coordinate space 
nA  is called an n-dimensional 

Euclidean space 
n

R , if the distance 
( )MM  ,

 between any two points 

                                                      
1 It should not be surprising that at the beginning of the book we called the 

ordered set (ordered collection) of numbers  a vector, and here - a point. We know, 

in particular, that a pair can be considered both as a pair of coordinates of a point 

on a plane, and as a pair of coordinates of a vector on this plane. 
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( )nxxxM ...,,, 21  and 
( )nxxxM  ...,,, 21  of the space 

nA   is determined 

by the formula 

( ) ( ) ( ) ( )22

22

2

11 ..., nn xxxxxxMM −++−+−=
. (17.1) 

The specified distance satisfies the following conditions: 

1) for any M and M   the following equality holds: 

( ) ( )MMMM ,, = ; 

2) for any M and M   the following equality holds: ( ) 0,  MM , 

moreover, if ( ) 0, = MM , then points M and M   coincide; 

3) for any M, M   and M   the following inequality holds:  

( ) MM ,
 ( ) ( )MMMM + ,, . 

Note that we have already given the definition of n-dimensional 

Euclidean space 
n

R  (see. § 1.6). It is easy to verify that the distance 

defined by equality (25.1) is the norm of the vector 

( )nn xxxxxxMM −−−= ,...,, 2211  and the given here definition of the 

space 
n

R  is essentially no different from the definition given in chapter 1. 

18.2. Sets in euclidean space 

Let us consider the simplest sets of points, or domains, in Euclidean 

space. 

1. The set of points 
( )nxxxM ...,,, 21 , whose coordinates satisfy the 

inequality 

( ) ( ) ( ) 22020

22

20

11 ... rxxxxxx nn −++−+−
, (17.2) 

is called an n-dimensional ball of radius r centered at a point

( )00

2

0

10 ...,,, nxxxM
. 
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Inequality (17.2) can be written in a short form as 

( ) rMM  ,0 . (17.3) 

The set of all such points of M for which the inequality 
( ) rMM  ,0  

holds is called an open n-dimensional ball of radius r centered at a point

0M
. The set of all such points M for which equality 

( ) rMM = ,0 holds 

is called an n-dimensional sphere. 

2. The set of points 
( )nxxxM ...,,, 21  whose coordinates satisfy the 

inequalities 

1

0

11 dxx −
, 2

0

22 dxx −
, …, nnn dxx − 0

, (17.4) 

is called an n-dimensional parallelepiped centered at the point

( )00

2

0

10 ...,,, nxxxM
. 

If in relations (17.4) we exclude the equalities: 

1

0

11 dxx −
, 2

0

22 dxx −
, …, nnn dxx − 0

, 

then this determines an open n-dimensional parallelepiped. 

We turn to the definition of neighborhoods of a point. Neighborhoods 

of two types are distinguished in the space 
n

R : rectangular and spherical. 

As the  -neighborhood of a point 
( )00

2

0

10 ...,,, nxxxM
 we will call any 

open n-dimensional ball of radius  centered at the point 0M
. (That is the 

so-called spherical neighborhood.) 

A rectangular neighborhood of a point 
( )00

2

0

10 ...,,, nxxxM
 is any 

open n-dimensional parallelepiped centered at a point 0M
. 

In what follows, when speaking of a neighborhood of a point, we will 

mean a neighborhood of one of the two types mentioned. 
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A point 0M
 is called an interior point of the set D if it belongs to the 

set D together with some of its neighborhood. A set D is called open if 

each of its points is internal. 

Point 0M
 is called a boundary point of the set D if each of its 

neighborhoods contains both points that belong to set D and points that do 

not belong to it. A set D is called closed if it contains all its boundary 

points. 

A point 0M
 is called a limit point of set D if in any neighborhood of 

this point there are points of set D other than 0M
. 

Sequences of points in Euclidean space 

If each natural number n is associated with a point of the Euclidean 

space 
n

R ,  then the set of points 1M , 2M , …, nM
, … is called a sequence 

of points of the Euclidean space 
n

R  and denoted 
 nM

. 

A sequence of points 
 nM

 is called converging to the point 0M
, if 

( )0, MM n
 is an infinitesimal quantity: 

( ) 0,lim 0 =
→

MM n
n . 

In this case, the point 0M
 is called the limit of the sequence 

 nM
. 

A set D of points of a Euclidean space is called bounded if it is 

contained in some parallelepiped. 

Many properties, which were established earlier for numerical 

sequences, are transferred to the limits of sequences of points in Euclidean 

space. The most important of them are: 

1) the uniqueness of the limit; 

2) the boundedness of the convergent sequence. 
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18.3. The concept of a function of many 

variables 

Definition. We will say that a function 
( )Mfu =  (or 

( )nxxxfu ...,,, 21=
) is given in the domain 

nD R if, according to a 

certain rule or law, one point is assigned to one definite number u. 

The coordinates of point M (i.e., variables nxxx ...,,, 21 ) are called 

independent variables, or arguments, u is the dependent variable, and 

the symbol f is the correspondence law. The set D is called the domain 

of definition of the function. 

The domain of definition of the function of several variables (as in the 

case of the function of one variable) is either predefined or is a natural 

domain of definition, i.e. the set of all such points for which the formula of 

the functional dependence f makes sense. 

In case the number of arguments is two, the function is usually denoted 

as 

( )yxfz ,= . (17.5) 

The domain of definition of such a function is a certain set of points on 

plane xOy. The -neighborhood of a point
( )000 , yxM

 is an open circle 

centered at that point. The rectangular neighborhood of point
( )000 , yxM

 

is an open rectangle centered at that point. 

Example 17.1. Find the domain of the functions 

а) 
( )yxz += ln

; б) 
22

22

9

1
4

yx
yxz

−−
+−+=

. 
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Solution. а) The domain of definition is given by inequality 0+ yx

, i.e xy − . This is the set of all points on the plane above the line xy −=

. 

б) Obviously, the inequalities 0422 −+ yx  and 09 22 −− yx

must be satisfied simultaneously. Therefore, the domain of definition is the 

set of all points of the plane whose coordinates satisfy the double inequality 

94 22 + yx . 

This area is enclosed between circle 422 =+ yx  and the circle 

922 =+ yx . Moreover, the points of the first circle belong to this domain, 

and the points of the second do not. 

Graph of a function of two arguments 

The graph of a function of one argument is known to be a line on the 

plane. The graph of a function of two variables 
( )yxfz ,=

 is a surface in 

three-dimensional space, consisting of points 
( )( )yxfyx ,,,

. 

Example 17.2. Let us consider the function 
229 yxz −−=

. The 

domain of this function is the circle 922 + yx . The graph is a 

hemisphere of radius 3 centered at the beginning of the coordinates (see 

Fig. 25.1). 
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Fig. 17.1. Graph of the function 
229 yxz −−=

 

Example 17.3. Let us consider the function 
22 yxz += . It is defined 

on the entire plane Oxy. Its graph is a surface called a paraboloid of 

revolution. This surface intersects the plane xOz in the parabola 
2xz = , 

and the plane yOz intersects in the parabola 
2yz = . 

 

Fig. 17.2. Graph of the function 
22 yxz +=  

For the function of n arguments as 3n  we can formally define the 

concept of a graph (this is the so-called hypersurface in ( 1+n )-

dimensional space), but it is not possible to depict it in the figure. It should 

be noted that for the function of two arguments the construction of the 

graph is associated with significant difficulties, and the graph itself is not 

as clear as the graph of the function of one argument. Therefore, for a 

figurative representation of the function of two variables, level lines are 

used. By the function level line (17.5) we called the line 

( ) Cyxf =,
, 

where C is a constant. 
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For example, for a function 
22 yxz −=  any level line Cyx =− 22

 at 

0C  is a hyperbola. 

Similarly, for a function of three arguments 
( )zyxfw ,,=  a level 

surface is defined: 

( ) Czyxf =,, . 

Examples of functions of several variables 

Let us look at some examples of frequently encountered functions of 

several variables. 

1. A linear function is a function of the form 

bxaxaxau nn ++++= ...2211 , (17.6) 

where 1a , 2a , …, na
, b are constant numbers. It can be considered as 

the sum of n linear functions, each of which depends on one argument. 

2. A function of the form 
2

3113

2

2222112

2

111 ...22 nnn xaxxaxaxxaxau +++++=
 

or, which is the same, 


=

=
n

ji

jiij xxau
1,2

1

, (17.7) 

where ija
 are constant numbers, is called the quadratic form of n 

variables 1x
, 2x

, …, nx
 . 

3. In §5.4, a utility function has been defined. Its multidimensional 

analogue is a function 
( )nxxxfu ...,,, 21=

 expressing the usefulness of 

acquiring n goods. Most often it occurs in the form of a: 

logarithmic function 

( )
=

−=
n

i

iii cxau
1

ln

, 
0ia

, 
0 ii cx

 (17.8) 
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function of constant elasticity 

( )
=

−
−

−
=

n

i

b

ii

i

i icx
b

a
u

1

1

1
, 

0ia
, 

10  ib
, 

0 ii cx
. (17.9) 

4. Cobb-Douglas Function 

21

210

bb
xxbz =

. (17.10) 

Often, other notations are used to write it: 
= LAKQ . (17.11) 

Wherein  , 0 , 1+ . In particular, as 1=+  it has the 

form: 
−= 1LAKQ . (17.12) 

This is a production function that expresses the volume of output Q (in 

monetary or natural terms) at the cost of capital K and labor L. Here A is 

the productivity parameter of a particular technology,  is the share of 

capital in income ( 10  ). 

In this section, we will present the material mainly for the functions of 

two* variables. Moreover, almost all concepts and statements formulated 

for a function of two variables can easily be transferred to the case when 

the function depends on any number of variables. 

18.4. Limit and continuity 

Let us consider a function 
( )yxfz ,=

, defined on a set D. Let 

( )000 , yxM
 be the limit point of the set D. 

Definition. The number b is called the limit of a function 
( )yxf ,

 as 

the point 
( )yxM ,

 tends to the point
( )000 , yxM

, if for any number 0  
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there exists a number 0  such that for all points 
( )yxM ,  satisfying the 

condition 
( )  0, MM

 the following inequality holds: 

( ) − byxf ,
. 

The fact that number b is the limit for ( )yxf ,  as ( )yxM ,   

( )000 , yxM
, is written as follows: 

( ) byxf

yy
xx

=

→
→

,lim

0

0

, or 
( ) bMf

MM
=

→ 0

lim
 (17.13) 

Definition. A function ( )yxfz ,=  is called continuous at the point 

( )000 , yxM
, if it is defined at this point, has a finite limit as ( )yxM ,   

( )000 , yxM
 and if the following equality holds: 

( ) ( )00 ,,lim

0

0

yxfyxf

yy
xx

=

→
→

. (17.14) 

By the total increment of the function we call the difference 

( ) ( )=−= 0MfMfz
. If 

we denote 
xxx =− 0 , 

yyy =− 0 , then equality (17.14) can be 

rewritten as follows 

0lim

0
0

=

→
→

z

y
x

, (17.15) 

i.e., infinitesimal increments of the arguments correspond to an 

infinitesimal increment of the function. 

A function continuous at each point of a given domain D is called 

continuous in domain D. 
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The geometric meaning of the continuity of the function of two 

arguments is obvious: the graph of a continuous function ( )yxfz ,=  is a 

continuous surface that does not have gaps. 

Questions 

1. What is an n-dimensional Euclidean space? 

2. How is an n-dimensional ball defined in Euclidean space? 

3. What is an open n-dimensional ball? n-dimensional sphere? 

4. How is the n-dimensional parallelepiped determined in Euclidean 

space? 

5. What is the -neighborhood of a point in n-dimensional Euclidean 

space? 

6. What points are called the interior points of a set in Euclidean 

space? 

7. What is a closed set? 

8. Can a set be non-open and not closed at the same time? 

9. What is called the level line of the function of two arguments? 

10. What is called the level surface of a function of three arguments? 

11. What is the Cobb-Douglas function? What does this function 

express? 

12. What is a total increment of a function of two arguments? 

13. How is the concept of continuity of a function of two arguments 

defined? 
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Chapter 19. Partial derivative 

and their economic meaning. 

Total differential 

19.1. Partial increment and и partial 

derivative 

Let a function ( )yxfz ,=  be defined in some neighborhood of a point 

( )000 , yxM
. (For brevity, we carry out the arguments for the function of 

two variables). We give the argument x an increment x  (that is, we move 

from value 0x
 to value 

xx +0 ) for a fixed 0yy =
, so that the point 

( )00 , yxxM +
 belongs to the specified neighborhood. Then the function 

z changes by 

( ) ( )0000 ,, yxfyxxfzx −+=
. 

This difference is called the partial increment of the function z with 

respect to x. Particular increment is determined with respect to y: 

( ) ( )0000 ,, yxfyyxfzy −+=
. 

Definition. The partial derivative of a function of several variables 

with respect to one of these variables is the limit of the ratio of the partial 

increment of the function to the increment of the considered independent 

variable when the latter tends to zero (if this limit exists).  

The partial derivatives of a function ( )yxfz ,=  at a point
( )000 , yxM

 

are denoted as follows: 
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xz
, x

z





, 
( )00 , yxf x


 (derivative with respect to x); 

yz 
, y

z





, 
( )00 , yxf y


 (derivative with respect to y). 

Thus, by definition 

( ) ( )
x

yxfyxxf

x

z
z

x

x

x
x



−+
=




=

→→

0000

00

,,
limlim

, (18.1) 

( ) ( )
y

yxfyyxf

y

z
z

y

y

y
y



−+
=




=

→→

0000

00

,,
limlim

. (18.2) 

From the definition of partial derivatives it follows that to find the 

partial derivative 
( )yxf x ,

 it is necessary to consider the function 

( )yxfz ,=  as a function of one argument x with constant y. Similarly, to 

find 
( )yxf y ,

 the constant should be considered x. 

Example 18.1. Find partial derivatives of functions: 

а) 
4325 yxyxz +=

; б) 
xyz =
. 

Decision. 

а) Counting
const=y

, we find 
4224 35 yxyxzx +=

. Counting now 

const=x , we find 
335 42 yxyxz y +=

. 

б) Counting 
const=y

, we find xz
 as a derivative of an exponential 

function: 
yyz x

x ln=
. Counting now const=x , we find yz

 as a 

derivative of an exponentiation function: 
1−= x

y xyz
. 
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Second - and Higher - order partial derivatives 

Partial derivatives 
( )yxfz xx ,=

 and 
( )yxfz yy ,=

 are functions of 

x and y, therefore, partial derivatives of them can be found. These 

derivatives are called second-order partial derivatives of the function 

( )yxfz ,= : 

xxxx zz )( =
, yxxy zz )( =

, xyyx zz )( =
, yyyy zz )( =

. 

The partial derivatives of the third and higher orders are defined in a 

similar way. For example, yxxxxy zz )( =
. 

Example 18.2. Find second-order partial derivatives of a function 
4325 yxyxz += . 

Decision. In example 18.1 partial derivatives of the first order have 

already been found: 

4224 35 yxyxzx +=
; 

335 42 yxyxz y +=
. 

Now we find the second-order partial derivatives: 

423 620 xyyxzxx +=
; 

324 1210 yxyxzxy +=
; 

324 1210 yxyxz yx +=
; 

235 122 yxxz yy +=
. 

Partial derivatives xyz 
 and yxz 

 are called mixed partial derivatives. 

Example 18.3. 
yexz 2= . Find xyz 

 and yxz 
. 

Decision. 
y

x xez 2=
, 

y

xy xez 2=
; 

y

y exz 2=
, 

y

yx xez 2=
. 

We see that for the functions considered in examples 26.2 and 26.3, the 

mixed derivatives coincide: xyz 
 = yxz 

. This is no coincidence. The 

following statement is true: 
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Theorem 18.1. If the partial derivatives of the second order of the 

function ( )yxfz ,=  are continuous at a point
( )00 , yx

, then at this point 

xyz 
 = yxz 

. 

We will not prove this theorem. We only note that usually functions 

used in economics have continuous second-order partial derivatives. 

The economic meaning of partial derivative 

Consider the Cobb–Douglas production function as an example [see 

formula (17.12)]: 
−= 1LAKQ . 

Let us find the rate of change in the volume of production Q when one 

of the factors changes: capital expenditures K or workforce L. The partial 

derivatives of the function Q solve this problem: 
−−= 11LKAQK , 

( ) −−= LKAQL 1 . 

The partial derivative 
−−= 11LKAQK  is called the marginal fixed-

asset turnover, and the partial derivative ( ) −−= LKAQL 1  – 

marginal workforce productivity. 

Recall that in the case of a function of one variable 
( )xfy =  the 

elasticity of the function with respect to the argument is the quantity 

( )
y

y
xyEx


=

 
[see formula (12.2)]. 

For a function of several variables, the ordinary derivative is replaced 

by the partial derivative. For the Cobb-Douglas function, the elasticity of 

the output of the product by capital expenditure 

( ) =


=
Q

Q
KQE K

K

. 
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Similarly, the elasticity of workforce 

( ) −=


= 1
Q

Q
LQE L

L

. 

So, in the Cobb-Douglas function, the exponents   and −1  are 

respectively the elasticity coefficients for each of its arguments. 

19.3. Total increment and total 

differential 

The total increment of the function
( )yxfz ,=  at the point

( )000 , yxM
, corresponding to the increment of the arguments x  and 

y  is called the difference 

( ) ( )0000 ,, yxfyyxxfz −++=
. (18.3) 

Definition. A function 
( )yxfz ,=

 called differentiable at a point

( )000 , yxM
, if its total increment (26.3) at this point can be represented 

as 

yxyAxAz +++= 2121 , (18.4) 

where 1A
, 2A

 – constants independent of x , y , and 1 , 2  – are 

infinitesimal for 0→x , 
0→y

. 

If at least one of the numbers 1A
, 2A

 is nonzero, then the amount 

yAxAL += 21  (18.5) 

is the main linear x , y  part of the increment of the differentiable 

function. This main part of the increment of the function is called the total 

differential. 
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Theorem 18.1. If function 
( )yxfz ,=  is differentiable at a point

( )000 , yxM
, it has partial derivatives at this point with respect to x and y. 

Proofs. From equality (26.4) it follows that 
xxAzx += 11 , 

whence 

11 +=



A

x

zx

. (*) 

Since 
01 →

 for 0→x , then it follows from (*), that there is a 

limit 

1
0

lim A
x

zx

x
=





→ , 

i.e. xz
 exists (and 1Azx = ). 

It is similarly proved that there exists yz
 (and 2Az y = ). 

The main linear part of the increment of the function 
( )yxfz ,=

 has 

the form
yzxz yx +

. 

Now we can formulate the concept of a total differential in the 

following form. 

Definition. The total differential dz  of a function 
( )yxfz ,=

 is the 

sum of the products of the partial derivatives of this function by the 

increments of the corresponding independent arguments, i.e. 

yzxzdz yx +=
. (18.6) 

Consider, in particular, a function
( ) 0, == yxfz

. Obviously, 

xdxdz == ·1 , i.e. xdx = . Similarly, considering 
( ) yyxfz == ,

, we 

get 
ydy =

. Therefore, formula (26.6) can be written as 
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dyzdxzdz yx
+=

, (18.7) 

or, which is the same, 

dy
y

z
dx

x

z
dz




+




=

. 

Note that the differential, being the main part of the increment of the 

function, is used in approximate calculations. 

Example 18.4. Calculate approximately 
( ) ( )33

97,102,1 +
. 

Decision. The desired number will be considered as the value of the 

function
( ) 33, yxyxfz +==

 for 
xxx += 0 , 

yyy += 0 , where 

10 =x
, 

20 =y
, 02,0=x , 03,0−=y . We have: 

( ) 3212,1 33 =+=f , 

33

22

2

33

yx

dyydxx
dzz

+

+
=

, 

( )
( )

05,0
6

36,006,0

32

03,02302,013
2,1

2

−=
−

=


−+
z

. 

Hence, 
( ) ( ) 95,205,0397,102,1

33
=−+

. 

Theorem 18.2. If a function
( )yxfz ,=

 is differentiable at a given 

point, then it is continuous at this point. 

Proofs. From the differentiability condition (18.4) it follows that 

0lim

0
0

=

→
→

z

y
x

, 

and this means the continuity of the function [see formula (17.15)]. 
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Recall that for a function of one argument
( )xfy =  the existence of a 

derivative is equivalent to differentiability. 

However, for a function of several arguments, a similar statement, 

generally speaking, is not true. It does not follow from the existence of 

partial derivatives with respect to all arguments that the function is 

differentiable, and it does not even follow that it is continuous. It can be 

shown (we will not do this) that the function 









==

+
+=

,0,0 если           ,0

,0 если, 22

22

yx

yx
yx

xy

z

 
is not differentiable (and is not continuous) at the point О(0, 0). 

Nevertheless, at this point (and at all other points), this function has partial 

derivatives with respect to x and y. 

So, the existence of partial derivatives, generally speaking, is not 

enough for the differentiability of the function of several variables. 

Sufficient conditions for differentiability are given by the following 

theorem. 

Theorem 18.3. If the function 
( )yxfz ,=  has partial derivatives

( )yxf x ,
 and 

( )yxf y ,
 in a neighborhood of the point M and these 

derivatives are continuous at the point M, then this function is 

differentiable at the point M. 

Higher - order differentials 

Let a function 
( )yxfz ,=

 having continuous first-order partial 

derivatives be given in the region D. Then, as we already know, the 

differential dz  is called the following expression:  

dy
y

z
dx

x

z
dz




+




=

, 
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where dx , dy  – the differentials of the independent arguments x and 

y, or, which is the same, arbitrary increments of these arguments. 

Obviously, dz  is also a function of x, y. If the function z has continuous 

second-order partial derivatives, then the differential dz  has first-order 

continuous partial derivatives, and we can raise the question of the 

differential of this differential dz , i.e. about  
( )dzd . This latter is called a 

second-order differential (or second differential) and is denoted by zd 2

: 

( )dzdzd =2

. 

When calculating the second differential, the differentials of the 

independent arguments (i.e., their increments) dx  and dy  are considered 

as constants. Therefore, 022 == ydxd . So, 

( ) dy
y

z
ddx

x

z
ddy

y

z
dx

x

z
ddzdzd 












+












=












+




==2

. 

From here 

dydy
y

z
dx

xy

z
dxdy

yx

z
dx

x

z
zd 












+




+












+




=

2

222

2

2
2

, 

and given that xy

z

yx

z




=



 22

, we obtain 

2

2

22
2

2

2
2 2 dy

y

z
dxdy

yx

z
dx

x

z
zd




+




+




=

. 
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Of course, this expression could be written in a slightly different form, 

given that we can denote the same partial derivatives in different ways, for 

example, 
xy

z

yx

z




=



 22

 we can denote both how
2

2

x

f





, and how xxz 
, etc. 

Second-order differentials for functions of three or more arguments are 

written similarly, i.e. for functions
( )zyxfw ,,= , 

( )nxxxfw ,...,, 21=
. 

The higher-order differentials are determined by the same rule: 

( )zddzd 23 = , …, 
( )zddzd nn 1−= . 

Here we looked at the functions of independent arguments. For the case 

when the arguments themselves are functions, for example,
( )tsx ,=

, 

( )tsy ,= , it can be shown (just as it was done for the functions of one 

argument) that the form of the first-order differential is invariant, and for 

the second and higher-order differentials it is not invariant. We will not 

dwell on this in detail. 

Remark. Despite the fact that for differentials of the second and higher 

orders, the invariance of the form does not take place at all, in some 

particular simple cases the shape of the differential of any order can remain 

unchanged. In particular, in the case when the arguments x, y of the 

function 
( )yxfz ,=

 linearly depend on the independent argument t: 

21 atax +=
, 21 btby +=

, the shape of the differential of any order 

remains unchanged. This is easy to verify. 

19.4. Directional derivative. Gradient 

Let a function 
( )yxfz ,=

 be defined in some neighborhood of a point

( )000 , yxM
. Consider a certain direction defined by a unit vector 
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( )= cos,cosl , where 1coscos 22 =+  (fig. 18.1). On a line 

passing in this direction through a point 0M
, take a point 

( )yyxxM ++ 00 ,
. Denote by l  the length of the segment 

MM 0 . 

Obviously, 

22 yxl +=
. 

 

Fig. 18.1. Direction 
( )= cos,cosl  

Consider the increment of the function 
( )yxf ,

: 

( ) ( )0000 ,, yxfyyxxfz −++=
, 

where x  and y  are related by the relations = coslx , 

= cosly
. 

Definition. The limit of  the ratio l

z





 at 0→l  is called the 

derivative of the function 
( )yxfz ,=

 at a point 
( )000 , yxM

 in the 

direction l  and is denoted l

z





 (or lz
): 
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l

z

l

z

l 


=





→ 0
lim

. 

The derivative l

z





 characterizes the rate of change of function in the 

direction l . 

Obviously, ordinary partial derivatives x

z





 and y

z





 are derivatives in 

directions parallel to the axes Ox and Oy respectively. It is easy to verify 

that for a differentiable function 
( )yxfz ,=

: 





+




=




coscos

y

z

x

z

l

z

 (or
+= coscos yxl zzz

). (18.8) 

Definition. The gradient of a function 
( )yxfz ,=

 at a point M  is a 

vector whose coordinates are equal respectively to the partial derivatives

x

z





 and y

z





 at this point. 

The gradient of the function is denoted by zgrad : 

















=

y

z

x

z
z ,grad

, or 
( )

yx zzz = ,grad
. (18.9) 

Comparing equalities (18.6) and (18.7), we see that derivative in the 

direction l  is the scalar product of vectors l  and zgrad : 

zl
l

z
grad=





. 

It is known that the scalar product of two vectors has a maximum value 

when the angle between them is zero. Therefore, the derivative of the 
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function 
( )yxfz ,=  in the direction  l  takes on the maximum value 

when the directions of the vectors l and zgrad  coincide. 

Thus, the gradient of the function characterizes the direction in which 

the function changes most rapidly. 

Consider the geometric meaning of the gradient. The level line of 

the function 
( )yxfz ,= , passing through the point 

( )00 , yx
, is given by 

the equation
( ) Cyxf =,

, where
( )00 , yxfC =

. Under certain 

conditions, this equation can be solved with respect to  y i.e. express y in 

the 
( )xgy =  (if this is not possible, then by solving the equation for x, 

( )yhx = , we can repeat all the arguments for this case). We know that the 

angular coefficient of the tangent is
( )xg , i.e. the tangent direction vector 

has coordinates 
( )( )xg,1

 or, which is the same  










dx

dg
,1

. Therefore, the 

vector 
( )dydx,

 is also the direction vector of the tangent.  

Taking the differential from the left and right sides of the equation 

defining the level line, we get: 

0=



+




= dy

y

z
dx

x

z
dz

, 

i.e. the scalar product of the gradient and the directing vector of the 

tangent is zero, therefore, these vectors are perpendicular. 

The concept of a function gradient is generalized to the case of any 

number of variables. In particular, for the function 
( )zyxfu ,,=

: 





















=

z

u

y

u

x

u
u ,,grad

. 
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In the case of the three-argument function, all of the above remains 

valid, the only thing is the level surface will act instead of the level line, 

and the tangent plane to the level surface will appear instead of the tangent 

to the level line, i.e. plane. 

( )( ) ( )( ) ( )( ) 0,,,,,, 000000000000 =−+−+− zzzyxfyyzyxfxxzyxf zyx

. 

Example 18.5. Find the gradient of a function 4

2
2 y

xz +=
 at a point

( )6,20M
 and its modulus. 

Decision: 









=







 




=

2
,2,grad

y
x

y

z

x

z
z

. When 2=x , 6=y  we 

get: 

( )
( )3,4grad

6,2
=z

; 
534grad 22 =+=z

. 

Example 18.6. Find the gradient of a function 

2
2

2

2
z

y
xu −+=

 at a 

point
( )1,1,10M

 and its module. 

Decision. 

( )zyx
z

u

y

u

x

u
u 2,,2,,grad −=




















=

. 

( )
( )2,1,2grad

1,1,1
−=u

; 
( ) 3212grad

222 =−++=u
. 

19.5. Taylor formula 

Let a function 
( )yxfz ,=

 in a neighborhood of a point 
( )000 , yxM

 

have continuous derivatives of all orders – until (n + 1)-th  inclusive. We 
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add 0x
 and 0y

 some increments x  and y  respectively so that the 

straight line segment connecting the points 
( )00 , yx

 and 

( )yyxx ++ 00 ,
, belongs entirely to the neighborhood of the point 

under consideration 
( )00 , yx

. 

We show that in this case the following equality holds: 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ,,
!1

1
,

!

1
...,

!2

1

,,,,

1

0000

2

00000000


+

++++

+=−++=

+ fd
n

yxfd
n

yxfd

yxdfyxfyyxxfyxf

nn

 (18.10) 

where ⎩ – between 0x
 and 

xx +0 , ⎜ – between 0y
 and 

yy +0  (

xx += 0 , 
yy += 0 , 10  ). 

For proof, we make a replacement: 

xtxx += 0 , 
ytyy += 0 , 

 1,0t
. (18.11) 

Substituting these values of x and y into the function
( )yxf ,

, we obtain 

a complex function from one argument t: 

( ) ( )ytyxtxftF ++= 00 ,
. 

Formulas (26.11) geometrically express a straight line segment 

connecting the points  
( )000 , yxM

 and 
( )111 , yxM

 (in this case, the point 

( )000 , yxM
 corresponds to the value 0=t , and the point

( )111 , yxM
 – to 

the value 1=t ). 

Now we can replace the increment 

( ) ( ) ( )000000 ,,, yxfyyxxfyxf −++=
 with an equal increment 

( ) ( ) ( )010 FFF −=
. But the function 

( )tF
 is a function of one variable 
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and has continuous derivatives until (n + 1)-th order, inclusive. Therefore, 

it can be decomposed according to the Taylor formula. We write this 

expansion in the form (17.13"): 

( ) ( ) ( ) ( )
( )

( ) 10,
!1

1

!

1
...

!2

1
0

1

00

2

00 +
+

++++= + ttFd
n

tFd
n

tFdtdFtF nn

. 

From here we get 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) .10,

!1

1

0
!

1
...0

!2

1
0010

1

2


+

+

++++=−=

+ Fd
n

Fd
n

FddFFFF

n

n

 (18.12) 

In this case, we note that differential dt , which appears in various 

degrees on the right-hand side of (26.12) (i.e. contained in the expressions 

( ) ( )dtFdF 00 =
, 

( ) ( ) 22 00 dtFFd =
, …), is equal to the increment 

101 =−=t . 

Now, taking into account the (linear) replacement (26.11), and also 

considering the remark made earlier on the invariance of a differential of 

any order with respect to a linear change of variables (see § 26.2), we 

obtain 

, 

( ) ( ) ( ) ( ) ( )00

22

0000

2

00

2 ,,,2,0 yxfddyyxfdxdyyxfdxyxfFd yyxyxx =++=

, 

… 

( ) ( )00 ,0 yxfdFd nn =
. 

Finally, for the differential (n + 1)-th order, we obtain 
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( ) ( )yyxxfdFd nn ++= ++

00

11 ,
. 

Note that the differentials dx  and dy  (as for independent arguments) 

are equal to increments and, respectively. Indeed, taking into account 

(18.11) and the fact that 1=dt , we have: 

xxdtdtxtxdtxdx tt ==+== )( 0 , 

yydtdtytydtydy tt ==+== )( 0 . 

Now we substitute the expressions for 
( )0dF , 

( )02Fd , … in (18.12): 

( ) ( ) ( ) ( )

( ) ( )
( )

( )

.10

,,
!1

1
,

!

1
...,

!2

1

,,,,

00

1

0000

2

00000000



++
+

++++

+=−++=

+ yyxxfd
n

yxfd
n

yxfd

yxdfyxfyyxxfyxf

nn

 (18.13) 

We have obtained for the function
( )yxfz ,=

 the Taylor formula in 

a differential form. In expanded form, it (even for the considered case of 

the function of two arguments) looks much more complicated. 

We write formula (18.13), taking into account the fact that xdx = , 

ydy = , in expanded form, restricting ourselves to only two terms of the 

expansion (i.e., for n = 2): 
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( ) ( ) ( )( ) ( )( )

( )( ) ( )( )( )

( )( )  ( )( )

( )( ) ( )

( )( )( )

( )( ) .,

,

,

,
!3

1
,

,2,
!2

1

,,,,

3

000

2

0000

0

2

000

3

000

2

000

0000

2

000

00000000

yyyyxxf

yyxxyyxxf

yyxxyyxxf

xxyyxxfyyyxf

yyxxyxfxxyxf

yyyxfxxyxfyxfyxf

yyy

xyy

xxy

xxxyy

xyxx

yx

−+++

+−−+++

+−−+++

+−+++−+

+−−+−+

+−+−+=

 (18.14) 

This is Taylor’s formula for 
( )yxfz ,=  at n = 2. As you can see, it 

looks unwrapped in a cumbersome form, although the function depends on 

only two variables, and we took only two terms of the expansion. 

Questions 

1. What is called a partial function increment? What is the difference 

between a partial increment and a total increment?  

2. What is called the partial derivative of a function of several 

arguments with respect to one of the arguments? 

3. Does the process of finding the partial derivative differ 

fundamentally from the process of differentiating the function of one 

argument? 

4. What are mixed partial derivatives? 

5. What property do continuous mixed partial derivatives possess? 

6. What is the economic meaning of the partial derivatives of the 

Cobb-Douglas function? 
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7. What is the elasticity of workforce for the Cobb-Douglas function? 

And what is the elasticity of output for capital expenditure for the same 

function? 

8. What is the differentiable function of two arguments? 

9. What is called the total differential of a function of two arguments? 

10. Is the existence of partial derivatives with respect to both 

arguments sufficient for the function of two arguments to be differentiable? 

11. Is it possible to say that the function of two arguments, which has 

partial derivatives of both arguments at a given point, is continuous at this 

point? 

12. What is the basis for the use of the total differential in approximate 

calculations? 

13. How is the derivative determined in this direction? What 

characterizes the directional derivative? Is a scalar or vector quantity a 

directional derivative? 

14. What is the gradient of a function of two arguments? Is the gradient 

a scalar or vector? 

15. In which case does the directional derivative take on the greatest 

value? 

16. What is the geometric meaning of the gradient? 

17. What does the Taylor formula for the function of two arguments 

in differential form look like? 
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Chapter 20. Extremum. 

Conditional extremes 

20.1. The local extremum of a function of 

multiple variables 

As already noted, we carry out the arguments for the function of two 

arguments. 

Let a function 
( )yxfz ,=  be defined in some neighborhood of a point 

( )000 , yxM
. 

Definition. A point
( )000 , yxM

 is called a point of local maximum 

(minimum) of the function  
( )yxfz ,=

, if there is a neighborhood of the 

point 0M
, such that for all points 

( )yxM ,
 from this neighborhood 

inequality holds 
( ) ( )yxfyxf ,, 00 

 (respectively
( ) ( )yxfyxf ,, 00 

). 

If 
( )000 , yxM

 – is the point of the local maximum (minimum) of the 

function
( )yxf ,

, then the value 
( )00 , yxf

 is called the local maximum 

(minimum) of the function. The general term for a local maximum and 

minimum is a local extremum. 

Necessary condition for extremum 

Theorem 20.1. If the function 
( )yxfz ,=

 has partial derivatives at 

the point of local extremum 
( )000 , yxM

, then 

( ) ( ) 0,, 0000 == yxfyxf yx . (20.1) 
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Proofs. We fix 0yy =
. We get the function of one variable.

( )00 , yxf

. Its derivative coincides with the partial derivative
( )0, yxf x


, and the 

function has a local extremum at a point 0x
. According to Fermat's 

theorem 
( ) 0, 00 = yxf x . Similarly, fixing 0xx =

 and considering

( )yxf ,0 , we prove that 
( ) 0, 00 = yxf y . 

It should be noted that condition (20.1) is not a sufficient condition for 

the extremum. Consider, for example, a function xyz = . Its partial 

derivatives are equal to zero at a point 
( )0,0O , however, at this point the 

function has no extremum. Indeed, 
( ) 00,0 =f , but in any neighborhood 

of the point O there are both positive and negative values of the function. 

Points at which the necessary conditions for an extremum are satisfied 

(i.e., partial derivatives xz
 and yz

 are equal to zero), are called critical or 

stationary points. The stationary points of the function 
( )yxf ,

 can be 

found by solving the system of equations: 

( )

( )



=

=

.0,

0,

yxf

yxf

y

x

 (20.2) 

Example 20.1. Find stationary function points 

168 33 +−+= xyyxz
. 

Decision. 
yxzx 63 2 −=

, 
xyz y 624 2 −=

. We get the system: 







=−

=−

,0624

,063

2

2

xy

yx

 or 






=−

=−

.04

,02

2

2

xy

yx
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From the first equation we find 
22 xy = , 

424 xy = . Substituting into 

the second equation, we obtain 04 =− xx , i.e. ( ) 013 =−xx . This 

equation has two real roots 01 =x , 12 =x . From the first equation we find 

01 =y , 2

1
2 =y

. Therefore, there are two stationary points 
( )0,0  and 










2

1
,1

. 

Sufficient extremum conditions 

Theorem 20.2. Let a function 
( )yxfz ,=  has second-order 

continuous partial derivatives in some neighborhood of a stationary point 

( )000 , yxM
, let

( ) Ayxf xx =
00 ,

, 
( ) ( ) Byxfyxf yxxy ==

0000 ,,
, 

( ) Cyxf yy =
00 ,

, 
2BACD −= . Then: 1) if 0D , then the function has 

a local extremum at the point 
( )00 , yx

, and if 0A  – a local maximum, 

and if 0A  – a local minimum; 2) if 0D , then at the point 
( )00 , yx

 

there is no extremum. 

Proofs. Consider the difference 
( ) ( )00 ,, yxfyxff −=

. We use the 

Taylor formula (19.13), restricting ourselves to n = 1 i.e., the expansion 

will contain only the first term and the remainder term 1R
): 

( ) ( ) ( ) ( )

( ) ( ) .,,2

,
!2

1
,,,

2

2

000000

yfyxf

xfyyxfxyxfyxff

yyxy

xxyx

++

+++==

 (20.3) 

(Here 
xx += 0

, 
yy += 0 , 10  .) 
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Since the point 
( )000 , yxM

 – is stationary, the first terms of the 

expansion vanish, and we get a simpler expression for function increment 

at a point
( )00 , yx

: 

( ) ( ) ( ) .,,2,
!2

1 22 yfyxfxff yyxyxx ++=
 (20.4) 

In accordance with our designations 

( ) Ayxf xx =
00 ,

, 
( ) Byxf xy =

00 ,
, 

( ) Cyxf yy =
00 ,

. 

Since the second derivatives are continuous, then 

( ) ( ) 1100 ,, +=++= Ayyxxff xxxx , 

( ) 12, += Bf xy , 
( ) 22, += Cf yy , 

where 11 , 12 , 22  – are infinitesimal for 0→x , 0→y . 

Now we can rewrite f  in the form: 

 2

2212

2

11

22 22
2

1
yyxxyCyxBxAf +++++=

. 

We are interested in the sign of difference f . We will see that the 

sign f  depends on the sign of the expression 
2BACD −= . Denote the 

distance between the points  
( )000 , yxM

 and 
( )yxM ,

 by r. Obviously, 

22 yxr +=
. Now 

= cosrx
, 

= sinry
 (where ϕ – is the 

angle between the segment 
MM 0  and Ox). Once again, we rewrite the 

expression 
f

: 
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.sinsincos2

cossinsincos2cos
2

2

2212

2

11

22
2

++

++++= CBA
r

f

 (20.5) 

1. Let 0
2 − BAC . 

In this case, AC > 0, therefore, А ≠ 0, and the first trinomial in 

parentheses expression (20.5) can be transformed as follows: 

( ) ( ) .sinsincos
2

1

sinsincos2cos

222

22

−++=

=++

BACBA

CBA

 (20.6) 

From this it is clear that the expression in square brackets (under our 

assumption 02 − BAC ) is always positive. Therefore, the mentioned 

trinomial for all values of ϕ is nonzero and has the same sign as the 

coefficient  А. This trinomial is a function of the argument ϕ, that is 

continuous on the interval 
 2,0

. This function, according to the second 

Weierstrass theorem, reaches at 
 2,0

 its smallest value. This smallest 

value is nonzero. Therefore, the modulus of this square trinomial has a 

positive smallest value m:  

0sinsincos2cos 22 ++ mCBA
. 

Now we consider the second trinomial in parentheses on the right-hand 

side of equality (20.5). Obviously, 

221211

2

2212

2

11 2sinsincos2cos ++++

. 

Since 11
, 12

, 22
 – are infinitesimal for 0→x , 0→y , then 

for sufficiently small x  and 
y

 the inequality will be fulfilled 
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m++ 221211 2
. 

Therefore, the expression in brackets on the right-hand side of equality 

(20.5) will retain the same sign as the first of the trinomials, i.e. the sign of 

А. Consequently, the left side 
( ) ( )00 ,, yxfyxff −=

 also retains the 

sign of А. 

So, if А > 0, then and 0f , i.e. at a point 
( )00 , yx

 the function has 

a minimum; in the case  А < 0 will be 0f , i.e. there is a maximum. 

2. Let now 0
2 − BAC . 

We consider separately the cases when 0A  and when А = 0. 

1) 0A . 

In this case, we can use the transformation (20.6). Let us make sure 

that in this case, in an arbitrarily small proximity to the point under 

consideration 
( )000 , yxM

 the difference f  can be both positive, and 

negative, i.e at point 
( )000 , yxM

 there is no extremum.  

Let  
01 ==

. Then, on the right-hand side of equality (20.6), the 

expression in square brackets will be positive (and equal to
2A ). 

If 2=  we determine from the condition + sincos BA  (i.e. 

B

A
arctg2 −=

), then the expression mentioned will be negative (and 

equal to 
( ) 2

22 sin − BAC
). 

As already noted, the second trinomial on the right-hand side of 

equality (20.5) for sufficiently small r does not affect the sign 
f

. 
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Obviously, we can take a point 
( )111 , yxM  as close to 

( )000 , yxM
 as 

needed so that the segment 10MM
 forms an angle 01 ==  with Ox. 

For it 0f . In the same way, we can arbitrarily close to 
( )000 , yxM

 

take a point
( )222 , yxM  so, that the segment 20MM

 forms an angle 

2=  with Ox. For this point will be 0f . 

So, in the case under consideration 02 − BAC , 0A  in any 

proximity to the point under consideration 
( )00 , yx

 the difference f  can 

be both positive and negative. Therefore, at this point there is no extremum. 

2) 0=A . 

In this case 

( ) .sincos2sin

sinsincos2sinsincos2cos 222

+

=+=++

CB

CBCBA

 

Obviously, 0B  (otherwise 02 =− BAC ). 

In this case, we can choose such an angle 
~

, that 

 ~cos2~sin BC
. 

Then with = ~
 and  −= ~

 the trinomial (20.6) will have opposite 

signs. Therefore (repeating the above reasoning) we are convinced that 

there is no extremum at the point
( )000 , yxM

. 

The theorem is proved. 

In the case, when 02 =− BAC , the question of the extremum remains 

open and to solve it requires additional research (for example, involving 

higher derivatives). 

We also note that 
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( ) ( )
( ) ( )0000

0000

,,

,,

yxfyxf

yxfyxf
D

yyyx

xyxx




=

. 

Example 20.2. Explore extremum function 

yyxxz 433 232 ++−=  

Decision. 
( )22 2336 xxxxz x −=−=

, 
( )23246 +=+= yyz y . We 

get the system: 





=+

=−

.023

,02 2

y

xx

 
Solving the system, we find two stationary points: 









−

3

2
,01M

 и 









−

3

2
,22M

. 

Find the second-order partial derivatives: 

xzxx 66 −=
, 

0=xyz
, 

6=yyz
. 

We calculate A, B, C and D for each stationary point. 

for a point 









−

3

2
,01M

 

61 =A
, 

01 =B
, 

61 =C
, 

0360661 =−=D
 – there is an 

extremum; 

061 =A
, therefore, a minimum; 

3

4

3

2
,0min −=








−= fz

; 

for a point 









−

3

2
,22M

 

62 −=A
, 

02 =B
, 

62 =C
, 

0362 −=D
 – there is no extremum. 
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Example 20.3. Explore extremum function: 

168 33 +−+= xyyxz . 

Decision. The first partial derivatives and stationary points 
( )0,0  and 










2

1
,1

 of this function were found in Example 20.1. Since
xzxx 6=

, 

6=xyz
, 

yz yy 48=
, then at the point 

( )0,0  there will be 0=A , 6−=B

, 0=C , 036 −=D , therefore, there is no extremum. At the point 










2

1
,1

 we have 6=A , 6−=B , 24=C , 0108 =D  – there is an 

extremum; 0A , therefore minimum; 

0
2

1
,1min =








= fz

. 

20.2. Largest and lowest values of 

functions in a closed area 

The largest and smallest values (i.e. global maximum and minimum) 

of a function continuous on some closed set can be reached either at 

extremum points or at the boundary of the set. 

Example 20.4. Find the largest and smallest values of the function 
22 yxz +=

 in a circle of radius 2 centered at a point
( )1,0

. 

Decision. Obviously, the boundary of the area has an equation 

( ) 41
22 =−+ yx

. 

Find the partial derivatives: 
xzx 2=

, 
yz y 2=

. Equating them to zero, 

we find the only stationary point 
( )0,0O

. 
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We study the function at the boundary of the area. Substituting from 

the boundary equation ( )22 14 −−= yx  into the function 
22 yxz += , 

we obtain the function of one variable 
( ) 22

14 yyz +−−= , i.e. 

32 += yz . Obviously,  3,1−y . This function does not have 

stationary points, therefore, its largest and smallest values can be reached 

only at the ends of a segment 
 3,1− . 

The value of the function 
22 yxz +=  at the stationary point 

( )0,0
 is 

0. The value of the function 32 += yz  for 1−=y  is 1, and for 3=y  is 

9. Comparing these three values, we find 
( )0, 3 9maxz f= =

, 

( )min 0, 0 0z f= =
. 

20.3. Conditional extremes 

Consider the problem of finding the extrema of a function of several 

arguments in the presence of additional conditions relating the values of 

the arguments. Such extremes are called conditional.  

For example, let it be necessary to find the extrema of the function 

yxz 2=
, (*) 

if its arguments satisfy the condition: 

012 =−+ yx
. (**) 

In this case, the extrema are not sought on the entire Oxy plane but only 

on the line 
012 =−+ yx

. We substitute in (*) the expression
12 +−= xy

 

from the condition (**), and the problem of the conditional extremum of 

the function (*) reduces to the problem of finding the non-conditional 

extremum of the function 
( ) 322 212 xxxxz −=+−=

. So, 
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=−= 262 xxz  
( )xx 312 −= . This function has a minimum at 0=x  and 

a maximum at 3

1
=x

, i.e. the function yxz 2=  in the presence of 

connection (**) has a conditional minimum 0=z  at a point 
( )1,0  and a 

conditional maximum 27

1
=z

 at a point










3

1
,

3

1

. 

Definition. A function 
( ) ( )nxxxfMfu ,...,, 21==

 has a 

conditional maximum (conditional minimum) at a point 

( )00

2

0

10 ,...,, nxxxM
 if there is a neighborhood of the point 0M

, such that 

for all points 
( )nxxxM ,...,, 21  of this neighborhood satisfying m equations

( )nm 
: 

( )

( )







=

=

,0,...,

..................

,0,...,

1

11

nm

n

xxg

xxg

 (20.7) 

inequality holds 
( ) ( )MfMf 0  (respectively 

( ) ( )MfMf 0 ). 

Equations (20.7) are called coupling equations. 

The problem of finding a conditional extremum is reduced to a study 

of a function's ordinary extremum 

( ) ( ) ( ) ( )nmmnnmn xxgxxgxxfxxL ,...,...,...,,...,,...,,,..., 1111111 +++=

. 

The function L is called the Lagrange function, and the numbers 1 , 

…, m  – are called the Lagrange multipliers. 
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The necessary conditions for a conditional extremum are expressed by 

a system of nm + equations: 

( )

( )







==

==




,...,,2,1,0

,...,,2,1,0

mkMg

ni
x

ML

k

i

 (20.8) 

from which unknowns can be found mnxx  ,...,;,..., 11 , where 

nxx ,...,1  – are the coordinates of the point at which a conditional 

extremum is possible. 

Sufficient conditions for the conditional extremum are associated with 

the study of the second differential of the Lagrange function Ld 2

, namely, 

if the inequality holds 02 Ld  at the point of a possible extremum 0M
, 

then at this point there is a conditional maximum, if 02 Ld , then, a 

conditional minimum. 

In the case of the function of two variables 
( )yxfz ,=

 in the coupling 

equation 
( ) 0, =yxg

 , the Lagrange function has the form: 

( ) ( ) ( )yxgyxfyxL ,,,, +=
. 

System (20.8) consists of three equations: 

0=




x

L

, 

0=




y

L

, 
( ) 0, =yxg

. 

Let 
( )000 ;, yx

 – be any of the solutions of this system, 
( )000 , yxM

 

– be the point of a possible extremum and 
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( ) ( )
( ) ( ) ( )
( ) ( ) ( )00000

00000

00

,,

,,

0







−=

MLMLMg

MLMLMg

MgMg

yyyxy

xyxxx

yx

. 

If 0 , then the function 
( )yxfz ,=  has a conditional maximum 

at a point
( )000 , yxM

, if 0 , then a conditional minimum. 

Example 20.7. Find the conditional extremum of the function 

yxz += 2  for 122 =+ yx . 

Decision. We compose the Lagrange function: 

( ) ( )12,, 22 −+++= yxyxyxL . 

We have 
x

x

L
+=




22

, 

y
y

L
+=




21

. 

The system of equations (20.8) has the form: 









=−+

=+

=+

.01

,021

,022

22 yx

y

x

 

We find solutions to this system: 5

2
1 −=x

, 5

1
1 −=y

, 2

5
1 =

; 

5

2
2 =x

, 5

1
2 =y

, 2

5
2 −=

. 

We have: 
( ) 1, 22 −+= yxyxg

, 
xg x 2=

, 
yg y 2=

, 

5

4

5

1
,

5

2
−=








−−

xg

, 5

2

5

1
,

5

2
−=








−−

yg

, 
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5=xxL
, 

0=xyL
, 

5=yyL
 при 2

5
=

. 

Consequently, 

054

50
5

2

05
5

4
5

2

5

4
0

=

−

−

−−

−=

, 

i.e. the function has a conditional minimum at the point 









−−

5

1
,

5

2
1M

, 5min −=z . 

Similarly for the point 










5

1
,

5

2
2M

: 

054

50
5

2

05
5

4
5

2

5

4
0

−=

−

−−=

, 

i.e. at the point 










5

1
,

5

2
2M

 there is a conditional maximum, 

5max =z
. 
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20.4. Least squares 

The least-squares method is one of the methods of the theory of errors. 

It refers to the so-called approximation methods, i.e. methods for the 

approximate expression of any mathematical objects through other, 

simpler ones. 

In practice, we often encounter the need to “smooth out” the 

dependencies identified as a result of observations. Usually, the problem is 

formulated as follows: there are observational data at n points 1M , 2M , 

…, nM
 of some quantity u and the corresponding values of this quantity 

1u , 2u , …, nu
; it is necessary to select a function 

( )Mfu = , so that it 

most accurately expresses the total dependence of the measured quantity 

on the parameters of the measurement points 1M , 2M , …, nM
. 

Formulas analytically representing experimental data (or measurement 

results) are called empirical formulas. 

For simplicity, we consider the case when the points iM
, at which 

measurements are taken have the same coordinate ix
, i.e. the relationship 

between the variables x and y is represented as a set 1x
, 2x

, …, nx
 and the 

corresponding values 1y
, 2y

, …, ny
. These pairs of values are represented 

on the coordinate plane by points 
( )11, yx

, 
( )22 , yx

, …, 
( )nn yx ,

. The 

polyline that connects these points is called the experimental curve               

(Fig. 20.1).  
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Fig. 20.1. The experimental curve 

It is necessary to find an analytical representation of the relationship 

between  x and y in the form of a formula 
( )xfy =

. The type of function 

( )xfy =  is determined by economic or other considerations. Typically, 

the following are used as such functions: 

baxy +=  – linear; 

cbxaxy ++= 2

 – parabolic; 

b
x

a
y +=

 – hyperbolic; 
bxay e=  – exponential. 

(Logarithmic, power, and other functions are also used.) 

The problem of finding empirical formulas is usually solved in two 

stages. 

At the first stage, the general form of the dependence is determined

( )xfy =
, i.e. it must be decided whether it is linear, quadratic, 

exponential, or some other. 

Suppose that the measurement results (experimental data) are plotted 

on a grid (Fig. 20.2). 
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Fig. 20.2. Determination of the general form of dependence 
( )xfy =  

Obviously, there are many different curves passing through these 

points. In the case shown in fig. 20.2, curve 1 is preferable for the 

researcher in curve 2. It should be emphasized that the first stage - the stage 

of selecting the type of empirical function is very important. We see that 

curve 2 in Fig. 20.2, although it passes through the corresponding points, 

it does not provide a satisfactory representation of the dependence between 

x and y. 

In practice, to verify the correctness of the choice of function
( )xfy =

 

additional studies are conducted, i.e. a number of additional measurements 

of x and y are made, additional points are applied to the coordinate plane. 

If they find themselves at a fairly close distance from the selected curve, 

then they consider that the type of curve is established, i.e. set the type of 

function
( )xfy =

. After choosing the type of function, they go to the 

second stage. 

At the second stage, the parameters of the selected empirical function 

( )xfy =
 are determined. In the above functions, the parameters are 

unknown numbers a, b и с. The parameters should be chosen so that the 

values of the empirical function are less likely to deviate at points 1x
, 2x

, 

…, nx
 from the measured values. 
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The least-squares method (proposed by K. Gauss) is to minimize the 

sum of the squares of the deviations of the “theoretical” values
( )ixf

, 

found by the empirical formula 
( )xfy =  from the corresponding 

experimental values iy
. In other words, the quantity 

( )( )
==

−==
n

i

ii

n

i

i yxfS
1

2

1

2

 
should be minimal (see Fig. 20.3). 

 
Fig. 20.3. Least Squares Illustration 

We illustrate the general least-squares method with an example of a 

linear function. So, let a function baxy +=  be taken as a function

( )xfy =
 and it is necessary to find such values of unknown parameters a 

and b, for which the function 

( )
=

−+=
n

i

ii ybaxS
1

2

 

takes the smallest value. Here ix
 and iy

 – are the constants found 

experimentally, and the function S is a function of the parameters a and b: 

( )baSS ,=
. 

So, find the critical points of the function
( )baS ,

, and then examine 

them. To find critical points, it is necessary to solve the system 
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( )
( )




=

=

,0,

,0,

baS

baS

b

a

 
or, which is the same 

( )

( )












=−+

=−+





=

=

n

i

ii

n

i

iii

ybax

xybax

1

1

.02

,02

 
After the obvious elementary transformations, we get an equivalent 

system called the system of normal equations, 













=+








=







+













==

===

.

,

11

2

111

2

n

i

i

n

i

i

n

i

ii

n

i

i

n

i

i

ynbax

yxbxax

 (20.9) 

This system is linear with respect to the unknowns a and b. The 

determinant of this system is nonzero: 

0

2

11

2

1

11

2









−== 





==

=

==

n

i

i

n

i

in

i

i

n

i

i

n

i

i

xxn

nx

xx

d

. (20.10) 

(It is possible to prove that this determinant is positive.) 

Therefore, the system has the only solution that can be found by the 

Cramer rule: 

.
1

*,
1

*

2







==
ii

iii

i

iii

yx

yxx

d
b

ny

xyx

d
a

 (20.11) 
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So, we have found a single critical point ( ) ba , . Make sure that it 

achieves a minimum of function 
( )baS , . To do this, we calculate the 

second partial derivatives: 

AxS
n

i

iaa == 
=1

22

, 

BxS
n

i

iab == 
=1

2

, 
CnSbb == 2

. 

We have 

dxxnBACD
n

i

i

n

i

i 444

2

11

22 =







−=−= 

== . 

Above, we noted that 0d . Therefore, 0D , so, according to the 

sufficient condition for an extremum, there is an extremum at the point 

under consideration 
( ) ba , . Since 

02
1

2 = 
=

n

i

ixA

, then this extremum 

is a minimum. From the foregoing, we conclude that the function 

( )baSS ,=  has a single minimum point 
( ) ba ,  determined from the 

system of normal equations. It should be noted that at this point there is not 

only a local, but also a global minimum, i.e. smallest function value. 

 

Example 20.8. The following data were obtained on the value of fixed 

assets x (thousand conventional units) and profit of the enterprise y 

(thousand conventional units): 

ix
 

110 132 154 176 198 220 

iy
 

40 43,2 52,8 67,2 64 78,4 

Assuming a linear relationship exists between the x and y variables, 

find the empirical formula using the least squares method. 
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Decision. To determine the unknown parameters 
a  and 

b  of the 

empirical formula 
 += bxay  we apply formulas (20.11). We need to 

pre-calculate the sums 

=

n

i

ix
1 , 


=

n

i

iy
1 , 


=

n

i

ii yx
1 , 


=

n

i

ix
1

2

 (here n = 7). For 

convenience, we summarize the calculations in a table: 

i 
ix
 iy

 
2

ix
 ii yx

 

1 110 40 12100 4400 

2 132 43,2 17424 5702,4 

3 154 52,8 23716 8131,2 

4 176 67,2 30976 11827,2 

5 198 64 39204 12672 

6 220 78,4 48400 17248 

7 242 96 58564 23232 

© 1232 441,6 230384 83212,8 

The system of normal equations 20.8) has the form: 





=+

=+

.6,44171232

,8,832121232230384

ba

ba

 
We find: 

9486412322303847
71232

1232230384
2 =−==d

, 

405,0
94864

4,38438

76,441

12328,83212

94864

1
===a

, 

229,8
94864

2,780595

6,4411232

8,83212230384

94864

1
−=

−
==b

. 

Thus, the desired dependence has the form: 
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229,8405,0 −= xy . 

Questions 

1. What is the local maximum (minimum) function of two variables? 

2. If
( ) 0, 00 = yxf x , then can it be argued that 

( )00 , yx
 – is the 

extremum point for
( )yxf ,

? 

3. What is a critical (stationary) point for a function of two variables? 

4. What is the sufficient condition for the extremum for the function 

of two variables? 

5. What is the conditional extremum of a function of n variables? 

6. What is the Lagrange function? 

7. What are empirical formulas? Which line is called the 

experimental curve? 

8. How many stages usually consists of solving the problem of 

finding empirical formulas? What are these steps? 

9. What is the least-squares method? 
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Chapter 21. Optimization tasks 

21.1. Basic concepts 

 

To simplify the presentation, we identify the points of the Euclidean 

space as 
n

R  and the vectors of their coordinates, i.e. the point

( )nxxxM ,...,, 21  will be written as x , where 
( )nxxxx ,...,, 21=

. 

Moreover, all operations on vectors and their properties are transferred to 

points in space 
n

R . Let x  and  y  – be two points of Euclidean space. 

Definition. A line passing through points x  and y  of Euclidean space 
n

R  is called the set of points 

( )xytx −+  (21.1) 

of this space where. 
( )− ,t

. The segment 
xy , connecting these 

points is called the set (21.1), where.
 1,0t

. 

Obviously, the points x  and 
y

 are obtained from (21.1) for 0=t  and 

1=t . 

Definition. A set D of points in Euclidean space is called convex if, 

together with any two points x  and 
y

 all points of the segment 
xy

 also 

belong to this set. 

Examples of convex planar sets are shown in Fig. 21.1. 
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Fig. 21.1. Sets: convex (a) and non-convex (b) 

Definition. A function
( )xf , defined on a convex set 

nD R  is 

called convex on D, if for any two points x  and y  from  D and any

 1,0  the inequality holds: 

( )( ) ( ) ( ) ( )yfxfyxf −+−+ 11
. (21.1а) 

A function
( )xf

 is called concave on a convex set D, if, for any two 

points  x  and 
y

 from D and any
 1,0

 the inequality holds 

( )( ) ( ) ( ) ( )yfxfyxf −+−+ 11
. (21.1б) 

If inequalities (28.2) are replaced by strict inequalities, then we obtain 

the definition of strictly convex and strictly concave functions, 

respectively. 

Note that the graph of a convex function of one variable is convex 

downward, and the graph of a concave function is convex upward. 

The following important statement holds (we give it without proof). 

Theorem 21.1. If a function
( )xf

 is differentiable and strictly concave 

(strictly convex) on a convex set D, then it has a local extremum at only 

one point of this set. 
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21.2. The biggest value of a concave 

function. Kuna-Taker conditions 

We know that a linear function of n variables is a function 

( ) bxaxaxaxl nn ++++= ...2211 , where 1a , 2a , …, na
, b – are 

constants. It is easy to verify that the linear function is simultaneously a 

convex and concave function in 
n

R . 

An inequality of the form 
( ) 0xl

, where 
( )xl

 – where is a linear 

function, is also called linear. 

Theorem 21.2. Let a convex set 
nD R  be given by a system of 

linear inequalities: 

( )

( )











,0

.........

,01

xl

xl

m  (21.3) 

D  – some convex subset in D; 
( )xf

 – is a function concave on D , 

and 
( )xf  is differentiable at a point Dx 0

. Then: 

1) if for some numbers 1 , …, m  the conditions are satisfied: 

a) 
0x  – function critical point 

( ) ( ) ( ) ( )xlxlxfxL mm+++= ...11 ; 

b) 
( ) 00 = xlii  and 

0 i , mi ...,,1= , 
 

(Kuna-Taker conditions) 

then  
( )0xf

 – is the largest value
( )xf

 on D; 
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2) on the contrary, if DD =  and ( )0xf  – is the largest value
( )xf  

on D, then there are numbers 1 , …, m , for which conditions “a” and 

“b” are fulfilled. 

The function
( )xL  – is the Lagrange function that we already know 

(see § 20.3), and the numbers 1 , …, m  – are the Lagrange multipliers. 

Theorem 21.2 is also accepted without proof. 

Example 21.1. Find the point of greatest value (global maximum) of 

the function 321 lnlnln xxxu ++=
 given that 

10894 321 ++ xxx
. 

Decision. First of all, we note that the function u is concave. Indeed, 

the logarithmic function of one variable is concave, and the sum of concave 

functions, as is easy to verify, is a concave function. 

We compose the Lagrange function: 

( ) ( )321321 94108lnlnln xxxxxxxL −−−+++=
. 

The Kuhn-Tucker conditions are as follows: 

( )


















=−−−

=−

=−

=−

.0

,094108

,09
1

,04
1

,0
1

321

3

2

1

xxx

x

x

x
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From the first three conditions we find: 
=

1
1x

, 
=

4

1
2x

, 
=

9

1
3x

. 

At the same time, obviously, 0 . Substituting the found values 1x , 2x  

and 3x
 into the fourth equation, we obtain 

0
3

10894108 321 =


−=−−− xxx
. 

From here 36

1
=

, 361 =x , 92 =x , 
43 =x

. As already noted, the 

function u  is concave, so the point  
( )4,9,360 =x  is the point of global 

maximum. 

Profit maximization 

Let 
( )LKF ,

 – be the production function (where K and L – are the 

costs of capital and labor, respectively), P – is the price of production. The 

profit function П is usually calculated by the formula: 

( ) ( ) RKWLLKFPLK −−= ,,
, (21.4) 

where W and R – accordingly, factor prices for labor and capital 

expenditures, W and R – are positive numbers. 

A point 
( )00 , LK

 is called an optimal plan if the if-function (21.4) in 

it assumes the maximum value. 

Consider the problem: find the marginal rate of substitution of the 

production function F: 

K

L

F

F




−=

 
with the optimal plan. 
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At the point of local maximum, the first partial derivatives of the profit 

function 
( )LK ,  are zero. System (21.2) in this case has the form 

( )
( )




=−

=−

.0,

,0,

00

00

WLKFP

RLKFP

L

K

 

From here R

W
−=

. 

Now we consider the problem of maximizing the profit function. 

Example 21.2. Find the optimal plan and maximum profit function 

(28.4) if the production function has the form 
( ) 3/13/13, LKLKF = . 

Decision. The profit function in this case has the form 

( ) RKWLLKPLK −−= 3/13/13, . 

We calculate the first partial derivatives with respect to K and L and 

equate them to zero: 





=−

=−
−

−

.0

,0
3/23/1

3/13/2

WLKP

RLKP

 
From here we find the coordinates of the optimal plan: 

WR

P
K

2

3

0 =
, 

2

3

0
RW

P
L =

. 

Substituting these values in the profit function, we get: 

RW

P3

max =
. 

Demand optimization 

Consider the task of optimizing the utility function with restrictions on 

consumer income. 
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Example 21.3. Find the demand x and y for two varieties of goods at 

prices of  p and q, respectively, if the consumer’s income is equal to M, the 

utility function has the form 
( ) 11, ++++= qp

q

qp

p

yxyxU  and the consumer 

seeks to maximize the utility function. 

Decision. It follows from the condition that a consumer can only buy 

such sets
( )yx,

, whose value does not exceed his income, i.e. 

Mqypx + , 0x , 0y . (21.5) 

Constraints (21.5) define a closed area in the form of a triangle on the 

plane (Fig. 21.2). It is necessary to find the maximum point of the function 

( )yxU , . We calculate the partial derivatives of the utility function: 

( ) 11

1

1
, ++++

+
−

++
= qp

q

qp

q

x yx
qp

p
yxU

; 

( ) 1

1

1

1
, ++

+
−

++

++
= qp

p

qp

p

y yx
qp

q
yxU

. 

We see that there are no critical points inside the area. Therefore, the 

maximum can only be achieved at the border. On the lines 0=x , 0=y  

the utility function is zero: 
( ) ( ) 00,,0 == xUyU

, therefore, we must look 

for the maximum point on the line 
Mqypx =+

. From here 

q

pxM
y

−
=

. (*) 

Substituting from this equation the expression y into 
( )yxU ,

, we 

obtain the function of one variable x: 
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( ) ( )
1

11

1
,

++
++++

−

−==






 − qp

q

qp

p

qp

q

pxMxqxf
pxM

xU

. 

We calculate 
( )xf  : 

( ) ( ) ( )













−

++
+−

++
= ++

+
−

++
++

+
−

++
−

px
qp

q
pxMx

qp

p
qxf qp

p

qp

q
qp

q

qp

q

1

1

1
1

1

1

11

. 

Equating 
( )xf   to zero, after transformations we get 

0=−− qxpxM , 

whence qp

M
x

+
=

 and taking into account (*) qp

M
y

+
=

 

 
Fig. 21.2. Maximum Utility Function 

Note that this problem could be solved by writing out the Lagrange 

function and the Kuhn-Tucker conditions, but this was not necessary for 

such a simple case. 

Questions 

1. What is a convex set in Euclidean space? 
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2. What function defined on a convex set is called convex (concave)? 

3. How many local extrema does a strictly convex function have on 

a convex set? 

4. Can a function be convex and concave at the same time? 

5. What are the Kuhn-Tucker conditions? 

6. What is the profit function? How is it calculated? 

7. What is called an optimal plan? 
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ELEMENTS OF LINEAR 

ALGEBRA  

Chapter 22. Vectors and 

operations. Linear spaces 

22.1. Linear operations on vectors 

It is well known, that if a rectangular coordinate system is set, then every 

vector a  is represented by its coordinates a1, a2: 
( )21, aaa =

. In a three-

dimensional space, vector  is represented by three coordinates 

( )321 ,, aaaa =
.  

Definition. Any set of n real numbers ( naaa ...,,, 21 ) is called an n-

dimensional vector a . These numbers are called coordinates or 

components of vector a . For example, 
( )7,0,2,3,4 −=a

is a five-

dimensional vector. In particular, its third component is 2 and the fifth 

component is –7.  

Note, that coordinates a can be presented as a row  

𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) (22.1) 

or column: 
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=

na

a

a

a
...

2

1

. (22.2) 

The vector in form (22.1) is called a row vector and the vector in form 

(22.2) is a row column. 

The number of vector coordinates is called the dimension of the vector. 

Two n-dimensional vectors 
( )naaaa ...,,, 21=

 and 
( )nbbbb ...,,, 21=

 

are equal if their corresponding coordinates are equal: 11 ba = , 22 ba = , 

…, nn ba =
. In this case, we denote in form ba = . 

The sum of two n-dimensional vectors 
( )naaaa ...,,, 21=

 and  

( )nbbbb ...,,, 21=
 is the following vector 

( )nn babababa +++=+ ...,,, 2211 . 

Vector, which components are equal to zero, is called the zero vector: 

( )0...,,0,00 =
. 

Vector 
( )naaa −−− ...,,, 21  is opposite to vector 

( )naaaa ...,,, 21=
 and 

denoted as a− : 

( )naaaa −−−=− ...,,, 21 . 

The difference of vectors is defined as: 
( )baba −+=−

. 

Product of a vector 
( )naaaa ...,,, 21=

 by number k is vector

( )nkakakaak ...,,, 21=
. 
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Addition of vectors and multiplication of a vector by a number are linear 

operations. 

Let us note the following properties of linear operations, which are easy to 

prove. 

1. abba +=+ . 

2. 
( ) ( )cbacba ++=++

. 

3. aa =+ 0 . 

4. 
( ) 0=−+ aa

. 

5. 
( ) bkakbak +=+

. 

6. 
( ) akakakk 2121 +=+ . 

7. 
( ) ( ) akkakk = 2121 . 

8. aa =1 . 

Definition. The set of all n-dimensional vectors, in which operations of 

addition of vectors and multiplication of a vector by a number are defined, 

is called n-dimensional vector space and denoted as 
n

R . 

The space
n

R  is a linear.  

22.2. Dot product of vectors. 

Dot product of two vectors 
( )naaaa ...,,, 21=

 and 
( )nbbbb ...,,, 21=

 

is a number 

( ) nnbabababa +++= ..., 2211 . (22.3) 

Let us illustrate the dot product with the following example. 

Example 22.1. A housewife buys 0,5 kg of bread, 5 kg of potatoes, 3 kg of 

cucumbers, 2 kg of tomatoes and 1,5 kg of meat at prices of 12, 11, 15, 30, 
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80 rubles per kilogram respectively. If we consider a vector of goods  = 

(0,5; 5; 3; 2; 1,5) and vector of prices  =  (12; 11; 15; 30; 80), then the 

total sum of money is expressed as dot product: 
( )ba ,

 = 0,5·12 + 5·11 + 

3·15 + 2·30 + 1,5·80 = 286 rubles.  

Example 22.2. The amount of 3 000 000 rubles is placed at interest for a 

year at four banks: 500 000 – at 6%, 500 000 – at 8%, 1 000 000 – at 5% 

and 1000000 – at 10%. 

Here a  = (500 000, 500 000, 1 000 000, 1 000 000) is a deposit vector, 

and b  = (0,06; 0,08; 0,05; 0,10) is an interest rate vector. 

The initial amount increases by the amount expressed by a dot product 

( )ba ,
   =  500 000·0,06  +  500 000·0,08  +  1 000 000·0,05  +  1 000 

000·0,10   =  220 000 rubles. 

Let us list the main properties of a dot product:  

1. 
( ) ( )abba ,, =

. 

2. 
( ) ( )bakbak ,, =

. 

3. 
( ) ( ) ( )cabacba ,,, +=+

. 

4. 
( ) 0, aa

; herewith
( )aa ,

 = 0 if and only if a  is a zero vector. 

22.3. Linear dependence of vectors 

Definition. Vector a  is a linear combination of vectors 1a
, 2a

, …, sa
 

from 
n

R  if 

ssaaaa +++= ...2211


, 
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where s ...,,, 21  are real numbers. In this case, vector a  is expressed 

in terms of its coordinates  1a , 2a , …, sa
. 

For example, let 1a  = (2, 1, 3, –2), 2a  = (3, 1, 2, 2), 3a
 = (2, 1, 2, 0), then 

321 423 aaa −+
 = (6, 3, 9, –6) + (6, 2, 4, 4) – (8, 4, 8, 0) = (4, 1, 5, –2). 

Vector a  = (4, 1, 5, –2) is a linear combination of vectors 1a , 2a , 3a
: 

321 423 aaaa −+=
. 

Let us call any set of vectors from
n

R  a system of vectors. In the example 

above the system consists of four vectors: 1a , 2a , 3a
 and a . Herewith 

vector a  is a linear combination of other vectors of this system.   

Definition. The system of vectors 1a
, 2a

, …, ma
 is called linearly 

dependent if there exist numbers m ...,,, 21 , such  that they are not 

equal to zero at the same time, or 

0...2211 =+++ mmaaa
. (22.4) 

Otherwise, vectors 1a
, 2a

, …, ma
 are called linearly independent. In other 

words, vectors 1a
, 2a

, …, ma
 are linearly dependent if it follows from an 

equality (22.4) that 
0...21 ==== m . 

Let us prove, that the system, which consist of more than one vector 1a
, 

2a
, …, ma

, is linearly dependent if and only if at least one of the vectors 

is a linear combination of the others. 

1. Let equality (22.4) be verified and at least one of the coefficients is not 

equal to zero, (for instance 
0m ). Then  
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...2
2

1
1 −




−




−= aaa

mm

m

, 

i.e. vector ma
 is a linear combination of the other vectors. 

2. Let one of vectors (for example 2a ) be a linear combination of the 

others: 

mmaaa ++= ...112 . 

Then 

( ) 0...1 211 =++−+ mmaaa
, 

and in the last equality, there is a coefficient, which is not equal to zero (

12 −=
). Thus, the system of vectors 1a

, 2a
, …, ma

 is linearly 

dependent. 

          The geometric meaning of the linear dependence of vectors is 

evident for the case of two-dimensional vectors on the plane and three-

dimensional vectors in space:  

       а) the system which consists of two vectors is linearly dependent if and 

only if the vectors are collinear; 

       b) the system which consists of three vectors is linearly dependent if 

and only if these three vectors are collinear.  

Let’s note that some properties of vectors in space 
n

R . 

1. If the system 1a
, 2a

, …, ma
contains a zero vector, then it is linearly 

dependent. 

To verify this, it is enough to take the zero vector with one coefficient equal 

to one and the rest coefficient equal to zero on the left-hand side of equality 

(22.4). 
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2. If a part of vectors of the system 1a , 2a , …, ma
is linearly dependent1, 

then all these vectors are linearly dependent. 

Indeed, for example, let vectors , ,   of the system   1a , 2a , 3a
, 

4a , 5a
 be linearly dependent: 

0553322 =++ aaa
 and, for example, 

03 
. Then 

000 55433221 =++++ aaaaa
, 

and in this equality at least one coefficient is not equal to zero (
03 

). 

Thus, this system 1a , 2a , 3a
, 4a ,  is linearly dependent. 

Without proof, we give the following important theorem. 

Theorem 22.1. Any system which contains ( 1+n ) vectors of space  
n

R  

is linearly dependent. 

In particular, any four vectors in three-dimensional space are linearly 

dependent.  

22.4. Basis and rank of vector system 

Let us consider: 

1a
, 2a

, …, ka
. (22.5) 

Any subsystem of vector system (22.5) is called the basis of this system if 

it satisfies the following properties:  

1) this subsystem is linearly independent;  

2) any vector of system (22.5) is expressed linearly in terms of vectors of 

this system.  

                                                      
1 In other words, this system of vectors contains a linearly dependent 

subsystem. 
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A system of vectors can have several bases. It is possible to show that all 

bases of the system of vectors consist of the same number of vectors. This 

number is called the rank of the system.  

Obviously, the set 
n

R  is a system that contains all n-dimensional vectors. 

The concept of a basis extents to 
n

R . 

Definition. The system of vectors is called basis of the space 
n

R if: 

1) this system is linearly independent; 

2) any vector of space 
n

R  is expressed linearly in terms of vectors of this 

system. 

An example of a system of vectors in 
n

R  is a system which consists of n 

unit vectors 

1e  = (1, 0, …, 0), 

2e
 = (0, 1, …, 0), 

………. 

ne
 = (0, 0, …, 1). 

Indeed, on the one hand, this system is linearly independent (as from 

0...2211 =+++ nneee
 follows 

...21 ==
 

0== n ), on the other 

hand, any vector 
( )naaaa ...,,, 21=

 is presented as: 

nneaeaeaa +++= ...2211 , 

i.e. it is a linear combination of vectors neee ...,,, 21 . 

In the previous example, the basis consisted of n vectors. The following 

theorem takes place (we give it without proof). 

Theorem 22.2. A linearly independent system of vectors in 
n

R  is a basis 

if and only if the number of these vectors is equal to n. 
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The number of basis vectors of a space, i.e. the maximal number of its 

linearly independent vectors, is called the dimension of the space. Space 
n

R , previously called as n-dimensional for other reasons, is also n-

dimensional in the sense that its dimension is equal to n.  

22.5. Decomposition of the vector in the 

basis 

Let the system of vectors 

( )naaaa 112111 ,...,,=
, 

( )naaaa 222212 ,...,,=
, …, 

( )mnmmm aaaa ,...,, 21=

 (22.6) 

be a basis1 and let vector x be decomposed in vectors (22.6): 

mmaxaxaxx +++= ...2211 . (22.7) 

The question arises: are the coefficients 1x , 2x
, …, mx

of decomposition 

(22.7) uniquely determined? 

Theorem 22.3. The decomposition of vector x  in the basis vectors is 

unique. 

Proof. We suppose that vector x  is presented in the form of a linear 

combination of vectors (22.6) in two different ways: 

mmaxaxaxx +++= ...2211 , 

mmaxaxaxx +++= ...2211 . 

Subtracting the second equality from the first, we get 

                                                      
1    Here components of vectors must be provided with double indices: the 

first one indicates the number of vectors and the second one indicates the 

number of the component. 
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( ) ( ) ( ) 0...222111 =−++−+− mmm axxaxxaxx
. 

However, system (22.6) is linearly independent, thus, 

0...,,0,0 2211 =−=−=− mm xxxxxx
. 

From here we get: 

mm xxxxxx === ...,,, 2211 . 

So, decomposition (22.7) is unique. Decomposition coefficients (22.7) are 

called coordinates of vector x in basis (22.6). 

22.6. Normed vector spaces. Euclidean 

space 

Definition. Linear space is a set V of arbitrary elements, called vectors, 

for which operations of addition and multiplication by a real number are 

defined,  i.e. for any two vectors  1u
 and 2u

 from V vectoru , called a sum 

of vectors  and , is defined and denoted as 1u  + 2u  and for any vector 

u  and any real number ⎣ vector u , called the multiplication of vector u  

by a number ⎣, is defined  and the following conditions are satisfied: 

1) 1221 uuuu +=+
; 

2) 
( ) ( )321321 uuuuuu ++=++

; 

3) in the set V, there is an element 0  that is called a zero element which 

satisfies for any u the following condition: 

uu =+ 0 ; 

4) for any vector u  there is a vector u−  that is called the opposite vector 

u , which satisfies condition 



22.6. Normed vector spaces. Euclidean space  

369 

( ) 0=−+ uu
; 

5) 
( ) 2121 uuuu +=+ ; 

6) 
( ) uuu 2121 +=+ ; 

7) 
( ) ( )uu 2121 = ; 

8) uu =·1 . 

(The conditions listed above are called axioms of linear space.) 

It is necessary to note that set V can consist of elements of any kind of 

nature.  

Examples of linear spaces are  

1) n-dimensional vector space; 

2) the set of all polynomials
( )xPn  of degree not higher than n with ordinary 

addition and multiplication by numbers. 

Let us note that the set of all polynomials which degree is equal to n  is not 

a linear space with respect to the usual operations of addition and 

multiplication by numbers. This is due to the fact that the algebraic sum of 

polynomials of degree  can be a polynomial of a degree less than . 

Definition. Linear space V is called a normed space if for any vector u  a 

norm 
u

with the following properties is defined 

1) 
00 =

; 

2) any 0u  satisfies inequality 
u

 > 0; 

3) any real number  satisfies equality 
uu =

; 

4) for any u  and v  from V the triangle inequality holds: 

vuvu ++
. 
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Let us note that if V is a set of vectors of an ordinary plane, then V is a 

normed space with the norm 
uu =

, where 
u

 is a vector length. 

One way to define a norm in space V is to define a dot product. 

We say that the dot product is given in space V if for each pair of vectors 

u  and v  there is a number 
( )vu , , so as the following conditions are 

satisfied: 

1) 
( ) ( )uvvu ,, = ; 

2) 
( ) ( )vuvu ,, = ; 

3) 
( ) ( ) ( )2121 ,,, vuvuvvu +=+ ; 

4) 
( ) 0, uu ; herewith 

( ) 0, =uu  if and only if u  is a zero vector: 0=u

. 

If a dot product is set, then the norm is defined as following: 

( )uuu ,=
. (22.8) 

Make sure that the norm defined by equality (22.8) has all the properties 

listed above. First three properties are evident, it is necessary to check only 

the triangle inequality. For this purpose we previously prove the Cauchy-

Bunyakovsky inequality:  

( ) ( )( )vvuuvu ,,,
2
 . (22.9) 

Let us consider vector vutw += , where t is an arbitrary number. We have 

( ) ( ) ( ) ( ) ( )vvvutuutvutvutww ,,2,,, 2 ++=++=
. 

We denote 
( ) =uu ,

, 
( ) =vu ,

, 
( ) =vv ,

. We get 

( ) ++= ttww 2, 2

. 
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As 
( ) 0, ww , then 

022 ++ tt
 for all t. Thus, the discriminant of 

this square trinomial is less than or equal to zero. So, 
02 −

, i.e. 

2

 or ( ) ( ) ( )vvuuvu ,,,
2
 . 

Let us prove the triangular inequality 

( ) ( )vvuuvuvu ,,, +++
. 

Using the Cauchy-Bunyakovsky inequality we get 

( ) ( ) ( ) ( )

( ) ,

2,2,,,

2

222

vu

vuvuvuvvuuvuvuvu

+=

=++++=++=+

 
that proves it. 

Previously (see. § 22.2) we considered a dot product of n-dimensional 

vectors 
( )naaaa ,...,, 21=

 and 
( )nbbbb ,...,, 21=

 defined by  formula 

(22.3): 

( ) nnbabababa +++= ..., 2211 . 

Definition. N-dimensional vector space 
n

R , in which a dot vector product 

is set, is called Euclidean space.  

The length (norm) of vector 
( )naaaa ,...,, 21=

 in Euclidean space 
n

R  is 

a square root of its dot product 

( ) 22

2

2

1 ..., naaaaaa +++==
. (22.10) 

The angle between two vectors a  and b  is defined by an equality 

( )
ba

ba

·

,
cos =

. (22.11) 
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From the Cauchy-Bunyakovsky it follows that cos ϕ, defined by formula 

(22.11), satisfies a condition 
1cos 

, so the definition of angle between 

vectors is correct.  

Vectors a  and b  are called orthogonal  if 
( ) 0, =ba

. It follows from the 

definition that if two nonzero vectors are orthogonal, then the angle 

between them is equal to 2



. 

We say that vectors 1e , 2e , ..., me
 form an orthonormal system in n-

dimensional Euclidean space 
n

R  if these vectors are pairwise orthogonal, 

i.e. 
( ) 0, =ji ee

 for ji  , (i, j = 1, 2, ..., m), and a norm of each of them is 

equal to one: 
( ) 1, =ii ee

. 

Make sure that every orthonormal system is linearly independent, i.e. from 

equality  

0...2211 =+++ mmeee
 (22.12) 

follows that  
0...21 ==== m . 

Let i be an arbitrary number that satisfies condition mi 1 . Let us 

multiply equality (22.12) by ie
: 

( ) ( ) ( ) 0,...,, 2211 =+++ immii eeeeee
. 

As 
( ) 0, =ji ee

 for 
ji 
, so the last equality is equal to equality  

( ) 0, = iii ee
. 

Hence, as 
( ) 0, ii ee

, we get 
0= i . So, 

0= i  for all i = 1, 2, ..., m. 
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Since any orthonormal system of vectors is linearly independent, it follows 

that the orthonormal system containing n vectors forms a basis in space
n

R called orthonormal. The following statement holds. 

Theorem 22.4. In any n-dimensional Euclidean space, there exists an 

orthonormal basis.   

An example of orthonormal basis is a system of n unit vectors 1e  = (1, 0, 

..., 0), 2e
 = (0, 1, ..., 0), ..., ne

 = (0, 0, ..., 1). 

Questions 

1. Can two vectors be equal if one of them is four-dimensional and 

the other is five-dimensional? 

2. What vectors are obtained from vector  by multiplying it by 

numbers 0 and –1? 

3. What vectors are called linearly independent? 

4. Is the system of vectors 
( )3,2,1=a , 

( )4,3,2=b
, 

( )5,4,3=c , 

( )6,5,4=d
 linearly independent? 

5. Do vectors 
( )0,0,0,11 =e

, 
( )0,0,2,02 =e

, 
( )4,0,0,04 =e

 

form a basis in space
4

R ? 

6. What numbers are called the coordinates of a vector in the basis? 

7. For which value of y is the dot product of vectors 
( )3,2,1=a

 and 

( )3,,1 yb =
 equal to zero? 

8. For which values y do vectors 
( )3,2,1=a

 and 
( )9,,3 −−= yb

 

form a linearly independent system? 
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Chapter 23. Matrices and 

operations on them 

23.1. Basic concepts 

Definition. A matrix (a numerical matrix) of dimension nm  is a 

rectangular table of numbers that contains m rows and n columns: 





















=

mnmm

n

n

aaa

aaa

aaa

A

...

...............

...

...

21

22221

11211

. (23.1) 

Numbers that form a matrix are called elements. 

To denote elements of matrix double indexed letters are used: ija
, where i 

is a row number and j is a column number. Matrix is also written in a short 

form:  

( )
ijaA =

, i = 1,2, …, m; j = 1, 2, …, n. (23.2) 

In case the number of matrix rows is equal to the number of its columns, 

i.e. nm = , it is called a square matrix of order n. 

Matrix can consist of one row or one column 

( )naaaA 11211 ,...,,=
, 





















=

mb

b

b

B

1

12

11

.....

. 

Thus, row-vector or column-vector are special cases of matrices.   
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Elements of matrix ija
, for which the number of rows is equal to the column 

number, i.e. ji = , are called diagonal. For square matrix elements 

nnaaa ...,,, 2211  form the main diagonal.  

Matrix is called symmetrical if its elements, which are symmetrical to 

each other against  the main diagonal are equal to each other  

jiij aa =
. 

 

A square matrix is called diagonal if all its elements outside the main 

diagonal are equal to zero 





















=

nna

a

a

A

...00

............

0...0

0...0

22

11

. 

A diagonal matrix is called identity if all its diagonal elements are equal 

to one  

      




















1...00

............

0...10

0...01

. 

A matrix of any dimension  is called zero matrix or null matrix if 

all its elements are equal to zero 

 




















=

0...00

............

0...00

0...00

0

. 
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Two matrices
( )

ijaA =
 and 

( )
ijbB =

 are equal ( BA = ) if they have equal 

dimensions and their corresponding elements are equal: ijij ba =
. 

23.2. Linear operations on matrices. 

Transposition of matrices 

For matrices operations of addition and multiplication are defined. 

A sum of matrices 
( )

ijaA =
 and 

( )
ijbB =

 of the equal order is matrix 

( )
ijcC =

 whose elements have a form: ijijij bac +=
, i = 1,2, …, m; j = 1, 

2, …, n. In this case, we write BAC += . 

Example 23.1. Let 
















=

54

03

21

A

, 
















=

35

62

43

B

. Then 

















=+=

89

65

64

BAC

. 

A matrix product or matrix multiplication 
( )

ijaA =
 by a real number 

  is  matrix 
( )ijaA =

. 

Example 23.2. Let








=

123

432
A

,   = 4. Then








=

4812

16128
A

. 

Addition of matrix and matrix multiplication by a product are called linear 

operations on matrices.  

Properties of linear operations (directly follow from the definition): 
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1. ABBA +=+ . 

2. 
( ) ( )CBACBA ++=++ . 

3. 
( ) BABA +=+ . 

4. 
( ) AAA 2121 +=+ . 

5. 
( ) ( ) ( )AAA 122121 == . 

6. AA =+ 0  (0 is a zero matrix). 

7. If 0= , then 0=A  is a zero matrix. 

The transposition of a matrix is an operation of replacing the matrix rows 

with its columns while preserving their order.   

Denoting matrix  which was obtained by transposition of matrix 

 we can write: . 

In particular, if matrix A is a row-vector, then matrix A  is a column-vector 

and vice versa. 

Example 23.3. If 
















=

8

5

2

A

, then 
( )852=A . 

If 








=

9751

5432
A

, then 




















=

95

74

53

12

A

. 

Let us note the evident properties of transposition operations: 

1. AA = . 

2. If A is a symmetric matrix, then AA = . 
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23.3. Matrix multiplication 

Multiplication of matrix A by matrix B is defined only for the cases when 

the column number of A is equal to row number of matrix B. 

The multiplication of matrix A with dimension  by matrix B with 

dimension  is matrix  with elements  


=

=+++=
k

s

sjiskjikjijiij babababac
1

2211 ...

; 

i = 1, 2, …, m; j = 1, 2, …, n. 

It easy to note that element  of matrix C is a dot product of i-th row-

vector of matrix A by j-th column-vector of matrix B. 

Example 23.4. Calculate matrix multiplication AB where 










−
=

231

102
A

, 
















−

=

302

210

121

B

. 

Solution. Make sure that the column number of A is equal to the row 

number of B (and equal to 3). Thus, the multiplication is possible. The 

matrix  has dimension 2⋅3: 

( )
( )

.
1115

540

322311021321220311

312012011022210012










−
=

=








++−++−−++−

++++−++
=AB

 
 

Let us list the properties of matrix multiplication. Let A,B and C be such 

a matrix that the matrix multiplication is defined. Then:  

1. 
( ) ( )BCACAB =

. 
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2. 
( ) BCACCBA +=+ . 

3. 
( ) ACABCBA +=+ . 

4. 
( ) ( ) BAAB = . 

5. AEAAE == . 

Let us note that there is no commutative property ( ) among the 

property of matrix multiplication. Moreover, if multiplication AB exists, 

then permutation of factors is not always possible, i.e. the multiplication 

BA may not exist.  

In case  AB and BA exist, these products may not coincide (and can be 

matrices of different orders). 

Example 23.5. Let








=








=

21

02
,

23

21
BA

. Then 









=








=

67

42
,

48

44
BAAB

, 

i.e. BAAB  . 

Example 23.6. Let
















−

=








−
=

11

02

10

,
311

212
BA

. Then 

















−

−

=








−
=

121

424

311

,
21

04
BAAB

, 

i.e. here not only does  have different dimensions,  but AB and 

BA also do. 

Let us consider one more property of matrix multiplication connected with 

the operation of the transposition. 



Chapter 23. Matrices and operations on them  

380 

 If matrices A and B are such that their multiplication is defined, then the 

following equality holds: 

 

6. ABAB =)( . 

In other words, the matrix obtained by transposing the product is equal to 

the product of the matrices obtained by transposing the factors taken in the 

inverse order.  

Proof. First of all, we make sure that the product AB is defined, then the 

product is also defined. Indeed, if the product AB is defined, then the 

columns number of matrix A is equal to the rows number of matrix B.  

But the rows number of matrix B is equal to the columns number of matrix 

 and the columns number of matrix A is equal to the rows number of 

matrix , thus, the product  is defined. Further, the element of 

matrix , placed at its i-th row and j-th column is an element of matrix 

AB, placed at its j-th row and i-th column. 

Thus, it is equal to the dot product of j-th row of matrix A and i-th column 

of matrix B, i.e. it is equal to the sum of products of corresponding 

elements of j-th column of matrix   and i-th row of matrix . That 

means that the element of matrix  placed at its i-th row and j-th 

column is also equal to the dot product of j-th row of matrix A and i-th 

product of matrix B. The equality is proved. 

23.4. Inverse of a matrix 

There exists no operation for the matrices division. However, for square 

matrices, it is possible to define an operation inverse to multiplication 

under certain conditions. Before doing this, we introduce some necessary 

concepts. We can consider any matrix as a system of its row-vectors and 

column-vectors. It is possible to prove that the rank of a system of row-
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vectors of a matrix is equal to the rank of a system of its column-vectors 

(i.e. the maximal number of linearly independent row-vectors of a matrix 

is equal to the maximal number of its linearly independent column-

vectors). 

Definition. The rank of a matrix is the rank of the system of its row-

vectors (or column-vectors). 

A square matrix A of dimension n is called nondegenerate if its rows are 

linearly independent (i.e. its rank is equal to n). Otherwise, matrix A is 

called degenerate.  

Before defining the concept of an inverse matrix, let us note that for every 

number  0a  there exists a number inverse to it: a
a

11 =−

, such as 

11 =−aa . 

Definition. Let A be a square matrix. Matrix 
1−A is inverse with respect to 

matrix A if their product is equal to the unit matrix: 

EAA =−1
. 

It is easy to make sure that the multiplication of matrix A and 
1−A is 

commutative: 

EAAAA == −− 11
. 

Further, we will show that the inverse matrix exists only for a 

nondegenerate square matrix.  

Elementary matrix transformations are: 

permutation of rows (columns); 

multiplication of a row (column) by a nonzero number; 

adding to the elements of a row (column) the corresponding elements of 

another row (column) multiplied by a number.  

It is easy to show that, as a result of an elementary transformation of the 

non degenerate matrix, we obtain again a nondegenerate matrix.  

Inverse of a matrix using elementary transformation  
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1. Let A be a nondegenerate square matrix. Let us attach to it a unit matrix 

of the same size. Then we obtain a dual matrix (
EA

). 

2. Then we do elementary transformations on the rows of matrix (
EA

) to 

obtain a unit matrix E at the place of matrix A. Then at the place of the 

attached matrix E matrix  is obtained.   

(Let us note that in practical use there is no need to check nondegeneracy 

of matrix A. It follows from the possibility of reducing A to E.) 

 

Example 23.7. Given a matrix 

















=

433

322

321

A

. 

Find the inverse matrix
1−A . 

Solution. Let us compose matrix (
EA

) and apply the method of 

elementary transformations. Here il  is i-th row (i = 1, 2, 3): 
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( )

.

230

351

011

100

010

001

230

6102

011

100

020

001
3

230

012

011

100

320

001
32,

103

012

001

530

320

321
3,2

100

010

001

433

322

321

32

2321

1312

















−

−

−

⎯→⎯
















−

−−

−

−⎯⎯⎯ →⎯
−

⎯→⎯
















−

−

−

−−⎯⎯⎯⎯⎯ →⎯
−+

















−

−

−−

−−⎯⎯⎯⎯⎯ →⎯
−−

















=

ll

llll

llll
EA

 

So, 
















−

−

−

=−

230

351

011
1A

. 

Using the inverse matrix, it is possible to solve matrix equations of the 

following types: 

BXABAX == , . 

Example 23.8. Solve the matrix equations  

1) 








=









1211

65

43

21
X

.  2) 

















=
















333

1174

531

111

412

201

X

. 
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3) 
















−

−

−−

=
















−−

−

−

11115

141

321

542

452

221

X

. 

Solution 1. This is an equation of the form BAX = . Its solution is

BAX 1−= . Here 








=

43

21
A

. Let us find
1−A : 















−

−
→














−

−

−
→














−−
→














2
1

2
3

12

10

01

13

12

20

01

13

01

20

21

10

01

43

21

, 

i.e. 














−

−
=−

2
1

2
3

12
1A

. Then 









=
























−

−
=

32

01

1211

65

2
1

2
3

12
X

. 

So, 








=

32

01
X

. 

2. This equation has a form BAX = . Here 
















=

111

412

201

A

. Let us find 
1−A . 

→
















−

−

−

−

→
















−

−

−

→
















111

012

223

100

010

001

101

012

001

110

010

201

100

010

001

111

412

201
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−

−

−

−

→

111

012

223

100

010

001

. 

i.e. 
















−−

−

−

=−

111

012

223
1A

. Then 















 −

=
































−−

−

−

=

310

112

111

333

1174

531

111

012

223

X

. 

3. This equation has a form BXA = .  Its solution is 
1−= BAX . Here

















−−

−

−

=

542

452

221

A

. Let us find 
1−A . 

,

102

012

229

100

010

001

102

012

025

100

010

201

102

012

001

100

010

221

100

010

001

542

452

221

















−

−

→
















−

−−

→

→
















−

−

→
















−−

−

−

 

i.e. 
















−

−

=−

102

012

229
1A

. Then 
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−

−=
















−

−

















−

−

−−

=

111

121

101

102

012

229

11115

141

321

X

. 

Example 23.9. Solve the matrix equation  

















−

=
































−

−

−

40111

62415

2416

320

511

401

541

452

221

X

. 

Solution. This equation has a form CAXB = . It is possible, for example, 

in the following order: let us find 
1−A , multiply this matrix on the left by 

both sides of the equation. We obtain CAXB 1−= . Then we obtain 
1−B  

and multiplying it on the right side of the resulting equality we find
11 −−= CBAX . We can solve this problem in reverse order. So,  

















−

−

−

=

541

452

221

A

, 

Matrix
1−A  has already been found in example 2.8: 

















−

−

=−

102

012

229
1A

  

















=
















−















−

−

=

831

1423

1232

40111

62415

2416

102

012

229

XB

, 
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=

320

511

401

B

. Let us find
1−B : 

,

122

133

487

100

010

001

120

011

001

100

110

401

100

011

001

320

110

401

100

010

001

320

511

401

















−

−−

−−

→

→
















−

−→
















−→
















 

i.e. 
















−

−−

−−

=−

122

133

487
1B

. Then 

















=
















−

−−

−−

















=

110

021

111

122

133

487

831

1423

1232

X

. 

Questions 

1. Where is element a52 located in matrix 
( )

ijaA =
? 

2. Can matrix consist of а) one row; б) one column; в) one row and 

one column? 

3. Can any element aii of the diagonal matrix be equal to zero? 

4. Can two matrices be equal if one of them is of the third-order and 

the other is of the fourth-order? 
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5. Is it possible to find a sum of two matrices if one of them has 

dimension 3⋅4 and another one has dimension 4⋅3? 

6. Does product AB exist if matrix A has dimension 3⋅4 and matrix B 

has dimension 3⋅4? Does product BA exist? 

7. Is it possible to find a product of two matrices if one of them is a 

square matrix and the other is not a square one? 

8.      Let products AB and BA exist for matrices A and B.  Is it 

possible to claim that matrices A and B have the same dimensions? 

9. Can the product of two nonzero matrices be a zero matrix?  

10. What is a square of a matrix? Can the square of a nonzero matrix 

be a zero matrix? 

11. Does an inverse matrix  exist for diagonal matrix 





















=

4000

0300

0020

0001

A

?  If 
1−A exists, then what is its form?   
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Chapter 24. Determinants 

24.1. Basic concepts 

There is a rule according to which each square matrix is assigned a number 

characterizing this matrix.  

Let us consider a matrix of the second order: 










2221

1211

aa

aa

. (24.1) 

Number 21122211 aaaa −
 is a determinant of matrix (24.1) and is written in 

the form: 

2221

1211

aa

aa

 
(this is a determinant of the second order). 

So, 

2221

1211

aa

aa

 = 21122211 aaaa −
. (24.2) 

For example, 

24352
54

32
−=−=

. 

The concept of a determinant is associated, in particular, with the solution 

of the systems of linear equations. Let us consider a system: 





=+

=+

.

,

2222121

1212111

bxaxa

bxaxa
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To exclude 2x , let us multiply the first equation by 22a  and the second one 

by 12a and from the first equation subtract the second one: 

( ) 122221121122211 ababxaaaa −=− , or 11 ddx = , 

where 222

121

1

2221

1211
,

ab

ab
d

aa

aa
d ==

. 

If 0d , then we obtain d

d
x 1

1 =
. Similarly, we obtain  

22 ddx = , d

d
x 2

2 =
, 

where 221

111

2
ba

ba
d =

. 

Application of formulas d

d
x 1

1 =
 and  d

d
x 2

2 =
 for the solution of systems 

of equations is called the Cramer’s rule.  

Example 24.1. Solve the system 





=+

=+

.64

,732

21

21

xx

xx

 
Solution: 

.1
5

5
,2

5

10

,51762
61

72

,106347
46

37
,51342

41

32

2
2

1
1

2

1

======

=−==

=−===−==

d

d
x

d

d
x

d

dd
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A similar rule for systems with any number of unknowns will be 

considered later.  

         For a square matrix of the third order a determinant of the third order 

is a number defined by the formula: 

333231

232221

131211

aaa

aaa

aaa

.322311332112

312213322113312312332211

aaaaaa

aaaaaaaaaaaa

−−

−−++=

 (24.3) 

A determinant of the third order is an algebraic sum of six products of 

elements, taken one from each row and each column.  

These products are terms of determinant. Formula (24.3) can be 

schematically depicted as follows: 

          
With a plus sign, we take products whose factors are on the main diagonal 

and at the vertices of isosceles triangles with the bases parallel to the main 

diagonal; with a minus sign -  on the minor diagonal and at the vertices of 

the isosceles triangles with the bases parallel to the minor diagonal.  

We turn to the definition of the concept of a determinant of any order. For 

this purpose, we need some preliminary concepts.  

Let us consider the natural numbers from 1 to n. These n numbers can be 

written in one order or another. 

Any arrangement of numbers 1,2, ..., n is called permutation.  

For example, 

3, 1, 5, 4, 2 (24.4) 

is a permutation of five numbers. 
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It is easy to prove that the number of different permutations of n numbers 

is equal to the product of 1·2·…·n, denoted as (factorial of n). 

Let us consider an arbitrary permutation , from the first n 

natural numbers.  Let us choose two arbitrary numbers  and  from 

this permutation. If ji  , but ji 
, then the numbers i  and j

 are 

said to form an inversion. (In other words, if in the permutation a larger 

number precedes a smaller one, then these two numbers form an inversion.) 

In particular, in permutation (24.4) numbers 
53 =

 and
25 =

 form an 

inversion. If for ji   inequality ji 
 holds (i.e. a smaller number 

precedes a larger one), then the numbers i  and j
don’t form an 

inversion. For example, in permutation (24.4) numbers 
12 =

 and 

44 =
don’t form an inversion. 

A permutation is called even if it has an even number of inversions. 

Otherwise a permutation is called odd.  

Let us consider a square matrix 





















=

nnnn

n

n

aaa

aaa

aaa

A

...

...............

...

...

21

22221

11211

. 

We compose some product of its n elements taken one from each row and 

each column: 

nnaaa  ...
21 21 . (24.5) 

In product (24.5) factors are written in ascending order of their first indices 

- rows numbers. The second indices, column numbers, form permutations
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n ...,,, 21  . Product (24.5) is called a term of a determinant of matrix 

A. Let us define a sign rule: if the second indices form an even 

permutation, product (24.5) is taken with the plus sign; if they form an odd 

permutation, the product is taken with the minus sign.  There are  such 

permutations (24.5) — as many different permutations form their second 

indices. 

Definition. A determinant of a square matrix of order n (a determinant of 

order n) is an algebraic sum of terms, each of which is a product of n 

matrix elements taken one from each row and each column, in accordance 

with the signs rule.   

A determinant of order n is denoted as: 

nnnn

n

n

aaa

aaa

aaa

Ad

...

...............

...

...

21

22221

11211

==

. (24.6) 

Further, we will talk about elements, rows and columns of the determinant, 

referring to the elements, rows and columns of the corresponding matrix.    

 It should be noted that it is difficult to calculate the determinant of order n 

for  based directly on the definition. (For example, to find the 

determinant of order six it is necessary to calculate a sum of 720 terms, 

each of which is a product of six elements.) 

So, to calculate a determinant, it is previously simplified by transforming 

considering its properties. 

24.2. Properties of determinants 

1. Transpose does not change a determinant: 
AA =

. 
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Property 1 implies that any statement about the rows of determinant is true 

for columns and vice versa. In this sense, the rows and columns of the 

determinant are equal. That is why we will formulate properties for rows, 

meaning that they also hold for columns.  

2. If one of the rows of the determinant consists of zeroes, then the 

determinant is equal to zero.  

This property is easy to prove. Let all the elements of the i-th row of 

determinant be equal to zero. Each element of the determinant contains a 

factor which is an element of this row. That’s why every term of 

determinant is equal to zero. Thus, the determinant is equal to zero.  

3. When two rows are replaced, the determinant changes its sign.  

(In other words, when two rows in matrix A are replaced, we obtain matrix 

B such as  
BA −=

). 

4. Determinant which contains two identical rows is equal to zero.  

To prove this property let us swap these two identical rows. The 

determinant will not change but, according to property 3, it will change the 

sign: dd −= . Thus, 0=d . 

5. If all the elements of any row are multiplied by number k, then the 

determinant will multiply by its number k.  

Indeed, in this case, every term of the determinant will multiply by number 

k, thus, the determinant will multiply by its number.  

From property 5 follows that the common factor of any row of determinant 

can be taken out of the determinant sign.  

6. A determinant which consists of two proportional rows is equal to zero.  

Let us prove this statement.  

Let the i-th and j-th rows be proportional: elements of the j-th row are 

obtained by multiplying the elements of the i-th row by number k.  We take 

out k by the sign of the determinant and obtain a determinant which 

contains two identical rows. According to property 4 it is equal to zero.  

7. If elements of one row of determinant d have a form  
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ikikik cba +=
 (k = 1, 2, …, n), 

then the determinant is equal to the sum of two determinants 1d  and 2d , 

in which all the rows, except this one, coincide with the corresponding 

rows of determinant d. Moreover, at the place of this row, determinant 1d  

contains a row which consists of elements ikb
, and determinant 2d  

contains a row which consists of elements ikc
 (k = 1, 2, …, n): 

.

...

............

...

............

...

.

...

............

...

............

...

...

............

...

............

...

21

21

11211

21

21

11211

21

21

2211

11211

nnnn

inii

n

nnnn

inii

n

nnnn

ininiiii

n

aaa

ccc

aaa

aaa

bbb

aaa

dd

aaa

cbcbcb

aaa

d

+=

=+=+++=

 
This statement follows easily from the fact that each term of determinant d 

can be represented as a sum of two terms, one of which is a term of 

determinant  and another one is a term of determinant . 

8. If one of the rows of the determinant is a linear combination of the other 

two rows, then the determinant is equal to zero.  

Property 8 is a generalization of property 6.  
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9. The determinant does not change its sign if the corresponding element 

of another row multiplied by the same number is added to the elements of 

any of its rows.  

This property is a consequence of properties 4-7. 

10. The determinant of a multiplication of two square matrices is equal to 

multiplication of their determinants: 

BAAB =
. 

In conclusion, we recall once again that all the statements formulated here 

for the rows of determinant remain true for its columns. (This refers to the 

columns of the corresponding matrix.) 

24.3. Minors and algebraic adjuncts 

Let us consider determinant of order n. Select an element and cross out 

the i-th row and j-th column at the intersection of which this element is 

located. We obtain a determinant of order ( ) which is called minor 

 of element . 

For example, let us take determinant of order 4:  

3401

3120

5213

1201

=d

. 

Minor 23M
 of element 23a

 is obtained by crossing out the second row and 

the third column at the intersection of which element  = 2 is placed:  
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4

301

320

101

23 ==M

. 

Definition. An algebraic adjunct of element ija
 of determinant (24.6) is 

number: 

( ) ij

ji

ij MA
+

−= 1
. 

In particular, in the above example the algebraic adjunct is: 

( ) 441
5

23 −=−=A
. 

 

Minors and algebraic adjuncts play an important role in linear algebra and 

its applications. One of such applications is the following statement.  

Theorem 24.1. The determinant is equal to the sum of products of any of 

its rows by its algebraic adjuncts: 

ininiiii AaAaAad +++= ...2211 . (24.7) 

(We accept this theorem without proof.) 

Formula (24.7) is called decomposition of a determinant by the i-th row. 

Analogical statement holds for decomposition of a determinant by any 

column. Formula (24.7) reduces the calculation of the determinant of order 

n to calculation of n determinants of order ( 1−n ). 

Remark. The sum of pairwise products of the i-th row (column) of the 

determinant by the corresponding algebraic adjuncts of the j-th row 

(column) for 
ji 

 is equal to zero, i.e.  

0...

0...

2211

2211

=+++

=+++

njnijiji

jninjiji

AaAaAa

AaAaAa

 

for 
ji 
. 
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Let us prove, for example, the last of these two equalities. We decompose 

determinant 

nnnjnin

nji

nji

aaaa

aaaa

aaaa

d

.........

.....................

.........

.........

1

22221

11111

=

 
by the j-th column: 

njnjjjjj AaAaAad +++= ...2211 . 

Now we replace the elements of j-th column by the elements of i-th column 

(leaving the i-th column unchanged). We obtain determinant 

nnninin

nii

nii

aaaa

aaaa

aaaa

d

.........

.....................

.........

.........

1

22221

11111

=

, 

which contains two similar columns at the i-th and j-th places and, is 

obviously equal to zero: 0=d . But its decomposition by the j-th column 

has a form:  

njnijiji AaAaAad +++= ...2211 . 

Thus, 

0...2211 =+++ njnijiji AaAaAa
,   

q.e.d. 

Usually, a determinant is preliminarily transformed before calculation 

according to its properties.  Usually, it is reduced to a triangular form since 

the following statement holds:  
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If all the elements of  the determinant located on one side of the main 

diagonal are equal to zero, then this determinant is equal to the product of 

the element placed on the main diagonal.  

We prove this statement using the method of mathematical induction. For 

the determinant of the second-order, this statement is obvious. Assume that 

it holds for determinant of the 
( )1−n -th order and consider determinant of 

n-th order: 

nn

n

n

n

a

aa

aaa

aaaa

d

...000

...............

...00

...0

...

333

22322

1131211

=

. 

We decompose it by the first column:  

nn

n

n

a

aa

aaa

ad

...00

............

...0

...

333

22322

11=

. 

On the right side of the obtained equality is the determinant of the 

-th order. For this determinant the following equality holds 

nn

nn

n

n

aaa

a

aa

aaa

= 3322

333

22322

...00

............

...0

...

. 

Thus, nnaaaad = 332211 . 

Example 24.2. Calculate the following determinants: 
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1) 
1231

0020

0130

3421

1 =d

; 2) 
8721

3521

5431

2321

2 =d

. 

Solution. 1. It is possible to decompose determinant d1 by any number. 

However, the shortest calculation is obtained by decomposition by the row 

with the largest number of zeroes. We decompose d1 by the third row and 

then A32 by the second row: 

4
11

31
12

121

010

341

21 =−=−=d

. 

2. Subtract the first row of determinant d2 from all the others and then 

subtract the doubled third row from the fourth: 

84211

4000

1200

3110

2321

6400

1200

3110

2321

2 ====d

. 

We used the fact that the obtained triangular determinant is equal to the 

product of the elements of the main diagonal.  

24.4. Application of determinants 

Definition. Square matrix A is nondegenerate if its determinant is not 

equal to zero: 
0A

. Otherwise, the matrix is called degenerate.  

Let us note that this definition is obviously equal to the definition given 

above.  
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Theorem 24.2. Inverse matrix  for matrix A exists if and only if matrix 

A is nondegenerate.  

Proof. Necessity. Let matrix A have inverse matrix 
1−A . Then 

EAAAA == −− 11
. So as 

01=E
 and the determinant of matrix 

product is equal to the product of their determinants, then 

011 == −− EAAAA
, thus, 

01 −A
 and 

0A
. 

2.Sufficiency. Given a nondegenerate matrix 





















=

nnnn

n

n

aaa

aaa

aaa

A

...

...............

...

...

21

22221

11211

 

and its determinant 
0= dA

. 

We transpose matrix A and then replace its elements by its algebraic 

adjuncts:  





















=

nnnn

n

n

AAA

AAA

AAA

A

...

...............

...

...

*

21

22212

12111

. (24.8) 

Matrix *A  is called the adjugate matrix of matrix A. 

Let us find product *AA . Given the decomposition (24.7) and the 

following remark, we obtain   
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dE

d

d

d

AA =





















=

...00

...............

0...0

0...0

*

. (24.9) 

(Write the multiplication  *AA  in detail and make sure in equality (24.9) 

by yourself). 

It is also easy to make sure of AAAA ** = . 

So, dEAAAA == ** . Hence 

EAA
d

A
d

A == *
1

*
1

. 

Thus, 

*
11 A
d

A =−

, 

or, more particularly 





















=−

nnnn

n

n

AAA

AAA

AAA

d
A

...

...............

...

...

1

21

22212

12111

1

. (24.10) 

The theorem is proved. 

Calculation of an inverse matrix by the adjugate matrix method.  

1. Let us find the determinant of the initial matrix
Ad =

. If 0=d , i.e. 

matrix A is degenerate, then an inverse matrix does not exist. If 0d , we 

continue the process. 

2. We find the algebraic adjuncts of elements of matrix A and form an 

adjugate matrix  of its elements.    
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3. We find an inverse matrix by formula (24.10). In some cases it is useful 

to check up, i.e. to check multiplications AA 1−
and 

1−AA  (or one of them) 

and make sure that we get the identity matrix E. 

Example 24.3. Find an inverse matrix of matrix А: 

















=

121

132

321

A

. 

Solution. 1. Let us calculate the determinant  

( ) ( ) ( ) 234312223 =−+−−−== Ad
. 

2. Let us find the algebraic adjuncts: 

( ) 1
12

13
1

11

11 =−=
+

A

, 

4
12

32
21 =−=A

, 
731 −=A

, 

( ) 1
11

12
1

21

12 −=−=
+

A

, 

2
11

31
22 −==A

, 
532 =A

, 

( ) 1
21

32
1

31

13 =−=
+

A

, 

0
21

21
23 =−=A

, 
132 −=A

. 

We form an adjugate matrix: 

















−

−−

−

=

101

521

741

*A

. 

3. We calculate an inverse matrix  
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−

−−

−

=
















−

−−

−

=−

2
10

2
1

2
51

2
1

2
72

2
1

101

521

741

2

11A

. 

To test yourself, make sure that EAAAA == −− 11
 . 

Let us note that for calculation of inverse matrices of the higher dimension 

matrices we use another method - the method of elementary 

transformations. (see. § 23.4). 

24.5. Matrix rank 

Let A be a matrix with dimension nm . Pick up k rows and k columns in 

an arbitrary way. Elements placed at the intersection of the selected rows 

and columns form a square matrix of order k; its determinant is called a 

minor of order k of matrix A. Herewith, obviously, 
( )nmk ,min

. 

Definition. The highest order of minors of matrix A, which are not equal 

to zero, is called the rank of matrix A. 

Example 24.4. Calculate the rank of matrix 





















=

36363

00000

12121

65432

A

. 

Solution. It is easy to check that the rank of matrix A is equal to two: 

2rg =A
. Indeed, the second-order minor placed at the upper left corner 

is not equal to zero:   

01
21

32
=

, 
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however, each of the third-order minors contains either a zero line or two 

proportional lines and, thus, is equal to zero. 

In § 23.4 we defined the matrix rank as the maximal number of its linearly 

independent vectors.  

In this regard, it makes sense to define the matrix rank as the maximal 

number of its linearly independent rows. This definition is equivalent to 

the previous one.  It is possible to prove (it is done in algebra course) that 

the maximal number of linearly independent matrix rows is equal to the 

maximal number of its linearly independent columns and also to the 

maximal order of the nonzero minors. 

Here are the main methods for calculating the rank of a matrix. 

1. Bordering minors method. Let a nonzero minor M of order k be found 

in matrix A .  We consider minors of order  which contain minor M. 

If all of them are equal to zero, then the matrix rank is equal to k. Otherwise, 

the procedure continues. 

Example 24.5. Find the matrix rank 





















=

32100

64200

52085

42032

A

. 

Solution. Let us fix a nonzero second-order minor:  

01
85

32
2 ==M

. 

One of the bordering third-order minors is also nonzero:  

02

200

085

032

3 ==M

. 
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However, both fourth-order minors bordering  are equal to zero since 

each of them has the proportional third and fourth rows.  

Thus, the matrix rank is equal to three: rg A = 3. 

2. The method of elementary transformations. Elementary 

transformations do not change the matrix rank. Using elementary 

transformations, we can bring the matrix to such a form when all the 

elements except  , , …,  are zero. The number of nonzero 

elements of the transformed matrix is obviously equal to the matrix rank. 

Example 24.6. Find the matrix rank 





















−−
=

101

110

752

321

A

. 

Solution: 





















→





















→





















−−

−−
→





















−−

000

000

010

001

000

000

110

101

220

110

110

321

101

110

752

321

. 

The rank of the transformed matrix is equal to two, thus, . 

Questions 

1. Under which conditions is the determinant of a second-order 

matrix equal to zero? 

2. With which sign does the term 42342311 aaaa
enter the determinant 

of the four-order matrix? 
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3. Can the multiplication 5441322312 aaaaa
, taken with the appropriate 

sign, be the term of determinant of a five-order matrix?  

4. What is the difference between minor 54M
 and algebraic adjunct 

54A
? 

5. Let matrix А contain a five-order minor which is not equal to zero. 

What can be concluded about the matrix rank?  

6. What is the sum of the products of the elements of a row of the 

matrix by the algebraic component of the elements of another row of this 

matrix? 

7. Is it possible to calculate the determinant of the product of two 

square matrices without multiplying these matrices? 

8. What is the determinant of a triangular matrix? 

9. Which method for calculating the inverse seventh-order matrix is 

preferable: the adjoint matrix method or the elementary transformations 

method? 

10. Can the rank of matrix A with dimension 7⋅3 be equal to four? 

 

Chapter 25. Systems of linear 

equations 

25.1. Basic concepts 

The system of m linear equations with n unknowns has the form: 
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{

𝑎11𝑥1 + 𝑎12𝑥2+. . . +𝑎1𝑛𝑥𝑛 = 𝑏1,
𝑎21𝑥1 + 𝑎22𝑥2+. . . +𝑎2𝑛𝑥𝑛 = 𝑏2,
.   .  .  .   .  .  .   .  .  .   .  .   .   .  .   .  .  .   . 
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+. . . +𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚.

 (25.1) 

The matrix composed of the coefficients of the equations of system 

(25.1), i.e. 

 





















=

mnmm

n

n

aaa

aaa

aaa

A

...

...............

...

...

21

22221

11211

, 

called the matrix of the system. 

If we denote by X the matrix column of unknowns, and by B the column 

matrix of free terms: 





















=

nx

x

x

X
...

2

1

,       




















=

mb

b

b

B
...

2

1

, 

then system (4.1) can be written in the form of a single matrix equation: 

BAX = . 

Adding columns of free terms to matrix A, we obtain an expanded matrix 

of system (25.1): 
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=

mmnmm

n

n

b

b

b

aaa

aaa

aaa

A
...

...

...............

...

...

2

1

21

22221

11211

. 

(Usually a column of free members is separated by a vertical bar). 

The expanded matrix contains all the information about the system. 

A solution of the system (25.1) is a set of numbers 

nnxxx === ....,,, 2211 , 

when substituted into this system, all equations turn into identities. 

A system of equations is called compatible if it has at least one solution. 

A system that does not have a single solution is called incompatible. A 

compatible system having a unique solution is called definite. If the system 

has more than one solution, then it is called indefinite. 

Solving a system means finding many of its solutions. The set of all 

solutions of the system is called its general solution. 

Two systems are called equivalent if they have the same set of solutions, 

or, that  is equal, the same general solution. 

Usually, in order to solve a system, it is first transformed. Moreover, the 

transformed system should be equivalent to the original. 

We list the elementary transformations of system (25.1): 

• permutation of equations; 

• multiplication of both parts of one equation by any number other than 

zero; 

• adding to both sides of one of the equations of the system the 

corresponding parts of the other equation multiplied by the same number; 

• crossing out equations of the form 
00...00 21 =+++ nxxx

. 

As a result of elementary transformations, a system equivalent to the 

original one is obtained. 



Chapter 25. Systems of linear equations  

410 

25.2. Methods of solving systems of linear 

equations 

1. Gauss method. This is the most convenient method for solving systems 

of the form (25.1). Let us state its essence. 

Suppose for definiteness in system (25.1) 011 a  (if 011 =a , (if, then we 

displace in the first place another equation with a nonzero first coefficient). 

Multiply the first equation1  by 11

21

a

a
−

 and add to the second. Then we 

multiply the first equation by 11

31

a

a
−

 and add to the third, etc. Finally, 

multiply the first equation by 11

1

a

am−

 and add to the last one. As a result of 

these elementary transformations, we obtain a system that is equivalent to 

the original, but in the new system none of the equations except the first 

contains the unknown 1x : 













=+++

=+++

=++++

....

..............................

,...

,...

3322

22323222

11313212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxaxa

 (25.2) 

                                                      
1 Speaking about the multiplication of the equation by a number, we, of course, 

mean the multiplication of all members of both sides of this equation by this 

number. 
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Note that only coefficients and free terms are transformed; therefore, it is 

more convenient to write the system transformation as a transformation 

of its extended matrix: 




























=

mmnmm

n

n

b

b

b

aaa

aaa

aaaa

A
...

...0

...............

...0

...

2

1

32

22322

1131211

. (25.3) 

At the second stage, using the second equation, we similarly transform all 

the equations, starting from the third, or, which is the same, multiplying 

the second row of the matrix A  by corresponding numbers ( 22

32

a

a




−

, …, 

22

2

a

am




−

) and adding to the third, ..., m-th lines, we get: 



































=

mmnm

n

n

n

b

b

b

b

aa

aa

aaa

aaaa

A

...

...00

...............

...00

...0

...

3

2

1

3

333

22322

1131211

. 

We continue this process in the same way: further, all lines except the first 

two will be converted, then except the first three, etc. 

We did not investigate the compatibility system in advance. Nevertheless, 

the Gauss method allows one of the stages to establish the possibility of 

system incompatibility. Indeed, if, as a result of the transformations, we 

obtain a row in which all terms except the last are equal to zero and the 

last is non-zero, then this corresponds to an equation of the form: 
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00...00 21 =+++ bxxx n , 

that has no solutions. Therefore, the system containing such an equation 

is incompatible. 

In the process of applying the Gauss method, lines entirely consisting of 

zeros may also appear, which corresponds to equations of the form 

00...00 21 =+++ nxxx
. 

This can happen if the corresponding equations of the original system are 

linear combinations of other equations of the system. 

If system (25.1) is defined, then its matrix as a result of transformations1 

will take the form:  

( ) ( ) 





















−− 1

2

1

1

22322

1131211

...

...000

...............

...0

...

n

n

n

nn

n

n

b

b

b

a

aaa

aaaa

, 

I.e. the system will have a "triangular" look: 

( ) ( )











=

=+++

=++++

−− .

..............................

,...

,...

11

22323222

11313212111

n

nn

n

nn

nn

nn

bxa

bxaxaxa

bxaxaxaxa

 (25.4) 

(superscripts and primes indicate how many times the coefficients and free 

terms have changed during the transformations). 

                                                      
1 Note that the method of finding the inverse matrix (see § 23.4) is based on 

similar transformations. 
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From the last equation of the system (25.4) immediately find 

( )

( )1

1

−

−

=
n

nn

n

n
n

a

b
x

, 

then, substituting the found nx
 in the penultimate equation (containing 

only nx
 and 1−nx

), find 1−nx
 and so on. Thus, we successively find all other 

unknowns. (This process is sometimes called the inverse of the Gauss 

method.) 

Example 25.1 Solve the system: 













=+++

−=+−

=+++

=+++

84622

32

93532

32

4321

321

4321

4321

xxxx

xxx

xxxx

xxxx

 

Decision. We compose the extended matrix of the system and apply the 

Gauss method: 

.

2

0

3

3

1000

1200

1110

1211

2

0

3

3

2200

1200

1110

1211

2

2

6

3

3

2200

1020

1110

1211

2,,2

8

3

9

3

4622

0211

3532

1211

3423

141312





















⎯⎯ →⎯
−





















⎯⎯⎯ →⎯
+

→





















−−−
⎯⎯⎯⎯⎯⎯⎯ →⎯

−−−





















−−

llll

llllll

 

The resulting expanded matrix corresponds to the system: 
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=

=+

=++

=+++

,2

02

3

32

4

43

432

4321

x

xx

xxx

xxxx

 

which is equal to the original system. Substitute 24 =x  to the penultimate 

equation, find 
13 −=x

; substitute 4x  и 3x
 to the second equation, find 

22 =x
; finally, substitute found 4x

, 3x
, 2x

 to the first one find 
11 =x

. 

So, the system has a unique solution.: 

11 =x , 22 =x , 
13 −=x

, 24 =x . 

It is possible to solve such a system, leading it not to a triangular form, but 

turning it into the so-called allowed system. Let us illustrate this with an 

example, and then describe the process in a general way. 

Example 25.2 Solve the system 













=+++

=+++

=+++

=++++

.159352

,422

,323

,742

4321

4321

4321

4321

xxxx

xxxx

xxxx

xxxx

 

Solution. We compose an expanded matrix and transform it in such a way 

that each row and each column of the transformed matrix of the system 

contain one element equal to one, and the rest equal zero: 
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.

1

2

0

1

0010

1000

0100

0001

3,2,3

1

2

0

1

0310

1200

0100

0301

1

2

0

1

0310

1200

01200

0301

2,7,

1

2

14

5

1110

1200

7200

2101

1

2

14

5

1110

1200

7200

2101

2,4,

1

3

18

7

1110

2110

11240

4121

2,,3

15

4

3

7

9352

2211

1123

4121

242321

313234

414243

141312





















−

⎯⎯⎯⎯⎯⎯⎯⎯ →⎯
−+−

→





















−

−
→





















−

−
⎯⎯⎯⎯⎯⎯⎯ →⎯

−+−

→





















−

−

−

−

→





















−

−

−

−

−

⎯⎯⎯⎯⎯⎯⎯ →⎯
−++

→





















−

−

−−

−−−
⎯⎯⎯⎯⎯⎯⎯ →⎯

−−−





















llllll

llllll

llllll

llllll

 
So, gotten system is: 













−=

=

=

=

,1

,2

,0

,1

2

4

3

1

x

x

x

x

 

i.e. we got a solution 
11 =x

, 
12 −=x

, 
03 =x

, 
24 =x

, or (1, –1, 0, 2). 

Obviously, system (25.1) can be reduced to the form (4.4) when the rank 

of its matrix coincides with the number of unknowns: 
nA =rg

. 
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In the case when the system is compatible and nrA =rg , the expanded 

matrix A  is converted by the Gauss method to the form:  

( ) ( ) ( ) 





















−−− 1

2

1

11

2222

111211

...

......00

..................

......0

......

r
r

r
rn

r
rr

nr

nr

b

b

b

aa

aaa

aaaa

, 

where 011 a , 022 a , …, 
( ) 01 −r

rra . The corresponding system has a 

"trapezoidal" shape: 

( ) ( ) ( )











=++

=++++

=+++++

−−− ....

.....................................

,......

,......

111

222222

111212111

r

rn

n

rnr

r

rr

nnrr

nnrr

bxaxa

bxaxaxa

bxaxaxaxa

 (25.5) 

In this case, declare the unknown 1+rx
, …, nx

 free and move to the right 

side of the equations. 

Example 25.3. Solve the system. 













−=+−−

=−++

=−+

=+−+

.665

,11624

,5332

,12

4321

4321

321

4321

xxxx

xxxx

xxx

xxxx

 

Solution. Transform the extended matrix of the system: 
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→





















−−−

−

−

−

⎯⎯⎯⎯⎯⎯⎯ →⎯
−−−





















−−−

−

−

−

7

10

3

1

5320

7430

2110

1211

,,2

6

11

5

1

6511

6241

0332

1211

141312 llllll

 

.

0

1

3

1

0000

1100

2110

1211

1

1

3

1

1100

1100

2110

1211

2,3 342423





















−

−

−

⎯⎯ →⎯
+





















−−

−

−

−

⎯⎯⎯⎯⎯ →⎯
+− llllll

 

Obtain the system: 









=−

=−+

=+−+

.1

32

12

43

432

4321

xx

xxx

xxxx

 

Unknown 4x
 declare as free: 

cx =4 . From the last equation get: 

cx += 13 . Substitute this value to the second equation:
cx += 22 . 

Substitute found 3x
 и 2x  to the first equation: 11 =x . 

The system has an infinite number of solutions: 

( )cccx ,1,2,1 ++=
, 

where c gets any numerical values. This is a general system solution. 

We now consider the Gauss method in a slightly different form. The 

method consists of several steps. Suppose that the first k-1 steps are taken, 

and describe the next k-th step. 

1. We check if there is at least one contradictory equation in the system 

(obtained after the k-1 previous steps). If such an equation exists in the 

system, then it is incompatible - work with it stops. 

2. If the system has trivial equations 0 = 0, then delete them. 
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3. Let there be no contradictory equations in the system. Then one of the 

equations is chosen as the resolving equation, and one of the unknowns is 

declared as resolving unknowns. The following conditions must be met: 

1) in the previous steps this equation was not resolving; 

2) in the resolving equation, the coefficient for the resolving unknown must 

be nonzero1 (this coefficient is sometimes called the resolving element); 

3) from all equations except the resolving one, we exclude the resolving 

unknown. For this, we add a resolving equation multiplied by the 

corresponding number to each of these equations. 

After a finite number of steps, the process will stop, and either the 

incompatibility of the system will be established, or a general solution of 

this system will be obtained. This will happen when all the equations are 

in the role of resolving ones. 

Let us look at some examples. As usual, we will transform not the systems 

themselves, but their extended matrices. 

Example 25.4. Find a general solution and one particular solution to a 

system of equations 













=−+−

−=−++

=+−+

−=+−−+

.82

,2343

,752

,134

6431

6531

6321

64321

xxxx

xxxx

xxxx

xxxxx

 

Solution. We write the extended matrix of the system. 

                                                      
1 Using elementary transformations, one can resolve the equation such that the 

coefficient for the unknown sought becomes equal to unity. 
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.

8201101

2310403

7100512

1301411





















−−

−−

−

−−−

 

Step 1. We make sure that this system does not contain contradictory and 

trivial equations. We select the first equation as the resolving equation, and 

the coefficient 112 =a
 – as a resolving element. We do the transformation 

12 ll − : 

.

8201101

2310403

8201101

1301411





















−−

−−

−−

−−−

 
Step 2. The matrix obtained after the first step is an extended matrix of a 

system that does not contain contradictory and trivial equations. We take 

the second equation as the resolving equation, and the coefficient as the 

resolving element 124 =a
. We do the transformation 2421 , llll −+

: 

.

0000000

2310403

8201101

7100512





















−−

−−

−

 
Step 3. The system of equations obtained after the second step contains a 

trivial equation - delete it (delete the line consisting of zeros): 

.

2310403

8201101

7100512

















−−

−−

−
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In the third equation coefficient 
135 =a

. It can be taken as the resolving 

one, but the remaining equations no longer contain the resolving unknown 

5x
. Obtain the system: 









−=−++

=−+−

=+−+

,2343

,82

,752

6531

6431

6321

xxxx

xxxx

xxxx

 

has unknowns 542 ,, xxx
 expressed through free unknowns 631 ,, xxx

: 









+−−−=

++−=

−+−=

.3432

,28

,527

6315

6314

6312

xxxx

xxxx

xxxx

 

Consider 362311 ,, cxcxcx ===
, get a solution 

( )332132123211 ,3432,28,,527, ccccccccccccx +−−−++−−+−=
. 

Take for example 
3,0,1 321 === ccc

, obtain one of the partial 

solutions: 

11 =x , 12 =x , 
03 =x

, 134 =x , 
45 =x

, 
36 =x

. 

Example 25.5. Find a general solution of the equation: 













−=++

−=+++

−=++++

−=++++

.31644

,1622

,1038352

,442

421

5432

54321

54321

xxx

xxxx

xxxxx

xxxxx

 
Solution: 
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.

500000

152100

210110

014101

4,,2

1340440

162210

210110

414121

4,2

3016044

162210

1038352

414121

242321

1412





















−

−−

⎯⎯⎯⎯⎯⎯⎯ →⎯
+−−

→





















−−−

−

−

−

⎯⎯⎯⎯⎯ →⎯
−−





















−

−

−

−

llllll

llll

 

The system is incompatible. 

2. Inverse matrix method. Let the number of equations in the system of 

equations (25.1) be equal to the number of unknowns m=n, the system has 

the form: 













=+++

=+++

=+++

....

...............................

,...

,...

2211

22222121

11212111

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

 (25.6) 

We compose a square matrix A of this system: 





















=

nnnn

n

n

aaa

aaa

aaa

A

...

...............

...

...

21

22221

11211

. 

We write system (21.6) in matrix form: 

BAX = . (25.7) 
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Let matrix A be non degenerate matrix: 
0A

. Then there is an inverse 

matrix 
1−A . 

Multiply both sides of the equation (21.7)  by 
1−A  on the left: 

BAAXA 11 −− = , 

And get solution of the system (4.6): 

BAX 1−= . (25.8) 

Example 25.6. Solve three systems of equations: 









=++

=++

=++

;7433

,5322

,432

)1

321

321

321

xxx

xxx

xxx

 , 








=++

=++

=++

;1433

,1322

,032

)2

321

321

321

xxx

xxx

xxx

 , 









=++

=++

=++

.21433

,15322

,1432

)3

321

321

321

xxx

xxx

xxx

. 

Solution. Matrix 
1−A was found in the example 19.7. 

1. 
















=

































−

−

−

=

1

0

1

7

5

4

230

351

011

X

 . 

2. 
















−=

































−

−

−

=

1

2

1

1

1

0

230

351

011

X

 . 
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3. 
















=

































−

−

−

=

3

2

1

21

15

14

230

351

011

X

 . 

3. The Cramer Rule. In § 24.1, we already considered the Cramer rule for 

solving a system of two equations with two unknowns. We generalize it to 

the case of any number of unknowns. 

Theorem 25.1 (Kramer’s theorem). Let a system of n linear equations 

with n unknowns be given BAX = . If 
0A

, then system has only one 

solution: 

,...,,, 2

2

1

1
A

A
x

A

A
x

A

A
x n

n ===

 (25.10) 

where iA
 means the matrix obtained from A by replacing its ith column 

with a column of free terms B (i = 1, 2, …, n). 

Evidence. We write in expanded form, taking into account (25.10) the 

solution of the system BAX 1−=  of the system BAX = : 











































=





















nnnnn

n

n

n b

b

b

AAA

AAA

AAA

A

x

x

x

...

...

...............

...

...

1

...

2

1

21

22221

11211

2

1

. 

According to the rule of multiplying matrices, we get: 

( )nniiii bAbAbA
A

x +++= ...
1

2211

, i = 1, 2, …, n. 



Chapter 25. Systems of linear equations  

424 

However, the expression in parentheses is the expansion of the determinant 

iA
in the ith column: inniii AbAbAbA =+++ ...2211 . 

So, 
A

A
x i

i =

. The theorem is proved.. 

Formulas (25.9) are called the Cramer formulas, and the rule for solving 

systems using these formulas is called the Cramer rule. 

Cramer's formulas are mainly of theoretical value. Their application for 

solving systems with a large number of unknowns would lead to 

cumbersome calculations. However, these formulas have a very important 

merit: they give an explicit expression of the meanings of all unknowns. 

25.3. Compatibility of systems of linear 

equations 

Consider matrix A and the extended matrix A  of system (25.1). It is 

known that the rank of a matrix is equal to the largest number of its linearly 

independent columns. Therefore, attaching a column of free terms to the 

matrix A, we either obtain a matrix whose rank is one more than rank A or 

do not increase the rank - if the column of free terms is a linear combination 

of the remaining columns: 





















=





















++





















+





















m

n

mn

n

n

mm b

b

b

k

a

a

a

k

a

a

a

k

a

a

a

......
...

......

2

1

2

1

2

2

22

12

1

1

21

11

. (25.10) 

It is easy to see that equality (25.10) is equivalent to the fact that system 

(25.1) has a solution nn kxkxkx === ...,,, 2211 . The question of 
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compatibility of a system of linear equations is solved by the following 

theorem. 

Theorem 25.2 (Kronecker-Capelli theorem). The system of linear 

equations (4.1) is compatible if and only if the rank of its extended matrix 

A is equal to the rank of its matrix A.  

Evidence. 1. Let system (25.1) be compatible and lets nkkk ...,,, 21  – be its 

solution. We substitute these numbers for unknowns and obtain a system 

of identities that is equivalent to equality (25.10), which means that the 

column of free terms is a linear combination of columns of the matrix A. 

It follows that 

 AA rgrg = . 

2. Lets given that AA rgrg = . Then any maximal linearly independent 

column system of the matrix A remains a maximal linearly independent 

column system in the matrix A . Therefore, in particular, the column of 

free terms is a linear combination of columns of this system, and it follows 

that the column of free terms is a linear combination of all columns of the 

matrix A, i.e. equality of the form (25.10) holds. This, in turn, means that 

numbers nkkk ...,,, 21  (among which, of course, some may be zeros) 

constitute a solution to the system (25.1). We proved that the compatibility 

of system (25.1) follows from the equality 
AA rgrg =

. The proof is over. 

Now take a look at the application of the Kronecker-Capelli theorem: Let  

rAA == rgrg
. In this case, we say that the rank of system (25.1) is r. 

Then system (25.1) is compatible. 

If nr = , then the system is defined. Its unique solution can be calculated 

either according to the Kramer rule or by reduction to the form (25.4). If 
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nr  , the system is reduced to the form (25.5). Unknowns nr xx ...,,1+  

declare free and transfer to the right side of the equations. In the left parts 

remain terms containing unknowns 1x , 2x , …, rx  called the  basis:  

( ) ( ) ( ) ( )











−−−=

−−−=++

−−−=+++

−

+

−

+

−−

++

++

....

.................................................

,......

,......

1

1

1

1,

11

211,222222

111,111212111

n

r

rnr

r

rr

r

rr

r

rr

nnrrrr

nnrrrr

xaxabxa

xaxabxaxa

xaxabxaxaxa

 

From the last equation find rx , substitute its value (depending on free 

unknowns) in the penultimate equation, find 1−rx  and so on. This way find 

unknowns 1x , 2x , …, rx , expressed by free variables, which can have any 

values. Therefore, system (25.1) in this case has an infinite number of 

solutions. 

Giving free unknowns arbitrary values and obtaining the corresponding 

values of basic unknowns, we obtain all solutions of system (25.1). 

Example 25.7. Solve the system of equations: 













=−+

=+++

=+−+

=++

.3

,723

,13253

,52

321

4321

4321

421

xxx

xxxx

xxxx

xxx

 

Solution. We compose an extended matrix and apply the Gauss method: 
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−−−−
→





















−

−

−−−

−−−
→





















−

−

0

0

2

5

0000

0000

1110

1021

2

2

2

5

1110

1110

1110

1021

3

7

13

5

0111

2131

2153

1021

. 

We see that 2rgrg == AA , in particular, the minor composed of the 

coefficients of and in the first two equations is nonzero: 

01
10

21
−=

−
, 

and all third-order minors are zero. Unknowns 1x , 2x  take as basis ones, 

the others, i.e. 3x
, 4x

 declare as free and put to the right side of equation: 





++−=−

−=+

432

421

2

52

xxx

xxx

 

Giving free variables arbitrary values 13 cx =
, 24 cx = , we find an infinite 

number of solutions to the system:

2413212211 ,,2,21 cxcxccxccx ==−−=++=
. 

25.3. Homogeneous equation systems 

A system of linear equations is called homogeneous if in all its equations 

the free terms are equal to zero: 
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=+++

=+++

=+++

.0...

.............................

,0...

,0...

2211

2222121

1212111

nmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

 (25.11) 

Obviously, such a system always has a zero (or trivial) solution: 

0...,,0,0 21 === nxxx
. Therefore, a homogeneous system is always 

compatible. (It is also clear that AA rgrg = .) 

Of interest is the question of the existence of nonzero solutions to this 

system. If the determinant of the system (25.11) is nonzero, then the system 

has only a zero solution (this follows from Cramer's theorem). 

The following statement is true (we give it without proof). 

Theorem 25.3. A homogeneous system has a nonzero solution if and only 

if the rank of this system is less than the number of unknowns. 

In particular, with a system has a nonzero solution if and only if its 

determinant is equal to zero. 

We will write down every solution to the system (25.11): 

,, 2211 cxcx ==
 nn cx =...,

 as a row vector 
( )ncccc ,...,, 21=

. 

We note the properties of solutions of homogeneous systems: 

1. If row vector 
( )ncccc ,...,, 21=

 – the solution of the system (25.11), then 

for each number k vector 
( )nkckckcck ,...,, 21=

 is a solution of the system 

(25.11) as well. 

2. If vector 
( )ncccc ,...,, 21=

 and vector 
( )ncccc = ,...,, 21  are solutions 

of the system (4.11), then the sum of these vectors cc +  is a solution of 

the same system. 
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The validity of these properties is verified by direct substitution of the 

indicated solutions into the equations of the system. (We invite the reader 

to do this on their own.) 

From the formulated properties it follows that each linear combination of 

solutions of a homogeneous system is also a solution to this system. 

Obviously, if a homogeneous system has a nonzero solution, then it has an 

infinite number of solutions. From the set of solution vectors of the 

homogeneous system (25.11), one can choose a basis. This basis is called 

the fundamental system of solutions of the homogeneous system (25.11). 

The system (25.11) in this case has many different fundamental systems of 

solutions. 

Theorem 25.4. If the rank r of the system of linear homogeneous equations 

(25.11) is less than the number of unknowns n, then any fundamental 

system of solutions to the system (25.11) consists of solutions. 

(We accept Theorem 25.4 without proof.) 

We indicate a method for finding fundamental systems of solutions to the 

system (25.11). We must take any system of linearly independent (n-r) -

dimensional vectors, take the components of each of these vectors for the 

values of free unknowns nr xx ...,,1+  and find the corresponding values for 

r basis unknowns. We obtain n-r solutions of the system of equations 

(25.11) that make up the fundamental system. 

Usually, it is most convenient to take (n-r) -dimensional unit vectors (1, 0, 

..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) as value vectors for free unknowns. 

Example 25.8. To solve a system: 















=++−−

=+++

=−+++

=++++

=−+++

.0182

,04

,0132352

,0232

,032

54321

5421

54321

54321

54321

xxxxx

xxxx

xxxxx

xxxxx

xxxxx
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Solution. Transform the system matrix: 

.

00000

00000

00000

70110

31121

210330

70110

70110

70110

31121

,

,2,2

181211

41011

132352

12132

31121

1514

1312























−−

−

→

→























−−

−−

−

−−

−

−−

⎯⎯⎯⎯⎯ →⎯
−−























−−

−

−

llll

llll

 

We get a system equivalent to the original: 





=+−−

=−+++

.07

032

532

54321

xxx

xxxxx

 

We choose as basic unknowns 1x  и 2x
(the coefficients in them form a 

minor other than zero): 





−=−

+−−=+

.7

32

532

54321

xxx

xxxxx

 

We get a fundamental system of solutions: 

=1e  (1, –1, 1, 0, 0), 
=2e

 (–1, 0, 0, 1, 0), 3e
 = (–11, 7, 0, 0, 1). 

25.5. Heterogeneous systems.  
Structure of the general solution of the system of linear heterogeneous 
equations 
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Consider a system of linear inhomogeneous equations (25.1): 













=+++

=+++

=+++

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

...

..................................

,...

,...

2211

22222121

11212111

 

and its corresponding homogeneous system (25.11) 













=+++

=+++

=+++

,0...

.............................

,0...

,0...

2211

2222121

1212111

nmnmm

nn

nn

xaxaxa

xaxaxa

xaxaxa

 

obtained from system (25.1) by replacing the free terms with zeros. 

We establish a connection between the solutions of systems (25.1) and 

(25.11). The following statements are true: 

1. The sum of any solution to system (25.1) with any solution to the 

corresponding homogeneous system (25.11) is again a solution to system 

(25.1). 

2. The difference of any two solutions of the system (25.1) is the solution 

of the corresponding homogeneous system (25.11). 

The proofs of these statements are very simple. We prove, for example, the 

second. 

Let 
( )ncccc ,...,, 21=

 and 
( )ncccc = ,...,, 21  are two solutions of the 

system (25.1). We substitute the difference of these solutions 

( )nn cccccccc −−−=− ...,,, 2211  to left part of any i-th equation of the 

system (25.11) and regroup summands: 

( ) ( ) ( ) ( )

( ) .0...

......

2211

2211222111

=−=+++−

−+++=−++−+−

iininii

niniinninii

bbccc

ccccccccc
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The equation turns into the identity 0 = 0. 

From these two statements it follows that, finding one solution to the 

system of linear inhomogeneous equations (25.1) and adding it to each of 

the solutions to the corresponding homogeneous system (25.11), we obtain 

all solutions to the system (25.1). 

In other words, the general solution of the system of linear equations (25.1) 

is the sum of any particular solution to this system with the general solution 

of the corresponding homogeneous system (25.11). 

Example 25.9. To solve a system: 















−=++−−

=+++

=−+++

=++++

=−+++

2182

24

10132352

6232

432

54321

5421

54321

54321

54321

xxxxx

xxxx

xxxxx

xxxxx

xxxxx

 

Solution. The homogeneous system corresponding to this system is 

considered in Example 25.8. Transforming the extended matrix of this 

system, we come to the system: 





−+−=−

+−−=+

.72

342

532

54321

xxx

xxxxx

 

We find one of the particular solutions to this system. The easiest way to 

do this is by setting 
0543 === xxx

. We get a solution 0c
 = (0, 2, 0, 0, 

0). (A particular solution in which all the values of free unknowns are equal 

to zero is sometimes called basis.) 

The fundamental system of solutions of the corresponding homogeneous 

system is already found in Example 25.8. We use it and get a general 

solution to this heterogeneous system:  



25.5. Heterogeneous systems.  

433 

(0, 2, 0, 0, 0) + 1k (1, –1, 1, 0, 0) + 2k (–1, 0, 0, 1, 0) + 
3k
(–11, 7, 0, 0, 

1). 

Giving the coefficients 321 ,, kkk
 all possible values, we get all the 

solutions of this system. 

Questions 

1.  Can an indefinite system of linear equations be incompatible? 

2.  What is called a general solution of a system of linear equations? 

3.  Can a system containing seven equations with five unknowns be 

equivalent to a system of four equations with five unknowns? 

4.  To which system of linear equations does the Cramer rule apply? 

5.  Is the inverse matrix method applicable to indefinite system of linear 

equations? 

6. Can a homogeneous system of linear equations be incompatible? 

7. What is called the fundamental system of solutions of a 

homogeneous system of linear equations? 

8. How many solutions does the 4-ranked fundamental system of 

solutions of a homogeneous system of equations with six unknowns? 

9. What is the structure of the general solution of a system of linear 

inhomogeneous equations? 
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Chapter 26. Linear operators 

26.1. The concept of a linear operator 

Let two vector spaces U and V be given. 

Definition. If a certain rule A is given, according to which each vector u

of space U is assigned a unique vector 
( )uAv =  of the space V, then an 

operator A acts from U to V. The vector 
( )uAv = is called the image of 

the vectoru , and the vector u is the prototype of the vector v . 

Operator 
( )uA  is called linear if it satisfies the following two conditions: 

1) for any two vectors 1u
 and 2u

 of the space U 

( ) ( ) ( )2121 uAuAuuA +=+
; 

2) for any u  from U and any number  

( ) ( )uAuA =
. 

The concept of a linear operator is one of the fundamental concepts of 

linear algebra. 

Then let 
n

R=U , 
m

R=V . 

Later we will see that if in the space 
n

R  set some basis 1e , 2e
, ..., ne

, and 

in the space 
m

R  set some basis 1f , 2f , ..., mf , then linear operator А if 

defined by matrix size nm . 

So let 1e , 2e
, ..., ne

 is some basis of space 
n

R . Take an arbitrary vector

x  and expand it in terms of basis: 

nnexexexx +++= ...2211 . 

Operator 
( )xA

 is a linear then 
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( ) ( ) ( ) ( )nn eAxeAxeAxxA +++= ...2211 . (26.1) 

However, each of the vectors 
( )ieA

 (i = 1, 2, …, n) is a vector from the 

space 
m

R , therefore, it can be decomposed into a basis 1f , 2f , ..., mf : 

( ) mmiiii fafafaeA +++= ...2211 . (26.2) 

Substituting the decomposition 
( )ieA

 (i = 1, 2, …, n) from (5.2) to (5.1), 

get: 

( ) ( ) ( )
( ).......

......

2211

2222112212211111

mmnnnn

mmmm

fafafax

fafafaxfafafaxxA

+++++

++++++++=

 

Regrouping the terms and collecting the coefficients for 1f , 2f , ..., mf , 

we get 

( ) ( ) ( )

( ) .......

......

2211

2222212111212111

mnmnmm

nnnn

fxaxaxa

fxaxaxafxaxaxaxA

+++++

++++++++=

(26.3) 

Let 1y
, 2y

, …, my
 be coordinates of the vector image x , i.e. coordinates 

of the vector 
( )xAy =  in basis 1f , 2f , ..., mf . Then 

( ) mm fyfyfyxA +++= ...2211 . (26.4) 

Due to the uniqueness of the expansion of the vector along the basis, the 

right-hand sides of equalities (26.3) and (26.4) coincide. Hence: 
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+++=

+++=

+++=

....

..............................

...

...

2211

22221212

12121111

nmnmmm

nn

nn

xaxaxay

xaxaxay

xaxaxay

 (26.5) 

The matrix A of system (26.5) is called the matrix of the operator A with 

respect to the basis 1e , 2e , ..., ne
 and 1f , 2f , ..., mf : 





















=

mnmm

n

n

aaa

aaa

aaa

...

...................

...

...

A

21

22221

11211

 . 

So, a matrix of size m  n corresponds to each linear operator 
mn

RR →:A
. Obviously, the converse statement is also true: a linear 

operator
mn

RR →:A corresponds to a square matrix of size m  n. 

If we consider the vectors 
( )nxxxx ,...,, 21=

 and 
( ) == xAy  

( )myyy ,...,, 21  as column matrices: 





















=

nx

x

x

....

2

1

X

,       




















=

my

y

y

....

2

1

Y

, 

then equality 
( )xAy =

, or system (26.5) which is the same, can be written 

in the form of matrix equality: 

AXY = , 
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where А is a matrix of a linear operator. In particular, when spaces 
n

R  

and 
m

R  match, space 
n

R  is mapped into itself through operator А. In this 

case, the operator matrix is a square matrix of order n. 

 

26.2. Actions with linear operators 

For linear operators, the operations of addition and multiplication by a 

number are defined. 

1. The sum of two linear operators 1A and 2A is called the operator (

21 AA +
), defined by the equality: 

 
( ) ( ) ( ) ( )xAxAxAA 2121 +=+ . 

2. The product of the linear operator А by a number  is the operator 

A defined by the equality: 

 
( ) ( )( )xAxA =

. 

It is known that every linear operator
n

R  that maps into itself is determined 

by the corresponding square matrix. Therefore, the described operations 

correspond to similar operations on operator matrices - addition and 

multiplication by a number. The operators ( 21 AA +
) and A are also 

linear. 

Zero operator 0
~

 is defined as an operator that translates every vector of 

space
n

R  in a zero vector 0 . 

Obviously, 
( ) AA =+ 0

~
 for each operator А. 

For linear operators, the multiplication operation can also be defined. 
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3. The product of linear operators 1A  and 2A
 is the operator 

( )21AA

defined by the equality: 

( ) ( ) ( )( )xAAxAA 2121 = . 

The product of two linear operators is also a linear operator. 

The identity operator E is defined as follows: 

( ) xxE = . 

Obviously, 
( ) ( ) AEAAE ==  for each linear operator А. 

26.3. Eigenvectors and eigenvalues of 

linear operator 

Definition. Nonzero vector 
n

Rx called eigenvector of linear operator 

А, if there is such a number   that: 

( ) xxA =
. (26.6) 

And number   is an eigenvalue of operator А. 

If А is a matrix of an operator А, then number  , satisfying equality (26.6), 

called eigenvalue of matrix А, and vector x  is an eigenvector of matrix А. 

Equality (26.6) can be written in matrix form: 

XAX =  or EXAX = . (26.7) 

From the last equation: 

( ) 0=− XEA
. (26.8) 

If  
( )

ija=A
, i, j = 1, 2, …, n, then 
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−

−

−

=−

nnnn

n

n

aaa

aaa

aaa

...

...............

...

...

21

22221

11211

EA

. (26.9) 

Equation (26.8) is equal to the system of linear homogeneous equations: 

( )

( )

( )











=−+++

=++−+

=+++−

.0...

..................................

,0...

,0...

2211

2222121

1212111

nnnnn

nn

nn

xaxaxa

xaxaxa

xaxaxa

 (26.10) 

Since the eigenvector is not zero, the homogeneous system (26.10) must 

have a nonzero solution. As is known, a homogeneous system of n 

equations with n unknowns has a nonzero solution if and only if its 

determinant is zero. Therefore 

0

...

...............

...

...

21

22221

11211

=

−

−

−

nnnn

n

n

aaa

aaa

aaa

, or 
0=− EA

 (26.11) 

Equation (26.11) is called the characteristic equation of the matrix, and 

the left side of this equation is called the characteristic polynomial of 

matrix A (or operator A). 

Obviously, equation (26.11) is an algebraic equation of degree n. Its roots 

are the eigenvalues of the matrix A. Substituting each of the roots into the 

system (26.10) and solving it, we obtain the corresponding eigenvector. 

Example 26.1 Find the eigenvalues of the eigenvectors of the linear 

operator А given by the matrix: 
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=

32

14
A

. 

Solution. We draw up the characteristic equation 
0=− EA

 for this 

matrix: 

0
32

14
=

−

−

. 

Solving the determinant, we obtain 

01072 =+− . 

The root of the equation are 51 = , 22 = . Substituting 51 =  to the 

system  (26.11) with 2=n , get 

( )

( )



=−+

=+−

,0532

054

21

21

xx

xx

 т.е. 



=−

=+−

.022

0

21

21

xx

xx

 (*) 

Eigenvector corresponding to the eigenvalue 
51 =

is a solution of the 

system which is equivalent to the equation: 

021 =− xx
. 

Declare 2x  a free unknown and consider cx =2 , get the first eigenvector  

( ) ( )1,1,1 cccx ==
. 

Then substitute 
22 =

: 





=+

=+

.02

02

21

21

xx

xx

 (**) 



Questions  

441 

This system is also equivalent to one equation. Consider dx =2 , get 

( )2,1
2

,
2

2 −−=







−=

d
d

d
x

. 

I.e. с and d are arbitrary numbers, then an infinite number of vectors can 

correspond to one eigenvalue. In particular, assuming, that 1=c and 

2−=d  we obtain eigenvectors that are fundamental solutions of the 

corresponding homogeneous systems (*) and (**). They have the form, 

( )1,11 =x  and 
( )2,12 −=x . 

Questions 

1. What defines a linear operator in the basis of space 
n

R ? 

2. Does any n-th order square matrix define in a linear operator in 
n

R

? 

3. Which linear operator is called null? 

4. Write the characteristic equation for the matrix 









=

43

21
A

. 

5. How many different eigenvalues can a third-order matrix have? 

6. Is the number  = 5 an eigenvalue of the matrix 









=

10

35
A

? 

7. Is the vector 
( )3,2=x

 an eigenvector of the matrix 









=

40

21
A

? 
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Chapter 27. Quadratic forms 

27.1. Basic concepts 

Definition. A quadratic form 
( )nxxxF ...,,, 21 of n unknowns 

nxxx ...,,, 21 is a sum, each term of which is either a square of one of these 

variables, or a product of two different variables. 

Example 27.1. Sum yxyx 232 +−  is a quadratic form of two unknowns: 

x и y; sum 32

2

23121

2

1 432 xxxxxxxx −+−+
 is a quadratic form of three 

unknowns 321 ,, xxx
. 

(Note that similar terms are already given in the above quadratic forms.) 

Each quadratic form can be written in a standard form. The following 

commonly used symbols are used. 

Any type sum nkk aaa +++ + ...1 is written as  


=

+ =+++
n

ki

inkk aaaa ...1

. 

In particular, 


=

=+++
n

i

in aaaa
1

21 ...

. 

If the sum is considered, the terms of which ija
 are provided with two 

indices i and j, moreover, i = 1, 2, ..., m; j = 1, 2, ..., n, then you can first 

take the sum of elements with a fixed first index, i.e. 


===

n

j

mj

n

j

j

n

i

j aaa
11

2

1

1 ...,,,

, 
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and then add up all these amounts. Then for the sum of all these elements 

we get the record 


= =

m

i

n

j

ija
1 1 . (27.1) 

You can also add first the terms ija
 with a fixed second index, and then the 

amounts already received: 


= =

n

j

m

i

ija
1 1 . (27.2) 

Therefore 


= =

m

i

n

j

ija
1 1  = 


= =

n

j

m

i

ija
1 1 , (27.3) 

i.e. in double amount, you can change the summation order. 

The sums (27.1) and (27.3) can be considered as the sum of the elements 

of matrix nm : 























mnmjm

iniji

nj

aaa

aaa

aaa

......

...............

......

...............

......

1

1

1111

. 

If we add the elements of each row in this matrix and then add the sums 

obtained, we have (27.1); if we first add up the elements of each column 

and then add up what happened, we have (27.2). 

Let us now return to the question of the standard form of a quadratic form. 

Assuming that similar terms are already given in quadratic form 
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( )nxxxFF ...,,, 21=
, we introduce the following notation: the coefficient 

of the quadratic form 
2

ix
 for is denoted as iia

, and the coefficient of the 

product for ji xx
for ji   is denoted as iia2

. Since, obviously, 

ijji xxxx =
 the coefficient in this product could be denoted as jia2

, i.e. it 

is assumed that 

jiij aa =
. (27.4) 

Then term jiij xxa2
 can we written as 

ijjijiijjiij xxaxxaxxa +=2
, 

and the entire quadratic form 
( )nxxxFF ...,,, 21=

 is written as the sum 

of all possible terms jiij xxa
, where i and j independently of each other 

take all values from 1 to n:  

( ) 
= =

=
n

i

n

j

jiijn xxaxxxF
1 1

21 ,...,,

. (27.5) 

(In particular, if ji = , then get 
2

iiixa
.) Note that with double summation, 

the summation sign is often used. Equality (6.5) can be written as 

( ) 
=

=
n

ji

jiijn xxaxxxF
1,

21 ,...,,

. (27.5) 

The coefficients ija
 of the quadratic form (27.5) obviously form a square 

matrix 
( )

ijaA =
 of order n; it is called a matrix of quadratic form 

( )nxxxFF ...,,, 21=
, and the rank r of A is called the rank of this 
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quadratic form. If, in particular, i.e. matrix A is non-degenerate, then the 

quadratic form 
( )nxxxFF ...,,, 21=

 is also called non-degenerate. 

Equality (27.4) means that the elements of matrix A, symmetric with 

respect to the main diagonal, are equal to each other, i.e. matrix A is 

symmetric. Obviously, for any n-th order symmetric matrix, we can 

indicate the well-defined quadratic form (6.5) of n unknowns whose 

coefficients are elements of matrix A. 

Example 27.2. Write a quadratic form 

( ) 23

2

332

2

221

2

1321 324,, xxxxxxxxxxxxFF ++−++==
 

in standard form and find its matrix. 

Solution. After reduction of similar members, we get 

.02202

222224

332313322212312111

2

32332

2

21221

2

1

2

332

2

221

2

1

xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

+−+−++++=

=+−−+++=−++

 
Matrix of quadratic form is: 

















−

−=

110

122

021

A

. 

The quadratic form (27.5) can be written in matrix (vector-matrix) form 

using the product of rectangular matrices. 

Note that matrix A is symmetric if and only if it coincides with its 

transposed one, i.e. when 

AA = . 

Denote by X the matrix column of the unknowns: 
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=

nx

x

x

X
...

2

1

. 

We show that in the matrix notation the quadratic form has the following 

form: 

AXXF = . (27.6) 

Indeed, product AX will be a column matrix: 





















=






jnj

jj

jj

xa

xa

xa

AX
...

2

1

. 

(Here we write © instead of 

=

n

j 1

,

 to avoid unnecessarily cumbersome 

recordings.) 

Now multiplying this column matrix on the left by matrix 

( )nxxxX ,...,, 21=
, get 

FxxaAXX
n

i

n

j

jiij == 
= =1 1 , 

which was to be demonstrated.  

Example 27.3. Write the quadratic form from Example 6.2 in matrix form. 

Solution. Using the matrix A, found in Example 6.2, we obtain 
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( )
































−

−=

3

2

1

321

110

122

021

,,

x

x

x

xxxF

  
Let us now consider how the quadratic form changes during the linear 

transformation of unknowns. Let a linear transformation of the unknown 

nxxx ...,,, 21 : 


=

=
n

k

kiki ycx
1 , i = 1, 2, …, n (27.7) 

With matrix 
( )ikcC =

, in other words, a linear transformation is given 

CYX = , (27.8) 

where Y – unknown column nyyy ...,,, 21 . 

We use one of the properties of the matrix transpose operation: 

ABAB =)( . (27.9) 

According to (27.9) we get from (27.8)  

CYCYX == )( . (27.10) 

From here 

( ) ( ) ( )YACCYCYACYAXXF ===
, или 

YAYF
~
=

, 

where 

ACCA =
~

. (27.11) 

Matrix A
~

 will be symmetrical. Indeed, since, then AA =  taking into 

account property (6.9) 

AACCCACACCACCA
~

)()(
~

=====
. 
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So, we have proved the following theorem. 

Theorem 27.1. A quadratic form with matrix A as a result of a linear 

transformation with matrix C turns into a quadratic form from new 

unknowns with matrix ACC . 

Suppose now that the transformation matrix C is non-degenerate. Then, 

obviously, C is also a non-degenerate matrix. In this case, the product 

ACC is the product of the matrix A by non-degenerate matrices, and 

therefore the rank of this product is equal to the rank of matrix A. 

We have obtained the following theorem. 

Theorem 27.2. The rank of a quadratic form does not change under a non-

degenerate linear transformation. 

Example 27.4. There is a quadratic form 

( ) 2

221

2

121 32, xxxxxxFF −+== . 

Find a quadratic form 
( )21, yyG

, obtained from a given linear 

transformation 

212211 ,2 yyxyyx +=−=
. 

Solution. We write the matrix of this quadratic form A and the 

transformation matrix C: 










−
=

31

11
A

,   







 −
=

11

12
C

. 

The matrix of the desired quadratic form A
~

 according to (6.11) has the 

form 










−−

−
=







 −









−








−
==

44

45

11

12

31

11

11

12~
ACCA

. 

Hence, 
( ) 2

221

2

121 485, yyyyyyG −−=
. 
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Example 27.5. There is a quadratic form: 

( ) 3121

2

3

2

2

2

1321 4245,, xxxxxxxxxxFF −+−+==
. 

Find a quadratic form 
( )321 ,, yyyG

, obtained from a given linear 

transformation 

333223211
3

1
,

6

1

2

1
,

6

5

2

1
yxyyxyyyx =−=+−=

. 

Solution. We write the matrix A of a given quadratic form and the 

transformation matrix C and calculate ACCA =
~

: 

















−−

−

=

402

051

211

A

, 
















−

−

=

3
1

6
1

2
1

6
5

2
1

00

0

1

C

 

















−

=
















−

−

















−−

−

















−

−=

100

010

001

00

0

1

402

051

211

0

001
~

3
1

6
1

2
1

6
5

2
1

3
1

6
1

6
5

2
1

2
1A

. 

Hence, 
( ) 2

3

2

2

2

1321 ,, yyyyyyGG −+==
. 

Example 27.5 shows that with well-chosen linear transformations, the 

appearance of a quadratic form can be significantly simplified. 

27.2. Canonical view of a quadratic form 

We state that a quadratic form has a canonical form if its matrix is 

diagonal  (
0=ija

 where 
ji 
): 
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=

nna

a

a

A

...00

............

0...0

0...0

22

11

. 

Obviously, in this case the quadratic form is the sum of squares of 

unknowns of the form 


=

=+++=
n

i

iiinnn xaxaxaxaF
1

222

222

2

111 ...

. 

In particular, the quadratic form G obtained in Example 6.5 has a canonical 

form. 

We have found that the rank of a quadratic form does not change under 

non-degenerate linear transformations (see § 27.1). Let a quadratic form 

( )nxxxF ,...,, 21  be reduced to a canonical form by a nondegenerate linear 

transformation  

22

22

2

11 ... nn ybybyb +++
, (27.12) 

where nyyy ...,,, 21  are new unknowns. Here any coefficients 

nbbb ...,,, 21 can be zeros. 

It is easy to prove that the rank of the quadratic form is equal to the number 

of non-zero coefficients in the canonical form to which the given quadratic 

form is reduced. 

Indeed, if a quadratic form of rank r is reduced by a nondegenerate linear 

transformation to the form (27.12), this means that the matrix of the 

transformed quadratic form has the form 
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nb

b

b

...00

............

0...0

0...0

2

1

 

has rank r as well. And this is equivalent to the fact that there are r non-

zero elements on the main diagonal. 

The following main theorem on quadratic forms is true (we present it 

without proof). 

Theorem 27.3. Every quadratic form can be reduced to a canonical form 

by some non-degenerate linear transformation. 

It should be noted that any quadratic form can be reduced to a canonical 

form in various ways. Moreover, the canonical form to which this quadratic 

form is reduced is not uniquely determined for it. 

Example 27.6. There is a quadratic form 

133221 262 xxxxxxF +−=
. 

Check that it is canonical by a linear transformation: 

3211 3
2

1

2

1
yyyx ++=

, 

3212
2

1

2

1
yyyx −−=

, 

33 yx =
. 

Solution: 

















−−=

100

1

3

2
1

2
1

2
1

2
1

C

. 
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We get 

















−=
















−−
















−

−
















−

−=

600

00

00

100

1

3

031

301

110

113

0

0
~

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

A

, 

i.e. the quadratic form is reduced to 

2

3

2

2

2

1 6
2

1

2

1
yyy +−

. 

Example 27.7. There is a quadratic form from example 6.6: 

133221 262 xxxxxxF +−=
. 

Verify that the linear transformation: 

3211 23 yyyx ++=
, 

3212 23 yyyx ++=
, 

23 yx =
 

also makes this form canonical. 

Solution: 

















−−=

010

211

231

C

. 

Get 

















−

=
















−−
















−

−
















−

−=

800

060

002

010

211

231

031

301

110

022

113

011
~
A

, 

i.e. quadratic form from example 27. 6 is reduced to another canonical 

form: 
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2

3

2

2

2

1 862 yyy −+
. 

From examples 27.6 and 27.7 we see that the same quadratic form 

133221 262 xxxxxxF +−=
 

and as a result of one non-degenerate linear transformation has acquired 

the form 

2

3

2

2

2

1 6
2

1

2

1
yyyG +−=

, 

and as a result of another linear transformation 
2

3

2

2

2

11 862 yyyG −+=
. 

Despite the fact that G and 1G are noticeably different from each other, they 

still have one common property: they contain the same number of positive 

and negative coefficients (two and one, respectively). This is no 

coincidence. The following statement holds (we give it without proof). 

Theorem 27.4 (law of inertia of quadratic forms). The number of 

positive and the number of negative coefficients in the quadratic form in 

the canonical form, to which the given quadratic form is reduced by a non-

degenerate linear transformation does not depend on the choice of this 

transformation. 

Along with the canonical form, the normal form of a quadratic form is 

also considered, i.e. the sum of squares of unknowns with coefficients of 

+1 or - 1. 

In particular, in the example 27.5 quadratic form 

3121

2

3

2

2

2

1 4245 xxxxxxxF −+−+=
 

converted to the form 
2

3

2

2

2

1 yyyG −+=
, 

which is not only canonical, but also normal. 
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It is easy to verify that a quadratic form transformed to a canonical form 

can always be reduced to a normal form by a non-degenerate linear 

transformation. 

Indeed,  
22

11

22

11 ...... rrkkkk ycycycycG −−−++= ++ , 

where rkk cccc ...,,,...,, 11 +  are positive. 

Then the transformation iii ycz =
 (i = 1, 2, …, r), jj yz =

 (j = r + 1, 

…, n) leads G to its normal form: 
22

1

22

11 ...... rkk zzzzG −−−++= + . 

The law of inertia of quadratic forms can now be formulated as follows: 

the number of positive and negative squares in the normal form of a 

quadratic form does not depend on the choice of a linear non-degenerate 

transformation by which the quadratic form is reduced to this form. 

27.3. Positive and negative defined 

quadratic forms 

Definition. Quadratic form 
( )nxxxF ,...,, 21  is called a positive definite if, 

for all unknown values, of which at least one is nonzero, the inequality 

( )nxxxF ,...,, 21  > 0. 

If 
( )nxxxF ,...,, 21  < 0 for all unknown values, of which at least one is 

nonzero, the quadratic form is called a negative definite. 

It is easy to prove (we will not do this) that a quadratic form of n unknowns 

is positive definite if and only if it is reduced to a normal form consisting 

of n positive squares. 
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We formulate one of the frequently used criteria for a positive (negative) 

definite quadratic form. 

Theorem 27.5. In order for the quadratic form AXXF =  to be positively 

(negatively) defined, it is necessary and sufficient that all eigenvalues i  

of matrix A are positive (negative).  

Example 27.8. Find out if a quadratic form 
2

221

2

1 542 xxxxF +−=  

Is positive defined. 

Solution. Matrix A of this quadratic form is 










−

−
=

52

22
A

. 

We draw up the characteristic equation: 

067
52

22
2 =+−=

−−

−−

. 

The roots of the characteristic equation 
61 =

, 
12 =

 are positive; 

therefore, the quadratic form is positive definite. 

We formulate one more frequently used criterion for positive definiteness 

of a quadratic form. 

Let 




















=

nnnn

n

n

aaa

aaa

aaa

A

...

............

...

...

21

22221

11211

 be a matrix of quadratic form AXXF =

. 

The main minors of this matrix are the determinants 
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nnnn

n

n

n

aaa

aaa

aaa

aa

aa
a

...

............

...

...

...,,,

21

22221

11211

2221

1211

2111 ===

 
Theorem 27.6 (Sylvester criterion). In order for the quadratic form 

AXXF =  to be positive definite, it is necessary and sufficient that all the 

principal minors of matrix A are positive:  

0...,,0,0 21  n . 

In order for the quadratic form to be negative definite, it is necessary and 

sufficient that the signs of the main minors n ...,,, 21 alternate, and 

01  . 

(We also accept this theorem without proof.) 

Example 27.9. Using the Sylvester criterion, verify that the quadratic form 
2

221

2

1 542 xxxxF +−=  

from example 27.8 is positive defined. 

Solution: 

06
52

22
,02 2111 =

−

−
=== a

. 

The principal minors of matrix A are positive, therefore, according to the 

Sylvester criterion, the quadratic form is positive definite. 

Example 27.10. Find out if a quadratic form 

323121

2

3

2

2

2

1 410465 xxxxxxxxxF −−+++=
 

is positive defined. 

Solution. We calculate the main minors: 
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1
12

25
,5 21 ===

, 

1

625

212

525

3 =

−−

−

−

=

. 

The major minors are positive; therefore, this quadratic form is positive 

definite. 

Questions 

1. Is the expression 413121 xxxxxx ++
 a quadratic form? 

2. How is a quadratic matrix determined? Is a quadratic matrix always 

square? 

3. What is called the rank of a quadratic form? 

4. How is a quadratic matrix A transformed with a non-degenerate 

linear transformation C? 

5. How is the rank of the quadratic form related to the number of non-

zero coefficients in the canonical form to which this form is reduced? 

6. What is the law of inertia of quadratic forms? 

7. Is the normal type of a quadratic form its canonical type? 

8.  What is the normal form of a positive definite quadratic form? 
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Chapter 28. Double and triple 

integrals 

28.1. Basic concepts related to double 

integral 

Consider the integration of functions of two arguments. The results that we 

get here can be generalized to the case of functions of three or more 

arguments. Let there be a closed bounded area D on the plane Oxy , and let 

a bounded function ( )yxfz ,=  be given in the area D. We divide area D 

by a network of some lines into arbitrary parts 1D , 2D , …, nD  that do 

not have common internal points. For each i = 1, 2, …, n we denote by iS  

the area of some partial area iD . Next, we will do the following: 1) select 

an arbitrary internal point ( )ii  ,  in each partial area iD  and calculate the 

value of the function at this point; 2) we smartly press this value ( )iif  ,  

by the area iS of this partial area iD ; 3) we compose the sum of such 

products: 

𝜎 = ∑ 𝑓(𝜉𝑖 , 𝜂𝑖)Δ𝑆𝑖
𝑛
𝑖=1 . (28.1) 

Expression (28.1) is called the integral sum for a function ( )yxf , in the 

area D. (Note that different integral sums correspond to different partitions 

of the area D into partial domains and different points ( )ii  , .) 
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Fig.28.1 

For further discussion, we need the concept of the diameter of the area. We 

call the diameter of the area the largest distance between points lying on 

the boundary of the region. (Note that for a plane closed area bounded by 

a continuous curve, the diameter is the largest chord). Let denote by ⎣ ( )  
the largest of all diameters of the partial areas: 

( )iDdiammax= , i = 1, 2, …, n. 

Definition. If there exists a finite limit of the integral sum (28.1) for 0→

, which does not depend on the method of dividing the area D into partial 

areas iD , but on the choice of points ( )ii  , , then this limit is called the 

double integral from the function ( )yxf ,  over the area D and is denoted 

by 

( )
D

dSyxf ,

 или 

( )
D

dxdyyxf ,

. 
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A function ( )yxf ,  for which there is an integral over the area D is called 

integrable in the area D, and the area D – is called the integration area. 

 

28.2. Classes of integrable functions 

Theorem 28.1. If the function ( )yxf ,  is continuous in a closed bounded 

area, then it is integrable in this area. 

We accept this theorem without proof. Note that a similar theorem was 

previously formulated in the textbook in chapter 14 for a certain integral 

of a function of one argument. There, a theorem was formulated on the 

integrability of a bounded function of a single argument with a finite 

number of discontinuity points. A similar statement holds for the function 

of two arguments (only here we are not talking about discontinuity points, 

but discontinuity lines). 

Theorem 28.2. Let a function ( )yxf ,  be bound      in a closed bounded 

area D and have discontinuities only on a finite number of lines, which are 

graphs of continuous functions of the form ( )xgy =  or ( )yhx = . Then the 

function ( )yxf , is integrable in the area D. 

We also accept this theorem without proof. 

We see that in the case of two arguments, the class of integrable functions 

is wider than the class of all continuous functions. 
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28.3. Geometric sense of double integral 

Let a continuous non-negative function ( )yxfz ,=  be defined in the area 

D. Let us consider in space Oxyz  the body V, bounded below by the area 

D, above by the surface ( )yxfz ,= , and from the sides by a cylindrical 

surface, with generators parallel to the axis Oz  (Fig. 28.2). 

 

Fig. 28.2 

This is a cylindrical body (or a curved cylinder, or a cylindroid). 

From the definition of the double integral, it follows that the double 

integral over the area D of a continuous non-negative function ( )yxf ,  is 

equal to the volume of the cylin-shaped body with base D bounded from 

above by the surface ( )yxfz ,= : 

( )=

D

dxdyyxfV ,

. 

Obviously, the volume of the cylindroid, whose height is equal to unity 

(i.e., limited by the plane 1=z  above) is numerically equal to the area of 
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the base. Therefore, the double integral of unity is equal to the area of the 

integration area: 

=

D

dxdyS

, 

where  S – is the area of D. 

28.4. Double integral properties 

One should pay attention to the deep analogy that exists between the 

concepts of an ordinary (single) definite integral and double integral: in 

both cases, we consider some function f, only in the first case – the function 

of one argument ( )xf  given on the segment  ba,  of the axis Ox , and in 

the second – the function of two arguments ( )yxf ,  given on a part of the 

plane Oxy . In both cases, the domain of definition of the function is 

divided into parts and in each of these parts it is arbitrarily selected at the 

point at which the value of the function is calculated, and this value is 

multiplied by the measure of the corresponding partial area. Only in the 

case of one argument, such a measure was the length ix  of the partial 

segment  ii xx ,1− , and in the case of two arguments – the area iS  of the 

partial area iD . Then, in both cases, the integral sum was compiled and the 

passage to the limit was carried out. Note that the definition of the integral 

of a function of three or more variables (a triple integral, an n-fold integral) 

is constructed in the same way. 
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From the above, it follows that the main properties of the double integral 

are similar to the properties of a single definite integral (and are proved 

similarly). Therefore, we restrict ourselves to the wording of some of them. 

Property 1. The double integral of the sum of two integrable functions

( )yxf ,  and ( )yxg ,  over the area  D exists and is equal to the sum of the 

double integrals over the area D for each of these functions: 

( ) ( )  ( ) ( ) +=+

DDD

dxdyyxgdxdyyxfdxdyyxgyxf ,,,,

. 

Property 2. The constant factor can be taken out of the double integral sign: 

if const=c , then 

( ) ( ) =

DD

dxdyyxfcdxdyyxcf ,,

. 

Property 3. If the area D is the union of two areas 1D  and 2D  that do not 

have common internal points, and in each of these regions the function

( )yxf ,  is integrable, then this function is integrable in the area D and the 

equality holds 

( ) ( ) ( ) +=

21

,,,

DDD

dxdyyxfdxdyyxfdxdyyxf

. 

Property 4. If the inequality f ( ) ,0, yx
 holds in the whole area of 

integration, then  
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( ) .0,  dxdyyxf
D  

28.5. Calculation of double integral 

To calculate the double integral, it is usually reduced to the repeated one, 

i.e. to such an integral, which is calculated twice by applying the usual 

integration process, first according to one of the arguments, then according 

to the other. This technique is based on the following theorem, which we 

accept without proof. 

Theorem 28.3. Let the function ( )yxf ,  be defined and continuous in the 

area D, which is bounded by the lines ( )xyy 1= , ( )xyy 2= , ax = , bx =

, and ( ) ( )xyxy 21  , ba  , and the functions ( )xy1  and ( )xy2  are 

continuous on the segment  ba, .  Then the equality holds 

( ) ( )
( )

( )

  












=

b

a

xy

xyD

dxdyyxfdxdyyxf
2

1

,,

. (28.2) 

 

Fig. 28.3 
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Note that the right-hand side of equality (28.2) is a repeated integral, which 

is also written in a different form: 

( )
( )

( )

 
b

a

xy

xy

dyyxfdx
2

1

,

. 

Consider the special case of equality (28.2) for ( ) const1 == cxy , 

( ) const2 == dxy : 

( ) ( ) =

d

c

b

aD

dyyxfdxdxdyyxf ,,

. (28.3) 

We also note that if the area D is bounded by the lines ( )yxx 1= , ( )yxx 2=

, cy = , dy = , where ( ) ( )yxyx 21  , dc  , then the following analogue 

of equality (2) holds: 

( ) ( )
( )

( )

( )
( )

( )

  =













=

yx

yx

d

c

d

c

yx

yxD

dxyxfdydydxyxfdxdyyxf
2

1

2

1

,,,

. (28.4) 

Let's move on to the examples. 

Example 28.1. Calculate the double integral

D

dxdyxy

, where the area D 

is bounded by lines 3=x , 5=x ; 
0=y

, 
1=y

, i.e.  

( ) 10;53, = yxyxD
. 

Solution. The area D is rectangular. We apply the formula (3): 
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  =

5

3

1

0

xydydxdxdyxy

D . 

We calculate the internal integral, assuming x is constant: 

22

1

0

21

0

xy
xxydy

y

y

==

=

=


. 

We now calculate the external integral. To do this, integrate the resulting 

function in the range from 3 to 5: 

4
4

9

4

25

42

5

3

25

3

=−==
x

dx
x

. 

Consequently, 

4

5

3

1

0

==   xydydxdxdyxy

D . 

Example 28.2. Calculate the double integral  

D

dxdyyx2

, if the area D is 

bounded by the lines 0=x , 
0=y

, 422 =+ yx , and 0x , 
0y

. 

Decision. Let's make a figure. 
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Fig. 4 

 

We see that D is a quarter of a circle of radius 2 centered at (0, 0), located 

in the first quarter. It follows that the domain D is bounded on the left and 

right by the straight lines 0=x and 1=x , and from below and above by 

the lines 0=y  and
24 xy −= . Therefore, in accordance with formula 

(2), 


−

=

24

0

2
2

0

2
x

D

dyyxdxdxdyyx

. 

We calculate the internal integral, assuming x is constant: 

( )
2

4

4

22
4

0

2
2

4

0

2

22

xxy
xdyyx

xy

y

x
−

==

−=

=

−


. 

We now calculate the external integral: 

( )
15

32

53

4

2

1

2

4
2

0

532

0

22

=













−=

−


xx
dx

xx

. 

So, 
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15

32
24

0

2
2

0

2 == 
−x

D

dyyxdxdxdyyx

. 

Example 28.3. Calculate the double integral 

( ) +

D

dxdyyx

, if the area D 

is bounded by the lines xy =  and 
22 xy −= . 

Solution. Find the limits of integration with respect to x. To do this, we find 

the abscissas of the points of intersection of the lines xy =  and 
22 xy −=

. The joint solution of these equations gives 21 −=x , 12 =x . Let's make a 

figure. 

 

Fig. 28.5 

The area D is bounded on the left and on the right by lines 2−=x  and 1=x

, on top – by a line
22 xy −= , and below – by a line

xy =
. We apply the 

formula (28.2): 

( ) ( )
−

−

+=+

221

2

x

xD

dyyxdxdxdyyx

. 

We calculate the integral over
dy

 (assuming x is constant): 
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( ) ( ) ( )

.22
2

7

22

2

2
2

2

23
42

2

22
2

2
22

2
2

++−−=













+−

−












 −
+−=














+=+

−=

=

−



xxx
xx

x

x
xx

y
xydyyx

xy

xy

x

x

 

 Now we calculate the external integral: 

.
20

9
44

6

56

4

16

10

32

60

101

2
6

7

410
22

2

7

2

1

2

2
3451

2

23
4

−=







−++−−−=

=













++−−=














++−−

−−

 xx
xxx

dxxxx
x

 

Example 28.4. Calculate the double integral

D

dxdyyx2

, it the area D is 

bounded above by an arc of a circle 
21 xy −= , and below by segments 

of lines xy −=  at 0x  and 0=y  for 0x . 

 

Fig. 28.6 

Decision. The lower boundary of the area  D consists of segments of two 

lines  
xy −=

 and 
0=y

 intersecting at the origin. Therefore, it divides the 
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area D with the axis Oy  into two areas 1D  and 2D  and represents the 

integral as the sum of two integrals (see property 3): 

 +=

21

222

DDD

dxdyyxdxdyyxdxdyyx

. 

Having set the limits of integration in the last two integrals, we obtain 

( ) ( ) .
60

24
1

2

1

2

1
1

2

1
1

0

22
0

2

2

422

1

0

1

0

2
0

2

2

1
22

22

+
=−+








−−=

=+=



  

−

−

−

−

−

dxxxdxxxx

dyyxdxdyyxdxdxdyyx

xx

xD

 

Replacement of variables in double integral 

Let the function ( )yxf ,  be continuous in some closed bounded area D, 

therefore, there exists a double integral 

( )
D

dxdyyxf ,

, 

and let a transition from the variables x, y to the new variables u, v be 

possible: 

( )vuxx ,= , ( )vuyy ,= .  (28.5) 

The old variables x, y will be considered the Cartesian coordinates of the 

current point of one plane 
Oxy

. The new coordinates u, v will be 
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considered the coordinates of the current point of another plane uvO * . 

Thus, we will consider two planes: ( )yx,  and ( )vu, , in which the 

coordinate systems Oxy and uvO * are given, respectively. 

A transformation (28.5) is called regular if the following two conditions 

are satisfied: 

1) this transformation of variables establishes a one-to-one correspondence 

between the points of the area D on the plane Oxy  and the points of a 

certain area *D  on the plane uvO * : 

 

Fig. 28.7 

consequently, u and v are determined from formulas (5) uniquely using 

inverse transformation formulas: 

( )yxuu ,= , ( )yxvv ,= ;  (28.6) 

2) functions ( )vuxx ,= , ( )vuyy ,=  and functions ( )yxuu ,= , ( )yxvv ,=  

are continuous together with their partial derivatives on the areas  D and 

D* including their boundaries, and, in addition, their determinant 
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( )

v

y

u

y
v

x

u

x

vuJ
















=,

  (28.7) 

is nonzero.  

We now formulate the rule for converting a double integral to new 

variables. 

Theorem 28.4. Let the function ( )yxf ,  be continuous in a closed bounded 

area  D, and let a regular transformation (28.5) be given that maps the area 

D to a closed bounded area D*. Then the formula for changing variables 

holds 

( ) ( ) ( )( ) ( ) =

*

,,,,,

DD

dudvvuJvuyvuxfdxdyyxf

, 

where 
( )vuJ ,

 is the absolute value of the transform determinant 

( )

v

y

u

y
v

x

u

x

vuJ
















=,

.  (28.7) 

The proof of this theorem is not given here. 

Note that the determinant of transformation (28.5), i.e. ( )vuJ , , is called 

Jacobian determinant or the Jacobian. 

A conversion of the form called the transition to polar coordinates 

= cosrx , 
= sinry

     (
 20

), 
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is very often used to calculate the double integral. The Jacobian of this 

transformation is calculated simply: 

( ) ( ) rr
r

r

y

r

y

x

r

x

rJ =+=


−
=
















= 22 sincos
cossin

sincos
,

. 

Let's look at some examples. 

Example 5. Calculate the double integral 


++

D
yx

dxdy
221

, 

if the area D – is a circle: 122 + yx . 

Solution. We apply the transformation = cosrx , = sinry . We get 

(taking into account the fact that 
( ) rrJ =,

 and  20 ): 


+

=
+


=

++

 1

0
2

2

0*
222 111 r

rdr
d

r

rdrd

yx

dxdy

DD . 

Obviously, 

( ) 2ln
2

1
1ln

2

1

1

1

0

2
1

0
2

=+=
+

 r
r

rdr

. 

Therefore, the desired integral is 
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2ln
2

2ln
2

0

=


d

. 

Example  6. Calculate the integral 


−−

D

yx dxdye
22

, 

where the area of integration is a circle: 
222 Ryx + . 

Solution. Passing to      polar coordinates, we obtain 








 −=−== −


−−


−−


22222

1
2

1
2

0 00

2

0

R
R

r
R

r

D

yx ededreddxdye

. 

Example  7. Calculate the double integral 


−−=

D

yx dxdyeJ
22

, 

if area D – is the entire plane Oxy . Using the result obtained, calculate the 

integral 


+

−

−= dxeI x2

. 

Solution. We use the result obtained in the previous example, where this 

double integral is calculated for the case when the area D is a circle 
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222 Ryx + . If the radius R is unlimitedly increased, then in the limit the 

area D coincides with the entire plane. Therefore, if we denote the integral 

calculated in Example 6, by RJ , we obtain 

=






 −== −

→→

2

1limlim R

R
R

R
eJJ

. 

The integral J is an improper double integral. It can be proved that it is 

equal to the corresponding double integral: 

== 
+

−

−−
+

−

dyedxJ yx 22

. 

But obviously, 


+

−

−−
+

−

−−
+

−

−− == dyeedyeedye yxyxyx 222222

. 

Since a certain integral does not depend on the designation of the 

integration variable, then 

Idxedye xy == 
+

−

−
+

−

− 22

, 

so 

222

IdxeIdxIeJ xx === 
+

−

−
+

−

−

. 

Thus, 



Chapter 28. Double and triple integrals  

476 

=2I . 

Consequently, 

== 
+

−

− dxeI x2

. 

This integral1* plays a very important role in probability theory and 

statistics. It should be noted that we could not calculate this integral 

directly (using the indefinite integral), since the indefinite integral 


− dxe x2

 

is not expressed in elementary functions. 

Questions 
1. What is the integral sum for a function ( )yxf ,  in the two-

dimensional area D? 

2. How is the double integral of a function ( )yxf ,  over an area D 

determined? 

3. What is the geometric meaning of the double integral? 

4. Is it possible to calculate the area of a region using the double 

integral? 

5. What is re-integral? 

6. How is the rule for changing variables in the double integral 

formulated? What is the Jacobian conversion? 

                                                      
1* It is usually called the Poisson integral, although it was first calculated by Euler. 
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7. What is the formula for the transition to polar coordinates in the 

double integral? 

28.6. Triple integrals 

The triple integral of a function
( )zyxf ,,  is determined in the same way 

as the double integral. 

Let a bounded function 
( ) ( ).,, zyxfMf = be given in some closed 

bounded area V of three-dimensional space. We divide the area V  into n  

arbitrary regions that do not have common points with volumes 

.,...,, 21 nVVV 
. We denote by   the largest of the diameters of these 

areas. In each area, we choose an arbitrary point 
( )iiiiM  ,,

 and make 

up the sum 

( ) i

n

i

iii Vf =
=1

,, 
                                                    (28.8) 

The sum (28.8) is called the integral sum for the function 
( )zyxf ,, over 

the area V .  

Definition. If there is a finite limit I  of the sum (1) for 0→ , then this 

limit is called the triple integral of the function
( )zyxf ,,

 over the area V  

and is denoted by one of the following symbols: 

( ) ( ) ==
V V

dxdydzzyxfdVzyxfI ,,,,

. 
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In this case, the function
( )zyxf ,,  is called integrable in the area V . Note 

(without proof) that a continuous function is integrable. 

As in the case of double integrals, the calculation of triple integrals reduces 

to the calculation of integrals of lower multiplicity. Let a three-dimensional 

area S  be bounded, closed, and such that any line parallel to the axis ,Oz

intersects its boundary at no more than two points whose abscissas 
( )yxz ,1  

and 
( )yxz ,2 satisfy the condition 

( ) ( )yxzyxz ,, 21  , and that there is a 

triple integral for the function
( )zyxf ,,  

( )dxdydzzyxfI
V

= ,,

.                                                  (28.9) 

Suppose, in addition, for any of the yx,  from area 
,1V
that is the projection 

of the area V  onto the plane ,Oxy  there exists a single integral 

( )
( )

( )


yxz

yxz

dzzyxf

,

,

2

1

,,

. 

Then there exists a double integral over the area 1V
 

( )
( )

( )

dxdydzzyxf
V

yxz

yxz

 














1

2

1

,

,

,,

 

And this double integral is equal to the triple integral (28.9). 

 Now, in the triple integral (28.9), we pass from variables to new variables 

,,, wvu  using the formulas 

          
( )wvuxx ,,=

,  
( )wvuyy ,,=

,  
( ).,, wvuzz =

                   (28.10) 
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 Suppose that the transformations (2) are one-to-one, and denote by S   the 

region that they translate into S . 

          Then, if functions (2) have continuous first-order partial derivatives 

in the area S   and a non-zero determinant 

           

( )

























































=

w

z

v

z

u

z
w

y

v

y

u

y
w

x

v

x

u

x

wvyJ ,,

, 

then for the triple integral (1) the formula for changing variables is valid: 

          

( ) =
V

dxdydzzyxf ,,

 

( ) ( ) ( )  ( ) .,,,,,,,,,, dudvdwwvuJwvuzwvuywvuxf
V


                 (28.11) 

          The determinant 
( )wvuJ ,, is called the Jacobi determinant or the 

Jacobian of variables zyx ,,  in variables .,, wvu  

          The numbers wvu ,,  are called curvilinear coordinates of a point 

( )zyx ,,
. In practice, two types of these coordinates are often found. 

          1. Cylindrical coordinates. The cylindrical coordinates of a point 

( )zyx ,,
 are the numbers  ,,, z  where   and   - are the polar 

coordinates of the point
( )yx,

. The transformation is defined by the 

formulas 

          zzyx === ,sin,cos   
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and so the Jacobian of transformation 

         =J  

( ) 



 =

−

=

100

0cossin

0sincos

,, zJ

 

and the general formula (28.11) takes the form 

( ) ( ) dzddzfdxdydzzyxf
vV




= ,sin,cos,,

   

          2. Spherical coordinates. Spherical coordinates ,,r are given by          

 sincosrx = ,  ,sinsin ry =  cosrz = . 

          Find the Jacobian 

    

( ) 







 sin

sin0cos

cossinsincossinsin

coscossinsinsincos

,, 2r

r

rr

rr

rJ =

−

−

=

 

and formula (3) takes the form 

( ) = dxdydzzyxf
V

,,

 

=

( ) .sincos,sinsin,coscos 2  ddrdrrrrf
V
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Chapter 29. First order 

differential equations 

and their applications 

29.1. Basic definitions 

Definition. A differential equation is an equation 

( )( ) 0,...,,, = nyyyxF , (29.1) 

which connects an unknown function 
y

, its independent argument x , and 

its derivatives y , …, 
( )ny

. The order of a differential equation is the 

largest order of the derivative that appears in the equation. 

For example, 

2e
2

xy
x

y x=−
 is a first-order differential equation and 

04 =+ yy
 — a second-order differential equation. 

Definition. The solution of a differential equation is a function 
( )xy =

 

that, when substituted into equation (29.1), turns it into an identity. 

In this chapter, we will consider first-order differential equations, i.e. 

equations of the form 

( ) 0,, =yyxF
. (29.2) 

In case it is possible to express 
y

from equation (29.2), it has the form: 

( )yxfy ,=
. (29.3) 
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Equation (29.3) is called a first-order equation resolved with respect to 

the derivative. 

In the theory of differential equations, the main problem is the question of 

the existence and uniqueness of the solution. We present, without proof, a 

theorem that answers this question. 

Theorem 29.1 (Cauchy theorem). Let there be a differential equation 

(29.3) and let a function 
( )yxf ,  and its partial derivative 

( )yxf y ,
 be 

continuous in some domain D of plane Oxy. Then in some neighborhood 

of any inner point 
( ) DyxM 00 ,

, there exists a unique solution of 

equation (29.3) satisfying the condition 0yy =
 at 0xx =

. 

The graph of the solution of the differential equation is called the integral 

curve. The domain D contains an infinite set of integral curves. The 

Cauchy's theorem states that, under certain conditions, only one integral 

curve passes through each inner point of the domain D. The conditions that 

set the value of function y at a fixed point 0x
 are called initial conditions 

(or Cauchy conditions) and are written in the form 
( ) 00 yxy =

 or in the 

form 

0
0

yy
xx
=

= . (29.4) 

The problem of finding a solution to equation (29.3) satisfying the 

condition (29.4) is called the Cauchy problem. 

Figure 29.1 illustrates theorem 29.1. The entire domain D is filled with 

integral curves, and they can neither intersect nor touch each other. 
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Fig. 29.1. Integral curves 

Theorem 29.1 allows us to describe the set of solutions of a differential 

equation as a general solution. 

 

Definition. The general solution of the differential equation (29.2) is the 

function 

 (29.5) 

depending on x  and arbitrary constant C if the following conditions hold: 

1) for any value of constant C, the function (29.5) is the solution of the 

differential equation (29.2); 

2) no matter what the initial condition (29.4) is, there is a value 0CC =
, 

such that function 
( )0,Cxy =

 satisfies this initial condition. 

The general solution written in an implicit form: 
( ) 0,, = Cyx

 is called 

the general integral. 

Definition. If constant 0CC =
 is fixed in the general solution (29.5), then 

(29.5) is called a particular solution. 

A particular solution presented implicitly is called a particular integral. 
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To solve a differential equation is to find its general solution or general 

integral. 

29.2. Types of first-order differential 

equations and methods of their solution 

Equations with separable variables 

A first-order differential equation is called an equation with separable 

variables, if it can be represented as: 

( ) ( )ygxf
dx

dy
=

. (29.6) 

The method for solving this type of equation is called separation of 

variables. We multiply both sides of equation (29.6) by dx  and divide by 

( )yg
, setting 

( ) 0yg
: 

( )
( )dxxf

yg

dy
=

. (29.7) 

This is an equation with separated variables. Since the differentials are 

equal, the indefinite integrals are also equal (more precisely, they differ by 

constant), therefore 

( )
( ) Cdxxf

yg

dy
+= 

, 

where C is an arbitrary constant. 

Example 29.1. Solve the equation 
0=− yyx

. 

Solution. Let us separate the variables. To do so, we present the equation 

in the form 
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y
dx

dy
x =

, 

we multiply both parts by dx  and divide by xy : 

x

dx

y

dy
=

. 

Integrating both sides of this equation we obtain 

1lnln Cxy +=
. 

We represent an arbitrary constant 1C  in the form 
CC ln1 = , then the 

general integral will have the form 

Cxy lnlnln +=
. 

Hence the general solution is Cxy = , or, replacing C  by C : 

Cxy = . 

Example 29.2. Solve the differential equation 1

2
2

2

−
−=

x

xy
y

 and find a 

particular solution that satisfies the initial condition 
( ) 10 =y

. 

Solution. Let us separate the variables: 

1

2
2

2

−
−=

x

xy

dx

dy

 

1

2
22 −

−=
x

xdx

y

dy

. 

By integrating we obtain: 

Cx
y

+−= 1ln
1 2

, 
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Hence the general integral is 

( ) 11ln 2 =+− Cxy
. 

Substituting the initial conditions 
( ) 10 =y : 

( ) 101 =+ C  we obtain 1=C

. Therefore, 

11ln

1
2 +−

=
x

y

. 

Homogeneous first-order differential equations 

Function
( )yxf ,

 is called homogeneous of degree n function, if for any 

  

( ) ( )yxfyxf n ,, = . 

For example, the function 
( ) 2, yxyyxf −=  is homogeneous of degree 2 

since 
( ) ( )222

yxyyyx −=− , and the function 
( )

x

y
yxf =,

 has 

degree zero since x

y

x

y
=





. 

A differential equation 

( )yxfy ,=
 

is called homogeneous if 
( )yxf ,

 is a homogeneous function of degree 

zero. 

This equation can be solved as follows. We transform the right-hand side 

of the equation by setting x

1
=

: 

( ) ( ) 







==

x

y
fyxfyxf ,1,,

. 

The equation takes the form 
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=

x

y
fy ,1

. (29.8) 

We do the substitution x

y
u =

, i.e. uxy = . Then uxuy += . 

Substituting this expression of the derivative into equation (29.8), we 

obtain 

( )uf
dx

du
xu ,1=+

. 

This is an equation with separable variables: 

( ) uuf
dx

du
x −= ,1

, or 
( ) x

dx

uuf

du
=

−,1
. 

Hence 

( )
C

x

dx

uuf

du
+=

−  ,1
. 

Having found the function 
( )xuu = , we must return to the function 

uxy = . 

Example 29.3. Solve the equation 
yx

yx
y

−

+
=

. 

Solution. Let us make sure that the equation is homogeneous: 

yx

yx

yx

yx

−

+
=

−

+

. Changing the variables 
u

x

y
=

 and substituting u  into 

the equation we obtain, given  
( )

u

u
u

u

u
uuf

−

+
=−

−

+
=−

1

1

1

1
,1

2

, 
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C
x

dx
du

u

u
+=

+

−
 21

1

. 

Hence 

( ) Cxuu +=+− ln1ln
2

1
arctg 2

. 

Returning to function 
y

, we obtain the general integral: 

Cx
x

y

x

y
+=






















+− ln1ln

2

1
arctg

2

. 

First-order linear differential equations 

The first-order linear differential equation is an equation of the form 

( ) ( )xqyxpy =+
. (29.9) 

This equation is called linear because the unknown function 
y

 and its 

derivative y  are included into the equation linearly, i.e. they have the first 

degree, without intermittent multiplication. 

One of the methods for solving the linear equation (29.9) is the Bernoulli 

method, which is as follows. We will seek a solution to equation (29.9) in 

the form 
( ) ( ) uvxvxuy ==

. One of these functions can be taken 

arbitrarily, the other is determined based on  equation (29.9). Having made 

the substitution 
uvy =

, we obtain: 

qpuvvuvu =++
 

or 

( ) qpvvuvu =++
. (29.10) 
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Сhoose a function 
( )xvv = , such that 

0=+ pvv , т.е. 
0=+ pv

dx

dv

. (29.11) 

Separating the variables, we find 

pdx
v

dv
−=

. 

Integrating, we obtain 

1lnln Cpdxv +−=  , or 
=

− pdx

Cev , 

where 1CC = . 

Since any non-zero solution of equation (29.11) is sufficient for us, we take 

( ) =
− pdx

xv e
as function  , 

where  pdx
 is some primitive. 

Substituting the found value 
( )xv

 into equation (29.10) we obtain: 

( ) ( )xqxvu =
, or 

( ) ( )xq
dx

du
xv =

. 

Hence 

( )
( )xv

xq

dx

du
=

. 

We find the general solution for 
( )xuu =

: 

( )
( )

Cdx
xv

xq
u += 

. 
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Substituting u  and v  into the formula uvy = , we finally find 

( )
( )
( ) 








+=  Cdx

xv

xq
xvy

. 

Remark. It can be proved that the general solution of equation (29.9) is the 

sum of any particular solution of it and the general solution of 

accompanying it homogeneous equation 
( ) 0=+ yxpy

. 

Example 29.4. Solve the equation 

32
2

xy
x

y =−
. 

Solution. Having made a change of variables uvy = , we obtain 

32
2

x
x

uv
vuvu =−+

, 

32
2

x
x

v
vuvu =








−+

. (*) 

Equate the expression in brackets to zero: 

0
2

=−
x

v
v

, whence x

dx

v

dv 2
=

. 

We find the function v : 

2lnln xv = , 
2xv = . 

Substituting 
2xv =  into (*), we find u: 

32 2xxu = , 
x

dx

du
2=

, Cxu += 2

. 

Hence 

( ) 22 xCxy +=
. 
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Bernoulli equation 

The Bernoulli equation is an equation of the form 

( ) ( ) nyxqyxpy =+ , 

where 0n , 1n . 

The Bernoulli equation can also be solved by the Bernoulli method. 

Example 29.5. Solve the equation 
xyyy e2 2=+ . 

Solution. Let us change the variables as uvy = : 

( ) xuvuvvuvu e2
2

=++
, 

( ) ( ) xuvvvuvu e2
2

=++
. (**) 

Equate the expression in brackets to zero: 

02 =+ vv . 

We separate the variables: 

dx
v

dv
2−=

. 

We find v : 

xv 2ln −= , 

xv 2e−= . 

Substitute v  into the equation (**): 

xxx uu eee 422 −− = , 

hence 

xuu −= e2

, i.e. 

xu
dx

du −= e2

. 
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We separate the variables: 

dx
u

du x−= e
2

. 

We integrate: 

C
u

x +−=− −e
1

. 

We find u (replacing C by –C)): 

C
u

x +
=

−e

1

. 

Therefore, the general solution will be 

C
y

x

x

+
=

−

−

e

e 2

, or 
xx C

y
2ee

1

+
=

. 

29.3. Application of differential equations 

in continuous-time economic models 

Consider some examples of applications of differential equations in 

dynamic problems of economy. The independent variable here is time t. 

Time in economic dynamics can be considered both continuous and 

discrete. We consider continuous time since in this case, it is possible to 

use the tools of differential calculus and differential equations. 

Let us start with examples of applying the simplest first-order differential 

equations - equations with separable variables. 

We consider an equation of the form 

( )ygy =
 (29.12) 

Obviously, this is a special case of a differential equation with separable 

variables. Such equations are often found in issues of economic dynamics 
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(sometimes they are called autonomous equations, but in the theory of 

differential equations this term is not commonly used). 

If 
y  is a root of the equation 

( ) 0=yg  ( const=y ), then 
= yy  is a 

solution of equation (29.12). This solution is called stationary. 

Natural growth model 

Let us denote as 
( )ty  the output intensity. It is assumed that the products 

are sold at a fixed price p and that the market is unsaturated, i.e. all 

manufactured products are sold out. We call the difference 
( )tII =  

between the total investment and depreciation costs net investment. To 

increase the output intensity 
( )ty , the net investment I must be greater than 

zero. From the assumption of market unsaturation it follows that as a result 

of the expansion of production, an increase in income will be obtained, a 

part of which will again be used to extend the output. This will lead to an 

increase in output intensity. 

It is assumed that the intensity of output y  is directly proportional to the 

increase in net investment, i.e. the so-called principle of acceleration 

takes place: 

mIy = , (29.13) 

where m is the acceleration rate ( const=m ). Let a be the rate of net 

investment, i.e. part of the income py, obtained from the sale of products 

spent on net investments, 10  a . Then 

apyI =
. (29.14) 

Substituting the expression I  from (29.14) into (29.13), we obtain 

y
m

ap
y =

. Let us denote 
k

m

ap
=

, then 
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kyy = . (29.15) 

Equation (29.15) is an equation with separable variables. We separate the 

variables: 

kdt
y

dy
=

. 

Integrating, we find the general solution: 

Ckty lnln +=
, 

ktCy e= . (29.16) 

Let the volume of output 0y
 be fixed at the initial moment of time 0tt =

: 

( ) 00 yty =
, 

0e0

kt
Cy =

. 

Then we can find the constant C: 

0e0

kt
yC

−
=

, 

consequently, 

( )0e0

ttk
yy

−
=

. (29.17) 

Equation (29.17) is called the natural growth equation. This equation also 

describes the demographic processes, the processes of radioactive decay, 

the reproduction of bacteria. 
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Keynes dynamic model 

We consider the simplest balance model. Supposing that 
( )tY  is national 

income, 
( )tE  is  government spending, 

( )tS  is consumption, 
( )tI  is an 

investment. All these quantities are functions of time t. 

Let us make up the balance equations. First of all, the sum of all expenses 

should be equal to national income: 

( ) ( ) ( ) ( )tEtItStY ++=
. 

The total consumption 
( )tS  consists of domestic consumption of some of 

the national income plus final consumption. The first term has the form 

( ) ( )tYta , where 
( )ta  is the coefficient of propensity to consume (

( ) 10  ta ); the second is denoted by 
( )tb : 

( ) ( ) ( ) ( )tbtYtatS += . 

Finally, the size of the investment is characterized by the product of the 

acceleration rate 
( )tmm =

 and the marginal national income: 

( ) ( ) ( )tYtKtI =
. 

We obtain the system 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )








=

+=

++=

.

,

,

tYtmtI

tbtYtatS

tEtItStY

 (29.18) 

All functions included into equations (29.18) are positive. 

It is assumed that functions 
( )ta

, 
( )tb

, 
( )tm

 and 
( )tE

 are given, i.e. they 

are characteristics of the functioning of a given state. 
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It is required to find the dynamics of national income, i.e. find Y as a 

function of time t. 

We substitute the expressions for 
( )tS  from the second equation and 

( )tI  

from the third equation of the system (29.18) into the first equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )tEtYtmtbtYtatY +++= . 

We express 
( )tY  : 

( )
( )
( )

( )
( ) ( )

( )tm

tEtb
tY

tm

ta
tY

+
−

−
=

1

, 

or 

( )
( )
( )

( ) ( )
( )tm

tEtb
Y

tm

ta
tY

+
−=

−
−

1

. (29.19) 

This is a linear differential equation: 

( ) ( ) ( )tqYtptY =+
, 

where 

( )
( )
( )tKm

ta
tp

−
−=

1

, 

( )
( ) ( )

( )tm

tEtb
tq

+
−=

. 

We already know the method for finding a general solution to a linear first-

order equation (see § 29.2). However, its implementation as applied to 

equation (29.19) would be very cumbersome. Consider the special case 

when the main parameters a, b, and m are constant. Then equation (29.19) 

is simplified: 

m

Eb
Y

m

a
Y

+
−=

−
−

1

. (29.20) 

This is a linear differential equation with constant coefficients. 
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As already noted (see p. 379), the general solution of the inhomogeneous 

equation is the sum of its particular solution and the general solution of 

the accompanying homogeneous equation. As a particular solution Y
~

 of 

equation (29.20), we take the solution obtained for 0=Y , i.e. 

a

Eb
Y

−

+
=

1

~

. 

This solution is called equilibrium. 

Since 0E , 10  a , then 0
~
Y . 

The general solution of the homogeneous equation 
0

1
=

−
− Y

m

a
Y

 has 

the form 
tCY = e0 , where m

a−
=

1

. (Obviously, 0 .) Therefore, the 

general solution of equation (29.20) has the form 

( ) 






 −
+

−

+
= t

m

a
C

a

Eb
tY

1
exp

1 , 

or 

( ) tC
a

Eb
tY +

−

+
= e

1 , where m

a−
=

1

. 

If at the initial moment 
YY
~

0  , then 
0

~
0 −= YYC

 and the national 

income decreases with time under the fixed parameters a, b, m and E. If 

YY
~

0  , then 0C  and the national income grows. 
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Fig. 29.2. Integral curves of equation (29.20) 

Samuelson equation 

The samuelson equation is the equation: 

( ) ( ) pSpDkp −=
. (29.21) 

Here 
( )pD

 and 
( )pS

 are, respectively, the value of supply and demand 

at the price 0, kp . Equation (29.21) models the relationship between 

the change in price p and the unmet demand 
( ) ( )pSpD −

. 

We consider the simple case when supply and demand are defined by linear 

functions: 

( ) bpapD −=
,            

( ) npmpS +=
, 

where a, b, m, n are some positive numbers. At the same time, obviously, 
ma   since at zero price demand exceeds supply. In this case, equation 

(29.21) has the form 

( ) ( )pbnkmakp +−−=
. (29.22) 
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Equation (29.21), and therefore, (29.22), is a linear differential equation. 

Find a solution to the homogeneous equation corresponding to equation 

(29.22): 

( )pbnkp +−= , 

or 

( )pbnk
dt

dp
+−=

. 

We separate variables and integrate: 

( )dtbnk
p

dp
+−=

, 

( ) Ctbnkp lnln ++−=
, 

( ) ( )tbnkCtp +−= e
. (29.23) 

Like in the previous case, we can use the equilibrium solution 

( ) const~ == ptp
 as a particular solution to equation (29.22), where p~  is 

the root of the equation 
( ) ( ) 0=− pSpD  (in this case 0=p ). From 

(29.22) we find 

bn

ma
p

+

−
=~

. 

We obtain the general solution of equation (29.22): 

( ) ( )tbnkC
bn

ma
tp +−+

+

−
= e

. (29.24) 
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Questions 

1. What is called a differential equation? 

2. What is the order of a differential equation? 

3. What is called a solution of a differential equation? 

4. How is the Cauchy problem formulated for a first-order differential 

equation? 

5. What is the general solution of a first-order differential equation? 

6. What does solving a differential equation mean? 

7. What equation is called a differential equation with separable 

variables? 

8. What function is called a homogeneous function of degree n? 

9. What kind of a first-order differential equation is called 

homogeneous? 

10. What kind of a first-order differential equation is called linear? 

11. What is the Bernoulli method for solving the differential equation? 

Which first-order differential equations does it usually apply for? 

12. What is called the natural growth equation? What processes does 

this equation describe? 

13. What is the Keynes dynamic model? 

14. What does the Samuelson equation look like? What is the meaning 

of its values? 
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Chapter 30. Differential 

equations of the second and 

higher orders 

30.1. Basic definitions 

A differential equation of the second order has the form: 

( ) 0,,, = yyyxF
 (30.1) 

or 

( )yyxfy = ,, . (30.2) 

Conditions 

( ) 00 yxy =
, 

( ) 00 yxy =
 (30.3) 

are called the initial conditions. 

Definition. Function 
( )21,, CCxy =

 is called the general solution of 

equation (30.1) if it is a solution of equation (30.1) for any values 1C
 and 

2C
, and if for any initial conditions (30.3) there are unique values of 

constants 
0

11 CC =
, 

0

22 CC =
, such that the function 

( )0

2

0

1 ,, CCxy =
 

satisfies these initial conditions. 

Definition. Any function 
( )0

2

0

1 ,, CCxy =
 obtained from the general 

solution 
( )21,, CCxy =

 of equation (30.1) for certain constant values 
0

11 CC =
, 

0

22 CC =
 is called a particular solution. 

In some cases, solving a second-order differential equation can be reduced 

to sequential solving of two first-order differential equations. 
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30.2. Differential equations allowing 

reduction of order 

1. The equation does not explicitly contain the desired function y, i.e. has 

the form 
( ) 0= y,yx,F . In this case, it is sufficient to substitute zy =

. Then zy =  and the equation takes the form: 

( ) 0,, =zzxF , 

i.e. it is a first order equation with respect to z. 

Let us find the general solution 

( )1,Cxz = . 

We make the reverse substitution 

( )1,Cxy =
. 

Hence 

( ) 21, CdxCxy +=  . 

Example  30.1. Solve the equation 0=+ yyx . 

Solution. Let yz = . Then zy = , and the original equation has the form 

0=+ zzx , or 
0=+ z

dx

dz
x

, 

whence 

x

dx

z

dz
−=

. 

Integrating we obtain 

x

C
z 1=

, or x

C
y 1=

. 
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Solving the last equation, we obtain: 

21 ln CxCy +=
. 

2. The equation does not explicitly contain argument x, i.e. has the form 

( ) 0= y,yy,F . In this case, the order of the equation can be reduced 

letting 
( )yzzy == . Then 

dy

dz
zzzyzzy yxyx ====

. 

Example 30.2. Solve the equation 
( ) 0

2
=− yy . 

Solution. By the substitution 
( )yzzy ==  we reduce this equation to a 

first-order equation: 

02 =− z
dy

dz
z

 or 

0=







− z

dy

dz
z

. 

The first solution of this equation is 0=z  or Cy = , where const=C . 

Next we obtain 

0=− z
dy

dz

. 

Separating the variables and integrating, we obtain 

yCz e1=
. 

We make the reverse substitution: 

yC
dx

dy
e1=

. 

Variables are also separated here: 
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dxCdyy

1e =−

, 

21e CxCy +=− −

. 

Since  1C  and 2C  are arbitrary constants, we can write (taking 1C−  

instead of 1C , and 2C−  instead of 2C ): 

21e CxCy +=−

, 

( )21ln CxCy +−= . 

Obviously, this solution also includes the solution Cy =  obtained above. 

3. The equation has the form 
( )yfy =

. This is a particular case of the 

equation considered in Sec. 2. Therefore, it is solved by substituting 

( )yzzy == , dy

dz
zy =

. As a result of such substitution, this equation 

is converted into a first order equation: 

( )yf
dy

dz
z =

. 

Hence 

( )dyyfzdz =
. 

Integrating, we obtain 

( ) 1

2

2
Cdyyf

z
+= 

. 

Hence 

( )( )+= dyyfCz 12
, 
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i.e. 

( )( )+= dyyfC
dx

dy
12

 or  
( )( )

dx
dyyfC

dy
=

+ 12
. 

Integrating the left and right sides of the last equality, we obtain the general 

integral. 

Example  30.3. Find a particular solution: 12 3 =yy , 

1
2

1
=








y

, 

1
2

1
=








y

. 

Solution. Making the substitution dy

dz
zy =

, we find 

13 =
dy

dz
zy

. 

Hence 

3

1

ydy

dz
z =

, 
3y

dy
zdz =

. 

Integrating, we obtain 

12

2

2

1
C

y
z +−=

, 
122

1
C

y
z +−=

. 
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Assuming here 2

1
=x

 and considering that at this value x we have 

1== zy , we see that we need to take the plus sign in front of the radical, 

then we find 2

3
1 =C

. Thus, 

22

1

2

3

y
z −=

 

or, which is the same, 

22

1

2

3

ydx

dy
−=

, or 
2

2

2

13

y

y

dx

dy −
=

. 

Hence 

dx
y

ydy
=

−13

2

2

. 

The integral from the left side is taken by the substitution 13 2 −= yt , 

ydydt 6= . 

2

2 13
3

2
Cxy +=−

. 

At 2

1
=x

 we find 
2

2

1
2

3

2
C+=

, or 
2

2

1

3

2
C+=

, whence 6

1
2 =C

. 

We obtain 

6

1
13

3

2 2 +=− xy
. 
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Squaring and making obvious transformations, we finally obtain 

4

3
32 22 ++= xxy

. 

30.3. Linear differential equations of 

order n 

A linear differential equation of order n is an equation of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )xFyxayxayxayxa nn

nn =++++ −

−

1

1

10 ...
. (30.5) 

This equation is called linear, because the unknown function y and its 

derivatives y , y  , …, 
( )ny  are included into it linearly, i.e. in the first 

degree, not multiplying among themselves. Here 
( )xa0 , 

( )xa1 , …, 

( )xan 1− , 
( )xan , 

( )xF
 are given functions of x (in particular, they can be 

constant), and for all values of x from the domain in which we consider 

equation (30.4) (otherwise the order of the equation would not be equal to 

n) Therefore, we can divide both sides of the equation by 
( )xa0  and 

transform it to the form 

( ) ( ) ( ) ( ) ( ) ( )xfyxpyxpyxpy nn

nn =++++ −

−

1

1

1 ...
, (30.5) 

where 

( )
( )
( )xa

xa
xp

0

1
1 =

, …, 

( )
( )
( )xa

xa
xp n

n

0

1
1

−
− =

, 

( )
( )
( )xa

xF
xf

0

=

. 

In what follows, we will write a linear differential equation in the form 

(30.5). The function 
( )xf

 in equation (30.6) is called the free term. If 

( )xf
 identically equals zero, then equation (30.6) is called homogeneous; 

in this case, it obviously has the form 



Chapter 30. Differential equations of the second and higher orders  

508 

( ) ( ) ( ) ( ) ( ) 0... 1

1

1 =++++ −

− yxpyxpyxpy nn

nn

. (30.6) 

Otherwise, equation (30.5) is called inhomogeneous. The function 
( )xf   

in (30.5) is called the right-hand side (or free term) of equation (30.6). 

In what follows, we will present the theory and carry out the proofs, as a 

rule, for second-order equations, since here we can study all the main laws 

of interest to us. So, in what follows we will mainly deal with equations 

( ) ( ) ( )xfyxqyxpy =++ . (30.7) 

First of all, we establish some basic properties of linear homogeneous 

equations. 

Structure of the general solution of a homogeneous linear 

differential equation 

Let us consider an equation of the form 

( ) ( ) 0=++ yxqyxpy
. (30.8) 

In the future, we will see that in order to be able to solve equation (30.7), 

in which 
( ) 0xf

, we must also be able to solve equation (30.8). We 

consider two simple properties of solutions of equation (30.8). 

1. If 0y
 is a solution to equation (30.8), and C is a constant, then product 

0Cy
 is also a solution to this equation. 

Proof. Substitute 0Cyy =
 into equation (30.8). Since 

0yCy =
, 0yCy =

, 

the left side as a result of the substitution looks like 

( ) ( ) 000 CyxqyCxpyC ++
, 

or, which is the same, 
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( ) ( )( )000 yxqyxpyC ++
. 

Since 0y
 is a solution of differential equation (30.8), the expression in 

brackets is identically equal to zero. Thus, equation (30.8) turned into an 

identity. The statement is proved. 

2. If  1y
 and 2y

 are solutions of differential equation (30.8), then their sum 

21 yy +  is also a solution to this equation. 

Proof. Since 

21 yyy += , 21 yyy +=  

and since 1y  and 2y   are solutions of equation (30.8), the following 

identity equalities hold: 

( ) ( ) 0111 =++ yxqyxpy
, 

( ) ( ) 0222 =++ yxqyxpy
. (*) 

Substituting the sum 21 yy +
 into equation (30.8) and taking into account 

the identities (*), we obtain 

( ) ( )( ) ( )( )

( ) ( )( ) ( ) ( )( ) .000222111

212121

=+=+++++=

=++


++


+

yxqyxpyyxqyxpy

yyxqyyxpyy

 

So, equation (30.8) turned into an identity. The statement is proved. 

Definition. Two functions 1y
 and 2y

 are called linearly independent if 

the identity equality 

02211 =+ ykyk
 (30.8*) 

has the only possible solution 

021 == kk
. 
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If there exists a nonzero solution (**), then functions 1y  and 2y  are called 

linearly dependent. 

Obviously, functions 1y  and 2y  are linearly independent if and only if 

their relation is not constant: 

const
2

1 
y

y

. 

Definition. If 
( )xyy 11 = , 

( )xyy 22 = , then the determinant 

( ) 1221

21

21
yyyy

yy

yy
xW −=


=

 

is called the Wronski determinant of these functions. 

Lemma 30.1. If the functions 
( )xyy 11 =  and 

( )xyy 22 =  are linearly 

dependent on the segment 
 ba, , then the Wronski determinant, composed 

of them, is identically equal to zero on this segment; if the functions are 

linearly independent on 
 ba,

, then the Wronski determinant is nonzero 

on 
 ba,

. 

Proof. Let functions 1y
 and 2y

 be linearly dependent on the segment 

 ba,
. Then these functions are proportional on 

 ba,
, i.e. 21 yky =

. 

Therefore, the determinant 
( )xW

 contains proportional columns, therefore 

it is equal to zero on the segment 
 ba,

: 

( ) 0
11

11

21

21
=


=


=

yky

kyy

yy

yy
xW

. 

The first part of the lemma is proved. 
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We prove the second part of the lemma by contradiction. Let functions 

( )xyy 11 =  and 
( )xyy 22 =  be linearly independent on the segment  ba,

; assume that the determinant 
( )xW  is identically equal to zero on this 

segment. Then its columns are necessary proportional: 12 kyy = , yky =2

. But this means that functions 1y  and 2y  are proportional, and therefore, 

linearly dependent, which contradicts the condition of the lemma. The 

proof is complete. 

Lemma  30.2. If the Wronski determinant 
( )xW , composed for solutions 

1y
 and 2y

 of the homogeneous linear equation (30.8) is not equal to zero 

for some value 0xx =
 on the segment 

 ba, , and the coefficients of the 

equation are continuous on this interval, then 
( )xW  does not vanish at any 

value x  on this interval. 

Proof. Since 
( )xyy 11 =  and 

( )xyy 22 =  are solutions of equation (30.8), 

the following identities hold: 

( ) ( ) 0111 =++ yxqyxpy , 
( ) ( ) 0222 =++ yxqyxpy . 

We multiply both sides of the second equality by 1y
, and both sides of the 

first - by 2y
, and subtract the first from the second. We obtain: 

( ) ( ) ( ) 021212121 =−+− yyyyxpyyyy
. (30.9) 

The difference in the second bracket is the Wronski determinant 
( )xW

. 

Indeed, 
( ) 2121 yyyyxW −=

. We differentiate 
( )xW

: 

( ) ( ) 2121212121212121 yyyyyyyyyyyyyyyyxW −=−−+=


−=
. 
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As we can see, the difference in the first bracket (30.9) is a derivative of 

the Wronski determinant, therefore, equation (30.9) can be represented as 

( ) 0=+ WxpW , (30.10) 

i.e. is a differential equation with separable variables. We find a solution 

of this equation that satisfies the condition 
( ) 00 WxW =

, supposing 

( ) 00 xW
. Separating the variables, we obtain 

( )dxxp
W

dW
−=

. 

Integrating, we find 

( ) CdxxpW

x

x

lnln

0

+−= 
. 

Hence, 

( )−=
x

x

dxxp
C

W

0

ln

, 

and we obtain the general solution of equation (30.10): 

( )













−= 

x

x

dxxpCW

0

exp

. (30.11) 

(Recall that aexp  means 
ae   for any a.) 

Formula (30.11) is called the Liouville formula. 
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We now define constant C so that the initial condition 
( ) 00 WxW =

 is 

satisfied. We substitute 0xx =
 into the left and right sides of the equality 

(30.11). We obtain (given that 

( ) 0
0

0

=
x

x

dxxp

): 

     
CW =0 . 

We substitute the found value 0WC =
 into equality (30.11). So, the 

solution to equation (30.10), satisfying the initial conditions 
( ) 00 WxW =

, 

has the form 

     

( )













−= 

0

0

exp0

x

x

dxxpWW

. 

Then (since the exponential function does not vanish at any value of the 

argument, and since 
00 W

 by hypothesis) it follows from the last 

equality that 0W  at no value of x. The proof is complete. 

From the previously proved properties 1. and 2. of the solutions to the 

homogeneous linear differential equation (30.8) it follows that the linear 

combination of solutions 
( )xy1  and 

( )xy2  equation (30.8), i.e. 

     
( ) ( )xyCxyCy 2211 +=

, 

where 1C
 and 2C

 are constants, is also a solution to equation (30.8). 

Let us now formulate and prove the theorem that describes the structure 

of the general solution of a homogeneous linear differential equation. 
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Theorem 30.1. If 
( )xy1  and 

( )xy2  are linearly independent on  ba,  

particular solutions of the homogeneous linear differential equation (30.8), 

then the general solution of this equation has the form 

     
( ) ( )xyCxyCy 2211 += , (30.12) 

where 1C  and 2C  are arbitrary constants. 

Proof. It was previously established that a linear combination (30.12) is a 

solution of equation (30.8); it must be proved that it is the general solution, 

i.e. it must be shown that for any initial conditions there are such values of 

constants 1C
 and 2C

, for which this linear combination is a solution 

satisfying these initial conditions. 

Let us take any number
 bax ,0   and any numbers 0y

, 0y
 and make up 

the initial conditions: 

( ) 00 yxy =
, 

( ) 00 yxy =
. 

The fulfillment of these conditions for the function (30.12) means that 

( ) ( )

( ) ( )



=+

=+

.

,

0022011

0022011

yxyCxyC

yxyCxyC

 

We obtained a linear system of two equations with respect to unknown      

constants 1C
 and 2C

. The determinant of this system is Wronski 

determinant 
( )0xW

, and since 1y
 and 2y

 are linearly independent, this 

determinant is not equal to zero. Therefore, the system has a unique 

solution for any values of the right-hand sides 0y
 and 0y

: 

0

11 CC =
, 

0

22 CC =
. 
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Substituting these values in the solution (30.12), we obtain a particular 

solution satisfying the given initial conditions. Since the initial conditions 

are given arbitrarily, we can state that solution (30.12) is a general solution 

to equation (30.8). The theorem is proved. 

Remark. If we discard the condition for the linear dependence of the 

functions 1y  and 2y , then the function (30.12), although it remains the 

solution of the differential equation (30.8), will no longer be its general 

solution. 

Indeed, let, for example, 

5
2

1 =
y

y

. 

Then 21 5yy =  and (30.12) has the form 

( ) 222122212211 55 CyyCCyCyCyCyCy =+=+=+=
 

where 
CCC =+ 215

. In other words, in case functions 1y
 and 2y

 are 

linearly dependent, the number of arbitrary constants in (30.12) can be 

reduced to one by introducing new notation, and a function containing one 

arbitrary constant cannot be the general solution of differential equation 

(30.8). 

The meaning of the theorem proved (30.1) is that it reduces the problem of 

finding the general solution of differential equation (30.8) to a simpler 

problem, which is the problem of finding two linearly independent 

particular solutions of this equation. We will deal with this last task now, 

but we will restrict ourselves to the simplest case when the coefficients of 

the equation are constant: 
( ) const== pxp

, 
( ) const== qxq

. 
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Homogeneous linear differential equations with constant 

coefficients 

We consider an equation of the form 

0=++ qyypy , (30.13) 

where p and q are some constants. 

Let us first find the general solution of equation (30.13). By Theorem 30.1, 

in order to do this, it is necessary to find two linearly independent particular 

solutions of equation (30.13). 

We will seek for a solution of equation (30.13) in the form 

kxy e= . (30.14) 

Since 

kxky e= , 
kxky e2= , 

substituting (30.14) into the left-hand side of (30.13), we obtain 

0eee2 =++ kxkxkx qpkk
, or 

( ) 0e 2 =++ qpkkkx

. 

So, for (30.14) to be a solution of equation (30.13), k must be a root of the 

quadratic equation 

02 =++ qpkk
. (30.15) 

This equation is called the characteristic equation for the differential 

equation (30.13). 

Three cases are possible. 

1. The roots (30.15) are real and different: 
ak =1 , 

bk =2 , ba  . Then 

(30.13) has two solutions: 

axy e1 = , 
bxy e2 = . 

These solutions are linearly independent since 
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const
e

e


bx

ax

. 

The general solution of equation (30.13) is as follows: 

bxax CCy ee 21 += . 

Example 30.4. Solve the equation 045 =+− yyy . 

Solution. We compose the characteristic equation: 

0452 =+− kk . 

We find the roots: 11 =k , 42 =k , so the general solution to this equation 

is 
xx CCy 4

21 ee += . 

2. The roots of equation (30.15) are real and coincident: 
akk == 21  (

2

p
a −=

). One of particular solutions of equation (30.13) will be 

axCy e11 = . 

However, we cannot find a second solution 2y
 yet, such that 1y

 and 2y
 

are linearly independent. 

However, in this case, it turns out that, along with the solution 

     
axy e1 = , 

equation (30.13) has a solution 
axxy e2 = . 

We will verify this. In order for the characteristic equation 

02 =++ qpkk
 to have equal roots, which are expressed in the form 
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q
pp

k −−=
42

2

2,1

, it is necessary for the discriminant to be equal to 

zero: 
0

4

2

=− q
p

. In other words, the condition of coincidence of the roots 

is the equality 

q
p

=
4

2

. 

Then 2
21

p
kk −==

, and one of the solutions of equation (30.13) will be 

the function 

x
p

y 2
1 e

−

=
. 

Let us make sure that the solution of equation (30.13) will also be 

x
p

xy 2
2 e

−

=
. 

We find derivatives 2y
 and 2y 

: 

x
p

x
p

x
p

y 22
2 e

2
e

−−

−=
; 

x
p

x
p

x
p

py 2

2

2
2 e

4
e

−−

+−=
. 

We substitute 2y
 and its derivatives into the left side of equation (30.13) 

x
p

x
p

x
p

x
p

x
p

qxee
p

epxe
p

pe 2222

2

2

24

−−−−−

+













−++−

. 

Having made the obvious transformations, we obtain 
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x
p

x
p

q 2

2

e
4

−









−

. 

This expression is equal to zero (since 
0

4

2

=−
p

q
), and the statement is 

proved. 

So, 

x
p

y 2
1 e

−

=  and 

x
p

xy 2
2 e

−

=  So, and are two solutions of equation 

(30.13) in case the roots of the characteristic equation coincide. Linear 

independence of 1y  and 2y  is obvious. Therefore, the general solution of 

differential equation (30.13) has the form 

x
p

x
p

xCCy 2
2

2
1 ee

−−

+= . 

So, we note once again that the following statement is true: if the 

characteristic equation has coinciding roots 
akk == 21 , then along with 

the function 

axy e1 =  

the solution of differential equation (30.13) is also the function 

axxy e2 = . 

Then the general solution of equation (30.13) is the function 

axax xCCy ee 21 +=
. (30.16) 

It should be noted that in case the characteristic equation has two different 

roots 
ak =1 , 

abk =2 , the function 
axxy e=

 will not be a solution of 

the differential equation (30.13). 

Example 30.5. Solve the equation 
044 =+− yyy

. 
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Solution. The characteristic equation 0442 =+− kk  has two coinciding 

roots 221 == kk . Therefore, the general solution of the equation is as 

follows: 

xx xCCy 2

2

2

1 ee += . 

3. The roots of the characteristic equation are complex conjugates: 

ik =2,1 , where i is the imaginary unit, 12 −=i . In this case, we can 

prove that the general solution of equation (30.13) is 

( )xCxCy x +=  sincose 21 . 

(We accept this statement without proof.) 

Example 30.6. Solve the equation 0134 =+− yyy . 

Solution. The characteristic equation 01342 =+− kk  has the roots 

ik 322,1 =
. The general solution to this equation is 

( )xCxCy x 3sin3cose 21

2 +=
. 

30.4. Structure of the general solution of 

an inhomogeneous linear differential 

equation 

We now move to an inhomogeneous linear differential equation 

     
( ) ( ) ( )xfyxqyxpy =++

. (30.17) 

Along with it, we consider the homogeneous linear equation with the same 

left-hand side, i.e the equation 

     
( ) ( ) 0=++ yxqyxpy

. (30.18) 
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Equation (30.18) is called the corresponding or accompanying equation 

of the differential equation (30.17). 

Theorem 30.2. If y~  is a particular solution of the differential equation 

(30.17), and      0y
 is the general solution of its accompanying equation 

(30.18), then their sum 

     
yyy ~

0 +=
 (30.19) 

is the general solution of the differential equation (30.17). 

(In other words, the general solution of an inhomogeneous linear 

differential equation is the sum of its particular solution and the general 

solution of the corresponding homogeneous equation.) 

Proof. 1. Let y~  be a particular solution of the inhomogeneous equation 

(30.17), and      22110 yCyCy +=
 be the general solution of the 

accompanying homogeneous equation. First, we make sure that the 

function 

     
yyy ~

0 +=
 

is a solution of equation (30.17). We substitute the function (30.19) into 

the left side of the equation (30.17): 

     
( ) ( ) ( ) ( )yyxqyyxpyy ~~~

000 +++++
. 

Regrouping the terms, we obtain 

     
( ) ( )  ( ) ( ) yxqyxpyyxqyxpy ~~~

000 +++++
. 

     Since 0y
 is a solution of equation (30.18), the expression in the first 

square brackets is zero. Since 
y~

 is a solution of equation (30.17), the 

expression in the second square brackets is equal to 
( )xf

. So, substituting 

(30.19) into equation (30.17), we obtain the identity 
( )xf

 = 
( )xf

. 
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Therefore, function (30.19) is indeed a solution of differential equation 

(30.17). 

2. Now we need to make sure that function (30.19) is a general solution of 

the nonhomogeneous equation (30.17). Let y be any solution of the 

inhomogeneous equation (30.17), and let y~  be the solution of the same 

equation (30.17). 

Consider the difference yy ~− . We will show that this difference is a 

solution of the homogeneous equation (30.18). In order to do so, we 

substitute it into the left side of equation (30.18) and group the 

corresponding terms: 

( ) ( )( ) ( )( )
( ) ( )  ( ) ( )  ( ) ( ) .0~~~

~~~

=−=++−++=

=−+


−+


−

xfxfyxqyxpyyxqyxpy

yyxqyyxpyy

 

Therefore, this difference is a particular solution of the homogeneous 

equation (30.18), and this solution can be written in the form 

2

0

21

0

1
~ yCyCyy +=−

, 

where 
0

1C  and 
0

2C  are the corresponding values of constants 1C  and 2C  

in the formula for the general solution of the homogeneous equation. 

We have proved that any solution of equation (30.17) can be obtained by 

formula (30.19) by appropriate selection of the constants 1C
 and 2C

. 

Therefore, function (30.19) is a general solution of the inhomogeneous 

linear differential equation (30.17). The proof is complete. 

While proving Theorem 30.2, we proved the following properties of 

solutions of linear differential equations: 

1. If y~  is a solution of the inhomogeneous differential equation (30.17), 

and 0y
 is a solution of the accompanying homogeneous equation (30.18), 

then their sum is a solution of the inhomogeneous equation (30.17). 
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2. If 1y  and 2y  are two solutions of the inhomogeneous differential 

equation (30.17), then their difference 21 yyy −=  is a solution of the 

accompanying homogeneous equation (30.18). 

The proved Theorem 30.2 indicates a method for finding the general 

solution of the inhomogeneous equation (30.17): it is necessary to find 

the general solution of the accompanying homogeneous equation (30.18) 

and some particular solution to the equation (30.17). 

We are able to find a general solution of the homogeneous equation 

(30.18), however, only for the case of constant coefficients: 

( ) const== pxp
, 

( ) const== qxq
. The problem of finding a 

particular solution to the inhomogeneous equation (30.17) in the 

general case is very complicated. We will consider it only for simple cases, 

especially for situations when the coefficients of equation (30.17) are 

constant and the right-hand side 
( )xf  has a special form. So, we now turn 

to an inhomogeneous linear equation 

( )xfqyypy =++
, (30.20) 

where 
const, =qp

. 

In the future, we will use symbols 
( )xPn  and 

( )xQn  to denote polynomials 

of degree n: 

( ) nn

nn

n axaxaxaxP ++++= −

−

1

1

10 ...
, 

( ) nn

nn

n bxbxbxbxQ ++++= −

−

1

1

10 ...
. 

We consider three different particular types of function 
( )xf

. 

А. 
( ) ( )xPxf n=

. 
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The right-hand side of equation (30.20) is a polynomial of degree n. Since 

the derivative of the polynomial is a polynomial, we can try to find a 

particular solution y~  of equation (30.20) also in the form of a polynomial 

whose coefficients are not yet known, but to find them there exists the 

method of undetermined coefficients that we already know. 

Example 30.7. Find the general solution of the equation 

1047223 23 +−−=+− xxxyyy . 

Solution. We see that if we substitute a polynomial of the third degree 

dcxbxaxy +++= 23

 

into the left side of this equation, then a polynomial of the third degree will 

also appear on the left side. We will try to choose the coefficients a, b, c, d 

in such a way that the equation turns into an identity. We differentiate the 

polynomial and substitute it into the left side: 

cbxaxy ++= 23 2

, baxy 26 += , 

     

( ) ( ) 10472223326 23232 +−−=++++++−+ xxxdcxbxaxcbxaxbax

, 

( ) ( ) 10472232266292 2323 +−−=+−+−−++−+ xxxdcbxcbaxbaax

, 

     
.10232

,4266

,729

,22

0

2

3

=+−

−=+−

−=+−

=

dcb

cba

ba

a

x

x

x

x

 

Solving the resulting system, we find 

1=a , 1=b , 2−=c , 1=d . 
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We obtain a particular solution of the given differential equation: 

     12~ 23 +−+= xxxy . 

The accompanying equation has the form 

023 =+− yyy . 

Its characteristic equation 

0232 =+− kk  

has the roots 21 =k , 12 =k , and therefore the general solution of the 

accompanying equation is 

xx CCy ee 2

2

10 +=
. 

According to Theorem 30.2, the general solution of this equation is 

12ee 23

2

2

1 +−+++= xxxCCy xx

. 

In connection with this example, an assumption may arise that a particular 

solution y~  of the differential equation 

( )xPqyypy n=++
 

should be sought for in the form of some polynomial of the same degree 

and we only need to select the coefficients of this polynomial. However, 

this assumption is erroneous. 

Consider the equation 

2694 23 −−−=− xxxyy
. 

Let us try to find 
y~

 in the form of a polynomial of the same third degree: 

dcxbxaxy +++ 23~
. 
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Differentiating y~  and substituting it into the left side of the equation, we 

obtain: 

( ) 26942326 232 −−−=++−+ xxxcbxaxbax , 

( ) 26942·263 232 −−−=−+++− xxxcbxbaax . 

The identical equality of these polynomials, the degrees of which are 

different (on the left-hand side there is a polynomial of the second degree, 

and on the right-hand side there is the third), it is impossible for any a, b, 

c, and d. 

Our attempt was unsuccessful because we did not take into account that 

when differentiating the degree of the polynomial decreases by one, and 

on the left side of this equation there is no term containing an unknown 

function y (and only terms containing derivatives of this function are 

present). Therefore, for the left side of this equation to become a 

polynomial of the same (third) degree, we must take a polynomial of 

degree one greater than y, i.e. polynomial of the fourth degree. However, 

in this case, the free term of this polynomial will not be taken into account 

since it will vanish during differentiation. Therefore, we must take a 

polynomial of the form 

( ) dxcxbxaxxQ +++= 234

4 , 

or 

( ) ( )dcxbxaxxxxQ +++= 23

3 . 

(Recall that we are only looking for a particular solution.) 

Taking into account the considerations expressed here, we will seek for a 

solution of the given equation 

2694 23 −−−=− xxxyy
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as 
( ) ( ) dxcxbxaxdcxbxaxxxxQy +++=+++== 23423

3
~

. We 

differentiate y~  and substitute y ~
 and y ~

 in the left-hand side of this 

equation: 

dcxbxaxy +++= 234~ 23

, cbxaxy 2612~ 2 ++= , 

( ) 26942342612 33232 −−−=+++−++ xxxdcxbxaxcbxax , 

( ) ( ) 26942263124 3323 −−−=−+−+−+− xxxdcxcbxbaax , 

.22

,626

,9312

,44

0

2

3

−=−

−=−

−=−

=−

dc

cb

ba

a

x

x

x

x

 

Solving the resulting system, we obtain 

1−=a , 1−=b , 0=c , 2=d . 

Hence 
xxxy 2~ 34 +−−=

. 

We find now 0y
. To do so, we compose a characteristic equation, find its 

roots, and use them: 

02 =− kk , 

( ) 01 =−kk
. 

We obtain the general solution of the accompanying equation: 

xCCy e210 +=
. 

The general solution of this equation is 

xxxCCy x 2e 34

21 +−−+=
. 
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So, with 0=q  and 
( )xPn  on the right-hand side, we found a particular 

solution y~  in the form of a polynomial of degree n + 1: 

( )xxQy n=~
. 

Reasoning in a similar way, in the case when not only q, but also 0=p , 

the solution y~  can be found in the form 

( )xQxy n

2~ =
. 

(However, in this case, it is enough to integrate the right-hand side twice.) 

Let us summarize the first result and indicate methods for finding a 

particular solution of differential equation (30.20) in case the right-hand 

side is a polynomial. 

If 
( ) ( )xPxf n=

, where 
( )xPn  is a polynomial of degree n, then a 

particular solution y~  must be sought in the form: 

● ( )xQy n=~ , if 0q ; 

● ( )xxQy n=~ , if 0=q , 0p ; 

● ( )xQxy n

2~ = , if 0=q , 0=p . 

These rules are also preserved in those cases when we are dealing with 

higher-order differential equations. 

Example 30.8. Solve the equation 
12105 +=+ xyy

. 

Solution. We make up the characteristic equation: 052 =+ kk . Its roots 

are 
01 =k

, 
52 −=k

. Since
0=q

, we will seek for a particular solution in 

the form: 
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( ) BxAxBAxxy +=+= 2~
. 

Substituting it in the original equation: 

( ) 1210252 +=++ xBAxA . 

We equate the coefficients at the same degrees of x : 





=+

=

.1252

,1010

BA

A

 

Hence, 1=A , 2=B , xxy 2~ 2 += . The general solution of the 

accompanying equation is 
xCCy 5

210 e−+=
. Therefore, the general 

solution of this equation is 

xxCCy x 2e 25

21 +++= −

. 

Example 30.9. Find the general solution of the differential equation 

8123222 23 +−−=+−− xxxyyyy
 

Solution. Here, the coefficient of y on the left-hand side is nonzero; 

therefore, we seek for y~  in the form of a polynomial of the same degree 

as the polynomial on the right-hand side, i.e. as 
( )xQ3 : 

dcxbxaxy +++= 23~
 

We differentiate: 

cbxaxy ++= 23~ 2

, 
baxy 26~ +=

, 
ay 6~ =

. 

We substitute 
y~

 and its derivatives: 

( ) ( ) ( ) ,812322232626 23232 +−−=++++++−+− xxxdcxbxaxcbxaxbaxa
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( ) ( )

,81232

2462212232

23

23

+−−=

=+−−++−−++−+

xxx

dcbaxcbaxbaax

 

.8246

,122212

,323

,22

0

2

3

=+−−

−=+−−

−=+−

=

dcba

cba

ba

a

x

x

x

x

 

We find the coefficients: 1=a , 0=b , 0=c , 1=d . So, 

1~ 3 += xy . 

We solve the accompanying equation: 

022 =+−− yyyy , 

022 23 =+−− ykk , 

21 =k
, 

12 =k
, 

13 −=k
. 

We find the general solution of the accompanying equation: 

xxx CCCy −++= eee 32

2

10 . 

Finally, we obtain: 

1eee 3

32

2

10 ++++= − xCCCy xxx

. 

Let us consider another example with a differential equation, the order of 

which is higher than two. 

Example 30.10. Find the general solution of the equation 

( ) 36244 +=+ xyy
. 

Solution. We are seeking for 
y~

 in the form of 
( )xQx 1

3

: 
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( ) 343~ bxaxbaxxy +=+= , 

23 34~ bxaxy += , 
bxaxy 612~ 2 +=

, baxy 624~ += , 
( ) ay 24~ 4 = . 

Substituting, we obtain 

362462424 +=++ xbaxa , 





=+

=

.36624

,2424

ba

a

 

Hence, 1=a , 2=b ; 
34 2~ xxy += . 

We solve the characteristic equation: 

034 =+ kk , 

( ) 013 =+kk , 

0321 === kkk
, 

14 −=k
. 

We obtain 

xCxCxCCy −+++= e4

2

3210 . 

We find the general solution of this equation: 

34

4

2

321 2e xxCxCxCCy x +++++= −

. 

We now turn to consideration of equations with a more complex right-

hand side. 

В. Let 
( ) ( )xPxf n

αxe=
. The considered earlier case 

( ) ( )xPxf n=
 is 

obtained from this at 0= . Formally speaking, it could not be considered 

separately. So, we need to solve the equation 

( )xPqyypy n

x=++ e
. (30.21) 
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We will try to reduce this problem to the previous one, i.e. to the case when 

the polynomial is on the right-hand side of the equation. We apply the 

substitution 

zy x= e , 

where z is a new unknown function 
( )xzz = . We find derivatives: 

zzy xx +=  ee , 

zzzzy xxxx +++=  eeee2

. 

Substituting y, y , and y   into the left-hand side of the equation, we 

perform obvious transformations: 

( ) ( )xPzqzzpzz n

xxxxxxx  =+++++ eeeeee2ze2

, 

( ) ( ) ( )xPzqpzpz n

xxxxxxx  =+++++ eeeeee2e 2

. 

Reducing by 
xe : 

( ) ( ) ( )xPzqpzpz n=+++++ 22
. 

We obtained an equation of the kind already considered: 

( )xPzqzpz n=++
, 

where 
pp += 2

, 
qpq ++= 2

. Therefore, we can apply the same 

rule: 

● ( )xQz n=~ , if  02 ++= qpq ; 

● ( )xxQz n=~ , if ,02 =++= qpq  02 += pp ; 

● ( )xQxz n

2~ = , if ,02 =++= qpq  02 =+= pp . 
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Note that the condition 0q , i.e. 02 ++ qp , means that the 

number 〈 is not a root of the characteristic equation 02 =++ qpkk . 

Therefore if 〈 is not a root of the characteristic equation, we seek the 

solution as 
( )xQz n=~

, or (given that zy x= e~
) as 

( )xQy n

x= e~
. 

Before considering the remaining conditions, we note that the solution of 

the characteristic equation 02 =++ qpkk  has the form: 

q
pp

k −−=
42

2

2,1

. 

If at the same time 
0

4

2

− q
p

, i.e. 
q

p


4

2

, then both roots of the 

characteristic equation are different and, obviously, none of them is equal 

2

p
−

: 2

p
−

, i.e. 02 + p . 

So, if 〈 is the single root of the characteristic equation, then 02 + p

, i.e. 0=q , 0p . If 〈 is a root of the characteristic equation and 

02 =+ p , then 
0

4

2

=− q
p

, i.e. 〈 is the double root of the 

characteristic equation. We summarize all of the above (and recall that 

zy x= e~
). 

If 
( ) ( )xPxf n

x
e=

, then 
y~

 must be sought as: 

● ( )xQy n

x= e~ , if  〈 is not a root of the characteristic equation; 

● ( )xQxy n

x= e~ , if 〈 is the single root of the characteristic equation; 
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● ( )xQxy n

x= e~ 2 , if 〈 is the double root of the characteristic equation. 

Example 30.11. Solve the equation
xyyy 3e223 =+− . 

Solution. We make up the characteristic equation: 232 +− kk . Its roots 

are 11 =k , 22 =k . 

Obviously, 3=  is not a root of the characteristic equation. Therefore 
xCy 3e~ = , 

xCy 3e3~ = , 
xCy 3e9~ = . We substitute all this into the original 

equation: 

xxxx CCC 3333 e2e2e33e9 =+− . 

We obtain 1=C . Consequently, 

xy 3e~ = . 

Obviously, the general solution of the accompanying homogeneous 

equation is 

xx CCy 2

210 ee +=
. 

We finally obtain 

xxx CCy 32

21 eee ++=
. 

Example 30.12. Solve the equation 
( ) xxyy e732 +=+

. 

Solution. Here 1= . We compose and solve the characteristic equation: 

022 =+ kk , 

01 =k
, 

22 −=k
. 
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We see that 〈 is not a root of the characteristic equation. Therefore 

( ) ( ) xx baxxQy ee~
1 +== . We differentiate y~  and substitute it into the 

right-hand part of the equation: 

( ) ( ) xxx baaxbaxay eee~ ++=++= , 

( ) ( ) xx baaxbaaxay e2ee~ x ++=+++= . 

( ) ( ) ( ) xxx xbaaxbaax e73e2e2 +=+++++ . 

We reduce it by 
xe  and combine the like terms: 

73343 +=++ xbaax . 

We obtain the system 





=+

=

734

33

ba

a

 

Hence, 1=a , 1=b ; 
( ) xxy e1~ +=

. 

The general solution of the accompanying homogeneous equation is 

xCCy 2

210 e−+=
. 

Finally, we obtain 

( ) xx xCCy e1e 2

21 +++= −

. 

(Please note: here 
0=q

, but we did not take this into account, unlike case 

A, since in this case it is only taken into account whether 〈 is a root of the 

characteristic equation.) 

Example 30.13. Solve the equation 
( ) xxyyy 2e2106 +=−+

. 

Solution. We solve the characteristic equation: 

062 =−+ kk , 
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21 =k , 32 −=k . 

So, 〈 = 2 is the single root. 

The general solution of the accompanying homogeneous equation is 

xx CCy 3

2

2

10 ee −+=
. 

We find y~ . Obviously, y~  must be sought as 

( ) ( ) ( ) xxx bxaxbaxxxxQy 2222

1 eee~ +=+== ; 

( ) ( ) ( ) xxx bbxaxaxbxaxbaxy 22222 e222e2e2~ +++=+++= ; 

( ) ( )
( ) .e32484

e2222e24~

22

222

x

xx

babxaxax

bbxaxaxbaaxy

++++=

=++++++=

 

We substitute all these expressions in the original equation: 

( ) ( )
( ) ( ) .e210e6

e222e32484

222

2222

xx

xx

xbxax

bbxaxaxbabxaxax

+=+−

−++++++++

 

Reducing by 
x2e  and combining the like terms, we obtain: 





=−

=

,222

,1010

ba

a

 

i.e. a = 1, 0=b . Consequently, 
xxy 22e~ =

. We obtain 

xxx xCCy 223

2

2

1 eee ++= −

. 

Example 30.14. Solve the equation 
( ) xxyyy −−=++ e262

. 

Solution. Here 〈 = –1 is a double root of the characteristic equation 

0122 =++ kk . Therefore, we seek the particular solution 
y~

 in the form 
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 ( ) ( ) xx bxaxbaxx −− +=+= ee 232

. 

We have: 

( ) ( ) ( )( ) xxx bxxbaaxbxaxbxaxy −−− +−+−=+−+= e23ee23~ 23232

; 

( )( ) ( )( )
( )( ) .e2466

e23e2323~

23

232

x

xx

bbxaxxbaax

bxxbaaxbxbaaxy

−

−−

+−++−+=

=+−+−−+−+−=

 

We substitute it into the original equation; after combining the like terms, 

we obtain 

( ) ( ) xx xbax −− −=+ e26e26 . 

Hence , a = 1, 1−=b ; 
( ) xxxy −−= e~ 23

. 

We also find 
xx xCCy −− += ee 210 . 

We obtain the general solution: 

( ) xxx xxxCCy −−− −++= eee 23

21 . 

Naturally arises the question of finding a particular solution of a 

differential equation of the form 

( ) ( )xfxfqyypy 21 +=++
, 

where 
( )xf1  and 

( )xf2  are functions of different kinds (for example, 

( ) cbxaxxf ++= 2

1 , 
( ) xxf e2 =

). The following statement holds. 

Lemma. If y1 is a solution of the differential equation 

( )xfqyypy 1=++
, 

and y2 is a solution of the differential equation 

( )xfqyypy 2=++
, 
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then the sum of these solutions 21 yyy +=  is the solution of the 

differential equation 

( ) ( )xfxfqyypy 21 +=++ . 

(this lemma is called the “superposition principle”.) 

Proof. The lemma is proved easily - by direct substitution. We substitute 

the sum 21 yyy +=  into the left-hand side of the equation. We obtain the 

expression 

)()()( 212121 yyqyypyy +++++ . 

Regrouping the terms, we obtain 

( ) ( )222111 qyypyqyypy +++++ . 

But since y1 is a solution of the equation 
( )xfqyypy 1=++ , the 

expression in the first brackets is identically equal to 
( )xf1 . For a similar 

reason, the expression in the second bracket is equal to 
( )xf2 . So, the left-

hand side is identically equal to 
( ) ( )xfxf 21 +

. The equation turns into an 

identity: 
( ) ( ) ( ) ( )xfxfxfxf 2121 ++

. The proof is complete. 

Note that the assertion proved is also true for the case when the coefficients 

p and q depend on x: 
( )xpp =

, 
( )xqq =

. 

Example 30.15. Solve the equation 
xxyy e612105 ++=+
. 

Solution. Solving the equation 
12105 +=+ xyy

, we obtain: 
xCCy 5

210 e−+=
, 

xxy 2~ 2

1 +=
 (see Example 30.8). Obviously, 

xy e~
2 =

. Therefore, the general solution is 
xx xxCCy e2e 25

21 ++++= −

. 
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С. Let 
( ) ( ) ( ) xxQxxPxf x

n

x

m +=  sinecose
. In this case, we can use 

the technique applied in the previous case if we pass from trigonometric 

functions to exponential ones. In a more detailed course of mathematics, 

the Euler formula is considered, which expresses an exponential function 

with an imaginary exponent in terms of trigonometric functions (here i is 

the imaginary unit, 12 −=i ): 

xixix sincose += . (30.22) 

Substituting –x instead of x in this formula, we obtain 

xixix sincose −=−

. (30.23) 

From equalities (30.22) and (30.23) it is easy to find xcos  and xsin : 

2

ee
cos

ixix

x
−+

=
, i

x
ixix

2

ee
sin

−−
=

 

These formulas are also called Euler formulae. Applying them, we obtain 

( ) ( ) ( )
i

xQxPxf
xixi

x

n

xixi
x

m
2

ee
e

2

ee
e

−


−
 −

+
+

=
, 

or 

( ) ( ) ( ) ( ) ( ) ( ) ( )xi

nm

xi

nm xQ
i

xPxQ
i

xPxf −+








−+








+= e

2

1

2

1
e

2

1

2

1

. 

Here in square brackets are the polynomials whose degrees are equal to 

the largest of the degrees of 
( )xPm  and 

( )xQn , i.e. to the largest of the 

numbers m and n. Thus, we have obtained the right-hand side of the form 

considered in case B. Moreover, we can prove (we do not give this proof) 

that we can find a particular solution 
y~

 that does not contain complex 

numbers. 
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So, if 
( ) ( ) ( ) xxQxxPxf

x

n

x

m sinβecosβe
α+= 

, then y~  should be 

sought in the form: 

● ( ) ( ) xxvxxuy xx +=  sinecose~ , if + i  is not a root of 

the characteristic equation; 

● ( ) ( )( )xxvxxuxy xx +=  sinecose~ , if + i  is a root of 

the characteristic equation. 

Here 
( )xu  and 

( )xv  are polynomials whose degrees are equal to the largest 

degree of polynomials 
( )xPm  and 

( )xQn . 

Remark. Note that the indicated forms of particular solutions are preserved 

also in the case when in the right-hand side of the differential equation one 

of the polynomials, 
( )xPm  or 

( )xQn , is identically equal to zero, i.e. either 

( ) ( ) xxPxf x

m =  cose
, 

or 

( ) ( ) xxQxf x

n =  sine
. 

Let us consider in more detail a simpler case - a special case of case C. 

С0. Let 
( ) xNxMxf += sincos

. Applying Euler's formulae, we 

rewrite the differential equation 

xNxMqyypy +=++ sincos
 

as 

2i

ee

2

ee xixixixi

NMqyypy
−− −

+
+

=++
. 

Letting for brevity 
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1
22

M
i

NM
=+

, 
1

22
N

i

NM
=−

, 

We obtain 

xixi NMqyypy − +=++ ee 11 . (*) 

According to Lemma 30.3, the solution y~  of our differential equation is 

the sum of the solutions 1
~y  and 2

~y  of equations 

xiMqyypy =++ e1 , 
xiNqyypy −=++ e1 . 

Note that the imaginary number i  cannot be the double root of the 

quadratic equation 02 =++ qpkk  whose coefficients p and q are real 

numbers. 

A particular solution 1
~y

 of the equation 
xiMqyypy =++ e1  has the 

form: 

● xiAy = e~
1

, if i  is not a root of the characteristic equation; 

● xiAxy = e~
1

, if i  is a root of the characteristic equation. 

A particular solution 2
~y

 of the equation 
xiNqyypy −=++ e1  has the 

form: 

● xiBy −= e~
2

, if – i  is not a root of the characteristic equation; 

● xixBy −= e~
2

, if – i  is a root of the characteristic equation. 

Obviously, the numbers 
i

 and –
i

 either both are, or both are not the 

roots of the characteristic equation (since if 
+ i

 is a root of the quadratic 

equation, then 
− i

 is also a root of this equation). 
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Therefore, a particular solution of our equation will have the form: 

● xixi BAy − += ee~ , if  i  are not the roots of the 

characteristic equation; 

● ( )xixi BAxy − += ee~ ,if  i  are the roots of the 

characteristic equation. 

We apply the Euler formula [see (30.22) and (30.23)] and obtain 

( ) ( ) xbxaxBAixBABA xixi +=−++=+ − sincossincosee , 

where, for brevity, aBA =+ , 
( ) bBAi =− . 

Hence we obtain the rule for finding a particular solution of the differential 

equation  

xNxMqyypy +=++ sincos . 

So, if 
( ) xNxMxf sinβcosβ +=

, then a particular solution y~  must be 

sought in the form 

● xbxay += sincos~ , if i® is not a root of the characteristic 

equation; 

● ( )xbxaxy += sincos~ , if i® is a root of the characteristic 

equation. 

Example 30.16. Solve the equation 
xyyy 2sin82 =−+

. 

Solution.. The characteristic equation 022 =−+ kk  has the roots 
11 =k

, 

22 −=k
. Here 

2=
, therefore, 

i
 is not a root of the characteristic 

equation. Therefore, a particular solution 
y~

 must be sought in the form 

xDxCy 2sin2cos~ +=
, 
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xDxCy 2cos22sin2~ +−= , 

xDxCy 2cos42cos4~ −−= . 

Substitute: 

( ) ,2sin82sin2cos2

2cos22sin22sin42cos4

xxDxC

xDxCxDxC

=+−

−+−−−

 

( ) ( ) xxDCxDC 2sin82sin622cos26 =−−++−
. 

We equate the coefficients at x2cos  and x2sin : 





=−−

=+−

.862

,026

DC

DC

 

Hence 5

2
−=C

, 5

6
−=D

. Consequently, 

xxy 2sin
5

6
2cos

5

2~ −−=
. 

We find 0y
: 

xx CCy 2

210 ee −+=
. 

We obtain the general solution: 

( )xxCCy xx 2sin62cos2
5

1
ee 2

21 +−+= −

. 

Example 30.17. Solve the equation 
xyy 2cos4 =+

. 
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Solution. The characteristic equation 042 =+ kk  has the roots ik 21 = , 

ik 22 −= . Here 2= , therefore, i  is the root of the characteristic 

equation; therefore, a particular solution y~  must be sought in the form 

( )xDxCxy 2sin2cos~ += . 

We differentiate: 

( )xDxCxxDxCy 2cos2sin22sin2cos~ +−=+= , 

( ) ( )
( ) ( )
( ).2sin2cos4

2cos2sin42sin2cos4

2cos2sin22cos2sin2~

xDxCx

xDxCxDxCx

xDxCxDxCy

−−+

++−=−−+

++−++−=

 

Substituting into the equation, we obtain: 

( ) ( )
( ) .2cos2sin2cos4

2sin2cos42cos2sin4

xxDxCx

xDxCxxDxC

=++

+−−++−

 

Combining the like terms, we obtain 

xxDxC 2cos2cos42sin4 =+− . 

Equating the coefficients at x2cos  and x2sin , we obtain: 04 =− C , 

14 =D ; hence, 0=C , 4

1
=D

. Thus, a particular solution to this equation 

is 

xy 2sin
4

1~ =
. 

The general solution of the accompanying homogeneous equation is 

xCxCy 2sin2cos 210 +=
. 

Finally, we obtain 
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xxCxCy 2sin
4

1
2sin2cos 21 ++=

. 

Example 30.18. Solve the equation 

( )xxyy x sin2cos6e2 −=− . 

Solution. Here 2= , 1= . The characteristic equation 012 =−k  has 

the roots 11 =k , 12 −=k . Since ii +=+ 2  is not the root of the 

characteristic equation, we are seeking a particular solution in the form 

( )xDxy x sincose~ 2 += . 

We find y~
 and y ~

: 

( ) ( )xDxCxDxCy xx cossinesincose2~ 22 +−++= , 

( ) ( )

( ) ( )

( ).sin4sin3cos4cos3e

sincosecossine2

cossine2sincose4~

2

22

22

xCxDxDxC

xDxCxDxC

xDxCxDxCy

x

xx

xx

−++=

=−−++−+

++−++=

 

Substituting the obtained expressions into the equation and combining the 

like terms, we obtain (after reduction by 
x2e ): 

( ) ( ) xxxCDxDC sin2cos6sin42cos42 −=−++
. 

Equating the coefficients at xcos  and xsin , we obtain the system 





=+−

=+

.224

,642

DC

DC

 

Solving this system, we find 1=C , 1=D . 

A particular solution of this equation is 
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( )xxy x sincose~ 2 += . 

The general solution to the accompanying equation is 

xx CCy −+= ee 20 . 

We obtain the general solution of the given equation: 

( )xxCCy xxx sincoseee 2

21 +++= −

. 

Questions 

1. What is the general form of a second-order differential equation? 

2. What is a general solution of a second-order differential equation? 

3. What differential equations can be reduced in order? 

4. What is called a linear differential equation of order n? 

5. What linear differential equation of order n is called homogeneous? 

6. What are the properties of solutions of a linear homogeneous 

differential equation? 

7. What system of functions is called linearly independent? 

8. What does the Wronski determinant for two functions look like? 

9. What is the structure of the solution of a homogeneous linear 

differential equation? 

10. What is the characteristic equation? 

11. What does the general solution of a second-order homogeneous 

linear differential equation look like when the roots of the characteristic 

equation coincide? 

12. What is the structure of the general solution of an inhomogeneous 

linear differential equation? How can one obtain a general solution of the 

differential equation 
( )xfqyypy =++

, knowing the solution of the 

differential equation 
0=++ qyypy

? 
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13. In what form should a particular solution of the differential equation 

( )xPqyypy n=++
 be sought when the right-hand side 

( )xPn  is a 

polynomial of degree n? Is this particular solution always also a 

polynomial of degree n? 

14. In what form should a particular solution of the differential equation 

( )xPqyypy n

x=++ e
 be sought? 

15. What is the superposition principle? 

16. What is the rule for finding a particular solution of the differential 

equation xNxMqyypy +=++ sincos ? 

Chapter 31. Difference 

equations 

31.1. Basic definitions 

In mathematical applications, among functions of continuous argument, 

we also have to deal with functions of discrete argument – i.e. with 

functions defined on a finite (or countable) discrete set. Examples of such 

functions are functions defined by tables, numerical sequences (see chapter 

14), series (see section IX). 

Discrete argument functions are usually denoted by 
( )kxf

 or 
( )kxy

. The 

distance kkk xxh −= +1 , k = 1, 2, ... between adjacent values of the 

argument can be any positive numbers. However, the most interesting 

thing is the case where values kh
 are the same: 

hhk =  for all k = 1, 2, ... . 

This number h is usually called a sampling step. In this case, 
khxk = , and 
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function 
( )kxf

 becomes the number function k, i.e. 
( ) ( )khfxf k =

, k = 

1, 2, ... . 

Definition. A grid on a segment  ba,  is any finite set of points of this 

segment. Grid points are called its nodes. 

Note that we were already dealing with grids and their nodes — when we 

defined the concept of a definite integral and when we were engaged in the 

approximate calculation of definite integrals using the formulas of 

rectangles and trapezoids and the Simpson formula (see § 22.5). 

A grid is called uniform if its nodes divide a segment  ba,  into equal 

segments. The length h of such partial segment is called the grid step. 

Obviously, n

ab
h

−
=

, where n is a number of partial segments. 

The set of points in  ba,   

 nkkhaxi ...,,2,1,0, =+=
 

forms a uniform grid with step h. 

In case the nodes of the grid divide segment  ba,  into unequal segments, 

the grid is called nonuniform. 

Definition. A function defined at grid points is called a mesh function. 

The corresponding values of the mesh function at grid nodes are usually 

denoted by ky
 or kf . If the mesh function is defined on a uniform grid, 

then its values are denoted by ( )ky , where k is the number of a grid node 

(k = 0, 1, 2, ..., n). In this case, the mesh function is considered as a function 

of integer argument. 

In order to obtain the corresponding mesh function ( )khy  from the 

function of continuous argument ( )xy , it is necessary to replace argument 

x with kh. 
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Example 31.1. For function xxy += 24 , defined on interval [0, 1], 

compose uniform grid with n = 4 and the corresponding mesh function. 

Solution. Obviously, the grid step h = 0.25. We get the grid {0, 0.25, 0.5, 

0.75, 1}. The mesh function is also a set consisting of five numbers: {0, 

0.5, 1.5, 3, 5}. 

An analogue of the first derivative of the continuous argument function is 

the first difference of a grid function. 

The first-order difference or the first difference of mesh function ( )ky

, denoted by ( )ky , is defined as: 

( ) ( ) ( )kykyky −+= 1 . (31.1) 

The second difference ( )ky2  of function ( )ky  is defined as the first 

difference from its first difference: 

( ) ( ) ( )kykyky −+= 12

. (31.2) 

Substituting the values ( )ky  and ( )1+ ky , determined by formula 

(31.1), we obtain: 

( ) ( ) ( ) ( )kykykyky ++−+= 1222

. 

The difference ( )ky3  is determined similarly. Generally, the difference 

of any order is determined in the same way. In this case, the m-th order 

difference ( )kym  can be represented as a linear combination of values 

( )ky , ( )1+ky , ..., ( )mky + . In particular, 

( ) ( ) ( ) ( ) ( ) ( ) ( )kykykykykykyky −+++−+=−+= 132331 223

. 

Example 31.2. Find all differences up to the m-th order inclusively for 

function ( ) kky = e . 
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Solution. ( ) ( ) ( ) kkkky + −=−= e1eee 1

. 

We see that the first difference is proportional to the function itself 
ke . 

Hence, ( ) ( ) kky  −= e1e
22

, ( ) ( ) kky  −= e1e
33

, ..., 

( ) ( ) kmm ky  −= e1e . 

Definition. Equation of form 

( ) ( ) ( )( ) 0...,,,, = kykykykF m

, (31.3) 

where ( )ky  is an unknown function of integer argument, and ( )ky , ..., 

( )kym  – its differences, is called a difference equation or a finite 

difference equation of the m-th order. 

The solution of a difference equation is any mesh function that turns it 

into an identity. 

Earlier, we made sure that finite differences of various orders can be 

expressed in terms of original mesh function values. Therefore, equation 

(31.3) can be represented as: 

( ) ( ) ( )( ) 0,1...,,,1 =++ kykymkykF . (31.4) 

Difference equations have numerous applications in discrete-time models 

of economic dynamics. 

31.2. Linear difference equations  

Definition. Difference equation of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( )kfkykamkykamkyka m =++−+++ ...110 , (31.5) 
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where 
( )ka j  and ( )kf  are known functions, and ( )jky +  is an unknown 

function from k (j = 0, 1, ..., m), moreover 
( )kam  and 

( )ka0  are not equal 

at any k, called the m-th order linear difference equation. 

In case coefficients 0a
, 1a , ..., ma

 are constants, methods for solving such 

equations are similar to methods for solving linear differential equations 

with constant coefficients. 

Together with an inhomogeneous equation 

( ) ( ) ( ) ( )kfkyamkyamkya m =++−+++ ...110  (31.6) 

the corresponding homogeneous equation is considered 

( ) ( ) ( ) 0...110 =++−+++ kyamkyamkya m . (31.7) 

For difference equations (in particular, for linear difference equations), as 

well as for their differential analogues, the concepts of general and 

particular solutions are defined. 

General solution of equation (31.6) has the form: 

( ) ( )mcckky ...,,, 1=
, 

where mcc ...,,1  are arbitrary constants; their number is equal to the order 

of the equation. 

Particular solution of equation (31.6) is distinguished by setting the 

values of function ( )ky  at m arbitrary but consecutive points. 

As well as for linear differential equations, the concept of a linearly 

independent system of solutions is determined, it is proved that the general 

solution of equation (31.6) has the form  

( ) ( ) ( )kykyky ~
0 +=

, (31.8) 
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where 
( )ky0  is a general solution of the corresponding homogeneous 

equation (31.7), and ( )ky~  is some particular solution of the original 

equation (31.6). 

In the future, we will restrict ourselves to the consideration of the second-

order difference equations. The results that we will obtain can be extended 

to difference equations of higher orders. 

So, we consider a second-order homogeneous linear difference equation:  

( ) ( ) ( ) 012 =++++ kqykpyky . (31.9) 

We will search the solution to this equation in the form: 

( ) kky = . 

We obtain a characteristic equation after obvious simplifications: 

02 =++ qp . (31.10) 

Three options are possible. 

1. Both roots ⎣1 and ⎣2 of equation (31.10) are real and distinctive. In this 

case, the general solution has the form:  

( ) kk ccky 22110 +=
. (31.11) 

Example 31.3. Find a general solution for the difference equation  

( ) ( ) ( ) 06152 =++−+ kykyky . 

Solution. Characteristic equation 0652 =+−  has two distinctive real 

roots: 31 = , 22 = . Therefore, according to formula (31.11), the general 

solution of the given equation is mesh function 

( ) kk ccky 2·3· 210 +=
. 
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2. Both roots are real and equal to each other: == 21 . Then the 

general solution has the form 

( ) kk kccky += 210 . 

3. The characteristic equation has complex conjugate roots i+=1 , 

i−=2 . 

Represent the roots in trigonometric form: ( )+= sincos1 ir , 

( )−= sincos2 ir , where the module is 
22 +=r

, and the 

argument ϕ is defined by the ratio 


=tg

. 

The general solution has the form 

( ) ( )+= kckcrky k sincos 210 . 

Let us now turn to the second-order inhomogeneous linear difference 

equation: 

( ) ( ) ( ) ( )kfkqykpyky =++++ 12 . (31.12) 

Its general solution has the form (31.8). To find a particular solution ( )ky~  

of equation (31.12) the method of indefinite coefficients is often used. 

Example 31.4. Solve equation 

( ) ( ) ( ) kkykyky 6·410172 =++−+ . 

Solution. To find a general solution to the corresponding homogeneous 

equation, we compose the characteristic equation: 

01072 =+− . 

Its roots are 51 = , 22 = . Hence, 
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( ) kk ccky 2·5· 210 +=
. 

To find a particular solution ( )ky~  to the original equation, we use the 

indefinite coefficients method. We will search ( )ky~  in the form 

( ) kcky 6·~ = . Substituting this expression in the equation, we obtain: 

kkkk ccc 6·46·106·76· 12 =+− ++

, 

( ) kkc 6·46·104236· =+− . 

Hence, 1=c , which means, 

( ) kky 6~ = . 

Adding
( )ky0  and ( )ky~ , we get the general solution of the equation: 

( ) kkk ccky 62·5· 21 ++= . 

31.3. The Samuelson –Hicks business 

cycle model 

As an example of the difference equations application, we consider the 

Samuelson–Hicks business cycle model known in macroeconomic 

theory. This model uses the assumption that the volume of investment is 

directly proportional to the growth of national income. This assumption – 

acceleration principle already known to us – is described by the following 

equation: 

( ) ( ) ( )( )21 −−−= kykykI , (31.13) 

where ⎟ is the proportionality coefficient called the acceleration factor 

(⎟ > 0), ( )kI  is the amount of investments in the period k (in the k-th 
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calendar year), and ( )1−ky , ( )2−ky  is the national income in the 

previous periods – in the ( )1−k -th and ( )2−k -th respectively. It is 

assumed that consumption ( )kC  in the considered k-th period also linearly 

depends on the value of national income ( )1−ky  for the previous period: 

( ) ( ) bkaykC +−= 1 . (31.14) 

It is assumed that income ( )ky  is divided between producers and 

consumers. Therefore 

( ) ( ) ( )kIkCky += . (31.15) 

We substitute in (31.15) the expression for ( )kI  from (31.13), as well as 

the expression for ( )kC  from (31.14): 

( ) ( ) ( ) ( ) 211 −−−++−= kykybkayky . 

We get the so-called Hicks equation: 

( ) ( ) ( ) ( ) bkykyaky =−+−+− 21 . (31.16) 

If we assume that the values a and ⎟ are constant over the considered time 

periods, then equation (31.16) is a second-order linear inhomogeneous 

difference equation with constant coefficients.  

If we assume that the value of national income remained constant over the 

considered period, i.e.  

( ) ( ) ( ) ykykyky ~21 =−=−= , 

we can find a simple particular solution to equation (31.16): 

( ) byyay +−+= ~~~
. 

From here 
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( ) 1
1~ −
−= aby . (31.17) 

Expression ( ) 1
1

−
− a  in formula (31.17) is called the Keynes multiplier. 

Example 31.5. Consider the Samuelson-Hicks model, provided a = 0,48, 

⎟ = 0,72, b = 1,3. Find a general solution to the Hicks equation. 

Solution. In this case, equation (31.16) has the form: 

( ) ( ) ( ) 3,1272,012,1 =−+−− kykyky . 

The particular solution to this equation, according to (31.17), is 

( ) 5,2
48,01

3,1~ =
−

=ky

. 

We write the characteristic equation: 

072,02,12 =+− . 

Its roots are 








 



==

4
sin

4
cos2·6,06,06,02,1 ii

. 

The general solution to the corresponding homogeneous equation is 

( ) ( ) 






 
+


=

4
sin

4
cos26,0 210

k
c

k
cky

k

. 

We get the general solution of this equation: 

( ) ( ) 






 
+


+=

4
sin

4
cos26,05,2 21

k
c

k
cky

k

. 

In the considered example, dynamics are oscillatory with a damping 

amplitude. Obviously, with complex conjugate roots of the characteristic 

equation with the absolute value exceeding one, dynamics would be 

growing. In general, depending on the values of a and ⎟ dynamics can be 
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growing or damping and at the same time have or not have an oscillatory 

character. 

Questions 

1. Which functions are called mesh functions? 

2. How are the first, second and subsequent differences of the grid 

function determined? 

3. What equations are called finite-difference? 

4. What is a characteristic equation for homogeneous linear difference 

equation? 

5. How to find a general solution to the inhomogeneous difference 

equation? 
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Section IX. SERIES 

Chapter 32. Number series 

32.1. Concept of numeric series 

Definition. Consider an arbitrary numerical sequence 

 1a , 2a , …, na
, … .  

The formally composed infinite sum of all elements of this sequence, i.e. 

expression of the form 

......21 ++++ naaa
 (32.1) 

is called a numeric series or simply series.  

The numbers themselves 1a , 2a , …, na
, … are called terms of series, the 

n-th term of series na
 is the general term of series.  

A series is considered given if its general term na
 is given. For example, 

to set series 

,...,
8

1

6

1

4

1

2

1
++++

 
it is necessary to indicate that its terms are given by the formula 

.2

1

n
an =

 

Series (32.1) is also written as 



=1n

na

. 
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Note that from the real numbers theory we only know what the sum of a 

finite number of numbers means. The sum of an infinite number of terms 

has not yet been determined. 

Consider the sum of a finite number with the first terms of series: 

,...

..................

,

,

,

321

3213

212

11

nn aaaaS

aaaS

aaS

aS

++++=

++=

+=

=

 

called partial sums of series (32.1). 

Since the number of series terms is infinite, the partial sums of series form 

an infinite numerical sequence: 

1S , 2S , 3S
, …, nS

, … . 

Definition. A series is called convergent if there is a finite limit to 

sequence of its partial sums, i.e. 

SSn
n

=
→

lim
. (32.2) 

Otherwise, the series (32.1) is called divergent. 

The number S defined by (32.2) is called the sum of series. 

Let series (32.1) converge, S be its sum. Consider the difference between 

value S and partial sum nS
 of this series: nn rSS =−

. The value nr  is 

called a remainder of series. It's obvious that 
( ) 0limlim =−=

→→
n

n
n

n
SSr

. 

If series (32.1) converges, its sum is written in the form of symbolic 

equality 

......21 ++++= naaaS
, or 




=

=
1n

naS

. 
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Example 32.1. Consider a series composed of infinite geometric 

progression terms: 

...... 12 +++++ −nbqbqbqb  . (32.3) 

Partial sum nS
 of this series is the sum of n terms of geometric progression: 

12 ... −++++= n

n bqbqbqbS
. 

This sum, as known, with 1q  has the form 

( )
q

bq

q

b

q

qb
S

nn

n
−

−
−

=
−

−
=

111

1

. 

If 
1q

, that 
0lim =

→

n

n
q

. Therefore 

q

b

q

bq

q

b
S

n

n
n

n −
=









−
−

−
=

→→ 111
limlim

, 

i.e. series (32.3) converges and its sum 
q

b
S

−
=

1
. 

It is easy to verify that for 
1q

series (32.3) diverges.  

Example 32.2. Consider series 

( )
...

1

1
...

32

1

21

1
+

+
++


+

 nn  . 

Obviously, ( ) 1

11

1

1

+
−=

+
=

nnnn
an

. Therefore 










+
−++








−+








−=

1

11
...

3

1

2

1

2

1
1

nn
Sn

. 
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If you open brackets, then all summands, except the first and last one, will 

be mutually destroyed. We get 

1

1
1

+
−=

n
Sn

. 

From here 
1lim =

→
n

n
S

. So, the series converges and its sum is equal to 1. 

32.2. Basic properties of series 

Property 1. If series 
......21 ++++ naaa

 converges and its sum is equal 

to S, then for any number   series 
......21 ++++ naaa

 also 

converges and its sum is equal to S .  

Proof. Let a convergent series be given 

......21 ++++ naaa
 (32.1) 

and let  S be      its sum. Form series 

......21 ++++ naaa
. (32.4) 

Let  

nn aaaS +++= ...21 , 

nn aaaS +++= ...21 . 

Then,      obviously, 
SSn =

. But by condition 
SSn

n
=

→
lim

. So 

SSSS n
n

n
n

n
n

===
→→→

limlimlim
, Q.E.D. 

Property 2. If series 
......21 ++++ naaa

 and 
......21 ++++ nbbb

 

converge and their sums are equal to S and S  respectively, then series 
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( ) ( ) ( ) ......2211 ++++ nn bababa
 also converges and its sum is 

equal to SS  . 

Proof. Consider series 

......21 ++++ naaa
, (32.1) 

......21 ++++ nbbb
, (32.5) 

( ) ( ) ( ) ( ) ......332211 +++++++++ nn babababa
. (32.6) 

Let nS
, nS 

, nS 
 be      the partial sums of series (32.1), (32.5), (32.6) 

respectively: 

nn aaaaS ++++= ...321 , 

nn bbbbS ++++= ...321 , 

( ) ( ) ( ) ( )nnn babababaS ++++++++= ...332211 . 

Let S be      the sum of series (32.1): 
SSn

n
=

→
lim

 and let S   be      the sum 

of series (31.5): 
SSn

n
=

→
lim

. Then there is a limit 

( ) SSSSSSS n
n

n
n

nn
n

n
n

+=+=+=
→→→→

limlimlimlim
, 

i.e. series (32.6) converges and its sum is equal      to SS + . 

Property 3. Dropping a finite number of series terms does not affect its 

convergence (divergence).  

Proof. In this case, all partial sums of series, starting from a certain sum, 

will change by the same constant number, equal to the sum of dropping 

terms. Therefore, a sequence of original series partial sums has a finite limit 

if and only if there is a finite limit to the sequence of series partial sums 

obtained from the original by dropping a finite number of terms. 
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We distinguish another property as well. 

Necessary criterion of series convergence 

Property 4. General term na
 of the converging series tends to zero with 

→n . 

Proof. Let the series converge and its sum be equal to S, i.e. 
SSn

n
=

→
lim

. 

Obviously, 1−−= nnn SSa
. Also obviously that 

SSn
n

=−
→

1lim
. Therefore, 

( ) 0limlimlimlim 11 =−=−=−= −
→→

−
→→

SSSSSSa n
n

n
n

nn
n

n
n . 

Note that we established only a necessary criterion for convergence, which 

is not sufficient. From the fact that 
0lim =

→
n

n
a

 it does not follow yet that 

the series converges. 

Example 32.3. Consider series 
...

1
...

3

1

2

1
1 +++++

n  , which is called 

harmonic. 

Obviously, for harmonic series, the necessary criterion for convergence is 

satisfied 
0

1
limlim ==

→→ n
a

n
n

n . Despite this let us prove that a harmonic 

series diverges. Assume the opposite, i.e. that the series converges and 

SSn
n

=
→

lim
. In this case, obviously,       

SS n
n

=
→

2lim
, therefore:  

( ) 0limlimlim 22 =−=−=−
→→→

SSSSSS n
n

n
n

nn
n . (*) 

But 

2

1

2

1

2

1
...

2

1

2

1

2

1
...

2

1

1

1
2 ==+++++

+
+

+
=−

n
n

nnnnnn
SS nn

, 
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i.e. 2

1
2 − nn SS

, and this is contrary to equality (*). The resulting 

contradiction means that our assumption of a harmonic series convergence 

is incorrect. 

Note that we can prove the divergence of a series with the help of the 

necessary criterion for convergence. 

Example 32.4. Investigate the convergence of series 

...
57

12
...

26

5

19

3

12

1

57

12

1

+
+

−
++++=

+

−



= n

n

n

n

n  . 

Solution. 
0

7

2

57

12
limlim =

+

−
=

→→ n

n
a

n
n

n , therefore, this series diverges. 

32.3. Series with non-negative terms  

A series with non-negative terms (i.e., series whose terms are all non-

negative) are the simplest type of number series. The main property of a 

series with non-negative terms: the sequence of the partial sums of such 

a series is non-decreasing. 

Convergence criterion 

Theorem 32.1. For convergence of a series with non-negative terms, it is 

necessary and sufficient that the sequence of its partial sums is bounded. 

Proof. 1. Necessity. Let the series converge. This means that the sequence 

of its partial sums converges. A convergent sequence, as you know, is 

limited. 

2. Sufficiency. Since the partial sums sequence of series is bounded and 

monotonic, it converges by Theorem 14.4. 
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Comparison criterions 

Theorem 32.2 (the first comparison criterion). Let two series with 

positive terms be given: 

......21

1

++++=


=

n

n

n aaaa

 , (32.7) 

......21

1

++++=


=

n

n

n bbbb

 , (32.8) 

moreover nn ba 
 for all n. Then the convergence of series (32.7) follows 

from the convergence of series (32.8), and the divergence of series (32.8) 

follows from the divergence of series (32.7). 

Proof. Let nS
 be the partial sum of series (32.7), nS

 be the partial sum of 

series (32.8). From the theorem’s conditions it follows that nn SS 
. If 

series (32.8) converges, then sequence 
 nS

 is bounded. Therefore, 

sequence 
 nS

 is also bounded and converges by      Theorem 14.4, i.e. 

series (32.7) converges.  

If series (32.7) diverges, then series (32.8) also diverges. Indeed, if series 

(32.8) converges, then series (32.7) should also converge (as it has just 

been proved above). The theorem is proved. 

Note that under the conditions of Theorem 32.2, series (32.8) is called the 

majorant of       series (32.7), and series (32.7) is called the minorant of 

series (32.8). 

The proved theorem can also be stated in the following convenient form 

for memorization: if the majorant converges, then the minorant converges; 

if the majorant diverges, then the majorant diverges. 
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We consider applications of Theorem 32.2. 

Example 32.5. Investigate the convergence of series 



= +1 2

1

n
n n . 

Solution. Obviously, 
nn n 2

1

2

1


+ , and series 



=1 2

1

n
n

 converges (sum of 

infinite decreasing geometric progression). Consequently, this series also 

converges. 

Example 32.6. Investigate the convergence of series 



=1

1

n n . 

Solution. Since nn

11


, and series 



=1

1

n n  diverges (this is harmonic 

series), then this series diverges. 

Theorem 32.3 (the second comparison criterion). Let (32.7) be a series 

with non-negative terms and (32.8) – with positive terms, and let there be 

a non-zero finite limit 

l
b

a

n

n

n
=

→
lim

. 

Then both series (32.7) and (32.8) converge or diverge together. 

Proof. According to the definition of the limit for arbitrary 0 , there 

exists such N that for all Nn  that the following inequality is satisfied: 

+− l
b

a
l

n

n

, or 
( ) ( ) nnn blabl +−

. 

Let series (32.8) converge. Then by property 1 (see §32.2) series 

( )


=

+
1n

nbl

, and by theorem 32.2 series (32.7) converges. Similarly, if 
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series (32.7) converges, then by theorem 32.2 series

( )


=

−
1n

nbl

 converges 

and by the same property 1 series (32.8) converges. 

The statement of series divergence theorem is proved similarly. 

Comment. It can be assumed that the common terms of series (32.7) and 

(32.8), i.e. na
 and nb

 are infinitesimal at n → ∞ (otherwise everything 

would be clear by itself: series, whose common term does not tend to zero, 

diverges). Therefore theorem 32.3 can be reformulated as follows: if terms 

na
 and nb

 of two positive series are infinitesimal of the same order, then 

these series converge or diverge together. 

Example 32.7. Investigate the convergence of series 



=

−

1
2

73

n n

n

. 

Solution. Let us compare this series with divergent harmonic series 



=1

1

n n  

(see example 32.3). Since  

03
73

lim
1

:
73

lim
2

2

2
=

−
=







 −

→→ n

nn

nn

n

nn
, 

then this series diverges. 

Other convergence criteria 

Note that both comparison criterions discussed above (theorems 32.2 and 

32.3) have the same disadvantage: to investigate the convergence of any 

positive series with this criterion, for comparison with this series it is 

necessary to choose some other series, the convergence (or divergence) of 

which is known. There are no general methods for finding such a series. It 

all depends on intuition, on how extensive the researcher's stock of such 

"reference" series is, the convergence or divergence of which is known. 
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Therefore, it is very useful to have at your disposal such convergence 

criteria, for which it is not necessary to involve any new series, except for 

the studied one. 

Theorem 32.4 (D'Alembert criterion). Let for series 



=1n

na

 there be a 

limit 

l
a

a

n

n

n
=+

→

1lim

. (32.9) 

Then, when 1l  the series converges, and when 1l  the series diverges.  

Proof. Due to the definition of limit for any 0 , there exists such number 

N that for all Nn   inequalities are satisfied: 

+− + l
a

a
l

n

n 1

. (32.10) 

1. Let 1l . Then take such  , that 1+l . Denote ql =+ . From 

inequalities (32.7) we have: 

q
a

a

n

n +1

, or 
qaa nn +1  

for all Nn  . We get a system of inequalities 

qaa NN 12 ++ 
, 

2

123 qaqaa NNN +++ 
, … . 

So, the terms of series starting from 2+Na
 are smaller than the 

corresponding terms of decreasing geometric progression. Therefore, the 

series converges. 
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2. Let 1l . Then take such  , that 1−l . Then it follows from the left 

inequality (32.10) that nn aa +1  for all Nn  , i.e., the terms of series 

starting from ( )1+N -th increase, so the limit of the common term is not 

equal to zero; hence, the series diverges.  

Example 32.8. Investigate the convergence of series 



=1

2

2n
n

n

. 

Solution: 

( ) ( )
1

2

1

2

1
lim

2
:

2

1
limlim

2

22

1

2

1 =
+

=











 +
=

→+→

+

→ n

nnn

a

a

nnnn
n

n

n

. 

Consequently, the series converges on the basis of D'Alembert criterion. 

Comment. When 1=l , the series can both converge and diverge. In 

particular, for series 



=1

1

n n  and 



=1
2

1

n n , as it is easy to see, 1=l , but the 

first of them (the harmonic series), as we know, diverges, and the second 

one, as we learn later, converges. 

Theorem 32.5 (Cauchy criterion). If for terms of series 



=1n

na

 there is a 

limit 

lan
n

n
=

→
lim

, 

that series converges when 1l  and diverges when 1l . 

The Proof of this theorem is also based on the fact that when 1l , the 

terms of the series starting from some number are less than the terms of 

some infinite decreasing geometric progression and when 1l  the total 

term of series does not tend to zero. 

1. Let l < 1. Take some number q satisfying the relation 
1 ql

. 



Chapter 32. Number series  

570 

Since 
lan

n
n

=
→

lim
, then starting from some number Nn =  the inequality 

will be satisfied  

lqlan
n −−

. 

It follows that 

qan
n  , 

or, which is the same, 

n

n qa 
 (*) 

for all Nn  . 

Compare two series: 

...... 2121 ++++++ ++ NNN aaaaa
, (32.1') 

...21 +++ ++ NNN qqq . (**) 

The terms of series (**) form a decreasing geometric progression (its 

denominator is q, by condition q <1). Therefore, series (**) converges. We 

know that discarding a finite number of series terms does not affect its 

convergence. It follows from condition (*) that the terms of series (32.1 ') 

starting with Na
 are smaller than the corresponding terms of converging 

series (**). Therefore, series (32.1) converges. 

2. Let 1l . In this case, it is easy to verify that the limit of the series 

general term is not equal to zero; therefore, the series diverges. The 

theorem is proved. 

Example 32.9. Investigate the convergence of series 



=









−

1

2

1
1

n

n

n . 

Solution. Apply the Cauchy criterion 
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1
e

1
e

1
1limlim 1 ==








−= −

→→

n

n

n
n

n n
a

. 

Therefore, the series converges. 

Note that when 1=l  the Cauchy criterion also does not answer the 

question of the series convergence. 

It should be noted that Cauchy and D'Alembert criteria are effective mainly 

for finding out the convergence of «rapidly» converging series, whose 

terms are infinitesimal of the same (or higher) order as the terms of 

decreasing geometric progressions. We have already noted that the 

D'Alembert criterion does not answer the question of convergence or 

divergence of harmonic series 

...
1

...
3

1

2

1
1 +++++

n , 

which, as we know, diverges, as well as the convergence or divergence of 

generalized harmonic series 

...
1

...
3

1

2

1
1

222
+++++

n , 

which, as we will know soon, converges. 

Theorem 32.6 (integral convergence criterion). Let the terms of series 




=1n

na

 not increase, i.e. 
......21  naaa

 , and let ( )xf  be such 

continuous non-increasing function defined for 1x  that 

( ) 11 af = , ( ) 22 af = , …, 
( ) nanf =

, … . 
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Then for the convergence of series 



=1n

na

, it is necessary and sufficient 

that the integral 

( )


1

dxxf

 

converges. 

Proof. Since ( )xf  is monotone, then for  1, + nnx  the following 

inequality is satisfied ( ) ( ) ( )1+ nfxfnf , or 

( ) 1+ nn axfa
 (32.11) 

for any n. 

Integrate (32.8) on segment  1, +nn : 

( ) 
+

+

++



1

1

11 n

n

n

n

n

n

n

n dxadxxfdxa

. 

We have 

( ) 1

1

+

+

  n

n

n

n adxxfa

. (32.12) 

Consider series 

( ) ( ) ( ) ......

13

2

2

1

++++ 
+n

n

dxxfdxxfdxxf

 . (32.13) 

Its n-th partial sum nS
 has the form  
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( ) ( ) ( ) ( ) ( )
+++

=+++++=

1113

2

2

1

......

n

n

n

n

n

n

n dxxfdxxfdxxfdxxfdxxfS

. (32.14) 

The convergence of series (32.10) means the existence of finite limit of its 

partial sums sequence (32.11), i.e. the convergence of improper integral 

( )


1

dxxf

      since  

( ) ( )
+

→→
==

1

1

1

limlim dxxfdxxfS

n

n
n

n

. 

If the series converges, then, according to theorem 32.2, due to the left 

inequality (32.12), series (32.13) must also converge, and hence improper 

integral 

( )


1

dxxf

. Conversely, if integral 

( )


1

dxxf

 converges, i.e. series 

(32.13) converges, then by the same theorem 32.2 series  

...... 132

1

1 +++++= +



=

+ nn

n

n aaaaa

 , 

must converge and therefore, this series 



=1n

na

. 

Example 32.10. Find out for what 0  series 



=


1

1

n n  converges (this 

series is called generalized harmonic).  

Solution. Consider function 
( )


=

x
xf

1

, 1x . This function is 

monotonously decreasing. Therefore, the convergence of the given series 
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is equivalent to the convergence of improper integral 





1
x

dx

. It was 

previously established (example 24.2) that this integral converges when 

1  and diverges when 10  . Therefore, this series converges when 

1  and diverges when 1 . 

32.4. Series with terms of the arbitrary 

sign 

Let us proceed to the study of series containing both positive and negative 

terms. 

Definition. The number series is called alternating if it has an infinite 

number of both positive and negative terms. 

Consider series  

......21

1

++++=


=

n

n

n aaaa

 (*) 

and besides, the series 

......21

1

++++=


=

n

n

n aaaa

 . (**) 

It can be proved that from the convergence of series (**) follows the 

convergence of series (*). 

Series (*) is called absolutely convergent if series (**) converges. 

Series (*) is called conditionally convergent if it converges, but series 

(**) composed of modules of its terms diverges. 
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Definition. A number series 



=1n

na

 is called alternating if for any n the 

terms of series na
 and 1+na

 have different signs. Assuming 01 a , you 

can write the alternating series in the form 

( ) ( ) ...1...1
1

4321

1

1
+−++−+−=−

+


=

+

 n

n

n

n

n
cccccc

 ,  (32.15) 

where 
0nc

. 

We formulate and prove sufficient criteria for the convergence of image 

series. 

Theorem 32.7 (Leibniz criterion). If the terms of alternating series 

(32.15) decrease in absolute value: 

......21  nccc
 

and the limit of general term of this series for →n  is zero, i.e. 

0lim =
→

n
n

c
, the series converges, and its sum does not exceed the first 

term: 1cS  . 

Proof. Consider a partial sum of series (32.15) with an even number of 

terms mmm ccccccS 21243212 ... −++−+−= − . It can be represented as 

( ) ( ) ( )mmm ccccccS 21243212 ... −++−+−= − . 

Due to the theorem condition, all differences in brackets are positive, so 

sequence
 mS2  is increasing. 

On the other hand, mS2  can be represented as 

( ) ( ) ( ) mmmm ccccccccS 21222543212 ... −−−−−−−−= −− , 
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hence 12 cS m  . 

So sequence 
 mS2  increases and is limited, hence it has limit 

SS m
m

=
→

2lim
. From       inequality 12 cS m   it follows that 1cS  . 

Since 12212 ++ += mmm cSS
 and by condition 

0lim 12 =+
→

m
m

c
, then 

SSS m
m

m
m

==
→

+
→

212 limlim
. 

So, for any n (both for mn 2=       and for 12 += mn ) 
SSn

n
=

→
lim

, i.e. 

the series converges. 

Example 32.11. . Investigate the convergence of series 

( )



=

−

1

1

n

n

n . 

Solution. In this case, n
cn

1
=

 and the conditions of Leibniz criterion are 

fulfilled. Therefore, this series converges. However, the series composed 

of terms’ modules of given series is harmonic series 



=1

1

n n  and, as we 

know, diverges. Therefore, this series converges conditionally. 

Comment 1. In the Leibniz theorem not only is condition 
0lim =

→
n

n
c

, but 

also condition 
......21  nccc

 is essential. 

Consider, for example, series 

...
11

1

11

1
...

12

1

12

1
+

++
−

−+
++

+
−

− nn  . 

The terms of this series tend to zero, but the monotonicity condition is not 

satisfied. 
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Obviously, 

2
12

1

12

1
=

+
−

− , 

1
13

1

13

1
=

+
−

− , …, 

nnn

2

11

1

11

1
=

++
−

−+ , … . 

Therefore, this series can be represented as: 

...
2

...
3

2
12 +++++

n  , i.e. 



=1

2

n n . 

This series diverges since it is obtained from the harmonic series by 

doubling all its terms. 

Comment 2. In the process of proving the Leibniz theorem, we saw that 

increasing mS2  approaches S. 12 +mS
 on the contrary, decreases. 

Consider 12 +mS
 more detailed: 

11 cS = , 

( )3213 cccS −−=
, 

( ) ( )543215 cccccS −−−−=
, 

……………………………… 

Since each of differences written in brackets according to the condition is 

positive, then obviously, 

...531  SSS
 

Thus, if the series satisfies the conditions of Leibniz theorem, then sums 

mS2  are approximate values of sum S with the disadvantage and sums 

12 +mS
 – with the excess. 

Comment 3. Sum S of series satisfying the conditions of the Leibniz 

theorem does not exceed in absolute value its first term and has the same 
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sign as the first term. Indeed, 11 aS = , 0212 −= aaS . Therefore, from 

inequality 

12 SSS   
we get 

10 cS  . 

Further, we note that the remainder of a series satisfying the conditions of 

Leibniz      theorem is itself a series satisfying these conditions, and the just 

made comment applies to it. If the sum of the n-th remainder is equal to nr

, then equality 

nn rSS +=
 

allows us to make the following conclusion: the error made when replacing 

the sum of series satisfying the conditions of the Leibniz theorem with its 

partial sum has the same sign as the first dropping term, and the absolute 

value is less than it. 

Questions 

1. What is the common term of series? 

2. How is the seventh partial sum of series determined 7S
? 

3. What number series is called convergent? 

4. What is the limit of the convergent series common term?  

5. What is the remainder of the series? 

6. What number series is called harmonic? Does harmonic series 

converge or diverge? 

7. Will the series with positive terms converge for which the ratio limit 

of the subsequent term to the previous one is equal to 2? 

8. What properties should the function used in the convergence integral 

criterion, have? 

9. What limit expression is used in the Cauchy criterion? 
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10. For which values is〈 of generalized harmonic series 



=


1

1

n n  

convergent? 

11. Is it possible to establish the convergence or divergence of harmonic 

(generalized harmonic) series using D'Alembert criterion? 

12. Will the alternating series converge for which the series of its terms 

modules converge? 

13. What series is called conditionally convergent?  

14. What conditions are sufficient for the convergence of a signed 

series? 

15. Let the series satisfy conditions of the Leibniz theorem. How to 

estimate the error made when replacing the sum of this series with its 

partial sum? 

Chapter 33. Functional series 

33.1. Basic concepts 

Let us consider a series whose members are functions defined in 

some domain D: 

( ) ( ) ( ) ( ) ......21

1

++++=


=

xuxuxuxu n

n

n

 . (33.1) 

This series is called functional series. 

By giving x specific numerical values, we get different numerical series 

that can converge or diverge. 

The set of all values x at which the functional series converges is called 

the convergence region of series. Obviously, if D  is the region of 
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convergence of the series (33.1), then DD  . The sum of the series is the 

function of x in the convergence region. It is denoted by ( )xS . 

Let us compose partial sums 
( )xSn  for (33.1) as well as for number 

series. If the series (33.1) converges and its sum is equal to ( )xS , then 

( ) ( ) ( )xrxSxS nn ++=
, (33.2) 

where 
( )xrn  is the sum of series 

( ) ( ) ...21 ++ ++ xuxu nn , i.e. 

( ) ( ) ( ) ...21 ++= ++ xuxuxr nnn  . (33.3) 

The value 
( )xrn  is called the remainder of the series (33.1). 

Since for every x in the convergence region of series we obtain the 

equality 
( ) ( )xSxSn

n
=

→
lim

, then, taking into account (33.2) we obtain 

( ) ( ) ( )  0limlim =−=
→→

xSxSxr n
n

n
n . 

Thus, the remainder 
( )xrn  of the convergent series tends to zero as n 

→ ∞. 

The convergence of series (33.1) in D  means that for each Dx   a 

sequence of partial sums 
( ) xSn  converges: 

( ) nn
n

SxS =
→

lim
. According 

to the definition of the limit of a numerical sequence, for every 0  there 

exists a positive integer N such that for all numbers Nn   holds 
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( ) ( ) − xSxS n . (33.4) 

Here, N depends on ε. Indeed, for the same 0  but another x , it is 

necessary to choose another N to provide the inequality (33.4). Consider 

an example. Let there be a series 

......1 2 +++++ nxxx  . 

It obviously converges as 5

1
=x

 and 10

1
=x

. Let 0004,0= . If 

5

1
=x

, we obtain 

...
5

1
...

5

1

5

1
1

2
+++++

n
 . 

Its sum (by the formula of the sum of infinitely decreasing progression) is

25,1
4

5

5

1
1

1
==

−

=S

. 

We need to take 51 == NN  for given 0004,0=  to satisfy (33.4). 

Indeed, 
2496,15 =S

, 
0004,05 =− SS

, and if 5n , then 

0004,0− nSS
. 

For 10

1
=x

 we have: 

...
10

1
...

10

1

10

1
1

2
+++++

n
 . 
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Its sum 
...11111,1

9

10
==S

 

If 32 == NN , then for 2Nn  , in particular for 4=n , 

0004,0...00011,0111,1...11111,14 =−=− SS
. 

Therefore, for 0004,0=  we need to take 5=N  as 5

1
=x

 and 3=N  

as 10

1
=x

. It is clear that inequality (33.4) holds for 5

1
=x

 and 10

1
=x

 

as 5=N . 

Is it always possible to find a number N for a given 0  such that 

for any Nn   and for all Dx   inequality (33.4) holds? No. There are 

functional series for which this is not possible. 

Definition. The functional series (33.1) is said to be a uniformly 

convergent function series in domain D if for any 0  there exists a 

number N such that for any Nn   and for all Dx    

( ) ( ) − xSxS n . 

Number N , mentioned above, depends only on ε and does not depend 

on x: ( )= NN .  

The concept of uniform convergence is a very complex concept. It is 

not possible for now to study a convergent series in a general form. 

Consider an important special case of uniformly convergent series - 

majorizable series. 

Definition. A functional series 
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( ) ( ) ( ) ......21 ++++ xuxuxu n  

is called majorizable in some domain if there exists such a convergent 

number series 

......21 ++++ nccc
 (33.5) 

with positive terms that for all x from a given domain, the inequalities 

( ) 11 cxu 
, 

( ) 22 cxu 
, …, 

( ) nn cxu 
, …  (33.6) 

hold. 

(Mind the fact that a series is called majorizable if there exists a 

precisely convergent numerical majorant for it.) 

For example, a functional series 

...
2

sin
...

2

3sin

2

2sin

2

sin
32

+++++
n

nxxxx

 

is a series majorizable on the whole number line since the inequalities  

nn

nx

2

1

2

sin


 (n = 1, 2, …), 

hold for all x and a series 

...
2

1
...

2

1

2

1

2

1
32

+++++
n

, 

being a geometric progression, converges. 

According to the definition, if a series is majorizable in a certain 

domain, then it absolutely converges in this domain. Now we introduce the 

following theorem. 

Theorem 33.1 (Weierstrass M-test). Let the functional series 
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( ) ( ) ( ) ......21 ++++ xuxuxu n  (33.7) 

be majorizable on  ba, ; then it converges uniformly on  ba, . 

Proof. Denote by S  the sum of the series (33.5): 

...... 121 +++++= +nn ccccS
 . (33.8) 

Let nS
 be the n-th partial sum, nr  be a remainder of the series (33.5) after 

the n-th term. Then 

nn rSS +=
. 

Since the series (33.5) converges 

SSn
n

=
→

lim
. 

Therefore, 

0lim =
→

n
n

r
. 

As already noted, the sum of the functional series (33.1) 

( ) ( ) ( )xrxSxS nn +=
, (33.2) 

where 
( )xSn  is the n-th partial sum and 

( )xrn  is a remainder of the series: 

( ) ( ) ( ) ...21 ++= ++ xuxuxr nnn  . 

According to condition (33.6) 

( ) 11 ++  nn cxu
, 

( ) 22 ++  nn cxu
, …, 
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hence, 

( ) nn rxr 
 

for all  bax , . Since 
0lim =

→
n

n
r

 and 
 nr  is numerical sequence, then 

for any 0  there exists a number N, independent on x, such that for all 

Nn   
nr . Therefore, 

( ) ( ) − xSxS n  

for all Nn   and for all  bax , . So, the series (33.7) converges on 

 ba,  uniformly. That completes the proof. 

33.2. Properties of a uniformly convergent 

series 

Continuity of the sum of a series 

Consider series 

( ) ( ) ( ) ......21 ++++ xuxuxu n  , (33.1) 

here 𝑢1(𝑥), 𝑢2(𝑥), … , 𝑢𝑛(𝑥), … are continuous functions on  ba, . It is 

well known that the sum of continuous functions is a continuous function, 

but this is true for a finite number of terms. Any partial sum of series (33.1) 

( ) ( ) ( ) ( )xuxuxuxS nn +++= ...21  
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is a continuous function on  ba, . Is the sum of the series (33.1) 

continuous? It turns out that there are series of continuous functions having 

a discontinuous sum. 

Example 33.1. Consider the following series 

( ) ( ) ( ) ( ) ......11 1232 +−++−+−+−+ −nn xxxxxxx  . (*) 

Members of this series are continuous functions for each x. 

Let us make sure that this series converges on  1,0  and its sum is a 

discontinuous function. Indeed, the partial sum of this series 
( )xSn  has the 

form 
( ) 1−= n

n xxS
. Obviously, 

( ) ( ) 0lim ==
→

xSxS n
n  as 10  x , 

( ) 11 =S . 

Thus, the point 1=x  is a point of discontinuity of the sum ( )xS . This 

series converges irregularly on  1,0 . Indeed, for 
( )xun  we obtain 

( ) ( ) n

n xxSxS =−
. For every fixed n, obviously, 

1lim
1

=
→

n

x
x

. Therefore 

if 1  , then it is impossible to provide inequality 
( ) ( ) − xSxS n  

for each  1,0x  at the same time. 

Thus, the series (*) consists of continuous functions but its sum is 

discontinuous function. Series converges irregularly on  1,0 , therefore, 

this series is not majorizable. 
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Theorem 33.2. If functions 
( )xun  are defined on  ba,  and are 

continuous on  ba, , and series 

( ) ( ) ( ) ......21 ++++ xuxuxu n  (33.1) 

converges uniformly on  ba,  to the sum ( )xS , then ( )xS  is also 

continuous on  ba, . 

Proof. Consider an arbitrary point 0x
 on  ba,  and let ( )xS  be a 

continuous sum at that point. Since for any n and  bax ,  equality 

( ) ( ) ( )xrxSxS nn +=
, 

holds, then, in particular, 

( ) ( ) ( )000 xrxSxS nn +=
. 

Hence 

( ) ( ) ( ) ( ) ( ) ( )000 xrxrxSxSxSxS nnnn ++−−
. (**) 

In order to prove the continuity of ( )xS  we need to show that for 0  

there exists 0 , such that for all x inequalities
− 0xx

, 

( ) ( ) − 0xSxS
 holds. Since this series converges uniformly, then for 

given 0  there exists a number N, such that for all Nn    

( )
3


xrn

 (33.9) 
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for all  bax , , in particular, for 0xx =
. This inequality holds, in 

particular, for 1+= Nn . Moreover, the function 
( )xSn  is continuous at 

the point 0x
 being the sum of a finite number of continuous functions as 

1+= Nn . Therefore, for a given 0  there exists 0 , such that 

− 0xx
, we obtain 

( ) ( )
3

0


− xSxS nn

. (33.10) 

It follows from (**), (33.9) and (33.10) that for all x, such that 

− 0xx
, we have 

( ) ( ) − 0xSxS
. 

So, we proved the continuity of the sum ( )xS  at an arbitrary point 

 bax ,0  . Therefore, ( )xS  is continuous on  ba, . That completes the 

proof. 

Theorem (33.2) is valid (by virtue of Theorem 33.1) for a majorizable 

series. In other words, the following statement holds. 

Теорема 31.3. If continuous functions are majorizable on  ba, , then 

the sum of such functions is a continuous function on  ba, . 
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Term integration and differentiation of series 

Theorem 33.4. If 
( )xun  (n = 1, 2, …) are continuous functions on 

 ba,  and the series of such functions converges to ( )xS  uniformly on 

 ba, , then the series can be integrated term by term from a to b, where 

the integral of the sum is equal to the sum of the integrals of the series 

terms: 

( ) ( ) ( ) ( ) ......21 ++++= 
b

a

n

b

a

b

a

b

a

dxxudxxudxxudxxS

 . (33.11) 

Proof. Denote by 
( )xSn  the n-th partial sum of the series (33.11). Its 

uniform convergence means that for any 0  there exists a number N, 

such that for every Nn   and for all  bax ,   

( ) ( )
ab

xSxS n
−


−

. 

The sum ( )xS  is continuous function on  ba,  by virtue of Theorem 33.3. 

Partial sum 
( )xSn  is also continuous on  ba,  since it is the sum of a 

finite number of continuous functions. Therefore, ( )xS  and 
( )xSn  are 

integrable on  ba,  and 

( ) ( ) ( ) ( ) ( ) =
−


−−−  ab

abdxxSxSdxxSdxxS

b

a

n

b

a

n

b

a

·

. 
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So, 

( ) ( ) ( ) ( ) 0...lim 21 =

























+++− →

b

a

n

b

a

b

a

b

a
n

dxxudxxudxxudxxS

, 

which means that the series (33.11) converges to the sum 

( )
b

a

dxxS

. That 

completes the proof. 

Remark. Obviously, if the series converges on  ba,  uniformly, then 

it converges on any segment  xa,  where bxa  . Therefore, under the 

conditions of Theorem 33.4, the equality  

( ) ( ) ( ) ( ) ......21 ++++= 
x

a

n

x

a

x

a

x

a

dttudttudttudttS

 . (33.12) 

holds. 

Theorem 33.5. Let functions 𝑢1(𝑥), 𝑢2(𝑥), … , 𝑢𝑛(𝑥), … have 

continuous derivatives on  ba, . If a series 

( ) ( ) ( ) ......21 ++++ xuxuxu n  , (33.1) 

converges to the sum ( )xS  on  ba,  and a series 

( ) ( ) ( ) ......21 ++++ xuxuxu n   (33.13) 

converges on  ba,  uniformly, then the sum ( )xS  of the series (33.13) has 

a derivative on  ba, , such that 



33.2. Properties of a uniformly convergent series  

591 

( ) ( ) ( ) ( ) ......21 ++++= xuxuxuxS n  . 

Proof. Let ( )xS
~

 be the sum of the series (33.13). Since the series 

(33.13) converges uniformly on  ba, , then by virtue of the remark to 

Theorem 33.4, it can be integrated term by term on any segment  xa, , 

bxa  : 

( ) ( ) ( ) ( ) ......
~

21 ++++= 
x

a

n

x

a

x

a

x

a

dttudttudttudttS

 . 

Obviously, for all n 

( ) ( ) ( )auxudttu nn

x

a

n −=
. 

Therefore, 

( ) ( ) ( )  ( ) ( )  ( ) ( )  ......
~

2211 +−++−+−= auxuauxuauxudttS nn

x

a  

. 

Due to the conditions of Theorem 

( ) ( ) ( ) ( ) ......21 ++++= xuxuxuxS n , 

( ) ( ) ( ) ( ) ......21 ++++= auauauaS n  . 

Hence, 
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( ) ( ) ( ) ( )( ) ( )xSaSxSdttSxS

x

a

=


−=
















= 

~~

. 

Therefore, 

( ) ( ) ( ) ( ) ......21 ++++= xuxuxuxS n  . 

That completes the proof. 

33.3. Power series 

Definition. Functional series 

......2

210

0

+++++=


=

n

n

n

n

n xaxaxaaxa
 (33.14) 

is called a power series. Coefficients 0a
, 1a , …, na

, … are called the 

coefficients of the power series (33.14). 

Convergence region of the power series 

Since the series (33.14) converges at 0=x , then the convergence 

region of this series is always a nonempty set. 

Theorem 33.6 (Abel theorem). 1. If series (33.14) converges at some 

point 0xx =
 (

00 x
), then it absolutely converges for all x , such that 

0xx 
. 2. If the series (33.14) diverges at some point 1xx = , then it 

diverges for all x , such that 1xx 
. 

Proof. 1. By condition, number series 
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...... 0

2

02010

0

0 +++++=


=

n

n

n

n

n xaxaxaaxa
 

converges, therefore, its general term 
n

onxa
 tends to zero as →n . 

Hence, sequence 
 n

onxa
 is bounded, i.e. there exists a number 0M , 

such that for all n  

Mxa n

on 
. (33.15) 

Consider a series which consists of the absolute values of the terms of 

the series (33.14): 

......2

210

0

+++++=


=

n

n

n

n

n xaxaxaaxa
 . (33.16) 

Rewrite it in the form 

......
0

0

2

0

2

02

0

010

0

+++++=


=

n

n

n

n

n

n
x

x
xa

x

x
xa

x

x
xaaxa

 .

 (33.17) 

Let 0xx 
. Then 

1
0

=
x

x
q

. It follows from (33.15) and (33.17) 

that the terms of series (33.16) are less than the corresponding terms of the 

convergent series 

......
0

2

000 0

+++++=


=

n

n

n

x

x
M

x

x
M

x

x
MM

x

x
M

, 
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being the sum of the infinite decreasing geometric progression with the 

denominator 1q . Therefore, series (33.16) converges due to the direct 

comparison test, i.e. the series (33.14) converges absolutely. 

2. The series (33.14) diverges at 1xx =  due to the condition. Lets prove 

that it diverges for all x satisfying the condition 1xx 
. Assume the 

opposite, i.e. series (33.14) converges for some x, such that 1xx 
. Then 

it converges at 1xx =  due to the first statement of Theorem but this is 

contrary to the condition. That completes the proof. 

The Abel theorem allows us to determine the location of the points of 

convergence and divergence of a power series. It follows from the Abel 

theorem that if a power series converges at 0xx =
, then it converges 

absolutely on the interval 
( )00 , xx−

; if a power series diverges at 1xx =

, then it diverges everywhere outside the segment 
 11 , xx−

. It follows 

that there exists a number R, such that a power series converges absolutely 

on the interval ( )RR,−  and diverges out of  RR,− . 

Number R is called the radius of convergence, interval ( )RR,−  is 

called an interval of convergence of the power series. The series can as 

converge as diverge at the ends of the convergence interval (i.e. at Rx −=  

and Rx = ). 

Now we introduce a method for finding the radius of convergence 

of a power series. Consider the series (33.14). Apply the d'Alembert's ratio 
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test to this series at the fixed point x (Theorem 32.4). The series converges 

if 

1limlim 1

1

1 = +

→

+

+

→
n

n

nn

n

n

n

n a

a
x

xa

xa

. 

Let 

L
a

a

n

n

n
=+

→

1lim

. The series (33.16) converges according to the 

d'Alembert's ratio test if 
1Lx

 and converges if 
1Lx

. Therefore, the 

series (33.14) converges absolutely as L
x

1


 and diverges as L
x

1


. Thus, 

L

1

 is the radius of convergence of the series (33.14), i.e. 

1

lim
+

→
=

n

n

n a

a
R

. (33.18) 

Moreover, in particular, it can be 0=R  or =R , i.e. the region of 

convergence can consist of one point or coincide with the whole number 

line. 

Example 33.2. Find the region of convergence of the power series 




=1n

n

n

x

. 

Solution. Here n
an

1
=

, 1

1
1

+
=+

n
an

. Find the radius of convergence 

by the formula (33.18): 
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1
1

limlim
1

=
+

==
→

+
→ n

n

a

a
R

n
n

n

n
. 

The convergence interval is ( )1,1− . 

We now clarify the behavior of the series at the ends of the 

convergence interval: а) alternating series 

( )



=

−

1

1

n

n

n  converges on the basis 

of Leibniz as 1−=x  (see Theorem 32.7); harmonic series 



=1

1

n n  diverges 

as 1=x . So, the series converges (conditionally) at the left end of the 

convergence interval and diverges at the right end. 

Example 33.3. Find the region of convergence of the power series 




=0 !n

n

n

x

. (Recall that 1!0 = .) 

Solution. Find the radius of convergence by the formula (33.18): 

( )
( ) =+=

+
==

→→
+

→
1lim

!

!1
limlim

1

n
n

n

a

a
R

nn
n

n

n
. 

This series converges absolutely on the whole number line. 

Properties of power series  

Let function ( )xf  be the sum of a power series: 

( ) 


=

=
0n

n

nxaxf
, (33.19) 
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its convergence interval is ( )RR,− ; then the function ( )xf  is said to be 

decomposable into a power series on ( )RR,− . 

It follows from the Abel theorem that a power series is majorizable on 

any segment lying entirely within the convergence interval. Therefore, 

power series have a number of properties similar to those of ordinary 

polynomials. 

The proof of theorems on the properties of power series is based on 

the uniform convergence of the power series on any segment contained in 

the convergence interval. 

Theorem 33.7. If  rr,−  lies entirely within a converges interval of a 

power series 

......2

210 +++++ n

nxaxaxaa
 (33.14) 

then this series is majorizable on any  rr,− . 

Proof. Consider a number series 

......2

210 +++++ n

n rararaa
 . (33.20) 

We need to prove that for the series (33.20) there is a convergent 

numerical majorant (with positive terms) as r < R, where R is the radius of 

convergence of the series. 

According to the Abel theorem this series converges since r < R. 

Inequalities 
n

n

n

n raxa 
 are satisfied for the terms of the series (33.14) 

as 
rx 

, i.e.  rrx ,− . Therefore, the series (33.14) is majorizable on 

 rr,− . That completes the proof. 
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Corollary. A power series converges uniformly on any segment lying 

entirely within the convergence interval. 

Indeed, according to the Weierstrass theorem, the series converges 

uniformly on  rr,−  since it is majorizable on  rr,−  as r < R. 

Theorem 33.8. The sum of a power series is a continuous function on 

any segment lying entirely within the convergence interval. 

This theorem follows from Theorems 33.1, 33.2 and 33.7. 

Theorem 33.9. A power series can be integrated on any segment  x,0  

term by term as RxR − . In this case, the integral of the sum of the 

series is equal to the sum of the integrals of the series members: 

...
1

...
32

13221
0

0 1

+
+

++++=






 +


=
 

nn

x

n

n

n x
n

a
x

a
x

a
xadxxa

 . 

This theorem directly follows from the previous Theorems 33.4 and 

33.6. 

Let us now find out the possibility of differentiation of the power 

series term by term. 

Theorem 33.10. Let function ( )xf  be decomposable into a power 

series on ( )RR,−   

( ) ......2

210

1

+++++==


=

n

n

n

n

n xaxaxaaxaxf
. (33.19) 

Then the power series 

......32 12

321

1

1 +++++= −


=

− n

n

n

n

n xnaxaxaaxna
 , (33.21) 
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obtained by differentiation of the series (33.19), has the same convergence 

interval ( )RR,−  and the function ( )xf  has decomposable derivative 

( )xf   on the whole ( )RR,− : 

( ) ......32 12

321 +++++= −n

nxnaxaxaaxf
. (33.22) 

Proof. Let us show that series (33.21) is majorizable on any  rr,−  

as r < R. Take an arbitrary point 0r  satisfying the condition 
Rrr  0 . 

The series (33.14) converges at that point, therefore, general term of this 

series tends to zero as 0rx =
, and as a result, it is bounded. In other words, 

0lim 0 =
→

n

n
n

ra
, so there exists number M > 0, such that 

Mra n

n 0  (n = 1, 2, …). 

Then, as  rrx ,−  we have 

1

00

1

0

1

0

11

−−

−−−


















=

nn

n

n

n

n

n

n
r

r

r

M
n

r

r
ranrnaxna

. 

Denote 
0

0

M
r

M
=

, 

q
r

r
=

0 ; as 1q . 

So, 
1

0

1 −−  nn

n qnMxna
. Therefore, all terms of series (33.21) are 

not greater than the corresponding terms of the majorant numerical series 

for the specified x  
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......32 1

0

2

000 +++++ −nqnMqMqMM
 . 

The last series converges according to the d'Alembert's ratio test. Denote 

1

0

−= n

n qMna
, 

( ) n

n qMna 01 1+=
+ . Then 

( )
1

1
limlim

1

1 =
+

=



−→

+

→
q

nq

qn

a

a
n

n

n
n

n

n
. 

So, series (33.21) is majorized on the segment  rr,− , then due to 

Theorem 33.5 we can state that series (33.19) is differentiable term by term 

and the equality (33.22) is true. 

Since for any ( )RRx ,−  there exists r < R, such that  rrx ,− , it 

follows that series (33.21) converges at any inner point of the interval 

( )RR,− . 

We proved that the radius of convergence can not be decreased after 

the differentiation of the series. 

To complete the proof of the theorem, one must now show that the 

radius of convergence can not increase as a result of differentiation. 

Assume the opposite, i.e. the series (33.21) converges for some Rx 1 . 

By integrating this series from 0 to 2x , where 12 xxR  , we would 

obtain the convergence of the original series (33.19) at point 2x , and this 

contradicts the condition of Theorem. Thus, the interval of convergence of 

series (33.19) is the interval of convergence of series (33.21) obtained by 

differentiation of series (33.19). That completes the proof. 

Theorems 33.9 and 33.10 mean that power series (within their 

convergence interval) behave like ordinary polynomials with respect to 

differentiation and integration. 
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By applying Theorem 33.10, it is easy to verify that a function that 

decomposes into a power series is infinitely differentiable on the 

convergence interval of this series. 

Power series with an arbitrary center 

A power series is a functional series of the form 

( ) ( ) ( ) ( ) ...... 0

2

02010

0

0 +−++−+−+=−


=

n

n

n

n

n xxaxxaxxaaxxa
 

. (33.23) 

This is a power series in powers of the binomial 0xx −
. Obviously, the 

power series (33.14) is a special case of series (33.23). 

To determine the region of convergence of series (33.23), we make the 

substitution: 

Xxx =− 0 . 

After this substitution, series (33.23) takes the form: 

......2

210 +++++ n

n XaXaXaa
 . (33.24) 

Let ( )RR,−  be the interval of convergence of series (33.24). Then 

(33.23) converges as 
Rxx − 0  and diverges as 

Rxx − 0 . 

Therefore, the interval of convergence of series (33.23) is the set of all 

values x satisfying inequality 
RxxR −− 0 , i.e. 

RxxRx +− 00

. 
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Therefore, the interval of convergence of series (33.23) is the interval 

( )RxRx +− 00 ,
 centered at 0x

. All properties of the power series (33.14) 

are fully preserved for the power series (33.23). 

Questions 

1. What is the region of convergence of the functional series? 

2. Which functional series is called uniformly convergent? 

3. What kind of functional series is called majorizable? Is every 

majorizable series uniformly convergent? 

4. Is the sum of the functional series consisting of continuous functions 

always continuous? 

5. What kind of functional series is called a power series? 

6. What is the radius of convergence of a power series? Can the radius 

of convergence be equal to zero or infinity? 

7. What are the main properties of a power series? 
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Chapter 34. Taylor and 

Maclaurin series 

34.1. Decomposition of functions into a 

power series 

Assume that function ( )xf  can be decomposed into a power series 

on a certain interval ( )RR,−   

( ) ......2

210 +++++= n

nxaxaxaaxf
 . (34.1) 

It follows from Theorem 33.4 that this series can be differentiated term 

by term any number of times. Then, differentiating the equality (34.1) n 

times, we obtain: 

( ) ......2 1

21 ++++= −n

nxnaxaaxf
 , 

( ) ( ) ...1...2 2

2 +−++= −n

nxannaxf
 , 

………………………………………. 

( )( ) ( ) ...231! 1 +++= + xannanxf nn

n

 . 

Assuming 0=x , we have 
( ) 00 af =

, ( ) 10 af = , ( ) 2!20 af = , …, 

( )( ) n

n anf !0 =
. Hence 

( )( )
!

0

n

f
a

n

n =
 (n = 0, 1, 2, …). (34.2) 
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Substituting the obtained coefficients (34.2) into (34.1), we obtain the 

decomposition of function ( )xf  into a power series: 

( ) ( )
( ) ( ) ( )( )

...
!

0
...

!2

0

!1

0
0 2 +++


+


+= n

n

x
n

f
x

f
x

f
fxf

 . (34.3) 

The series (34.3) is called the Maclaurin series for the function ( )xf . 

We have proved the following theorem. 

Theorem 34.1. If a function ( )xf  can be decomposed into a power 

series on ( )RR,− , then this series is Maclaurin series for ( )xf . 

Theorem 34.1 implies that the decomposition of a function into a power 

series is unique. The coefficients of this decomposition are uniquely 

determined by the formulas (34.2). 

It is known that the Maclaurin formula is valid for any function which 

has its derivatives up to the ( )1+n  order (see (17.18)): 

( ) ( )
( ) ( ) ( )( ) ( )( )

( )
1

1
2

!1!

0
...

!2

0

!1

0
0 +

+

+


+++


+


+= n

n
n

n

x
n

f
x

n

f
x

f
x

f
fxf

, 

here   is a point between 0 and x ( )10, = x . 

If we denote the remainder term by 
( )xRn : 

( )
( )( )
( )

1
1

!1

+
+

+


= n

n

n x
n

f
xR

, 

and the partial sum of the Maclaurin series as 
( )xSn , then the Maclaurin 

formula can be written as follows: 
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( ) ( ) ( )xRxSxf nn +=
. (34.4) 

Equation (34.4) implies the criterion for the decomposability of a 

function in a Maclaurin series. 

Theorem 34.2. A necessary and sufficient condition for an infinitely 

differentiable function ( )xf  to be decomposed into a Maclaurin series on 

( )RR,−  is that the residual term of the Maclaurin formula for this 

function tended to zero at the specified interval as →n . 

Proof. 1. Necessity. Let 
( ) ( )xfxSn

n
=

→
lim

 for all ( )RRx ,− . Then 

for all ( )RRx ,−  according to (34.4) 

( ) ( ) ( )  ( ) ( ) 0limlim =−=−=
→→

xfxfxSxfxR n
n

n
n . 

2. Sufficiency. Now let 
( ) 0lim =

→
xRn

n  for all ( )RRx ,− . Then 

from (34.4) we get 

( ) ( ) ( )  ( ) ( )xfxfxRxfxS n
n

n
n

=−=−=
→→

0limlim
, 

i.e. the Maclaurin series converges to function ( )xf . That completes the 

proof. 

Note that if 
( ) 0lim 

→
xRn

n , then the Maclaurin series does not 

represent a given function, although it may converge (to some other 

function). 

Maclaurin formula is a special case of the Taylor formula (see (17.7) 

and (17.12)): 
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( ) ( )
( )

( )
( )

( )
( )( )

( ) ( )xRax
n

af
ax

af
ax

af
afxf n

n
n

+−++−


+−


+=
!

...
!2!1

2

, 

where 

( )
( )( )
( )

( ) 1
1

!1

+
+

−
+


=

n
n

n ax
n

f
xR

. 

If function ( )xf  has derivatives of any order in the neighborhood of 

point ax = , then we can obtain an infinite series called the Taylor series: 

( )
( )

( )
( )

( )
( )( )

( ) ...
!

...
!2!1

2
+−++−


+−


+

n
n

ax
n

af
ax

af
ax

af
af

 . 

The Maclaurin series is a special case of the Taylor series as 0=a . 

The Taylor series for function ( )xf  converges to this function if and 

only if the residual term in the Taylor's formula for this function tends to 

zero: 
( ) 0lim =

→
xRn

n . 

It is easy to make sure that if all derivatives are bounded: 
( )( ) Mxf n   

(n = 1, 2, …), then 
( ) 0lim =

→
xRn

n . 

34.2. Decomposition of some elementary 

functions in the Maclaurin series 

1. Let ( ) x
xf e= . According to the Taylor formula 
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( )xR
n

xxx
n

n
x +++++=

!
...

!2!1
1e

2

, 

where 

( )
( )


+

+
= e

!1

1

n

x
xR

n

n

, 10  . 

Since for any fixed x the value 
xe  is bounded, then 

( ) 0lim =
→

xRn
n . 

Therefore, for all ( )− ,x  

...
!

...
!2!1

1e
2

+++++=
n

xxx n
x

 . (34.5) 

2. Similarly, we obtain the Maclaurin decomposition of functions 

( ) xxf sin=  and ( ) xxf cos=  (see § 17.3; here also 
( ) 0lim =

→
xRn

n  for 

all x): 

( )
( )

...
!12

1...
!3

sin
123

+
+

−++−=
+

n

xx
xx

n
n

 , (34.6) 

( )
( )

...
!2

1...
!2

1cos
22

+−++−=
n

xx
x

n
n

 . (34.7) 

3. Consider the function ( ) ( )mx1xf += , where m is an arbitrary 

constant number. We have 

( ) ( )mxxf += 1 , ( ) ( ) 1
1

−
+=

m
xmxf , ( ) ( )( ) 2

11
−

+−=
m

xmmxf , 

… , 

( )( ) ( ) ( )( ) .111
nmn xnmmmxf

−
++−−=  
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For 0=x : 

( ) 10 =f , ( ) mf = 0 , ( ) ( )10 −= mmf , …, 

( )( ) ( ) ( )110 +−−= nmmmf n

. 

We get a series called binomial: 

( ) ( ) ( )
...

!

11
...

!2

1

!1
1 2 +

+−−
++

−
++ nx

n

nmmm
x

mm
x

m

 . 

Let us define the radius of convergence of this series 1

lim
+

→
=

n

n

n a

a
R

. 

Since 

( ) ( )
!

11

n

nmmm
an

+−−
=

, 

( ) ( )( )
( )!1

11
1

+

−+−−
=+

n

nmnmmm
an

, 

we obtain 

11
1

lim =−=
−

+
=

→ nm

n
R

n
. 

Thus, the binomial series converges for ( )1,1−x  and diverges 

outside of line segment  1,1− . 

Estimation of the remainder of this series is associated with certain 

difficulties, therefore, we accept without any proof, that 
( ) 0lim =

→
xRn

n  as 

( )1,1−x . 

So, for ( )1,1−x  
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( )
( ) ( ) ( )

...
!

11
...

!2

1

!1
11 2 +

+−−
++

−
++=+ nm

x
n

nmmm
x

mm
x

m
x

 

. (34.8) 

Note that if m is a positive integer, then starting with the term 

containing 
1+mx , all coefficients are zero and the series turns into a finite 

polynomial. 

4. For 1−=m  the binomial series has the form 

( ) ...1...1
1

1 32 +−++−+−=
+

nn
xxxx

x  . (34.9) 

Integrate this equality from 0 to x, where 
1x

: 

( )( ) +−++−+−=
+

x

nn
x

dttttt
t

dt

0

32

0

...1...1
1 . 

Hence we get the decomposition of function ( ) ( )xxf += 1ln : 

( )
( )

...
1

...
32

1ln

132

+
−

+−+−=+

+

n

xxx
xx

nn

 . (34.10) 

This equality holds on ( )1,1− . It can be shown that it is also true for 

1=x . Thus, the convergence region of the series (34.10) is ( 1,1− . 
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34.3. Application of power series to 

approximate calculations 

It is possible to obtain the values of these functions with any accuracy 

using the decomposition of elementary function in Maclaurin series. To do 

this, we need to take a sufficient number of terms of the series. The 

accuracy of the calculation is determined by the residual term of the 

Maclaurin formula. 

1. Consider the decomposition of exponential functions ( ) x
xf e= . 

As already noted, 

( )xR
n

xx
x n

n
x +++++=

!
...

!2
1e

2

, 

where 

( )
( )


+

+
= e

!1

1

n

x
xR

n

n

 and for all 𝑥 the exponential function 

decomposes into the series 

...
!

...
!2

1e
2

+++++=
n

xx
x

n
x

 . (34.5) 

The radius of convergence of this series is infinite, i.e. the series 

converges on the entire number line. 

The series (34.5) can be calculated only for small values of x. If the 

absolute value of 𝑥 is large, then the series is represented as the sum of 

integer and fractional parts: 

( ) qxEx += , 
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here ( )xE  is integer part of x (i.e. the largest integer not exceeding) and 

q is a fractional part, 10  q . Then 

( ) qxEx eee = . 

The first multiplier 
( )xEe , which is an integer power of a number e , can 

be found using multiplication. The second, i.e. 
qe  – using decomposition 

(34.5). 

The residue of the series is estimated as follows: 

( )
nn

x
xR

n

n
!

0
1+


. 

Example 34.1. Find e  with accuracy 10–6. 

Solution. According to (34.5) we have 
10 =u

, …, ( )!12

1
11

−
=

−−
k

u
kk

, !2

1

k
u

kk =
 (k = 1, 2, …, n), then k

u
u k

k
2

1−=
. We obtain 









+=

= 2

1
e

0

2

1

n

n

k

k Ru
. 

Let us count the terms with two spare signs: 

10 =u
, 

00026042,0
10

4
5 ==

u
u

, 

50000000,0
2

0
1 ==

u
u

, 
00002170,0

12

5
6 ==

u
u

, 
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12500000,0
4

1
2 ==

u
u

, 
00000155,0

14

6
7 ==

u
u

, 

02083333,0
6

2
3 ==

u
u

, 
00000010,0

16

7
8 ==

u
u

, 

00260417,0
8

3
4 ==

u
u

, 
64872117,18 =S

. 

Rounding the sum to six decimal places after the decimal point, we 

obtain 

648721,1e = . 

2. Consider decomposition of the logarithm and the calculation of 

the values of the logarithmic function. Logarithmic function 

( ) ( )xxf += 1ln  decomposes into a power series on ( 1,1− : 

( ) ( ) ...
1

1...
432

1ln
1432

+
+

−++−+−=+
+

n

xxxx
xx

n
n

 . (34.11) 

Direct application of this series is complicated, in particular, because of its 

slow convergence. Replace argument x with x− in (34.11): 

( ) ...
1

...
432

1ln
1432

−
+

−−−−−−=−
+

n

xxxx
xx

n

 . (34.12) 

Subtract (34.12) from (34.11): 









+++=

−

+
...

53
2

1

1
ln

53 xx
x

x

x

, (34.13) 

here 
1x

. 
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The series (34.13) converges faster than a geometric progression with 

the denominator 
2xq = . In addition, the expression x

x

−

+

1

1

 can take any 

positive values at the specified x . Therefore, formula (34.13) is very 

convenient for calculating logarithms. 

Since the terms of the series (34.13) are smaller than the terms of the 

geometric progression ( )...2 53 +++ xxx , the remainder of the series is 

estimated as follows: 

( )( )2

12

112

2

xn

x
R

n

n
−+


+

. (34.14) 

Example 34.2. Calculate 8ln  with the accuracy 10–6. 

Solution. From 
8

1

1
=

−

+

x

x

 we obtain ...777,0=x , it is better to rewrite 

as 
2

2

e

8
e8 =

 to accelerate the convergence of the series. Then 

22

2

e

8
ln2

e

8
lneln8ln +=+=

. Assuming 
2e

8

1

1
=

−

+

x

x

 we obtain

03969989,0
e8

e8
2

2

=
+

−
=x

. It follows from (34.14), that the remainder is 

approximately equal to the first of the discarded terms for such 𝑥. As in the 

previous example, we will perform calculations with two positive signs: 

07939978,021 == xu , 
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00004171,0
3

2
3

2 ==
x

u
, 

00000004,0
5

2
5

3 ==
x

u
. 

We obtain 079441,28ln = . 

(Functions xsin  and xcos  can be calculated similarly using their 

decomposition into Maclaurin series.) 

3. Consider calculating values of integrals that are not expressed 

through elementary functions using Maclaurin series. It is known that 

the integral 
2

e x−
 is not an elementary function. 

Example 34.3. Find the integral 


−

a

x dx
0

2

e

. 

Solution. In order to compute the integral we decompose the integrand 

in a series replacing x in the decomposition by 
2x− : 

( ) ...
!

1...
!3!2!1

1e
2642

2

+−++−+−=−

n

xxxx n
nx

 . 

Integrating both parts of this equality, we obtain: 

...
7!35!23!11

...
7!35!23!11

e
753

0

753

0

2

+


−


+


−=







+


−


+


−=

− aaaaxxxx
dx

a
a

x

 

. 
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We can compute the given integral with any degree of accuracy and 

any a using this equality. In particular, it is enough to take seven terms of 

decomposition in order to compute 


−

1

0

2

e dxx

 with the accuracy up to 10–

4. Then we obtain 

7468,0e

1

0

2


− dxx

. 

Note that modulo of the remainder of the series does not exceed 

modulo of the first discarded term since the series is alternating. 

Questions  

1. What is the Maclaurin series? What function can it be defined for? 

2. Does the Maclaurin series of a function ( )xf  necessarily converge 

to this function? 

3. What is the criterion for the decomposability of a function in the 

Maclaurin series? 

4. What is the Taylor series? 

5. What is the binomial series? What is its region of convergence? 

6. Give examples of using series in approximate calculations. 

Chapter 35. Fourier series 
The power series considered earlier makes it possible to represent the 

function ( )xf  in the form of the sum (with corresponding coefficients) of 

the simplest functions, which are powers of x : 
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1, ,x  ,2x  ,3x  . . . , ,nx  . . . . (35 .1) 

We consider functional series in which instead of degrees x  trigonometric 

functions are selected. Trigonometric function system 

1, ,cos x ,sin x ,2cos x ,2sin x . . . , ,cos nx  ,sin nx  . . . (35 .2) 

is well studied in elementary mathematics. 

Definition 1. Series 




=

++=

=+++++++

1

0

332211

0

)sincos(
2

...3sin3cos2sin2cossincos
2

n

nn nxbnxa
a

xbxaxbxaxbxa
a

 

(35.3) 

is called trigonometric series, and numbers 
,0a ,1a ,1b  ,2a 2b  … are 

called the coefficients of the trigonometric series. 

Note that all functions of system (35.2) are periodic with a total period of 

2 . Therefore, any partial sum of the trigonometric series (35.3) is also 

a periodic function with a period of 2 . Hence, if this series converges 

on   ,− , then it converges on the whole number line and its sum is a 

periodic function with a period of 2𝜋 since it is a limit of a sequence of 

periodic partial sums. 

Orthogonality is an important property of the trigonometric system (35.2).  

Definition 2. Functions ( )xf  and ( )xg  are mutually orthogonal on 

 ,,ba if 
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( ) ( ) =

b

a

dxxgxf 0

 

Theorem 35.1. Two functions of the system ( .2) are mutually orthogonal 

on   ,− . 

Indeed, if 0k  and k is an integer then 

0sin
1

cos ==
−

−










kx
k

kxdx

,  

.0cos
1

sin =−=
−

−










kx
k

dxkx

 

It means that function ( ) 1=xf  is orthogonal to functions nxcos  or 

nxsin  of the system (35.2). 

There remains verifying the validity of the next equalities for nk  : 


−

=





,0coscos nxdxkx

 ( )   


−

=





,0cossin nxdxkx

 ( )  


−

=





.0sinsin nxdxkx

 ( )  

Consider the first of these three integrals. Since 

( ) ( ) ,coscos
2

1
coscos xnkxnknxkx −++=

 

then 
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( ) ( )  
− −

=−++=









dxxnkxnknxdxkx coscos
2

1
coscos

  

=

( ) ( )
.0

sinsin

2

1
=









−

−
+

+

+
−




nk

xnk

nk

xnk

  

Similarly, applying the corresponding formulas  

( ) ( ) xnkxnknxkx −++= sinsin
2

1
cossin

, 

( ) ( ) xnkxnknxkx +−−= coscos
2

1
sinsin

, 

we prove the validity of the remaining two equalities. That completes the 

proof.  

We will need the following two equalities 


−

=





 ,cos 2 nxdx

 

−

=





 .sin 2 xdx

  (35 .4) 

They are easily proved using formulas 

,
2

2cos1
cos 2 


+

=
 

.
2

2cos1
sin 2 


−

=
 

Indeed, 

( ) 











=







+=+= 

−

−

−

nx
n

xdxnxnxdx 2sin
2

1

2

1
2cos1

2

1
cos 2

. 

The second equality in (35.4) is proved similarly.  

Decomposition of functions in a Fourier series. 

Theorem 35.2. Let function ( )xf  be integrable on   ,−  and 

decomposable into a trigonometric series 
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( ) ( ),sincos
2 1

0 


=

++=
n

nn nxbnxa
a

xf
 ( 35.5)  

where series can be integrated term by term when multiplied by a limited 

function, then such decomposition is unique.  

Proof. To calculate the decomposition coefficients, we use the formulas 

( ) ( )−  and (35.4). We integrate the series (35.5) on  .,− We 

see that all the integrals on the right-hand side, except the first, vanish. 

Therefore 

( ) 
−−

==









 .
2

1
00 adxadxxf

  

Hence 

( )
−

=






.
1

0 dxxfa

 ( 35.6) 

Now multiply the series (35.5) by ,cos nx n >0 and integrate again on 

  ,− . Then, all terms of the integrated series vanish, except for the term 

containing na
 due to the orthogonality of the trigonometric system. We 

obtain 

( ) 








nn anxdxanxdxxf == 
− −

2coscos

. 

Hence 

( ) .cos
1

nxdxxfan 
−

=




  (35.7) 
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Similarly, multiplying the equality (35.5) by nxsin  and integrating on 

 ,,−  we obtain  

( ) .sinsin 2 








nn bnxdxbnxdxxf == 
−−   

Hence 

( ) .sin
1

nxdxxfbn 
−

=




  (35.8) 

Formulas ( 35.6) - (35.8) uniquely determine all the decomposition 

coefficients. That completes the proof. 

Numbers 
,0a ,,na ,nb

 determined by formulas (35.6) – ( 35.8), are called 

Fourier coefficients while the trigonometric series (35.5) is called the 

Fourier series of function ( ).xf  

Convergence of the Fourier series. 

Now we introduce the definition of the periodic continuation of the 

function ( )xf  defined on   ,− . We say that periodic function ( ),xF  

defined on the whole number line with a period of 2 , is a periodic 

continuation of the function ( )xf , if ( ) ( )xfxF =  on  .,−   

We raise the following question: what properties should a function have to 

provide the convergence of its Fourier series and the sum of its Fourier 

series to be equal to the values of a given function at the corresponding 

points? 

Definition. Function ( )xf  is called a piecewise monotonic function on 

 ,,ba  if this segment can be divided by a finite number of points ,1x ,2x  
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. . . , 
,1−nx

 on the intervals ( ),, 1xa ( ),, 21 xx . . . , 
( )bxn ,1−  such that the 

function is monotonic on each of these intervals.  

It is easy to verify that a piecewise monotonic function can have only 

discontinuities of the first type. Indeed, if cx =  is a discontinuity point 

( ),xf  then, due to the monotonicity of the function, there are finite limits 

( ),0−cf  ( ),0+cf  i.e. c  is a discontinuity point of the first type. 

Now we introduce a theorem that gives sufficient conditions for the 

representability of a function ( )xf  by the Fourier series. 

Theorem 35.3. Let ( )xf  be a piecewise monotonic and bounded on 

[−𝜋, 𝜋] periodic function with a period of 2 ; then its Fourier series 

converges at all points on [−𝜋, 𝜋]. The sum ( )xS  of the series is equal to 

the value of function ( )xf  at the points of continuity of the function. The 

sum of the series at the points of discontinuity is equal to the arithmetic 

mean of the limits of function ( )xf on the right-hand and left-hand sides, 

i.e. if cx =  is a discontinuity point of ( ),xf  then 

( )
( ) ( )

.
2

00 ++−
==

cfcf
xS cx

 

We accept this theorem without proof. 

It is easy to understand that the class of functions represented by Fourier 

series is wide. In particular, it is significantly wider than the class of 

functions represented by the sum of a power series. Therefore, the Fourier 

series are widely used in various sections of mathematics and its 

applications. 
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Note that there are other sufficient conditions of the decomposability of a 

function in a Fourier series.  

Let ( )xf  satisfy the conditions of Theorem 35.3. Then the sum of the 

Fourier series is a periodic function with period of 2 . We can continue 

it to the whole number line using its graph on   ,− . Let ( )xf  be 

continuous on   ,− . Then the sum of its Fourier series coincides with 

( )xf  on the whole ( ) ,−  and, therefore, it is continuous on this 

interval, as well as on any interval ( ) ( )( ) ,...2,1,0,12,12 =+− kkk 

. Moreover, if ( ) ( ), ff =−  then the sum of the Fourier series will be a 

continuous function on the entire axis. If ( ) ( ) ff − , then points 

( ) ,12 += kxk  ,2,1,0 =k … are discontinuity points of the first type 

for the sum of the series. The sum of the series at these points is 

( ) ( )
.

2

 ff +−

  

Example 35.1. Let 𝑓(𝑥) = 𝑥 and ( ) ( ) ff − . Therefore, the sum of 

its Fourier series is a discontinuous function. Let us construct this series. 

According to (35.6) – (35.8) we have 

,0
2

11 2

0 === −

−










x
xdxa

 

 
− −

− =








−==














0sin
1

sin
11

cos
1

nxdx
n

nxx
n

nxdxxan

. 
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( ) .
2

1cos
2

cos
1

cos
11

sin
1 1

n
n

n
nxdx

n
nxx

n
nxdxxb

n

n

+

−

−

−

−=−=








+−==  












  

The Fourier series for this function has the form 

( ) .
sin

12...
3

3sin

2

2sin

1

sin
2

1

1




=

+
−=








−+−=

n

n

n

nxxxx
x

 

This decomposition is valid for ( ),,−  but if =x  the sum of the 

series is 0 . 

 

 

 

Fig. 35.1 

● Example 35.2. Let𝑓(𝑥) = 𝑥2 and ( ) ( ). −= ff  Therefore, the sum 

of its Fourier series is a continuous function on the entire axis. This 

function coincides with 
2x  on   ,−  and equals ( )2

2 kx −  on any 

segment ( ) ( ) ,12,12  +− kk  ,...2,1=k  .  

For 0=n , obviously  

.
3

2

3

221 2

0

3

0

22

0












====  
−

x
dxxdxxa

 

For =n 1, 2, 3, … we have 

=











−===  

−











0

0

2

0

22 sin2sin
2

cos
2

cos
1

nxdxxnxx
n

nxdxxnxdxxan
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=

( ) .
4

1coscos
4

2

0

02 n
nxdxnxx

n

n
−=








− 






 

It is easy to verify that 
0=nb

 for all ,n  therefore, the Fourier series 

decomposition has the form: 

( ) .
cos

14
3

...
9

3cos

4

2cos

1

cos
4

3 1
2

22
2 



=

−+=







−+−−=

n

n

n

nxxxx
x



 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig. 35.2 

We can decompose the function defined on an arbitrary segment  ., ll−  

into a trigonometric series similar to the Fourier series. In this case, the 

decomposition has the form 

,sincos
2 1

0 


=









++

n

nn
l

xn
b

l

xn
a

a 

 (35.9) 
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( ) ,cos
1

dx
l

xn
xf

l
a

l

l

n 
−

=


 

( )
−

=

l

l

n dx
l

xn
xf

l
b ,sin

1 

 =n 0, 1, 2, … . 

If ( )xf  is an even function on  ,, ll−  i.e. if ( ) ( ),xfxf =−  

 ,,llx −  then its Fourier coefficients nb
 in (35.9) are equal to zero. Let 

us prove it. We have 

( ) ( )  
− −









+==

l

l l

l

n dx
l

xn
dx

l

xn
xf

l
dx

l

xn
xf

l
b .sinsin

1
sin

1
0

0



 

Make a substitution 𝑥 = −𝑡 in the first integral. Then, using the parity of 

𝑓 and oddness of the sine, we obtain 

( ) ( )
( )

( )  
−

−=
−

−−=

0 0

0

.sinsinsin
l l

l

dx
l

xn
xfdt

l

tn
tfdx

l

xn
xf



 

Our assertion follows from here and from the previous equality.  

In this case, coefficients na
 can be calculated by formulas 

( )=

l

dxxf
l

a
0

0 ,
2

 

( )=

l

n dx
l

xn
xf

l
a

0

,cos
2 

 =n 1, 2, … . 

It is similarly proved that if ( )xf  is an odd function, then  

,0=na
 

( )=

l

n dx
l

xn
xf

l
b

0

.sin
2 

 

Thus, if the function is even, then its Fourier series (35.5) contains only 

cosines, and if it is odd, it contains only sines. In the examples considered 

above, we saw, in particular, that the decomposition of the odd function 
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( ) xxf =  contains only sines, and the decomposition of the even function 

( ) 2xxf =  contains only cosines. 

Standard deviation. 

Representation of a function by an infinite series has the practical meaning 

that the finite sum of the first n  terms of a series is an approximate 

expression of the decomposable function. In this case, it becomes 

necessary to evaluate the error.  

Consider an arbitrary function ( )xfy =  on  ba,  and estimate the error 

when replacing this function with another function ( )x . Let 

( ) ( )xxf −max
 be a measure of an error on  ,,ba  i.e. the largest 

deviation function ( )x  from ( )xf . However, sometimes the largest 

deviation is inconvenient to take as a measure of approximation, and not 

only because the study of this value is difficult, but it is often more 

important to reduce the error "on average" than to decrease the largest 

deviation solving the function approximation problem. In such cases, the 

mean square deviation is taken as a measure of error ,  where 

( ) ( )  −
−

=

b

a

dxxxf
ab

22 1


  

Let us find out the nature of the approximate representation of the periodic 

function ( )xf  by trigonometric polynomials of the form 

( ) ( ),sincos
2 1

0 
=

++=
n

k

kkn kxbkxa
a

xs
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here 
,0a

 ,1a  ,1b  ,2a  ,2b  …, 
,na
 nb

 are Fourier coefficients, i. e. the 

sum of the first ( )12 +n  members of the Fourier series. 

Let 𝑓(𝑥) be a periodic function with a period of 2 . Among all 

trigonometric polynomials of order 𝑛  

( )
=

++
n

k

kk kxkx
a

1

0 sincos
2


 

we need to find the polynomial for which the mean-square deviation  

( ) ( ) ,sincos
22

1
2

02 dxkxkx
a

xf kkn  
−









+−−=










 

has the least value by choosing coefficients k
 and k . 

The answer to this question gives the following Theorem. 

Theorem . Among all trigonometric polynomials of order n , the smallest 

mean-square deviation from function ( )xf  has the polynomial whose 

coefficients are the Fourier coefficients of the function ( )xf . 

We accept this theorem without proof. Also, without proof, we note that 

for any bounded piecewise monotonic function the mean-square deviation 

obtained by replacing this function with the n -th partial sum of the Fourier 

series tends to zero as ,→n  i. e. 
02 →n  as .→n   
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Chapter 36. Basic concepts of 

linear programming 
This book does not provide any systematic presentation of linear 

programming. Here we consider only some examples of optimization 

problems with limitations given by linear inequalities.   

36.1. Resource problem 

During economic activities of a single enterprise or the whole industry, it 

is often necessary to determine how to use available resources to achieve 

the maximum output. With a large number of possible solutions to this 

problem, it makes sense to choose the best one.   
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Mathematically, this problem is usually reduced to finding the maximum 

or minimum value of a function on a set defined by a system of inequalities.  

 Let an enterprise produce from m types of resources n types of products.  

Let the production of the j-th type of product consume  units of the i-th 

type of the resource. Matrix  is called technological.  

Let  be a specific profit margin from the sale of one unit of the j-th 

product. These specific profit margins form vector . 

Then the product is an amount of profit, 

received from the sale of X units of manufactured product, where  

.  We denote this profit as . 

Let  be a number of units of the i-th resource available to the enterprise.   

Then the need to take into account that the limited resources when drawing 

up production plants is expressed by the system of inequalities: 

ininii bxaxaxa +++ ...2211 , i = 1, …, m. (36.1) 

 

These resources being provided, it is required to produce such a 

combination of goods at which an enterprise’s profit would be maximum. 

In other words, it is required to find the maximum value of function   

under conditions (36.1). The problem 

defined this way is called the optimization problem. It is written as 

follows: 
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( ) max...2211 →+++= nn xcxcxcXf
, (36.2) 













+++

+++

+++

,...

.................................................

,...

,...

2211

22222121

11212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

 (36.3) 

01 x , 02 x , …, 
0nx

. (36.4) 

Function 
( )Xf

 is called a target function.  

Definition. A valid solution (a plan) of this problem is vector Х, satisfying 

the constrained system (35.3) and non-negative conditions (35.4).  

 The set of valid solutions forms a domain of valid sets.  

Definition. An optimal solution (plan) of the problem is a valid solution, 

such that its target function reaches its maximum (minimum).  

36.2. General problem of linear 

programming 

Let us formulate in general terms a problem of linear programming: to 

find an extremum of linear function under linear constraints on variables. 

Moreover, the set of variable values that satisfy all the linear constraints of 

a problem is called a valid set and a linear function, whose extremum is 

found, is a target function.  

 In practice, it is to apply linear programming for solving such problems 

where there are hundreds or thousands types of resources and types of 

products. The most popular algorithm for solving a problem of linear 

programming is the so-called simplex-method.   
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The presentation of this method is beyond the scope of our course. Without 

proof, we give only two theorems that contain the theoretical basis of the 

simplex method (and linear programming in general).  

Theorem 36.1. The problem of linear programming has an optimal solution 

if and only if the target function is bounded on the valid set in the direction 

of the extremum.  

Before formulating the second theorem we note that the valid set, on which 

the extremum is found, is a polyhedral body (for  is a polygon for 

 is a polyhedron in three-dimensional space). The vertices of this 

polyhedral body are called the corner body.  

Theorem 36.2. If an extremum of the considered function of linear 

programming solution is reached, then it is reached in the corner point of 

the valid set.    

Note that there is a finite number of corner points. The Simplex-method is 

a directed enumeration of the corner points of a valid set.  

 Let us consider a solution of linear programming with two variables with 

the graphical method.  

Example 36.1. Solve a linear programming problem: 

( ) max23 21 →+= xxXf , 

( )
( )
( )








−

−−

+−

3,03

2,0623

1,02

2

21

21

x

xx

xx

 

01 x
, 

02 x
. 

Solution. We take a rectangular system 21xOx
 on a plane (fig. 36.1). 
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Fig. 36.1 

We construct a line
0221 =+− xx

corresponding to the first constraint. To 

select the desired half-plane, we must substitute coordinates of any point, 

which doesn’t lie on the straight line, for example, : 

,   in inequality (1).  We obtain a strict inequality. Thus, point O lies in a 

half-plane of solutions.  

 Similarly, we construct lines  and  and choose 

the corresponding half-planes. 

We also take into account the condition of non-negativity , . 

The intersection of all five half-planes gives us the desired valid set gives 

us the pentagon OABCD. 

We construct a level line, for example, for : . We move 

a level line in the normal direction. The last point along which the level 

line still crosses the valid set will be the maximum point. In our case, this 
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is point C. We find its coordinates by solving equations of lines which 

intersect at point C: 





=−

=−−

,03

,0623

2

21

x

xx

 

we obtain 41 =x , 32 =x . We calculate 
( ) 183,4max == ff

. 

It often happens that variables in problems of linear programming are 

integers. Such problems are more difficult to solve and the special methods 

have been developed for them.  But if such a problem has two variables, 

then it is possible to solve it graphically. It is necessary to move a level line 

and to find the last integer point.  

36.3. Elements of duality theory 

The central part of linear programming is a dual theory. Any problem of 

the linear programming can be associated with another problem, which is 

called dual (or conjugate). 

Both problems (initial and dual to it) form a pair of dual problems. Each of 

the problems is dual to another one of the considered pair.  

Let us consider a resource allocation problem. Let for production of n 

types of products  , , …,   m types of resources , , …, are 

used (this can be various types of raw materials, electricity, semi-finished 

products, etc.).  

The volume of each type of resources is known; in other words, a vector of 

resources  is known.  

The consumption rate  of the   i-th resource for the production of one 

unit of the j-th type of product, i.e. the technological matrix 
( )ijaA =

, 

i = 1, 2, …, m; j = 1, 2, …, n is known. Moreover, the profit of the sale of 
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one unit of each product type is known, i.e. the profit vector 

 is known. (Here vector B is a column vector, and C is a 

row vector.) 

A manufacturer draws up a production plan that provides the maximum 

profit. The mathematical model of this problem, as already noted, in an 

expanded form is written as: 

max...2211 →+++= nnxcxcxcf
, (36.2) 













+++

+++

+++

,...

............................................

,...

,...

2211

22222121

11212111

mnmnmm

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa

 (36.3) 

1x , 2x
, …, 

0nx
. (36.4) 

Here jx
, j = 1, 2, …, n is the volume of production of the j-th type of 

product. In the compact form, the target function and constraint system are 

usually written in the form:  

max
1

→=
=

n

j

jj xcf

, 

i

n

j

jij bxa 
=1 , i = 1, 2, …, m, 

0jx
, j = 1, 2, …, n. 

Suppose that there is a buyer who wants to re-buy partially or fully the 

resources reserved to complete this task. In market economy, there are no 

categorical refusals; usually, everything is determined by the price and 

the terms of sale.  
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Let us consider the dual problem which solution determines the terms for 

the sale of resources. Denote the estimate (price) of the i-th resource as 

, then the vector of these estimates will have a form . 

The cost of acquiring the i-th type of raw materials in quantity  is 

obviously equal to . A buyer, obviously, wants to pay less, so for them, 

the target function has a form  

min...2211 →+++= mm ybybyb
. (36.5) 

However, it is beneficial for the manufacturer acting as a seller to evaluate 

its resources in such a way that their total cost spent on each product of the 

j-th product is not less than the profit , that the seller would receive from 

the sale of this product, i.e.  

jmmjjj cyayaya +++ ...2211 . 

Thus, the system of constraints of the problem has a form 













+++

+++

+++

....

............................................

,...

,...

2211

22222112

11221111

nmnmnn

mm

mm

cyayaya

cyayaya

cyayaya

 (36.6) 

Moreover, obviously, estimates of all the types of resources are non-

negative: 

0iy
, i = 1, 2, …, m. (36.7) 

So, conditions (36.5)–(36.7) define the new problem of linear 

programming. It is called a dual problem to the initial problem (36.2)–

(36.4). 
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Let us consider closely the connection between the initial and the dual 

problems:  

1) coefficients  of the target function of the initial problem are free 

terms of the system of constraints (36.6)  of the dual problem; 

2) free terms  of the system of constraints (36.3) of the initial 

problem are coefficients of the target function of the dual problem; 

3) the coefficient matrix of the constraint system of the dual problem 

is the transposed matrix of coefficients of the constraint system of the 

initial problem. 

Further, it will be clear that if one of the dual problems has an optimal 

solution, then another also has an optimal solution (see theorem 36.4).  

The pair of problems, considered above, refers to the so-called symmetrical 

problems. In the theory of duality two pairs of symmetrical dual problems 

are considered. We present them in the matrix-vector form (on the left side 

is an initial problem, on the right side is a dual one): 

1. max,→= CXf  min,→= YB  

BAX  , CYA  , (36.8) 

0X ; 0Y . 

2. min,→= CXf  max,→= YB  

BAX  , CYA  , (36.9) 

0X ; 0Y . 

Recall that here 
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( )ncccC ,...,, 21=
,        

( )myyyY ,...,, 21=
, 
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Note, that in the duality theory non-symmetrical pairs of dual problems are 

also used, but we will not consider them. 

We now formulate more clearly the rules of constructing the dual 

problem:  

1. The target function ϕ of the dual problem must be optimized in the 

opposite way to f, i.e. if max→f , then min→  and vice versa. 

2. On the right side of the constraints of the initial problems are the 

coefficients for the variables of the target function of the dual function.  

3. Matrices of the coefficients for the unknowns on the left sides of the 

constraints of both problems (initial and dual) are mutually transposed.  

 Moreover, if the initial problem has a dimension  (m constraints with 

n unknowns), then the dual problem has a dimension . 

Example 36.2. Create a dual problem to the problem: 

max4 321 →++= xxxf
, 









++

−−−−

++−

,923

,632

,42

321

321

321

xxx

xxx

xxx

 

0jx
, j = 1, 2, 3. 
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Solution.  Let us multiply the righthand sides of the constraints by the 

corresponding variable of the dual problem and construct a target function 

(which should be minimized, as the target function of the initial task is 

maximized): 

min964 321 →+− yyy
. 

We transpose the matrix of coefficients for unknowns in the left-hand sides 

of the constraints of the initial problem, replace all inequalities with the 

opposite, and write in the righthand sides the corresponding coefficients of 

the target function of the initial task: 









+−

+−

+−−

.12

,432

,132

321

321

321

yyy

yyy

yyy

 

Finally, we obtain the dual problem in the form 

min964 321 →+−= yyy
, 









+−

+−

+−−

,12

,432

,132

321

321

321

yyy

yyy

yyy

 

0iy
, i = 1, 2, 3. 

Example 36.3. Create the dual problem to this problem: 

min232 431 →++= xxxf
, 





−++−−

++−

,822

,932

4321

4321

xxxx

xxxx

 

0jx
, 

4,1=j
. 
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Solution. Since the target function is minimized, so all the inequality 

constraints should have the form «≥». Therefore, we transform the initial 

problem by multiplying the second inequality constraint by -1. The initial 

problem is written as 

min232 431 →++= xxxf
, 





−−+

++−

,822

,932

4321

4321

xxxx

xxxx

 

0jx
, 4,1=j . 

Now we create the dual problem similar to how it was done in the previous 

example:  

max89 21 →+= yy , 













−

−

+−

+

,223

,32

,02

,2

21

21

21

21

yy

yy

yy

yy

 

0iy
, i = 1, 2. 

Duality theorems establish a connection between optimal solutions of 

pairs of dual problems.  

Let us consider a symmetrical pair of dual problems (36.8): 

I. 
max→= CXf

, II. 
min→= BY

 

BAX  , CYA  , 

0X , 0Y . 
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(Remind that if problem (I) has dimension nm , then problem (II) has 

dimension mn .) 

Note the main inequality of the duality problem.  

Theorem 36.3. Let X  be any valid solution of initial problem  (I), and Y is 

any valid solution of the dual problem (II). Then there is an inequality  

( ) ( )YXf  . (36.10) 

Proof. Since all the variables in the both problems are non-negative, we 

obtain (taking into account ): 

( ) ( )XYACXxf = . (*) 

Due to associativity of matrix multiplication and taking into account 

BAX   

( ) ( ) ( )YYBAXYXYA == . (**) 

Combining (*) and (**), we obtain 

( ) ( )YXf 
, q.e.d. 

Let us note, in particular, that as applied to the problem considered in 

example 35.4, inequality (35.10) means 

21431 89232 yyxxx +++
. 

Consequence forms the main inequality: if a valid set of one of the 

problems I, II  is not empty, then the target function of another problem is 

bounded in extremum direction on its valid set.  

Indeed, for example, let the set D of the initial problem be not empty, i.e. 

there exists at least one point . Then, according to inequality 

(35.10), for any point Y from the valid set of problem II inequality 
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 holds, i.e. all the values of function ϕ are bounded below 

by one number . 

Theorem 36.4 (the main duality theorem). If one of the dual problems I 

or II has an optimal problem, then another one has an optimal solution, and 

the extremum values of target functions are equal: 

= minmax f . (36.11) 

(We accept this theorem without proof). 

 One of the main consequences of the main duality theorem is a criterion of 

optimality of valid solutions. Let  and  are valid solutions of the 

initial and the valid problems I and II. For these solutions to be optimal, 

the equality  

( ) ( )00 YXf = . (36.12) 

Proof. 1. Necessity. Let 
0X  and 

0Y  be optimal solutions. Then  

( ) fXf max0 =
, 

( ) = min0Y
 and equality (36.12)  follows from the 

main duality theorem. 

2. Sufficiency. Let inequality  (36.12) hold and let  be an arbitrary point 

from a valid set of the initial problem. Then by virtue of the main inequality 

(36.10), we obtain  . Thus, , i.e. 

 is a maximum point.  

It is similarly proved that point , for which inequality (36.12) holds, is 

a minimum point.   

Theorem 36.5 (the second duality theorem). In order for the valid 

solutions  and  to be optimal 
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solutions for the pair of dual problems I and II, it is necessary and sufficient 

that the following equalities hold: 

0
1

=







−

=

j

m

i

iijj cyax

, j = 1, 2, …, n; (36.13) 

0
1

=












−

=

i

n

j

jiji bxay

, i = 1, 2, …, m. (36.14) 

(We accept this theorem without proof.) 

We clarify the meaning of equalities (35.13) and (35.14). For example, the 

second means that if the optimal solution is substituted into the constraint 

system (35.3), the i-th constraint of the initial problem is satisfied as a strict 

inequality, then the i-th coordinate of the optimal solution of the dual 

problem is equal to zero.  Otherwise, if the i-th coordinate of the optimal 

solution of the dual problem is not equal to zero, then the i-th constraint of 

the initial problem when substituting the optimal solution becomes equal.  

These conditions establish the balance between problems I and II. That is 

why theorem 36.5 is also called the equilibrium theorem.  

Example 36.4.  Solve the problem: 

min3034 321 →−+ xxx
, 





−

−

,25

,16

32

31

xx

xx

 

0,, 321 xxx
. 

Solution. There are three variables in this problem. It is not possible to 

solve it graphically such as in example 35.1. Let us create the dual problem, 

solve it graphically and then solve this problem using the second duality 

theorem. 
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So we create the dual problem: 

max2 21 →+ yy , 

( )
( )
( )








−−−





3,3056

2,3

1,4

21

2

1

yy

y

y

, 

0, 21 yy . 

We solve it graphically. In fig. 36.2 the domain of valid solutions, normal 

 and an optimal solution — a point  (4, 3)  are shown.  

 

Fig. 36.2 

Now we find the solution of the initial problem using the second duality 

theorem.  

 

Since the third constraint of the dual problem is a strict inequality for 

, then . Then, since , 
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, hence . Thus, the optimal 

solution of the initial problem is a point (1, 2, 0). 

Example 36.5. Solve the problem using the second duality theorem:     

min362 321 →++ xxx
, 





+−

−+

,22

,033

321

21

xxx

xx

 

0,, 321 xxx
. 

Solution. For this problem, we create a dual one. Firstly, we reduce all the 

inequalities to the form «≥», since the target function is minimized: 

min362 321 →++ xxx
, 





+−

+−

,22

,33

321

21

xxx

xx

 

1x , 2x
, 

03 x
. 

Now we write the dual problem:  

max23 21 →+ yy
, 











−

+−

,3

,623

,2

2

21

21

y

yy

yy

 

0, 21 yy
. 

This problem coincides with the problem in example 36.1 (but there are 

variables  and here there are variables ). Let us use its solution 

. 
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Since the first constraint of the dual problem is satisfied as a strict 

inequality, then Since , , then  





=+−

=+−

,22

,33

321

21

xxx

xx

 

hence 
4,1 32 == xx

. 

 So, the optimal solution to the initial problem is (0, 1, 4). 

 Now let us consider a problem with four variables, which we can also 

reduce to the dual problem, which is solved graphically.  

Example 36.6. For the following problem create the dual one, solve it and 

find a solution to the initial problem, using the second duality theorem: 

max32 4321 →+−+ xxxx
, 





++−

−+

,13

,42

4321

421

xxxx

xxx

 

0,,, 4321 xxxx
 

Solution. Create the dual problem:  

min4 21 →+ yy
, 













+−

−

−

+

,13

,3

,12

,2

21

2

21

21

yy

y

yy

yy

 

0, 21 yy
. 
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Solving it graphically, we find a point (1, 1). 

Now we apply the second duality theorem for finding the solution of the 

initial problem.  We see that the third and the fourth constraints of the dual 

problem hold as strict inequalities.  

Thus, 
0,0 43 == xx

. In addition, since 0,0 21  yy , 





=++−

=−+

,13

,42

4321

421

xxxx

xxx

 

hence (taking into account that 
043 == xx

) we obtain 1,2 21 == xx . 

Thus, an optimal solution of the initial problem is a point (2, 1, 0, 0). In 

this case, obviously, 
( ) ( ) 5minmax == YXf

. 

Questions 

1. What is a technological problem? 

2. What is an optimization problem? How is it written?  

3. What is the valid solution of the optimization problem? What 

solution is called optimal? 

4. How is the problem of linear programming formulated? 

5. How are the initial and dual problems of linear programming 

connected? 

6. Let the initial problem of linear programming have a dimension 

. What is the dimension of the dual problem? 

7. What is the main inequality in duality theory? 

8. How is the main duality theorem formulated? 

9. Can a linear programming problem with two variables be dual to a 

five variable problem?  
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Chapter 37. Summary of 

balance analysis  

37.1. Leontief model 

Effective functioning of diversified economy is possible only if there is a 

balance between sectors. Suppose that the entire production sphere of 

economy is represented by n so-called clean industries. 

A clean industry is a conditional concept, a part of economy, relatively 

integral, producing its own homogeneous product and determined only by 

the type of product (such as, for example, extraction of raw materials, 

energy, agriculture, etc.). Some of the products are used for internal 

production-consumption (both by this industry and other industries), while 

the other part is intended for consumption in non-production sphere. 

Consider the production process for a certain period of time (usually a year 

is such an interval). 

We introduce the following notation: 

ix
 —  a total output of the i-th industry (gross output); 

ijx
 — the volume of production of the i-th industry consumed by the j-th 

industry in the    production process; 

iy
 — the volume of products of the i-th industry, intended for 

consumption in the non-productive sphere (the volume of final 

consumption). 

Since the gross output of the i-th industry is equal to the sum of 

consumption in  manufacturing and non-manufacturing sectors: 

i

n

j

iji yxx +=
=1 , i = 1, 2, …, n. (37.1) 
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Equations (37.1) are called balance relations. 

Since the products of different industries have different dimensions, we 

will consider the value of the interindustry balance, when all the values 

included in (37.1) have a value expression. 

The mathematical model that allows us to analyze the relationship between 

industries was developed in 1936 by the American economist W. Leontief. 

W. Leontief, analyzing the American economy in the period before the 

Second World War, paid attention to the following important 

circumstance: for a long time, the values 

j

ij

ij
x

x
a =

, i = 1, 2, …, n (37.2) 

vary slightly and can be considered as constant numbers.  

This is because the production technology has remained almost constant 

for quite some time. 

The above allows us to make the following assumption: for the output of 

products of the j-th industry of volume jx
 , it is necessary to spend 

products of the i-th industry volume iij xa
, where ija

 is a constant 

coefficient. This assumption is called the linear hypothesis. According to 

this hypothesis 

jijij xax =
, i = 1, 2, …, n. (37.3) 

According to the linearity hypothesis, the numbers  are constant, they 

are called direct cost coefficients. 

Now, equations (37.1) taking into account (37.3) can be written in the form 

of a system: 
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We introduce the gross output vector , the direct cost matrix A and the 

final consumption (or final product) vector : 
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 . (37.5) 

Now the system (37.4) in matrix form has the form 

yxAx += . (37.6) 

Equation (37.6) is called the linear interindustry balance equation. 

Together with the interpretation (37.6) of the vector , matrix A and 

vector , this equation is called the Leontief model. 

The main task of the interindustry balance is to find a gross product vector 

 that, given the known direct cost matrix A, provides a given vector of 

final consumption . In other words, how many products of different 

types should be produced to ensure a given level of final consumption? 

Obviously, the problem boils down to solving the equation (system of 

linear equations) (37.6) with an unknown vector , with a known matrix 

A and for a given vector . 
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In short, we agree to call the matrix A non-negative if all its components 

are non-negative. In this case, we write . A nonnegative vector is 

defined similarly. 

In the problem above, obviously, 0A , 0y  (this directly follows from 

the economic sense of A and y ). The sought vector  must also be non-

negative: 0x . 

We rewrite equation (37.6) in the form 

( ) yxAE =− . (37.7) 

If 
( )AE −  is nondegenerate matrix, then there exists a matrix inverse to it

( ) 1−
− AE  and there is (and, moreover, the only) solution to equation 

(37.7): 

( ) yAEx
1−

−= . (37.8) 

Matrix 
( ) 1−

−= AES  called the total cost matrix. 

Find out the economic meaning of the total cost matrix 
( )ijsS =

. 

Consider the unit vectors of the final product: 
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For them, from (11.8) we obtain the corresponding gross output vectors: 
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Therefore, each element ijs
 of matrix S is the gross output of the i-th 

industry, necessary to ensure the output of a unit of the final product of the 

j-th industry. 

A matrix  is called productive if for any vector  there exists 

a solution  to equation (37.6). In this case, the Leontief model is 

called productive. 

It turns out that there is no need to require the existence of a solution  

of equation (37.6) for any vector . It is enough to establish the 

existence of such a solution for at least one vector , as the following 

theorem shows, which we will accept without proof. 

Theorem 37.1. If for  and for some vector , equation (11.6) 

has a solution , then the matrix A is productive. 

There are various performance criteria. Here are two of them. 

The first criterion for productivity. A matrix is productive if and 

only if the matrix  exists and is non-negative. 

The second criterion for productivity. A matrix  is productive if 

the sum of the elements of any of its columns does not exceed unity:   

1
1


=

n

i

ija

. 
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37.2. Linear exchange model 

Concepts of the eigenvector and eigenvalue of the matrix are applicable, in 

particular, to the analysis of the process of reciprocal buyings. 

Let us consider the following question: what should the relationship 

between the budgets of countries be if they trade with each other so that it 

is mutually beneficial, i.e. there is practically no deficit for each of these 

countries. To answer this question, we consider a linear model of 

exchange or a model of international trade. 

Let there be n countries. We denote their national budgets by 1x , 2x , …, 

nx
. Let ija

 be a share of the budget jx
,which the j-th country spends on 

the purchase of goods from the i-th country. We assume that the entire 

national budget of each country is spent only on the purchase of goods 

either within the country or outside it, i.e. fair equality: 

1
1

=
=

n

i

ija

, j = 1, 2, …, n. (37.9) 

Consider a matrix composed of these coefficients ija
: 
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It is called the structural matrix of trade. 

In accordance with (37.9), the sum of the elements of any column of matrix 

A is equal to unity. 

For the i-th country, the profit from domestic and foreign trade will be 

equal to 
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niniii xaxaxap +++= ...2211 . (37.11) 

The condition for the balance of trade is formulated as follows: the profit 

from the trade of each country should be no less than its national budget, 

i.e. trade must be balanced for every country: ii xp 
 for all i, or 

ininii xxaxaxa +++ ...2211 , i = 1, 2, …, n. (37.12) 

Theorem 37.2. Equity-free trade condition is the following  

ii xp =
, i = 1, 2, …, n. 

Proof. Assume the opposite, i.e. ii xp 
 for any i. Then the strict 

inequality holds: 


==


n

i

i

n

i

i xp
11 . (37.13) 

We write this equality taking into account (37.11): 

( ) ( )

( ) .......

.........

212211

22221211212111

nnnnnn

nnnn

xxxxaxaxa

xaxaxaxaxaxa

+++++++

+++++++++

 

Grouping the terms, we obtain: 

( ) ( )

( ) .......

.........

2121

222122121111

nnnnnn

nn

xxxaaax

aaaxaaax

+++++++

+++++++++

 

It follows from (37.9) that all sums in parentheses are equal to unity. We 

get a contradiction: 

𝑥1 + 𝑥2+. . . +𝑥𝑛 > 𝑥1 + 𝑥2+. . . +𝑥𝑛. 

Therefore, strict inequality 𝑝𝑖 > 𝑥𝑖 is impossible for any i. Therefore, all 

inequalities 𝑝𝑖 ≥ 𝑥𝑖, take the form of equalities:  

𝑝𝑖 = 𝑥𝑖, i = 1, 2, …, n. (37.14) 
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We introduce the vector of budgets: 
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Then the system of equalities (11.14) takes the form: 

xxA = . (37.15) 

This equation means that the eigenvector of matrix A corresponding to the 

eigenvalue   = 1, consists of the budgets of countries conducting balanced 

trade. So, the problem was reduced to finding the eigenvector of the 

structural matrix of trade that corresponds to an eigenvalue   = 1. 

Example 37.1. The structural matrix of trade of the three countries has the 

form: 

















=

2,03,04,0

3,04,04,0

5,03,02,0

A

. 

Under what conditions is trade balanced in these countries? 

Proof. We rewrite equation (37.15) in the form
( ) 0=− xEA

: 
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−

−

−

0

0

0

8,03,04,0

3,06,04,0

5,03,08,0

3

2

1

x

x

x

. 

The rank of this system is two. Solving it, we get 
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Assuming 3x
 = 36 (to avoid fractional numbers), we obtain a vector 

( )36,44,39=x , 

which can be taken as an eigenvector. 

So, the trade balance of these countries is achieved provided their budgets 

are in the ratio: 

36:44:39:: 321 =xxx
. 

Questions 

1. What is the linearity hypothesis? 

2. What form does the equation of linear interindustry balance have? 

3. What is called the Leontief model? 

4. Which matrix is called the total cost matrix? What is the economic 

meaning of this matrix? 

5. Which matrix is called productive? In which case is the Leontief 

model called productive? 

6 What are the criteria for matrix productivity? 

7. What is the structural matrix of trade? What are the columns of this 

matrix characterized by? 

8. What is the condition for balanced trade? 
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