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‘ Foreword

Foreword

This textbook is written by the author based on many years (more than
50 years) of lecturing and conducting higher mathematics classes on the
non-mathematical faculties of the RUDN University. Many years of the
author’s experience in the Faculty of Science are taken into account.

In this textbook, the basics of the higher mathematics are presented.
The content of the textbook is necessary for students studying different
specialties. In particular, these are economics, medicine, chemistry and
engineering, agricultural, humanitarian specialties.

The author tried to give the material strictly but simple to not just share
the information about the higher mathematics but to interest students in
mathematics, to open their minds and to inculcate the mathematical culture
on them.

While writing this textbook the author has used some materials, tricks
and finds from the author’s textbooks and tutorials published in 2006-2019.
However, the amount of such tricks and finds in this textbook is
significantly replenished with the new ones which were not mentioned
before in the author’s publications. But, first of all, it is important to
mention the chapters and sections of this textbook which have not been
published by the author.

In particular, these are the following materials:

The chapter “The surfaces of the second-order”;

The examples of the application of the derivative and the differential
in biology and chemical engineering;

Biological applications of the definite integral;

The application of the integral calculus to the study of chemical
processes, the process of radioactive decay and the calculation of a mean
lifetime of a radioactive atom;
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Foreword

The Chapter “Double integrals”;

The Chapter “Triple integrals”;

The Chapter “Fourier series”, etc.

Experience has shown that for many students starting to study a
university course in mathematics, problem-solving is a significant
difficulty. That is why this textbook shows how to solve typical examples
and problems which illustrate and explain the theoretical material.

A few words should be said about the exposition of the material — it is
heterogeneous. At the beginning of the course, as well as when it comes to
basic mathematical concepts and theorems of mathematical analysis and
analytical geometry, the author adhered to a detailed presentation. It might
seem to be too detailed and simple for a strong student. The author thinks
that the basic definitions and theorems are the minimum that has to be
learnt by all readers without any exceptions. The other parts of the book
touching more complicated and deep theoretical questions are presented by
the author in a shorter style.

The whole content of this textbook might be given approximately 144
academic hours.

The material of this textbook was tested by the author while giving
lectures to students of RUDN University at the Engineering Academy,
Agrarian and Technological Institute, Institute of Medicine and the Faculty
of Humanities and Social Sciences.

The author hopes that this book, written as a textbook for students, will
be useful to all teachers of higher mathematics and all applying its
apparatus.
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‘ Chapter 1. The basics of set theory

Chapter 1. The basics of set
theory

1.1. The definition of a set

In mathematics, a set is a well-defined collection of distinct objects in
its own right. The definition of a set is known to be a basic mathematical
principle, which means it has no strict definition. G. Cantor once said: “A
set is gathering together into a whole of definite, distinct objects of our
perception or of our thought- which are called elements of the set”.

There are some examples of sets: a set of vertices or diagonals of a
polygon, a set of all solutions of an equation, a set of all the books that
form a library and etc. A set might consist of a finite or infinite amount of
objects. Those objects that form a set are called elements or points.
Usually (but not always) a set is denoted using capital letters, while its
elements are denoted using lower case. A set can be specified by
enumerating its elements or by indicating the characteristic properties of
its elements, or, in other words, by properties that every single element has.
For instance, A = {2,4,7,8} is a set that consists of number 2,4,7,8. Or A =
{x:x > 0} which is a set of all positive real numbers.

If ais an element of a set A, then it’s denoted as: a € A; overwise if a
is not an element of a set A, then it’s denoted a € A. The symbol € is called
set membership.

A set that consists of no elements is called empty and denoted as @.
For instance, a set of real solutions of the equation x2 + 1 = 0 is empty.

A set is called finite if it consists of a finite amount of elements.
Overwise its called infinite.
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1.2. Basic operations. Countable and uncountable sets

A set A is called a subset of the set B, if each element of the set A is
also an element of the set B (denoted as A c B). An empty set is a subset
of any set by definition. The symbol c is called an inclusion.

Two sets are called equal if they consist of the same elements. Equality
is denoted as A = B, which also means that A c B and B c A.

1.2. Basic operations. Countable and
uncountable sets

Definition. The union (or addition) of two sets A and B is the set C of
all elements of either A or B; it’s denoted by

C=AUB.

Definition. The intersection of sets A and B is the set C of all elements
that are members of both A and B; it’s denoted by

C=AnNB.

Definition. The complement of B in A is the set of all elements that
are members of A but not members of B; it’s denoted as:

C=A.

Examplel.l. SetsA = {2,3,4,7} and B = {1,3,5,8} are given. Find the
union and the intersection of sets A and B.

Solution: AU B ={1,2,3,4,5,7,8}, AnB = {3}, A = {2,7}.

Properties of U and N:

1. AuB=BUAand AnB = B n A (commutativity);

2. (AUB)UC=AU(BUC) and (ANB)NC=AN(BNC)

(associativity);
3. AUA = Aand An A = A (idempotency);
4. AUBNC)=(AUB)N(AuC)andAn(BUC)=(ANB)U
(A n C) (distributivity).

An infinite set is called countable if all its elements can be enumerated

by natural numbers. Overwise it is uncountable. It’s known  that a set
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Chapter 1. The basics of set theory

of real numbers is countable and the set of real numbers between 1 and 0
is uncountable.

1.3. Numerical sets and numerical line

The set of all real numbers is denoted as R. It’s worth mentioning the
following subsets of R: N is a set of all-natural numbers (in other words
positive integer), Z is a set of all integers (both positive and negative and
zero), Q is a subset of all the numbers ration, I is a subset of all the numbers
irrational. Recall that a number %,(where m and n - integers, n # 0.) can

be defined as rational. Any rational number is either an integer, or
represented by a finite decimal fraction, or by a periodic infinite decimal
fraction. Any real number that is not rational is called irrational. An
irrational number is a non-periodic decimal fraction, numbers like v/2, V3,
m, 1g7. are irrational. For example, let’s prove, that Ig7 is an irrational
number. Suppose it is a real number: 1g7 = %,Where m and n are integers.

Then, 10% = 7 or, 10% = 7P which is impossible, since the left side of this
equality is an even number and the right one is odd.

Obviously, NcZcQcR,IcR,Qnlil=0, R=QnI..Note that
the sets N, Z, Q are countable, and the sets | are R are uncountable.

Note the continuity property of the set R of all real numbers:

Let X and Y be two sets of real numbers. Then, if the inequality x < y,
is verified for any numbers x € X and y € Y, then there exists at least one
such number c, that for all x and y the inequalities x < ¢ < y is verified.

It is easy to see that the set Q of all rational numbers is not continuous.
For instance, if X is the set of all rational numbers x that are less than m,
and Y is the set of all rational numbers y greater than r, there is no rational
number c, such that for all x andythe inequalities x < ¢ < y is verified.
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1.3. Numerical sets and numerical line

A numerical line (or numerical axis) is a line on which a reference
point, a positive direction and a scale are selected, in other words unit of
length:

0 1 M X

Fig. 1.1. Number line

There is a one-to-one correspondence between the set R of all real
numbers and the set of all points of the number line: to each real number
there corresponds one definite point of the number line, and vice versa, to
each point of the line there corresponds one definite real number. Having
established this one-to-one correspondence, we identify the points of the
number line and the corresponding real numbers. The concepts of "number
X" and "point X" become indistinguishable. Therefore, often instead of
“point X”, they say “number X and vice versa. We can say, for example:
“Take point 5,” or, pointing to a point on a number line, say: “Take this
number.”

Let’s note the simplest numerical sets. Let a and b be two numbers,
and a < b then:

line segment [a, b] is a set of all the numbers X, that satisfy a < x <
b;

interval (a, b) is a set of all the numbers x, that satisfy a < x < b;

half-intervals (a, b]and [a, b) are the set of all the numbers that
correspondtoa < x < banda < x < b.

In particular intervals and half-intervals can be infinite: (—o0,a),
(b, +00), (—00,4+00), (—oo,a], [b,+o) (Obviously, the interval
(—00, +00) is the whole number line.)

The general term for all the above sets is the gap. By saying “interval”,
we mean either a segment, or an interval, or a half-shaft.
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‘ Chapter 1. The basics of set theory

The neighborhood of a point is any interval containing this point a.
The interval (a — ¢,a + ¢€) is called the e-neighborhood of a.

1.4. Module of the real number

Definition. The module (or absolute value) of a real number x is
called the number x itself if it is positive, and the number opposite to
the number X, if X is negative:

x| = {x, ecmu x = 0,

—x, ecm x < 0.

In particular the following properties of modules are known:

lx +yl < Ix| + |yl [x =yl = |x| = y[; |xy| = |x| - |yl;

|£| _x
y Iyl

The modulus of the difference of two numbers |x — a| is the distance
between points x and a of the number line, in particular, |x| is the distance
from point 0 to point x. The set of points x satisfying the condition
|[x —a| < s, obviously, the & -neighborhood of a.

Obviously, |x| = 0.

1.5. Mathematical induction

The method of mathematical induction is one of the most important
methods of mathematical proof. It is used to prove statements that depend
on a positive integer n.

The method of mathematical induction: in order to prove a statement
depending on a positive integer n, one must:

1) verify if statement is true at n = 1 (or at least at n, where the
statement makes sense);

2) verify if statement is true at n = k, and then the same forn = k + 1.

Then we make a conclusion is the statement true for any n.

Example 1.2. Provethat 1 +3+ 5+ ...+ (2n— 1) = n?.

Solution. Denote 1 +3+5+ ...+ (2n—1) =§,,.
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1.6. Union and Newton’s binomial ‘

1. Obviously, when n = 1 the statement is verified: 1 = 12,
2. We assume that S, = k2, let’s prove that Sp.; = (k + 1)2. Really,
Ser1 =Sk +[2(k+ 1) —1]1=k?>+ 2k + 1) = (k + 1)2,
Using the mathematical induction, we make a conclusion that
S, =n?
n - .
Example 1.3. Prove that the compound interest formula

Sn =501 +1L(;())”, where S, is initial capital, i — interest rate, n is the

number of accrual periods is verified.

Solution. 1. Whenn = 1we have §; = Sy + S ﬁ = So(1+ Wio)' ie.

the formula is true.

2. Assume that S = Sy (1 + %o)k'

Let’s prove that Sp41 = So(1 + ﬁ)kﬂ;
k .k i

i i
Sies =50 (1415 _+S°<1+W) 00

_ EEN UL AN

Q.E.D. The formula is verified.

1.6. Union and Newton’s binomial

Union

Let X a set consisting of n elements: X = {x;,x5,....,x,}. We will
form various subsets out of the elements of X, which are called the union.
Depending on whether the union contains all the elements of the set X or
part of them, and whether the arrangement of the elements plays a role,
three types of compounds are distinguished:

e variations;
e permutation;
e combinations.

o |




Chapter 1. The basics of set theory

Definition. Unions containing each m elements from the data of n
elements of the set X, which differ from each other either by the elements
themselves or by the order of their arrangement, are called variations of n
elements in m

For example, when scheduling a specific day in a class where 10
subjects are studied and 5 lessons each day, placement of 5 elements out
of 10 is considered.

The number of placements of n elements in m is denoted by A, . Let
us prove that the formula is valid:

At=nn—-1)(n-2).Jn—-(m-1)],1<m<n. (1.2)

Letm = 1.

We can pick 1 element fromn by nways: A = (n—1+1)=n

We assume that the formula is valid form = k: Ak = n(n — 1)...(n —
k+1).

Letm=k+ 1.

Considering, that after picking k elements elements left. And we can
pick 1 elementn — k ways, n —k =n — (k + 1) + 1, we obtain
Al =pn—1).(n—(k+1)+1)

Q.ED.

Definition. Compounds, each of which contains n elements of the set

X and which differ only in the order of elements, are called permutations
of n elements.

The number of permutations of n elements is denoted by P,.

Permutations are a special case of variations when M =N .According
to formula (1.1)

P,=Ay=n(n—-1)(n—-2)1l,orP,=1-2--(n—1n. (1.2)

Multiplication 1 - 2 -+ (n — 1)n is «n factorial» and denoted n!. When
n = 0 we consider 0! = 1. Formula (12.2) can be represented as:
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1.6. Union and Newton’s binomial ‘

B, =nl. (1.3)
We can represent formula (1.1) using the symbol n! in the form

Am = (1.1)

T (n-m)!’

Definition. Unions containing each m elements from given n elements
of the set X that different from each other by at least one element are called
combinations of n elements by m.

The arrangement of elements within the combination is not taken into
account. The number of combinations of n elements in m is denoted C}*.
From the definition, it follows that

AT = CT'By,.
Thus
Crrzn _ % _ n(n—l)(n—zrzl.!..[n_(m_l)], (1.4)
or
n! .

It follows from the last formula: C;/* = ¢} forall 0 <m < n.
It can be proved that

Cm+l 4 ¢ = cmAl, (1.5)

Newton's binomial formula

For any real n the formula

(a+b)*=Cla™+ Cta™ b + ...+ CMa™ ™b™ + ...+ Cb™  (1.6)

is called Newton's binomial formula.

To prove the validity of formula (1.6), we apply the method of
mathematical induction.

1l Letn=1.

(a+b)l=Cla+Clb=a+b
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‘ Chapter 1. The basics of set theory

1 1
(WeusedC{’zazl,Cl1 =—=1)
2. Assuming that formula (1.6) is true for n = k, we prove that it is true

forn = k + 1, i.e. prove that

(a+ b))t =P, a**t + Cipqakb + ..+ C ak™mp™ L + |+
CK,ab® + ClHipk+t. (1.7)

Next:

(a+ b)Yt = (a+b)*(a+b) = (CRa* + Cla* b+ ... +

+CMak"™b™ + . + CEb¥)(a + b) =
Coa** ! + Clakb + ...+ Clakmb™H 4 4 Clab® + CQakb +
Fo+ CPaFTmE™ 4 4 Cf abR + CF bR

We obtain:

(a+ b)Yt = CRak*t + (C2 + CHakb + ... + (C* + CVHak—mp™mHL +
+ o (CFY 4 C)ab® + clbRHL,

Considering C2 = 1= C2,q, CP + Ct = Ctyq, CF + CM1 = 042,
Ck= 4+ ck =ck,,, cF =1=clt] [see formulas (1.4), (1.5)], we obtain
(1.7). Using the method of mathematical induction we obtain that (1.6) is
valid for all n.

The coefficients €2, CL, ..., I, ..., CI in (12.6) are called binomial
coefficients.

Questions

1. Does any set contain an infinite number of elements

2. Canthe following statements be true for sets A and B: “A is a subset
of the set B” and “B is a subset of the set A”?

3. In what case does the union of two sets coincide with their
intersection?
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Questions

N o ok

10.

11.
12.

13.

What is the difference between set A and set B?

What is the complement of the set A to the set B?

Is a countable set finite or infinite?

What numbers are called rational? Is the set of all rational numbers
countable or is it uncountable?

What is the one-to-one correspondence between the set of all real
numbers and the set of all points of the number line?

What general term is used for the name of a numerical set, which
is either a segment, or an interval, or a half-interval?

Is equality always trueva? = a? If not, what is this root Va2 equal
to?

What is the geometric meaning of the module of a real number?
Is it possible to say that the modulus of the sum of two real
numbers is equal to the sum of their modules? Is a similar
statement

What double inequality is equivalent to inequality | a | < b?
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‘ Chapter 2. Lines on the plane

ELEMENTS OF
ANALYTICAL GEOMETRY

Chapter 2. Lines on the plane

2.1. Basic concepts

Let a coordinate system be given on the plane, and let we have on the
plane some line (a straight line or a curve).

Definition The following equation is called the equation of a line:

F(x,y) = 0. (2.1)

Coordinates of any point belonging to this line satisfy this equation,
and the coordinates of any point not belonging to this line do not satisfy
this equation.

In short, equation (7.1) is the equation of a line if it satisfies the
coordinates of all those and only those points that belong to this line.

Example 2.1. Write the equation of the set of points equidistant from
the axis Ox u and point 4(0, 2).

Solution. It’s known that distance between

M; (x1,y1) and M, (x,, y,) is calculated using:

d=(x; —x1)% + (y2 — y1)?

and the distance from a point to the Ox axis is the ordinate of that point,
taken with the corresponding sign.

Let M(x,y) — random point on a line. Then MM, = MA (fig. 2.1) or

y=x?+(y-2)>%

(Here, obviously, y > 0.) Square both sides of the equation:

y2=x2+y% -4y +4,
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2.1. Basic concepts

We obtain:

2
y = XZ + 1.
This line is a parabola with a vertex at a point (0, 1).

V4

|
1
-3 -2 -1 1 2 3

2
Fig. 2.1. Parabolay = %~ + 1

Note that in many cases, from equation (2.1), we can explicitly express
y in terms of x. Then we get the equation of the line in the form y = f(x).

In those cases when the line is defined by an algebraic equation of the
nth order (in particular, of the first or second-order), then this line is called
a line of the n™ order (respectively, of the first or second-order). For
example, lines y = 3x2, x2 + y2 — 4 = 0 are lines of the second order,
2x — 5y + 3 = Oarelines of the firstorder y = x3 + 3x + 1, x%y + y? —
1 = 0 lines of the third order.
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‘ Chapter 2. Lines on the plane

2.2. General equation of a line of first
order. Direct on the plane

The concept of a vector is well known from school mathematics. Recall
that on a plane, a vector is defined by its coordinates: a = (ay,a;) the
addition and the multiplication of the vector by a number are defined by
coordinates. The scalar product (@, b)of vectors a = (a;,a,) and b =
(b4, by) is the product of their modules by the cosine of the angle between
them, in other words, it is a number |a| - |b|cos¢, where ¢ is the angle
between the vectors, (@, b) = a,b; + a,b,. The scalar product of nonzero
vectors is equal to zero if and only if the vectors are perpendicular.

The lines of the first order are the lines that are defined by the equation
(2.1) that is linear, i.e. an algebraic equation that contains the variables x
and y only to the first degree:

Ax+By+C =0. (2.2)

Here B # 0, than y will be:
A Cc
YETEY TR
Cc

Or by denoting k = —%, b= -

y =kx + b. (2.3)

Equation (2.3) is called the equation of a line with an angular
coefficient k. Here k = tg¢, where ¢ is the angle between the direct and
positive direction of the Ox axis (Fig. 7.2).
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2.2. General equation of a line of first order. Direct on the plane

yh

e
A

Fig. 2.2. Line with an angular coefficient k = tg¢

Y

If B = 0 in equation (2.2), then the straight line is perpendicular to the
Ox axis, its angular coefficient is not defined, and the equation has the form
X = Q.

It might be handy to know some varieties of the equation of the line.

1. If the angular coefficient k and the point M (x,, y,) through which
the line passes are known, then obviously the identity

Yo =kxo + b. *)

Subtracting this identity from equation (2.3), we obtain the equation
of a line with a given angular coefficient and passing through a given
point:

Y — Yo = k(x — xo). (2.4)

2. If the line passes through two points M, (x,, o) and M; (x4, y1) ,
then in addition to the identity (*), the identity also holds:

y1 = kxq + b. (**)
From (*) and (**) we obtain:
Y1~ Yo
k=
X1 — Xo
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Chapter 2. Lines on the plane

and taking into account (7.4) we obtain the equation of a line passing
through given points:

Y — Yo =222 (x — xq). (2.5)

X1=Xo

Example 2.2. Make an equation of a line passing through points
My(=2,—1) and M,(1,5).

Solution. Apply those coordinates to (2.5):

y+1=i%(x+2), or y =2x+3.

3. If the point M, (xg, yo) through which the line passes and the vector

7 = (A, B) perpendicular to this line is known, then the equation of the line
has the form:

A(x—xy) +B(y —yp) = 0. (2.6)

Let us prove this. Let M(x, y) be a random point of a given line. Then
MyM = (x — x4, Y — yo). By condition MyM L 71, and this is equivalent
to (MyM, ) = 0. Writing this equation in coordinate form, we obtain:

A(x —x9) + B(y —¥0) =0,

Q.E.D.

Reveal the brackets in the last equation:

Ax + By — Axq — By, = 0.

Denote —Ax, — By, = C, we obtain:

Ax+By+C=0. (2.7)

So, the equation of a line is a linear equation.

Let us prove that every first-order equation of the form (2.7) is an
equation of some straight line in the plane.

Let us assume that we have an equation of the first degree (2.7). Let at
least one of the coefficients, A or B, be nonzero (otherwise it would not be
an equation of the first degree). Let, for example, be A # 0. This equation

always has a solution (for example, assuming y, = 1, we find x, = _Z_C).

Let (x,¥,) be some solution of equation (2.7), i.e.
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2.2. General equation of a line of first order. Direct on the plane ‘

Axg + By, +C =0. (2.72)

Subtracting (2.72) from (2.7), we obtain

A(x —x9) + B(y —=¥0) = 0.

This equation is equivalent to equation (2.7) since it is obtained from
(2.7) using identical transformations. At the same time, it is a direct
equation, as proved above. Therefore, equation (2.7) is the equation of the
line.

Equation (2.7) is called the general equation of the line, and any
nonzero vector perpendicular to the line is called its normal vector. In
particular, (A, B) the vector is the normal vector of the line (7.7).

Consider the cases when the equation is incomplete, i.e. when one of
the coefficients is zero.

Consider the cases when the equation Ax + By + C = 0 isincomplete,
i.e. when one of the coefficients is zero.

C=0; the equation has the form ®x + By = 0 and determines a straight
line passing through the origin.

B =0 (A # 0); the equation Ax + C = 0 has the form and defines a
line parallel to the ordinate axis. This equation is reduced to the form x =

Cc
a where.a = -
A =0 (B # 0); the equation has the form By 4+ C = 0 and defines a
straight line parallel to the abscissa axis.

Now suppose that none of the coefficients in the equationAx + By +
C = 0 is equal to zero. Convert it to

X |y
_C+_C=1-
A B

. C C .
Assuming a = — b= — - we obtain
XY _
a+b 1.

This equation is called the equation of the line in the "segments"”. This
line intersects the coordinate axes at points (a, 0) and (0, b).
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Chapter 2. Lines on the plane

The angle between the lines

I. Let us assume that we have two linesy = k;x + by uy = kyx + by,
where k; = tg,, k, = tgg,. Let ¢ be the angle between the lines (fig.
2.3).

Fig. 2.3. The angle ¢ between the lines

Then ¢ = ¢, — ¢4, and using the well-known formula:

tepo—tegp
tep = tg(¢s — ¢1) =1 -
or
k,—k

1+kqky'

From here, in particular, immediately follows the parallelism
condition:

ki =k,.

It is also easy to obtain the condition of perpendicularity of the lines:

kik, = —1.

Example 2.3. Find the angle between the lines:

y=3x+2,y=-2x+1.

Solution. Apply k; = 3, k, = —2 to (2.8), we obtain

—2-3
tg¢ = T = 1.
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2.2. General equation of a line of first order. Direct on the plane

i

Thus ¢ = "
Note that formula (2.8) defines one of two angles between intersecting
straight lines; the other angle is = — ¢.
1. Now let two lines [; and [, be given by general equations:
lLL:Aix+By+C; =0
I,;Ax + B,y +C, = 0.
The angle between these lines is equal to the angle between their
normal vectors (or complements it to 180 °). Therefore, one of the two

angles a between these lines can be calculated by the formula

(M) _ A1A+B1B; (2 9)

[T { :
L A2+B2. [A%Z+B2

Example 2.4. Find the angle between the lines given by the general
equations

3x—4y+7=0,8x—6y+15=0.

Solution. Using (2.9):

3-8+46 24
V32+42\82+62 25
Therefore, one of the angles between these lines is arccos %.

cosa =

cosa =

The parallelism condition for lines I; and [, is the parallel condition
for their normal vectors 1, (44, B;) and 1, (A,, B):

hobh (2.10)

A, By
The parallelism condition for lines is the parallel condition for their
normal vectors and:

A1A2 + Ble = 0 (211)
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Chapter 2. Lines on the plane

Half-plane

Let the line | be given by equation (2.7). Let (A4, B) be its normal
vector. We divide all points of the plane that do not belong to I into two
sets r; and m, as follows:

M(x,y) Emry © Ax+By+C > 0,

M(x,y) Em, © Ax+By+C <0.

The set 774 is called the positive half-plane with respect to the equation
of the line (2.7), and the set m, is called the negative half-plane. Not that
that the concept of positive and negative half-planes is defined with respect
to the equation of the line, and not to the line itself. Obviously, if we
multiply both sides of equation (2.7) by —1, we get the equation of the same
straight line, however, in this case, the positive half-plane becomes
negative, and the negative becomes positive.

It can be proved (we will not do this here) that the vector (4, B) is
directed to that part of the plane that is positive with respect to the equation
of the line (2.7):

Ax+By+C =0.

Distance from point to line

We derive the formula for the distance d from an arbitrary point
My (xg,yo) to the line (2.7).

The distance from the point M, to the line (2.7) is equal to the length
of the perpendicular dropped from M, to line. We denote byN (x, y;) the
base of this perpendicular, i.e. the point of intersection of the perpendicular
with the line (2.7). Then according to the formula of the distance between
two points

d= \/(xl — %)% + (y1 — ¥o)% (2.12)

The angular coefficient k of the line (2.7) is obviously equal to
A

k=-2
B
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2.2. General equation of a line of first order. Direct on the plane

According to the perpendicularity condition, the angular coefficient of
the perpendicular MN is equal to k' =§, and the equation of this

perpendicular (considering that it passes through a point My (x,, y,)) has
the form

Y =0 == (x — x). (2.13)

It’s possible, by solving equations (2.7) and (2.13) together to find the
coordinates (x4, y;) of the point N and substitute them in (2.12). However,
despite the simplicity of this solution, we will obtain bulky expressions.
Therefore, we will apply another method. We use the fact that the point N
belongs to MyN. Thus, the unknown so far coordinates x4, y;, points N
satisfy equation (2.13):

B
Y1 = Yo =7 (X1 — xo).
We obtain

Y1—=Yo __ X1—Xo

B A
Denote the total value of these fractions by 3:
X17%0 _ Y17Yo _ 5.

A B
This value of & is unknown, since x; and y; are unknown. Let’s find

x1 — X9 = Ab, y; —yo = B6. *)
Apply these differences to the formula (2.12), we obtain
d =./(46)2 + (BS)? = /(A% + B%)62 = |5|VAZ + B2. (2.14)

Note that we do not know whether the number ™ is positive or
negative.

Express x; and y; from (*):

X, =%+ A6,y =y, + BS

and apply these values to (2.7). (Recall that the point N (x4, y,) belongs
to perpendicular to the line (2.7), and to line to itself.) We obtain
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A(xg + A8) + B(y + B8) + C = 0,

and
_ _Ax0+ByO+C
0= A2+B2
We apply the found value of ™ to formula (2.14) and make the
necessary reductions:
d= _Ax0+By0+C| m _ |Axo+By, +C|[VAZ+B?2 _

A?2+B? A?+B?
__ |Axo+By,+C|

VAZ+BZ
And finally, we obtain:

d= [Axo+By,+C|
VAZ+B2

So, the distance to the line defined by the general equation can be
found by substituting the coordinates of the point on the left side of this
equation, and then dividing the module of the resulting number by the
square root of the sum of the squares of the coefficients of this equation of
the line.

Example 2.5. Find distance from point M,(2,3) to line
4x+3y+8=0.

Solution. Use (7.15):

d= [4-243-3+8| _

V42432

Example 2.6. Find the distance between parallel lines [, and [,:

lLL:4x+3y—-8=0

[,:8x+6y+9=0.

Solution. The distance between two parallel lines is obviously equal to
the distance from any point on one of these lines to the other line. By
assuming y = 0 in the equation the first line, we get x = 2. Therefore, the
point M,(2,0) belongs to the first line. Find the distance from M, to the
line l,:

_ |18:2+6:0+9| _ 1

d= =-
V64436 4

(2.15)
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2.2. General equation of a line of first order. Direct on the plane

Example 2.7. Obtain the bisector equation of the angle between the
lines [, and [,:

li:3x —4y+7=0,

l,:5x+ 12y —21 =0.

Solution. It is known that any point of the bisector is at the same
distance from the sides of the corner. Therefore, if M(x,y) is a point that
belongs to the bisector of the angle between the straight lines I; and [,,
then

|3x—4y+7| _ |5x+12y—21|

Vo+16 V25+144

It yields

13|3x — 4y + 7| = 5|5x + 12y — 21|,

or

13(3x — 4y +7) = £5(5x + 12y — 21).

We get two bisector equations:

1) 39x — 52y + 91 = 25x + 60y — 105,

14x — 112y + 196 = 0,

x—8y+14=0;

2) 39x — 52y + 91 = —25x — 60y + 105,

64x + 8y — 14 =0,

32x+4y—7=0.

So, the bisectors of the angles formed by intersecting straight lines [,
and [, are the lines

x—8y+14=0 and 32x+4y—-7=0.

Example 2.8. Obtain the bisector equation of the internal angle at
vertex B of triangle ABC, where A(1,1), B(5,—-2), C(2,2).

Solution. We compose the equations of the parties AB and BC using
(7.5):

AB:y—1==""(x—1),0r3x + 4y —7 =0;

BC:y+2=2"(x—5),0r4x + 3y — 14 =0.
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Chapter 2. Lines on the plane

We write the equations of both bisectors of the angle between lines AB

and BC:
[3x+4y—7| _ |4x+3y—14|
Vo¥i6 V1649 '

[3x + 4y — 7| = |4x + 3y — 14|,

3x +4y — 7 = +(4x + 3y — 14),

It yields

Liix—y—-7=0,

L:x+y—-3=0.

One of these bisectors is the bisector of the inner corner of the triangle,
and the other is the bisector of the outer corner.

Next, we reason as follows:

1. If the point belongs to the bisector of the inner corner of the triangle
and is located on the other side from point B where the triangle ABC is
located, then the point M,is in the same half-plane as point C with respect
to line AB, as well as in the same half-plane as point A with respect to line
BC.

2. If the point M, lies on the other side of B, then it lies in opposite
planes both with respect to the line AB and with respect to the line BC (see
Fig. 2.4).

C

-~

Fig. 2.4. The bisector of the inner corner of the triangle ABC
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Questions ‘

Let’s take a random point, for instance let’s take (4,—3), on a line [;.
Apply its coordinates in the equation of the line AB: 3-4+4-(-3) —
7 = =7 < 0. Apply coordinates of the point C to the same line: 3 -2 + 4 -
2 —7 =7>0.Now let’s apply coordinates of a point (4, —3) to the line
BC:4-4—-3-3—14= -7 < 0. Apply coordinates of a point 4 to: 4 +
3—-14=-7<0.

So, the point (4, —3) is in the same half-plane as point A in relation to
the BC line, but with respect to the line AB, it is not in the same half-plane
in which point C. Therefore, the point (4, —3) belongs to the bisector of
the external, not internal angle of the triangle.

So, the line I;: x —y — 7 = 0 is the bisector of the external angle at
the vertex B. Therefore, the desired bisector is the straight line [,: x +y —
3=0.

Questions

1. What is a line equation on a plane? Give examples of line
equations.

2. What is the order of an algebraic line?

3. What is the angular coefficient of a straight line in the plane? Is
the slope of a straight line parallel to the axis Oy defined?

4. What is the normal line vector on a plane? How to determine
normal vectors using the general equation of a line?

5. How to determine the acute angle between the lines that are given
by the general equations?

6. How to calculate the distance between two parallel lines on a plane
that is given by general equations?
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Chapter 3. Second order curves
3.1. Circle. Ellipse

Definition. A circle is the set of all points of the plane located at the
same distance (which is also called the radius) from a fixed point  called
the center of the circle.

Let the radius of the circle be equal to R and the center is a point
C(xg,y0). We derive the equation of this circle.

J/' A

I

0 x

Fig. 3.1. Circle centered at point C and radius R = CM

For any point M(x,y) on a circle the equality CM = R is verified, in
other words / (x — x¢)2 + (¥ — y0)% = R.

Hence, we obtain the equation of the circle

(x —x0)* + (¥ —¥0)* = R*.

In particular, if the center of the circle coincides with the origin, then
the equation of the circle has the form:

x%? +y? =R2 (3.1)
Equation (3.1) is called the canonical equation of a circle.
Definition An ellipse is a line, for all points of which the sum of the

distances to two fixed pointscalled foci, is a constant and greater than the
distance between the foci.
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3.1. Circle. Ellipse

Let’s obtain the ellipse equation. We choose a coordinate system such
as that the Ox axis passes through the foci F; and F,, and the axis Oy in the
middle between the foci (Fig. 3.2).

X
Fig. 3.2. Ellipse — + Y 1
a

b2

Suppose that the distance between the foci is equal to 2¢, and the sum
of the distances of an arbitrary point M (x, y) of the ellipse from the foci is
2a: (according to the definition, a > c). Express the distance from the
point M (x, y) to the foci F; (—c, 0) and F,(c, 0), accordingly: r; = F;M =

Jx+o)?2+y2r,=FM=,/(x—c)?+y? Since, r; + r, = 2athen
Jox+2+y2+/(x —c)? +y2 =2a. (3.2)
This is an ellipse equation. Convert it.
JEx+o)?2+y?=2a—,(x—c)?+y?
(x+0)2+y?=4a’—4a/(x— )2 +y%2 + (x — ) + y?,
ay(x —c)2+y?=a?—cx,

a?[(x — ¢)* +y%] = (a® — cx)?,
a’x? — 2a’cx + a?c? + a?y? = a* — 2a%cx + ¢2x?,
a’x? — c?x? + a?y? = a* — a?c?.
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Chapter 3. Second order curves

Because a® — c? > 0, we can denote a® — c¢? = b?.
We obtain:

b2x? + a?y? = a?h?

xZ yZ

il (3.3)

a? = b2

It’s important to verify that equation (3.3) is the equation of the ellipse.
So far, we can only assert that each point M(x,y) satisfying the ellipse
equation (3.2) also satisfies equation (3.3). However, equation (3.3) was
obtained after double squaring, and we know that when squaring both sides
of the equation, an equation can be obtained that is not equivalent to the
original. Make sure that this did not happen here. We must prove that every
point M (x,y) that satisfy the equation (8.3) is an ellipse point, i.e. that the
condition r; + 1, = 2a is fulfilled for her.

So, let M (x, y) be an arbitrary point whose coordinates satisfy equation
(3.3). Let’s find the distances r; and r, points M from the foci F; and F,,
respectively.

We obtain

= JGT TP *)
Express y? from (3.3):

y2 = b2 (13,

But b? = a? — ¢?, therefore,

y? =(a?-c»)(1 —z—z) =qa%?—c?—x? +2—2x2.

Apply this value y? to (*):

CZ
r1=\[x2+2cx+cz+a2—c2—x2+?x2=

= \/2cx+a2 +Sx2= /(a+£x)2
a? a )
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3.1. Circle. Ellipse

The value e that is determined by the ratio e =§ is called the

eccentricity of the ellipse, in this case 0 < e < 1. It is defined as the
measure of elongation of an ellipse. The greater the eccentricity, the more
elongated the ellipse is. The eccentricity is zero if and only if the focal
points of the ellipse coincide: F; = F,. In this case, the ellipse turns into a
circle of radius a.

We obtainr; = + (a + Ex) = t+(a + ex).

On the left is a positive number r;. Therefore, on the right you need to
choose a sign so that the right side is also positive. It follows from (3.3)
that |x| < a. Inaddition. 0 < e < 1, therefore |ex| < a. So, regardless of,

x> 0orx<0,always a + ex > 0, therefore, you need to take the “plus
sign “on the right:

. =a+ex. (**)

Similarly, way, we obtain

r, =a-—ex. (***)

From (**) and (***) we obtain

r + 1, = 2a,

therefore, the point M(x, y) belongs to an ellipse.

We have proved that equation (3.3) is an ellipse equation. It is called
the canonical equation of the ellipse.

Here a is the semimajor axis of the ellipse, b is the semimajor axis (b =
Vva? — c?). It follows from equation (3.3) that the axes Ox and Oy are the
axes of symmetry of the ellipse, and the point of their intersection, the point
O (0, 0), is the center of symmetry.

In the particular case when a = b, the focal points of the ellipse merge,
¢ = 0 and we have a circle of radius a centered at the origin.

It is known that planets move along elliptical trajectories, while the
eccentricities of planetary orbits are small. In particular, for instance, the
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Chapter 3. Second order curves

eccentricity of the orbit of Venus is 0.007. Thus, the planets move almost
in circles. Some comets also move in elliptical orbits, but their
eccentricities are large, i.e. are close to one. For example, the eccentricity
of Halley's comet is 0.9671429. Comets are either approaching the Sun,
which is in one of the foci, then moving away from it for many years.

The vertical lines x = — % and x = %x are called the directrices of the

ellipse defined by equation (3.3). It is easy to prove that if r is the distance
from an arbitrary point Mof an ellipse to some foci, and § is the distance
from the same point to the directrix corresponding to the same foci, then

the ratio % is a constant, equal to the eccentricity of the ellipse. Let’s take

the right focus and the right director.
We obtain:
r=r2=a—ex -see(***),

a
6 =-—x,
e

therefore
r _a-ex _ (a—ex)e _

- a
S5 o a—ex
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3.2. Hyperbola

ol

Fig.3.3

3.2. Hyperbola

Definition. A hyperbola is a line for all points of which the modulus
of the difference in distances to two fixed points, which are called foci, is
a constant and smaller than the distance between the foci.

Denote, as in the previous case, the distance between the foci F; and
F, as 2c, choose the coordinate system such that the axis Ox passes through
the foci and the axis Oy in the middle between them (Fig. 3.3). We denote
the distances from an arbitrary point M(x, y) of the hyperbola to the foci
F; and F,, respectively, by r; and r,, we obtain:

|ry — 1| = 2a.
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Y A

|
1
1
1
1
1
1
|
|
|
1
a .

2 2
Fig. 3.4. Hyperbola Z—Z - Z—z =1

Assuming Tl = FlM = (X + C)2 + yz, TZ = FzM =

\J (x — ©)? + y?, we obtain the hyperbola equation:
Jax+2+y2—/(x—c)?+y? = +2a
By performing calculations similar to those we conducted with the
ellipse equation (see § 8.1), we obtain the canonical hyperbola equation:

X2 y2
; - ﬁ = 1, (34)
where b? = ¢% — a?.
A hyperbola has two axes of symmetry, the intersection point of which
is its center of symmetry.
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3.2. Hyperbola

Let’s show that with an increase of X in the branch of the hyperbola,

they come close to the lines y = igx, are called the asymptotes?
hyperbola.

For instance, let’s take y = gx and the hyperbole branch lying in the
first quadrant. We obtain the equation of this branch by expressing y from
equation (3.4):

y = % -v/x2 — a2. For each x consider the difference in the ordinates
of the specified line and the branch of the hyperbola:

b b b b [x®-(x%?-a?)]

—y — = 2 _ g2 =2 — 2 _ g2y =2 = " JI_
x Vx2—al=-(x—+Vx?2—-a2)=-- =

a a a( ) a (x+Vx?-a?)

ab
x+VxZ-a?’

We see that with increasing of x this difference becomes arbitrarily
small.

The linesy = + %x are called the directrix of the hyperbola given by

the canonical equation (3.4). If r is the distance from an arbitrary point M
of the hyperbola to some foci, and § is the distance from the same point to
the directrix corresponding to this focus, then the ratio% is a constant value

equal to the eccentricity of the hyperbola. The proof of this statement does
not differ from the above proof of a similar statement for an ellipse.

More on asymptotes in § 11.3.
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Fig.3.5

3.3. Parabola

Definition. A parabola is a line for all points at which the distance to
a fixed point, called the focus, is equal to the distance to a fixed line called
the directrix, which is not passing through the focus.

Let a point F and a line d not passing through this point be given on
the plane. We derive the parabola equation with focus F and directrix d.
Let the distance from the point F to the line d be equal to p. We choose the
coordinate system as follows. Draw the Ox axis through the point F
perpendicular to the line d, and the Oy axis in the middle between the point
F and the line d (Fig. 3.6).
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3.3. Parabola

A\

Fig. 3.6. Parabola y? = 2px

Let M(x,y) be an arbitrary point on a parabola. Denote by & the
distance from this point to the directrix and by r the distance to the focus.
According to the definition:

r=>24.

Given that r = /(x — 52 + 2,8 =2+ x, we obtain:
_EZ 2=E
/(x 2) +y 2+x

2 2
pz+y2 =pz+px+x2
y? = 2px. (3.5)
This is a canonical equation of a parabola. A number p is called the
parameter of a parabola.
Example 3.1. A space object is launched from the Earth’s surface

along a tangent to the Earth’s surface and flies along a parabolic path. The
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Chapter 3. Second order curves

top of the parabola is on the surface of the Earth, the focus is in the center
of the globe. Find the speed of flight.

Solution. We choose a coordinate system so that the abscissa axis
passes through the focus and the ordinate axis is perpendicular to the
abscissa axis, which is tangent to the Earth. The radius of the Earth is
6370000 m =~ 6400000m. The equation of the parabola is y? = 2px,

where§ = 6400000. The object is launched in the direction of the ordinate

axis, but under the influence of gravity it shifts towards the center of the
globe. It is known that in one second a freely falling object flies 4.9m. We
substitute in equation (3.5) 2p = 4 - 640000, x = 4,9. We obtain y =
V4 - 640000 - 4,9 = 11200. So, in the first second, the object flies 11,200
meters, that is, its speed is 11.2 kilometers per second. This is the second
cosmic velocity.

The eccentricity of the parabola is equal to one: gz 1. So, all three

considered second-order curves are characterized by the ratio %, where r is

the distance from an arbitrary point of the curve to the focus and is the
distance from the same point to the corresponding directrix. If this ratio is
less than one, then the curve is an ellipse, if it is greater than one, then the
hyperbola, if equal to one, then the parabola.

We note that the canonical parabola equation (3.5) differs from the
equation familiar from the school course. This is due to the choice of the
coordinate system. If we change the coordinate axes, then instead of
equation (3.5) we get the usual equation of the form y = ax?, where ais a
constant number. A similar remark applies to the hyperbola equation (3.4).

2 2
For example, if for the hyperbola =- — Z- = 1 we take its asymptotes as the
axes of the new coordinate system, then in this new coordinate system its
equation will have a familiar form y = 2

X
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3.4. General equation of a second order line ‘

3.4. General equation of a second order
line

A general equation of a second-order line has the following form:

aiq xz + 2a12 Xy + azo, yz + 2a13 x + 2(123 y + az3 = 0, (36)

Where a?, + a?, + a2, # 0.

Let us prove that there exist 9 different types of second-order lines.
These are:

o ellipses;
e hyperbole;
e parabolas;

e curves degenerating into a pair of straight lines.

In this case, ellipses and pairs of lines can be both real and imaginary.

Thus, among the second-order lines, the curves in the usual sense of
the word are only an ellipse, a hyperbola, and a parabola. Therefore, they
are called the most important second-order curves.

The proof of the statement above is based on the transformation of the
general equation (3.6). We give this proof here. But for this we must first
study how the coordinates of the points and the equations of the lines
change when the coordinate system is changed.

3.5. Coordinate transformation

Before we write a line equation on a plane, we need to select a specific
coordinate system. Obviously, the same line will have different equations
in different coordinate systems. We know, for example, that the equation
of a circle of radius R, the center of which has coordinates x, and y, in the
selected system Oxy , looks like this:

(x —x0)* + (¥ —¥0)* = R*.
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In another coordinate system O’x'y'where the center 0’ coincides with
the center of this circle, the equation of this circle will have the form

x'?> +y'? = R?

It will be so if the coordinate systems Oxy and O'x'y’ are connected
by the relations

x =x"+ x,

y=y"+Y.

Let us consider one more example. Let a line be given in a coordinate
system Oxy by the equation

x—y+2=0,

and let us choose another coordinate system 0'x’y" which is connected
to the previous system by the relations

! !

_x _Y _

TVZ 2 1,

_x .y
y—J?+ﬁ+1.

Then the equation of a considered line in the system 0'x’y" will have
a quite simple form:

y'=0.

So, we see that a successful choice of a coordinate system allows to
simplify the equation of a considered line.

In analytic geometry, the transition from one rectangular coordinate
system to another is usually carried out with the rotation and parallel
transfer.

The parallel transfer of the coordinate system Oxy to a point
My (x0,V0) is defined by the formulas

{x=£+xw
Y=y +¥o
which express old coordinates x, y through new x ',y .

Rotation of the coordinate system by the angle a (counter
clockwise) is defined with the formulas
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3.5. Coordinate transformation ‘

{x =x cosa —y’sina,

. , (3.8)
y=xSsina+ycosa.

Let us derive these formulas.

1. We start with the parallel transfer. Let two rectangular coordinate
systems be defined on the plane: the "old" system Oxy and the "new"!
system O'x'y’, with the axis O'x" parallel to the axis Ox and the axis 0y’
parallel to the axis Oy, and in addition, the directions of the corresponding
old and new axes coincide. In other words, the new system O0'x'y’ is
obtained from the old one by parallel transfer, or shift, at which the origin
of coordinates O moves to a point 0",

Let the point 0’ have coordinates x, and y,in the old system. Let us
for definiteness considerx, > 0, y, > 0. We take an arbitrary point M on
the plane (Fig. 3.5), and let its coordinates be (x, y) in the old system, and
letit be (x',y") in the new system.

Va y!
Mﬁ
Mg s M
02'-" O," § tl‘ ‘;)Cl‘
O Ol Ml '.x

Fig. 3.5. Parallel transfer of a coordinate system

Let us consider fig. 3.5 (we took M (x,y) with the coordinates x > 0,
y > 0) So 001 = X, 002 = Yo 0M1 =X, 0M2 =Yy, OIM{ = x’,

1 From here quotes in words "old" and "new" are omitted
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O'M; =y'. Then we have x =0M; =00, +0,M =x,+x', y=
OM, = 00, + 0,M = y, + y'. Therefore we obtain (3.7).

The case when the points 0" and M have negative coordinates is
considered similarly.

Remark. One could reason differently: consider vectorsOM, 0'M and
00'. Obviously, OM = 0'M + 00 Adding the vectors coordinate-wise,
we obtain (3.7).

2. Now we move to a rotation of the coordinate system. Consider the
case when the new system Ox'y' is obtained from the old one Oxy by
rotating by a certain angle a, counted counterclockwise. Moreover, both
systems have a common origin O.

Suppose that, as in the previous case, the point M has coordinates (x, y)
in the old system, and (x,y") in the new, respectively.

For definiteness, we consider the case when the angle @« = £BOC is
acute. Let M; be the projection of the point M onto Ox, B the projection of
the same point M onto Ox ' (Fig. 3.6). The sides of the angle formed by the
straight lines MM, and MB are perpendicular to the sides of the angle
formed by the axes Ox, Ox and equal to a. Hence, ZAMB = a.

y! Y

Fig. 3.6. The rotation of a coordinate system

According to the notation on fig. 3.6:
x=0M,,y =MM; x = 0B,y = BM.
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3.5. Coordinate transformation

However

OM,; = 0C — M,C = OC — AB.

From the triangle OBC (in which OC is a cathetus adjacent to the angle
a) we find:

0C = OBcosa = x cos a.

From the triangle AMB (in which AB is a cathetus opposite to the angle
o) we find:

AB = BMsina = y'sina.

Thus,

x=0M;, =x'cosa—y'sina. ()]

Analogically we find y:

y = MM = M;A+ AM = CB + AM,

CB = OBsina = x'sina, AM = BM cosa = y cos a.

Thus,

y=MM=x'sina +y cosa. (**)

From (*) and (**) we obtain (3.8).

Note that for the case when the angle a is not acute, the arguments are
similar. Formulas (3.8) are valid for any angle a.

So, we derived formulas (3.7) and (3.8) expressing the old coordinates
through the new ones. It might seem that formulas expressing new

coordinates through old ones would be more useful. These formulas are
easy to obtain. From (3.7) we immediately find:

{x' =X — X,
Y =y~
Further, multiplying in (3.8) the first equality by cos a, and the second

by sin a and adding them, we obtain
x =xcosa+ysina.

(3.7)

3 |




Chapter 3. Second order curves

Similarly, multiplying the second equality by cos a and subtracting
from it the first multiplied by sin «, we get

y' = —xsina + ycosa.

Finally we have

{x =xcosa+ysina, (3.8')

y =—xsina+ycosa.

However, in practice, it is rarely necessary to find new coordinates of
points by their old coordinates. Much more often, it is required to obtain
the equation in the new system from the equation of the line in the old
coordinate system. And for this it is necessary to replace the old
coordinates with new ones, i.e. apply formulas (3.7) and (3.8), not (3.7
and (3.8).

Let us now consider the general case of coordinate transformation,
when it is necessary to move from a rectangular system Oxy to a new
rectangular system O'x'y’, at which the origin 0" does not coincide with
the point O, and the axes 0'x and 0"y’ are not parallel to the axes Ox and
0y, respectively. Let the new origin 0 have coordinates (x,, y,) in the old
Oxy system, and the axis 0 'x’ form an angle o with the axis Ox. Then the
transition from the Oxy system to the system O'x'y'can be carried out in
two stages:

1) make a parallel transfer of the Oxy system so that the origin is at a
point 0'(xo, ¥o);

2) rotate around a point O by the angle a.

It is easy to make sure that in this case the old coordinates will be
expressed through the new ones using formulas

x=x'cosa—y sina+x,,
{y =x'sina+y cosa + y,.
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3.6. Transformation of a general equation
of a second-order line

Let us the general equation of a second-  order line be given

a11X2% + 2a1,xy + azy? + 2a43x + 2a,3y + azz = 0, (3.6)
where a?; + a?, + a3, # 0.

We denote the left part of the equation (3.6) as F (x, y):

F(x,y) = a;1x% + 2a;,xy + Az, + 2a,3x + 2a,3y + ass.

In this polynomial, second-order terms form a quadratic form:

¢(x,y) = a1 x* + 2a1,xy + azy>. (3.9)

The first step of the transformation is to transform the quadratic
form (3.9) to the canonical form

a11x? + azy?.

by turning the coordinate system by an angle a.

Note that the transformation (3.8) is a non-degenerate linear
transformation.

So we make a transformation (3.8). We obtain

F(x,y) = a;1(x?cos? a 2x'y cosasina + +y ?sin® a) +
+2ay;(x?cosasina —x'y'sin?a — y?sinacosa + x'y cos?a) +
+ay,(x?sin®a + 2x'y' cosasina +y? cos? a) +
+2a;x cos a — 2a,y sina + 2a,x'sina + 2a,y cos a + azz =
ay1x? + 2a1,xy + 2a33y +azz =F(xy'),

where the new coefficients are as follows:

aj, = a;q cos? a + 2aq, cosasina + a,, sin®a,
aj, = —aq; cosasina + a;,(cos? a — sin? a) + ay, cos asina,
ah, = ayq sin? a — 2a,, cos a sina + a,, cos? q,
ai3 = a3 cosa + ayz sina,

ay3 = —aq3 Sina + a,3 cos a. (3.10)
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The angle a is determined by the requirement that aj, = 0, i.e. so
that in the transformed equation there is no term containing the product of
unknowns. According to (8.10), the requirement a;, = 0 means

aj,cos?a + (ayy, — a;p)cosasina — aj,sin“a = 0. (3.11)

So, when rotating by the angle o, which satisfies equality (3.11), the
quadratic form (3.9) will have a canonical form.

In equation (3.11) it is natural to assume that a,, # 0 (if a;, = 0, then
nothing would have to be transformed because the quadratic form ¢ (x, y)
would already have the form a;;x? + ay,y?.

Dividing (3.11) by cos?a we obtain

aip + (ax — ajtga — aptg’a = 0

or

aptg®a — (a — ayy) - tga — ajp = 0.

Solving this quadratic (with respect to tga) equation, we get:

an-—ajt /(azz—a11)2++4a122 (3.12)

2ay

tga =

Assuming(a,, — a;;)? + 4a?, > 0, we can always find the necessary
angle o from (3.12).

Denote for shorter notation aj; = 44, a3, = 1,. Now we state the
obtained result.

By rotating the coordinate system by the angle a, determined by
formula (3.12), one can transform the quadratic form
¢(x,¥) = a;1x? + 2ap,xy + any?

to the canonical form

¢'(x",y") = A4 x"? + Ay"%

Meanwhile the polynomial F(x, y) is transformed to the form

F'(x',y") = 1x"2 + A,y + 2al5x" + 2ahy" + ass. (3.13)
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Note that both coefficients A; and 4, cannot simultaneously vanish: if
there were 4; = 4, = 0, then the quadratic form (3.9) as a result of a linear
non-degenerate transformation would turn into an identical zero, which is
impossible.

So two basic cases are possible:

I.2; # 0,4, # 0.

11. One of the coefficients 4, A, is nonzero, the other one is equal to
zero (parabolic case).

We consider case |, i.e. first basic case: A; # 0,4, # 0. When
transferring the origin to some point 0’ (x;, y4), i.e. when converting
x'=x"+x,
y'=y"+ o

the polynomial (3.13) takes the form

F'(x",y") = 11x"% + 2,9"% + 2(A1xg + aj3)x"" +

+2(A2y0 + as3)y"" + azs, (3.14)

where a free term

aiy = xg* + Ay0° + 2ai3x0 + 2ah3yg + asz = F' (xg, o)

The second part of the transformation is as follows. We select such
coordinates (x;, y,) of the new origin so that the coefficients by x'* and
y'"in (3.14) turn to zero, i.e. to satisfy the inequalities:

AIX(I) + ai:; = 0, Azy(,) + a£3 = O

Sinced; # 0,1, # 0, then we can find x; and y,:

!
_ %43

Ly =—2 (3.15)
1

li
Xn =
0 A,

So, rotating the coordinate axes through an angle a, defined by formula
(3.12), and moving the origin of the coordinate system to a point which
coordinates x;, y, are determined by equalities (3.15), we transform
equation (3.6) to the form

Alxllz + Azynz + a§3 = 0 (316)
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Here two cases are possible:

A4 and A,are of different signs (so called hyperbolic case);

A4 and A,are of the same sign (so called elliptic case).

Consider the first case (hyperbolic).

Let a3; # 0. Obviously, one of the coefficients has the same sign as
ass; let, for example, A, and a3; be of the same sign; then A, and a3 are
opposite in sign.

Rewrite the equation (3.16) as

"2
=1.

X

! !
_333 433
A1 Az

The denominator — % in the first term in a positive number which we
1

denote as a?; the denominator — % in negative, we denote it as —b2. Then
2

we obtain an equation
X”2 yHZ
2 o = 1.
This is the canonical expression of a hyperbola.
Let now a3; = 0. Then (3.16) takes the form

llx”z + Azynz = O (317)

We assume that A, > 0,4, < 0 (if not, we multiply both parts of (8.17)
by —1). Denote 1; = a?, 1, = —b? and then obtain the equation

a’x"? — b%y'"? = 0.

It can be rewritten in the form

(ax" +by")(ax" — by'") = 0.

It is an equation of a pair of straight lines

ax" +by" =0,ax"" — by" =0,

which intersect in the origin.
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Similarly, we consider the elliptic case when both M and M2 are of

the same sign and the parabolic case, when one of the coefficients, M or
A

2, 1S zero.
o . . . x''2 g2 . .
In the elliptic case we obtain either elllpse? tor = 1, or imaginary
. x?  y" . . . . . . x''2
ellipse Ztr= —1, or a pair of imaginary intersecting lines =+
y!IZ .
== 0.

In the parabolic case we obtain either parabola y'’? = 2px", or a pair
of parallel lines y"’2 + a? = 0, or a pair of coinciding straight lines y''? =
0.

Questions

1) What are the semi-axes of an ellipse?

2) What is the eccentricity of an ellipse? What characterizes the
eccentricity of the ellipse and what is the range of its value?

3) How many axes of symmetry does an ellipse have?

4) What curve is called a hyperbola?

5) How many axes of symmetry does a hyperbola have?

6) What are the asymptotes of a hyperbola? How many asymptotes does
a hyperbola have?

7) What are the main properties of a hyperbola?

8) Whatis the parameter of a hyperbola? Is it possible to find a parameter
of a parabola knowing the distance from its focus to its vertex?

9) How many axes of symmetry does a parabola have?

10) How many different types of second-order curves exist there?
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Chapter 4. Straight lines and
planes in the space

4.1. Plane in the space

Let the coordinate system Oxyz be given in space and let the plane II
pass through the point Mo(Xo,Yo0,20) perpendicular to the wvector
N = (4, B, C). These two conditions determine the only plane in the space
Oxyz. A vector N is called a normal plane vector. We derive the equation
of this plane.

Let M(x, y, z) be an arbitrary point on a plane I1. Then a vector MyM =
(x —x0, Yy — Y0, Z—29) and a vector N = (4,B,C) are mutually
perpendicular. Hence, their scalar product is equal to zero: (N, MyM) = 0.
We write this last equation in a scalar form:

A-(x—x)+B-(y—yy))+C-(z—2y) =0. 4.2)

This is the equation of a plane passing through the point My (x,, o, Zo)
perpendicular to the given vector N = (4, B, C). From (4.1) we obtain

Ax + By + Cz — Axy — Byy — Czy = 0.

Denoting —Ax, — By, — Cz, = D we obtain a general equation of a
plane:

Ax+By+Cz+D =0. (4.2)

So, the equation of a plane is a linear equation or a first-order equation
with three variables.

It is easy to prove that any first-order equation with three variables is
an equation of a plane.

It is known that a plane is uniquely defined by three points which are
not on the same line. Let My (xo, Yo, Zo), M1 (x1,y1,21) and M, (x,, v, Z5)
be three points not lying on the same line. Then vectors MoM; = (x; —
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X0, Y1 = Yo, Z1 — Zo) and MM, = (x; — Xo, Y2 — Yo, 22 — Zo) are not
parallel to the same line (not collinear). Let M (x, y, z) be an arbitrary point
on the plane 1. Then the vector M,M can be decomposed into vectors
MyM; and MyM,. Therefore, these three vectors MyM,, MyM, and
M,Mare linearly dependent and that why

X—Xo Y—Yo Z—2

X1 =X Y1=Yo Z1—Zo[=0. (4.3)

X2 =Xo Y2—DYo Z2— 2

This is an equation of a plane passing through three points
My (X0, Yo, Z20), M;1(xq,v1,21) and M,(x,,y,,2,) which are not on the
same straight line.

Example 4.1. Write an equation of a plane which passes through points

M, (L 2,2), M,(3,3,1), M, (2 3,2).

Solution. We substitute the coordinates on these points into the
equation (4.3):

x—1 y-2 z-1 x—1 y—=2 z-1
3—-1 3-2 1-1|{=0, 2 1 0 [=0
2—1 3-2 2-1 1 1 1

x—1-2-(y—2)+z—-1=0

x—2y+z+2=0.

We consider the relative position of two planes. Given two planes:

Aix+Byy+Ciz+ Dy =0,

A;x + B,y +Cyz+ D, = 0.

Their normal vectors are N; = (44, B1,C;) u N, = (4,, B,,C,).

The angle between these two planes is the angle between N; and N,
which is defined by the formula

A1A3+B1By+C1Cy

cosgp = (4.4)

JaeBzect [aenzecs
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The parallelism condition for two planes is the condition of
proportionality of their normal vectors:

A_B_G (4.5)

A, By G

The coinciding planes condition looks as follows:

A B C D

2=2=2=2 (4.6)
A, By C; D

The perpendicular planes condition is the conditioncos¢ = 0, i.e.
AlAZ + BIBZ + C]_Cz = 0 (47)

4.2. Line in space. Line and a plane in the
space

Let the straight line L pass through the point M, (x,, vo, zo) parallel to
the vector § = (I, m,n). In this case, the vector sis called the directing
vector of the straight line. Let M (x, y, z) be an arbitrary point of the line L.
Obviously, the vectors MM = (x — xo, Y — Yo, Z — Z,) and § are
proportional. Having written down the condition of their proportionality in

coordinate form, we obtain the canonical equation of the straight line L:
X—Xo — Y—Yo — Z_ZOI (48)

l m n
From (4.8) we obtain:
x—xo=1It, y—y,=mt, z-—2zy,=nt,
where t is a proportionality coefficient. These equations give:

x=x9+I1t, y=yo+mt, z=zy+nt. (4.9

These are the parametrical equations of a line L. (Sometimes these
are called in a singular form as a parametric equation of the line.)

A line in the space also can be defined as an intersection of two planes,
i.e. as a set of points, the coordinates of which satisfy the conditions:
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{A1x+31y+ 61Z+D1 =0
Azx +Bzy+ sz+D2 = 0.

(4.10)

The canonical equation (4.8), however, can also be considered as a pair
of plane equations, considered together. It is easy to derive the canonical
or parametric equation of a line defined in the form (4.10). To do this, it is
enough to find some point M, (x,, vy, Zo) that belongs to the line and the
direction vector. The coordinates of Myare easy to find since this is any
solution to the system (9.10). For example, putting, z, = 0 from the system
(9.10) we find x,,yoand obtain M,(xo,V,,0). The coordinates of the
direction vector § may be numbers:

Z|B G C A4 Ay By
B, C; C2 Ay A; B,
Let us consider now the relative position of the line and the plane in

space. Let the line L be given:
X=X0 _ Y=Yo _ Z7%

l m n

andaplaneIl: Ax + By + Cz+ D = 0.
Obviously, the line L is parallel to the plane IT when the direction

vector of the line § = (I, m, n) is perpendicular to the normal vector of the
plane N = (4, B, C), i.e. the parallel condition of the line L and the plane
I1is the condition:

Al+Bm+Cn=0. 4.11)

The condition for the proportionality of these vectors is the
perpendicularity condition of the line L and the plane II:

a-2_¢ (4.12)

l m n

The angle between the line and the plane is the angle between the
line and its projection onto the plane, and this is the angle additional to the
angle between the direction vector § of the line L and the normal vector N
of the plane II:
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— Al+Bm+Cn (4.13)

VAZ+BZ+CZ12+mZ+n?

A
sing = |cos N,s§

The distance from a point to a plane is calculated using a formula
similar to the formula for the distance from a point to a line on a plane [see
(7.15)]. We show that the distance d from the point My (xg, Yo, Zg) to the
plane

Ax +By+Cz+D =0. 4.2)

is calculated using the formula
__ |Axg+Byo+Cz+D|
VAZ+BZ+CZ

We write the equation of a line passing through a point M, (x,, vo, Zo)
perpendicular to the plane (4.2). To do this, we use the parametric
equations (4.9):

x=x9+I1t,y =y, +mt, z =z, +nt. 4.9

In order for the line (4.9) to be perpendicular to the plane (4.2), it is
necessary that its direction vectors = (I, m, n) be parallel to the vector N =
(4,B,C), i.e. so that the coordinates of the vectors 5§ and N are
proportional. The easiest way, of course, is to take vector Nas the vector §
,i.e.take [ = A, m = B, n = C. Then the parametric equations (4.9) will
look like this:

x =x9+At,y =yg + Bt,z = z5 + Ct. (4.9)

d (4.14)

The straight line (4.9 ") is perpendicular to the plane (4.2) and passes
through a point M,. Consequently, the distance from the point M, to the
plane (4.2) is the distance between the point M, and the point M of the
intersection of the line (4.9 ") with the plane (4.2). Let us find the
coordinates of this point M. For this, it is necessary to solve equations (4.2)
and (4.9 ") together. The easiest way to do this is substitute the expressions
for x, y, and z from (4.9 ") into (4.2). We obtain:

A(xg + At) + B(yo + Bt) + C(zo + Ct) + D = 0,
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(A% + B2+ C?)t + (Axy + Byy + Czy + D) = 0.
From these we find t:
_ AXO+By0+CZO+D
A%2+B2+C?
This value of t determines the coordinates of the point M which is the
base of the perpendicular dropped from the point M, onto the plane (4.2).

Substitute the found t in (4.99:

t =

AX0+ByO+CZ0+D
x=xg+A(———5—>)
A“+B“+C
_ Axg+By,+Czp+D "
Y—YO+B(_ A2+B2+C2 )1 (49 )
Axo+By,+Czp+D
Z =12 —_——).
o+ C(-—prrez )

The distance d from the point M, to the plane (4.2) is the length of the
perpendicular MyM or, which is the same, the distance between the points
Mo (x0, V0, 20) and M(x,y, z), i.e.

d=(x—x)%+ ¥ —¥0)? + (z — 20)2.

Since x, y and z are defined in (4.9"), we obtain

d= \/(Az + B2 4C2) (_ Ax 0+By0+CZO+D)2 _

A2+B2%2+C? or
|Ax ¢+BY o+Czg+D|
= A2 + B2 + (2
+ETA A2+B2+(C? ’
d—= |[Axo+By,+Czo+D|
© VAZyBZ+(C?

That completes the proof.
Example 4.2. Find the distance between a point M(1,0,2) and a plane
x+2y—2z+9=0.

Solution.

_ [14+2-0—2-2+9| _6_ 2
J12+22+(-2)2 3 '

Example 4.3. Find the distance between a line

x+1 y—-2 z

2 2 1
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andaplane 4x — 2y —4z+9 = 0.

Solution. The line is parallel to the plane. Indeed, the scalar product of
its direction vector and the normal plane vector is zero: 2 - 4 + 2 - (—=2) +
1 - (—4) = 0. Therefore, the distance from a straight line to a plane is equal
to the distance from any point M, of this straight line to a plane. The most
convenient way is to take a point My, = (—1,2,0) whose coordinates appear

in the equation of a line. We obtain
_ |a(-1)-22-4-0+49] _ 1
T JerCorcaE 6
Example 4.4. Find the distance between a point M,(1,2,3) and a line
x6_ Yy _z77
2 -2 1
Solution. We write the equation of the plane that passes through the
given point M, and is perpendicular to the given line, and find the
coordinates of the point M of the intersection of the line and the plane.
Obviously, MyM is a perpendicular dropped from a point M, to a given
line. Its length is the distance we want to find.
The equation of a plane passing through M,, perpendicular to a given
line is
2-x-1)—-2-y—=2)+1-(z—-3) =0,

or
2x—2y+z—-1=0. *)
Write the equation of this straight line in a parametrical form:

Xx=6+2t,y=—-2t,z=7+t. **)

Find the intersection point of the line (**) and the plane (*). To do this,
first we substitute x, y and z from (**) into (*) and find t:

2-(6+2t)—2-(=2t)+7+t—1=0,

9t+18=0,t = —2.
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Now, substituting the value t = —2 in (**), we obtain x = 2, y = 4,

z = 5. So, the point M(2,4,5) is the base of the perpendicular MyM.
Therefore

d=MM=,/2-12+4—-2)2+((5-3)2=3.
Note that there is another way to solve this and similar problems, based

on the concept of a vector product of vectors, which is not considered here.

Questions
1) What is a normal vector to a plane in space?
2) Will the angle between the planes3x + y —z=0andx —y + 2z +
5 = 0Obe the right angle?
3) Will the planes 3x —2y+z=0 and 6x—3y+2z+ 12 =0 be
parallel?
4) Does a point My(1,2,3) belongto a plane 2x — 3y +z+ 1 = 0?
5) What is the distance between the origin and a plane 2x —y + 2z +
9=0?
6) What are the coordinates of a point on a line
x =2+t
{y = 1 — 2t,corresponding to the value t = —1?
z =3+ 2t,
x=3-—t,
7) Does the point My(1, 3, 2) belong to a line { y=1+¢ If it
z = —4 + 3t?
belongs, what is the corresponding value of a parameter t?
x =3 —4t,
8) Will the vector @ = (2, —1, 3) be parallel to a line {y =142t
z=>5—6t?
x=1+t,
9) What point of aline { y = 2 — 3t, corresponds to the parameter value
z=-3+2t
t=2?
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x=2+t,
10) Doaline{y: 3+ 2t, and a plane x + 2y — 5z + 2 = 0 intersect?
z=-1-2t

If they intersect, what are the coordinates of the intersection point?
11) Is the line ’%1 = y_—+12 = % parallel to a plane x 4+ 2y + 2z — 7 = 0?
12) How to determine the coordinates of a direction vector of a line given
Alx + Bly + Clx + D1 = 0,
Ayx +Byy +Cpz+ Dy, =07
13) How to find the distance between the parallel planes?
x-1 _y+1 z-3

14) Does a plane - =5 =5 % through points M; (-1, 0, 0) and
M, (5, -3, 9)?

by a pair of planes {
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5.1. Definition of function

One of the most important definitions in mathematics and its
applications is the definition of a function.
Definition. Let us be given two numerical sets X and Y. Suppose that

each element X€ X according to some law f is associated with some

(unique) element Y € Y Then we say that a function! ¥ = f (X) is given
on the set X.
Moreover, X is called an independent variable (or argument), y is a

dependent variable, and the set D(f)= X is called the domain of the
function. The set R(f ) of all values of the function is called the scope of

the function. Obviously R(f ) cY,
So, the definition of a function consists of three parts:

adomain D(f) =X;
a scope R(f)=f(x).
a rule f which associates each point X € X with a unique point

y = f(x) e R(f).

1 More precisely, a numerical function.
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A graph of a function ¥ = T(X) is a set of points with coordinates

(x (), xe X,
If the set X is not specifically stated, then the domain of the function is

the set of all such values of x for which the function ¥ = (X) makes sense
at all (this is the so-called natural domain of definition).

Note that we use different letters to denote a function and its argument,
for example:

y=y(x), y=F(x) s=s(t), y=o(x),

The most common are the following methods for setting the function:

1) analytical — the relationship between the argument and the function
is given in the form of a formula (or formulas). So, the functions

1 y= 3 4 2X
_ y=—=7 "~ /
y=2x+3 ° x? X*+1 are given analytically.

Note that one function can be defined with a set of formulas: different
functions (different analytical expressions) describe different parts of the
domain. For example:

_{le, if x<1,

l—x, if x>1;

2) tabular — a function is given with a table containing the values of
the argument x and corresponding values of a function f(x). Examples of
such functions are tables of financial statements, a table of logarithms.
Databases are also essentially based on the tabular method of specifying,
storing and processing information, therefore, they are also based on the
tabular form of functional dependence;

3) graphical — the function is given graphically if its graph is drawn,
i.e. the correspondence between the argument and the function is set by
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means of a graph. The advantages of this method include its visibility, the
disadvantages include its low accuracy.

There are other less common ways of defining functions, for example,
verbal, which consists in the fact that the function is described by the rule
of its compilation.

Consider an example of a function defined verbally or descriptively.

This is the Dirichlet function, usually denoted as 2(X) . Itis equal to one
of its argument x is a rational number and to zero if x is an irrational
number. The Dirichlet function is defined on the whole number line, and
the set of its values consists of two points: 0 and 1. It is impossible to
graphically depict it:

1, if xis rational,
Y=0, if xis irrational .
We move on to consider the basic properties of functions.

1) parity and oddness. A function ¥ = f(x) defined on an interval
symmetric with respect to the coordinate origin is called an even function

if, for any values x from its domain, equality f(_ X): f(x) holds. If

f (_ X) =—f (X) then the function is called an odd function. A function
that is not even or odd is called a general function.

4
For example: 1) Y=X is an even function since
f(_x):(_x)4 = x4 = f(x); 2) y=sinx is an odd function since

f(=x)=sin(-x)=-sinx=—f(x). 3y y=X*+siNX s a general
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function since F(=x)=(=x) +sin(=x)=x* - —sinx,

f=x)= f(x) f(=x)=—f(x),

The graph of an even function is symmetric relative to the axis OX,
and the graph of an odd function is relative to the origin.

2) monotony. The function ¥ = f(X) is called increasing on the
interval X if for any X , X2 € X from the inequality X2 > X follows that
f(x,)> f(xl); a function is called decreasing if from X2 > X; it follows

that T06)< f(x),

A function is called monotonic on the interval X if it either grows on
the entire interval  or decreases on it.

Note that we gave a definition of a monotonic function in the strict
sense. In general, monotonic functions include non-decreasing functions,
i.e. those for which from x, > x, it follows that f(x,) = f(x;) and non-
increasing functions, i.e. those for which from x, > x, it follows that
f(x2) < f(x).

3) boundedness. A function y = f(x) is called bounded in a given
domain if there exists a number M > 0 such that |f (x)| < M for all x from

this domain.
1

x2+1

For example, the function is bounded on the whole number line

1
x2+1
4) periodicity. A function y = f(x) is called periodic if there exists a
number T # 0 such that f(x + T) = f(x) for all x from the domain of the
function.

since

| < 1forany x €R.
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In this case, T is called the period of the function. Obviously, if T is
the period of a function y = f(x), then the periods of this function are also
2T, 3T etc. Therefore, usually, the period of the function is called the
smallest positive period (if it exists). For example, function y = sin x has
a period T = 2m, and function y = ; 3x has a period T = g It should be

noted that not every periodic function has the shortest period. In particular,
the Dirichlet function is periodic and any real number is its period, but it
does not have the smallest period.

5.2. Basic elementary functions

We list the basic elementary functions and briefly recall their basic
properties known from the school course in mathematics.

1. A power function, Y = X" here a is any real number.

Consider this function for different values of a:

1) a is a natural number. The domain of the function is the entire
number line. The function is odd if a is odd and even if a is even.

If a is odd, then the function increases on (-o0; +0); if a is even, then it
decreases on (-oo, 0) and increases on (0. +o).

2) a is a negative integer. In this case, the function is defined for all
values of x except x=0.

A function is odd if a is an odd number and even if a is an even number.
If a is odd, then the function decreases on (-oo, 0) and (0, + o).

3)a= % n # 0. If n is an even number, then the function is defined

on [0, +); if n is an odd number, then on (—c, +o0). The function
increases throughout the definition area.

Fig. 5.1-5.4 show graphs of the power function for various values of
a.
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AV

Fig. 5.1. Graph of the power function y=x?ifa =2

AY
y=x
y=x
X
0

Puc. 5.2 Graph of the power function y=x®ifa=1anda =3
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yll

Puc. 5.3. Graph of the power function y=x®ifa=-1

yll
y=\x

Puc. 5.4. Graph of the power function y=x2 if a=1,

The power function is non-periodic for any a.

- - —_— X - - -
2. Exponential function ¥Y=& a>0,6 a=1 This function is
defined on the whole number line. It is a general function; increases on
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(o0, +0)at a>1 (Fig. 5.5, a), decreases on (o0, +0) 4t O<a<1
(Fig. 5.5, b). Non-periodic.

a) va o) i
y-a y=a
a=1 0<a<l
1 1
0 X 0 ¢

Fig. 5.5. Graph of the exponential function y=a*
ata>1 (a) and O<a<1 (b)

3. Logarithmic function Y= l0g. X a>0, a=l, Logarithmic
function defined on (01 + Oo), it is a function of a general form; increases

on (0, +) 5 a >1; decreases on (0, +) gt 0<a<1, Non-periodic.

a) AY 0) e

Fig. 5.6. Graph of the logarithmic function y=log.x at a>1 (a)
and O<a<1 (b)
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Recall that the exponential function Y =2 and the logarithmic

function Y = 1094 X are mutually inverse functions.
4. Trigonometric functions:

1) Y =8N X (Fig. 5.7). 0dd periodic function with the period T = 270

, defined on (_ 0, + OO).

Fig. 5.7. Graph of the function y=sin x

2) Y=C0SX (Fig. 5.8). Even periodic function with the period

T =27 defined on (_ 0, +°°).

YA y=cosx

m

[
S E
mm/

Fig. 5.8. Graph of the function y=cos x
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(_Lm, Lmj

3) Y=19X (Fig. 5.9). The domainis \ 2 2 ,Nez
[-5+m Fem)
——+4mn, —+7n

The function is odd, increases on 2 2 , heZ Itis

periodic with the period T =T,

! ! AV : :
s e yoex |
2; 2 2 2

Fig. 5.9. The graph of the function y=tg x

4) Y=C9 X (Fig. 5.10). The domain: (nn, m+7n), nez. An odd

periodic function, decreases on (nn, 7+ nn), n eZ; the periodis T =7,
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YA

y=ctgx

| |
'] L 1%
¥

ko 3m\ 2n ¥
N

oA

Fig. 5.10. The graph of the function y=ctg x

5. Inverse trigonometric  function:

1) y=arcsinx. 5y y=arccosx,
3) Y= arctg X 4 Y= arcctg x
The functions arcsin X and arccos x are defined on [_1' 1], functions

arctg X gng arcctg X are defined on the whole number line.

5.3. Elementary functions

Let function Y = f(x) be defined on interval X, its range of variation
is 'Y, and let different values of x correspond to different values of y. Then

for each value Y €Y there is a single number X € X at which f(x)=y.

Then the resulting function X = () defined on X with the range of
variation of Y is called the inverse function.
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Since an independent variable is usually denoted by x and a function

by y, the function inverse to the function Y = f(x) is also denoted as
y="f7(x),

Mutually inverse functions are, in particular, ¥ = a’ and ¥ = log, x
(Fig. 10.11), Y =SiNX ang Y =arCsiNX etc The graphs of mutually

inverse functions are symmetric with respect to the line y=X,

AV
y=a' ,
7/
rd
s
/
g
7
s
1 ’
'
'
/s
s
e
e
s
rd
7/’
0l !
~ >
’ —~1 X
7 y = logex
s
Id
7/
4

Puc. 5.11. Graphs of mutually inverse  functions
y=a" gpq Y =109, X

It is well known that arithmetic operations can be performed on
functions: addition, subtraction, multiplication, division.
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5.3. Elementary functions ‘

Consider another action on functions called taking a function from a

function or constricting a complex function. Let a function ¥ = f(”) be
defined on a set U and its range of variation is Y, its argument u be a

function of x; U :(P(X), defined on a set X with a range of U. Then

function Y = T(0(X)) defined on X is called a composite function or a
function of a function (a superposition of functions)

For example, two functions y=19U ang u=1-x* define a

composite function ¥ = |9(1_ XZ) with domain (-1
Note that the operation of taking a function from a function can be

performed any number of times. For example, a function y = ylgsin X’
is obtained as a result of the following operations:

y=\/a, u=Igv v=sinw, w=x2.

Definition. An elementary function is called a function that is
obtained from the basic elementary functions and constants using a finite
number of operations of addition, subtraction, multiplication, division, and
taking a function of a function.

Elementary functions are divided into algebraic and transcendental.

Algebraic functions include:
a) polynomials:

y=a,X"+a X" +..+4a,.
b) fractional rational functions:

CaX"+ax 4. +a,
bX™ +b X" +...+ Db,

y
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i.e. functions defined as the ratio of two polynomials;

c) irrational functions, i.e. functions obtained by a finite number of
superpositions and arithmetic operations on power functions with integer
and fractional exponents and which are not rational.

L ) _ w2 .3
The examples of the irrational functions are y=X +\/;,

Vx4l

X° + /X , etc.

Generally, function ¥ = f(x) is called algebraic if it satisfies the

n n-1 _
equations of form FoY tRY " +..+F, =0

where PO, Pl, P. are polynomials depending on x.

A function that is not algebraic is called transcendental.

Transcendental functions include exponential, logarithmic and
trigonometric functions.

5.4. Application of functions in the
economics

Functions are widely used in economic theory. Here we give the most
commonly used functions of a single argument.

The utility function (see Fig. 5.12) is a subjective numerical
assessment by a given individual of the utility u of the quantity x of a
certain product for him. In a broad sense, the utility function is the
dependence of the utility (effect) of a certain action on its level (intensity).

7|




5.4. Application of functions in the economics

U A

0 X

Fig. 5.12. Graph of the utility function

The output function (one-factor production function; see Fig. 5.13) is
the dependence of the volume y of the output on the volume x of the
processed resource. The output function is a particular type of production
function that expresses the dependence of the result of production activity
on the factors that caused it.

VA

0 X

Fig. 5.13. Graph of the output function

The cost function is the dependence of production costs on the volume
of products. The cost function is also a particular type of production
function.

The supply and demand function is the dependence of the volume of
demand D and supply S on the price of goods p.

Consider some product. Let D(p) be the quantity (number of units) of
a product that a buyer wants to buy at a given price p per unit. The function
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D= D(p) is called the demand function for the product. This function is
decreasing. Usually, it has the form:

Dkaa+C, (5.1)
where a <0 (Fig. 5.14).
DA
0 p

Fig. 5.14. Graph of the demand function

On the other hand, let S(p) be the number of units of goods offered
by the sellers in the market at the price p. Obviously, supply increases with

rising prices. Therefore, the function of the proposal S :S(p) is an
increasing function. It usually has the form:

S=p°+d, (5.2)
where b>1 (Fig. 5.15).
S A
0 p

Fig. 5.15. Graph of the proposal function
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Questions

For the economics of interest is the condition when demand is equal to
the supply:

D(p) = S(p). (5.3)

The price P = Do at which equality (5.3) holds is called equilibrium.
The intersection point of the curves D and S (graphs of functions

D=D(p) ang S = S(p)) is called the equilibrium point.

With an increase in the well-being of the population, the constant ¢ in
formula (5.1) increases, curve D rises, the equilibrium point shifts to the
right (Fig. 5.16).

D, Sa

0 Po  Po p

Fig. 5.16. The position of the equilibrium point
depending on the welfare of the population

Questions

1) What is the natural domain of a function?

2) What are the ways to define functions?

3) What property does the graph of an odd function have?

4) What is the general term used to refer to increasing and decreasing
functions?

5) How many different periods does a periodic function have?
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6) Let function Y= f(X) have the smallest period T. Is function

y="f (3X) periodic and if so, what is its smallest period?

7) How to get the graph of the inverse function from the graph of the
function itself?

3
8) Which function is the inverse of function ¥ =X 2

9) Does function y=2x+3 belong to the basic elementary functions?

10) How can one get elementary functions from basic elementary
functions?

11) Will the sum of elementary functions be an elementary function? And
the square root of the elementary function?

12) What functions of one variable are most often used in economics?
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Chapter 6. Limits

6.1. Sequence. Limit of a sequence

If according to some law, each positive integer n is assigned one
specific real number x,, then they say that a numerical sequence is given:

X, X K (6.1)

In other words, a numerical sequence is a function of a natural
argument: Xy = f(n), i.e. function defined on the set of natural numbers.

Sequence (6.1) is written briefly in the form {Xn}. Numbers X1, Xz,

..., %n ... are called the members of the sequence and the n' member X,

is called the general member of the sequence.
A sequence is considered given if its general member is specified or a
method for obtaining any of its elements is specified. For example, a

2n+1 .
formula x = defines a sequence

5n+2
3 5 7 9 2n+1
7,12,17,22,..,50+2, ... (6.2)
The sequence may be monotonic or nonmonotonic, limited or
unlimited. (There is no need to define these concepts since in § 5.1

definitions of a monotone and bounded function have already been given.)
In particular, sequence (6.2) is monotonically decreasing. Indeed,

Xy — Xon :

consider the difference
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« _y _2n+l 2:(n+1)+1_ 2n+1 2n+3
"™ Bn+2 5.(n+1)+2 5n+2 5n+7
(2n+1)-(5n+7)~(2n+3)-(5n+2) 10n*+19n+7-10n*-19n—6
(5n+2)-(5n+7) - (5n+2)-(5n+7)
1
(5n+2)-Gn+7)

S0, ¥ %1 >0 jo Xu1 <X forany n.

Consider the same sequence (6.2). If, for example, N =100 then
201 « - 200 001
X, = ——= _ n—
502 ; if N=100000  then 500002 \we see that with

Xy are less and less different

increasing n, the members of the sequence
2

from E and this difference can become arbitrarily small.
In particular, if 1=100000

2_200001_2_, 1000003999... < 0,000001

X —— =
" 5 500002 5

Definition The number a is called the limit of the sequence {Xn} if
for any (arbitrarily small) number € >0 there exists number N such

that for all N> N
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n—oo

If a sequence {Xn} has  limit a, then it is called convergent (to the
number a). In this case, we write:

n—oo

Sometimes instead of (6.4), it can be written: X, 2?8 35 n—>oo0,
If we returnto  sequence (6.2), then we see that for €= 0,000001

inequality (6.3) holds as N >100000

Let us find out the geometric meaning of the limit of the numerical
sequence. Inequality (6.3) is equivalent to the double inequality:

—e<X,—a<E gra—e<X, <a+e

This means that for all N> N all members of the sequence {Xn} are

in € -neighborhood of the point a (Fig. 6.1).
[ o Y »
\ - L

7
a—¢ a ate
Fig. 6.1. e-neighborhood of a

Therefore, there can be only a finite number of members of this
sequence outside this neighborhood.
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6.2. Limit of a function

Limit of a function at infinity

Considering the limit of sequence X, = f (n) we were dealing with a
function whose argument n increasing, assumed only natural values. Now

consider the function Y = f(x). Its argument x in the process of change
can take any (not only natural and not only integer) values.

Definition Number b is called the limit of the function ¥ = f (X) as x
tends to infinity if for any (arbitrarily small) € >0 there is a number

M >0 such that for all x satisfying the condition |X| >M the inequality

[F()-bl <z pogs.
In this case, we write:
lim f(x)=b. (6.5)

Sometimes instead of (6.5), it can be written: | (X) b a5 x >0,
The meaning of the definition of the limit of a function at infinity is
basically the same as for the limit of a sequence:

limx. =a
N means that the members of the sequence differ arbitrarily

little from a if n is large enough;

lim f(x)=b o oy
X0 means that the values of the function differ arbitrarily

little from b if x is large enough in absolute value.
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Remark. If in the definition stated above we replace the condition
X|>M

with the condition X>M | then we obtain the definition of the
limit of the function as X —+o0, If we replace it with a condition
X <—M | then we obtain the definition of the limit as X — —oo.

Limit of a function at a point

Let function ¥ = f(x) be defined in some neighborhood of the point
a, except, perhaps, the point a itself.

Definition. N umber b is called the limit of the function ¥ = f (X)
as x tends to a if for any (arbitrarily small) number € > O there is a number

8>0 such that for all X* Xo satisfying the condition |x-a|<3
inequality

| f(x)—b|<e& holds.

In this case, we write:

lim f(x)=b. (6.6)

X—a

The geometric meaning of this definition is as follows: for any
e-neighborhood of point b (on the Oy axis) there exists a 5-neighborhood
of point a (on the Ox axis) such that as soon as x falls into this &-

neighborhood of the point a, the corresponding value of function f(x)

belongs to an e-neighborhoods of b: xe(a-8,a+8)=

f(x)e(b-¢,b+e)
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6.3. Infinitely small quantities. Infinitely
big quantities.

Definition. A function & = oc(x) is called an infinitely small quantity

(or simply infinitesimal) as X = %o (as X —0) if its limit is zero:
lim a(x)=0 (lim (x)=0)-
X=>Xo X—>o0

An infinitesimal sequence is defined similarly.
Let us now consider the relationship of a variable with its limit.

Theorem 6.1.N umber b is the limit of the function f (X) as X = %o
(as X —> o) if and only if
f(x)=b+a(x). (6.7)

where (X) is infinitesimal as X — %o (as X —> ).

Proof. 1. Necessity. Let [im f(x)=b . Denote alx)=f(x)=b et

X—Xo
&>0. Then there exists such 8>0 that for all X7 %o satisfying the
condition |X - X0| <8 inequality | f (X)_ b| <€ holds, i.e. |°‘(XX <€ and
this means that a(x) is infinitely small.
2. Sufficiency. Let f(x)=b+a(x) where %(X) is infinitesimal. Then

the difference f(X)=D s infinitesimal, i.e. for every €>0 there exists
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X =% <3 the

such 8>0 that for all X7 %o satisfying the condition
inequality |f (X)_b| <% holds and this means that 1££lo f(x) =b .

We proved the theorem for the case X=X The proof is similar if
X —> 00,

Definition Function ¥ = F(X) is called an infinitely large quantity

(or simply infinitely large) as X = %o if for every M >0 there exists

such >0 that for all x not equal to Xo and satisfying the condition

X =% <8 inequality [f(x)>M holds.

In this case, we also say that f(x) has an infinite limitas X = %o or
lim f(x)=00
that T(X) tends to infinity as X > Xo. We write: x>% (x) ,or

f(x) >0 g5 XX

Infinitely large is determined similarly as X — oo,

There is an obvious connection between the concepts of infinitesimal
and infinitely large: if oc(x) is infinitely small as X=X (X — ), then

f(x)=i is infinitely large as X = %o (x —>0); if f(x) infinitely
a\ X

large, then a(X) = fi is, infinitely small.
X

Properties of infinitesimal:
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1. The algebraic sum of a finite number of infinitesimals is infinitely
small.

2. The product of an infinitesimal quantity by a limited quantity is
infinitely small.

The corollary of this statement is the following statements:

1) the product of an infinitesimal by a constant is infinitely small;

2) the product of two infinitesimal is infinitesimal.

Let us prove property 2 as an example. Let &= O‘(X) be infinitesimal

as x — x, and lety be a bounded quantity, i.e. |y| <M .Let €>0. Then

€
g'=—
for M there exists such >0 that for all X# %o satisfying the

condition X~ %0 <3 the following inequality holds:
|oc| <g'= 2
M .
Then
el
|ocY|<M-M =8, o |ocy|<8_

And this means that |ay| is infinitesimal.

a(x)

lim—=—=<=0

Infinitesimal can be compared. In particular, if % B(x , then we
B(

say that a(X) is infinitesimal of a higher order than X)  and write

afx)=0(B(x)).
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6.4. Basic theorems about limits

Uniqueness of a limit

Theorem 6.2. If a function has a limit, then this limit is unique.

lim f(x)= lim f(x)=Dh.
Proof. Assume the opposite: x-a () bl x—a () 2 and

b, =b, Then, according to Theorem 6.1:
F(x)=by +0u(x) ang T (x)=b, +o1,(x)

here %4(X) and ©2(X) are infinitesimal. Subtracting these equalities
term by term, we obtain

0=b, —b, + [a1(x)_a2(x)]

This gives

o, (x)— o, (x)=b, —b, =c=const =0 _

This equality is impossible since the difference oy (%) - o, (x) s

infinitesimal. Therefore, the assumption of the existence of two different
limits is false.

The limit of the sum, product, quotient

We will consider the limits of functions Y =U(X)and V=V(X) as

o _ . limu(x)
X —>a oras X—> 0, A short notation lImu will mean either x-a
limu(x) .
or x—x . limvV s similar.

1. The limit of the algebraic sum is equal to the algebraic sum of the
limits:

85 |




‘ Chapter 6. Limits

lim (u+v)=limu+limv.

2. The limit of the product is equal to the product of the limits:
lim (uv)=limu-limv

3. The limit of the quotient is equal to the quotient of the limits
(provided that the limit of the divisor is nonzero):

u_limu

v limv
We state these statements more clearly as X — & and prove it. (The

proof in case of X — oo is similar.)

1. 1F U=U(X) and V=V(X) have limits legalu(x):bl, IX'IQV(X): b,

lim[u(x)+v(x)]=b, +b,

as X — a, then its sum U(x)+ V(%) has a limit xa

limu(x)=b, limv(x)=b

Proof. Since x—a , Xx—a 2, then by Theorem 14.1 the
functionsu(x) and V(X) can be written in the form U(X)=b1 +(X1(X),
V(X)= b, +oc2(x)’ where al(x) and 0‘2(X) are infinitesimals,

i a:(x)= O, i a,(x)=0 . Hence,

U(X)+V(X) = [bl + 0Ll(x)]‘F [bz + O‘2()()] = (bl + b2)+ [al(x)+ 0Lz(X)]

Here 1 +0; is a constant, o, (%)+ (%) s infinitesimal, Applying
Theorem 6.1 again, we obtain
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lim[u(x)+v(x)]=b, +h,

Xx—a i.e.
lim[u(x)+v(x)]= limu(x)+ lim v(x).
X—a X—a X—a

2. If the functions U = u(x) and vV =Vv(x) have limits IXIIQIU(X) B bl
Ixm v(x)=b, as X—a, then the product UONV(X) has a limit and
lim [U(X)V(X)]: b,b,

Proof. Since legal u(x) =h, , le—q; V(X) =b, , according to Theorem 14.2

u(x)=b, +oy(x) v(x)=b, +0,(x) where (%) and ©2(X) are

infinitesimal as X —> a. We have:

u(xVv(x)= by +ot, (x)][b, + o, (x)] = by, +byoe, (x)+ bt (X)+ oty (et (x).
Denote Biot, (X)+ b0, (X)+ oy (X)or, (x) = a(X) | As defined above,

biot, (x), b, (X) ang o (X)et, (X) are infinitesimals, therefore, its sum

oc(X) is also infinitesimal. So,
u(x)v(x)=byb, +o(x)
where O‘(X) is infinitesimal. That means that U(X)V(X) has a limit

which is equal to bib,  That completes the proof.
Corollary. A constant multiplier can be taken out of the limit sign:

lim cu(x)=c lim u(x).
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Indeed, if limu(x)=b, c=const, then limc=c. Then

X—a X—a

m[cu(x)] =limclimu(x) = climu(x)

X—a X—a

limu(x)=b, limv(x)=b,

3. 1f U=U(X) and V=V(X) have limits xa , x-a

u(x)
as X —a and P2 # 0 then the function V(X) also has the limitas X — a

Iim@: b

e
and “° v(x) b, _

Proof. Let Ixm u(x)= bl Lmv(x): bz 7 O. By Theorem 6.1
U(X)=b1 +oa1(x), v(x):b2 +oc2(x), where 0‘1()() and OL2()() are
infinitesimals. We do simple identity transformations:

U(X) _b +a1(x) _ ﬂ+( b, +a1(x) ﬂj _ ﬂ+ bzal(x)_blaz(x)

V(X) B b, +a2(x) B b, b, +O‘;z(x)_ b, B b, b, [bz +a2(x)]

So,
M _ ﬂ_k bzal(x)_bla‘Z(X)
v X) 2 bz(bz +0‘2(X)

b
ﬂ bzal(x)_blaz(x)

Here P2 is a constant, and a fraction b, [b, + o, ()] s
infinitesimal. It follows from the properties of infinitesimals:
1

byo, (X)—byat, (X) js infinitesimal, and P2 [b, + o1, (x)] is bounded.
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The limit passage in inequalities

We will assume that the inequalities discussed below are fulfilled in
some neighborhood of point a (excluding, perhaps, this point) or for
sufficiently large x.

4. 1f function U =U(X) is non-negative: U=>0  then limu=>0.
5. If inequality U=V holds for  functions Y = u(x) ang v =V(X),

then limu>Ilimv .

6. If the inequality U <V <W holds for functions Y = U(X), V= V(X),

W=W(X) ang limu =limw=b, then limv=b.
For example, we state the last statement in more detail and prove it.

Theorem 6.3. If conditions U(X)<V(X) <W(X) are satisfied in some

neighborhood of a and functions Y = U(X) and W=W(X) have the same

limitas X —>a: 'XiLQU(X)=IXing(x):b

Iimv(x):b.

same limit; x—a

. then the function V(X) has the

. _ __limu(x)=b
Proof. Let an arbitrary € >0 be given. Then since x-a , then

there exists ©1>0 such that for all X=a satisfying the condition

| X a| <8 the following inequality holds:

lu(x)-b<|. *)
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_limw(x)=b _ 5. 50
Since x—a , then there exists such 02 > Y that for all X#a

satisfying the condition | X a| <&, the inequality holds:

|w(x)-b|<e %)

If ™ is the smallest of 91 and 52, then for all X# a satisfying the

condition |x—a| <8 both inequalities (*) and (**) hold simultaneously,
i.e. at the same time

b—g<u(x)<b+e b—g<w(x)<b+e,

From the last inequalities we get:

b—e<u(x)<v(x)<w(x)<b+e

therefore D—& <V(X)<b+e e

[v(x)-b[<e

limv(x o
And that means that x—a . (The proof is similar for X — )
One-side limits
If f(x) tends to the limit b as x tends to a and X <@, then b is called
the limitof  function f (X) as x approaches a from the left  or left-

. _ _lim f(x)=b lim f(x)=b
side limit. In this case, we write x-a-0 (or x—a- ).
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Similarly, the limit of f(x) as X —>a, X>a iscalled the right-side limit
m f(x)=b lim f(x)=b)

li
and is written in the form x-a+0 (or x—a+

It is easy to prove that a function f(x) has a limitas X —a if and
only if there are simultaneously left-side and right-side limits and they are
equal to each other:

lim f(x)=lim f(x)=b

X—a+ i
In this case, the limit in the usual sense is also equal to b:
lim f(x)=b

X—a

A sufficient criterion of the existence of a limit

Theorem 6.4. A monotonic bounded sequence has a finite limit.
In particular, if a sequence {Xn} increases and is bounded above (i.e.,

there exists an M such that %» <M for all n), then it has a limit. Similarly,
decreasing and bounded below sequence also has a limit. Moreover, the

increase and decrease can be understood in a broad sense (i.e. Xnig = Xy

and X1 S Xn respectively for all n).

The validity of this theorem seems almost obvious, but we do not give
a strict proof of it since it is based on information from the theory of real
numbers that are not considered in this book.

Let's look at some examples. Moreover, we take into account that the

1 1 1

guantities n' n? (and generally n“ for> 0) are infinitesimals.
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2n’—n+3
_ im—————
Example 6.1. Find ">~ 5n° +3n—-4
Solution. The numerator and denominator of the fraction tend to

00

infinity as X — oo, This is the so-called " © " uncertainty. Therefore, it is
impossible to apply the limit theorem. We first convert this expression by

dividing the numerator and denominator by n%. Then we apply the
statement about the limit of the quotient and about the limit of the sum.
2_14_1
2n* —n+3 n n:2 2-0+0 2
im———=1im = -z
>=5n° +3n-4 e g 3 4 5+0-0 5
A
n n

Vx?+1+2n

im
Example 6.2. ">*  4n+3

1
_Aln?+1+2n . \/1+n7+2
lim =lim

—0 —>0 3
n 4n+3 n 44>
Solution. n

Here we divide the numerator and denominator by n and note that

Jn? +1 \/n2+1_ 1

3
=4

1+ —
n n2 n2

lim (v Xx* +4x —/x* +1).
Example 6.3. Findx—>+oo(\/ " \/ 1)

Solution. Here is the uncertainty of the form "% —o0" We multiply
and divide this difference of radicals by their sum (i.e., by the conjugate
expression). We get:
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lim (VX2 +4x —J/x? +1 =

X—>+00

- (VX2 +4x —x% +1)- (VX® +4x +4/x2 +1 _

X X2 +4x %% +1
1
4—=
lim —— ax-1 = lim X =2
X2 +4x +x7 +1 \/1+4+\/1+12
= X X
6.5. Two remarkable limits
sin x

1. Let us prove that there exists the limit of function X as X—0

, and this limit is equal to 1:
lim 2" X _ 4
x>0 X ) (6.8)

This limit is usually called the first remarkable limit.
Proof.

Consider a circle of radius R: OA=0M =R (Fig 6.2 shows its

T
_ _ O<x<—
section). Let x be a radial measure of acute angle AOM 2,

Then MB=0OM -sinx=Rsinx NA=OA-tgx=Rtgx
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N
M
X
0 B A
Fig. 6.2
S, ~Loa-mB=1Rsinx
Let Sibe the area of triangle OMA: 2 2 .
S, = L2y S
Denote as 2 the area of sector OMA . Then 2 . Denote as 3
S, = L0A-NA=ZR’tgx
the area of sector AON | Then 2 2 .
Obviously,
S, <S, <SS,
hence,

lesinx<%R2x<%R2tgx

This gives
sinx<x<tgx

Dividing the last inequality by sin X , we obtain:
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X 1 sin x
1<—<—— cosx<——<1
SINX COSX, or X .

sin x

So, the function X s located between the functions u(x)=cos x

and WO)=1 " which have the same limit 1 as X —0 1, According to
Theorem 6.3 we obtain the equality:
. sinx
lim——=1
x—0 X .
The proof is similar for X <0,
. sinax
lim
Example 6.4. Find x>0 ax

Solution. Make a substitutiono.=ax. Obviously, X —> 0 equals to

o — 0. We obtain

. Sinax ,. sina
lim =lim =1
x—0 ax a—0 o .
sin ax
- lim
Example 6.5. Find x>0 bx
. Sinax ,. sinax a a ,. sinax a a
lim =lim -—=—".lim =—.1=—
Solution. *>9  bx 0 ax b b 0 ax b b.
. tgx
||mg_

Example 6.6. Find *»0 X

1 tendsto1as since.
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X ._sinx 1 sinx 1
Solution. I|m tg =lim——=Ilim——Ilim———=1-1=1,
X X0 X COSX x>0 X x>0C0SX
Note that:
“mtgx 1
x>0 X .
. 1-cosx
o lim———
Example 6.7. Find *»° X
Solution.
. 1-cosx . (1—-cosx)(l+cosx) .  1-cos®x
lim———=Iim > =lim =
o0 X =0 x?(1+cosx) 0 x ?(1+cos x)
_im sin® x _im [ SN o _ 11
o0 x?(1+cosx) *0\ x ) 1+cosx 2 2

(We can calculate this example using the formula

1-cosx = 2sin? X )
2

2. Consider the sequence {an} with the general term:

a, = (1+ lj
n .

We prove that this sequence increases monotonously and is bounded.
Hence, it has a limit by Theorem 6.4.
Using the binomial expression, we obtain
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n 2 3
(1_’_2) :1+ni+M(lj +M(lj +
n n 1.2 \n 1.2-3 n
2l000-2)- oot 1

1-2-3---n n)’
Transform the expression

[1+1] :1+1+in(n—1)+ 1 n(nh-1)(n-2)
n 1.2 n* 1.2-3 n®

+...+

L1 n(n—1)(n—2)-.~[n—(n—1)]=1+1+i(1_1)+
1-2-3.-.n n" 1.2 n
1;3[1%(12)#(1%(12)@_1)

™)
1+ 1

n
( j >2
The last equality gives n and it shows that the considered
sequence increases as n increases.

Indeed, each term of the last sum (starting from the third one) increases

as the index increases from nto N+1:

1 (1_£j PR PR
adding another term (positive).

So, the sequence {an} increases monotonously.
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1—1<1

Let us prove now that {a.} s bounded. Obviously, N |

[1_1j [1_3j<1
n n etc. Therefore from (*) we obtain the inequality:

1+1 <1+1+i+ L +..+ 1
n 1.2 1.2.3 1.2.3---n

Noting that

1 1 1 1 1 1
T a5 <53 < om
1.2.3 2°,1.2.3.4 2°, .., 1.2.3---n 2",
we obtain:

1+1 <1+1+£+i+...+—
n 2 2

The terms of the right part (starting from the second term) form the
geometric progression:

2
| A n-1
1+l+—2+ 1_1 2 =2—(1j <2
2 2 2" 1_1 2
2
Hence,
[1+£) <3
n .
So,
23[1+EJ <3
n
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1 n
a, = [1+ —j
We have proved that the sequence {an}, where n is
increasing and bounded. It has a limit by Theorem 6.4.

. 1Y\
I|m(1+—j
Definition The limit ">~ N/ is called the number e:

. 1Y

I|m(1+ —j =e

elon . (6.9)

The limit (6.9) is called the second remarkable limit.

The number e is an irrational number. Moreover, it is a transcendental
number, i.e. is not the root of any algebraic equation with integer
coefficients.

It is known that

e=2,7182818284...

In most cases, in practice it is believed.

Consider an example. Let the initial contribution to the bank be So
monetary units. The bank pays annually p%. Then after the end of the year,

S+ .3, =5, -(1+i)
the deposit amount will be 100 100 , i.e. multiplied

by 100 in two years it will again be multiplied by 100/ and
2
o (1135

will be 100 , etc. Thus, at p% per annum after n years, the

deposit amount will be equal to:
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S, =S, -(1+ i)
100, (6.10)

This is a compound interest formula (see Example 1.3).
It should be noted that interest on a deposit may not be accrued once a
year but, for example, quarterly, monthly, every day. Formula (6.10)

allows you to calculate the amount of the deposit Sy after n periods at an
interest rate of p% per period (regardless of how long these periods are).
Imagine that a bank located in Moscow having finished a working day

transfers (taking into account the time difference) a certain amount So to
a bank located in Vladivostok for 12 hours from 20 hours of the current
day to 8 hours of the next day Moscow time. Vladivostok Bank returns
money to the beginning of the work of the Moscow Bank, paying 1% for
the use of this short-term loan. Then, the next day, the Moscow bank

repeats this operation  but with the received amount of 101% of So etc.
(Such an agreement between banks is hardly possible in practice but the
rate of 1% per day in the early 1990s was real.)

After 300 days, the Moscow bank will receive the amount:

1 )3 1)} 3
S300 = So(l"'ﬁ] = S"K“ﬁj } ~ S,e’ ~ 5,2,7° ~19,68S,

i.e. the initial amount will increase almost 20 times over the year.

In general, let amount So be placed in the bank for t years at p% per
1
annum and interest accrued n times a year. Then the interest rate for the N
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P

part of the year will be n %, and the deposit for t years (with nt charges)
will be:

nt
S =S, -(1+Lj
100n )

Py
or  denoting 100

nt
S, =S, 1+£j
n

Convert this last expression:

r rt

S, =S, (1+%)'

n
—=m
We introduce the notation: I . Let Nn—>o0 then Mm—>o0, We
obtain

1 m rt

S=IlimS,=1imS, Kﬂ—j } =S.e"
n—o0 m—oo m

This formula

pt
rt 100
S=54e" o S =S,ei®

is called the continuous interest formula.
Now consider the function:
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f(x)=(1+ljxl

X
Here x changes continuously, taking any (and not only natural) values.

1+1

X
f(x =( j
Theorem 6.8. The limit of function X/) as X —> o0 exists
and is equal to e.
Proof. Let X = +00, For each value x there exists a natural number n
such that

n<x<n+1l,
From these inequalities we obtain:
1.1 1
_>_>_—

n x n+1,
1+121+121+i

n X n+1,

n+1 X n
(1+1) 2(1+1j 2(1+ij
n X n+1)

Obviously, if X — o0, then N — oo, We find the limits of the variables
1 X
between which the function X/ is enclosed:

n+l n n
Iim(1+1j = Iim(1+ lj -(1+ 1) = Iim[1+ 1) . Iim(1+ Ej =e.1=¢
N—o0’ n n—oo n n N—o0' n N—o0! n
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1+1

X
So, both variables  between which the function ( XJ is enclosed
have the same limit e. Therefore, by Theorem 6.3

Iim(1+ 1) =e
X—>00 X )

For the case of X — —oo making the substitution X =Y | itis easy to
prove that also

lim (1+ 1) =e
X—>—00! X )

So,
: 1Y
I|m[1+—j =e
o X . (6.11)
1_
We make a replacement X in (6.11). Then X — £ s equivalent
to o — 0. We obtain
im(L+ )
iml+a)e =€
a0t TS (6.12)

We have obtained three formulas for the number e: (6.9), (6.11) and
(6.12).
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Number e is one of the fundamental quantities in mathematics.
Exponential function with base e (Fig. 6.3)

y=¢"

(and generally the function of the form Y = eax) plays an important
role in mathematics and its applications. It is used in statistics, physics,
chemistry, in the study of demographic processes, etc. This function (and
its graph) is called the exponent.

Ay

1

_/

0

o 4

Fig. 6.3. Exponent

The logarithm with base e is called the natural logarithm and is

denoted by the symbol In : 109 X=Inx

Let's look at some examples.

X
Iim(1+—j
Example 6.9. Find *>*\ X/ |
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4
—=
X

Solution. We apply the substitution of variable by setting " Then

: lim@+a)s _tim[ @+a)e e

X=—
a . We get a—0 = a0 =

5 2X
Example 6.10. Find lm(1+ ;j _

Solution.

2x N 10

2X X Z
Iim(1+§j _ lim (1+§j5 _ lim (1+§j5 e,
X—0 X X—>00 X X<€—00 X

Iim(l—l) .
Example 6.11. Find >\ X

woff-3) ] -tafot] o2

1
-—=«a

(Here we applied the substitution X ).

x | o

Solution.

(ZX + 3]”1

lim

Example 6.12. Find >\ 2Xx+1)

Solution. Divide the numerator and denominator by 2x:

2] el 2]

+? : 2X 2x) e?

lim x| =lm LV N

o 1+i (1+] -(1+j e’
2X 2X 2X
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Questions

1)
2)

3)
4)
5)
6)
7)

8)
9)

What is a general term of a sequence?

Can the same numbers correspond to different numbers in a numerical
sequence?

Let all members of the monotonic sequence be multiplied by —1. Will
the resulting sequence be monotonic?

Let number 4 be the limit of the number sequence. Is it possible to say
that outside the interval (3, 5) there is only a finite number of members
of the sequence?

Does the sequence of 1,0, 1, 0, 1, 0, ... have a limit?

Let the number 5 be the limit of the number sequence. Can this
sequence have negative terms?

Can the number —1 be the limit of a numerical sequence, all members
of which are positive?

Can a sequence have two different limits?

Let the inequality f(x)25,001 hold for all x. Could it be
lim f(x)=5_

x—1

10) What is number e?
11) What function is called the exponent? Which curve is called the

exponent?
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Chapter 7. Continuity
of a function

7.1. Main definitions

The concept of continuity of function is one of the basic concepts of
mathematical analysis.

Definition 1. A function f(x) is called continuous at a point Xo if the
following three conditions are satisfied: 1) f(x) is defined in a certain
neighborhood of the point %o 2) there is a finite limit of f(X) as X = %

; 3) this limit is equal to the value of the function at the point Xo,i.e.

lim f(x)= f(x
fim (x)= 7 () 7.1)
Note that equality (7.1) and the continuity condition of f (X) at a point

Xo can be written in the form:

lim f(x)= f(lim x)
X—>Xg X—Xg .
From a geometric point of view, a continuous function is a function

whose graph is a continuous curve.
There are several equivalent definitions of continuity.
Denote the difference X~ %o as AX. We say that when passing from
X = X—X

value %o to value x, the argument receives an increment A 0.1In

this case, the function ¥ = f(x) receives a corresponding increment
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Ay = f(X0+AX)_f(X0). In view of the above, equality (7.1) is
equivalent to equality
lim Ay = O

Ax—0

Definition 2. A function ¥ = f(X) is called continuous at a point X
if it is defined at this point and some neighborhood of it and

limA O
Am Ay = (7.2)

(This definition is easy to remember in the following form: a function
is continuous if an infinitesimal increment of the argument corresponds to
an infinitely small increment of the function.)

Example 7.1. We show that the function ¥ =SIN X js continuous at an

arbitrary point x. Give the argument an increment AX . Then the function
will get the increment
(X+AX)+X . (X+Ax)-

Ay =sin(x +Ax)—sin x = 2cos S SN =
AX AX
=2C0S| X+— |-sin
[+ o[ 3]
AX| |AX
sin&—w sin—| <|—
If AX—O0, then 2 (since 2 1): while

Cos (x + —Xj
2 is limited. Therefore

lim Ay = I|m 2C0S [x+%) sm% =0

Ax—0
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Therefore, the function ¥ =SINX is continuous.

In a similar way, one can prove that any basic elementary function is
continuous at every point at which it is defined.

The following statements are true:

1. If the functions T (X) and 9(X) are continuous at a point %o, then

their sum ®(X)= f (x)+9(x) is also continuous at this point.
2. The product of two continuous functions is a continuous function.
3. The quotient of two continuous functions is a continuous function if
the denominator at the point in question does not vanish (that is, if both

f(x)

o(x)=—<

g(x)

£(%) and 9(%) are continuous at %o and 9()# 0 then
is continuous at Xo).

2. 15 U=0(X) is continuous at X=%s and (1) is continuous at a
point Uo :(P(Xo), then the complex function ¥ = f((P(X)) is continuous

at a point Xo.
The proofs of these statements are simple and based on the properties
of the limits.

Let us prove, for example, statement 2. Let f(x) and 9(X) pe

lim f(x)=f li =
continuous at the point Xo: o (x) (XO), o 900 =9(x;)

, and let
o(x)= f(x)a(X). since the limit of the product is equal to the product of

li =lim f li =
the limits, then erTx]o(p(X) xl—[rx]o (X) xl—mog(x)
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=f (Xo) g(Xo)= (P(Xo), So, !ETX]O (P(X): (P(XO) i.e. (P(X) is continuous at

apoint Xo.

Theorem 7.1. Every elementary function is continuous at every point
at which it is defined.

The proof follows from statements 1-4 formulated above®.

If the function (X) is not continuous at a point X0, then the point X

is called the discontinuity point of the function f(x)_ There are

lim f(x
removable discontinuities when there are finite limits x-%- ( ) and

lim f(x
X=X+ ( ) and jump discontinuities when at least one of these one-sided

limits is infinite or does not exist. Among the points of discontinuity of the
first kind, it should also be noted the essential discontinuities, when the

limit of the function f(x) as X% exists, but either it is not equal to

f (%) or the function is not defined at X = %o,
Example 7.2.

1
f)=arctg~ o RS
1. X . Here "o =¥ is the removable discontinuity since

. 1 T 1 =
limarctg —=——limarctg —=—
X X 2.

x—0— Xx—0+
1

1 Given that the basic elementary functions are continuous.
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1
f (X) =7 X. =0 . . . I .
2. X. Here 7o —% s the and jump discontinuity since
.1 .1
lim ==+ lim==-w
x=0+ X , x=0- X
sin x
— x%0
f(x)=1 x
3. 0, x=0. Here %o = 0 is the essential discontinuity as
. sinx
lim——=1
the limit x>0 X exists. This discontinuity can be eliminated by

changing the value of the function at a point X =0 by setting f (0) =1

If a function Y= f(x) is continuous at every point of a certain
interval, then it is said this function to be continuous on this interval.

7.2. Properties of continuous functions on
a segment

Theorem 7.2 (the first Weierstrass theorem). If the function f(x) is
continuous on a segment [a,b], then it is bounded on this segment.

Theorem 7.3 (the second Weierstrass theorem). If the function f(x)
is continuous on the segment [a,b], then on this segment it reaches the
smallest value m and the largest value M (i.e., there exists a point c; on this
segment at which f(c;) = m and a point ¢, at which f(c;) = M).

Theorem 7.4 (the first Bolzano-Cauchy theorem). Let the function
f(x) be continuous on a segment [a,b] and at its ends takes values of
different signs®”. Then inside of [a,b] there exists a point ¢ such that f(c)=0.

I For instance, , .
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Theorem 7.5 (the second Bolzano-Cauchy theorem). Let the
function f(x) be continuous on [a,b] and let m be the smallest and M the
largest values of f(x) on [a,b]. Then, for any C satisfying the condition m <
C < M, there exists a point ¢ from [a,b] such that f(c) = C.

Itis not easy to prove these theorems, and we will not do this. However,
all of them are special cases of the following statement (which intuitively
seems obvious): if a function f(x) is continuous on a segment [a,b], then
the area of its change is a segment.

7.3. Economic interpretation of continuity

Most of the functions used in the economics are continuous. Such, in
particular, the previously mentioned functions of supply and demand, the
utility function, the output function (see § 5.4). Among the functions used
in the economics, there are discontinuous functions.

1. The tax rate (Fig. 7.1) is a function expressing the dependence of the
tax rate N as a percentage of the annual income g. This function is
discontinuous at the ends of the gaps, and these discontinuities are of the
first kind.

AN

=Y

0 9 72
Fig. 7.1. Tax rate

However, the value of income tax P itself is a continuous function of
annual income q (Fig. 7.2):
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<0 J

0 491 9
Fig. 7.2. Income tax

From the continuity of the function P= P(q) it follows, in particular,
that if the income of taxpayers does not differ significantly, then the
difference in their income tax is also small.

2. As you know, there are two main categories of market relations:
supply and demand. Both that and another depends on many factors, among
which the main thing is the price of the goods. Let us denote the price of
the goods p (price), the volume of demand as D (demand), the value of

supply as S (supply). By their meaning, the functions D= D(p) and

S= S(p) continuously depend on p. This means that with small price
fluctuations, supply and demand change insignificantly. However,
sometimes demand changes spasmodically. This usually happens for
reasons of a psychological nature, in particular, when “breaking through”
the round price. It happens that when the price of a certain product rises,
demand decreases slightly for some time, but as soon as the price exceeds
a certain amount (for example, 100 monetary units), demand drops sharply.

In this case, the function d :d(p) has a discontinuity at the indicated
value of p.
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In the analysis of functionst D = D(p) and S =S(p) (if we consider

them on such a price segment, where they have no discontinuities), we can
use the properties of continuous functions (see § 15.2). Consider the

difference D( p)— S(P).

For small p, obviously D(p)—S(p)>0 (demand exceeds supply),
and for large p, on the contrary, D(p)—S(p)<O. Applying the first
Bolzano-Cauchy theorem to the difference D(p)—S(p), we conclude
that there exists such a price Po for which D(po)—S(p0)=O, ie.

D(Po)=S(Ps) This price is called the equilibrium price (we mentioned
itin § 13.4).

7.4. Comparison of the infinitesimals

Let simultaneously consider several infinitesimal quantities a, B, v, ...,
which are functions of the same argument X, and these quantities are
infinitesimals when x tends to some finite limit a or to infinity.

In many cases, it is of interest to compare these infinitely small with
each other in the nature of their tendency to zero. It is a question of the
comparative “speed” of their tendency to zero: which of the infinitely small
tends to zero “faster” and which is “slower”.

To compare two infinitesimals, we usually study their ratio. Moreover,

o« B

considering the fraction p (or ), itisassumed that the variable standing

1 We consider these functions on a segment where the functions don’t have

discontinuities.
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in the denominator does not vanish, at least for values of x sufficiently close

to a (or for sufficiently large in absolute value as X — o),

B

1. If the relation @ has a finite limit other than zero, then the infinitely
small o and B are called infinitesimal of the same order.
o

In this case, obviously, the relation B has a finite limit.
Example 7.3. Infinitesimals o =3 and P=5IN2X are infinitesimals

of the same order as X — O since (see Example 6.2)
lim P — jjm SN 2X _ 2
x>0 o x>0 3x 3.

Example 7.4. Infinitesimals a=x and B=V1+X=lare a5
infinitesimals of the same order, since

imP —fim X X iy 1
x>0 ¢ x>0 X -0 [x+1+1 *0 14X +1 2
B iim B _ g

I1. If the ratio o itself turns out to be infinitesimal, i.e. *~2 oc(X)

o) __
( B(X) ), then they say that an infinitesimal B is an infinitesimal

of a higher order with respect to an infinitesimal o (and an infinitesimal
a is an infinitesimal of a lower order with respect to an infinitesimal ).

Example 7.5. Infinitesimal P =1=C0S2X i infinitesimal of a higher

order with respect to oo = X Indeed,
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. 1-cos2x .. 2sin®x
lim—————=1im =
x—0 X x—0 X

0

Note that if B is an infinitesimal of a higher order with respect to an
infinitesimal a, then this circumstance is written as follows:

p=o(ct).

In particular, Example 7.5 shows that

1-cos2x=0(x)

I11. An infinitesimal B is called an infinitesimal of k™ order with

respect to an infinitesimal aif Band @ are infinitesimal of the same order,

p

i.e. if there is a finite limit of the ratio a* other than zero.
Example 7.6. If o=xand B=1-C0SX then infinitesimal B is an

infinitesimal of the second order with respect to infinitesimal a.as X —>0
. Indeed,

N | X

2sin?
limP —im 279X _jim =%

x>0 2 x>0 X2 x>0 ¥?

Example 7.7. If a.=x and P =V1+ X’ —1, then infinitesimal B is an

infinitesimal of the third order with respect to infinitesimal a as X —> 0.

Make sure of this:
Ni+x3-1 . x?
. =lim

|
3
x=0 o x—0 X x—0 X3( [] X3 ])

lim—=— =Ilim

1
2
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]

IV. Infinitesimal o.and B are called equivalent if the limit of their ratio

IS unity:

lim B
o =1,

If a.and B are equivalent, then we write @~ B.

Theorem 7.6. Infinitesimals a and 3 are equivalent, if and only if their

difference y=B-a is infinitely small of higher order with respect to a and

B.
v_B_4
Proof. 1. Necessity. Let YZO(“), YZO(B). Then @ o
lim 2 —1 limY =1
therefore a (since a ).
IimE:1
o . Then from the equality

2. Sufficiency. Let O"'B, i.e.
r_B lim ¥ =1-1=0

o o  we obtain a
Note that the limit of the ratio of infinitesimal may not exist at all. In

this case, they say that the infinitesimals are incomparable. Consider a

traditional example.

B=xsin—
X (as X—>0) are

Example 7.8. Infinitesimals o= X and
.1
incomparable. Indeed, the relation of these infinitesimals X has

no limitas X —0,
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Questions

1) Which of the basic elementary functions are continuous?

2) How are discontinuities of a function classified?

3) Is the tax rate a continuous function of the amount of income?
4) Is income tax a continuous function of annual income?

5) Let D= D(p) be a function expressing the dependence of demand d

on price p. What kind of discontinuity does the function D= D(p)
have in case of a spasmodic change in demand?
6) What is the comparison of infinitesimal based on?
7) Are equivalent infinitesimals of the same order?
8) Letaand P be two infinitesimals of different orders. Which of them tends
to zero faster - the one of a higher order, or the one of a lower order?
Are any two infinitesimals comparable with each other?
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" 8.1. Derivative ‘7
DIFFERENTIAL CALCULUS

Chapter 8. Derivative
functions. Differential

8.1. Derivative

Let the function ¥ = T (X) be defined on some interval X. We give the
argument X € X an arbitrary increment AX such that a point Xo +AX g

also in X. Then the function f(x) will receive the corresponding

increment &Y = T (% +A%)— £ (x;).
Definition. The derivative of the function Y= f(X) at a point is

called a limit of the ratio of the function increment to the argument

increment at the point X0 as AX—>0;

jim &Y _ jim 0+ 0= 1 (x,)
AX—0 AX  Ax—0 AX

(if this limit exists).

dy
The derivative is denoted by f,(xo), or y’(xo), or y" or dx.

(Economists also use the notation Mf (X) for the derivative '(X) and the
term «marginal value of the function f at the point x»).
By definition:
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f!(XO):limo% :limo f(XO+§AXX)_ f(XO) (8 1)

If the function f(X) has a derivative at each point of the set X, then
the derivative | '(X) is also a function of the argument of x, defined on X.

Geometric meaning of the derivative

To clarify the geometric meaning of the derivative, it is necessary to
formulate a definition of a tangent to the graph of the function at a given
point.

Definition. The tangent to the graph of the function ¥ = f(X) at the
point Mo is the limit position of the secant MoM o the point M tends to
the point M, along the curve Y = f (x).

Let the point Mo (%, ¥o) be fixed on the curve Y= f(x), where

Yo = (%) (fig. 8.1). We give the argument the increment AX , i.e. move

from X = Xo to %o TAX

We get M (% +4% Yo +4Y) on the curve. From the triangle MoMA
we have:
MA Ay f(x +Ax)-f(x,)
M,A AX AX

tg o=
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»
' ot

0 X0 X0 + Ax X

Fig. 8.1. The geometric meaning of the derivative

Let AX — 0. Then the point M will move along the curve and coincide
with the point My in the limit. Here

e s AY
o= fmtgo=im

If the derivative f’(x) at the point Xo exists, then, according to the
definition of the derivative, we obtain:

tga=f'(x)
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!
So, the derivative f (Xo) is equal to the angular coefficient! of the

tangent to the graph of the function y = f (x) at the point M o(Xo, f (x0 )) .

Physical meaning of the derivative

Suppose that the function S = f(t) describes the law of motion of a
point at a straight line as the dependence of the distance s on time t. By the
time b the distance is So = f(to), and by the time b +AL gistance

s=f(t, +At) Then, overa period of time At the distance 25 =S~ So

AS
is passed and the average speed over time At s the ratio At . The limit of

this ratio as At -0

t

defines the instantaneous speed of a point at the time “o as a derivative of

the distance with respect to time.

8.2. Application of a derivative in
economy

1. Labor productivity. Let the function 4= A(t) be a value of q
products produced over time t and let it be required to find labor

1 The angular coefficient is the tangent of the angle of inclination to the positive

direction of the axis Ox.
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1

b 1o

productivity at the moment “o. Consider the time period from

L +AL During this period, the volume of production
Aq
Aq = q(to +At)—q(t0)_ The average productivity for this period is At .

Then, labor productivity at the moment b can be defined as the marginal

value of average productivity as At —0:

As we can see, mathematically the problem at the moment b does not

differ from the problem of finding the instantaneous speed of movement
(see § 8.1).

Another formulation of the problem is also possible. Let the quantity
of products q be dependent only on the applied labor x (for a company it’s

just the number of employees): 4= q(x).
The average productivity is used to evaluate production efficiency. It

q
denoted by X.

However, the question arises: how will the volume of production
change when the number of personnel changes? The answer to this
question can be obtained by introducing the concept of marginal
productivity. The marginal productivity is a derivative of products q by
the amount of labor x:

_da

q_dx,
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The marginal productivity with this formulation of the problem is
approximately equal to the change in the volume of products with the
change in the number of personnel per unit.

If the number of employees a is large, then the increment Aa =1 can
be considered small enough to take advantage of the approximate equality
, A a+l)—gla
q)~20-da0@) g g
Aa 1 , which gives

q(a+1):q(a)+q’(a)_ In this case, q’(a) is an additional product

produced by new employees per unit of time.
Let v be the product price and p is employee salary per unit of time. If

vq'(a) > P, then we need to hire another employee as he brings the
company more than it pays him. This rule is called the ""golden’ rule of
Economics.

2. Production cost. Consider the dependence of cost C manufactured

products on its volume q: € = C(a),
Marginal cost is the value

. AC
MC = lim — =C'(q)
Ag—0 Aq
Along with the cost price in microeconomics, an important role is
played by another marginal indicator - elasticity. We consider it later - in
the study of so-called logarithmic derivative (see § 20.2).
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8.3. Differentiability of a function.
Communication between differentiability
and continuity

Definition. A function ¥ = f (X) is called a differentiable function at

the point Xo | if its increment at this point can be represented as
AY = AAX + ol AX (8.2)

here A is an arbitrary number (independent of AX) and &= a(AX) is
the infinitesimal as AX — 0.

Theorem 8.1. The function Y = f (X) is differentiable at the point %o
if and only if it has a finite derivative at that point.

Proof. 1. Necessity. Let the function f (X) be differentiable at the point
X0, i.e. its increment can be represented as (8.2). Dividing this equality by

AX#0, we obtain:

4y A+a
AX

Passing to the limitas AX —0 (a0 — 0 as AX—0), we obtain

LAY N _
fim ax ~ F0e)= lim(A+a)=A

i.e. the derivative of the function f (X) exists at the point %o and equals
to A.

125 ‘




Chapter 8. Derivative functions. Differential

2. Sufficience. Now let the function f(x) have the derivative at the

point Xo, i.e. there is a limit
. A
lim 2 — A
Ax—0 AX

Then, in accordance with Theorem 6.1:

ﬂ=A+OL

AX

here a is the infinitesimal as AX —> 0. Hence

Ay = AAX+0AX

Therefore, f(x) is differentiable.

Theorem 8.1 allows us to call a function of one argument

differentiable if it has a derivative. The operation of finding the derivative
is called differentiation.

Continuity of a differentiable function
Theorem 8.2. If a function is differentiable at the point X0 then the
function is continuous at this point.

Proof. Since f(x) is differentiable at the point XO, then its increment
at this point has the form (8.2). Passing to the limit in this equality as

AX— 0, we obtain:

lim Ay = AliTo(AAX +0AX)=0

. limAy=0 L .
i.e. &0 , Which means that the function is continuous.
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8.4. Calculating the derivative

The scheme of calculating the derivative of the function f (X):

1. Give x an increment AX and find the corresponding value of the
function T (X+AX),

2. Find the increment of the function AY = f (X + AX)_ f (X)
Ay

3. Compose the ratio AX .

4. Calculate the limit of this ratio as AX — 0

i AY
y _liTOAx_

Example 8.1. If Y =C=0C0NSt {hen Y =0 Indeed, AY=0 for any
AX, sothat Y =0, so, if c=const  then

c'=0,

Example 8.2. Find the derivative of ¥ = x*

Solution. 1. Give x an increment AX and find T (X+AX)=
= (x+Ax)

2. Find the increment of the function:

AY = (X+ AX) = X% = X% + 2XAX + AX? — X2 = 2XAX+ AX®

A
Y _ox + Ax
3. Compose the ratio AX

4, Calculate the limit:
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y = lim 2Y = lim (2x + Ax) = 2x

AX—0 AX  Ax—0

so, (X*)' =2x
Example 8.3. Find the derivative of ¥ =SiNX
1 F(x+Ax)=sin (x+Ax)

(X+AX)+X . (X+AX)—x

Ay =sin (x+Ax)-sin x = 2cos , st
2.
. AX AX
=2sin—Cos | X+—
2 2
. AX AX . AX
2sin—cos| X+ — | 2sin=2
Ay _ 2 ( 2); ) cos(x+AX):
3 AX AX AX 2 _
. AX
sm?
= & COS(X-FJ
2
sin AX
. A . 9 AX
4. y'=lim 2 lim lim cos(x+—]:1-cosx:cosx
Ax—0 AX  Mx—0 AX x>0 2
2

(taking into account the first remarkable limit (see § 14.5) and

the continuity of the function COS X).

Then, (SINX)"=cosx
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Rules of differentiation

Assume that U= u(x) and V= v(x) are differentiable functions,
c=const
| (cu) =cu” m. ) =uv+uv’
'
u) uv-uv
n, (UEv) =u'sv’ IV, (Vj v
Let us formulate these rules in more detail and prove them.
11f Y=cu(x) c=const  then ¥ =cu'(X)
i.e. the constant multiplier can be taken out of the sign of the derivative.
Proof. 1. Give x an increment AX . Then
y +Ay = cu(x+Ax)
2. Find the increment of the function:
Ay = cu(x+Ax)—cu(x) = c [u(x+Ax)-u(x)]
Ay
3. Compose the ratio AX :
Ay _, u(x +Ax)—u(x)
AX AX

4. Calculate the limit of this ratio as AX — 0, i.e. find y’:

y = 1im Y — ¢ lim ulx+Ax)-ulx) cu’(x)
Ax—0 AX Ax—0 AX )
(We took advantage of the fact that the constant multiplier can be

carried beyond the limit sign (see § 6.4).)
i Y =U)EV(X) o Y =u'(x) £ V(%)
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i.e. the derivative of the algebraic sum of differentiable functions is
equal to the algebraic sum of the derivatives of these functions.

Proof. 1. Give x an increment AX . Then functions Y = U(X), v=v(x)
take corresponding values Y +AU = u(x+Ax) V+AV= v(x+ AX), then

y+Ay =(u+Au)£(v+Av)

2. Find the increment of the function y:

Ay =(Uu+Au)£(v+Av)-(utv)=AutAv

Ay
3. Compose the ratio AX :
Ay Au  Av
AX X AX.
4. Calculate the limit of this ratio as AX —0
y = 1lim Y jim A%+ jim &Y gy

=0 AX  Ax>0 AX Ax—0 AX
5o (UEV)' =u":V"
(We took advantage of the fact that the limit of the algebraic sum is

equal to the algebraic sum of the limits (see § 6.4).)
This statement can be extended to any number of terms. In particular,

(U+V+w) =u"+V'+wW"

i if U=U(x) v=v(x) fhen (V) =uv+uv’

i.e. the derivative of product of two differentiable functions is equal to
the product of the first derivative of these functions and the second function

plus the product of the first function and the derivative of the second
function.
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Proof. 1. Give x an increment AX. Then functions u and v take

corresponding values U+AU  V+AV  and their composition ¥ =UV

takes value (U+AU)(v+Av)
2. Find the increment of the function y:

AY = (U+AU) (V+AV)—UV = UV + AUV + UAV + AUAV — UV =

AUV +UAV + AUAv |
2y
3. Compose the ratio AX :
Ay Au AV AV

—=—V+U—+AU—
AX  AX AX AX

4. Calculate the limit of this ratio as AX —0:

v o o AY L AU AV . Av
y'=(uv) =lim—==Ilim—v+ulim —+ lim Au lim — =
=0 AX  Mx—=0 AX Mx—=0 AX  Ax—0 Ax—0 AX
=u'v+uv' +0-v' =u'v+uv'.

imAu=0 ) ) )
(Here ax>0 , since u is continuous  function.)

Then, (UV)"=u’v+uv’

According to this statement it is easy to obtain the rule of
differentiation of the product of three and, in general, any finite number of

functions.
Let ¥ =UYW pe the product of three functions. Let us present this

composition in the form of U(VW):
y' =u'(vw) +u(vw)’ =u'vw-+u(v'w+w') = u'vw+uv'w+uvw’

It is easy to understand that for the case of n terms, the same method

can be used to obtain a similar formula for the derivative of the product:
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(uu,u, ---u, ) =uu,U, -+ -U, +UULU, -+ -U, +UULUS ---U +... U UL U, -

u , uv—uv
V=0 wen VT

V. If V | then \Y ,

i.e. the derivative of a fraction (the ratio of two functions) is equal to a
fraction whose denominator is the square of the denominator of the given
fraction, the numerator is the difference between the product of the
denominator on the derivative of the numerator and the product of the

numerator on the derivative of the denominator.

Proof. 1. Give x an increment AX . Then functions u and v take
u

. oY==
corresponding values U+AU | V+AV and their ratio” V takes value

u+Au
y+Ay =
V+Av
U+Au U VAU-—-UAvV
Ay = —_—=
5 V+AV v v(v+AY)
VAU—-UAV  Au Av
Ay Ax . _ A AX
3 A v(v+Av)  v(v+Av)
Au . Av
A o 0Im
y'=lim =% = ljm 8% 22 AX
mo0 AX - 400 v im (V4 Av)
4. Ax—0 .
] imAv=0 ) ) )
Hence, since x>0 (since the function v is continuous), we
obtain

132 ‘




8.4. Calculating the derivative

!

£ !
,_u’v_uv’ (Ej :UV—UV
-z 2

ve o Jor \V

Vv

Derivative of a complex function
Now we formulate and prove the rule V.

V. Let the function U =®(X) have the derivative Yx = (%) at the
point %o, and let the function ¥ = f(U) have the derivative Yo = f'(u)
at the point Yo = ®(%) . Then the complex function Y = f(@(x)) has a
derivative at the point %o and the following formula holds:

Yy = Yoly

Proof. Give x an increment AX. Let AU be the corresponding
increment of U= (P(X), here &Y is the increment of Y = f(u) caused by
the increment AU . Replacing x with u we rewrite (8.2) in the form:

Ay =y, Au+0aAu

(here o depends on AU ; ao—>0 as Au — 0). Dividing this equality by

AX | we obtain:

Ay ,Au Au
— =Yy _to—
AX AX AX .

If AX—0, then AU —> 0 (since u is continuous), therefore o —0.
Hence, there is a limit
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1 Ay ' Iy Au !y
lim —=y/ lim—=y/u,
Ax—0 AX Ax—0 AX ,

Yy = Yoy,
a2
Example 8.4. Find the derivative of the function ¥ =SIN" X,

2 .
Solution. ¥ =U" here U=sInX, Using the rule V and taking into
account examples 8.2 and 8.3 we obtain:

y'=2u-u, =2sinx(sin x)" = 2sin xcos x =sin2x
Derivative of the inverse function

Let Y=" (X) be differentiable and strictly monotone function on some
interval X and the function X = (P(Y) is the inverse function. We can show
that (P(Y) is the continuous function on the corresponding interval Y.

Theorem 8.3. Let a function f(x) be strictly monotone and
continuous on X and have a finite and non-zero derivative f’(xo) at the
point Xo. Then there also exists a derivative of the inverse function

x=o(y) at the corresponding point Yo = f(x) and

(p(y0)= f'(xo)_ ©3)
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Proof. Give ¥ = Yo an arbitrary increment AY | Then the function

x=0(Y) takes the corresponding increment AX . Note, if AY # 0 then

Ax#0 due to the uniqueness of the function ¥ = f (X). we have

Ax_ 1
Ay Ay
AX

Now let &Y =0 Then AX — 0 since ®(Y) is a continuous function.
But the denominator of the right side of the written equality tends to the

limit f ’(Xo) #0 . Therefore, there is a limit for the left side of the equality.

1
This limit is equal to f'(xo) and it is a derivative (P'(Y). So,
, 1
Xy = —’
e (8.4)
The last equality can be rewritten in the following form:
, 1
yx = X_,
v, (8.5)

That completes the proof
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8.5. Derivatives of the basic elementary
functions

Derivative of logarithmic function

Let us first derive the formula for the derivative of ¥ =INX

Ay =In (x+Ax)=Inx =1In XXy, (1+gj

X X
ﬂ:iln 1+g
AX  AX X

v = lim &Y~ lim L 1n (1+§)

=0 AX  Mx—0 AX X

AX
b
Denote X  : hence AX=%X_ Obviously, AX—0 if and only if
t— 0. wWe obtain
y' = lim L 1n (1+t)=1 lim In (1+t)""
At—0 X X At—0

Hence, taking into account the second remarkable limit (see § 6.5) and
the continuity of the logarithmic function, we obtain:

. w11
y_;lni@o(lﬂ) =~ Ine=—
ie.
(nxy =2

X,

In x
log, x=—

Now let y =log, x. Obviously ~ Ina . we obtain
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’

w=«mganﬂ=(mszz¥5«me= L
Ina Ina xIna

i.e.

(log, X)' = ———
xlna .

Derivative of exponential function

Let y=a*. Take a logarithm of this function

Iny=xIna *)
According to the rule of differentiation of a complex function
(nyy=2y=Y
y y.

Differentiating the equality (*), we obtain
y =Ina

y Y'=ylna
or

y'=a"lna ’
ie.

(@) =a"lna

As @ =€ obviously,
()=¢",

The derivative of the exponential function

f— n - - -
Let ¥ =X where n is any real number. Take a logarithm of this
function:
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Iny=ninx

Differentiating both parts of equality, we get
ie.

(x") =nx""

Derivatives of trigonometric functions

Now we derive formulas for trigonometric functions:

1. Y=SIX e have already found a derivative of this function
(example 8.3):

(sinx)" =cos x

o Y =COSX
X+AX+X . X+AX—-X

sin 5 =

. AX . AX ’
=-2sIn—sSiIn| X+ —
Ssin[x 5
A

Ay = ¢0s (X + AX)—cos X = —2sin

By virtue of continuity of SIN X and passing to the limit as AX —0
we obtain:

y'=-sinX ;o (COSX)’'=-sinx
3. Y=x,
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!

' sinx) _ (sinx)'cosx—sinx(cosx)’ cos’x+sin’x 1
cos X cos? x cos® x cos® x
ie.
4 —_—
(tg X) - 2
oS X

4. Y=C X gimilarly, we get

Derivatives of inverse trigonometric functions
Finally, we derive formulas for derivatives of inverse trigonometric

functions:
1. Y =arcsinX Tnis function is the inverse function for X=SINY |

By the inverse function derivative Theorem (see § 8.4)

y = i 1 1
“x, cosy [l1-sin’y
T T
0. T5,<Y<o
(the root is taken with a plus sign, since C0SY >V a5 2 2).

Since SINY =X then finally we obtain

(arcsin x)’ =#
V1-x*
o Y =arccosx.
1

(arccos x)' = ———
V1-x*

The calculation is similar to the previous one.

139 ‘




‘ Chapter 8. Derivative functions. Differential

3. Y=arctg X This function is the inverse function for X =19y

, 1
Xy = 2
Since COS™ Y then
.1 ) cos®y 1 1
yx=7=COS yzcos2 sinfy  1+tg’y 1+x2
) y+sin®y 1+tg’y L+x*
i.e.

(arctg x)' = !
1+x

4 y=arcctg X

1
+ X
The calculation is similar to the previous one.
We have derived formulas for derivatives of all basic elementary
functions. Let us now tabulate them and recall once again the rules of
differentiation.

2

(arcctg x)’ =T

Table of derivatives
1. ¢'=0.
2. (x") =nx"" (n—is any real number).
3. (Iogax)’:L; (In x)':l.
xIna X
4, (a*)'=a’lna; (e*) =e".

5. (sinx)"=cos X. 9. (arcsinx)' =

6. (cosx) =-sinx. 10. (arccos x)' =—
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5

7. (tgx)'= 12 . 11. (arctg x)' = 1 5
COS” X 1+x
8. (ctgx)'=- _12 . 12. (arcctg x)' =—
sin” x 1+x

Rules of differentiation

I. (cu)'=cu’. 1. (uv) =u'v+uv'.
!
u u'v—uv’
1. (uxv) =u"+Vv'. V.| —| = -
v v

V. If y=f(u), u=g(x), then y. = y’u!.

Formulas 1-12 and rules I-V form the basis for practical differentiation.

8.6. Differential

The function Y = f(x) is called differentiable at the point *o, if its

increment 2Y can be presented in a form (8.2):
AY = AAX + ol AX

where @ =0 as AX =0,

The quantity AAx is the main term of the decomposition Ay as

A=0

Definition. The differential dy of the function y="f (X) at the point

Xo

to AX at that point:
dy = AAX
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For A=0 the differential is also determined by the formula (*), i.e. in

this case, Y =0

It follows from Theorem 8.1 that A= 1 '(Xo), then

dy=f '(Xo )AX (8.6)

The differential dX of the independent variable x is the increment AX
of this variable, and we can write equality (8.6) in the form:

dy = f'(x,)dx_ (8.6)

()= dy
which gives °” dX . Now we see that dX is not just a symbolic
designation of the derivative but the ratio of the differential of a function

dY to the differential of its argument dX . Due to (8.6), formula (8.2) can
be rewritten in the form

Ay = (%, )Ax +0(Ax)

or

Af (%)= f(X,)AX+0(AX) (82)

Geometrical meaning of the differential

Let the point M on the graph of the function y= f(X) correspond to
the value of the argument X=X let the point N correspond to the value
of the argument X = %o + X (fig 8.2). Then MA=AX AN =AY pray
a tangent to the curve y=f (X) at the point M. Let a be the angle between

this tangent and the axis Ox. We know that tgo=f (Xo).
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Y A
N
Yo+ Ay
VB
M
0 ¢ ey
a -
0 X0 X0+A)C X

Fig. 8.2. The geometric meaning of the differential

Consider a right triangle MAB . Obviously, MA=AX
AB =MA-tga =Axtgo = f'(x,)Ax=dy

Hence, while AY s the increment of the ordinate of the curve, dy js
the corresponding increment of the ordinate of the tangent.

Application of differential in approximate calculations.

Approximate differential calculations are based on the approximate
replacement of the function increment by its differential. Since the
differential is the main part of the increment of the function, then

Ay = dy,

or

Af(Xo): f(Xo +AX)_ f(xo)z f,(xo)AX_
Hence

f (%o +Ax)~ f(x,)+ f(x)AX

3/
Example 8.5. Calculate approximately 8,24 :
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Solution. Let f(x):i&, Xo:8, f(XO):2, AX=0,24 pye to

1 1
f'(x)= XZI/3 !:_X72/3:
Ay = dy = f'(x, )Ax. (=09 3 Rx*
1 1
F(X)=—=="= Ay~dy=—.0,24=0,02
"ol 12 YEER T " Hence

f (%, +Ax)=3/8,24 ~ 2+0,02=2,02

The problem of finding the differential of a function is obviously
reduced to finding derivative and multiplying it by the differential of the
argument. Therefore, the majority of theorems and formulas related to the
derivatives holds for the differentials. In particular:

I. d(cu)=cdu (C=const).  1II. d(uv)=vdu+udv.
1. d(u+v)=du+dv. V. d(ﬂjzw.
Vv Vv

Let us deduce, for example, the differential of a fraction:

[uj u'v—uv’ (uj (uj’ u'vdx—uv'dx
— = 2 , d — |= — dX:—2 )
Vv v Vv Vv v

Since U'dx=du, vdx=dv then

d(gj _ vdu —udv

Vv v?

Let us find the expression for the differential of a complex function.
Let Y= fu) u=ep(x) orY= f((P(X)). If Y= f(u) and Y = ¢(x) are

differentiable functions of u and x respectively, then y'=f '(U)U' :
The differential of the function

dy = f'(x)dx = f'(uu'dx = f'(u)du_
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since W'dx=du , Thus

dy = f'(x)dx 4pq dy = f'(u)du

i.e. the differential does not depend on the function argument - an
independent variable or a function of another argument. This property of

the differential is called the invariance of the differential form.
From the invariance of the differential form it follows that we can apply

formulas I -IV when Y:V are functions of an independent variable and
when they are complex functions.

Higher order derivatives and differentials

If a function f(x) is defined on X and has a derivative f’(x) at all
points of X, then this derivative itself is a function of the argument x:
f’(x):g(x)_ Derivative of the first derivative function f(x), i.e.
(f ’(X))', is called the second derivative, or second-order derivative, and
denoted by f”(x), or Y. S0,

! !
”n !’ ”n !’
F00)=(f'(x) o v =(y)
The third order derivative is defined similarly:

f7(x)=(f"(q) or Y'=(Y")" and so on.

(n) (n)
N-th derivative is denoted by (x) (or Yy and it is defined in
accordance with the described scheme:

FOG)=(F000)

(n-1)
here T () is the derivative of order (n—l)_
Examples 8.6:

1) y:ekx' yr:kekx, yn:kzekx y(n):knekx;

5 sy
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2) y=sinx y =cosx y"=-sinx y"=-cosx y(“):sinx

(sinx)™ =sin (X+Enj
It is easy to show that 2 ),

A differential of the second order (or second differential) of the

function Y= f(x) is called the differential of the differential of this

function, i.e. d(dy)’ and denoted by d’y.
d’y=d(dy), 8.7)
Obviously, a7y =d(dy)=d(f"(x)dx)=(f'(x)dx)'dx= f"(x)dx*

2 —_— 2 - - -
where 9 =(AX) \we considerdX to be a constant since X =AX is
independent of x. Hence,

d’y=f"(x)dx* (gg)

The third differential is defined similarly 9°Y =0(@%Y): finally, n-tn
differential is the differential from the differential of the order (n _1):

d"y=d(d"y). (8.9)

We find the expression for d"y in the same way as it was done above
for d°Y.

d"y = f"(x)dx" 510
Hence
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It should be noted that second and higher order differentials do not have
the form invariance property, in contrast to the first order differential. Let
us show it.

Let Y= f(U), UZ(P(X),or y= 1:((P(X)),then

d?y =d*f (e(x)) = d(df ((x)))

By condition, df ((x)) = f’(u)du u=0(X). Hence
d(f'(u)du)=d(f'(u))du+ f'(u)d(du). (%)

Let F'(U)= (U) then

d(f(u))=dg(u)=g'(U)du = (f'())'du= f"(u)du

Moreover, d(du)=d?u=d?g(x )
Thus, from (**) we obtain

d*f(u)=f"u)du) + f'(u)d®u u=o(x)  (g11

Obviously, the second differential of a complex function f((P(X))

exists if functions T (U) and ®(X) have finite derivatives up to the second
order.

It follows from the formula (8.11) that the second differential of a
complex function does not have form invariance:

if Y= f( ) X is an independent argument, then

= £"(x)d

(x)dx?
= f(u) u is a dependent argument, Y = o(x ) then
dy = f"(u)du® + f'(u)d’u
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Questions

1)
2)

3)

4)
5)

6)

7)

8)

9

What is the geometric meaning of the derivative?
Let T'(3)= V3 be a derivative of the function Y = f (X). What is the

angle between Ox axis and the tangent to the graph at the point X =3
?

What is the marginal productivity? How is this concept related to the
concept of derivative?

What is the "Golden" rule of Economics?

What is the marginal cost of production?

How the concept of differentiability of a function ¥ = f (X) is defined
at the point Xo?
Why the function T (X) is called differentiable at the point Xo?

Suppose a function have a derivative at the point X=2. Is this
function continuous at that point?

Let the function ¥ = f(X) be continuous at the point X=9 Is it
possible to say that this function has a derivative at that point?

2
10) Is the line Y =#X—4 tangent to the parabolaY =X 2 And the line

y=—4x-4,

11) Are the statements equivalent: «the function Y = f(X) is

differentiable at the point Xo» and «the function ¥ = (%) has a finite

derivative at the point %0»?
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8.6. Differential

12) What is the algorithm for finding the derivative of an arbitrary
function?

13) Is any of the basic elementary functions differentiable at each point at
which it is defined?

14) What rule defines the differentiation of a complex function? Give
examples other than those listed in the book.

15) What is the geometric meaning of the differential?

16) Can the differential of a function f (X) be greater than the increment

of that function?
dy

17) The derivative Y is often denoted as dX . What is the meaning of this
notation?

18) What is the basis of the differential application in approximate
calculations?

19) What is the invariance of the form of the differential of a complex
function?

149 ‘




‘ Chapter 9. Properties of differentiable functions

Chapter 9. Properties of
differentiable functions

9.1. Basic theorems of the differential
calculus

Theorem 9.1 (Fermat theorem). Let the function y = f(x) be defined
on (a, b) and have the largest (smallest) value at some point x, € (a, b).
Then if there exists a finite derivative f '(x,) at this point, this derivative is
equal to zero, i.e. f'(x,) = 0.

Proof. Let us prove the theorem for the case when the function has the
greatest value at the point x (for the smallest value, the proof is similar).
In this case, for every x € (a, b) inequalityf(x) < f(x,) holds. It means
that Ay = f(xo + 4x) — f(xy) < 0 for any point x = xy, + 4x € (a, b).
If Ax > 0, then j—z < 0, therefore,

lim 2 <o; *)
Ax—0+ Ax
if Ax < 0, then j—i > 0, therefore,

lim 2> 0. (**)
Ax—0— 4%

By definition of the derivative

' _ . A_y
f(xo) = Al;lcr—r)lo ax’

moreover, this limit does not depend on whether Ax tends to zero,
being positive or negative. But limits (*) and (**) coincide only when they

are zero:
limA—y= lim 2 _ lim A—y=0;
Ax—04X  Ax—0+4X  Ax—0-4Ax
which gives f'(x,) = 0. That completes the proof.
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The geometric meaning of Fermat theorem is obvious (fig. 9.1): a
differentiable function takes the largest (smallest) value at the point xo, then
the tangent to the graph of this function is parallel to the axis Ox at the
point M(xo,f(Xo)).

VA .
0 a Xy b x

Fig. 9.1. Geometric meaning of Fermat theorem

Theorem 9.2 (Rolle theorem). Let a function f(x) satisfy the
following three conditions:

1) continuous on [a, b];

2) differentiable on (a, b);

3) takes equal values at the ends of the segment: f(a) = f(b).

Then there is at least one point £ € (a, b) at which the derivative is
equal to zero inside the segment:

f@®=o.

Proof. Since f(x) is continuous on [a, b], then, by virtue of the second
Weierstrass theorem (see § 7.2), it reaches its largest value M and its lowest
value mon [a, b].

There are two possible cases.:
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1. M =m_Then f(x)=M =m=const 1 S0 F'(x)=0 4t an points,

so that we can take any point 5 on (a,b),

2. M #m _ Both of these values cannot be reached at the ends of the
segment (since f(a): f(b)). Therefore, at least one of these values is
reached at some internal point = (a, b) and by virtue of Fermat theorem

f '(E_,) =0 That completes the proof.
The geometric meaning of Roll theorem is as follows: if the extreme

ordinates of the curve Y = (X) are equal, then there is a point on the curve
where the tangent is parallel to the axis Ox (fig. 9.2).

YV A

0 a b X
Fig. 9.2. Geometric meaning of Roll theorem

It should be noted that all the conditions of Rolle theorem are essential,
and if at least one of them fails, the conclusion of the theorem may turn out
to be incorrect.

Theorem 9.3 (Lagrange theorem). Let a function f (x) be continuous
on [a, bland differentiable on (a, b). Then there exists a point ¢ €
(a, b), such that:
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f(b)_f(a) — f’(f)
b—a '

Proof. Consider a function:
b
F(x) = f() - f(@) - L2L8 (x — ),
The function F(x) satisfies all the conditions of Roll theorem: it is
continuous on [a,b] (since f(x) is continuous), differentiable on (a, b):

F/() = () - FE L
and also takes the same values at the ends of the segment [a,b]:
F(b)=F(a)=0,

According to Rolle theorem, there exists a pointa € (a, b), such that

F'(Fo): 0, i.e.

b—a
Hence
1)

That completes the proof.
Note that the Lagrange theorem implies the equality:

f)=f(@=f&-b-a), (9.1)
called the Lagrange formula.

Rolle's theorem is a special case of the Lagrange theorem.
The geometric meaning of the Lagrange theorem is seen on Fig. 9.3.

The chord passing through the points M, (@, f(@)) ang M2(b, f(0)) pas
the angular coefficient which is equal to:

M,N  f(b)-f(a)

M,N  b-a

tga =
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The Lagrange theorem states that there exists a point M (i, f(i)) on

(a, b), where the tangent to the graph of the function is parallel to the
4
chord MiM;. jts angular coefficient f (i) is equal to the angular

coefficient of the chord MM 2,
y A

>

0 a 1 b X
Fig. 9.3. Geometric meaning of the Lagrange theorem

In the previous chapter, we talked about approximate calculations
based on replacing the increment of a function with a differential. Let us
find out what is the accuracy of this replacement.

Evaluation of the accuracy of the equality Ay=dy.

Let a function f(x) have continuous derivatives f'(x) and f"'(x) on

[a,b] Lt Xo ang o +AX pe points on [a,b] According to the Lagrange
formula

AF(%y)= (%, +AX)— f(x,)= f'(X)AX,

X Xo +AX.

where X lies between "0 and

On the other hand,
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df (x,)= (%, )Ax.
Repeated application of the Lagrange formula gives
f '(i)_ f '(Xo ) =f "()A()(i —Xo )’

X

here X lies between X0 and X. Therefore,
AF (%g)—df (%, )= F"(R)X — X, JAX.

Denote by M the highest value |f’(x)|_ Since |§_XO|<|AX|’ then,

replacing %o for X we obtain the estimate

|Af (x)—df (x)] < M (Ax)".

Theorem 9.4 (Cauchy theorem). Let functions £(x) ang 9(%) pe
continuous on [a, b] and differentiable on (a, b), where g'(x)# O Then

there exists a point 5 € (a, b), such that

f)-rf@ _ (&
gb)-g@ ~ g'@) (9.2)

Proof. First of all, we verify that the denominator in the left-hand side

of equality (9.2) is not equal to zero. Indeed, if g(b)—g(a):O, i.e.

g(b)= g(a)’ then by Rolle theorem 9'(€)=0 4 some point &€ (a,b)
and this contradicts the condition of the theorem being proved.
Consider a function:

F(x) = f(x) — f(a) = L2990 — g(a)].

gb)—g(a)
It is easy to verify that this function satisfies all the conditions of Rolle

theorem on [ B]: itis continuous on [ 0] (due to the continuity of | (x)

and g(x)), differentiable on (& b), s0, its derivative has the form:

155




‘ Chapter 9. Properties of differentiable functions

F()= £/(0)- Eg (<)) ¢'x)

and F(a): F(b): 0 . Therefore, there exists a point ge (a, b) such
that F'(g): 0, i.e.

(oy Flo)-f(a)
fg)————7=- =0
€)oo ¢©
From here (taking into account that 9'@) # O) we obtain the formula:
f(b)-f(a)_ f'(g)
gb)-g(a) 9'€).
That completes the proof.

Formula (9.2) is called the Cauchy formula.
The Lagrange theorem is a special case of the Cauchy theorem as

g(x)=x.
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9.2. L’Hospital’s rule
9.2. L’Hospital’s rule

. 0
Indeterminate form °

Assume the following ratio 1) is an indeterminate form % if

9(x)
limf(x) = limg(x) = 0.
xX—a x—-a
Theorem 9.5. Let functions f(x) and g(x) satisfy Cauchy’s theorem
on interval [a, b] , and let f(a) = g(a) = 0. If there exists the limit

lsz( x) then the limit lim == f@)

exists too. Moreover
x>a g (%) x—a g(x)

lim L — i L) 9.3)

x-a g(x) xoa g’ (x)

Proof. Let [a, x] < [a, b]. Apply Cauchy’s theorem to functions f (x)
and g(x) on[a, x]:

f@O)-f@ _ £

g(x)-g(a)  g'©&)

where & g is a point between a and x. As we stated f(a) = g(a) = 0,

SO
1) _ 1@
9t g'@
Let x » a. Then ¢ - a (because a < & < x). If the limit llmfg;
x-ad
Ji¢)

K exists, and Jl(l_T)r(ll ©

f'e)

——=exits too and it’s equal to K, thus

) 100,

li =i =i =i =
Sl glx) T ge) e ge) o)
Or,

F00 _ i /)
900 T )
QED
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This theorem is known as L’Hospital’s rule

Remark 1. Theorem 9.5 remains valid even w  hen functions f(x)

limf(x)=limg(x)=0
and g(x) are not defined when X=2a  put x»a ( ) Hag( ) In

this case, it suffices to redefine the functions at the point a using
f(a)=limf(x)=0 g(a)=limg(x)=0
X—a X—a

this point and satisfy the theorem.

, S0 they become continuous at

Remark 2. L’Hospital’s rule might be reapplied  if both f (X) and

g(x)suffice theorem, as do the source  functions f(x) and g(x)_
Example 9.1. Calculate limits:

. sin3x e -1 - )
lim lim lim——=
a) x=>0  4X : 6) x>0 X . B) x=>0 1—C0S X
Solution:
. sin3x . (sin3x) . 3cos3x 3
lim =lim——~=1im ==
) x>0 4X x—0 (4X) x—0 4 4
a ;
3x 3x
) -1 .
lim& Lo im 3
6) x—0 X x—0 1 :
. ef4e =2 . ef-e* . ef+e* 2
lim——————==Ilim =lim ===2

g) ¥ 1-cosx x>0 sinx x>0 cosx 1
Remark 3. L’Hospital’s rule could be applied even if

limf(x)=0  limg(x)=0
X and x> .

1
X==
z

To proof it, let . Then Z—>0 while X =  therefore,
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lim f[ljzo lim g(lj 0
-0 Z -0 7

:)
ZJ and

{
Now we can apply theorem 9.5 to functions of variable z
1
g J—
z). So, we obtain

o 100 e FG) L PO ) e 16 re
Hlaeo = 850~ ER a0 (a) ~ M e () T Ay
or

lim L9 =y LD (9.4)

xo0d(®X) x50 (x)

o0

Indeterminate form ®

The L’Hospital’s rule can be applied even when functions (X) and

F'(x)

’
and let’s assume that ratio g (X)

9(x) tend to infinity while X = &,

lim f(x)=c0 limg(x)=o0

Let X—a , X—a

Iimm =K M
has a limit ** g(x) . Then ratio g(x) also has a limit while X —> @&
and equation (17.3) is verified:
tim T ) _ ji £
x—a g(x) x—>a g’(x).
(We accept this statement without proof.)
Note that functions f(x) and g(x), tend to infinity with X —> %

L’Hospital’s rule is verified:
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jim %) _ i f:(x)
X—00 g(x) X—>00 g (X) .
9.3. Taylor series

Let us assume that function ¥ = f(x) has derivative in point X=X

and has derivatives up to (" +1) order including.

The n-order Taylor polynomial for function y= f(x) can be defined
by the following equation:

Pa() = fx) + 152 (x —x) + L (= x0)2 +
M
e N (9.5)

This polynomial and its derivatives in the point X=X have the same

values as the function f (X) and its derivatives respectively:
f(x) = Pa(xo), f'(x0) = Pa(x0), f" (x0) = By (x0), ...,
f o) = B (xo). (96)
(it is easy to obtain these equalities). So, we can consider polynomial

(9.5) an approximation of a function f(x). The order of the approximation
is measured by difference R,,(x) = f(x) — B,(x). We obtain

f(x)=P,(x)+R,(x)

FG) = fag) + 282 (r = x) + L8 (x — xp)2 4+
()
+fT(!x°)- (x —x0)™ + Ry, (x). (9.7)

The equation (9.7) is called a Taylor formula, and R"(X) is a
remainder term.
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Next, we are going to find the difference between function f (X) and

polynomial Ry (X) with different values of variable x, in other words we

will estimate the value R, (X) .
Rewrite remainder term as

Ry (x) = 28 (5 — x)nt, 9.8)

(n+1)!

where Q(X) is the function which we will find.
Considering (9.8) formula (9.7) becomes

'(xo) " (xo)
GO = Fre) + 5500 (e = x0) + L2 (e — )2+

£™ (x0) Q)
e (o= x)" + T (- xo)™ L. (9.9)

Fix x variable. Let us assume that x> XO. Then function Q(X) will
have a fixed valued. Denote it as Q.

Denote the variable with values ranging from X0 to x as t and consider

a new function on interval [XO’ X]

FO) =) - f@©) L0 -0 - L0 -n2-. -
PO pyn - & (- gy, (9.10)

n! (n+1) !

where Q has a numerical values which can be defined by (9.9) with
fixed x.

Let’s find derivative I:'(t):
£ £ 2f"(®)

F(t)——f(t)——( —t)+f(t)——( —t)? t— -0 -
e e D
—T(x—t) +T(x—t) 1+W(x—t) .
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Here, the corresponding terms with mutually opposite signs are
mutually annihilated. And we obtain

PP A 9] Q
Fi()=-1—2La-"+L@-om (9.11)

Xo

Function F(t) has a derivative (9.11) on [ X]. Moreover, it follows

F(x)=F(x,)=0

from (9.10) that . Therefore we can apply Rolle’s

theorem to function F(t) on [XO’ X], thus there exists Ee (XO’ X), such as

F l(&) =0 . Thence with respect to (9.11) we obtain:
f (n+1)(§) . Q )
—T(X—i) +H(X—§) =0
therefore,
Q= ")
Appling this to (9.8), we obtain:

(n+1)
R, (x) = L@ (o yn+t, (9.12)

(n+1)!

The expression (9.12) is called remainder term in Lagrange form.
Appling Ry (X) to (9.7), we obtain:
£ = flxe) + 22 (x = x) +£

™ (xo) A G)
+TO (X - xo)" + W (X - xo)"+1. (913)

I

'’
2(;6!0) (x —x)%+...+

The formula (9.13) is called a Taylor formula with a remainder term
in Lagrange form.

The formula (9.13) is used when we need to substitute f(x) with

polynomial Ry (X) (when x#Xxp) and find the value of the error which
occurs during this substitution. However, in SO me cases it is necessary
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to know the behavior of the remainder term when x is tending to XO, rather
than certain values of x. To do so we need to rewrite the remainder term in
different form

X=X the remainder term R“(X) is

X=X, ).

Let’s proof that, when

infinitesimal with order higher then (

Ry (x)= 0((X— Xo )n), (9.14)

This is the remainder term in the form of Peano.
Let us assume, that in some neighborhood of a point o exist

(n)
derivatives of functions f(x) up to order n and f (X) is continuous at
XO

In formula (9.13) substitute nto N—1:

£ = Fre) + L8 (= xg) + LE2 (- xp)2 4.+

£ (xp) 1, fP®
+ T 6 —x) T+ T (= x)" (9.15)

where g is in between <° and x. We represent the last term in the form
M@ _ fMao)

n! n!

+ a(x). (9.16)

iF X XO, then 5% (because g is in between *° and X). Then

(n) (n) n
f (a)_) f (XO), because f )(X) is continuous.(x(x)_>O in because

of (17.16). It means that a(x)(x—x)" = O((X —%,)' )
Thus
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f () o f () (x ) )
PP (e = 0Dy of(x-x, )

n! n!
It follows from (17.15) that

£ = Flr) + L2 (x = ) + £ (- xp) ...+

#2200 () o((x — 200" (0.17)
Where

R, (x)= o((x— X, )”)

Q.E.D.

If we assume that 0 =0 in formula (9.13), then we obtain the

Maclaurin formula (which is a special case of the Taylor formula)
_ MO U ORP fW o FYE g
f(x) = f(0) TR eran S STt +—(n+1)! x™71(9.18)
where g is a point with values between 0 and x.

The Maclaurin formula with the remainder term in the form of Peano
can be defined by the following equation

1 " O]
f(x) =f(0)+f1—('0)x+f—x2+...+f—'x”+o(x”). (9.19)

2! n

Maclaurin expansion of some elementary functions
The simplest elementary functions are polynomials. The Taylor and

Maclaurin formulas make it possible to represent the function f (X) asa
polynomial, the coefficients of which can be easily calculated. These
expansions are used for the approximate calculation of functions.

In particular, the following approximate equalities hold (when x — 0):
xn

x  x?
e* ~ 1+ﬁ+;+...+

n!
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9.2. L’Hospital’s rule

X X _x _qyn+1 2
In (1+x)=x >3 4+...+( 1) —;

3 5 7 k.2k+1
. X X X -1)*x
sinx=x——+———+... CL>
3! 5! 7!

k+1) !’
N xZ x x6 (_1)kx2k.
cosx~1—=Zr+ir—5 4 k)’
a a(a-1) a(a-1)--(a—n+1)
(1 +x)“ =1 +ﬁx +Tx2+...+Txn.

In those approximations the error is infinitesimal of a higher order than

N . . .
X" (in case of sinus function N =2K+1 and for cosines N = 2K),
Let’s take a closer look at the expansion of the exponent and sinus.

L 109=" opuiousy, T00=", F00=¢"_ 1x)=e

— '(0)= M () =
; f(O)_l, f (0)_1, f (O)_l. Apply those equations to (9.19),
we obtain
2 n
e :1+5+X—+...+X—+o(x”)
2 n! _
2. f(x) = sinx. Differentially differentiating and Appling X = 0 we
obtain: 1(0)=0 f'(x)=cosx f(0)=1 f"(x)=-sinx f"(0)=0
. f')=—=cosx, f'O0)=-1, .., [f™x)=sin (x + ng)
f(0)=sinnZ
2 Apply it to (9.19), we obtain
3 5 7 kK, 2k+1
sinx:x—X—+X——X—+...+%+o(x2k“)
3 57 (2k +1)!
Consider another form of Taylor's formula. In formula (9.17), we

transfer f (XO) to the left hand side of the equality and denote as x — xy =
Ax. Then the difference f(x) — f(xg) = f(xo + 4x) — f(x) = Af (xg).
We obtain
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‘ Chapter 9. Properties of differentiable functions

Af(xo) = f'(xo)bx + L) S0 g2 4L (xO)Ax " 4 o(Ax™).(9.17)

This formula is a generalization of the formula (8.2"):
Af (x,)= (X, )Ax +0( AX)

which, obviously, is obtained from (17.17 *), if put N =1 Similarly,
from (9.13) we obtain:

Af(xo)—f(xO)Ax+f (xO)A 24 4f (xO)A n

£
(n+1)! Ax™

(9.12)

If we replace the increment of the independent variable AX with dx
in the formulas (9.13 ') and (9.17") (because 9X = AX) and consider that

f'xo)dx = df (o), f'(xo)dx* = d*f(xp), ..., f(”)(xo)dx =
d"f (xo),

f(n+1)(€)dxn+1 — dn+1(§-),

then after Applying those equations to (9 13" and (9.17"), we obtain

Af(xo)—df(xo)+ dzf(xo)‘l‘ + = d”f(xo)+
a4, (9.13")

(n+1)'
Af(xo) = df (xg) + 3 d2f (xo)+... +— d"f (o) + 0(Ax™). (9.17")
Thus (when Ax — 0) with formulas (9.13") and (9.17") it is possible to

extract from the infinitesimal increment Af (XO) not only its main term
(the first differential) but also members of higher orders of smallness. They
are successive differentials of the second, third, etc. orders with
coefficients respectively

1 1 1

203l

9 seey
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9.2. L’Hospital’s rule

Each of the formulas (9.13 ") and (9.17") is called a Taylor formula
in differential form. In studying the multivariable functions, we will use
just such a representation of the Taylor formula.

Questions

1. What is the geometric meaning of the Lagrange theorem?

2. Is the Lagrange theorem a special case of the Cauchy’s theorem?

lim f(x)=1 limg(x)=0 .
3. Let *»2 , X2 . Can the L’Hospital’s rule be
lim M
applied to find the fimit *** 9(X)
lim f(x) =+ limg(x)= -0
4. Let x>t , XL . Can the L’Hospital’s rule be

applied to find the limit ** 9(x)
5. What is the Taylor polynomial? What are its properties?

6. How is the Taylor polynomial of a function f(x) related to the
Taylor formula for this function?

7. What is the Maclaurin formula?

8. What is the mathematical equation of the Taylor formula in

differential form for function f (X) ?
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Chapter 10. Curve sketching
with the use of the first
derivative

10.1. Monotonic test

Theorem 10.1. Let f(x) continuous on interval X and has a finite

derivative inside it. In order for function f(x) to be monotonically
increasing (decreasing) on X, the condition f (X)>0 (]c (X)<O) is
sufficient on X.

!
Proof (monotonically increasing) Let f(X)>O; X, e X,

Xp > X Apply Lagrange’s theorem to f(X) on [Xl’ XZ]:

f(xz)_ f(Xl): f ’(C)(Xz _Xl)

where % <C <Xz f(x2)> f(Xl) because f’(c)>0, therefore,

f (X) is an increasing function.

Note that the proved condition is not necessary. For example, the
theorem remains verified if the derivative vanishes at a finite number of
interior points of the interval X.
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" 10.2. Extremum
10.2. Extremum

Definition. The point X0 is called the local maximum point of the

function f(x)’ if in some neighborhood of the point %o the inequality
F06)> 1) is verified.

The point Xo is called local minimum point of the function f(x)’ if

in some neighborhood of the point X0 the inequality f(X°)< f(x) is
verified.

If %o is the point of local maximum (minimum), then the value of the

function f(XO) is called the local maximum (minimum).

The general term for a local maximum and a local minimum is a local
extremum.

The necessary condition for the extremum of a differentiable function
follows from Fermat's theorem proved in § 9.1: in order for the

differentiable function f(x) to have a local extremum at the point XO, it

f'(x,)=0

is necessary that the equality is verified at this point.

Since "0 is an extremum, then there is an interval containing a point

Xo , Where the value f (XO) is largest or smallest. Then by Fermat’s theorem

we obtain that | (%)= 0,

Note that the condition f (XO) is not a sufficient condition for the

_ w3
extremum. For instance, function Y = X" increases on the whole number

line and has no extremum, but its derivative is equal to zero at the point
X, =0, f'(x,)=3x2=0
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Ch%pter 10. Curve sketching with the use of the first derivaﬁive

In addition, the function may have an extremum at some point, but not
be differentiable at this point.

Points at which the derivative of the function is equal to zero or does
not exist are called critical (or stationary). Obviously, if there is an
extremum at any point, then this point is critical.

Points at which the derivative of the function is equal to zero or does
not exist are called critical (or stationary). Obviously, if there is an
extremum? at any point, then this point is critical.

10.3. The first sufficient condition of
extremum

Theorem 10.2. Let f(x) function be continuous on any interval
containing a critical point XO, and differentiable at all points of this
interval, except, perhaps, the point itself %o, If, when passing through a

point %o , the derivative changes sign from plus to minus, then the point %o
has a local maximum, and if from minus to plus, then the minimum.
Proof. For definiteness, let the derivative change sign from plus to

f'(x)>0 x<X, f'(x)<0

minus: when when X~ %o (for all x, on the

considered interval). We apply the Lagrange’s theorem to f (X) on [X’ XO]

f(xo)_ f(x): f'(C)-(XO—X) CE(X’ Xo)

Because | (€)>0 4ng X =X>0 o f(x)< f(xo).

1 Often we simply say extremum (maximum, minimum), referring to the local extremum (local

maximum, a local minimum).
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10.3. The first sufficient condition of extremum ‘

X> %

We apply the Lagrange’s theorem on interval [XO’ X], where
we obtain:

F(x)= (%)= f(c) (x=x,) celx,x),

Since point ¢ is now on the right of XO, then f'(c)< O. Moreover,
X=X > 0. Thus f(x)— f (X0)< 0. We obtain f(x)< f (XO). So, for all
x on the considered interval, the following equation is verified:

f(%)> f(x),

Thus, there is a local maximum at the point XO.

The case of a local minimum is similar.

Based on Theorems 10.1 and 10.2, the following scheme is used to find
the extremum of the function using the first derivative.

1. Calculate the derivative ¥ = f'(x)_

2. Find critical points.

3. Determine the sign of the derivative to the left and right of each
critical point and conclude that there are local extrema of the function.

4. Find function values at local extremum points.

_nyl 3 2
Example 10.1. Find the extremum f(x)—3x —4x" —12x +10.

Solution. Calculate the derivative:
£/(x) =12x° —12x% — 24x =12x - (x? = x—2) =12x- (x +1)- (x - 2)
By solving equation f'(x)=0 , or
= —1 X2 = 0 X3 = 2

critical points: % . After determining the sign of the
derivative (fig. 10.1), we obtain: X==1, X=2 are Jocal minimum points,

f (_1)= 5, f (2)= ~22 4re minimum function values; X =0s a point of
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local maximum, f(O)le is a maximum value of the function at this
point..
— + — +
_ >
-1 0 2
Fig. 10.1

10.4. Largest and smallest values of the
function on the interval

Many economic problems are formulated as problems of finding the
largest (smallest) value of a function on a certain set. Let us consider the
simplest case when it is required to find the largest (smallest) value on an

[a, b]

interval . According to the second Weierstrass’s theorem, if a

function is continuous on an interval [a, b], then it takes on it the largest
and smallest values. Note that the largest or smallest value of the function
can be achieved both at the points of the local extremum and  the ends
of the segment.

The following scheme is used to find the largest and smallest values
of a function on a segment.

1. Calculate the derivative f’(x).

2. Find critical points.

3. Find the values of the function at critical points and at the ends of
the segment and choose the largest and smallest from them.

Note that in this case there is no need to find an extremum at critical
points.

Example 10.2. Find the largest and smallest values of the function

f(x)=x%* . [-3.1]

172 ‘




10.4. Largest and smallest values of the function on the interval ‘

Solution. 1. | (x)=2xe* +x’e* = x(x+2)ex_
2. f'(X)ZO: x(x+2)e" :0.critical points: x1:0, X, =—2.
5 T(-3)=97 f(-2)=4e® f(0)=0 f@)=e

fs = fU)=€ f,,,=f(0)=0

Hau®

So, the greatest value is achieved at the right end of the segment, and
the smallest - at one of the critical points.

Example 10.3. At point A is a deposit of raw materials. The distance
from point A to the nearest point B on the railway is 200 km. The railway
passes through city C, where the processing plant for the mentioned raw
materials is located. The distance from B to C is 1000 km. To deliver raw
materials to the plant, the AD highway is being built, connecting the field
with the railway. The cost of transportation on the highway is double that
of the railway. At what distance should point D be from A so that the total
cost of transporting raw materials from field A to city C along the ADC
route is minimal?

HauM

A

Fig. 10.2

Solution. Denote: BD =X Then DC =1000—-Xx_
Let a monetary unit cost the transportation of one ton of cargo by rail.
Then transportation of one ton on the highway costs. By the Pythagorean’s
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2 2
theorem, we calculate the length of the highway AD: AD = VX" +200"
The cost of transporting one ton on the ADC route is

f (x)=2a+x? +200% +a(1000 - x)

Obviously, we need to find the smallest value on the interval [
. In this case, the ABC route corresponds to the value X = O, while the AC

0,1000]

route corresponds to the value X =1000
We calculate the derivative:
2ax

Fr(x)= X

VX% + 2007 _

Find the critical points, equating the derivative to zero:
2ax

Vx? +200°
2ax —avx* +200%

a

-a=0

=0
v X% + 2007
2X =/ x? + 2007
3x* =200%
We need only positive value x:
) 200
3

It means that B° ~ 1194 m,
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Questions ‘

200
X = ——

Let’s make sure that the value at the point V3 is the smallest. To

do so we calculate the values f (X) at the considered point, at points X =0

f (%) ~1346a
, Xx=1000 and compare them: 3 ,
f(0)=1400a
f (1000) = 2a+/1040000 > 20002
200
X=—
So, the smallest value is reached at the critical point V3 .
Questions
1) Let us assume that function y = f(x) is increasing on [0, +0). Is it

2)
3)
4)
5)
6)

7)
8)

9)

inequality f'(x) > 0 verified for all x € [0, +0)?

What is a local extremum?

What point is called the critical (stationary) point of a given function?
Can a function have two local minimums?

Does the function y = 4 — x2 has a local minimum?

Let the function f(x) be continuous on X, x, € X, f'(x) < 0 when
x<xo and f'(x) >0 when x> x, and at the point x = x,
derivative f'(x) does not exist. Is there an extremum at the point x,
and if so, which one is it?

How many extreme points does the function have y = sinx on [0,27]?
Let the derivative of the function y = f(x) be 1 on (—1,3). Will the
function increase in this interval?

The function y = f(x) is differentiable on (a, b) andf’(x) = 0 at six
points of this interval. Can f(x) have (a, b) four minimums?
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10) If a function y = f(x) has a maximum at a point x, then will the
function y = (f(x))? have a maximum at this point?

11) Does the functiony = 3x — 4 have extremum?

12) Can a function y = f(x) at some point x € (a, b) have a value less
than any of the minima of this function on (a, b)?

13) Can the smallest function value y = f(x), x € [a, b] be at the point
x =Db?

14) Let a function y = f(x) have a local maximum and a local minimum
on [a, b]. Can its greatest value not coincide with a local maximum,
and the smallest - with a local minimum?

15) Is it possible to find the largest and smallest values of a function on
an interval without finding a local extremum, but knowing only its
values at critical points?
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11.1. Second sufficient condition of extremum

Chapter 11. Curve sketching
with the use of the second
derivative.

Full curve sketching and
plotting

11.1. Second sufficient condition of
extremum

Theorem 11.1. Let f(x) and derivatives f’(x) and f”(x) exist and

are continuous in some neighborhood of the point %o and f (X): O.
Then:

1) if f"(XO)< 0 , then %o is a local maximum point

2) if f”(XO)> 0 , then X0 s a local minimum point.

Proof. Let f'(XO):O, f”(XO)<O. Because f”(x) is continuous,
then f”(x)<0 not only at the point XO, but in its neighborhood. But

f (X) is the first derivative of the first derivative. Thus, it follows from
f (X)< 0 that the first derivative is decreasing in that neighborhood. But

at the point Xo derivative equals zero, it means that, f (X) is positive on
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the left of X and negative on the right. According to theorem 18.2 the

local maximum exists at the point %o,

f"(x,)>0

The case is similarly.

=0_ . f"(x,)=0

Note that if both derivatives are zero f (XO) and at the

point X°, then this theorem does not answer the minimum and maximum
guestion. In this case, one can either apply the first sufficient condition for
the extremum, or involve higher derivatives.

11.2. Convexity and concavity of the function graph. Inflection
point

Consider a curve Y = f(x) on the plane, that is a graph of a function
f(x)

Acurve ¥ = f (X) on (a, b) has an upward convexity, if all points of
the curve lie below its tangent in this interval.

Acurve Y= f (X) (b’ C) has a downward convexity, if all points of
the curve lie above its tangent in this interval.

a,b)

In fig. 11.1 the convexity of the curve on ( is directed upward,

and on (b' C) is downward.
If the convexity of the curve is directed upwards, then the curve is
called convex; if the bulge is directed downward is called concave.

a,b)

The curve shown in fig. 11.1 is convex on ( and concave on

(b, c)
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11.1. Second sufficient condition of extremum

Jl};

N\

\ J

a |0 b c

Fig. 11.1. Graph convexity direction

Theorem 11.2. If function Y = f(x) has a second derivative on the
interval (a, b) and f"(x)>0 on (a, b), then the graph of this function
has a convexity directed downward on (a, b); if f”(x)< 0 on (a, b),
then the graph has a bulge upward on (a, b).

Proof. Here we consider the case where f”(x)< 0. Let %0 a random
point on (a’ b). Ehe equation of the tangent to the graph of the function
y= f(x) passing through the point MO(XO’ f(XO ))

Y = f(xo) + f(x0) (x — xo). (11.1)
Where Y is a current ordinate of tangent.

We represent the function f (X) in a neighborhood of a point Xo using
the Taylor formula with N =1:

y = ) = fr0) + T8 (x — ) + L8 (x — )2,

£ € (a b). (11.2)
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R, =R = f (a)(X—XO)Z
(where 2! )
Subtract (11.1) from (11.2):

—v =L8 - xp)2 (11.3)

We know that f'(x)<0 on (a b),therefore Y<Y forall X< (a,b)

. And this means that the curve ¥ = f (X) is below the tangent. g.e.d.
Definition. The point separating the convex part of the curve from the
concave is called an inflection point.

The necessary condition for the inflection at point %o fora graph of

a function f (X) which has at this point a continuous second derivative is
that

f(x,)=0

Assume the contrary, that f (X)>O, we obtain that in the

neighborhood of the point Xo the curve has a convexity directed

downward, and the point X0 cannot be an inflection point.
The sufficient condition for the inflection is to change the sign of the

second derivative of the function ¥ = f (X) when passing through a point
XO. In other words, if the second derivative has different signs to the left

and to the right of XO, then the graph of the function has an inflection at
X=X,
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In this case, the directions of the convexity of the graph to the left and

to the right of Xo are different, and this means the presence of an inflection

at the point o,
To sum it up the following scheme is used to find the inflection
points:

1) Find the points where f”(x) is zero or does not exist (points like
this also known as critical points);

2) Find the sign of the second derivative to the left and right of each
such point.

Example 11.1. Find the inflection points and convex directions of the
function graph f(x)=0-x) e

Solution. Let’s find the first and second derivatives:

f'(x)=—€ +{1-x)e* =—xe* f"(x)=—e"—xe*=—(x+1)e"

Equating the second derivative to zero, we find the critical point
X=-1Obviously, the second derivative is positive to the left of this
point, and negative to the right. Thus, when X <—1 the convexity of the

graph is directed down, and when X >—1 it is directed up. Point X=—1
is the inflection point.

11.3. Asymptotes
Definition. A straight line is called the asymptote of the graph of the

function ¥ = f(x) if the distance from the point M lying on the graph to
this straight line tends to zero when the point M is unboundedly from the
origin.

There are three types of asymptotes: vertical, horizontal and oblique.
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The line X =@ s called vertical asymptote for ¥ = f (X) if at least

o lim f(x) lim f(x)
one of the limit values *—a+ or x—a- equals + or —©,

The line Y = is called horizontal asymptote for ¥ = f(x) when

X =0 (X —>—0) if lim f(x)=b (Jirﬂof(x):b).

The line Y = KX+D s called oblique asymptote for ¥ = f(x) when

X—>+0  (X—>—=%) jf function f(x) can be represented as
f(x)= kx+b+0c(X), where 4(X) =0 \ypen X — +o0 (X = =%).
The presence of an oblique asymptote is due to the existence of two

limits:
Iim%x) =k lim[f(x)-kx]=b

X—0 X—0
L

(the cases X = T and X = —% should be considered separately).
Examples of vertical and horizontal asymptotes are well known from
1

school mathematics course. In particular, the graph of the function X
has a vertical asymptote X=0 and a horizontal asymptote y= 0; the

graph of the function y=19Xx has infinitely many vertical asymptotes:

s 3w
x=t+-x=+—,....
2 2
3

Example 11.2. Find the oblique asymptote for y =

x2—x+1"

Solution. The oblique asymptote’s equation is y = kx + b, find k and

- f(x) . X , X2
k:|lmQ:|lm =lim————=1
X0 X wa-ix —x+1i x>0 X°—X+1




11.3. Asymptotes

. . X3 . x%=x
b=um“(@—kﬂ=lm{;?r;:1—XJ=umgfr;:1=1

Asymptote’s equation: y=X +1.

Example 11.3. The model of consumer demand uses, in particular, the
Tornguist functions, which model the relationship between the value of
income and the value of consumer demand for: a) essential goods; b)
essential goods; ¢) luxury goods:

g bx=a)

) X=C (x>a,).
y = b, (x-a,)

b) X=C, (x>a,).
yo bx-(x—a,)

0 x—c,  (x>a)

The graphs of the first two of these functions have horizontal
asymptotes Y = B ang V=P
lim bl(X_al) — b1 lim bz(x_az) — b2

X—>+00 X— Cl i X—>+00 X— CZ

while the last graph has oblique asymptote:

k= tim 10 _ Iimwzlimx——bs

X—+0 X X—>+00 X'(X—Cg) X—>00 XZ—X+1

2

’
b= lim [M—b x]=
x>+ X—C3 3
— lim b3x2—b3a3x—b3x2+b3C3x

xX—+0 X—C3

= b3C3 - b3a3.

y =byx+bs(c, _as)_

Oblique asymptote’s equation:
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Here we traditionally denote the argument by x, and the function by y.
Note that other notations are usually used for these functions:

al X_OL'(|—Y) Xza"(l_Y)

X=—
2) I+B; b) 1+ . 0) I +B )

11.4. Curve sketching and function plotting scheme

Let’s give curve sketching and function plotting scheme below.

1. Find the domain of the function.

2. Find the break points of the function.

3. Find the intervals of functions increasing and decreasing.

4. Find the minimums and maximums

5. Find the direction of convexity of the function graph, inflection
point.

6. Find the asymptotes.

In addition, we might consider the parity (or oddness) of the function,
its periodicity, the points of intersection of the graph with the coordinate
axes

Based on the curve sketching the graph is plotted. It might be handy to

outline the elements of the graph in parallel with the curve sketching.
3

y= X—z
Example 11.4. Perform curve sketching on 2 (X _1) and plot the
graph.
Solution.

1. Domain of the function: (-0, YU + OO), ie X=1
2. X=1 _second degree break points because

3 XS
lim————=Ilim— =
x—=1- 2. (X _1)2 x=1+ 2. (X _1)2

3. Calculate the derivative

+00
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/ 3x2(x-1)%-2x3(x—-1)  3x2%(x-1)-2x3 x3-3x2 x2%(x-3)
f (x) = 2 (x—1)% - (x-1)3 =3 (x—1)3 =3 (x-1)3"
Find the areas of increasing and decreasing functions:
x € (—o, 1) = f'(x) > 0 = function increasing;
x € (1, 3) = f'(x) < 0 = function decreasing;
x € (3, ©) = f'(x) > 0 = function increasing.
4. Equating the derivative to zero, we find the critical point X = 3. The

derivative changes sign from minus to plus at the point X = 3 ( f (X) <0

when 1<Xx<3: f'(x)>0 when X>3). Thus, there is a minimum

fmin = f(3)=£ . _
8 at the point X =3,

5. Calculate the second derivative:

£7(x)= (3x? —6x)(x—1) -3 ()(63 —3x2 ) (x—1)?
2(x-1)

_ (3x? —6x)(x-1)-3(x*~3x?)  3x

2 (x—1)" (x-1)"
Define the direction of the convexity and the inflection point:
x<0 t'(x)<0 = upward convexity;
x>0 _ f "(x)>0 — downward convexity;
x=0 = f'(x)=0_ (0,0) isinfiection point.

6. Find the asymptotes. Obviously, X=1 is the vertical asymptote.
Find the oblique asymptote:

3 2
. X . X . b 1
k=llmM=llm—2=llm =5,
x>t X x—+o00 2X (x-1) x—+ow 2 (x-1) 2
b= lim [ il 1x] = lim 2% _
x—+oo L2 (x—1)2 2 x—>+ow 2 (x—1)2

S0,y = %x + 1 is oblique asymptote.
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The graph of the considered fynetion is shown in Fig. 11.2.

P .S

Fig. 11.2. function y =

X
2 (x-1)2

Example 11.5. In probability theory and statistics, a differential
function of the normal distribution plays a very important role:
L b
y: e 262
oV2mn

Let’s perform curve sketching by the methods of differential calculus
using the scheme above and plot its graph. Note that this graph is called
the normal curve (Gaussian curve)

Solution.

1. Domain of the function is the Ox axis.

2. Function is continuous on the Ox axis.

3. Calculate the first derivative:
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interval

!

(x-a)’ 2 (x-a)®

1 5 (x-a) X—a o

f'(x)= e * |————|=- e %
) oV 2n ( 26° J o’\2n

Obviously, f (X)>0 while X<a, f (X)<O when X>a,
Therefore, in the interval (_OO' a) the function increases, and in the

(a,+ OO), it decreases
4. Equating the derivative to zero, we find the critical point X =2, At

the point X =@ the derivative changes sign from plus to minus, therefore,
it has a maximum

1

ov2m

f =f(a)=

5. Calculate the second derivative:

o>V2n o271 262
1 S (ceaf
o271 o’

Ehe second derivative is zero when

2
X—a
el g
G 1
i.e. when X=a+0 gnd X=a-0
Next

xe(-»,a-0)= f'(x)>0= downward convexity;
xe(a-o,a+o)= f"(x)<0= downward convexity;

xe(a+o,+o)= f"(x)>0= downward convexity.
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When passing through points X=@+06 X=8-0G  the second
derivative changes sign. The value of the function at both of these points
is the same:

fla+o)=fla—o0)=

Thus, inflection point is
1 1

(a — 0 o 271'6) " (a to, c Zﬂe)'

6. There are obviously no vertical asymptotes. The limit of the function

when X = £% equals to zero:
lim f(x)= lim f(x)=0

X—>+0 X—>—0

I 1
e 2= .
oV2T ov2me

Therefore, the O axis is the horizontal asymptote of the graph
. fix
lim Q =0
(obviously, > X there are no inclined asymptotes).
While plotting, we additionally take into account that for all values of

the argument f (X)> O, i.e. the curve is located above the Ox axis, as well
as the fact that the curve is symmetric with respect to the straight line
X=4a (Fig. 11.3), since the difference X — @ in the analytical expression
of the function is squared.

Va

\J

Fig. 11.3. The normal curve
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11.5. FINDING MAXIMUM AND MINIMUM USING HIGH
ORDER DERIVATIVES

If at some point X0 hoth the first and second derivatives equal zero:

f ( ) 0 f ( )_ , then at this critical point there can be either a
maximum or a minimum, or there is neither one nor the other. In this case,
higher derivatives can be used.

(n)
Let the function f (X) have derivatives up to the n order f (X) ina

neighborhood of a point X=Xo and be continuous. Let all derivatives up
to the (n — 1) order inclusively at this point equal zero:

f/(x0) = f"(x0) =...= f@ VD (x,) = 0, (*)

f((x,) =0

and . Represent the difference f(x)— f(XO) in powers

of the difference X~ %o using Taylor formula with the remainder term in
the form of Peano:

fO) = f(xo) = f’i’f‘” (x = x0) + f"(x") (x = x0)® + - +

£ (xp) (x —

™ (xo)
s (= o) 4+ L ’“°<—xo)n+o<<x—xo)">.

Here 0(()(_ Xo )n) is a(x) (X_ Xo )n , Where O‘(X)_> 0 where X %o

. Moreover, according to (*) first (n _1) terms on the right side of the last
equality vanish. Therefore

£G0) = £x0) = 28 (2 — ) + a(x) (x = xo)™
Let a(x) = &')
limB(x) = 0.

X—Xg

We obtain

Obviously, B(x) infinitesimal when x — x,:
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F) = Flag) = F2CRE (o ey ()
()—)O

X—>X

Because plx when 0, then for values of x, sufficiently

(n)
close to XO, the sign of the sum f (X0)+B(X), in the numerator

(n)
coincides with the sign f (XO) for both X <%0 ang X~ % X=X

Let’s consider two cases.

1) nis an odd number, n = 2k + 1. Then, when passing from x values
2k+1
smaller than XO, to x values larger than XO, the expression (X_XO)
will change its sign to the opposite:

(x=x, " <0 X < X,

when

(X _ XO )2k+1 > 0 when

In this case, the sign of the first factor in (**), coinciding with the sign

X> X

(n)
of f (XO), will not change. Thus, the sign of the difference

f(x)— f(XO) will change. Therefore, at a point XO, the function f(x)
cannot have an extremum, since near this point it takes values both less

than f(X(’)and greater than f(XO);
2) n is an even number, n = 2k. In this case, the difference

f(x)— f (XO) does not change sign when passing from x smaller than %o

2k
(X_XO) > 0, for all values

to values greater than XO, since, obviously

of x. Obviously, near o both left and right, the sign of the difference
_ (n)

f(x) f(XO) coincides with the sign of f (XO). Therefore, if

(n)
f (X0)> O, then f(x)> f(XO) in some neighborhood of the point XO,
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therefore, the function f(x) has a minimum at the point XO; if
f(V(x,)<0

, then the function has a maximum.

We introduced the next rule: if when X = o

f’(xo) = f"(xo) == f(n_l)(xo) =0, *)
(n)

And f (X0)¢ 0 when n is odd, then f(x) has neither maximum

or minimum at the point X = X0,

If the first derivative that is not equal to zero at the point %o is a
derivative of even order, then the function has an extremum at the point Xo

(n) (n)
: maximum if f (X0)< 0, and minimum if f (X0)> 0.
Example 11.6. Find maximum and minimum of the following function
f(x)=x*+8x* +24x% +24x_
Solution. Find the critical points:
£/(x)=4x° +24x% +48x+24 = 4 (x° + 6x° +12x+8)
3 2 _
From 4 (X +6x" +12x + 8)_ 0 we obtain critical point X =—2.
Consider the values of the derivatives at the point X =—2:
f(x)=12x* +48x+48 f"(-2)=0.
f ’”(x) =24x+48 f "’(— 2) =0
f@(x)=24>0
Thus, f(x) has minimum at X =—2
Example 11.7. Find the extremum of the following function
f(x)=e*—e™ —2sinx
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Solution. Let’s calculate the derivative:
f'(x)=e*—e™—2sinx

Obviously, the point X =0 s critical: f '(0) - O. Next:
f'(x)=e*—e*+2sinx "(0)=0.

f"(x)=e*+e*+2cosx f"(0)=4
Here, the first derivative that does not vanish at a critical point has a

third, i.e. it is odd order. Therefore, at this critical point there is no
extremum.

Questions

1. Let x, — critical point of y = f(x) and let f"'(x,) = 0. Is there an
extremum at a point?
2. Let the graph of the function y = f(x) have a convexity directed
upwards. Where is the convexity of the curve y = Af (x) directed: a) when
A>0,0) when A <07?
3. Let the graph of the function y = f(x) have three inflection points
X1, X3 1 X3 (x1 < x5 <x3) on (a,b) and lety = f(x) is convex curve on
(a, x1). Is this curve convex or concave on (x3,b)?
4, Let f"'(xy) = 0. Is point x, the inflection?

5. Lety = f(x) have a horizontal asymptote for x - +o. What is

the limit lim 229

xX—+w X
6. Can a graph of a function y = f(x) have two different oblique
asymptotes?
7. How to find an extremum of the function y = f(x) at a point X, if
f'(x0) = 0 and f"(xo) = 0?
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12.1. Profit Maximization ‘

Chapter 12. Derivative
applications in economic theory

12.1. Profit Maximization

Consider the economic interpretation of Fermat's theorem.

D = D(x)

Let S= S(X) be a function of costs, be a function of

income, P= P(X) be a function of profit. Then P(X)= D(X)_ S(X). The
optimal level of production is the level such that the profit I:)(X)is
maximum, i.e. the value of output %o at which the profit function P(X) has

a maximum. By virtue of Fermat's theorem, at this point X=X the

derivative is equal to zero P’(XO)zo:, gt P'(X)=D'(x)-s'(x)

therefore
D'(xo) = S"(x0). (*)
The derivative S (X) expresses marginal costs MS | and the derivative

D (X) expresses marginal revenue MD | Thus, equality (*) obtained using
Fermat's theorem takes the form:

MS(x, )= MD(x,)

The last equality is an expression of one of the basic laws of
microeconomics: maximum profit is achieved when the marginal cost and
marginal revenue are equal.
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12.2. Elasticity

Now let’s consider the logarithmic derivative and its applications. Let

the function ¥ = f(x) be positive and differentiable at the point x. As it
was noted, in particular, in deriving the derivative formula for an
exponential function (see § 8.5), the derivative of the function

Iny=Inf (X) has the form

in ()] =ﬁf'<x>=%§; iy =~

This expression is called the logarithmic derivative of the function

f(x)_ The logarithmic derivative is also called the rate of changeTy of
the function y:

T, = (Iny) = y; (12.1)

Let S= S(t) be the value of the contribution at a time t-. Let us find
out whether it is possible to approximately determine the nominal annual
rate of bank i interest by function S(t). If interest is accrued once per
period of time AL, then interest for the specified period will amount to
SiAt (here At js the share of the year). Then the increment of the deposit
and the interest on the deposit are one and the same AS = SIAt.  then

_AS

SAt
If S(t) is a differentiable function, then we can replace the increment
AS with a differential dS = S'At. we obtain
!A ’ ]
Izﬂ=s—=(|n5).
SAt S
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And this means that the bank interest rate | coincides with the
logarithmic derivative of the contribution.
In many problems, the concept of elasticity of a function is used.

Definition. The elasticity Ex(y) of a function Y = f(x) is the limit
of the ratio of the relative increment of the function y to the relative
increment of the argument x for AX — 0.

— lim (A2AN X Ay X Y

Ex(y)—Allerjzo(y.x) }’AlalcTOAx y Y=y (12.2)

The elasticity of the function approximately expresses the percentage

change in the function y="f (X) when the argument x changes by 1%.
From the formula (12.2) it follows that the elasticity of the function is
equal to the product of the independent variable x by the rate of change of

the function TV:

E(y) = Ex(y) = xT,,. (12.3)
Note the elasticity properties:

E(uv) = E(uw) + E(v), (12.4)
E(%)=E@ - EW), (12.5)

obviously following from the corresponding properties of logarithms.
The elasticity of the function is used in the analysis of supply and

demand. Let D= D(p) be a function of demand on the price of goods p.
The elasticity of demand relative to price is determined by the ratio:

_ l'[poueHTHoe U3MEHEHHUE CIIpoca

(11.6)

HpoueHTHoe HU3MCHCHHUEC IICHBI '
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AD 100
Percent change in demand is D , and percent change in price
AP 100
is P . Therefore
E - [Q -1ooj : (ﬁ -100}
D p
or
_pAD
E= Dy (12.7)

With a continuous dependence AD on Ap the difference ratio in the
expression (20.7) is replaced by the limit at Ap — 0:

D'(p)

E(D) = P o) (12.8)

Due to the fact that the demand function D= D(p) is a decreasing
function of price (see Fig. 7.14), its derivative is negative and the elasticity
of demand is also negative. (Some authors define elasticity as a positive
value, putting a minus sign in front of the right side of formulas (20.6) -
(20.8).)

There are three types of demand:

1) elastic, if |[E(D)| > 1;

2) neutral, if [E(D)| = 1,

3) inelastic, if |[E(D)| < 1.

Example 12.1. The demand function has the form D=y240-p :
Find the elasticity of demand at a price p=176 :
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D’ 1
E0)-p2op— L
Solution: D —2(240—p)' Using p:176, we
E(D):—@=—1,375
obtain 28 :

|E(D)| =1375>1 _ demand is elastic.

Similarly, the concept of elasticity of supply is introduced as the ratio
of the percentage change in supply to the percentage change in price. Since
the function of the proposal $= S(p) is increasing (see. Fig. 7.15), then

s(
E(S)=p—
(8)=pg

there is a positive value.

12.3. Optimization of taxation

Let t be the tax per unit of output, ° = S(x)

D =D(x) is the income function, P = P(x)
the profit function has the form:
P(x)=D(x)-S(x)-tx_

is the cost function,

is the profit function. Then

For instance, let the price of products v(x):a—bx' i.e. linearly

decreases with increasing volume of production, and the cost function has

_u2
the form S(X)_ X +C Here a, b, ¢ are some positive constants. The
profit function in this case has the form:

P(x)=x(a—bx)-x*—c—tx

To maximize profits, the company needs the optimal output. The
condition for maximum profit:,
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P'(X): 0 , or. a—t _2bX—2X = O , next
a—t
Xy =
2b+2
With this value of the volume of production, the total tax T has the form

__t(a-t)
T= 2 (b+1)’

We differentiate T and, equating the derivative to zero: T' =0, a—2t=0
, We obtain

The interests of the state are that the value of T be maximum.

We consider this problem for specific numerical values of the constants
a,b,andc. Letbe a=80,b =1, c =10. Then t, = 40, x, = 10. With
these values, the maximum value of profit P, = 190, and state revenue
Ty = toxo = 400. (Note that in the absence of taxes, maximum profit
would be achieved with twice as much production x, = 20 and would be
Py = 790.)

Questions

1. At what ratio between marginal cost and marginal revenue the
maximum profit is achieved?

2. What is the rate of change of function?

3. What s called function elasticity? What is the connection between
the elasticity and the rate of change of function?

4. How to determine the elasticity of demand relative to price?

5. When the demand is considered elastic?

6. How to define the concept of elasticity of supply? Is a supply
elasticity positive or negative?
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13.1. Antiderivative and indefinite integral.
INTEGRAL.

Chapter 13. Indefinite integral.
Integration methods.

13.1. Antiderivative and indefinite
integral.

Definition. Function ¥ = F(X) is called an antiderivative for function

f(x) in between X if for any X € X holds true:

F'(x)=f(x)

For example:
1
. F(X)—lnx. . . . . f(X)=—
Function = is an antiderivative for function X on
an infinite interval (0, 0,+20) , 50 for any x from this interval the equality
ro1
(Inx) =
will be

X
Function F(x)=arcsin x is an antiderivative for function

1
f(x)=
1-x? f(X) in between (_1’ 1), so at each point of this

(arcsinx)' = =
interval, the equality is: 1-x,




Chapter 13. Indefinite integral. Integration methods.

Obviously, if for this function f (X) there exists an antiderivative, then

this antiderivative is not the one; if F(X) — antiderivative for f (X) and C
— random constant, then F(x)+C is antiderivative for | (X)
Theorem 13.1. If T (X) is differentiable between X and if f'(x)=0

throughout this gap, then f (X) is constant along X segment.

Proof. It is enough to prove that for any two different points X1,
X, € X equality f(x)=1(%) is true. As function (i
differentiable on X , a (X1:X2) © X, then F(X) gifferentiable (and is
continuous) over the entire interval [Xllxz], and we can apply the

Lagrange theorem to function (%) for [ %] (see. § 9.1), according to
which  inside  this  segment there is a point ¢

f (Xz)_ f (X1)= f ’(C) (Xz _Xl).
f’(x):O at any point, then in particular f’(c):O, consequently,
f(x)=f(x) QED.

Theorem 13.2. If F(X) is antiderivative for a function (%) in
between X, then any other antiderivative for f (X) at X can be represented
F(X)+C , where C is a number.

proof. Let (%)= F(X) ang @' (x)= f(X) for all x& X . Then

[@(x)-F(x]' =0,

From the above proved Theorem 13.1 it follows that
®(x)-F(x)=C=const ;. ®(x)=F(x)+C qgp.

as
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Definition. If F(X) Is an antiderivative for f(x), equation F(X)+C
where C is a random constant is called an indefinite integral for function

f(x) and signed as .[ f(x)dx.
so, it F'(X)= f(X), tnen
j f(x)dx = F(x)+C. (13.1)

The indefinite integral for function f(x) is the totality of all primitives

for function f (X)

In equation (13.1), the sign I is called an integral sign, f(x) -

integrand function f (x)dx - an integrand, C — constant integration.

The operation of seeking the indefinite integral of a given function is
called the integration of this function. Integration is the inverse of
differentiation. The correctness of integration is verified by differentiation.

Properties of the indefinite integral:

L (jf(x)dx) = f(x)’
i.e. the derivative of the indefinite integral is equal to the integrand.
, A f(x)dx = f(x)dx
i.e. the differential from the indefinite integral is equal to the integrand.
3 IdF(x): F(x)+C

These properties automatically follow from the definition of the
integral.
Integration Rules:
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L if C=const#0, g JCf ()dx=cf f(x)dx
factor can be taken out from under the integral sign.

1. [[f(x) £ g()]dx = [ f(x)dx + [ g(x)dx, ie. the indefinite
integral of the algebraic sum of two functions is equal to the algebraic sum
of the integrals of these functions.

NI If F'(x) = f(x).then [ f (ax + b)dx = —F(ax + b) + C.

Rules I and 11 follow from the corresponding differentiation rules (see
§ 8.4). We verify the validity of equality III:

, L.e. the constant

'

(%F(ax+b)+C) =%f(ax+b)-(ax+b)'=

=%f(ax+b)-a = f(ax + b).
Integral table
1. f0-dx=C.

2. [ x%dx =2 C(a # —1).
a+1

3.f%=ln x| + C.

4.faxdx:%+(]. 4'. [e*dx = e* +C.

5. [cosxdx = sinx +C. 6. [sinxdx = —cosx +C.
7.fcjs§x:tgx+C. 8.fsi(:lfx=—ctg x+C.
9.f\/37=arcsinx+C. 9. f affx2=arcsin§+C.
10.flif€2 =arctg x+C. 10". fazdfxz =%'arctg §+ C.

11. [ «g xdx = In |sinx| + C.
12. [ g xdx = —In |cos x| + C.
13. dzx =in |x+Vx2+A|+C.

Vx4+A
dx 1 x—a
1. [ =—in [+ ca=0).
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Most of the formulas given in the table directly follow from the table
of derivatives (see § 8.5). The validity of any of the formulas is easily
verified by differentiating the right-hand side.

Check the formula 10 . By the rule of differentiation of a complex

(1 x 11 111 1
function (—amg Xy C) =1 _ (_) e
a a a1+(i) a aj4ia  at+x
a. a

Formula 9 ' is verified in a similar way.
Check formula 11. If SINX >0 then

. ' oy 1 .y COSX
(Infsinx|+C) =(insinx) =ﬁ(sm X) =y X
If SiNX<0 then
(In fsin x|+C)' =(In(~-sin x))’ = (=sinx) = 25X _¢tg x
—sinx —sinx

Formula 12 is checked similarly.

We verify formula 13. Let X+ V X*+A >0 Then
(ln |x + Vx? +A|)’ = [ln (x + Vx? +A)]’ =
(x+\/x2+A)’= L (1+ ad ):

x+Vx2+A VxZ+A

1
T x+VxZiA
1 Vx2+A+x 1
x+VxZ+A VxZ+A  VxZ+A
The case is treated similarlyx + vx? + A < 0. Formula 14 is also

verified similarly.
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13.2. Basic integration methods

Direct integration

The calculation of integrals based on the application of formulas 1-14
and rules | — Il is called direct integration. Consider the following
examples:

1.f(6x2+2605x—z)dx=6fx2dx+2fcosxdx—3fi—x=

=2x3+2sinx—3In |x|+C.

It should be noted that at the end of the solution one general constant
C is written, without writing out the constants from the integration of the
individual terms.

5
3 =1 2
2. [xyxdx = [xzdx =2+ ¢ =% L
2
3x2+1 x2+1+2x2 x2+1 2x2
3.J 2(x2+1) = mee = e+ mm i =
1
_f 2+1—_;+23rctgx+c.

Substitution method (variable replacement method).
Replacing the integration variable is one of the most common and
effective methods of reducing an indefinite integral to a combination of
tabular ones.
Let the integral be given .[ f(x)dx . We introduce a new variable by

the formula X:(P(t), where (P(t) — differentiable function/ Then we
substitute these expressions into the integral:

JfGodx = [ f(p®)e' ()dt. (13.2)

Formula (13.2) is called the variable replacement formula.
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A/ X
—~ dx _1)°
Example 13.1. Find: a) © X+1 ;6)-[ X(x-1)"dx.

Decision. a) Let's make a variable change: X :tz, t:\/;. Then
dx = 2tdt

JX t-2t dt t? t2+1-1 dt
—dx= =2 dt=2 dt=2| |dt— =
X+1 I t>+1 It2+1 I t>+1 U J.t2+1j

=2(t—arctgt)+C = Z(ﬁ—arctg \/;)+ C.
b) Put X=1+1 Then X—lzt’ dx =dt .
[x(x—1)%x = [(t+ Dt%dt = [(t1° +¢°) dt =

11 10 —1)11 —1)10
S i C ) L e i
11 10 11 10

Often, changing a variable is not done in the form X:‘P(t)but
t=w(x)
2x dx
Example 13.2. Find: a) Jsin® xcos x . Il+ x*

Decision. a) Make a replacement t =SINX. Then dt =cosx dx e
get
sin® x
3
b) Put t=X*, Then dt=2X0X \ye get
J- 2xdx

1+ x*

Note that a new variable can and not be written out explicitly. In such
cases, they talk about summing up under the sign of the differential.

3
Isinzxcosxdx:jtzdt:%+C: +C

=I dt2 —arctgt+C =arctg x* +C
1+t
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In particular, the calculation of the integral in Example 13.2 can be
written in the following form:

2% dx d(x?
I1+x4 :'[1+((x2))2 = arctg x2+C'
In x dx In? x
Example 13.3. '[ X :Ilnxd(ln X): +C.

Part Integration

Let u=u(x) and v=v(x) _ differentiable functions.  Then
d(uv)=vdu+udv o,
udv = d(uv)-vdu

Integrating both sides of the last equality, we obtain the integration
formula by parts:

judv= uv—_[vdu (13.3)

Example 13.4. Find: a) Ixexdx; 5 j(2x+3)cosx dx . 5) jxln xdx

Decision. a) Let X=U, *dx=dv  Then du=dx u=e€" Bythe
formula (21.3) we obtain.

jxexdx = xe" —Iexdx= xe* —e*+C =e*(x-1)+C

b) Let U=2x+3 C0SXdX=0V Then du=2dx, v=sinXx, we
get
j(2x+3)cosxdx=(2x+3)sinx—2.[sinxdx:(2x+3)sinx+2005x+C
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du=% V=

XZ
¢) Let U=Inx, dv=xdX hen X, 2 . And get
2 2 2 2 2
_[xlnxdx:x—lnx—jx—-idx:x—lnx—l_[xdx:x—lnx—x—+c
2 2 X 2 2 2 4

In some cases, the integration formula is applied in parts several times,
gradually simplifying the integrand.

2
Example 13.5. Find .[X cosX dx.

Decision. Let U= X" COSXAX=0QV Then du=2xdx v=sinx
[Honyyaem
sz cos xdx = x?sin x—ijsin xdx

The resulting integral is not tabular, but it is simpler than the original,
the degree of the variable x has decreased. We reuse the integration

formula in parts by setting U=X, SINXdX=av  pen du=dx,

V=-—CO0SX, We get
J.XZCOSXdX=XZSinX—J.ZXSinXdX=XZSinX—Z(—XCOSX-i—ICOSXdX):
=x%sin X+ 2xcos X — 2sin X+ C.

We indicate the most common types of integrals, for finding which the
integration formula by parts is applied.

1. IPH (x)e*dx IPn(X)aXdX, IPH(X)Sinaxdx IPn(x) cos ax dx

) IPn (x)Inx dx an (x)arcsin x dx an (x)arccos x dx

J.Pn (x)arctg x dx an (x)arcctg x dx
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Here R (X) is polynomial of degree n.

For finding the integrals of the first group Pn(x):u (and the
remaining factors are dV). For finding the integrals of the second group,
R (X) dx = av (the remaining factors are taken as u).

Obviously, the integrals a), b) in Example 13.4 and the integral in

Example 13.5 refer to the first type and the integral ¢) in Example 13.4 to
the second.

X
Example 13.6. Calculate integral _[e cos xdx.

Decision. Note that this integral does not apply to any of the two types
mentioned. Let U =8". Then dV =c0sdX. We have

du = (ex)' dx =e*dx; v=sinx

Using formula 13.3, we obtain

[e*cosxdx = e*sinx — [ e*sinxdx. *)

Applying formula 13.3 to the integral on the right-hand side, we again
apply the method of integration by parts setting =€ »dv =sinxdx a4y
du =e*,v=—CoSX. \ye get

[e*sinxdx = —e*cosx + [ e* cos x dx. (**)

Knowing (*) and (**), we get

[e*cosxdx =e*sinx — (—e*cosx + [e* cosxdx) =

=e*sinx +e*cosx — [ e* cos x dx.

Move the integral from the right to the left so we get

2 [e*cosxdx =e*(sinx + cosx) + C.

We divide both sides of the last equality at 2 and, given that C is a
random constant, we obtain
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X
[ e*cosxdx =%(sinx+cosx)+C.

It is easy to see that if we took U not as e, we would get the same
result.

13.3. Integration of rational shots
P(x)

Equation Q(X) , where P(x) ang Q%) are polynomials that called
rational fraction. A rational fraction is called correct if the degree of the
numerator is less than the degree of the denominator. If the degree of the
numerator is greater than or equal to the degree of the denominator, then
the fraction is called incorrect.

An irregular fraction can be represented as the sum of a polynomial
and a regular fraction dividing the numerator by the denominator:

O

Here R(X) — some polynomial, and the second term is a regular

fraction.
X +3x* +x*+2x2+3 3x?—2x+3
R =X +2X+ 55—

For Example, X*+ X —x+1 XT+ X" —X+1,

Inorderto integrate the right fraction, it is decomposed at ~ simple
fractions, having previously expanded the denominator at the elementary
factors.

Without proof, we give a decomposition formula for a regular

fraction. Let the denominator Q(x) be factorized (x-a)" (X2 + pX+ q)B :

2
Here X =2 _ valid root Q(X) multiplicities o, X T PX+d _ square
trinomial with negative discriminant. Then the correct fraction is
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decomposed at the sum of the elementary fractions using the so-called
method of indefinite coefficients as follows:

P(x) __A —+ Aza_l+...+ A
(x—a)*(x®+px+qf (x-a)* (x-a) X—a
M, x+ N, M,x+N, . My x+ N,

+ + et ——,
(x2+px+q)P (x2+px+q)ﬁ_1 X* + px+q
where the coefficients are to be clarified in the process of fraction
decomposition.
In connection with the above decomposition, it is necessary to consider
the so-called simple fractions:

A Mx+ N
I X—a, . X+ px+q
A Mx+ N
n, (x-a)" | V. (X2+px+q)3,

where a, p, g, A, M, N —real numbers; a, B — integers; in addition, it is
assumed that the denominators of fractions Ill and 1V do not have valid

2
(gj -0<0
KINIICHI, 1.€. .
Consider the integrals of these simple fractions.
Fractions of types | and Il are easy to integrate:

idx:AIn|x—a|+C

X—a ,
A 1 A

dx = ———. C

-[(x—a)“ et (x—a)"“l+

For calculating the integral of a fraction of type Il from the trinomial
in the denominator, a full square is extracted:
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2 2 2
2 _[x P P [y P 2
X +px+q_(x+2) +[q 4} (x+2j +a |

Mx+ N I\;(2x+p)+( _Nzlpj M 2
J.X—+dX=J. dx =— I&d X +
2

X® + px+q X® + px+q
+(NN2|p)I( de - =%In (x2+px+q)+

B

X® + px+q

2N — Mp _2X+p
\/4q p’° \/4q p’°
J' 23X+4 dx
Example 13.6. Find * X" +2X+5

Decision. You can use the  formula of the integral of a fraction of
type 1l derived above, but we will once again repeat the process of its
derivation at this specific example

i X+4 SI 2 +2 dx 3Id(x2+2x+5)+

X*+2X+5 XJr-|.(x+1)2+4 2

x2+2x+5 2 x> +2X+5
+.[d—X2 ~3in (x? +2x+5)+£arctg e
(x+1+4 2 2 2
IV. We proceed to the calculation of the integrals of a fraction of type
2Mx+ N dx
IV, i.e. integrals (X + px+q)B when P=2
x+2 =t
Apply the same substitution 2 which is in the case of a

fraction of type IlI:
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Mx+ N M”[ _ngp] M 2tdt
dx = dt=—f T
J‘(x2+px+q)ﬁ " I (t2+a2)B t J'(t2+a2f+

(e

The first of the obtained integrals is taken by substitution t’+a’=z
, 2tdt =dz .
2tdt 1 1
I _[ T —+C=- v +C
(t*+a’f B -1z B-1(t2+a’f
The calculation of the second of the remaining integrals requires some
effort. So, we need to calculate the integral

dt
Jo=|—
' I(t2+az)ﬁ B =123 )

We apply the integration formula in parts.
1 2[3tdt
U=r""3y du=- P
Let (t +a)ﬂ,dVZdt;then (t +a)B V=
We get

Jﬁ—j(

t?

Convert last integral:

_ o t?+a?-a? _ dt 2 dt _
f(t2+a2)ﬁ+1d f(t2+a2)5+1 t= f(t2+a2)ﬁ —a f(t2+a2)3+1 -
=Jp — a*Jg41-

Substitute the last expression into equality (*):

dt
2 4d
+a)ﬁ+ Bjt +af t. (*)
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— t 2
JB —m'i‘ZBJB —ZBa ‘JB+1
Express from here ‘]B+1:

1 t 2f-11
Jp+1 = gz EranE T 2 @k )

The resulting formula reduces the calculation of the integral

d

t
oo o

To calculate
dt
Jﬁzj——————

(t2 + az)B .
(Recall that b is a positive integer.)
Obviously

dt 1 t
‘Jl = J.m = garctgg'FC

We take one of its values, namely, when C =0 By the formula (**)
at B=1 find
dt 1 t 1

J —J. = + arctgl
? (> +a’f 2a°t*+a® 2a° a

If now take P =2 then
dt 1 t 3
e g
1 t N 3 t N 3
4a* (t2 n a2)2 8a’t’+a’ 8a°

t
arctg—
a
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t:x+E

etc. Now it remains only to recall that 2 and return to the
variable x. Note that formulas of the form (**), which allow us to reduce

the calculation ‘]B+1 to the calculation ‘]B with less than one sign, are
called recurrence formulas. We will further encounter recurrence relations
in linear algebra while studying determinants.

Now consider the integration of rational fractions that are not simple.
As mentioned above, a rational fraction if it is not correct is transformed
and represented as the sum of a polynomial and a regular fraction. Then
the correct fraction is decomposed at simple fractions. The method of
uncertain coefficients is used. After the fraction is represented as the sum
of simple fractions, the integral of it is calculated as the sum of the integrals
of these simple fractions. Consider this with examples.

J- 23 — X% +2x+1

Example 13.7. Calculate integral * X' —2X° +2x* —2x+1
Decision. The integral function is the right fraction. We decompose it
into simple fractions. For this, first expand the denominator at factors:

2

x*=2x +2x* = 2x+1=(x-1) (X2 +1). . (This can be done, for
example, by finding the root X =1 and divide at (X_l).) We apply the
decomposition formula:

23 —x*+2x+1 A A, Mx+N

2{ 2 = 7t 3
(x-1(x*+1)  (x-1 x-1 x*+1
Multiply both sides of this equality by the denominator of the left side:
2x% = X% +2x+1= A (X% + 1)+ A, (X=1)(x +1)+ (Mx+ N )x—1)’

After reduction of similar terms, we get
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13.3. Integration of rational shots ‘

2x° —x2 + 2x+1=(A, + M )x* +(A = A, —2M + N )X’ +
+(A,+M —2N)x+A —A, +N.

We equate the coefficients for the same powers of x on the left and on
the right:

X3 A +M =2,
2|A —A —2M +N =-1,
x| A +M-2N=2
X°| A - A, +N =1.
Solving the system, we find: A =2, A =1 M =1 N=0_sgo,
2x° =X +2x+1 2 1 X
(x-1(x*+1)  (x=1y X1 +1
We integrate:

2x3 —x? +2x+1 xdx
-[x4—2x3+2x2—2x+1 _ZI +-|.x 1 -[x2+1:

__ 2 1+ 2in (x
= X_1+In|x ]4+2In(x +1)+C.

Example 13.8. Calculate integral
I _J-2x6—5x5+6x4—10x3+8x —3x+15
X2 —2x* +2x3 —4x% +x-2

Decision. The integral function is the wrong rational fraction. Dividing
the numerator by the denominator, select the integer part:
x6 —5x° + 6x* —10x3 + 8x2 — 3x + 15 =
=(2x—1) (x5 —2x*+2x3 —4x? + x — 2) + 2x% + 2x + 13.
Consequently, the integrand function has the form

dx
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2x? +2x+13
X2 =2x* +2x3 —Ax® +x-2
The denominator of the remaining correct fraction is factorized:
X*—2X* +2x° —4x? + x—2=x"(x=2)+ 2x*(x—2)+x -2 =
=(x=2)(x* +2x% +1)= (x—2) (x> +1f .
(One could have done otherwise - by finding; find the root of the

2X -1+

denominator X =2 and then divide the denominator by (X - 2) )
So,
2
I :I(Zx—l)dx+j 2X +2X+132 dx
(x—2)(x? +1)
The first of these two integrals is calculated immediately:

_[(Zx—l)dx: x? —x+C

and for computing the second integral, we expand its integrand, which
is a regular fraction, at simple fractions:

2x*+2x+13 A M +N Mpx+N,
(x—2)(x2+1)2 X—2 (x2+1)2 x*+1
Bringing the fractions on the right side to a common denominator, we
equate the numerators:
2x2+2x+13=A(x*+1)*+ (Myx+N) (x —2) +
Equating the coefficients at the same degrees X left and right, we arrive
at a system of five linear equations:
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x| A + M, =0,
X —-2M, + N, =0,
x2| 2A+ M, + M, —2N, =2,
x| —-2M,-2M,+ N,+ N,=2,
x°| A —2N, -2N, =13.

Solving this system, we find:

A=1 M1:—3’ N1:—41 Mzz—l’ N,=-2
We get

2x*+2x-13 1 3x+4  x+2
(x—2)(x2+1)2_><—2 <x2+1)2 X*+1

We calculate the integrals of each of the terms to the right:

K nx-2|+c
Xx—2 ,
x+2 1 2
IX2+1dx_ 2In (x +1)+2arctg X+C

3x+4 3¢ 2xdx dx 3
0T 4= -
e S [ vy [ v ey 4f o

The last integral is calculated using the recurrence formula (**):

I dx 1 X +1arctgx
(X2+1) T2xP 4l 2

Taking into account the coefficients after obvious transformations, we
obtain

217 ‘




‘ Chapter 13. Indefinite integral. Integration methods.

JZXG 5x° +6x* —10x° +8x? —3x+15, _
—2x* +2x° —4x* +x -2
= x? —x+1M 1I M 4arctg x+C.

2x2+1 2 x2 +1

13.4. Integration of irrational functions

Consider the cases when the change of variable allows us to reduce the
integrals of irrational functions to the integrals of rational functions (i.e.,

rationalizes the integral). Denote by R(U’ V) a rational function of u and v,
i.e. a function that is obtained using only arithmetic operations on the
variables u and v.

m r

XS dx
1. Consider the integrals of the form ( ] . Letk be
m

the common denominator of fractions N, S, ... . Let's make a
substitution:

x=t dx=kt"dt
Then , obviously, the integrand function is transformed into a rational
function of t.

Jxdx

Example 13.9. Calculate integral Vx® +1,
Decision. The smallest common multiple of the root indices is 4.

Therefore, we substitute X =t* dx=4tdt:
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Ixdx e t2 e )L

I\/_+1 jt3+1t dt = dt = 4[| t - |dt=

= 4t? dt——j t+1 :—t —%In‘t3+Q+C:§(W—In (‘{/F+1))+c.

2. We now con3|der the mtegral of the form

J-R X ax+b\n | ax+b\s o dx
cx +d cxX +d
Such integrals are calculated by substitution

ax+b
cx+d

=tk

m r
where k — common denominator of fractions N , S
dx

Example 13.10. Calculate Vx+5 '(4‘/X+5 +1).

1
Decision. Here a=1, b=5 ¢=0,d=1. n 4
the substitution X+5=t* dx=4t>dt we get

t3dt tdt
J.\/F(\/X—-FS+1) 4J.t (t+1 J.t+1 -[[ t+1j
=4(t-Inft+1) +C=4[‘{/x+5—ln (x/x+5+l)]+C.

Some integrals of irrational functions are rationalized by trigonometric
permutations.  In  particular, when calculating the integral
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[a2 2 .
IR(X1 a —x )dx wildcard applies X =asInt, and an integral of the

P IR(X, va® + x? )dx

— substitution X=atgt,

dx
77—
Example 13.11. Find (4_ Xzf .

Decision. Let X =2sint, Then dx=2costdt.
2cost dt J-2cost dt 1J- dt

dx
J.\/ 4—x2 ’ _J.\/ 4—4sin2t

8cos’t 49 cos’t
:—tgt C_lsmt C—l sint 1

X
— = +C
4 cost 4 \J1—sin? 4 Ja—x

13.5. Integration of trigonometric
functions

Consider an integral of the form .[ R(S' , COSX) dx . We show that it

reduces to the integral of a rational function by substituting

X
t=tg—
g 2
called universal trigonometric substitution.
Indeed, expressingSiN X, COSX and dX through ~ 2 we get :
sinx = cosx—ﬂ x—2—dt
C1+t? T 1+t? Xx=2arctgt 14t

Substituting the obtained expressions into the integral, we obtain
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" 13.5. Integration of trigonometric functions ‘7
2
J.R(sin X, COS X) dX = f R( a1t j 2dt _ I R, (t)dt

1412 1+t2 J14t2

J- dx
Example 13.16. Find ® 1+sinx
t= tgﬁ
Decision. Using Universal Substitution 2 after obvious
transformations we get:
'[ d)_( :2I at > == 2 +C=—- 2 X+C
1+sinx (1+1) 1+t 1+tg§

It should be noted, however, that universal trigonometric substitution
often leads to very complex rational functions. Therefore, in many cases,
instead of a universal substitution, other substitutions are used, which make
it faster and easier to achieve the goal.

.4 3
Example 13.17. Find Jsin* x- cos* x dx

Decision. Let t=SinX_ Then dt=COSXdX \ye get
Isin“x-cos3xdx:jsin4x‘coszx~cosxdx=ft4(1—t2)dt:
t> t" . sin°x sin’x

5 7 5 7

. sin™x-cos" x dx
In general, an integral of the form I where m and n

are natural numbersis more convenient to calculate using the following
substitutions:
a) if m is even, n is odd, then the permutationt =Sin X;

b) i f m is odd, n is even, then the permutation t =COS X
c) if m and n are odd, then any of the substitutions “a” or “b”;
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d) if m and n are even, then degree reduction formulas are applied:
1-cos2x 2 1+ cos 2x
———— COS" X=——

sin? x =

jcosmx -cosnx dx

Integrals of the following  types:

sinmx - cosnx dx sinmx -sinnx dx . .
j , I taken using the following

formulas known from trigonometry:

COS 0LCOSP = %[cos (o.+B)+cos (o.— )]

sina.cosp =%[sin (0. +PB)+sin (o.—B)]

sinasinp = %[— cos (o +p)+cos (a—p)]

Example 13.18. Fing ] COS5X-cos3x dx

Decision. We use the cosine product formula:

sin8x  sin2x
+
4

_[cosSx-cos3xdx=%J.(cosSx+cost)dx= +C

“Non-countable integrals

It is known that the differentiation operation does not derive a function
from the class of elementary functions. The integration operation is more
complicated. Not every integral of an elementary function is expressed in
a finite form in terms of elementary functions. Such integrals are called
“non-countable”. We indicate some of these integrals:

J.w dx

X — integral sine;
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COS X
[ 25X gy
X — integral cosine;
dx

In X — integral logarithm;

—X
je dx — Poisson integral,

jsin x2dx Jcos x2dx )
, — Fresnel integrals.

These integrals play an important role in applied sciences. For the

calculation of “unshifted” integrals, approximate methods are used that
allow us to estimate and calculate such integrals with any degree of
accuracy.

Questions

1)
2)
3)

4)
5)
6)
7)
8)

9

What is the derivative of the antiderivative for a given function?
How can two antiderivatives of the same function differ?

How is the antiderivative function different from the indefinite
integral from this function?

What is the derivative of the indefinite integral?

What is the differential from the indefinite integral?

What are the main integration methods?

On what formula is the method of replacing a variable in an indefinite
integral based?

What is a piecemeal integration method? What is the integration
formula in parts?

What is a differential sign?

10) What function is called rational fraction?
11) Which rational fraction is called correct and which incorrect?
12) How to reduce the integration of the wrong rational fraction to the

integration of the right rational fraction?
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13) What rational fractions are called simple?

14) What is the procedure for integrating a rational fraction that is not
simple?

15) What method is used to decompose a regular rational fraction at
simple?

16) What is the universal trigopnometric substitution?

17) Why does an integration of trigonometric expressions not suffice to
own only universal trigonometric substitution?

18) Is the integral of an elementary function always expressed in its final
form in terms of elementary functions?

19) What are “non-tilting” integrals? Give Examples of "unshifted"
integrals.

Chapter 14. Definite integral
and its properties

14.1. The concept of a specific integral

Let function f(x) be defined on the line [a, b]and cut the line [a, b]
randomly at n parts with dots:

a=Xy <X <X, <. <Xy <X, =b

We choose in each of the partial segments [Xifl’ Xi] random dot & :
X4 <& Sxi, 1<i<n.
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14.1. The concept of a specific integral

Denote by AX the length of the i-th partial segment:

1<i<n cConsider the amount:
on = f(EDAX + f(§)Ax+... +f () Ax, = ity f(€§)Ax;. (14.1)

AX =X — X4

This sum (14.1) is called the integral sum of the function f(x) on the
line [, b],

If f(x)>0, then its integral sum is the sum of the areas of the

rectangles with bases A, and heights f(ii), i=1,2,...,n,ie, the area
of the stepped figure formed by these rectangles (Pic. 14.1).

YA
f‘

[ N
I 1 !
S i
<1 ﬁz |

0 a=Xg X X3 Xy Xp=b

Pic. 14.1. Stepped figure

Denote by A the length of the largest partial segment of this partition:
A = max AX,

1<i<n

Definition. The final limit of the integral sum (14.1) forA — 0 if it
exists and does not depend on either the method of splitting the segment
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[a, b] nor from the choice of points & is called the definite integral of a
b

f (x)dx
function f(x) on the line [a, b] and denoted as '!: :

[, fedx = limoy, = Lim T, £ (§)Ax;. (14.2)

If a definite integral (14.2) exists, then function f(x) is called

integrable at segment [a, b]. The number a in formula (14.2) is called the
lower limit of the integral, and the number b is called the upper limit of the

integral, f(x) — integrand, x is the integration variable, and the segment
[a,b] segment of integration.
Note the differences in the concepts of definite and indefinite integrals:

indefinite integral I f (x)dx is a family of functions, and a certain integral
b

J. f (x)dx

a is a certain number.

Giving a Definition of the concept of a definite integral, we assumed
a <b By definition:
b b
J, FGdx = — [ f(x)dx. (14.3)
The geometric meaning of a certain integral
In accordance with the Definitions of the concept of a definite integral,

in the case when Function f(x) iS non-negative at [a, b], integral
b

_[ f (x)dx

a is numerically equal to the area S of the figure bounded above
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the curve ¥ = f(x)1 bottom - axis Ox, lateral - straight X =2, X=b (pic,
14.2). This figure is called a curved trapezoid.
YA

0 a b x
Pic. 14.2. The geometric meaning of a certain integral

The economic meaning of a certain integral

Let function Z= Z(t) describe performance versus time t, then the

volume v of products produced over the period from the momentt =1 till

the moment is expressed by the integral of Z(t) on the segment [tO' T]

V= f[ z(t)dt

Integrable Function Classes

A sufficient condition for the existence of a definite integral is given
by the following Theorem (we give it without proof).

Theorem 14.1. If function ¥ = T (X) is continuous on asegment [a, b]
, then it is integrable on this segment.

As can be seen from Theorem 14.1, the class of integrable functions is
wider than the class of differentiable functions. We know that every
differentiable function is continuous, but not every continuous function is
differentiable. So, the continuity of a function is not enough for its
differentiability but enough for integrability. Moreover, there are classes
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of functions that are not continuous but are integrable. We give without
proof a theorem on these functions.

Theorem 14.2. If function | (X) is bounded at (& b] and has at it only
a finite number of discontinuity points, then it is integrable at this interval.

Theorem 14.3. If function f(x) is monotonically bounded at interval
[a, b], then it is integrable at this interval.

Boundedness of integrable function

Theorem 14.4. If function f(x) is integrable on [a, b], then it is
limited to [, b].

Proof. Let function f(x) be unlimited at [a, b]. Then it is not limited
to at least one of the partial segments [Xifl’ Xi]. And then, by choosing a

point, you can make a product of function f(gi )Axi arbitrarily large and

(o}

consequently so the integral sum ©n ; under these conditions ©n has no

limit. Consequently, f(x) not integrable. From this we conclude that the
assumption is false.

14.2. Properties of a specific integral

We first consider the properties of a certain integral expressed by
equalities.

1. By definition, we assume
I fGodx =0, (14.4)

i.e.. a certain integral with the same integration limits is equal to zero.
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14.1. The concept of a specific integral

2. By definition, when rearranging the upper and lower limits of
integration, the integral changes to the opposite sign at:

[ f@ydx = — [ f(x)dx. (14.5)
3. The constant factor can be taken out of the integral sign:
fab cf (x)dx =c f;f(x)dx. (14.6)

4. The integral of the algebraic sum of two functions is equal to the
algebraic sum of the integrals of these functions:

L2(f00 £ g(0) dx = [2 f)dx + [L g(x)dx. (14.7)
5. For any numbers a, b and c, equality holds:
[ f@odx = [ f@dx + [ f(x)dx. (14.8)

We state properties 3-5 in more detail and prove them.
Property 3. If function f(x) is integrable on [a.,b] ang ¢ = const

,then function cf (X) is integrable on[a’ b] and the following equality
holds true:

J.cf x)dx = CJ.

Proof. For integral sums the following equality holds true:
sz (&)X, = Cz f (g )Ax
i=1 i=1

This equality is valid for any partition of a segment [a,b] at partial
segments and any choice of points ‘E"i. Designating, as before,

A =MaXAX; \ve pass to the limitat A —> 0
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b n b
cf (x x—I|m f AX, =clim » f .Ax.zj'fx X
Jot (=i 3 2 ), =clim > 1 e, Jax, =cf (x)

Property 4. If f(x) ang 9(x) integrable on [, blthen their algebraic

sum is also integrable at [a,b] and the equality is valid:

(1 (0= g0 = () [ a(x)x

Proof. For any segment partition [a, b] and any choice of points & for

integral sums, the equality runs:

Zn:(f(g )AX, _Zf AX, +Zg

i=1
Therefore

TUMM@Wﬂ%iWHM@M&z

a

—Ixmg(Zf DAX; +||ng j:iirrgzn:f(ai)Axi J_rlxirr(l)zn:g(i )AX

i=1

j dx+_[g dx

Property 5. For any three numbers a, b and c the equality holds:
b

j f(x)dx = JC. f(x)dx + _T f (x)dx

a a

if all these three integrals exist.
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14.1. The concept of a specific integral

Proof. We first consider the case when point c is located between the

pointsaandb, i.e. a<C< b we compose the integral sum of the function

t(x) on the segment [a,b]
For the integrable function the limit of the integral sum does not
depend on the method of partitioning the segment at partial segments, then

we will divide the segment [31 b] apart, so that one of the division points
b

(one of the ends of the partial segment) is point c. Denote by a integral

C

sum according to the segment[a’b],through a  —integral sumaccording
b

to the segment [a.c] ang through ¢ — according to the segment [e.b].
Then , obviously:

Zf AX, _Zf )AX, +Zf

Passing in the last equality to the limit atA —> 0 , we get

jl f(x)dx = j. f(x)ox + j. f (x)dx

a a

Now, let point ¢ be to the right of point b: @<b<C. Then on the
basis of the proved equality:

j. f(x)dx:i f(x)dx+.t|l f (x)dx
a a b
Thus
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J.f(x)dx:.[ f(x)dx—j f(x)dx
b

However, in accordance with property 2

j.f(x)dx:—j.f x Jdx
b c

therefore

j x)dx = I dx+I

This property of the case is proved S|milarly when the point c is to the

left of the segment [a, b]and in general for another arrangement of points
a,bandc.

Comment. We formulated and proved property 5 under the
assumption that all three integrals under consideration exist. One could
relax this requirement and prove property 5 under the assumption that only
for the largest of the three segments under consideration does the integral
exist.

Now we consider the properties of a certain integral expressed by
inequalities.

6. If function f(x) is integrable on [a, b], a<b and f(x)>0 , then
2 f()dx = 0. (14.9)

(This follows from the fact that all terms in the integral sum are non-
negative.)

7. If functions f(x) and g(x) integrable on [a, b], a<b and
f(x)=9(x) then
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[} f)dx = [ g(x)dx. (14.10)

proof. T(X)=9g(x)>0 then property 6 implies
b

J(£(0- glox)ax=0

a

From here, taking into account property 4, we obtain
b b

I f(x)dx — j‘ g(x)dx >0 _[ f (x)dx > 'T g(x)dx

a , WIn a .

8. Let function f(x) be integrable on [a, b] and satisfy on [a, b] the
condition M< F(X)<M  pen

m(b—a) < [} f(x)dx < M(b - a). (14.12)

Proof. By virtue of property 7

ffmdx < fff(x)dx < f; Mdx,

but f:mdx=mffdx =m(b — a), f;de:Mf:dX=M(b—
a), therefore

m(b —a) < f;f(x)dx < M(b - a).

9 (Theorem on average). If function f(x) is continuous on [a, b]
tthen € k! b]exists, and

[ f(dx = £ - (b - a). (14.12)

Proof. By the second Weierstrass theorem, continuous function f (X)

reaches on [a, b] its largest value M and its lowest value m.
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M= f(X)<M then inequality (14.11) holds. Dividing this inequality

term by (b-a) we get
b
m < ﬁfa f(x)dx < M.
By the second theorem of Bolzano - Cauchy Function, f(x) takes on

[a, b] all intermediate values between m and M. In particular, there is such
ge [a, b], that

f&) == [ f(x)dx.
And so we get (14.12).

14.3. Basic formula for integral
calculation

Variable upper limit integral

If function is integrable on the segment [a, b] .then it is integrable on

any segment [a, X], where X € [a,b]
Note that it does not matter which letter denotes the integration variable
in a certain integral:

T f(x)dx =i f(z)dz =T f(t)dt=...

change of notation does not affect the value of the integral.

Consider the argument function x:

P(x) = [ f(t)dt. (14.13)
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Call the function cp(x) integral with a variable upper limit. (In
formula (14.13), the integration variable is denoted by t in order not to mix
it with the upper limit x.)

It was previously established that every differentiable function is
continuous (see Theorem 8.2), however, a function continuous at a point
may not have a derivative at this point. We prove now that each continuous

on a given segment function f (X) has an antiderivative in this segment.
Theorem 14.5. If function f(x) continuous on [a, b],then function
®(X) s antiderivative for T (X):

@'(x) = [j f (t)dtj ~f(x)

a

Proof. Let AX so (x+Ax)e(a, b]. Then

AD =(x+ AX)-d(x)= | FO)dt- [ FR)dt= | {()ct

By the mean value theorem (see 14.12):

X+AX

[ f(t)dt = f(g)ax

) Eelx x+Ax]
And
AD _ D(x+Ax)-D(x) _ (2)

AX AX

When AX =0 Obviously, = X, and f(x) is continuous at x,then

IEILQ (&) =1 (X) We get
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o(x)= lim A% _ fim QA=) _ o 6)_jim £ (2) = £(x)

=0 AX  Ax—0 AX AX—0 E—X

Q.E.D.

The proved theorem can also be formulated as follows: the derivative
of a certain integral with respect to the variable upper limit is equal to the
integrand (in which the value of the upper limit is substituted for the
integration variable).

Newton-Leibniz Formula

According to Theorem 14.5, the integral for function / (x) continuous
on [a, b] is

o(x)= [ ft)t

and this integral is antiderivative. Let F(X) be any antiderivative for
f(x). Then

d(x)=F(x)+C

Constant C is found from X =2 (Obviously, D(a)= 0y.

O:d)(a):F(a)+C1 when C=-F(a)

Then

®(x)=F(x)-F(a).

£ X=b gor @(0)= F(b)~Fla) ;.

b

Or, which is the same:




14.4. Change variable and integration by parts in definite integrals ‘

[} f()dx = F(b) - F(a). (14.14)

Formula (14.14) is called the Newton-Leibniz formula. This is the
basic formula for integral calculus.

b
Difference F(b)_ F(a) is written as F(X)|a (« double substitution
fromato b"). Then the formula (14.14) takes the form
b

_[ x)dx = F )|

a . (14.15)
Example 14.1.

2 x3 TP _0
1)[ dx = =373 9;

2)[6E=lnx|1 =lne—-Inl=1;

1 dx 1 T
= X = 1 —_ 0 = -,
) f Ttx Y arctg |0 arctg arctg 2

14.4. Change variable and integration by
parts in definite integrals
Variable replacement

j). f (x)dx
Let the integral be given a , Where f(x) is a function
continuous on the segment [a, b] . We introduce a new variable by setting
Xx=oft),
If (p(oc):a’ o(B)=b , and the values olt) gont go beyond [, b]
when t differs on [ B]. Moreover, 1et®(t) and @) be continuous

[, ] . Then
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2 feodx = £ F(o0)¢' (Dt (14.16)

if F'(x)=f(x) then at the same time
b

_[ f(x)dx = F(x). = F(b)- F(a)

a

And

hence the proved equality follows (14.16).

It should be noted that when calculating a certain integral by replacing
a variable, there is no need to return to the old variable, i.e. make a reverse

replacement.

Example 14.2. Calculate1/2

Decision. Replace X=Sint, Then dx=costdt t=arcsinx,

T 1 t_n

6if 2and 2 if X=1 weget

t1—x? "2 \J1—sin?t “’Zcost "?1—sin’t
P g [ ety s
72 X s SIn t lssm t e SIn t
=(-ctgt— t)|“/2 Ty 3+— J3-Z

Part Integration
Let functions Y = u(x) and Vv =v(x) have continuous derivatives on

the segment [a,b] Tpen
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(uv) =u’v+uv'

We integrate both sides of this equality:

b b b
I(uv)’dx = ju’v dx + juv'dx

b
I(uv)’dx = uv|:

.[ (u)'dx=uv+C ,then a . We get

b b
uv|:1 = jvdu + J'udv

a a
Consequently,

f; udv = uv|} — f: vdu. (14.17)

Equality (14.17) is called the integration formula by parts in a
certain integral.

e

xIn x dx
Example 14.3. Calculate 1
. . d 2

Decision. Let u = Inx, dv = xdx. Then du = 7’“ v = % We get

e _ x? e ex?dx _e2 1 5,
Jxinxdx == nx|; — [[S—=5—1x%I{ =

e? e? 1 e’+1
=TT a it

14.5. Approximate calculation of definite
integrals

When solving a number of applied problems, one often has to deal with
certain integrals of functions for which antiderivatives are not elementary
functions. For the calculation of such integrals, there are various methods
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of approximate calculation. Here we give the simplest of them: the
rectangle formula, the trapezoid formula and the Simpson formula.

Let there be a function ¥ ~ f(x)on the segment [a, b]‘ Calculation of
definite integral ff f (x)dxis needed.

1. The formula of the rectangles Divine the segment [a, b] with the
dots 2= %0 X Xp X =D jpon equal parts long AX:
_b-a

n .
We denote as: Yo = f(x0)1 Y = f(xl) Y= f(Xn).
Sums are:
YoAX + Y, AX +...+ Y, AX

AX

YIAX+ Y, AX 4.+ Y AX

Each of these sums is an integral sum for f (X) at [a, b]. Therefore:
b b—
Jo FOO) dx = 7= (yg + 1 + Yot +Yn), (14.18)

[P FQ0) dx =~ Z2 (g + yate ). (14.18)

Each of the formulas (22.18) and (22.18 ") is called a rectangle

formula.
The error made if calculating the integral by the formula of rectangles
will be the smaller, the greater the number n (i.e., the smaller the partial

segments at which the segment is divided [a, b]).
2. Trapezoid formula.

b b—a (Yo+yn
J, f(x) dx = Ta (% + 9y, + y,+... +yn_1). (14.19)
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14.5. Approximate calculation of definite integrals

3. Simpson's formula. Divide the line [a, b] into an even number of

equal parts N'=2m.

b b—
S O dx = 2= [yo + Yam + 2072 + ya + -+ Yam-2) +
(14.20)

_b-a
n  the

+4(y1 + y3+... +Yam-1].

AX

Note that for the same step the division of the segment
trapezoid formula gives a slightly more accurate value of a certain integral

than the rectangle formula, and the Simpson formula gives a much more

accurate value than the trapezoid formula.
Example 14.4. Consider the well-known integral

=0,785398...

T
2 4

¢ odx
!

Divine the line [0’ ] into four equal parts:
Yo =1,0000. vy, ~0,9412.

X0:O1 Xl:O,25,

X, =05. X,=075. X,=1  Then
y, =0,8000. y; = 0,6400; y, =0,5000

By the formulas of the rectangles we have:

%(1+ 0,9412+0,8+0,64)=0,8453

%(0,9412 +0,8+0,64+0,5)=0,7203

according to the trapezoid formula

1(1+20’5 +0,9412+0,8+ 0,64) =0,7828

according to the simpson formula
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%(1+ 0,5+3,76471+1,6 +2,56) = 0,78539

(We took an accuracy of 0.00001 4Y: =3,76471 y
We see that the Simpson formula gives a very accurate result: all five
signs are correct. The trapezoid formula gives an error already in the third

digit. If we split the line [0’ 1] by 10 parts, then the trapezoid formula
would give a result that differs from the true value less than at 0,0005. For
then, in order to obtain a satisfactory result using the formula of rectangles,
it is necessary to divide the segment into a significantly larger number of
parts.

In general, in order to know how many division points you need to take
in order to calculate the integral with a given degree of accuracy, you need
to use the error estimation formulas. These estimates can be found in more
detailed courses in mathematical analysis.

Questions

1) What is the integral sum for a given function at a given interval?

2) What is called a certain integral of the function on the segment?

3) What are the differences in the concepts of definite and indefinite
integrals?

4) What is the geometric meaning of a certain integral?

5) What is the economic meaning of a certain integral?

6) Is any integrable function differentiable? Is every differentiable
function integrable?

7) What is the derivative of a certain integral equal to its variable upper
limit?

8) What is the difference between the application of the method of
replacing a variable to calculate a certain integral from the application
of the same method for calculating an indefinite integral?
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Questions

9) What methods are used to calculate certain integrals of functions for
which there are no primitives expressed in terms of elementary
functions?

10) Which of the approximate formulas gives the more accurate value of
a certain integral by the same step of dividing the integration interval:
the rectangle formula, the trapezoid formula, or the Simpson formula?
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Chapter 15. Applications of the
definite integral

15.1. Geometrical and mechanical
applications of the definite integral

Area of a plain figure

As we mentioned before, for a continuous on [a, b] function f(x) =
0 the area S of a curvilinear trapezoid, bounded by the lines y = f(x),

y= 0, x=2a, X=D (Fig 15.2), is expressed by the integral
S=[0f(x) dx. (15.1)
Example 15.1. Evaluate the area of a figure, bounded by the graph of

the function ¥ =N X axis Ox and lines Y =€, X =@ (Fig. 23.1).
Solution. According to formula (23.1) the area is

S = f:z Inxdx = x(Inx — 1)|¢" = 2.

YV A

2

— 4L A2 A
0|1 2 3 4 5 6 7 8

\ 4

7

Fig. 15.1
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applications of the definite integral

Let ¥~ fl(x)’ y = f,(x) be continuous on [a. b] functions and let
f2(x)2 fl(x) be on the specified segment. Then area S of the figure

bounded by the graphs of the functions y= fl(x), y= fz(x) and vertical
lines X=2a, X=D js evaluated by formula:

5= [1(H® - Ai@) dx. (15.2)

Proof. 1. Let fl(x) 20 , fz(x) = 0. Then formula (15.2) is an obvious
consequence of the fact that the area of the figure is equal to the difference
of the areas of curvilinear trapezoids (Fig. 15.2):

j dx J dx I x'

YV A
y=5hx)

y=fix)

0 a b X
Fig. 15.2. The area of the figure bounded by the lines
y=fix),y=f(x),x=a,x=b

2. Let the graphs of functions y= fl(X), y= fz(x) be fully or partially
located below the axis Ox. Since these functions are bounded, there exists

a number M such that fl(x)+M 20, f2(x)+M 20. Obviously, a
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figure bounded by the lines Y= f(x)+M Y= f,(x)+M (located
above Ox), is obtained by parallel transfer of a figure bounded by the lines

y="f (X) y = f,(x) , and has the same area:

S= j X)+M)dx - j X)+ M )dx = j )— f,(x)) dx

Example 15.2. Calculate the area of a shape bounded by the lines
y=x"-2x y=4x-x*

Solution. Equating the right sides of these equations, we find the
abscissas of the intersection points of these curves: % :0, X2 :3.
Consequently,

S = f03(4x —x%— (x?—2x)) dx = f03(6x —2x2) dx =

2 3
= (3x2 —§x3)|0 =9.
Volume of the body of rotation

Consider a body that is formed by rotation around the axis Ox of a
curvilinear trapezoid, limited by a graph of a non-negative function

y= f(x) continuous on the segment [a, b] and the lines ¥ = O, X=a,

X=Db The volume of this body is expressed by the formula
V=mnffx) dx. (15.3)
Proof. Let us divide the segment [a, b]

a=Xy <X <X.<X,=Db

arbitrarily into n parts by points
and on every segment [XH’ Xi] arbitrarily

choose a point & .Whenthe curve ¥ = f (X) rotates around axis Ox, each
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rectangle with base AXi =X = Xiy and height f(éi) describes a cylinder

of radius f(‘%i) and height AX (Fig. 15.3).
VA

Fig. 15.3. Evaluation of the volume of a body of rotation

The sum of the volumes of such cylinders has the form:
Vo = X, mf 2(§0)Ax;. (15.4)
With a smaller partition, this sum gives an approximate value of the

desired volume. On the other hand, this sum is an integral sum for the

= 2 - - - .
continuous function Y = nf (X) Passing to the limit as max Ax; — 0 ,we

obtain formula (23.3).

Example 15.3. Evaluate the volume of the cone with radius R and
height H.

Solution. The cone whose volume we evaluate, can be obtained as a

result of the rotation of triangle OAB around axis Ox. Here AB =R
OB=H (Fig. 23.4).

y A A
0 B X
Fig. 15.4
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Obviously, tg AOB = g. Therefore, the equation of the line OA has

R
Y=
form H By formula (15 3) we obtain
H 2 2 2
VZWJ.[EXj dX— ZdX_ 2.X3H:TCRH
JH 3HZ T3

This formula is well known from the geometry school course.
Example 15.4. Evaluate the volume of the body formed by the rotation

of a figure bounded by lines Y =€, ¥=0 x=-1 x=0 zround axis
Ox (Fig. 23.5)

VA
y=¢'
1
1 0 X
Fig. 15.5
0
_ 1 50 = 1
V = J.( )dX 7T Ee _1—5[1—?]

Solution: -1

Arc length of a flat curve

Let the curve on the plane Oxy be given by the equation y=f (X) and

f(x) have a continuous derivative f ’(X) on segment [a, b]

| of its arc is equal to:

. Then length
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applications of the definite integral
=[P J1+ 6)dx, (15.5)

where a and b are abscissas of the ends of the arc.
(We accept this statement without proof.)

T
. X=—
Example 15.5. Find the arc length of curve y =Insinx from 3
21
X=—
to 3.

Solution. Let us evaluate derivative Y = ¢t X

formula (23.5):

and substitute it in

2n

3

=In3
K
3

2n/3 2n/3 dx

| = _[ 1+ ctg®x dx = j_—=Inth
3 J3SINX 2

Mechanical and physical applications of an integral

It is well known that the distance travelled is the integral of the speed
of motion. This fact is a consequence of the fact that speed is the derivative
of the path over time.

Mechanical work is also calculated using the integral. Suppose that
under the influence of a certain force F a material point moves along the
straight line Os, and the direction of the force coincides with the direction
of motion. It is required to find the work of force F in moving the point

from position S =@ to position S =D . If force F is constant, then work A
is equal to the product of force F by the path length: A= F(b h a)_ If the

F =F(s)

force continuously changes, i.e. is a continuous function on

[a, b], then work A is expressed by the formula:
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Azj'F(s)ds

Example 15.6. Let there be an inhomogeneous rod of length | and its
density at each point is known. Then we can find the mass of any part of it

and, in particular, the entire core. To do this, we place the axis Ox along
the rod so that its left end is at the origin and denote by p(x) its density at

M (x)

point X- Density # (X) is the derivative of mass of the rod segment

from 0 to X. Therefore, for any segment [a, b] < [O’I] we have

M(6)- M (a)= | plx)ie
In particular,

=M (1)~ M(0)= | ki

15.2. Applications of the definite integral
In economy

In § 14.1, we noted that knowing the function of labor productivity we
can use the  definite integral to express the volume of output.

Consider an example.

Example 15.7. Find the daily output P for a working day from 8 to 14
hours, if labor productivity is given by an empirical formula

2
P= P(t):—tz+5t—15

(This formula reflects a process in which productivity rises for the first
two hours and then drops.)
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Solution. Considering the performance function (Fig. 23.6) on the

segment [8’ 14], we express the daily output by the integral:

ot t* 5t *

A=||-——+5t-15|dt=| ——+—-15t | =54
AR 12 2 .

PA

10 pomoomeee s

9

6 _________

o [

Fig. 15.6

So, over a specified period of time 54 units of production were
produced.
In § 12.1, we considered, in particular, the marginal cost given by the

derivative of the cost function: S(X): MS = S'(X). This derivative
characterizes the cost of producing a unit of additional products. Consider
the problem of finding the cost function for a given function of marginal
cost.

Example 15.8. The marginal cost function is given:

MS =3x* —40x+125 xe[o, 30]. Find the cost function s(x) and

evaluate the costs in the production of 20 units of production, if the costs
for the production of the first unit of production are known to be 100
monetary units.

Solution. The cost function is found by integration:
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S(x):J.Mde+C
1

S(1)=100

In this case, constant C is determined by condition , SO that

C =100 since the integral vanishes.
We obtain the cost function:
S(x)=x* —20x* +125x +100

Substituting X =20 we find:

S(20) = 2600

Another example of the application of a definite integral is a
discontinuity. Discounting is a determination of the initial monetary

amount S by its final value S after time t at an interest rate p. The problems
of discounting are encountered in determining the economic efficiency of
capital investments.

As was established earlier (see § 6.5), with continuous accrual of

_ rt
interest, the final amount is calculated according to formula S, =3Se ,

"=1700 i S =f()
where 100 | == _ then the discounted amount at time t will

be equal to S=f(t)e™ .

The total discounted amount Sg over time T is calculated by the
formula:

a

S, = [ f(t)edt
0 . (15.6)
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15.3 Applications of the definite integral
in biology and chemical technique

Let us start with biological applications. We will consider the
population size, population biomass, etc. as continuous functions of time.
Population size. The number of individuals in a population changes
over time. If the living conditions of the population are favorable, then the
birth rate exceeds mortality, and the total number of individuals in the

population grows with time. We denote by V(t) the population growth rate,
i.e., the increase in the number of individuals per unit of time. In the "old",
established populations that have long lived in this area, the growth rate

V(t) is low and slowly tends to zero. However, if the population is young,
its relationship with other local populations has not yet been established,
or there are external causes that change these relationships (for example,

conscious human intervention), then V(t) can fluctuate significantly,
decreasing or increasing.

If the population growth rate V(t) is known, then we can find the

tn t

population growth over a period of time from "1to “2. Indeed, it follows

from the determination of V(t) that it is a derivative of size N (t) at moment

t and, therefore, size N(t) is the primitive for V(t). Hence
t

N(t,)- N(t,) = [v(t)t.

t
(15.7)
Under conditions of unlimited nutritional resources, the growth rate of

_ kt
many populations is known to be exponential: V(t) =a€ " The population
in this case, as it were, “does not age”. Such conditions can be created, for
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‘ Chapter 15. Applications of the definite integral

example, for microorganisms, replanting the developed culture from time
to time in new containers with a nutrient medium. Applying formula
(15.7), in this case we obtain

b
N(t,)=N(t,)+a] e dt =N(to)+E(ek‘1 —e").
to
(15.8)
According to a formula similar to (15.8), in particular, the number of
cultivated mold fungi that secrete penicillin is calculated.
The biomass of the population. Consider a population in which the
weight of an individual changes appreciably throughout life and evaluate
the total population mass.

Let 7 be the age in various units of time, N(t) be the number

of individuals of the population whose age equals 7, andM(T) is the
biomass of all individuals aged 0to? .

Obviously, the product 'V (7)P(r) is equal to the biomass of all

individuals of age?. Consider the difference M (r+A7)-M (T)
Obviously, this difference, equal to the biomass of all individuals aged ©
to?7 +AT , satisfies inequalities

n(z)p(z)Ar <M(z +A7)-M(7)< N(T)IS(T)AT
(15.9)

where N(z)m(7) is the smallest, and N(M(z) js the largest values
of function N (£M(7) i, the segment [r.r+A7]

Let T be the maximum age of an individual in the given
population. As

M(T)-M(0)= [N(eP()dr
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and M (0) obviously, equals 0, then
T

M =M(T)=[N(z)P(z)dz.
0

Let us move on to chemical engineering. Many chemical
reactions and physical processes are characterized by the fact that the rate
of change of a variable is proportional to the value of the same variable in
the first degree. Such processes are called first-order processes.

These processes are described by the equation:

X = kx
dr
(15.10)
In the case of a chemical reaction, the values included here mean:

X - amount of substance;

K - constant value (reaction rate constant);
T -time.
Radioactive decay. Radioactive decay occurs in such a way that

the decrease in the number of atoms — AN over time d7 is proportional to
the number N of remaining atoms, i.e.:

—dN =/ANdz
(15.11)

where /4 is inherent to the given substance constant called a constant
of radioactivity. It is required to calculate the number N of atoms that
have not decayed by moment 7, if at the moment 7 =0 there were No
atoms.

We divide both sides of (15.11) by N and integrate:

dN
W:—ijd;t
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Whence

INN=-47r+C
(15.12)

The value of the integration constant C is found from the condition
that N =No at 7=0 Hence C=INNo, Substituting this value in
(15.12), we obtain:

N
In—=-Ar
N, , N = N,e*
(15.13)

Of particular interest is the determination of the time 7 =t
during which the number of atoms is halved. For this, it is necessary to put
in formula (15.13)

N 1

N, 2

Then we have

—/1t:In1
2

whence:
t=tppgo 969
A
(15.14)

Time U is called half-life. For instance, for radon

_ -6
4=2,084-10 sec *. Substituting this value in (15.14), we obtain the
half-life of radon, which is t =3, 15 days.

The average lifetime of an atom of a radioactive substance.

Let No be the number of atoms of a radioactive substance at time? = 0.
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Based on the previous example, we calculate the average lifetime of one
atom.
The number of atoms that have survived over time 7 and

decayed in a subsequent period of time dT, based on equations (15.11)
and (15.13) is equal to:

dN = N e *dr
This expression represents the number of atoms having a
duration of existence equal to 7 . In order to obtain the average duration of

the existence of an atom, it is necessary to multiply this number dN of
atoms by time 7, during which these atoms existed, integrate over 7 in
range from 7 = 0 to 7 =2 and divide by the initial number of atoms No

. We denote the desired average duration by 0. We have:

0= [N e ==
No 3 P

_ A =12,084 .10 %sec !,
Since for radon

A=2,084 10 %sec?, L .
the average lifetime of a radon atom is:
8 =10°%2,084 = 5,552 days = 133,26 hours

8 = 10°:2,084 = 5,552 days = 133,26 hours
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Questions:

1. How is the area of a flat figure expressed using a definite integral?

2. The volume of which bodies and how can be evaluated with the
help of definite integrals?

3. Is it possible to express the volume of output in case the function
of labor productivity is known and a definite integral is used?

5. How is the full discounted amount expressed with continuous

interest accrual?
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" 16.1. Improper integrals with infinite integration limits
Chapter 16. Improper integrals

16.1. Improper integrals with infinite
integration limits

Introducing the concept of a definite integral, we assumed that the
segment of integration is finite, and the integrand is bounded on this
segment. Now we will consider cases when at least one of these conditions
is not satisfied.

Definition. Let the function Y = f(X) be defined on the infinite

interval [a, + OO) and integrable on any finite segment [a, b], b>a , l.e.
for any b>a there exists a definite integral

®(b)= | f(x)dx

D ey T

f(x) dx
Then an improper integral @ of function f(x) on the

8 +) i imit
b
lim (D(b):blim f(x) dx

interva

Therefore, by definition

+00 b

[ £0c)dx= lim [ f(x) dx

a a . (16.1)

If the limit on the right-hand side of equality (16.1) exists and is finite,

then an improper integral is called converging, otherwise diverging. If
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improper integral (16.1) converges (i.e., is convergent), then the function

is called integrable on

[a, +oo).

[
2
Example 16.1. Evaluate integrals: a) 1 X ;6) 1

Solution.
b
J'_: I|m X2dx = Ilm[—lj = Iim(—l+1j=1
b—>+oo b—+00 X A b—-+o0 b

i.e. the integral converges to 1.
1

I _bI—IJEo X 2dx = ZbILTO(‘/B 1)=oo

0) 1 ,
i.e. the integral diverges.

+00 dX
X

o

Example 16.2. Establish at what values & the integral 1

converges, and at what diverges.

Solution. At @ #1 we have

5 dx 1 P “
L S G
) .
at =1
b
X inxP =Inb
X

1

That’s why at & #1;

(% _pim L= 1)

1 XOL b—)ool_a

)

at =1
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16.1. Improper integrals with infinite integration limits

+o0
dx .
j =~ =1limInb
1 X b—+0o
So, we can draw the following conclusions:
+OO%_ 1
if & >1, then 1% a _1, the integral converges;
+oOdX
_(1 = 00
if & <1, then 1 X , the integral diverges;
+oodx
— =00
if & :1, then 1 X , the integral diverges.

Similarly to the improper integral defined by equality (16.1), an
improper integral with an infinite lower limit is determined, namely:

b b
[ £(x)dx = lim [ £ (x) dx
- a (16.2)

Finally, we can consider an improper integral with infinite lower and

upper limits:

~+00

J'f(x)dx

—00

To do so, we take an arbitrary point c. It will split the number line into

+00

jf(x)dx J.f(X)dX

two half-lines. If improper integrals —= u exist, then by
I f(x) dx

definition the improper integral = exists as well. In this case, we

say
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+00

J.f(x)dx=:c[f(x)dx++_|20f(x)dx

- (16.3)
It can be proved that the right-hand side of equality (16.3) does not
depend on the choice of point c.
+00 dX

2
Example 16.3. Evaluate SLtX

J.1+x _Il+x I1+x

Solution:
We calculate each of the integrals on the right-hand side of the last
equality:
0 0
dx dx T

= lim = lim arctg x|. = I|m arctg0—arctga)=—

-[01+x2 BHoo-'.1+x2 eUSh | ( J g2)= 2

©odx G T
= lim = I|m arctg x| = I|m arctgb—arctg0)=—

| [ 7 = dim arctg X = lim (arctg 90)=7

0 1+ X2 b—-+o0 0

Consequently,

Tdx mom

fre=3+3

Slext 202

Improper integrals with infinite limits, i.e. integrals (16.1), (24.2) and
(24.3) are called improper integrals of the first kind.

=7
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16.2. Improper integrals of unbounded
functions

Let function Y = f(x) be defined on interval [a, b). The point X = b

will be called singular, if f (X) is not bounded in any neighborhood of this
point, but is bounded and integrable on any segment enclosed in the

interval [a, b).

Definition. If f(x) is not bounded on [a, b), but is integrable on any

interval [a, b_g], O<e<b-a  then by an improper integral
b
If(x) dx
a of function f(x) over [a, b] the following limit is called:
b-¢
lim | £ (x) dx
T . (16.4)
Thus
b b—e
[ £()dx = tlim [ £(x)dx
a 7 .(16.5)

If the limit (24.4) exists and is finite, then integral (16.5) is called
convergent, otherwise the integral is called divergent.
An improper integral is defined in a similar way when the left end of

the interval is a singular point:
b

b
[ £(x)dx=tim [ f(x)dx
a Ak . (16.6)

Finally, if ¢ is the only internal singular point on [a, b]

definition

, then by
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Chapter 16. Improper integrals
b c
[ f(x j x) dx + j f (x)dx

¢ . (16.7)
Improper integrals of unbounded functions are called improper

integrals of the second kind.
1

Example 16.4. Evaluate the improper integral 0
Solution. By formula (24.5) we obtain

I Hoh— 2Aim =X = -2lim(e ~1)-2
I

Example 16.5. Evaluate the improper integral 0

jdx =lim %_IlmZ\/_ —Ilm(2 2\/_)=

Solunon 0 X e—>0 \/_ e—0 € e—0

jox
Note that the improper integral © X , where &>0 converges at
1

O<a<l (and equals 1—a) and diverges at @ =1, (Check it out
yourself.)

16.3. Improper integrals convergence tests

In the calculation and study of improper integrals, a significant place
is occupied by the study of their convergence. In many cases, it is sufficient
to establish whether a given integral converges or diverges and evaluate its
value. To study convergence, in particular, comparison tests are used,
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based on the comparison of a given integral with an integral, the
convergence of which is known.
We accept without proof the following statement (comparison test).

Theorem 16.1. Let the functions f(x) u g(x) are continuous on the

interval [a,+oo) and satisfy the following condition on it:

0< f(x)< g(x). Then:

J.g(x)dx J. f(x) dx

1) from convergence of 2 convergence of 2 follows;
J.f(x) dx Ig(x) dx
2) from divergence of 2 divergence of 2 follows.

Let us look at some examples.

+1dx

2
Example 16.6. Investigate convergence of the integral 1

Solution. Obviously,
X2 x* JIx

+00 dX

But the integral 1 Vx diverges (see Example 16.1). Consequently, this
integral also diverges.

+00 dX

Example 16.7. Investigate convergence of the integral 3 X‘/;(X _1) :
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F(X) = ——
Solution. Compare the integrand x%(X=1) with the function
glx)=——
XVX on 3 +00) Obviously,
1 < 1
xVx(x=1)  xvx

*jﬁo dx
But the integral 3 X\/;
3

o=—
2 ). Consequently, this integral also converges.
A similar comparison test also holds for improper integrals of the

converges (see Example 16.2 allowing

second kind: if functions f(x) and g(x) are continuous on interval
[a, b) and for all x in some neighborhood of the singular point b the

conditions 0< f(x)g g(x) are satisfied, then

ig(x) dx i f(x) dx

1) from convergence of 2 convergence of 2 follows;
b b
_[ f(x) dx j g(x) dx
2) from divergence of @ divergence of 2 follows.
j \/_ X +3X°

Example 16.8. Investigate convergence of the integral ©

Solution. The singular point here is Xx=0_ Let us compare the
1

integrand with the function: Vx :
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1 1
—<_
Ix 3¢ Jx

[

I3

The improper integral °
this integral converges.

We give, without proof, one more comparison test also commonly used
in practice.

converges (see Example 16.5). Therefore,

Theorem 16.2. If f(x) and g(x) are non-negative functions and there

|imM=A¢0 [ £(x)dx
exists a finite fimit " 9(x) , then improper integrals 2
[ 9(x) dx
and @ converge or diverge simultaneously.
+00 dX

2

Example 16.9. The improper integral 3 X X converges. Indeed,

» | tX)= |
the limit of the relation of a function X“—2X to a function
(X)L NG “rdx
(=% L im ©
X" is finite: 9 , and the integral 3

converges.

Absolute and conditional convergence of improper integrals

We note an important property of improper integrals that distinguishes
them from ordinary definite integrals.
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For a definite integral, as is known, the following statement is true: if

b
b
[ JIF(x)dx
a ,then a exists.
In the case of improper integrals, the following statement holds: if the

+o0 +o0
“f(x]dx If(x)dx
improper integral 2 converges, then 2 converges as
well.
We accept this statement also without proof. The converse statement,

j f(x)dx
generally speaking, is not true: the convergence of the integral 2

T| f(x) dx

does not imply the convergence of the integral 2 .

I | (x) dx
If the improper integral 2 converges, then the integral

+00

I f(x) dx
a is said to converge absolutely.

+00

jf(x)dx I|f(x]dx
If the integral 2 converges, but the integral 2

o0
j f(x)dx
diverges, then the integral 2 is said to converge conditionally.
It follows from the above that the absolute convergence of the integral
implies its convergence (in the usual sense): an absolutely convergent
integral converges.
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~+00
COS X
>— aXx
Example 16.10. Investigate convergence of the integral 1 X
cosx| 1 Fdx
- - x> |7 x2 - X2
Solution. Obviously, . We know that the integral 1
00
COS X
>—|dX
converges. Consequently, 1 X converges, i.e. the given integral
Fcos x
I >— dx
X converges absolutely. It follows that it converges.
Questions
How is the improper integral of a function on an infinite half-interval
of the form[a’+°°) defined? In which case is the integral called
convergent, and in which —
divergent?

2. How is the improper integral of a function on an infinite interval

of the form (=% b determined?
3. How to determine the improper integral of a function on an infinite

interval (_ @, OO)?

4. What improper integrals are called improper integrals of the first
kind?

5. How is the improper integral of an unbounded function determined
in the case when the singular point is one of the ends of the integration
segment?

6. How is the improper integral of an unbounded function defined
when the singular point is the inner point of the integration segment?
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7. What are the comparison tests for improper integrals of the first
and second kind?

8. Does an absolutely convergent improper integral always
converge?

9.  Which improper integral is called conditionally convergent?
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Chapter 17. Elements of
analytical geometry in space

17.1. Vectors

Many physical quantities or characteristics of the phenomena around
us are determined by setting a number. For example, the body weight, its
temperature, the cost of goods, the number of seats in the classroom, etc.
Such values are called scalar values, or simply scalars. But there are also
such quantities, which are determined not only by the number  but also
by indicating the direction. For example, when studying the action of a
force, it is necessary to specify not only the value of this force, but also the
direction of its action. Such quantities are called vector quantities, or
simply vectors.

A directed segment on which the beginning, end, and direction are

specified is called a vector. A vector is denoted either by a symbol AB |
where A is its beginning and B is its end, or by one letter with a line at

the top, for example @. The length of a vector (or its modulus, or its
maghnitude) is the distance between its beginning and end. Usually, the

length of the vector is denoted by |AB| or &,

Vectors @ and P are called collinear if they lie on the same line or on
parallel lines.

Vectors @ and D are called equal if they are collinear, have the same
direction and their magnitudes are equal.
Let a rectangular coordinate system be given in space and let the

coordinates of the beginning and end of the vector AB are A(Xl’ Y Zl)
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and B(XZ’ a 22) respectively. Then the coordinates of this vector are
determined by the formulas
X=X, =X, Y=Y, =Y, £=2,-1,.

| g _—_—
Obviously, the magnitude of the vector AB s determined by the
formula

\E\:szwhzz

A vector is called zero vector if its beginning and end coincide. The
zero vector has no definite direction and has a length equal to zero. We can
assume that the zero vector is directed identically with any vector. When

writing, we will identify the zero vector O(O’O’O) with the real number
zero.

Two linear operations are defined over vectors - addition of vectors and

multiplication of a vector by a number. Let two vectors a= (al’ 4, a3)

and 0= (b;,b,,by) be given.
The sum of the vectors is the following vector
a+b=(a, +b,,a, +b,,a, +b,)

The product of a vector@ by a number K is the following
vector

ka=(ka,,ka,,ka, )
Let us give the basic properties of linear operations (they are

K, kl,kZ are numbers.

easily verified). Here & b ¢ are vectors,
L a+b=b+a
)+ c=a+ (5 + 5)

2 (5+b
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5. k(k,a)=(kk, )
4 (k +kyJa=ka+k,a.
5 kla+b)=ka+kb.

From the definition of collinearity of vectors and the definition
of the product of a vector and a number, it follows that two vectors

a=(a,a,a,) .4 b=(bb.b,)

are collinear if and only if their
coordinates are proportional:

a a a

b, b, b,
(17.1)

Denoting the general value of relations (17.1) by k
the collinearity condition in the form

' we obtain
a=Kkb.

Vectors are called coplanar if they lie either in the same plane
or in parallel planes.

17.2. Scalar product of vectors

Let @ and b be vectors,? - the angle between them.

The scalar product (a,b) of vectors @ and D is the number
defined by the formula

(5, 5) = ‘5”5‘ cosg

(17.2)
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Let us list the main properties of scalar products (they can easily
be deduced from the definition).

1. (5'5)= (b_’a) - commutativity.

2. (ka'b): k(a,b) - associativity with respect to multiplication
by a number.

- the formula of a scalar square.

5. ( ’ ): 0 for nonzero vectors @ and b if and only if vectors
a y D are mutually perpendicular.

Letthe ve_c'_cors '_ 1  k lze Ehe unit v_ecitors (?f Ehe co_orElinate axes.
Then, obviously, (i’i): (j' j): (k,k):l, (i’ j): (i’k)= (j,k)= 0, and

the scalar product of vectors a=(a,a,a) and b= (b;,b,.b,) is

expressed via their coordinates as follows:
(5,5)= ab, +a,h, +a,b,
(17.3)

From formulas (17.2) and (17.3) we obtain the formula for
determining the angle between vectors:

(a,b) ab, +a,b, +ab,

COSp ="~ = =2
ol

(17.4)
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17.3 Equations of a surface and a line.

Let an equation
Flx,y,z) =0F(x,y,z) =10

(17.5)

be given in a rectangular coordinate system Oxyz .

Equation (17.5) is called the equation of the surface L if the
coordinates of any point lying on the surface L satisfy this equation and the
coordinates of any point not lying on this surface do not satisfy.

A line in space can be considered as the intersection of two
surfaces, i.e. as a set of points located simultaneously on two surfaces.
Therefore, a system of two equations of the form (17.5)

F.(x,y,z)=0
F,(x,y,z)=0
(17.6)
is called the equation of the line in space if this equation satisfies the

coordinates of all those and only those points that lie on the line L. In
particular, if the equations in system (17.6) are equations of planes, then
system (17.5) is an equation of a line.

17.4. Plane in space

Let the coordinate system Oxyz be given in space and let the planell
pass through the point MO(XO’yO’ZO) perpendicularly to the vector
N = (A' B’C). These two conditions determine the only plane in space

Oxyz. Vector N js called the normal vector of the planell. Let us derive
the equation of this plane.
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M(x,v,z)M(x,v, 2z
We take an arbitrary point (., 2)M(x,y,2) in plane IT. Then

vectors MoM = (X%, Y= Y0 2-2) and N=(AB.C) il pe
mutually perpendicular. Therefore, their scalar product is equal to zero:
(N, MyM)=0

. Let us write the last equality in scalar form:
A-(x=%)+B-(y-y,)+C-(z- 20)20. (17.7)
This is the equation of a plane passing through a point MO(XO’ Yor ZO)
perpendicularly to a given vector N = (A' B’C). From (17.7) we obtain
Ax+ By +Cz—- Ax,—By,-Cz, =0
Denoting ~ Ax, — By, —Cz,=D

the plane:
Ax+By+Cz+D=0 (17.8)

, we obtain the general equation of

So, the plane equation is a linear equation, or an equation of the first
degree with three variables.

It is not difficult to prove the converse statement: any equation of the
first degree with three variables is an equation of the plane.

A’B’C,and

Equation (17.8) is called complete if all its coefficients
D are nonzero. Consider the different types of incomplete equations.

if A=0, the plane is parallel to the axis OX. The situation is similar
with the condition that the plane (17.8) is parallel to other coordinate axes,
i.e. if one of the coordinates does not enter into the equation of the plane,
then the plane is parallel on the corresponding axis.

If two coordinates in the equation are missing, then the plane is parallel

' the plane passes through the origin.

to the corresponding coordinate plane, moreover, if D=0 then the
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0)

equation X = 0 (resp., y=0z= is the equation of the coordinate plane
itself.

Suppose that in equation (17.8) all the coefficients (and the free
term) are nonzero, i.e. the equation is complete. Transform this equation:

Ax+By+Cz=-D

Ax B
+ y + Cz =1
-D -D -D
Let
D D D
—— =4, —— =0, ——=C
A B C _
Then the equation of a plane (17.8) takes the form
5 + X + E =1
a b c
(17.9)
The last equation is called the equation of the plane in segments. This

name is explained by the fact that the denominators a,b, and C are the
segments cut off by the plane from the coordinate axes.

Consider the relative position of two planes. There are two planes
given:

Ax+By+Cz+D, =0
AXx+B,y+C,z+D,=0

Their normal vectors are, obviously, N, =(A.8B,,C,) and
N2 :(Az!Bzvcz)

The angle between these planes is the angle between Ny and Nz and

is determined by the formula:
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AA,+BB,+CC,

JAZ+BZ+C? /A2 + B2 +C? (17.10)
The condition for the parallelism of two planes is the condition for the

Cos @ =

proportionality of their normal vectors:
A_B_G
A B G g7
The condition for the coincidence of the planes is the following:
A_B_G_D

—_1
A B G D 719

The condition for their perpendicularity is the condition
AIAZ + BlBZ + Clcz == 0 ) (1713)

cose=0 ie

17.5. Straight line in space. straight line
and plane in space

Mo (

Let a straight line L pass through a point X0 Yo ZO) parallel to the

l,m,n)

vector S :( . In this case, the vector S will be called the directing

vector of the straight line. Let M (X’ Yy Z) be an arbitrary point of straight
MM = (X_Xo' y- yOfZ_Zo)

line L. Obviously, the vectors and S are
proportional. Having written down the condition of their proportionality in
coordinate form, we obtain the canonical equation of a straight line:
X=X _ Y=Y _2-4
I  m  n
(17.14)
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MO(X07yO,ZO)

If the line passes through the points and

Ml(Xl’ yl’zl), then we can take MM, as the directing vector and

equation (17.14) will have the form
X=Xy — Y=Y — L—-1,
X=X Yi=Yo 471

(17.14)

From equation (17.14) we obtain:
X=X =It, y—y,=mt, z-z,=nt

where t is the coefficient of proportionality. Hence
X=X, +It, y=y,+mt, z=z,+nt (17.15)

These are parametric equations of a line L. (Sometimes they are
called in the singular - the parametric equation of the line.)

A straight line in space can also be defined as the line of intersection
of two planes, i.e. as a set of points whose coordinates satisfy the system:

{Aix+ Byy+Cz+D, =0

Ax+B,y+C,z+D, =0. (17.16)

Canonical equation (17.13), however, can also be viewed as a pair of
plane equations considered together. It is easy to derive the canonical or
parametric equation of a line defined in the form (17.16). To do this, it is

enough to find some point MO(XO’ Yor ZO) belonging to a straight line and

a directing vector. Coordinates of point M, are easy to find - this is any

=0

solution to the system (17.16). For example, setting Z , from the

system (17.16) we find % and yo, and obtain MO(XO’ Yor 0). Let now

4 :1. From the system, we find X1 and Y1. We obtain Ml(xl’ yl’l).
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The vector MM, is the directing vector of the line (17.16), and we can
write its canonical equation.

Example 17.1. Write the canonical equation of a line that is the
intersection of the planes

2X+3y+52-3=0,

X+y+2z-1=0.

Solution. Let Z = 0. Then the previous equations will take the form

2x+3y =3,

X+y=1.

Solving this system of equations, we find x=0, y=1. Thus, a point

M,(0.1,0) lies on our line. Let now Z=1. Then to define X and Y we
obtain equations

2X+3y =-2,

X+y=-1

from which we find X =1 ¥ =0 Therefore, the other point of our

line is the point Ml(—l,O,l). Applying formula (17.14), we obtain the
canonical equation
x_y-1.:
-1 -1 1
Let us now consider the relative position of a line and a plane in space.
Let line L be given as
X=X _ Y=Y _2-%
I m n

and plane IT as
Ax+By+Cz+D=0
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Obviously, line L is parallel to plane I1 when the directing vector

§:(I,m,n) of the line is perpendicular to the normal vector

N = (A' B’C) of the plane, i.e. the condition of parallelism of a straight

line L and a plane 1 is the following :
Al+Bm+Cn=0 (17.17)
The condition for the proportionality of these vectors is the condition
for the perpendicularity of line L and tlane I1:
A_B_C
I m n, (17.18)

The angle between a line and a plane is the angle between the line and
its projection onto the plane, and this is the angle additional to the angle

between the vector director S of the line L and the normal vector N of

the plane I1:

3 Al +Bm+Cn

R B CT P emian? (17.19)
The distance from a point to a plane is calculated using a formula

similar to the formula for the distance from a point to a line on a plane. Let

A
sinp=|cos N,§

us show that the distance d from point M O(XO’ Yor ZO) to the plane
Ax+By+Cz+D=0

(17.8)
is calculated by the formula
g _| A% +By, +Cz,+ D|
JA? +B? +C? . (17.20)

Let us write the equation of a line passing through point M O(XO’ Yo ZO)
perpendicularly to the plane (17.8). To do so, we use parametric equations
(17.15) (17.15):
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X=X+t y=y,+mt z=z,+nt

In order for the line (17.8) to be perpendicular to the plane (4.2), it is

l,m,n)

necessary that its directing vector S =( is parallel to the vector

N =(AB,C)

. i.e. so that the coordinates of the vectors S and N are

proportional. The easiest way, of course, is to take as a S vector N , 1.e.
we take | =A M=B n=C_ Then parametric equations (17.15) will
look like as follows:

X=X +At y=y,+Bt z=2,+Ct (17.21)

The straight line (17.21) is perpendicular to the plane (17.8) and passes

M M

through point 0. Therefore, the distance from point "¢ to the plane

(17.8) is the distance between point M, and point M of the intersection of
the line (17.21) with the plane (17.8). Let us find the coordinates of point
M. To do so, it is necessary to solve equations (4.2) and (4.9 ") together.
The easiest way to do it is by substituting the expressions for x, y, and z
from (17.21) into (17.8). In turn:

A(x, + At)+B(y, +Bt)+C(z, +Ct)+ D=0

(A> + B2 +C2 )t +(Ax, + By, + Cz, + D) =0

Hence, we find t:
_ AX, + By, +Cz,+ D

A*+B*+C*

This value of t determines the coordinates of point M, which is the base

t=

of the perpendicular dropped from point My to the plane (17.8). Substitute
the sought tin (17.21):

x:x0+A(— Ax0+By0+Czo+D)

A?+B?+C?
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Ax, +By,+Cz,+D
y=y0+B(— OAz OBz Coz j
tho+ , (17.22)
7=2,+C _Ax0+sz0:rCzoz+D
A°+B°+C

M

The distance d from the point "'° to the plane (17.8) is the length of

the perpendicular MM , or, which is the same, the distance between the
points MO(XO’ yO’ZO) and M(X’ y,z)1 ie.

d=(x=%F+(y-yo f +(z-2f

Considering x, y and z are determined by equalities (17.22), we obtain

g :\/(A2+BZ+CZ)(— Ax0+By0+Czo+Dj2 _

A? +B*+C?
_JAiBiCE |AX, + By, +Cz, + D|
A’ +B*+C?
or
do |AX, + By, +Cz, + D|
JAT 1B 1C?

Q.E.D.
Example 17.2. Find the distance from point Mo(l’ 0, 2) to the plane

X+2y-2z2+9=0

Solution.
_[1+20-22+9] 6 _,

J2+22+(-2F 3
Example 17.3. Find the distance from the straight line
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X+1 y—2_£

2 2 1
to the plane 4x-2y-4z+9=0

Solution. The line is parallel to the plane. Indeed, the scalar product of
its directing vector and the normal plane vector is zero:

24+ 2-(-2)+1(-4)

=0 . Therefore, the distance from a straight line to a

M

plane is equal to the distance from any point " © of this straight line to the

plane. It is most convenient to take as Mo the point (_l’ 2, 0), whose
coordinates appear in the equation of the line. We obtain
|4-(-1)-2-2-4.0+9| 1
Va2 (2P +(-af 6
Example 17.4. Find the distance from the point Mo (1’ 2,3) to the
straight line
x-6_y _z-7
2 -2 1

Solution. We write the equation of the plane that passes through the

given point'\/Io and is perpendicular to the given line and find the
coordinates of point M of the intersection of the line and the plane.

Obviously, M,M is the perpendicular dropped from the point My to a
given line. Its length is the desired distance.

The equation of a plane passing through My and perpendicular to the
given line is

2-(x-1)-2-(y-2)+1(z-3)=0

or

2x—2y+z—1:0_(*)
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Let us write the equation of this line in parametric form:

x=6+2t Y=-2U z=T+t  (xx)

Let us now find the intersection point of the line (**) and the plane (*).
To do it, we first substitute x, y and z from (**) into (*) and find t:

2:(6+2t)-2-(-2t)+7+t-1=0
9t+18=0 t=-2

Now, substituting the found value t= —2 into (**), we obtain X= 2,

y= 4, 2=5 3o, the point M (2' 4, 5) is the base of the perpendicular

MM . Therefore

d=MM =(2-1 +(4-2) +(5-3f =3

Note that there is another way to solve this and similar problems, based
on the concept of a vector product of vectors, which is not considered here.

17.6. The second order surfaces

Second-order surfaces are surfaces in three-dimensional space, which
are determined by algebraic equations of the second degree. A brief study
of second-order surfaces is carried out according to their equations by the
method of parallel sections. The simplest of these surfaces are second-
order cylindrical surfaces.

Letaline L lie in plane Oxy_ Its equation is
F(xy)=0 (17.23)

) - 0z0z ] )
Draw a line parallel to the axis through each point of line L.

S

The set of these lines forms a certain surface -’ called a cylindrical one.

The mentioned lines are called generatrices of surface S, and the initial

line L is called its directrix. Obviously, equation (17.23) is also the surface
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equation of S . So, the equation of a cylindrical surface with generatrix

parallel to the axis Oz does not contain coordinate Z and coincides with
the equation of the directrix.

In particular, if the directrix is an ellipse defined on plane Oxy by the

equation
2 2
X
— + y—2 =1
a~ b® (17.24)
then the corresponding cylindrical surface is called an elliptical
cylinder and equation (17.24) is its equation in space Oxyz . Similarly, a

parabolic cylinder is defined as

y? =2px
(17.25)
and a hyperbolic cylinder as
x> x°
77 =L
a“ b
(17.26)

Second order cone. The canonical equation of the cone of the
second order:

2 2 2
X z
R
a- b ¢
(17.27)
In sections of this surface by horizontal planes Z = h' we obtain
ellipses
2 2 2
X
.y _n
7= h’ a2 b2 C2 .
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0(0,00) |,

As =0 the section degenerates to the point
sections of the given surface by coordinate planes, we obtain pairs of

intersecting lines
y=0,

X
TZ_0, Yy
c b

| X

Fig. 17.1

Ellipsoid. The canonical equation of an ellipsoid:

2 2 2
AN LY

—+—=+—=
a> b* c¢?
(17.28)
In sections of the ellipsoid in the planes Oxy and OXZ we obtain
ellipses
2 2 2 2
X° y X® z
—+—=1 —+—=1
a®> b? a® ¢®

)

Positive numbers & b, ¢ are called the semi-axes of the
ellipsoid (17.28).

An ellipsoid lies inside a rectangular parallelepiped

—a<x<a, -b<x<b, _c<x<ec

The general view of the ellipsoid is shown in Fig. 17.2
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Fig.17.2
One-sheeted hyperboloid. The canonical equation for a one-
sheeted hyperboloid:

(17.29)
The view of this surface is shown in Fig. 17.3. In sections of the

given surface by coordinate planes Oxz y Oyz hyperbolas are obtained,

the equations of which respectively have the form

x? z

2 y2 ZZ
s-7=L ot
a® ¢ C,
In sections of a given hyperboloid by planes z=h, parallel to

Oxy,

the coordinate plane ellipses are obtained whose semi-axes increase

as moving away from the plane Oxy. The smallest ellipse lies in the plane
Oxy; its equation has the form of
2 2

Y 1

J’__
a’? b?
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If a:b

' then the surface (17.29) is called a hyperboloid of

a,b

revolution. Positive numbers and C are called semi-axes of a

hyperboloid of one sheet.

Fig.17.3
Hyperboloid of two sheets. The canonical equation of a two-
sheeted hyperboloid:

X2 y2 ZZ
a? bt ¢t
(17.30)

Positive numbers a,b and C are called the semi-axes of the two-
sheeted hyperboloid. In sections of this hyperboloid by coordinate planes

OXzZ gng O¥Z hyperbolas are obtained:
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2 2
LS AR PR S

2 2

QD
(@)
(o
[N
(@)
[N

In the sections of this hyperboloid by planes = h ellipses are
obtained:
Xy

2
+ = =—-1
z=h, g2 27 2

(o

. h| > c.
These equations make sense when | |

Thus, the two-sheeted hyperboloid (17.30) is a surface
consisting of two separate cavities, having the appearance of convex

bowls, which are located symmetrically with respect to plane Oxy’ the
vertices of which are located at the distance C from their vertices to this
plane (Fig. 17.4).
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Fig. 17.4.
Elliptical paraboloid. The canonical equation of an elliptic
paraboloid:

(17.31)

e P>0,0<0

wher are the parameters of an elliptic paraboloid.

In sections of this paraboloid, the coordinate planes OXZ and

Oyz give parabolas with the axis of symmetry OzZ. Their equations,
respectively, have the form

x*=2pz, y?=20z

Sections of a given surface by planes Z = h lead to ellipses
2 2

XY o
z=h, p ¢
The point O(O’O’O) is called the top of the elliptic paraboloid

(17.31). As P=9 equation (17.31) determines the paraboloid of

X? =2pz

revolution formed by the rotation of a parabola around axis OZ

291 ‘




Chapter 17. Elements of analytical geometry in space

Fig.17.5

Hyperbolic paraboloid. The canonical equation of a hyperbolic
paraboloid:

(17.32)

Here numbers P >0, g>0 are the parameters of a hyperbolic
paraboloid.
In the section of this paraboloid, plane Oxy produces a parabola
x* =2pz.

The axis of symmetry of this parabola is the positive axis Oz  sections

y="h also produce parabolas, whose branches are directed upwards.

The section by plane Oyz

y? =-2qz,

also gives a parabola
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Oz

but its axis of symmetry is the negative axis ~“’i.e. the branches of

this parabola are directed downward. The sections X = h also produce
parabolas, the branches of which are directed downwards.
Finally, in the section of this paraboloid by planes parallel to the

planeoxy hyperbolas are obtained:
2 2

XY _op
z=h, p q '

Fig. 17.6
Earlier, we considered the straight-line generatrices of
cylindrical surfaces and cones. Let us now consider the rectilinear
generatrices of a hyperbolic paraboloid. We rewrite equation (17.32) in
the form

il
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and consider for each pair of numbers & ,'B, non-zero at the same
time, the equations of two planes:

s i)

=a

Al

(17.33)
These planes intersect in a straight line lying entirely on the paraboloid
(17.32). The straight lines (17.33), each of which is defined by the relation

'3:05, form one family of rectilinear generatrices of a paraboloid. We

! !
obtain the second family if we consider (for each pair of numbers ¢ VN
not equal to zero at the same time) the system of equations

(17.34)
Through each point of the hyperbolic paraboloid (17.32) passes along
one rectilinear generatrix of each family.
Let us return to the one-sheeted hyperboloid. Let a one-sheeted
hyperboloid be defined by its canonical equation
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2 2 2
X YA
A

a? b* ¢?

(17.29)
Consider the rectilinear generatrix of a one-sheeted hyperboloid.

Let us rewrite equation (17.29) in the form

X2 ZZ y2

a’ c? b2

bl

Let us now consider a pair of real numbers a,p, that are not equal to
zero simultaneously, and for each such pair we write a system of equations

or

For each pair of numbers a,p these equations define a pair of
intersecting planes and, therefore, the straight line of their intersection.
a+#0,4=0,

This line lies entirely on the hyperboloid. In particular, as
a=b=c=1we obtain
X+2z=0,
1-y=0,
andas ¢ =0.8#0,a=b=c=1

295 ‘




‘ Chapter 17. Elements of analytical geometry in space

1+y=0
Xx—2=0

Similarly to equations (*) for any pair of simultaneously non-

! !
zero numbers ¢ ey we can write the system of equations

(X, Z \_pfq_ Y
a(a+cj ﬁ(l b)’

a'(1+ XJ,
b
(**)

Which defines a straight line lying on the hyperboloid (17.29).
It is easy to verify that through each point of the hyperboloid
(17.29) there pass two rectilinear generatrices, one of which belongs to the

o)
/N
| X
|
O | N
~
Il

family (*) and the other to the family (* *)

As already noted, with, as 8 = b hyperboloid (17.29), it is a

hyperboloid of revolution - it is obtained by rotating the hyperbola
a’> ¢2 7 y=0 (or a’ ¢’ X =0y around the axis9Z- The
Shukhov Tower on Shabolovka, built in 1922 by the brilliant engineer
Academician V.G.Shukhov, is well known (and is clearly visible from
almost any district of Moscow). This television and radio tower consists of
six sections, each of which is a hyperboloid of revolution and is made of
rectilinear rods. There is no other element in it (except for the rings

separating one section from another).

=1,
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Fig.17.7
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FUNCTIONS OF SEVERAL VARIABLES

Chapter 18. Euclidean space.

The concept of the function of
several variables. Limit,
continuity

18.1. Euclidean space

Definition. The set of all possible ordered collections N of real

Xyy Xpy ooy X

numbers ( n) is called the n-dimensional coordinate space

A"

Moreover, each ordered collection (Xl’ Xas o X ) is called a point* of
this space and is denoted by one letter (for example, M). The numbers

(Xl’XZ’“"X”) are called the coordinates of the point. The note

M (Xl’ Xgrwn X ) means that point M has coordinates (Xl’ oo Xn).

Definition. A coordinate space A" is called an n-dimensional

(M, M)

Euclidean space R" if the distance P between any two points

1 It should not be surprising that at the beginning of the book we called the
ordered set (ordered collection) of numbers a vector, and here - a point. We know,
in particular, that a pair can be considered both as a pair of coordinates of a point
on a plane, and as a pair of coordinates of a vector on this plane.
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M (X, X5, ...y X,)

by the formula
oM, M) = (X =% )+ (X, =%, )+t (X, = x,
The specified distance satisfies the following conditions.:

1) for any M and M’ the following equality holds:
p(M,M")=p(M’, M)

M'(x], X, ..., X,)

and of the space A" is determined

(17.1)

2) for any M and M’ the following equality holds: p(M, M)z 0,

moreover, if p(M’ M ')= 0 , then points M and M " coincide;

3) forany M, M" and M" the following inequality holds:

p(M, M")< <p(M,M")+p(M',M")

Note that we have already given the definition of n-dimensional
Euclidean space R" (see. § 1.6). It is easy to verify that the distance
defined by equality (25.1) is the norm of the vector

MM = (X] = X, X = Xm0 g = X, and the given here definition of the

space R" is essentially no different from the definition given in chapter 1.

18.2. Sets in euclidean space

Let us consider the simplest sets of points, or domains, in Euclidean
space.

1. The set of points M (le Xy o Xn)

inequality

, Whose coordinates satisfy the

(xl—xf)z+(x2—x§)2+...+(xn—xg)zSrzy (17.2)

is called an n-dimensional ball of radius r centered at a point
0 0 0
Mo(x1 » Xgy ey X )

ey n
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Inequality (17.2) can be written in a short form as
pMo, M)<T 473

The set of all such points of M for which the inequality p(M oM )< r

holds is called an open n-dimensional ball of radius r centered at a point

MO. The set of all such points M for which equality p(MO’ M ): " holds

is called an n-dimensional sphere.

2. The set of points M (Xl’ Xy X”) whose coordinates satisfy the
inequalities
0 0 0
‘xl—xl‘sdl ‘xz—xz‘sdz X, — X, <d, (17.4)

is called an n-dimensional parallelepiped centered at the point
Mo(xf,xg,. x°)

ey n

If in relations (17.4) we exclude the equalities:
Xp — Xr?

‘xl—xf‘<d1 ‘xz—x§‘<d2 <d,

then this determines an open n-dimensional parallelepiped.
We turn to the definition of neighborhoods of a point. Neighborhoods

of two types are distinguished in the space R": rectangular and spherical.

0 0 0
Mo(x1 s Xy eeey X

As the € -neighborhood of a point ”)We will call any

open n-dimensional ball of radius 2. centered at the point Mo . (That is the
so-called spherical neighborhood.)
0 0 0
Mo(xl s Xy eeny xn) is any
open n-dimensional parallelepiped centered at a point M, .
In what follows, when speaking of a neighborhood of a point, we will
mean a neighborhood of one of the two types mentioned.

A rectangular neighborhood of a point
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A point Mo is called an interior point of the set D if it belongs to the
set D together with some of its neighborhood. A set D is called open if
each of its points is internal.

Point Mo is called a boundary point of the set D if each of its
neighborhoods contains both points that belong to set D and points that do
not belong to it. A set D is called closed if it contains all its boundary
points.

A point M, is called a limit point of set D if in any neighborhood of

this point there are points of set D other than M, :

Sequences of points in Euclidean space

If each natural number n is associated with a point of the Euclidean
space R" then the set of points M, , M, S ey M, , ... is called a sequence
of points of the Euclidean space R" and denoted {M n }

A sequence of points {M ”} is called converging to the point MO, if

P(M0, Mo) is an infinitesimal quantity:
limp(M,,M,)=0

nN—o0

In this case, the point Mo is called the limit of the sequence {M n }

A set D of points of a Euclidean space is called bounded if it is
contained in some parallelepiped.

Many properties, which were established earlier for numerical
sequences, are transferred to the limits of sequences of points in Euclidean
space. The most important of them are:

1) the uniqueness of the limit;

2) the boundedness of the convergent sequence.
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18.3. The concept of a function of many
variables

Definition. We will say that a function u:f(M) (or

U= f(x, % Xn)) is given in the domain D < R"if, according to a

certain rule or law, one point is assigned to one definite number u.

The coordinates of point M (i.e., variables o Xps e Xn) are called

independent variables, or arguments, u is the dependent variable, and
the symbol f is the correspondence law. The set D is called the domain
of definition of the function.

The domain of definition of the function of several variables (as in the
case of the function of one variable) is either predefined or is a natural
domain of definition, i.e. the set of all such points for which the formula of
the functional dependence f makes sense.

In case the number of arguments is two, the function is usually denoted
as

z=f(xy) (17.5)

The domain of definition of such a function is a certain set of points on
plane xOy. The >-neighborhood of a pointMO(XO’ yO) is an open circle

centered at that point. The rectangular neighborhood of point M O(XO’ yO)
is an open rectangle centered at that point.
Example 17.1. Find the domain of the functions

1
I=\X+y? b
a)z=ln(x+y) 5) VO-X*-y*
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X+y>0

Solution. a) The domain of definition is given by inequality
,i.e Y= 7X Thisis the set of all points on the plane above the line ¥ =~

2 2 2 2
6) Obviously, the inequalities X“+y =420 and 9-x"-y" >0

must be satisfied simultaneously. Therefore, the domain of definition is the
set of all points of the plane whose coordinates satisfy the double inequality

4<x®+y*<9

x> +y*=4

This area is enclosed between circle and the circle

X2 + 2 _ 9 . . . . .
y =9, Moreover, the points of the first circle belong to this domain,
and the points of the second do not.
Graph of a function of two arguments

The graph of a function of one argument is known to be a line on the
plane. The graph of a function of two variables z=1 (X’ y) is a surface in
three-dimensional space, consisting of points (X’ Ys f(x, y))

_ / w2 _yy2
Example 17.2. Let us consider the function Z=y9-X"-y . The

. . . . . X2 + y2 <9 .
domain of this function is the circle =~. The graph is a
hemisphere of radius 3 centered at the beginning of the coordinates (see
Fig. 25.1).
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_ o _v2 2
Fig. 17.1. Graph of the function Z=y9-X" -y

) 2
Example 17.3. Let us consider the function 2= % *Y It is defined
on the entire plane Oxy. Its graph is a surface called a paraboloid of

. . i . — 2
revolution. This surface intersects the plane xOz in the parabola £ =X

2
and the plane yOz intersects in the parabola £ =Y .
AZ

X
2 2
Fig. 17.2. Graph of the function =X +¥
For the function of n arguments as N = 3 we can formally define the

concept of a graph (this is the so-called hypersurface in (" +1)-
dimensional space), but it is not possible to depict it in the figure. It should
be noted that for the function of two arguments the construction of the
graph is associated with significant difficulties, and the graph itself is not
as clear as the graph of the function of one argument. Therefore, for a
figurative representation of the function of two variables, level lines are
used. By the function level line (17.5) we called the line

f(x,y)=C
where C is a constant.
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_y2 2 ) 22
For example, for afunction Z =X ~Y any level line* —Y

=C 4t

C #0 jsahyperbola.

Similarly, for a function of three arguments W= f(x, Yy Z) a level
surface is defined:
f(x,y,2)=C
Examples of functions of several variables
Let us look at some examples of frequently encountered functions of

several variables.
1. A linear function is a function of the form

U=aX +a,X, +..+ax, +b (17.6)

where ai, a2, a, , b are constant numbers. It can be considered as
the sum of n linear functions, each of which depends on one argument.
2. A function of the form

U= a, X +28,%X, +8,X5 +28,,XX, +...+a, X
or, which is the same,
l n

u=> Za‘i XX,

L=l . (A7.7)

a. . .
where Y are constant numbers, is called the quadratic form of n

variables Xl, X2, n

3. In §5.4, a utility function has been defined. Its multidimensional

analogue is a function u= f(xl’ Xgrsen X") expressing the usefulness of
acquiring n goods. Most often it occurs in the form of a:
logarithmic function

u:Zﬂ:ailn(xi—ci) 8, >0 x>¢ >0

(17.8)
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function of constant elasticity
n
a. b
U= ——(x. —Cc. J
; 1_ bi ( I | )1

4. Cobb-Douglas Function
Z = by XX}

a, >0, 0<b <1, X >¢ =0 (17.9)

(17.10)
Often, other notations are used to write it:
_ oy p
Q=AK"L", (17.11)

Wherein &, P20 o+B21 1y oaricular, as @ P=1 it has the
form:

Q=AKL™ (1719

This is a production function that expresses the volume of output Q (in
monetary or natural terms) at the cost of capital K and labor L. Here A is
the productivity parameter of a particular technology, ( is the share of

capital in income (0 <a <1y,

In this section, we will present the material mainly for the functions of
two” variables. Moreover, almost all concepts and statements formulated
for a function of two variables can easily be transferred to the case when
the function depends on any number of variables.

18.4. Limit and continuity

Let us consider a function 2= f(x, y), defined on a set D. Let
MO(XO’ yo) be the limit point of the set D.
Definition. The number b is called the limit of a function f (X' y) as

the point M (X' y) tends to the point M O(XO’ yO), if for any number € > 0
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there exists a number >0 such that for all points M (X’ y) satisfying the
condition P(M+ Mo) <8
[f(x, y)-b|<e

the following inequality holds:

The fact that number b is the limit for f(x,y) as M(x, y) 0

MO(XO’ yO), is written as follows:

fim £ (x, y)=b lim f(M)=b
y=Yo . or MM, (17.13)
Definition. A function 2= (% ¥) is called continuous at the point

M, (%o, yO), if it is defined at this point, has a finite limit as M (% y)
Mo(%o Yo) ang if the following equality holds:
lim f(X, Y): f(xo’ YO)

X—>Xg

Y=Yo . (17.19)
By the total increment of the function we call the difference

Az=f(M)- f(MO):f(x; ) — fxo, yo)f (x, ¥) — f(x0, ¥o) |

f
we denote X X0 =AX Y= Yo =AY yhan equality (17.14) can be
rewritten as follows

limAz=0
AX—0
4y-0 , (17.15)

i.e., infinitesimal increments of the arguments correspond to an
infinitesimal increment of the function.

A function continuous at each point of a given domain D is called
continuous in domain D.
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The geometric meaning of the continuity of the function of two

arguments is obvious: the graph of a continuous function z=f (X’ y) isa
continuous surface that does not have gaps.

Questions

What is an n-dimensional Euclidean space?

How is an n-dimensional ball defined in Euclidean space?

What is an open n-dimensional ball? n-dimensional sphere?

How is the n-dimensional parallelepiped determined in Euclidean

What is the -neighborhood of a point in n-dimensional Euclidean
What points are called the interior points of a set in Euclidean
What is a closed set?

Can a set be non-open and not closed at the same time?
What is called the level line of the function of two arguments?

. What is called the level surface of a function of three arguments?
11.

What is the Cobb-Douglas function? What does this function

express?

12.
13.

What is a total increment of a function of two arguments?
How is the concept of continuity of a function of two arguments

defined?
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" 19.1. Partial increment and u partial derivative
Chapter 19. Partial derivative
and their economic meaning.
Total differential

19.1. Partial increment and u partial
derivative

Letafunction Z= T (X ¥) pe defined in some neighborhood of a point

M O(XO’ yO). (For brevity, we carry out the arguments for the function of
two variables). We give the argument x an increment AX (that is, we move

Xy +AX

from value  to value ) for a fixed y= yO, so that the point

M (XO +AX, y°) belongs to the specified neighborhood. Then the function

z changes by
Az= f(xo +AX, yo)_ f(xo’ yo)

This difference is called the partial increment of the function z with
respect to x. Particular increment is determined with respect to y:

AyZ = f(X01 yo +Ay)_ f(X07 yO)

Definition. The partial derivative of a function of several variables
with respect to one of these variables is the limit of the ratio of the partial
increment of the function to the increment of the considered independent
variable when the latter tends to zero (if this limit exists).

The partial derivatives of a function 2= | (% ¥) ata point ™ o(%o: Yo)
are denoted as follows:
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(674
Zx, X (%0 ¥o) (derivative with respect to x);
oz
B oy (%, ¥o) (derivative with respect to y).

Thus, by definition
f (Xo +AX, yo)_ f (Xo’ yo)

Az
z, = lim—2==lim

O AX e Ax . (18.1)
A, Z _
z'y:Iim_y:nm f(xo'yo+Ay) f(xo’yo)
VoA e Ay . (18.2)

From the definition of partial derivatives it follows that to find the

partial derivative fx(x’ y) it is necessary to consider the function

2= 1(X ) a5 a function of one argument x with constant y. Similarly, to

find fy(x, y) the constant should be considered x.
Example 18.1. Find partial derivatives of functions:

_ y5y,2 3,,4 _ X
a)z—xy +xy; 6)z—y.
Decision.

I Eud 2 2.4
a) Counting ¥ = const \ve find %x = SXTy" +3X°y" Counting now

' 5 3,,3
X = Cconst e find Z, =2Xy +4X7y"

y = const

6) Counting , we find Zx as a derivative of an exponential

. "= yX . _ A
function: Zx Y Iny. Counting now X=CONSt e find “¥ as a

Z/ — ny—l
derivative of an exponentiation function: Y
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Second - and Higher - order partial derivatives

Partial derivatives Ix = fx(x’ y) and =1 ( X, y) are functions of
x and vy, therefore, partial derivatives of them can be found. These
derivatives are called second-order partial derivatives of the function

z=f(xy).
2= @) =2, Z=E), =)
The partial derivatives of the third and higher orders are defined in a

similar way. For example, Loy =(Z )

Example 18.2. Find second-order partlal derivatives of a function
7=xy* +x°y*

Decision. In example 18.1 partial derivatives of the first order have
already been found:

z, =5x"y* +3x%y*, 2, = 2x°y +4x°y°
Now we find the second-order partial derivatives:
2! =20x°y? +6xy*.  zj, =10x‘y+12x%y*
z, =10x"y +12x7y°  zy =2x° +12x3y2_

. o7 z ) ) -
Partial derivatives ™ and ¥* are called mixed partial derivatives.

Example 18.3. Z=X ‘e’ Find Zy and 2».

!

=2xe’ z' =2xe’ Z, =X 2g¥ Zy

ro=2xe’
Decision. Zx

We see that for the functions con5|dered in examples 26.2 and 26.3, the

" "n

mixed derivatives coincide: ¥ = ¥ This is no coincidence. The
following statement is true:
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Theorem 18.1. If the partial derivatives of the second order of the
z=f(

function X, ¥) are continuous at a point (%, yO), then at this point

" "
ny = Zyx .
We will not prove this theorem. We only note that usually functions
used in economics have continuous second-order partial derivatives.

The economic meaning of partial derivative

Consider the Cobb—-Douglas production function as an example [see
formula (17.12)]:

Q — AKaLl—a .
Let us find the rate of change in the volume of production Q when one

of the factors changes: capital expenditures K or workforce L. The partial
derivatives of the function Q solve this problem:

Qx = AoK '™ Q) = All—o)K*L™

= AaK “ i e

The partial derivative Q« is called the marginal fixed-

asset turnover, and the partial derivative Ql = Al-a)K L™

marginal workforce productivity.

Recall that in the case of a function of one variable Y = f(x) the
elasticity of the function with respect to the argument is the quantity

!

y
Exy:X—
(v) y

[see formula (12.2)].
For a function of several variables, the ordinary derivative is replaced
by the partial derivative. For the Cobb-Douglas function, the elasticity of

£ (Q)=K % =«
the output of the product by capital expenditure Q .
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Q!

L=t=1-a

EL(Q):

Similarly, the elasticity of workforce

So, in the Cobb-Douglas function, the exponents & and 1 o are
respectively the elasticity coefficients for each of its arguments.

19.3. Total increment and total
differential

The total increment of the function? f(x y) at the point

MO(XO’ yO), corresponding to the increment of the arguments AX and

Ay is called the difference

Az = f(%) +AX, Yo +AY)— F(X,, Vo), (18.3)

Definition. A function £~ f(x, y) called differentiable at a point

MO(XO’ yo), if its total increment (26.3) at this point can be represented
as

Az = AAX+ AAY + o, AX + o, Ay (18.4)

where ™, A _ constants independent of AX | AY and %, % _gre

infinitesimal for Ax —>0 Ay >0

If at least one of the numbers Al, A, is nonzero, then the amount

is the main linear AX Ay part of the increment of the differentiable
function. This main part of the increment of the function is called the total
differential.
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Theorem 18.1. If function 2= f(X’ y) is differentiable at a point

M O(XO’ yO), it has partial derivatives at this point with respect to x and y.

Proofs. From equality (26.4) it follows that “xZ = AAX+0AX,

whence

=A+a,
- ™

since % 0 for AX— 0 then it follows from (*), that there is a
limit

Al

AX—0 AX
ie. 2 exists (and Ai)
N L . =A,
It is similarly proved that there exists ¥ (and ¥ ).
The main linear part of the increment of the function = f(xy) has

the form Z,AX+ zyAy .

Now we can formulate the concept of a total differential in the
following form.

Definition. The total differential 92 of a function % f(X y) is the
sum of the products of the partial derivatives of this function by the
increments of the corresponding independent arguments, i.e.

dz =z, AX+ zyAy. (18.6)

Consider, in particular, a function 2 f( y) O. Obviously,

dz =dx =1AX je, dX=AX_ Similarly, considering =f(xy)= Y we

get dy = Ay . Therefore, formula (26.6) can be written as
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19.3. Total increment and total differential

dz =z dx+ zydy, (18.7)

or, which is the same,

dz :@dx+@dy
OX

Note that the differential, being the main part of the increment of the
function, is used in approximate calculations.

3 3
Example 18.4. Calculate approximately \/(1’02) +(1'97) .
Decision. The desired number will be considered as the value of the

function 2 = Fxy)=yx+y’ for X:X0+AX, y:y0+Ay, where
f(1,2)=v1*+2°=3
2 2
Azzdz:w

2% +y°

2
Az(t,2)~ 3-1-0,02+3-2%(-0,03) _0,06-0,36 _ 0,05
2-3 6

Hence, J@02) +(1,97) ~3-005=295

Theorem 18.2. If a function 2 = f(x, y) is differentiable at a given
point, then it is continuous at this point.

Proofs. From the differentiability condition (18.4) it follows that
limAz=0

AX—0
Ay—0

and this means the continuity of the function [see formula (17.15)].
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Recall that for a function of one argument y="f (X) the existence of a
derivative is equivalent to differentiability.

However, for a function of several arguments, a similar statement,
generally speaking, is not true. It does not follow from the existence of
partial derivatives with respect to all arguments that the function is
differentiable, and it does not even follow that it is continuous. It can be
shown (we will not do this) that the function

Xy
7=4x"+y
0, ectmx=0,y=0,

ecm X* +y? #0,

21

is not differentiable (and is not continuous) at the point O(0, 0).
Nevertheless, at this point (and at all other points), this function has partial
derivatives with respect to x and y.

So, the existence of partial derivatives, generally speaking, is not
enough for the differentiability of the function of several variables.

Sufficient conditions for differentiability are given by the following
theorem.

Theorem 18.3. If the function £~ f(X’ y) has partial derivatives

fX’(X' y) and fy(x, y) in a neighborhood of the point M and these
derivatives are continuous at the point M, then this function is
differentiable at the point M.

Higher - order differentials

Let a function 2~ f(x, y) having continuous first-order partial
derivatives be given in the region D. Then, as we already know, the

differential dZ is called the following expression:

dz =de+gdy

OX oy
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where dx| dy _ the differentials of the independent arguments x and
y, or, which is the same, arbitrary increments of these arguments.

Obviously, dz s also a function of X, y. If the function z has continuous

second-order partial derivatives, then the differential dz has first-order
continuous partial derivatives, and we can raise the question of the

differential of ths differential 92 ie. about 9(92) This latter is called a

second-order differential (or second differential) and is denoted by d?z

d?z =d(dz)
When calculating the second differential, the differentials of the
independent arguments (i.e., their increments) dx and dy are considered

2y A2y _
as constants. Therefore, d*x=d"y=0 . So,

2 _4lz (o4 0z 0z
d z_d(dz)_d(axd ayolyJ d(a jdx+d(8yjdy

From here

2 2 2 2
dzz:{EdXJr 0z dy]dx+( 0z dx+a—dyjdy
oyox oy?

Ox? OXoy
0’z 0’z
and given that X0y Oyox , We obtain
0%z 0%z 0%z
d?z=
ox? oxoy oy?
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Of course, this expression could be written in a slightly different form,
given that we can denote the same partial derivatives in different ways, for

0%z 3 0%z o2 f

14

N 2
example, OXoy  Oyox we can denote both how X , and how ZXX, etc.
Second-order differentials for functions of three or more arguments are

written similarly, i.e. for functions W = f(x, y,z), W= f(xl’ Xaree Xn).

The higher-order differentials are determined by the same rule:

d’z=d(d?z) d"z=d(d"'z)

Here we Iookec] at t’he functions of independent arguments. For the case
when the arguments themselves are functions, for example, X :(P(S’t),

y= W(S’t), it can be shown (just as it was done for the functions of one
argument) that the form of the first-order differential is invariant, and for
the second and higher-order differentials it is not invariant. We will not
dwell on this in detail.

Remark. Despite the fact that for differentials of the second and higher
orders, the invariance of the form does not take place at all, in some
particular simple cases the shape of the differential of any order can remain
unchanged. In particular, in the case when the arguments x, y of the

function £~ f(x, y) linearly depend on the independent argument t:

X=ayt+8, y:b1t+b2, the shape of the differential of any order

remains unchanged. This is easy to verify.

19.4. Directional derivative. Gradient

Let a function £~ f (X’ y) be defined in some neighborhood of a point

MO(XO’ yO). Consider a certain direction defined by a unit vector
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Qo 2 2n _
I =(cosat, C0SB) \ypere COS" 0 +COS*B=1 (5o 151y On a line

passing in this direction through a point MO, take a point

M (% + A%, ¥ + Ay). Denote by Al the length of the segment MM
Obviously,
NN v
AY
VotAy |- gt
|
Yo 72> i
~ \ :
| |
J L
Xo Xot+tAx x
Fig. 18.1. Direction I = (cosa, cosp)
Consider the increment of the function f(x y).
Az = T(x, +AX, Y, +Ay)— T(X,, ¥,)

where AX and Ay are related by the relations Ax=Al cosa.
Ay = Al cosp
Az
Definition. The limit of the ratio Al at Al —>0 js called the
derivative of the function 2= f(x, y) at a point MO(XO’ yO) in the
0z

direction | and is denoted 0! (orZI

):
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oz . Az
—=lim—
ol a0 Al
0z

The derivative Ol characterizes the rate of change of function in the

direction I .
oz 0z

Obviously, ordinary partial derivatives X and oy are derivatives in
directions parallel to the axes Ox and Oy respectively. It is easy to verify

that for a differentiable function % = f (X’ y) :
oz oz 0z
T o LAt OB o s+ 7! cosp
ol ox oy (or% = & v COSPy  (18.8)
Definition. The gradient of a function Z= f(x, y) atapoint M isa

vector whose coordinates are equal respectively to the partial derivatives
/4 0z

X and 9 at this point.

The gradient of the function is denoted by grad z :

gradz:(@,gj d _(, ,)
ox ) or dAAZ=az) (1g9)

Comparing equalities (18.6) and (18.7), we see that derivative in the

direction | is the scalar product of vectors | and grad Z.

07 -
— =1 grad z
g e

It is known that the scalar product of two vectors has a maximum value
when the angle between them is zero. Therefore, the derivative of the
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function £~ f(X’ y) in the direction | takes on the maximum value
q grad z

when the directions of the vectors | an coincide.

Thus, the gradient of the function characterizes the direction in which
the function changes most rapidly.

Consider the geometric meaning of the gradient. The level line of

the function % = f(x, y), passing through the point (XO’ yO), is given by

the equation f(x, y): c : whereC - f(XO’ yO). Under certain
conditions, this equation can be solved with respect to y i.e. expressy in

the Y= g(x) (if this is not possible, then by solving the equation for X,
X= h(y)’ we can repeat all the arguments for this case). We know that the

angular coefficient of the tangent is 9 (X) i.e. the tangent direction vector
&)

' 1’ Iy

has coordinates (1' 9 (X)) or, which is the same dx . Therefore, the

vector (dx, dy) is also the direction vector of the tangent.
Taking the differential from the left and right sides of the equation
defining the level line, we get:
z z
dz :a—dx+a—dy:0
OX oy
i.e. the scalar product of the gradient and the directing vector of the
tangent is zero, therefore, these vectors are perpendicular.
The concept of a function gradient is generalized to the case of any

number of variables. In particular, for the function u= f(x, Y Z):

ou ou ou
gradu=| —, —, —
(6x oy 62]
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In the case of the three-argument function, all of the above remains
valid, the only thing is the level surface will act instead of the level line,
and the tangent plane to the level surface will appear instead of the tangent
to the level line, i.e. plane.

fx!(XO' yo’zo)(x_xo)+ f):(XO' ymzo)(y_ yo)+ fz'(xo’ yO,ZO)(Z—ZO)=0

y2
z=x"+2-
Example 18.5. Find the gradient of a function 4 at a point

M 0(2' 6) and its modulus.

grad z = (@ @J = [Zx, Xj
Decision: ox Yy 2) \WhenX = 2 Y=6 e
get:

grad 7|, , =(4,3) |grad 7| = V42 +3? =5

u=x+Y 72
Example 18.6. Find the gradient of a function 2 ata
point MO(l’ L 1) and its module.
grad u :(8_u a 8—“} =(2x, y, - 2z)
Decision. ox oy o :

grad u|lll =(21,-2) lgrad u|=\/22 +12+(-2)° =3

19.5. Taylor formula

Let a function £~ f(x, Y) in a neighborhood of a point MO(XO’ yO)
have continuous derivatives of all orders — until (n + 1)-th inclusive. We
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add® and Yo some increments AX and AY respectively so that the

straight line segment connecting the points (XO’yO) and

(XO A% Yo +Ay), belongs entirely to the neighborhood of the point

under consideration (XO’ yO).
We show that in this case the following equality holds:

Af(xo’yo): f(X +AX, yo+Ay)_ f(X07YO):df(X0ayo)+
+2d f(XO,y0)+ + d f(Xo’YO) (+)dn+ (&n),

(18.10)

X Xo +AX | +Ay(

where k— between “° and _ between Yo and Yo
E=X +0AX m=Y,+0Ay 0<p<1y
For proof, we make a replacement:

X=X, +tAX y=y, +tAy te[O, 1]_ (18.11)

Substituting these values of x and y into the function f (X’ y) , We obtain
a complex function from one argument t:

F(t)= f(x, +tAX,y, +tAy)
Formulas (26.11) geometrically express a straight line segment
connecting the points MO(XO’ yO) and Ml(xl’yl) (in this case, the point

M O(XO’ yO) corresponds to the value t =0 and the point Ml(xl, yl) —to

the valuet =1).
Now we can replace the increment

AF (%, Yo )= f (% + A%, Yo + Ay)= T (Xg, ¥o) with an equal increment

AF(O) = F(l)_ F(O). But the function F(t) is a function of one variable
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and has continuous derivatives until (n + 1)-th order, inclusive. Therefore,
it can be decomposed according to the Taylor formula. We write this
expansion in the form (17.13"):

AF(t,)= dF(t0)+%d2F(to)+...+%d“F(t0)+

1

(n+2)

d"F(t, + 6At), 0

From here we get
AF(0)= F(1)—F(O)=dF(0)+%d2F(O)+...+%d“F(O)+

1
(n+1)!
(18.12)

In this case, we note that differential dt, which appears in various
degrees on the right-hand side of (26.12) (i.e. contained in the expressions

dF(0)=F'(0)dt d?F(0)=F"(0)dt?
At=1-0=1

Now, taking into account the (linear) replacement (26.11), and also
considering the remark made earlier on the invariance of a differential of

any order with respect to a linear change of variables (see § 26.2), we
obtain

dF(O):f;(xn,yo)dx+fv'(x0,y0)dy:df(xo,yn)

d?F(0)= .7 (Xq, Yo )X +2.7 (X,, Yo Jxdy + f.7 (xo, Yo Jdy? = d*f (x,, ¥, )

+ d"'F(e), 0<6<Ll

, ...), 1s equal to the increment

'C.i."F(O):d"f(XO,yO)

Finally, for the differential (n + 1)-th order, we obtain
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d"*F(0)=d"* f(x, + OAX, y, + eAy)_

Note that the differentials dX and dy (as for independent arguments)
are equal to increments and, respectively. Indeed, taking into account

(18.11) and the fact that dt =1 we have:
dx = x{dt = (x, +tAx); dt = Axdt = Ax

dy = y;dt = (y, +tAy); dt = Aydt = Ay

Now we substitute the expressions for dF(O), sz(O), ...1in (18.12):
Af(xo,yo): f (X, + AX, y0 +AY)— (X, Y, )=df (X,, Y, )+

1w
+2d f(Xo, Yo )+ - e d f(Xy, o)+ (n+1)!d L (x, +0AX, y, +6AY),
0<06<1.
(18.13)

We have obtained for the function Z = f (X’ y) the Taylor formula in
a differential form. In expanded form, it (even for the considered case of
the function of two arguments) looks much more complicated.

We write formula (18.13), taking into account the fact that dX =AX,

dy = Ay , In expanded form, restricting ourselves to only two terms of the
expansion (i.e., for n = 2):
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f(X, y): f(Xo’ yo)+ fx'(xo’ yo)(x_ Xo)+ fy'(XO’ yo)(y - YO)+

1 n
f ( O'yO)(X_XO)2 +2fxy(x0,yo)(x—x0)(y—y0)+

+ =
21

+ 1, (%o, Yo XY = Vo) ]+ [fx';’X (X, + OAX, Y, +OAY N X=X, )° +
+ £ (x, +0AX, Y, +9Ay)(x—xo) (y-y,)+

XXy

+ fr (X0 +OAX, Yo +OAY X=X, Ny — ¥, ) +

+ f. (X +0AX, Yo +0AY Ny — ¥, )3]
(18.14)

This is Taylor’s formula for 2= f(X’ y) at n = 2. As you can see, it
looks unwrapped in a cumbersome form, although the function depends on
only two variables, and we took only two terms of the expansion.

Questions

1. Whatis called a partial function increment? What is the difference
between a partial increment and a total increment?

2. What is called the partial derivative of a function of several
arguments with respect to one of the arguments?

3. Does the process of finding the partial derivative differ
fundamentally from the process of differentiating the function of one
argument?

4. What are mixed partial derivatives?

5. What property do continuous mixed partial derivatives possess?

6. What is the economic meaning of the partial derivatives of the
Cobb-Douglas function?
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7. What is the elasticity of workforce for the Cobb-Douglas function?
And what is the elasticity of output for capital expenditure for the same
function?

8. What is the differentiable function of two arguments?

9. Whatis called the total differential of a function of two arguments?

10. Is the existence of partial derivatives with respect to both
arguments sufficient for the function of two arguments to be differentiable?

11. Is it possible to say that the function of two arguments, which has
partial derivatives of both arguments at a given point, is continuous at this
point?

12. What is the basis for the use of the total differential in approximate
calculations?

13. How is the derivative determined in this direction? What
characterizes the directional derivative? Is a scalar or vector quantity a
directional derivative?

14. What is the gradient of a function of two arguments? Is the gradient
a scalar or vector?

15. In which case does the directional derivative take on the greatest
value?

16. What is the geometric meaning of the gradient?

17. What does the Taylor formula for the function of two arguments
in differential form look like?
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Chapter 20. Extremum.
Conditional extremes

20.1. The local extremum of a function of
multiple variables

As already noted, we carry out the arguments for the function of two
arguments.

Let a function 2 = f (X’ y) be defined in some neighborhood of a point
M, (%, ¥o)

Definition. A pointMO(XO’ y°) is called a point of local maximum
(minimum) of the function z=f (X’ y), if there is a neighborhood of the
point MO, such that for all points M(X' y) from this neighborhood
inequality holds f(xo, y0)> f(x, y) (respectively f(XO’ y0)< f(x, y)).

If MO(XO’ yO) — is the point of the local maximum (minimum) of the

function f(x, y), then the value f(xo, y°) is called the local maximum
(minimum) of the function. The general term for a local maximum and
minimum is a local extremum.

Necessary condition for extremum

Theorem 20.1. If the function 2= f(x, y) has partial derivatives at

the point of local extremum MO(XO’ yO), then
fx,(xo' yo): fy’(xo’ y0)=0. (20.1)
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Proofs. We fix ¥ = Yo we get the function of one variable. f (XO’ yO)

!
. Its derivative coincides with the partial derivative fx(x’ yO), and the

function has a local extremum at a point Xo., According to Fermat's
theorem £, yO):O. Similarly, fixing =%
f(XO' y) , We prove that fy (XO’ yO)

It should be noted that condition (20. 1) is not a sufficient condition for

the extremum. Consider, for example, a function Z=XY s partial
derivatives are equal to zero at a point O(O’ 0)

function has no extremum. Indeed, f(O, O): O, but in any neighborhood
of the point O there are both positive and negative values of the function.
Points at which the necessary conditions for an extremum are satisfied

and considering

, however, at this point the

. . .7 z! .
(i.e., partial derivatives “* and Y are equal to zero), are called critical or

stationary points. The stationary points of the function f(x, y) can be
found by solving the system of equations:

{fx'(x, y)=0
f.(x, y)=0. (202)

Example 20.1. Find stationary function points
z=x"+8y’ —6xy+1

Decision. ~*

3x* -6y =0, x> -2y =0,
24y? —6x =0, or 4y* —x=0.

r_ 2 [ 2 _
z, =3x" -6y 27, 247 =6X e get the system:
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2y =x> 4y?

_ V4
From the first equation we find =X, Substituting into

3_1)—
the second equation, we obtain X4—X:0, ie. X(X _1)_0. This

X, =0 Xy =

equation has two real roots =1 . From the first equation we find

1

Y, =
0 2 . Therefore, there are two stationary points (O' O) and

)

Sufficient extremum conditions

Theorem 20.2. Let a function 2~ f(x, y) has second-order
continuous partial derivatives in some neighborhood of a stationary point

Mo(xo’ YO), let fx';(xo’ YO): A1 fx';(xo’ yo): fy,;(xo' yo): B

(%, ¥o)=C ,D=AC~B’ Then:1)if D >0 then the function has
a local extremum at the point (XO’ yO), and if A<0 _a local maximum,

and if A>0 _ g local minimum; 2) if D <0 then at the point (X5: ¥o)
there is no extremum.

Proofs. Consider the difference 2 = f(xy)=f(x, yO).We use the
Taylor formula (19.13), restricting ourselves to n = 1 i.e., the expansion

will contain only the first term and the remainder term R, 1):
Af = Af(xo’YO)_ f (XO1yO)AX+f (XO’yO Ay"‘ [f EJT] Ax?

+21, (& n)Axay + £ (€,m)Ay ]
(20.3)
(Here 5= Xo #OAX M=y, +0Ay 0<p<1)
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Since the point MO(XO’yO) — is stationary, the first terms of the
expansion vanish, and we get a simpler expression for function increment

atapoint(xo’yO)'

2 [falemaxt 2t mmnay + £ 6y’
(20.4)

In accordance with our designations
fx';((xm yo): A fx')'/(Xo' yo): B fy’;(xo’ yo): C
Since the second derivatives are continuous, then
f o (év n) = f (Xo +0AX, Y, + eAy) =A+oy,
fx’;(‘tw n) =B+ay, fy”y(&’n) =C+ay,
where %11 %12 %% _ are infinitesimal for AX —>0 AY >0
Af

Now we can rewrite in the form:

Af = %[AAX2 +2BAXAY +CAY? + 0, AX® + 20, AXAY + Ay

We are interested in the sign of difference Af . We will see that the

sign Af depends on the sign of the expression D=AC- Bz. Denote the
distance between the points MO(XO' y°) and M (X’ y) by r. Obviously,

—_— 2 2 = = [
_m. Now AX=TrCOsQ Ay=rsing (where ¢ — is the

angle between the segment MM and Ox). Once again, we rewrite the

expression Af :
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2
Af = %[Acos2 @+ 2Bcos@sing+Csin® ¢+ a,, Cos” ¢+

+ 201, COSQSIN @ + L, SiN° (p].
(20.5)
1. LetAC-B* >0
In this case, AC > 0, therefore, 4 # 0, and the first trinomial in
parentheses expression (20.5) can be transformed as follows:

Acos® ¢+ 2Bcosesing+Csin’ ¢ =

= l[(Ac:os(er Bsin)? +(AC —B?)sin’ (p].
2 (20.6)
From this it is clear that the expression in square brackets (under our

ion AC—B? >0y j iti i
assumption ) is always positive. Therefore, the mentioned
trinomial for all values of ¢ is nonzero and has the same sign as the
coefficient A. This trinomial is a function of the argument ¢, that is

continuous on the interval [0’ Zn]. This function, according to the second

Weierstrass theorem, reaches at [0, Zn] its smallest value. This smallest
value is nonzero. Therefore, the modulus of this square trinomial has a
positive smallest value m:

‘ Acos® @+ 2Bcosesing+Csin® ¢ ‘2 m>0

Now we consider the second trinomial in parentheses on the right-hand
side of equality (20.5). Obviously,

| cty; €OS” @+ 201, COSQSINGQ + 01, SIN* @ | < [0ty [+ 2] auyy [+] 01y |

Sinceall, alZ, 22 _ are infinitesimal for AX —>0, Ay — 0, then

for sufficiently small AX and Ay the inequality will be fulfilled
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|ocll|+2|(x12|+|oc22|<m.

Therefore, the expression in brackets on the right-hand side of equality
(20.5) will retain the same sign as the first of the trinomials, i.e. the sign of

A. Consequently, the left side Af = f(x, y)_ f(XO’ yO) also retains the
sign of 4.

So, if 4> 0, then and Af > 0, i.e. at a point (XO’ yO) the function has

Af <0

a minimum; in the case 4 < 0 will be , I.e. there is a maximum.

2. LetnowAC—BZ <0,

We consider separately the cases when A # 0 and when 4 = 0.

1) A+ 0.

In this case, we can use the transformation (20.6). Let us make sure
that in this case, in an arbitrarily small proximity to the point under
consideration MO(XO’yO) the difference Af can be both positive, and
negative, i.e at point M O(XO’ yO) there is no extremum.

Let =@ =0 Then, on the right-hand side of equality (20.6), the

expression in square brackets will be positive (and equal to A2).

If ®=92 we determine from the condition ACOS®+Bsine (ie.

A
¢, =—arctg —
B), then the expression mentioned will be negative (and
2 \ein?
equal to (AC_B )S'n P2).
As already noted, the second trinomial on the right-hand side of

equality (20.5) for sufficiently small r does not affect the sign Af .
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Obviously, we can take a point Ml(xl, yl) as close to M O(XO’ yO) as
0

needed so that the segment MoM. forms an angle ? =% =% with ox.

For it Af > 0 In the same way, we can arbitrarily close to MO(XO’ yO)

take a pointh(Xz'Yz) so, that the segment MM

Af<0'

2 forms an angle
= P2 with Ox. For this point will be

So, in the case under consideration AC—B*<0 A=0 iy any

proximity to the point under consideration (XO’ yO) the difference Af can

be both positive and negative. Therefore, at this point there is no extremum.
2) A=0,
In this case
Acos® ¢+ 2Bcosesin g+ Csin® ¢ = 2Bcospsing+Csin® ¢ =
sin@(2Bcosg+Csing).
Obviously, B #0 (otherwise AC —B* =0),
In this case, we can choose such an angle (T’ , that

|Csing|<|2Bcosq|

Then with ?=® and ?=~? the trinomial (20.6) will have opposite
signs. Therefore (repeating the above reasoning) we are convinced that

there is no extremum at the point M O(XO’ Yo )
The theorem is proved.

In the case, when AC — B = 0, the question of the extremum remains
open and to solve it requires additional research (for example, involving
higher derivatives).

We also note that
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fac(%o: o) fi (%00 Yo

fyl;(XO’ yo) f;:;/(XOf Yo .

Example 20.2. Explore extremum function

7=3x* - x> +3y* +4y

7, =6x-3x* =32x—x*) 2, =6y+4=23y+2) |\,

Decision.
get the system:

2x—x2=0,
3y+2=0.
Solving the system, we find two stationary points:

ofo-2) (-]

Find the second-order partial derivatives:
" o_ " o _
Zy :G_GX’ Ly _01 Zyy _6_

We calculate A, B, C and D for each stationary point.

Ml[o, - Ej
for a point 3

A=6 B,=0 C/=6 D,=66-0=36>0 _ y. i .
extremum;

A=6> 0, therefore, a minimum;

Zinin = f(o,_gj:_ﬂ
3 3.

y 2(2, - Ej
for a point 3

A, :_6, B, :0, C, :6, D, =-36<0 — there is no extremum.
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Example 20.3. Explore extremum function:
z=x"+8y° —6xy+1

0,0)

Decision. The first partial derivatives and stationary points ( and

3)

2 of this function were found in Example 20.1. Since Iy = 6X,
Ly = 6, Zyy = 48Y , then at the point (0.0) there willbe A=0 B=-6
, C=0 D=-36<0 therefore, there is no extremum. At the point
3)

2) we haveA=6 B=-6 C=24 D=108>0 _ there is an

extremum; A>0 , therefore minimum;
1
z. =fl1,=1=0
i)

20.2. Largest and lowest values of
functions in a closed area

The largest and smallest values (i.e. global maximum and minimum)
of a function continuous on some closed set can be reached either at
extremum points or at the boundary of the set.

Example 20.4. Find the largest and smallest values of the function
Y2 2
Z=X"*Y inacircle of radius 2 centered at a point(O' 1).
Decision. Obviously, the boundary of the area has an equation

X*+(y-1) =4
2, =2X Z,=

we find the only stationary point O(O’ 0).

. . _— 2 .
Find the partial derivatives: y . Equating them to zero,
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We study the function at the boundary of the area. Substituting from
X*=4-(y-1f

_y2 2
the boundary equation into the function 2=% T Y

_ 2,2
we obtain the function of one variable 2_4_(y_1) ty , i.e.

z=2y +3. Obviously, ye [_1’ 3]. This function does not have
stationary points, therefore, its largest and smallest values can be reached

only at the ends of a segment [_ L 3].

_y2 2
Z=X"1Y" at the stationary point (0’ O) is

0. The value of the function £ = 2y +3 forY = -1 is1,and for ¥ = 3 is

9. Comparing these three values, we find zmaX:f(O, 3):9,

Zyn = 1(0,0)=0

The value of the function

20.3. Conditional extremes

Consider the problem of finding the extrema of a function of several
arguments in the presence of additional conditions relating the values of
the arguments. Such extremes are called conditional.

For example, let it be necessary to find the extrema of the function

2=XY (o

if its arguments satisfy the condition:

2x+y-1=0 (**)

In this case, the extrema are not sought on the entire Oxy plane but only
onthe line 2X Y ~1=0 \we substitute in (*) the expression ¥ = —2x+1

from the condition (**), and the problem of the conditional extremum of
the function (*) reduces to the problem of finding the non-conditional

z=x*(-2x+1)=x*-2x°

extremum of the function So,
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7' =2x—6x* = = 2X(1_3X) . This function has a minimumat X =0 and

. X=2 . . 7= X2 .
a maximum at 3, i.e. the function %= Y in the presence of

0,1)

connection (**) has a conditional minimum 2= 0 ata point ( and a

7 wapon3'3
L=— 57 5
conditional maximum 27 ata point .

Definition. A function U= f(M)=f04%,...%) has a
conditional maximum (conditional minimum) at a point

0 0 0
MO(Xl X X“) if there is a neighborhood of the point MO, such that

for all points M (Xl’ Xaseen X") of this neighborhood satisfying m equations
(m<n).
gl(Xl""’ Xn): 0,

inequality holds f (M°)> (M ) (respectively f (M o)< f (M )

Equations (20.7) are called coupling equations.
The problem of finding a conditional extremum is reduced to a study
of a function's ordinary extremum

L(X, v Xy Agyeees A ) = B (X pees X )+ Ay Gy (Xseons X, ) oo+ A 0 (X e X, )

AR

).

The function L is called the Lagrange function, and the numbers 7“1,

o _ are called the Lagrange multipliers.
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The necessary conditions for a conditional extremum are expressed by
a system of M+ Nequations:

M:O, i=12,..n,
OX;
9,(M)=0, k=12,..,m, (208)
from which unknowns can be found Xpoees Ko kl""'km, where

Xo%n _ are the coordinates of the point at which a conditional

extremum is possible.
Sufficient conditions for the conditional extremum are associated with

the study of the second differential of the Lagrange function d’L , hamely,

if the inequality holds d’L <0 at the point of a possible extremum MO,

. . . .. . e d 2|_ >0
then at this point there is a conditional maximum, if , then, a
conditional minimum.

In the case of the function of two variables = f (X’ y) in the coupling

equation g(x, y)= 0 , the Lagrange function has the form:
L(x, y,2)= f(x y)+2g(x, y)

System (20.8) consists of three equations:
ak -0 oL =0
ox 0y g(x, y)=0

Let (XO’ Yoo 7“0) — be any of the solutions of this system, M O(XO’ yO)
— be the point of a possible extremum and
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0 9,(My)  gy(M,)
A=- g;(Mo) L"( 0’7“0) L”( o’}‘o)
g;(Mo) L;x(Mo’ko) L;y(Mo’ko) .

If A<O, then the function Z= f(x, y) has a conditional maximum

at a point M O(XO’ yO), if A>0 then a conditional minimum.
Example 20.7. Find the conditional extremum of the function
Z=2X+Y for X*+y’ =
Decision. We compose the Lagrange function:
L(x, y, A )—2x+y+k(x +y?— )

oL
Lo S=1+2y
We have OX , oy
The system of equations (20.8) has the form
2+ 20X =0,
1+ 21y =0,
x> +y?-1=0.
2 1 J5
==7= Yh=—"F7= A=—
We find solutions to this system: \/g \/g b2 ;
2 5
X; = T Y. = T A, \/_

y*-1 g, =2x 9,=2y

We have: g( ,y):x

.
o & %% 99(‘%"%)? o
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V5
n "o _ "o }\,=—
Lxxz\/g’ LXY_O’ LW_\/ngH 2 .
Consequently,
0o -4 _2
V5 5
4
A=—|-— 5 0 [=4/550
J5
2
-2~ 0 45
J5

i.e. the function has a conditional minimum at the point

M(‘%%J 21y =5

& &)
Similarly for the point :

o 4 2

V5 5

4
A=—|— -5 0 |=-4/5<0

J5

2

= 0 -5

J5

& &)

i.e. at the point there is a conditional maximum,

Zmax = \/g
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20.4. Least squares

The least-squares method is one of the methods of the theory of errors.
It refers to the so-called approximation methods, i.e. methods for the
approximate expression of any mathematical objects through other,
simpler ones.

In practice, we often encounter the need to “smooth out” the
dependencies identified as a result of observations. Usually, the problem is
M, M

formulated as follows: there are observational data at n points

ey

M., of some quantity u and the corresponding values of this quantity
u, u

L2, un; it is necessary to select a function u= f(M ) so that it
most accurately expresses the total dependence of the measured quantity

on the parameters of the measurement points M, M, M n,

Formulas analytically representing experlmental data (or measurement
results) are called empirical formulas.

For simplicity, we consider the case when the points M; , at which
measurements are taken have the same coordinate , 1.e. the relationship

% XZ Xy and the

between the variables x and y is represented as a set
corresponding values Y1 , Y2 yeees Yo These pairs of values are represented

on the coordinate plane by points (Xl' yl), (Xz’Yz), (X“’ y”). The
polyline that connects these points is called the experimental curve
(Fig. 20.1).

342 ‘




20.4. Least squares

|
I

(%8

0 X X X; X
Fig. 20.1. The experimental curve
It is necessary to find an analytical representation of the relationship

between x and y in the form of a formula y=f (X) The type of function

y= f(x) is determined by economic or other considerations. Typically,
the following are used as such functions:
y=ax+b

— linear;
y=ax’+bx+c _ parabolic;
y:3+b

X — hyperbolic;
y=ae” exponential.

(Logarithmic, power, and other functions are also used.)

The problem of finding empirical formulas is usually solved in two
stages.

At the first stage, the general form of the dependence is determined

y= f(x), i.e. it must be decided whether it is linear, quadratic,
exponential, or some other.

Suppose that the measurement results (experimental data) are plotted
on a grid (Fig. 20.2).
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= |
| s
0| x X; X, X

Fig. 20.2. Determination of the general form of dependence y="f (X)

Obviously, there are many different curves passing through these
points. In the case shown in fig. 20.2, curve 1 is preferable for the
researcher in curve 2. It should be emphasized that the first stage - the stage
of selecting the type of empirical function is very important. We see that
curve 2 in Fig. 20.2, although it passes through the corresponding points,
it does not provide a satisfactory representation of the dependence between
xandy.

In practice, to verify the correctness of the choice of function y="f (X)
additional studies are conducted, i.e. a number of additional measurements
of x and y are made, additional points are applied to the coordinate plane.
If they find themselves at a fairly close distance from the selected curve,
then they consider that the type of curve is established, i.e. set the type of

function Y = f(x)_ After choosing the type of function, they go to the
second stage.
At the second stage, the parameters of the selected empirical function

y= f(x) are determined. In the above functions, the parameters are

unknown numbers a, b u ¢. The parameters should be chosen so that the
values of the empirical function are less likely to deviate at points Xl, X2 ,

X
..., ™ from the measured values.
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The least-squares method (proposed by K. Gauss) is to minimize the

sum of the squares of the deviations of the “theoretical” values f(X‘ ),

found by the empirical formula y= f(x) from the corresponding

experimental values Yi In other words, the quantity
S :Zsiz = Z(f(xi)_ Yi )2
i=1 i=1

should be minimal (see Fig. 20.3).
VA

n

|
i | !
S
0 x; x, X; X, X

Fig. 20.3. Least Squares Illustration
We illustrate the general least-squares method with an example of a

linear function. So, let a function y=ax+b be taken as a function

y="f (X) and it is necessary to find such values of unknown parameters a
and b, for which the function

S :Zn:(axi +b-y,)

i=1

takes the smallest value. Here Xi and Yi _ are the constants found
experimentally, and the function S is a function of the parameters a and b:

S =5S(a,b)

So, find the critical points of the function S(a,b)’ and then examine
them. To find critical points, it is necessary to solve the system
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S!(a,b)=0,
S;(a,b)=0,
or, which is the same

n 2lax. +b -y Jx. =0,
2. 2(ax, %

i=1
n
> 2(ax; +b-y;) =0.
i=1
After the obvious elementary transformations, we get an equivalent
system called the system of normal equations,

(fo] a+(2xi] b= inyi,
i=1 i=1
n
(Z xf] a +nb= Z y,.
=t = (20.9)
This system is linear with respect to the unknowns a and b. The
determinant of this system is nonzero:

Z X n n 2
- '—nl i1 —anf—[in) #0
Z X, n i=1 i=1

= . (20.10)
(It is possible to prove that this determinant is positive.)
Therefore, the system has the only solution that can be found by the

Cramer rule:
DX LY

Zy, n ZX Zyi‘ (20.11)
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So, we have found a single critical point (a b ) Make sure that it
S(a,b)

20.4. Least squares ‘

achieves a minimum of function
second partial derivatives:

Sg :2 Xi:B "
b ; Sp=2n=C

. To do this, we calculate the

Sy = ZZn: X2 = A
i=1

We have

2
n n
D=AC-B*=4n) x/ —4(inJ =4d
i=
Above, we noted that d >0 Therefore, D >0 so, according to the
sufficient condition for an extremum, there is an extremum at the point

n
(*b*) A=2> x}>0
under consideration \& . Since i=1 , then this extremum
is a minimum. From the foregoing, we conclude that the function

S= S(a,b) has a single minimum point (a*,b*) determined from the

system of normal equations. It should be noted that at this point there is not
only a local, but also a global minimum, i.e. smallest function value.

Example 20.8. The following data were obtained on the value of fixed
assets x (thousand conventional units) and profit of the enterprise y
(thousand conventional units):

X: 110 132 154 176 198

220

Y; 40 43,2 52,8 67,2 64

78,4

Assuming a linear relationship exists between the x and y variables,
find the empirical formula using the least squares method.
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Decision. To determine the unknown parameters a" and b of the

y=a'x+b"

anxi anyi Zl:xiyi anxiz

we apply formulas (20.11). We need to

pre-calculate the sums =t | = i =1 (here n = 7). For
convenience, we summarize the calculations in a table:
i Xi Yi Xi2
1 110 40 12100 £
2 132 43,2 17424 L
3 154 52,8 23716 ¢
4 176 67,2 30976 ]
5 198 64 39204 ]
6 220 78,4 48400 ]
7 242 96 58564 :
© 1232 441,6 230384 ¢

The system of normal equations 20.8) has the form:
{230384a +1232b =83212,8,

1232a+ 7h=4416.

We find:
230384 1232 ,
_ — 2303847 —12322 = 94864
1232 7
832128 1232
oo 1 384384 _ 0,405
04864| 4416 7 04864
.1 |230384 832128| -7805952 8920
 04864| 1232 4416 | 94864

Thus, the desired dependence has the form:
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y =0,405x-8,229

Questions

1. Whatis the local maximum (minimum) function of two variables?
2. |If fx(xo,Yo):O, then can it be argued that (XO’yO) — is the

extremum point for f (X’ y)?

3. Whatis a critical (stationary) point for a function of two variables?

4. What is the sufficient condition for the extremum for the function
of two variables?

5. What is the conditional extremum of a function of n variables?

6. What is the Lagrange function?

7. What are empirical formulas? Which line is called the
experimental curve?

8. How many stages usually consists of solving the problem of
finding empirical formulas? What are these steps?

9. What is the least-squares method?
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Chapter 21. Optimization tasks

21.1. Basic concepts

To simplify the presentation, we identify the points of the Euclidean

space as R" and the vectors of their coordinates, i.e. the point

M(Xl’xz’“"xn) will be written as X, where )_(:(XI’XZ""’X”).

Moreover, all operations on vectors and their properties are transferred to

points in space R" Let X and Y - betwo points of Euclidean space.
Definition. A line passing through points X and Y of Euclidean space

R" is called the set of points

te(-o, ) The segment XY, connecting these

points is called the set (21.1), where. ! € o, 1].

of this space where.

Obviously, the points X and Y are obtained from (21.1) for t=0 and
t=1

Definition. A set D of points in Euclidean space is called convex if,

together with any two points X and Y all points of the segment XY also
belong to this set.
Examples of convex planar sets are shown in Fig. 21.1.
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Fig. 21.1. Sets: convex (a) and non-convex (b)

X

Definition. A function f( ) defined on a convex set D R" s

called convex on D, if for any two pointsX and Y from D and any
ael0,1] the inequality holds:
fax+(1-a)y)<of (})+@-a)f (V) (51 1a

A function f (X) is called concave on a convex set D, if, for any two

points X and Y from D and any * € [0.1] the inequality holds

f(oc)_(+(1—oc)7)2 of ()_()+(1—0c)f (7) (21.16)

If inequalities (28.2) are replaced by strict inequalities, then we obtain
the definition of strictly convex and strictly concave functions,
respectively.

Note that the graph of a convex function of one variable is convex
downward, and the graph of a concave function is convex upward.

The following important statement holds (we give it without proof).

Theorem 21.1. If a function f (X) is differentiable and strictly concave
(strictly convex) on a convex set D, then it has a local extremum at only
one point of this set.
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21.2. The biggest value of a concave
function. Kuna-Taker conditions

We know that a linear function of n variables is a function

I(x):aix1+a2x2+...+anxn+b, where & @& & b ae

constants. It is easy to verify that the linear function is simultaneously a

. . n
convex and concave function in R".

An inequality of the form I()_()Z O, where I()_() — where is a linear
function, is also called linear.

Theorem 21.2. Let a convex set D < R" be given by a system of
linear inequalities:

1,(X)>0,

In(X)20, ), 4

X

14 . . . !
D’ _ some convex subset in D; f( ) —is a function concave on D’

and f()_() is differentiable at a point X’ eD’ . Then:
7\'1 .. }\’

1) if for some numbers ., ™ the conditions are satisfied:

<0
a) X — function critical point

L(T() =T (>—()+ 7‘1I1(>_()Jr ot Al ()_(); (Kuna-Taker co

b) ML(K°)=0 g 120 i=1..m

then f(x ) — is the largest value f()?) on D;
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—0 —
2) on the contrary, if D'=D and f(x ) — is the largest value f(x)

on D, then there are numbers 7‘1, A

“b” are fulfilled.

m . for which conditions “a” and

The function L()_() — is the Lagrange function that we already know

(see § 20.3), and the numbers 7”1, A — are the Lagrange multipliers.
Theorem 21.2 is also accepted without proof.
Example 21.1. Find the point of greatest value (global maximum) of

the function u=Inx, +Inx, +Inx;

X, +4X, +9x, <108

given that

Decision. First of all, we note that the function u is concave. Indeed,
the logarithmic function of one variable is concave, and the sum of concave
functions, as is easy to verify, is a concave function.

We compose the Lagrange function:

L(X)=Inx, +Inx, +Inx, +A-(108 — x, —4x, —9x, )

The Kuhn-Tucker conditions are as follows:

i—xzo,

Xl

i—4x:o,

X2

i—9x=o,

X3

A(108 — x, —4x, —9x,) =0,
A >0.
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X == Xy=— Xy=-—
From the first three conditions we find: A ax 0

X %,

At the same time, obviously, * # O, Substituting the found values

and *2 into the fourth equation, we obtain

108— X, — 4X, —9X, =108—%=O

1

h=— _
From here 36 % =36, X; = 9, X; =4 . As already noted, the

=0 _
function U is concave, so the point X = (36,9,4)

maximum.

is the point of global

Profit maximization

Let F(K’ L) — be the production function (where K and L — are the
costs of capital and labor, respectively), P — is the price of production. The
profit function IT is usually calculated by the formula:

(K,L)=P-F(K,L)-WL-RK (21.4)

where W and R — accordingly, factor prices for labor and capital
expenditures, W and R — are positive numbers.

A point (KO’ LO) is called an optimal plan if the if-function (21.4) in
it assumes the maximum value.
Consider the problem: find the marginal rate of substitution of the
production function F:
_F
Fy
with the optimal plan.

M:
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At the point of local maximum, the first partial derivatives of the profit

function H(K’ L) are zero. System (21.2) in this case has the form
P-F(K,,L,)-R=0,
P-F/(K, Ly)-W =0.

nw=-—
From here R,

Now we consider the problem of maximizing the profit function.
Example 21.2. Find the optimal plan and maximum profit function

N 1/3y1/3
(28.4) if the production function has the form F(K’ L) =3K™L :
Decision. The profit function in this case has the form

I(K,L)=3P - K"*L'"* ~-WL-RK_
We calculate the first partial derivatives with respect to K and L and
equate them to zero:
P 3 K—2/3L1/3 _ R — O
{P A Kl/3L—2/3 _W — O
From here we find the coordinates of the optimal plan:

P3 P3
Ko =—arr L, = 2
RW RW*
Substituting these values in the profit function, we get:
P3
Hmax = RW .

Demand optimization

Consider the task of optimizing the utility function with restrictions on
consumer income.
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Example 21.3. Find the demand x and y for two varieties of goods at
prices of p and g, respectively, if the consumer’s income is equal to M, the
p q
_ v pt+g+l,, p+o+l
utility function has the form U(X’ y)_ X y
seeks to maximize the utility function.
Decision. It follows from the condition that a consumer can only buy

and the consumer

such sets (X’ y), whose value does not exceed his income, i.e.
px"‘quM’XZO,yZO_ (21.5)

Constraints (21.5) define a closed area in the form of a triangle on the
plane (Fig. 21.2). It is necessary to find the maximum point of the function

U (X’ y). We calculate the partial derivatives of the utility function:

D _a# q
Ur X, — X p+q+1,, p+q+1
(% y) P y
q p _ p+l
U’ X, — Xp+q+l p+q+1
oy)= Ty

We see that there are no critical points inside the area. Therefore, the

maximum can only be achieved at the border. On the lines X = 0, y=0

U(0,y)=U(x,0)=0

the utility function is zero: , therefore, we must look

for the maximum point on the line px+qy =M . From here
M — px
y= d

)

Substituting from this equation the expression y into U(X’ y), we
obtain the function of one variable x:
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Questions
a

( M — psz _ p+q+lXp+Z+l(|\/| B px) p+q+l

We calculate f’( )

g+l p+1
' _ p+q+l p 7p+q+1 _ % q 7p+q+l _
)= {—pmlx .

Equating f (X) to zero, after transformations we get

M —px—gx=0
M M
X = y =
whence P9 and taking into account (*) P+q
YV A
M
q
M
ptq
0 M M x

pPTq P

Fig. 21.2. Maximum Ultility Function

Note that this problem could be solved by writing out the Lagrange
function and the Kuhn-Tucker conditions, but this was not necessary for
such a simple case.

Questions

1. Whatis a convex set in Euclidean space?
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2. What function defined on a convex set is called convex (concave)?

3. How many local extrema does a strictly convex function have on
a convex set?

4. Can a function be convex and concave at the same time?

5. What are the Kuhn-Tucker conditions?

6. What is the profit function? How is it calculated?

7. What is called an optimal plan?
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22.1. Linear operations on vectors ‘

ELEMENTS OF LINEAR
ALGEBRA

Chapter 22. Vectors and
operations. Linear spaces

22.1. Linear operations on vectors
It is well known, that if a rectangular coordinate system is set, then every
vector @ is represented by its coordinates a1, az: a= (al, az). In a three-

dimensional space, vector ¢ is represented by three coordinates

g:(a'l’ a,, as)

Definition. Any set of n real numbers (a*—’ IR a”) is called an n-
dimensional vector @. These numbers are called coordinates or
components of vector a . For example, a :(4’ 32,0 _7)is a five-

dimensional vector. In particular, its third component is 2 and the fifth
component is —7.

Note, that coordinates @ can be presented as a row
a=(aq,ay,..., a,) (22.1)

or column:
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&) (222

The vector in form (22.1) is called a row vector and the vector in form
(22.2) is a row column.
The number of vector coordinates is called the dimension of the vector.

Two n-dimensional vectors a=(a 8 .a) and D= (0 bzy . By)
are equal if their corresponding coordinates are equal: a4 = bl, a, = b2,

a, = b”. In this case, we denote in form & =D

The sum of two n-dimensional vectors a:(ai,az,...,an) and

b= (by, Bz, -+ Bu) i the following vector

a+b=(a+b,a,+b,..,a, +bn).

Vector, which components are equal to zero, is called the zero vector:
0=(0,0,..,0)

Vector (-a-a,..-a) is opposite to vector a= (@ 2.2, and
denoted as — @ :

~a=(a,-a.-a)

The difference of vectors is defined as: b = ( b)

Product of a vector a:(ai,az,..., ) by number k is vector
= (ka,, ka,, ..., ka, )
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22.2. Dot product of vectors.

Addition of vectors and multiplication of a vector by a number are linear
operations.
Let us note the following properties of linear operations, which are easy to

e

l.a=a
Definition. The set of all n-dimensional vectors, in which operations of
addition of vectors and multiplication of a vector by a number are defined,

5
6.
7. kl(k2§) = (klkz)'a_
8

is called n-dimensional vector space and denoted as R" .

The space R” is a linear.

22.2. Dot product of vectors.

Dot product of two vectors a= (ai’ 1 vee a“) and b = (bl’ b,. ... b“)
is a number

(a,b)=ab,+ab,+..+ab, (223)

Let us illustrate the dot product with the following example.
Example 22.1. A housewife buys 0,5 kg of bread, 5 kg of potatoes, 3 kg of
cucumbers, 2 kg of tomatoes and 1,5 kg of meat at prices of 12, 11, 15, 30,
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80 rubles per kilogram respectively. If we consider a vector of goods ¢ =
(0,5; 5; 3; 2; 1,5) and vector of prices b = (12; 11; 15; 30; 80), then the

total sum of money is expressed as dot product: (a’ b) =0,5-12+5-11 +
3-15+2-30+ 1,5-80 = 286 rubles.

Example 22.2. The amount of 3 000 000 rubles is placed at interest for a
year at four banks: 500 000 — at 6%, 500 000 — at 8%, 1 000 000 — at 5%
and 1000000 — at 10%.

Here @ = (500 000, 500 000, 1 000 000, 1 000 000) is a deposit vector,

and b = (0,06; 0,08; 0,05; 0,10) is an interest rate vector.
The initial amount increases by the amount expressed by a dot product

(ﬁ,b) = 500 000-0,06 + 500 000-0,08 + 1 000 000-0,05 + 1000
000-0,10 = 220 000 rubles.
Let us list the main properties of a dot product:

, [@p)=(b.a)
(k-a,b)=k-(ab)
, @b+

s (@

2.

UI

c)=(a.b)+(@c)

) 0. ; herewith (E é) 0 if and only if a js a zero vector.

QJI

22.3. Linear dependence of vectors

Definition. Vector @ is a linear combination of vectors ai, az’ a;

from R” if
a=Aa +A,a, +...+1.3a,
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Aps Aoy

where s are real numbers. In this case, vector & is expressed

in terms of its coordinates ai, az, aS.

For example, Ietai—(213 -2), 2—(3122) a3—(2120) then

38,423,748, _ (53,9, _6)+ (6,2, 4,4)— (8, 4 8,0) = (4 1,5,-2).

Vector @ = = (4, 1,5, -2) is a linear combination of vectors81 CE , a3:
a =3a, +2a, -44a,

Let us call any set of vectors from R" a system of vectors. In the example

above the system consists of four vectors: ai, az’ d and @ . Herewith
vector @ is a linear combination of other vectors of this system.

Definition. The system of vectors 51 a, - A is called linearly

dps Ay

dependent if there exist numbers M , such that they are not

equal to zero at the same time, or

rMa +r,a,+...+Aa, =0 (224)

Otherwise, vectors 2., & are called linearly independent. In other

,_QJI
Q|

words, vectors ai, an are linearly dependent if it follows from an

x =X, =0

>)m|

equality (22.4) that

Let us prove, that the system, which consist of more than one vector ai,

a ) e dn , is linearly dependent if and only if at least one of the vectors

is a linear combination of the others.
1. Let equality (22.4) be verified and at least one of the coefficients is not

equal to zero, (for instance Ay %0 ). Then
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5oy
m 7\‘m

2 T

> |N>)

m
1

. a . .. .
i.e. vector ™ is a linear combination of the other vectors.

2. Let one of vectors (for example az) be a linear combination of the
others:

a=Ma +..+1,a,

Then |

A3 +(-1)-a,+..+1,a, =0

and in the last equality, there is :;1 coefficient, which is not equal to zero (

Ao ==Ly Thus, the system of vectors &, % .. % s linearly

dependent.

The geometric meaning of the linear dependence of vectors is
evident for the case of two-dimensional vectors on the plane and three-
dimensional vectors in space:

a) the system which consists of two vectors is linearly dependent if and
only if the vectors are collinear;

b) the system which consists of three vectors is linearly dependent if
and only if these three vectors are collinear.

Let’s note that some properties of vectors in space R" .

1. If the system ai, az, n contains a zero vector, then it is linearly
dependent.

To verify this, it is enough to take the zero vector with one coefficient equal
to one and the rest coefficient equal to zero on the left-hand side of equality
(22.4).
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2. If a part of vectors of the system gi, a y e & is linearly dependent?,
then all these vectors are linearly dependent.

s of the system gi, 52, a3,

Indeed, for example, let vectors a 4

Ao, + A8, +A.a, =0

a, % pe linearly dependent:

Ay %0

and, for example,

. Then
0-a,+A,a,+A,a,+0-, +A,8, =0

and in this equality at least one coefficient is not equal to zero (7L3 * 0).

Thus, this system 51, 52, a3, 54, is linearly dependent.

Without proof, we give the following important theorem.

Theorem 22.1. Any system which contains (N +l) vectors of space R"
is linearly dependent.

In particular, any four vectors in three-dimensional space are linearly
dependent.

22.4. Basis and rank of vector system
Let us consider:

& 8 & (225

Any subsystem of vector system (22.5) is called the basis of this system if
it satisfies the following properties:

1) this subsystem is linearly independent;

2) any vector of system (22.5) is expressed linearly in terms of vectors of
this system.

1 In other words, this system of vectors contains a linearly dependent
subsystem.
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A system of vectors can have several bases. It is possible to show that all
bases of the system of vectors consist of the same number of vectors. This
number is called the rank of the system.

Obviously, the set R is a system that contains all n-dimensional vectors.
The concept of a basis extents to R”

Definition. The system of vectors is called basis of the space R” if

1) this system is linearly independent;

2) any vector of space R" is expressed linearly in terms of vectors of this
system.

An example of a system of vectors in R” is a system which consists of n
unit vectors

él :(17 05 ERRS 0)5
€ =(0,1,...,0),

=(0,0, ..., 1).
Indeed, on the one hand, this system is linearly independent (as from

klél+7\‘2é2+"'+}\’nén:6 7\,127\,2:,“ :7\;”:0

follows ), on the other

hand, any vector a= (ai’ IR a”) is presented as:
a=ag +ae,+..+a¢,

g, 6, .. é
i.e.itis a linear combination of vectors 1’ 72*' """ ™n

In the previous example, the basis consisted of n vectors. The following
theorem takes place (we give it without proof).

Theorem 22.2. A linearly independent system of vectors in R" is a basis
if and only if the number of these vectors is equal to n.
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22.5. Decomposition of the vector in the basis

The number of basis vectors of a space, i.e. the maximal number of its
linearly independent vectors, is called the dimension of the space. Space

R" | previously called as n-dimensional for other reasons, is also n-
dimensional in the sense that its dimension is equal to n.

22.5. Decomposition of the vector in the
basis

Let the system of vectors

& = (a11’a12’---’31n), a, = (a21'a22""’a2n)’ - &y = (aml1am2""’amn)
(22.6)

be a basis® and let vector X be decomposed in vectors (22.6):

X=Xa, +X,a, +...+X,a, @)

The question arises: are the coefficients Xl, X2, X of decomposition
(22.7) uniquely determined?

Theorem 22.3. The decomposition of vector X in the basis vectors is
unique.

Proof. We suppose that vector X s presented in the form of a linear
combination of vectors (22.6) in two different ways:

X = X8 + X8+ 4 Xy
T _ vis I & I &5
X = X8 + Xy . Xy

Subtracting the second equality from the first, we get

1 Here components of vectors must be provided with double indices: the
first one indicates the number of vectors and the second one indicates the
number of the component.
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(% = %)+ (% = %) &+t (% =, )- 8, = 0
However, system (22.6) is linearly independent, thus,
X, —% =0, X,-%X,=0, .., X,—-x, =0

From here we get:

!

X=X, X=Xy .., Xn =X
So, decomposition (22.7) is unique. Decomposition coefficients (22.7) are
called coordinates of vector X in basis (22.6).

22.6. Normed vector spaces. Euclidean
space

Definition. Linear space is a set V of arbitrary elements, called vectors,
for which operations of addition and multiplication by a real number are

defined, i.e. for any two vectors U and Y2 from V vector U, called a sum

u

of vectors *1 and 2 , is defined and denoted as U + U2 and for any vector

U and any real number lvector7LU , called the multiplication of vector u
by a number l is defined and the following conditions are satisfied:
1) u,+U, =0, +U1;

2) (U1+U2)+U3 = U1+(U2 "’Us)

3) in the set V, there is an element 0 that is called a zero element which

satisfies for any U the following condition:

u+0=0.

4) for any vector U there is a vector —U that is called the opposite vector
U which satisfies condition
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(The conditions listed above are called axioms of linear space.)

It is necessary to note that set V can consist of elements of any kind of
nature.

Examples of linear spaces are

1) n-dimensional vector space;

2) the set of all polynomials Ry (X) of degree not higher than n with ordinary
addition and multiplication by numbers.

Let us note that the set of all polynomials which degree is equal to N is not
a linear space with respect to the usual operations of addition and
multiplication by numbers. This is due to the fact that the algebraic sum of
polynomials of degree 7 can be a polynomial of a degree less than 7.

Definition. Linear space V is called a normed space if for any vector U g

norm ”U” with the following properties is defined
=0
2yany U # O satisfies inequality o >0;

3) any real number A satisfies equality ”MT” - }L”U” ;

4) for any U and V from V the triangle inequality holds:
o=+ ] <]+ ]l
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Let us note that if V is a set of vectors of an ordinary plane, then V is a

normed space with the norm ||u ” - |u| , Where |u| is a vector length.
One way to define a norm in space V is to define a dot product.
We say that the dot product is given in space V if for each pair of vectors
U and V there is a number (U,V)
satisfied:

— U)

1) (@ v)=

, S0 as the following conditions are

A

) 01.7)=7
e - 0.0)+(0.0)

ol

; herewith (U'U =0 ifand only if U isa zero vector: U =

If a dot product is set, then the norm is defined as following:
o= V(@.o). (22.8)

Make sure that the norm defined by equality (22.8) has all the properties
listed above. First three properties are evident, it is necessary to check only
the triangle inequality. For this purpose we previously prove the Cauchy-
Bunyakovsky inequality:

@Vf <@O)E.V) (209

Let us consider vector W = tw+v , Where t is an arbitrary number. We have
(W, W) =t +V,t7 + V) =t*(@,0)+ 2t (T,v)+ (V,V)

We denote @0)=a , (@v)=p , (V.9)=7 we get

(W,V_V): at’ +2Bt+y_
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)

o 2
As (W’W)Z 0 , then ot +2Bt+y >0 for all t. Thus, the discriminant of

i —ay <0 ie.

this square trinomial is less than or equal to zero. So, B
2 — —\2 — )\ (=~ —

B* <ay (@ v) <(@u)(@,v)

Let us prove the triangular inequality

JO+9,0+7 <J(@,T)++/(V,v)

Using the Cauchy-Bunyakovsky inequality we get

049 = (@ +0,049) = (@,0)+ 0,0)+ 2@.0)< " + o] + 2Ja] ] -
= (] + w1

that proves it.

Previously (see. § 22.2) we considered a dot product of n-dimensional
vectors a=(a,2,..2,) and P = (by,b,.....b,) defined by formula
(22.3):

(a,b)=aj, +a,b, +otab,

Definition. N-dimensional vector space R” | in which a dot vector product
is set, is called Euclidean space.

The length (norm) of vector a= (a“—’aZ""’a“) in Euclidean space R” is
a square root of its dot product

al=@a)=\a’ +a; +..+a; . (2210

The angle between two vectors a and P is defined by an equality

[l "b‘. (22.11)
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From the Cauchy-Bunyakovsky it follows that cos ¢, defined by formula

<
(22.11), satisfies a condition | 0S¢ |_ 1 , S0 the definition of angle between
vectors is correct.

Vectors @ and P are called orthogonal if (a’b): O. It follows from the
definition that if two nonzero vectors are orthogonal, then the angle
s

between them is equal to 2,

We say that vectors & & € form an orthonormal system in n-

dimensional Euclidean space R” if these vectors are pairwise orthogonal,

(ei,ej):O for 171 ,(i,j=1,2, ..., m), and a norm of each of them is

equal to one: (ei /& ) - 1.
Make sure that every orthonormal system is linearly independent, i.e. from
equality

A&+, +.. 4L B =0

i.e.

(22.12)
follows that 1= 42 =+ =An =0

Let i be an arbitrary number that satisfies condition 1<ism etus
multiply equality (22.12) by €.
A1(88)+ 2B B)+ o+ Ay (B,8) = 0

S
|
@
N —
|
(e»]
N
(@]
=
H
| S—
w
o
~—+
=0
D
=
wn
~—~+
@D
o)
c
S
2
<
-
@D
0
[
S
~—+
o
@D
O
c
S
2
<

A =0

e.,ei);«»sO,Weget =

Hence, as ( i . So, 2 =0 foralli=1,2,..,m.
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Questions

Since any orthonormal system of vectors is linearly independent, it follows
that the orthonormal system containing n vectors forms a basis in space

R" called orthonormal. The following statement holds.
Theorem 22.4. In any n-dimensional Euclidean space, there exists an
orthonormal basis.

An example of orthonormal basis is a system of n unit vectors & = (1,0,

0,8 =01,..0, .. % =00, . 1.

Questions

1. Can two vectors be equal if one of them is four-dimensional and
the other is five-dimensional?

2. What vectors are obtained from vector ¢ by multiplying it by
numbers 0 and —-1?

3. What vectors are called linearly independent?

4, Is the system of vectors a= (1’ 2, 3) , b = (2’ 3, 4), = (3’ 4, 5),
d =(4.56) linearly independent?

5. Do vectors & = (Lo,o, 0), g,=(0,2,0, 0), e,=(0,0,0,4)

.. 4
form a basis in space R"?

6. What numbers are called the coordinates of a vector in the basis?

7. For which value of y is the dot product of vectors a= (1’ 2, 3) and
b =(Ly,3) equal to zero?

8. For which values y do vectors a= (1’ 2, 3) and b = (_ 3y, - 9)

form a linearly independent system?
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Chapter 23. Matrices and
operations on them

23.1. Basic concepts

Definition. A matrix (a numerical matrix) of dimension M*N js a
rectangular table of numbers that contains m rows and n columns:

& 8y . Gy,
A: a21 a22 aZn
aml amZ a‘mn . (231)

Numbers that form a matrix are called elements.

. . a. .
To denote elements of matrix double indexed letters are used: ", where i
is a row number and j is a column number. Matrix is also written in a short
form:

A:(a”),i=1,2,...,m;j=1,2,...,n. (23.2)

In case the number of matrix rows is equal to the number of its columns,
i.e. M=N jtis called a square matrix of order n.

Matrix can consist of one row or one column

by,

A=(ay,a,,...a,) by,

Thus, row-vector or column-vector are special cases of matrices.
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Elements of matrix % , for which the number of rows is equal to the column

number, i.e. ', are called diagonal. For square matrix elements

%11 821 B form the main diagonal.
Matrix is called symmetrical if its elements, which are symmetrical to
each other against the main diagonal are equal to each other

aj :aji_

A square matrix is called diagonal if all its elements outside the main
diagonal are equal to zero

a, 0 .. 0
A 0 a, .. 0
0 0 .. a

nn

A diagonal matrix is called identity if all its diagonal elements are equal
to one

1 0 .. 0
01 .. 0
0 0 .. 1

A matrix of any dimension 7 * " s called zero matrix or null matrix if
all its elements are equal to zero

0 0 .. 0

0 0 .. 0
O:

0 0 0
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Two matrices A= (a”) and B= (b” ) are equal (A= B) if they have equal

. . . . a. =D0n.
dimensions and their corresponding elements are equal: ™" ™.

23.2. Linear operations on matrices.
Transposition of matrices

For matrices operations of addition and multiplication are defined.

A sum of matrices A= (a‘i) and B= (b”) of the equal order is matrix

C =lc. C.=a.+hb.
( 'J) whose elements have a form; 1)

Ti=12,...,m;j=1,
2, ..., n. In this case, we writtC = A+ B
1 2 3 4
A=|3 0 B=|2 6
Example 23.1. Let 45 , 5 3 . Then
4 6
C=A+B=|5 6

9 8

. ) .o A=la
A matrix product or matrix multiplication (a”) by a real number

A is matrix AA = (ka‘j).

2 3 4 8 12 16
Example 23.2. Let 3 21 , A =4, Then 12 8 4 .

Addition of matrix and matrix multiplication by a product are called linear
operations on matrices.
Properties of linear operations (directly follow from the definition):
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1. A+B=B+A.

, (A+B)+C=A+(B+C)

3 M-(A+B)=21A+2B

g Oy+i,) A= A+LA

5. (7“17‘2)' A= 7‘1(7‘2'6‘) = 7“2(7‘1A) ]

6. A+0=A (0is a zero matrix).

7.1 A=0 , then M =0 s a zero matrix.
The transposition of a matrix is an operation of replacing the matrix rows
with its columns while preserving their order.

Denoting matrix A" which was obtained by transposition of matrix
A:(a’ff)we can write: 4 :(af").

. . . . . I,
In particular, if matrix A is a row-vector, then matrix A is a column-vector
and vice versa.

2
A=|5
Example 23.3. If 8 , then A’=(2 5 8).
2 1
13 5
A:
A_(z 3 4 5j 47
If 1579,then 59.

Let us note the evident properties of transposition operations:
1. A=A,

2. If A is a symmetric matrix, then A= A,
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23.3. Matrix multiplication

Multiplication of matrix A by matrix B is defined only for the cases when
the column number of A is equal to row number of matrix B.

The multiplication of matrix A with dimension 7%k by matrix B with

dimension & 7 is matrix ( ’f) with elements

k
C; =ayuby; +a,b,; +..+ab, =D ab
=1
i=1,2

5 Ly een

,mj=12..n.

It easy to note that element % of matrix C is a dot product of i-th row-
vector of matrix A by j-th column-vector of matrix B.
Example 23.4. Calculate matrix multiplication AB where

1 21
2 0 1) B=l0 1 2
-1 3 2 -2 0 3

Solution. Make sure that the column number of A is equal to the row
number of B (and equal to 3). Thus, the multiplication is possible. The

matrix € = 4- B has dimension 2-3:
ago| 21+0:041:(-2)  2:2+0141.0  2:1+0-2+1.3 )
(-1-1+43-.042(-2) -1.2+3.142.0 -1.1+3.2+2.3)

(0 4 5
-5 1 11)

Let us list the properties of matrix multiplication. Let A,B and C be such
a matrix that the matrix multiplication is defined. Then:

, (AB)-C=A-(BC)
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23.3. Matrix multiplication

, (A+B)-C=AC+BC
3 A-(B+C)=AB+AC
4 L-(AB)=(2A)-B

5. AE=EA=A,

Let us note that there is no commutative property (A48 = BA) among the
property of matrix multiplication. Moreover, if multiplication AB exists,
then permutation of factors is not always possible, i.e. the multiplication
BA may not exist.

In case AB and BA exist, these products may not coincide (and can be
matrices of different orders).

1 2 2 0
A= , B=
Example 23.5. Let 3 2 1 2 . Then

4 4 2 4
AB = , BA=
AL

)

ie. AB=BA.
0 1
2 1 2
A= , B={2 0
el
Example 23.6. Let ~ "/ Then
1 -1 3
4 0
ABZ{ ], BA=|4 2 4
1 -2
1 2 -1

i.e. here not only does 4B # BA have different dimensions, but AB and
BA also do.

Let us consider one more property of matrix multiplication connected with
the operation of the transposition.
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If matrices A and B are such that their multiplication is defined, then the
following equality holds:

6. (AB)' = B’A’.

In other words, the matrix obtained by transposing the product is equal to
the product of the matrices obtained by transposing the factors taken in the
inverse order.

Proof. First of all, we make sure that the product AB is defined, then the
product B'A"is also defined. Indeed, if the product AB is defined, then the
columns number of matrix A is equal to the rows number of matrix B.

But the rows number of matrix B is equal to the columns number of matrix

B' and the columns number of matrix A is equal to the rows number of
matrix 4, thus, the product B'4" is defined. Further, the element of

matrix (4B) , placed at its i-th row and j-th column is an element of matrix
AB, placed at its j-th row and i-th column.

Thus, it is equal to the dot product of j-th row of matrix A and i-th column
of matrix B, i.e. it is equal to the sum of products of corresponding

elements of j-th column of matrix A" and i-th row of matrix B". That
means that the element of matrix B'A’ placed at its i-th row and j-th

column is also equal to the dot product of j-th row of matrix A and i-th
product of matrix B. The equality is proved.

23.4. Inverse of a matrix

There exists no operation for the matrices division. However, for square
matrices, it is possible to define an operation inverse to multiplication
under certain conditions. Before doing this, we introduce some necessary
concepts. We can consider any matrix as a system of its row-vectors and
column-vectors. It is possible to prove that the rank of a system of row-
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vectors of a matrix is equal to the rank of a system of its column-vectors
(i.e. the maximal number of linearly independent row-vectors of a matrix
is equal to the maximal number of its linearly independent column-
vectors).

Definition. The rank of a matrix is the rank of the system of its row-
vectors (or column-vectors).

A square matrix A of dimension n is called nondegenerate if its rows are
linearly independent (i.e. its rank is equal to n). Otherwise, matrix A is
called degenerate.

Before defining the concept of an inverse matrix, let us note that for every

at-1

number 2% 0 there exists a number inverse to it: a  such as
aa'=1

Definition. Let A be a square matrix. Matrix A is inverse with respect to
matrix A if their product is equal to the unit matrix:

AA=E

It is easy to make sure that the multiplication of matrix A and Ais
commutative:

AAT=ATA=E.

Further, we will show that the inverse matrix exists only for a
nondegenerate square matrix.

Elementary matrix transformations are:

permutation of rows (columns);

multiplication of a row (column) by a nonzero number;

adding to the elements of a row (column) the corresponding elements of
another row (column) multiplied by a number.

It is easy to show that, as a result of an elementary transformation of the
non degenerate matrix, we obtain again a nondegenerate matrix.

Inverse of a matrix using elementary transformation
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1. Let A be a nondegenerate square matrix. Let us attach to it a unit matrix

of the same size. Then we obtain a dual matrix ( A|E ).

2. Then we do elementary transformations on the rows of matrix ( A|E ) to
obtain a unit matrix E at the place of matrix A. Then at the place of the

attached matrix E matrix 4~ is obtained.
(Let us note that in practical use there is no need to check nondegeneracy
of matrix A. It follows from the possibility of reducing Ato E.)

Example 23.7. Given a matrix
1 2 3

A=|2 2 3

3 3 4

Find the inverse matrix A"

Solution. Let us compose matrix (AIE) and apply the method of

elementary transformations. Here | isi-throw (i=1, 2, 3):
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1

0 0

-2 -3|-2 1 0
-3 -5|-3 0 1

123100 1 2 3
(ME)=|2 2 3]0 1 o| =2k g
33 40 0 1 0
1 0 0|1 1 0
b 2738 1o o 3]-2 1 0] —s
0 0 -1|0 -3 2
1 0 0|1 1 o 10 0]-1
L8k Jo 2 0]-2 10 —6|]—|0 1 0|1
0 0 -1l0 -3 2 00 1|0

-1 1 0
At=1 -5 3
0 3 -2

So,

following types:
AX =B, XA=B

Example 23.8. Solve the matrix equations

(1 2))(_[5 6J
0 3 4 11 12 2)

1 0 2 1 3 5
2 1 4(X=|4 7 11
111 3 3 3
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1 2 -2 -1 -2 3
X| 2 5 -4|=[1 4 -1
-2 -4 5 5 11 -11

3)
Solution 1. This is an equation of the form AX =B Its solution is
1 2

X =A"B_ Here 3 4) LetusfindA™:

1 2|1 O 1 2|1 O 1 01|-2 1 1 0/-2 1
- - —

3 40 1) (0 -2/-3 1) |0 -2|-3 1) |0 1|% -¥

_1:[3/2 f%J . Then
{/2 ;] (151 162j G ZJ

e )

2. This equation has a form AX =B Here . Let us find

Afl

1 0 21 00 10 2,1 0O 10 0/3 -2 2
2 1 40 1 0|>»(0 1 0|-2 1 0|—>|0 1 0|-2 1 O0]-
11 10 0 1 01 -13-1 01 00 -1 -11

A=

=N

0 2
1 4
11
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23.4. Inverse of a matrix

10 03 -2 2
-0 1 0/-2 1 0
00 -31 -11

3 -2 2
At=l-2 1 0
ie. 11 U then
3 =2 2)\(1 3 5 11 -1
X=-2 1 01(/4 7 11|=|12 1 1
-1 1 -1){3 3 3 01 3

3. This equation has a form XA=B |ts solution is X =BA™. Here

1 2 -2
A=| 2 5 -4
—2 -4 5

_Letus find A,

1 2 -2/1 0 O 1 2 -2{1 0O

2 5 —-4/01 0(>/01 0|-210|>
-2 -4 510 0 1 00 12 01

10 -2/5 -2 0 1 009 -2 2
-»/01 0|-2 1 0|—»|0 1 0(-2 1 O},
00 1]2 0 1 0012 0 1

9 -2 2
At=l-2 1 0
2 0 1
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-1 -2 3)(9 -22) (1 0 1
X=|1 4 -1||-2 1 o0|=[-12
5 11 -11){2 o0 1) (1 1 -1

Example 23.9. Solve the matrix equation
1 2 -2 1 0 4 6 1 24
2 5 —-4[X|1 1 5|=(15 4 62
-1 4 5 0 2 3 11 1 -40

Solution. This equation has a form AXB=C |tis possible, for example,
in the following order: let us find A_l, multiply this matrix on the left by

both sides of the equation. We obtain XB=A"C . Then we obtain B™
and multiplying it on the right side of the resulting equality we find

X = AflCBfl. We can solve this problem in reverse order. So,

1 2 -2
A= 2 5 -4
-1 4 5

Matrix A" has already been found in example 2.8:
9 -2 2
At=|-2 1 0

1

2\(6 1 24 2 3 12
XB=(-2 1 O0](15 4 62 |=|3 2 14

1){11 1 -40 1 3 8
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Questions

_Letus findB™*:

1 0 4100 1 0 4/1 0O 1 0 4/1 0 O
1150140|»>011-110|>011-1 1 0>
0 2 3|0 01 0 2 3]0 01 0 01/0 -2 1
1 0 0|-7 8 -4
-0 1 0|-3 3 -1},
0012 -2 1
-7 8 -4
B*=|-3 3 -1
ie 2 =2 1) qhen
2 3 12\(-7 8 -4 111
X=/3 2 14||-3 3 -1|=(1 2 O
1 3 8 2 -2 1 011
Questions
1. Where is element as located in matrix A= (aij )?
2. Can matrix consist of a) one row; 6) one column; 8) one row and
one column?
3. Can any element a;; of the diagonal matrix be equal to zero?
4. Can two matrices be equal if one of them is of the third-order and

the other is of the fourth-order?
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5. Is it possible to find a sum of two matrices if one of them has
dimension 3-4 and another one has dimension 4-3?
6. Does product AB exist if matrix A has dimension 3-4 and matrix B
has dimension 3-4? Does product BA exist?
7. Is it possible to find a product of two matrices if one of them is a
square matrix and the other is not a square one?
8.  Let products AB and BA exist for matrices A and B. Is it
possible to claim that matrices A and B have the same dimensions?
9. Can the product of two nonzero matrices be a zero matrix?
10. What is a square of a matrix? Can the square of a nonzero matrix
be a zero matrix?
11. Does an inverse matrix 4 exist for diagonal matrix

1 000

0 200
A=

0 0 30

0 0 0 4

2 1f A exists, then what is its form?

388 ‘




" 24.1. Basic concepts ‘7
Chapter 24. Determinants

24.1. Basic concepts

There is a rule according to which each square matrix is assigned a number
characterizing this matrix.
Let us consider a matrix of the second order:

(au a,
aZl a22

j . (24.0)

Number 21%22 ~ 2% 5 a determinant of matrix (24.1) and is written in
the form:

8, &,

aZl a22
(this is a determinant of the second order).
So,

& 9

A1 A = 85 — 8,8y . (24.2)
For example,

2 3

=2-5-3-4=-2
4 5

The concept of a determinant is associated, in particular, with the solution
of the systems of linear equations. Let us consider a system:

{ailxl +a,X, = bl’
ay X +ayX, = bz-
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To exclude X2, let us multiply the first equation by 2 and the second one

by %2 and from the first equation subtract the second one:
(anazz - aiza21)' % =ba, —ba, ,or dx, =d, ,

go|t B g | B

Where a‘21 a22 b2 a22 .
_4d
If d = 0, then we obtain d. Similarly, we obtain
d,

dx, = d, %= F

d2 — ail El
where G D .

X d, X, = d

1=
Application of formulas d and
of equations is called the Cramer’s rule.
Example 24.1. Solve the system

Z2
d for the solution of systems

2%, +3X, =17,
X, +4X, =6.
Solution:
2 3 7 3
d= =2-4-3.1=5, dlz =7-4-3-6=10,
1 4 6 4
2 7
d2= =2'6_7 1—5,
6
d, 10 d 5
%97 > d 5




24.1. Basic concepts

A similar rule for systems with any number of unknowns will be
considered later.

For a square matrix of the third order a determinant of the third order
is a number defined by the formula:

&y &p A
a a a
21 22 B = Q185,853 + 8,,89385; +8138,,83, — Y3835 —
y Ay Ay —84,8,,833 — 8y,8,38s,.
(24.3)

A determinant of the third order is an algebraic sum of six products of
elements, taken one from each row and each column.

These products are terms of determinant. Formula (24.3) can be
schematically depicted as follows:
l|+ll |l'_l|

With a plus sign, we take products whose factors are on the main diagonal
and at the vertices of isosceles triangles with the bases parallel to the main
diagonal; with a minus sign - on the minor diagonal and at the vertices of
the isosceles triangles with the bases parallel to the minor diagonal.

We turn to the definition of the concept of a determinant of any order. For
this purpose, we need some preliminary concepts.

Let us consider the natural numbers from 1 to n. These n numbers can be
written in one order or another.

Any arrangement of numbers 1,2, ..., n is called permutation.

For example,

3,1,5,4,2 (24.4)

is a permutation of five numbers.
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It is easy to prove that the number of different permutations of n numbers

is equal to the product of 1-2-...-n, denoted as 7! (factorial of n).
Let us consider an arbitrary permutation Oy Ao oo a", from the first n
natural numbers. Let us choose two arbitrary numbers % and %/ from

. . i< i o; >0 , o
this permutation. If <] , but ! I’ then the numbersa' and ) are
said to form an inversion. (In other words, if in the permutation a larger
number precedes a smaller one, then these two numbers form an inversion.)

=5

In particular, in permutation (24.4) numbers U and%s = 2 form an

<o

. . i<i: e . .
inversion. If for ' < inequality }holds (i.e. a smaller number

. [0
precedes a larger one), then the numbers % and %idon’t form an

a,=1

inversion. For example, in permutation (24.4) numbers and

o, =4 don’t form an inversion.

A permutation is called even if it has an even number of inversions.
Otherwise a permutation is called odd.

Let us consider a square matrix

&y 8y . By,
A _ a‘21 a‘22 v aZn
a‘nl anZ ann

We compose some product of its n elements taken one from each row and
each column:

ai(xlaZ(xz "'anan . (245)

In product (24.5) factors are written in ascending order of their first indices
- rows numbers. The second indices, column numbers, form permutations
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Oy, Oy, ...y O

" . Product (24.5) is called a term of a determinant of matrix
A. Let us define a sign rule: if the second indices form an even
permutation, product (24.5) is taken with the plus sign; if they form an odd

permutation, the product is taken with the minus sign. There are ! such
permutations (24.5) — as many different permutations form their second
indices.

Definition. A determinant of a square matrix of order n (a determinant of

order n) is an algebraic sum of 7! terms, each of which is a product of n
matrix elements taken one from each row and each column, in accordance
with the signs rule.

A determinant of order n is denoted as:

& 8, .. Ay

a‘21 a‘22 a‘2n
d=[A="

a'nl an2 a‘nn (246)

Further, we will talk about elements, rows and columns of the determinant,
referring to the elements, rows and columns of the corresponding matrix.
It should be noted that it is difficult to calculate the determinant of order n

for >3 based directly on the definition. (For example, to find the
determinant of order six it is necessary to calculate a sum of 720 terms,
each of which is a product of six elements.)

So, to calculate a determinant, it is previously simplified by transforming
considering its properties.

24.2. Properties of determinants

. =A'
1. Transpose does not change a determinant: |A| | .
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Property 1 implies that any statement about the rows of determinant is true
for columns and vice versa. In this sense, the rows and columns of the
determinant are equal. That is why we will formulate properties for rows,
meaning that they also hold for columns.

2. If one of the rows of the determinant consists of zeroes, then the
determinant is equal to zero.

This property is easy to prove. Let all the elements of the i-th row of
determinant be equal to zero. Each element of the determinant contains a
factor which is an element of this row. That’s why every term of
determinant is equal to zero. Thus, the determinant is equal to zero.

3. When two rows are replaced, the determinant changes its sign.

(In other words, when two rows in matrix A are replaced, we obtain matrix

B such as A= _|B|).

4. Determinant which contains two identical rows is equal to zero.

To prove this property let us swap these two identical rows. The
determinant will not change but, according to property 3, it will change the
sign: d=-d . Thus, d =0,

5. If all the elements of any row are multiplied by number k, then the
determinant will multiply by its number k.

Indeed, in this case, every term of the determinant will multiply by number
k, thus, the determinant will multiply by its number.

From property 5 follows that the common factor of any row of determinant
can be taken out of the determinant sign.

6. A determinant which consists of two proportional rows is equal to zero.
Let us prove this statement.

Let the i-th and j-th rows be proportional: elements of the j-th row are
obtained by multiplying the elements of the i-th row by number k. We take
out k by the sign of the determinant and obtain a determinant which
contains two identical rows. According to property 4 it is equal to zero.

7. If elements of one row of determinant d have a form
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a, =b, +c¢

k (k=1,2,...,n),

then the determinant is equal to the sum of two determinants d, and d, ,
in which all the rows, except this one, coincide with the corresponding
d,

d,

rows of determinant d. Moreover, at the place of this row, determinant
contains a row which consists of elements bik, and determinant

contains a row which consists of elements Ci k=1,2,...,n):
a’ll a12 a1n

d=|b,+c, b,+c, .. b

n

+C, |=d,+d, =

n

a, a, .. a

&y 8, . @ & @ . @

anl an2 a a‘nl a'n2 a

nn nn

This statement follows easily from the fact that each term of determinant d
can be represented as a sum of two terms, one of which is a term of

determinant d, and another one is a term of determinant dZ.

8. If one of the rows of the determinant is a linear combination of the other
two rows, then the determinant is equal to zero.

Property 8 is a generalization of property 6.

395 ‘




Chapter 24. Determinants

9. The determinant does not change its sign if the corresponding element
of another row multiplied by the same number is added to the elements of
any of its rows.

This property is a consequence of properties 4-7.

10. The determinant of a multiplication of two square matrices is equal to
multiplication of their determinants:

[AB| = |AJ-[B]
In conclusion, we recall once again that all the statements formulated here

for the rows of determinant remain true for its columns. (This refers to the
columns of the corresponding matrix.)

24.3. Minors and algebraic adjuncts

Let us consider determinant of order n. Select an element X and cross out
the i-th row and j-th column at the intersection of which this element is

located. We obtain a determinant of order (” —1) which is called minor

M’f of element a"f'.
For example, let us take determinant of order 4:

1021

3
d:
0
1

o N P
i G N

5
3
3

Minor M of element % is obtained by crossing out the second row and

the third column at the intersection of which element %23 =2 is placed:
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Definition. An algebraic adjunct of element & of determinant (24.6) is
number:

Aij = (_]—)HJ Mij _
In particular, in the above example the algebraic adjunct is:

5
A= (-1 44
Minors and algebraic adjuncts play an important role in linear algebra and
its applications. One of such applications is the following statement.
Theorem 24.1. The determinant is equal to the sum of products of any of
its rows by its algebraic adjuncts:

d =a,A, +a,A, +..+a,A, (24.7)

(We accept this theorem without proof.)

Formula (24.7) is called decomposition of a determinant by the i-th row.
Analogical statement holds for decomposition of a determinant by any
column. Formula (24.7) reduces the calculation of the determinant of order

n to calculation of n determinants of order (N —1).
Remark. The sum of pairwise products of the i-th row (column) of the
determinant by the corresponding algebraic adjuncts of the j-th row

(column) for =1 s equal to zero, i.e.
anAy+a, A+ +a,A, =0

aliAlj +a2iA2j +...+aniAnj =0

foriij.
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Let us prove, for example, the last of these two equalities. We decompose
determinant

a; .. @ .. 8y .. A,
Ay .. Ay a,, a,,
d=
8y .. Ay .. 8y .. Ay

by the j-th column:
d=a;A; +a,A, +...+anjAnj.

Now we replace the elements of j-th column by the elements of i-th column
(leaving the i-th column unchanged). We obtain determinant

Ay e Ay ey e A,
ay .. Q, a, a,

i i n

d'=

a, .. a a a

ni ni nn

which contains two similar columns at the i-th and j-th places and, is

obviously equal to zero: d'=0 pytits decomposition by the j-th column
has a form:

d'=a;A;+a,A; "‘---"‘aniAnj_
Thus,

aiiAij +a2iA2j +"'+aniA'1j =0

g.e.d.

Usually, a determinant is preliminarily transformed before calculation
according to its properties. Usually, it is reduced to a triangular form since
the following statement holds:
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If all the elements of the determinant located on one side of the main
diagonal are equal to zero, then this determinant is equal to the product of
the element placed on the main diagonal.

We prove this statement using the method of mathematical induction. For
the determinant of the second-order, this statement is obvious. Assume that

it holds for determinant of the (n _1) -th order and consider determinant of
n-th order:

a11 a12 a13 aln
0 a, ay, .. a,
d={0 0 a; .. a

n

n

0O 0 0 .. a,
We decompose it by the first column:
Ay, Ay .. 4y,
d-a, 0 ay .. a,
0O 0 .. a

nn

On the right side of the obtained equality is the determinant of the (n B 1)

-th order. For this determinant the following equality holds

dy,, dy .. Ay,
0 ag .. a,
=ay853 -4,
0 0 .. a

nn

Thus, d= 818985, ”'ann.
Example 24.2. Calculate the following determinants:
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N W DN

1
1
1

N W DN

3
4
5

N O B~
w o1 N

1) 1 3 1 2 7 8

Solution. 1. It is possible to decompose determinant d: by any number.
However, the shortest calculation is obtained by decomposition by the row
with the largest number of zeroes. We decompose d: by the third row and
then As, by the second row:

14 3
13
d,=-2-{0 1 0 :—2-1-‘ 1‘:4
121

2. Subtract the first row of determinant d, from all the others and then
subtract the doubled third row from the fourth:

1232 ]1232
0113|0113
0021/ /00 2
0046 (000 4

We used the fact that the obtained triangular determinant is equal to the
product of the elements of the main diagonal.

d, = =1.1.2-4=8

24.4. Application of determinants

Definition. Square matrix A is nondegenerate if its determinant is not

A=0 . -

equal to zero: | | . Otherwise, the matrix is called degenerate.

Let us note that this definition is obviously equal to the definition given
above.
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Theorem 24.2. Inverse matrix A~ for matrix A exists if and only if matrix
A is nondegenerate.

Proof. Necessity. Let matrix A have inverse matrix A7 Then

ATA=AAT=E 50 as |E[=1=0 and the determinant of matrix
product is equal to the product of their determinants, then

AA =|Al|AY = [E| 20 A*=0_|A=0

, thus,
2.Sufficiency. Given a nondegenerate matrix
&y 8, . Ay
A — a21 a22 a2n
anl an2 ann
. . A=
and its determinant | |

d=0

We transpose matrix A and then replace its elements by its algebraic
adjuncts:

A A o Ay

o | Ao B A

Ain A2n e Am . (248)
Matrix A™ is called the adjugate matrix of matrix A.

Let us find product AA* _ Given the decomposition (24.7) and the
following remark, we obtain
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d 0
AA* = d
0 0

d

o O

=dE

(24.9)

(Write the multiplication AA* in detail and make sure in equality (24.9)

by yourself).

It is also easy to make sure of AA* = A*A
So, AA*=A*A=dE . Hence

Ay
A,

AEA*:EA*A:E
d d
Thus,
A‘lziA*
d i)
or, more particularly
Ay Ay
pa 1A Ay
A Ay

The theorem is proved.

An). (24.10)

Calculation of an inverse matrix by the adjugate matrix method.

1. Let us find the determinant of the initial matrixd :|A| If d :0, i.e.

matrix A is degenerate, then an inverse matrix does not exist. If d=0 , we

continue the process.

2. We find the algebraic adjuncts of elements of matrix A and form an

adjugate matrix 4™ of its elements.
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3. We find an inverse matrix by formula (24.10). In some cases it is useful

to check up, i.e. to check multiplications A~ Aand AA™ (or one of them)
and make sure that we get the identity matrix E.
Example 24.3. Find an inverse matrix of matrix 4:
1 2 3
A=12 3 1
1 21

Solution. 1. Let us calculate the determinant
d=|A=(3-2)-2(2-1)+3(4-3)=2

2. Let us find the algebraic adjuncts:

All =(_1)l+l > =1 A21 =- 23 =4
2 1 2 1 A, =—T7
2 1 13
=(=1) —_1 = ——
2 3 1 2
=(-1)"° =1 =— =0
Al3 ( ) 1 2 ‘ A23 ‘ 1 2 ‘ ASZ __1
We form an adjugate matrix:
1 4 -7
A= -1 -2 5

1 0 -1

3. We calculate an inverse matrix
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> 0 N

To test yourself, make sure that A"A=AA™ =E |

Let us note that for calculation of inverse matrices of the higher dimension
matrices we use another method - the method of elementary
transformations. (see. § 23.4).

24.5. Matrix rank

Let A be a matrix with dimension M> N Pick up k rows and k columns in
an arbitrary way. Elements placed at the intersection of the selected rows
and columns form a square matrix of order k; its determinant is called a

minor of order k of matrix A. Herewith, obviously, k <min (m, n).

Definition. The highest order of minors of matrix A, which are not equal
to zero, is called the rank of matrix A.
Example 24.4. Calculate the rank of matrix

2 3 456

1 2121
A:

0 00 0O

3 6 3

Solution. It is easy to check that the rank of matrix A is equal to two:

rgA=2 . Indeed, the second-order minor placed at the upper left corner

is not equal to zero:

2 3
=1+0

1 2
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however, each of the third-order minors contains either a zero line or two
proportional lines and, thus, is equal to zero.

In § 23.4 we defined the matrix rank as the maximal number of its linearly
independent vectors.

In this regard, it makes sense to define the matrix rank as the maximal
number of its linearly independent rows. This definition is equivalent to
the previous one. It is possible to prove (it is done in algebra course) that
the maximal number of linearly independent matrix rows is equal to the
maximal number of its linearly independent columns and also to the
maximal order of the nonzero minors.

Here are the main methods for calculating the rank of a matrix.

1. Bordering minors method. Let a nonzero minor M of order k be found

in matrix A . We consider minors of order 4 +1 which contain minor M.
If all of them are equal to zero, then the matrix rank is equal to k. Otherwise,
the procedure continues.

Example 24.5. Find the matrix rank

2 3 0 2 4
5 8 0 2 5
0 02 46
0 01 2 3

Solution. Let us fix a nonzero second-order minor:

2 3
M, = =10
5 8

One of the bordering third-order minors is also nonzero:
2 30

M,=|5 8 0|=2=%0

0 0 2

A=
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However, both fourth-order minors bordering M, are equal to zero since
each of them has the proportional third and fourth rows.

Thus, the matrix rank is equal to three: rg A = 3.

2. The method of elementary transformations. Elementary
transformations do not change the matrix rank. Using elementary
transformations, we can bring the matrix to such a form when all the

elements except %11, 92 . % are zero. The number of nonzero

elements of the transformed matrix is obviously equal to the matrix rank.
Example 24.6. Find the matrix rank

1 2 3
2 5 7
A=
0 -1 -1
1 0 1
Solution:
1 2 3 1 2 3 1 0 1 1 00
2 5 7 0 1 1 0 1 1 0 10
— — —
0 -1 -1 0o -1 -1 0 0O 0 0O
1 0 1 0 -2 -2 0 0O 0 0O
The rank of the transformed matrix is equal to two, thus, & A=2
Questions
1. Under which conditions is the determinant of a second-order
matrix equal to zero?
2. With which sign does the term 811823854842 onter the determinant

of the four-order matrix?

406 ‘




25.1. Basic concepts

3. Can the multiplication 8128238581854 , taken with the appropriate
sign, be the term of determinant of a five-order matrix?

4. What is the difference between minor M, and algebraic adjunct
A,

5. Let matrix A4 contain a five-order minor which is not equal to zero.
What can be concluded about the matrix rank?

6. What is the sum of the products of the elements of a row of the

matrix by the algebraic component of the elements of another row of this
matrix?

7. Is it possible to calculate the determinant of the product of two
square matrices without multiplying these matrices?

8. What is the determinant of a triangular matrix?

9. Which method for calculating the inverse seventh-order matrix is

preferable: the adjoint matrix method or the elementary transformations
method?
10. Can the rank of matrix A with dimension 7-3 be equal to four?

Chapter 25. Systems of linear
equations

25.1. Basic concepts

The system of m linear equations with n unknowns has the form:

407 ‘




Chapter 25. Systems of linear equations

ai1X1 + a12x2+. . +a1nxn = bl'
a21x1 + a22x2+. .s +a2nxn = bz,

(25.1)

Am1X1 + QX+ FAmnXn = by

The matrix composed of the coefficients of the equations of system
(25.1), i.e.

a; Ay &

a a a
A _ 21 22 2n

aml amZ a‘mn

)

called the matrix of the system.

If we denote by X the matrix column of unknowns, and by B the column
matrix of free terms:

X, b
X = X, B— bz
X b

then system (4.1) can be written in the form of a single matrix equation:
AX =B,

Adding columns of free terms to matrix A, we obtain an expanded matrix
of system (25.1):
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all a12 e aln bl
a‘Zl a22 e aZn bZ

A=

a a

ml m2 mn|~m

(Usually a column of free members is separated by a vertical bar).
The expanded matrix contains all the information about the system.
A solution of the system (25.1) is a set of numbers

X =0y Xy = Oy, ey Xy = QL

when substituted into this system, all equations turn into identities.

A system of equations is called compatible if it has at least one solution.
A system that does not have a single solution is called incompatible. A
compatible system having a unique solution is called definite. If the system
has more than one solution, then it is called indefinite.

Solving a system means finding many of its solutions. The set of all
solutions of the system is called its general solution.

Two systems are called equivalent if they have the same set of solutions,
or, that is equal, the same general solution.

Usually, in order to solve a system, it is first transformed. Moreover, the
transformed system should be equivalent to the original.

We list the elementary transformations of system (25.1):

* permutation of equations;

 multiplication of both parts of one equation by any number other than
zero;

» adding to both sides of one of the equations of the system the
corresponding parts of the other equation multiplied by the same number;

* crossing out equations of the form 0-%+0-%+...+0-x, = 0.

As a result of elementary transformations, a system equivalent to the
original one is obtained.
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25.2. Methods of solving systems of linear
equations

1. Gauss method. This is the most convenient method for solving systems
of the form (25.1). Let us state its essence.

Suppose for definiteness in system (25.1) a, #0 (if a, =0 , (if, then we
displace in the first place another equation with a nonzero first coefficient).

_ 8y

Multiply the first equation® by 41 and add to the second. Then we
_&

multiply the first equation by %1 and add to the third, etc. Finally,
a

ml

multiply the first equation by 41 and add to the last one. As a result of
these elementary transformations, we obtain a system that is equivalent to
the original, but in the new system none of the equations except the first

contains the unknown %t :

X +apX; +aXs .+, n:b1’
! ! ! !
A5y Xy + X + ...+ 35X, =y,

n

ar X, +a X +..+a X, =br.

(25.2)

1 Speaking about the multiplication of the equation by a number, we, of course,

mean the multiplication of all members of both sides of this equation by this
number.
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Note that only coefficients and free terms are transformed; therefore, it is
more convenient to write the system transformation as a transformation
of its extended matrix:

; 8, A, .. (b

! ! ! !
A — 0 a, a; .. a,lb

0 a

At the second stage, using the second equation, we similarly transform all
the equations, starting from the third, or, which is the same, multiplying
_8y
the second row of the matrix A’ by corresponding numbers ( e ,
_3m
822 ) and adding to the third, ..., m-th lines, we get:

a; &, a; .. a,lb
0 a, a, .. a,|b
A'=[0 0 a} .. ab]

0 0 &, .. b

We continue this process in the same way: further, all lines except the first
two will be converted, then except the first three, etc.

We did not investigate the compatibility system in advance. Nevertheless,
the Gauss method allows one of the stages to establish the possibility of
system incompatibility. Indeed, if, as a result of the transformations, we
obtain a row in which all terms except the last are equal to zero and the
last is non-zero, then this corresponds to an equation of the form:

411 ‘




‘ Chapter 25. Systems of linear equations

0-%+0:-X,+..+40-x,=b=0

that has no solutions. Therefore, the system containing such an equation
is incompatible.

In the process of applying the Gauss method, lines entirely consisting of
zeros may also appear, which corresponds to equations of the form

0-%+0-X,+..+0-x,=0
This can happen if the corresponding equations of the original system are

linear combinations of other equations of the system.

If system (25.1) is defined, then its matrix as a result of transformations*
will take the form:

all alZ a13 e a1n bl
0 a, a, .. a,|Db
0 0 0 .. apry

)

I.e. the system will have a "triangular" look:
Xt 8pX, + Xy o+ 3 X, =D,
a5, X, + 8pXg + ...+ A5 X, =Dy,

(n-1)y, _ Rin-1)
B %o =0y (25.4)

(superscripts and primes indicate how many times the coefficients and free
terms have changed during the transformations).

1 Note that the method of finding the inverse matrix (see § 23.4) is based on

similar transformations.
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>
Il
>

n (n-1
From the last equation of the system (25.4) immediately find 8 ,

then, substituting the found X0 in the penultimate equation (containing

only X and Xn*l), find -1 and so on. Thus, we successively find all other
unknowns. (This process is sometimes called the inverse of the Gauss
method.)

Example 25.1 Solve the system:
X+ X, +2X%,+ X, =3
2%, +3X, +5%, +3X, =9
X, — X, +2X, =-3
2X, +2X, +6X; +4x, =8

Decision. We compose the extended matrix of the system and apply the
Gauss method:

1 1 2 1| 3 1 12 1] 3
2 3 5 3] 9 -2, 1-,1,-2l \O 11 1| 3 IR
1 -1 2 0|-3 0 -2 0 -1|-6
2 2 6 4| 8 0 0 2 2| 2
112 13 112 13
l+21, (0 1 1 13} |-, |0 1 1 1|3
i .
0 0 2 1(0 0 0 210
0 0 2 2|2 0 00 12

The resulting expanded matrix corresponds to the system:
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X+ X, +2X;+ X, =3

X, + X3 +X,=3

2X;+ X, =0

X, =2,
which is equal to the original system. Substitute X, =2
-1

to the penultimate

: substitute X u X3 to the second equation, find

X X3, X2 to the first one find % =1,

equation, find ¢ =
X, =2 : finally, substitute found
So, the system has a unique solution.:

It is possible to solve such a system, leading it not to a triangular form, but
turning it into the so-called allowed system. Let us illustrate this with an
example, and then describe the process in a general way.

Example 25.2 Solve the system
X, ++2X, + X, +4X, =7,
3X, +2X, + X3+ X, =3,
X, + X, +2X; +2X, =4,
2X, +5X, +3X; +9x, =15.
Solution. We compose an expanded matrix and transform it in such a way

that each row and each column of the transformed matrix of the system
contain one element equal to one, and the rest equal zero:
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1 2 1 4|7 1 9
321 13| 1,3, 1,1,-2, [0 —4
112 2|4 o _1
2 5 3 9|15 0 1
10 -1 215
L+, L+4l,, =21, 00 2 -7|-14 .
o0 2 -1]-2
01 1 1]1
10 3 0|1 1
I~y L #7112l [0 0 12 0)0 | 0
00 -2 1|2 0
01 3 0/-1] |0
100 0|1
-3, 1,+21,,1,-3l, |0 0 1 0[O0
o o0 1]2
010 0[-1

So, gotten system is:

1
-2
1
1

P O oo ©@ o or

4|7
_11|-18
_2| -3
1|1
0 -1 2|5
0 2 -7|-14
0 -2 12
11 11
3 0[1
1 0|0
2 1)2 |7
3 0]-1

i.e. we got a solution X =1 X =-1 X = O, X, =2 o 1,-1,0,2).
Obviously, system (25.1) can be reduced to the form (4.4) when the rank

of its matrix coincides with the number of unknowns:
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rg A=r<n

In the case when the system is compatible and , the expanded

matrix A is converted by the Gauss method to the form:

&y 8p . 8 .. Ay | D
0 ay, .. a, .. a, | b
0 0 .. atd . alrd pry

#0 a,=0 al™

where 2 w7 O. The corresponding system has a

"trapezoidal™ shape:

ay X, +a,X% +...+a, X +..+a,X, =b,
a5 X, + ot 35, X, +..+ 25X, =y,

r

a"™x +..+a"Vx =bY, (25.5)

X

In this case, declare the unknown “r+1, ..., Xn free and move to the right

side of the equations.
Example 25.3. Solve the system.

X, + X, —=2X;+ X, =1,
2%, +3X, —3X, =5,
X, +4X, + 2%, —6x%, =11,
X, — X, —5X; +6X, =—6.

Solution. Transform the extended matrix of the system:
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1 1 -2 1] 1 1 1 -2 1] 1
2 3 -3 0| 5| L-21,1-,1,- . o 1 1 -2 3 IR
1 4 2 -6|11 o 3 4 -7]10
1 -1 -5 6|-6 0 -2 -3 5(-7

11 -2 1| 1 11 -2 1|1
3,142, |0 1 1 -2] 3| 4, |01 1 -2/3
00 1 -1| 1 00 1 -1/1
00 -1 1|-1 00 0 o0f0

Obtain the system:
X+ X, —2%+ X, =1
X, + X3 —2X%, =3

X, — X, =1
Unknown *4 declare as free: X4 =C. From the last equation get:
X3 :1+C. Substitute this value to the second equation: X :2+C.

Substitute found "¢ i X2 to the first equation: % =1
The system has an infinite number of solutions:

X=(1,2+c,1+c,c)

where c gets any numerical values. This is a general system solution.

We now consider the Gauss method in a slightly different form. The
method consists of several steps. Suppose that the first k-1 steps are taken,
and describe the next k-th step.

1. We check if there is at least one contradictory equation in the system
(obtained after the k-1 previous steps). If such an equation exists in the
system, then it is incompatible - work with it stops.

2. If the system has trivial equations 0 = 0, then delete them.
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3. Let there be no contradictory equations in the system. Then one of the
equations is chosen as the resolving equation, and one of the unknowns is
declared as resolving unknowns. The following conditions must be met:
1) in the previous steps this equation was not resolving;

2) in the resolving equation, the coefficient for the resolving unknown must
be nonzero! (this coefficient is sometimes called the resolving element);
3) from all equations except the resolving one, we exclude the resolving
unknown. For this, we add a resolving equation multiplied by the
corresponding number to each of these equations.

After a finite number of steps, the process will stop, and either the
incompatibility of the system will be established, or a general solution of
this system will be obtained. This will happen when all the equations are
in the role of resolving ones.

Let us look at some examples. As usual, we will transform not the systems
themselves, but their extended matrices.

Example 25.4. Find a general solution and one particular solution to a
system of equations

X+ X, —4X; =X, +3X, =1,
2X, + X, —5X, +X =71,
3X, +4x, +Xg —3Xg =—2,

X — X3+ X, —2Xs =8.

Solution. We write the extended matrix of the system.

1 Using elementary transformations, one can resolve the equation such that the

coefficient for the unknown sought becomes equal to unity.
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11 -4 -10 3]|-1
21 -5 0 0 1|7
30 4 0 1 -3|-2/|
10 -1 1 0 -2|38

Step 1. We make sure that this system does not contain contradictory and
trivial equations. We select the first equation as the resolving equation, and

the coefficient %12 =1_ as a resolving element. We do the transformation
Iz_ll;

11 -4 -10 3|-1

10 -1 1 0 -2/ 8

30 4 0 1 -3|-2|

10 -1 1 0 -2/ 8

Step 2. The matrix obtained after the first step is an extended matrix of a
system that does not contain contradictory and trivial equations. We take
the second equation as the resolving equation, and the coefficient as the

resolving element 32 =1 \We do the transformation L4110, -1, :
2 1 -5 00 1|7

10 -1 10 -2)| 8

30 4 01 -3|-2{

00 0 00 OO

Step 3. The system of equations obtained after the second step contains a
trivial equation - delete it (delete the line consisting of zeros):

21 -500 1|7
10 -110 -2|38
30 4 01 -3|-2
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In the third equation coefficient Ags :1. It can be taken as the resolving
one, but the remaining equations no longer contain the resolving unknown

X5 Obtain the system:

2X, + X, —5X, +X =7,
X — X3+ X, —2X%; =8,
3%, +4X, +Xg —3Xg =2,
Xy, X4, X X1 X3 X .

has unknowns 41 75 expressed through free unknowns

X, = 7T—=2X +5X; —Xg,
X, = 8 =X +X;+2X;,
Xg = —2—3X, —4X; +3X;.
Consider %1 =G Xs =C2, X6 =C3 et 4 solution

X = (c,,7-2c, +5¢, —¢,,C,,8—C, +C, +2C,,—2 — 3¢, —4¢, +3C,, C, )
Take for example © =1¢,=0.¢,=3

solutions:

Xlzl’ X, =1’ X3=O’ X4=131 X5=4’ Xg :3'

, obtain one of the partial

Example 25.5. Find a general solution of the equation:
X, +2X, +X;+4X, +X; =-4,
2X, +5X, +3X; +8X, + 3%, =-10,
X, +2Xg +2X, +6X, =1,
4x, +4x, +16x, =-3.

Solution:
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1 21 4 1| -4 1 2 1 4
2 53 8 3|-10| |,-21,1,-4l \(0 1 1 0 -2
01 2 2 6|-1 o 1 2 2
4 4 0 16 0| -3 L0—4—40—413
10 -14 -1|0
=21, L, 1, +41, jo 1 10 1]-2
00 2 51
00 0 0|5

The system is incompatible.

2. Inverse matrix method. Let the number of equations in the system of
equations (25.1) be equal to the number of unknowns m=n, the system has
the form:

81X + X, ot A, X, =Dy,
A, X + 85X, +. 3, X, =Dy,

2n”n

X +a,% +...+a, X, =b,.

(25.6)
We compose a square matrix A of this system:
8y, 8y, - &,
A — a'21 a22 aZn
anl anZ ann
We write system (21.6) in matrix form:
AX =B, (25.7)
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. . |A=0 . .
Let matrix A be non degenerate matrix: | | . Then there is an inverse

matrix A

Multiply both sides of the equation (21.7) by A™ on the left;

A'AX =ATB

And get solution of the system (4.6):

X=A"B (25.8)

Example 25.6. Solve three systems of equations:

X, +2X, +3%; =4, X, +2X, +3%; =0,
1) <2% +2X, +3X, =5, 2) 12X +2X, +3X%, =1,
3%, +3X, +4X, =7, 3%, +3X, +4%, =1;

X, +2X, +3X; =14,
3) 12X, +2X, +3%, =15,
3%, +3X, +4x%, =21.

Solution. Matrix A was found in the example 19.7.
-1 1 0) (4 1
X= 1 -5 3| =0
3 -2 1

X=| 1 -5 3[[1]=]-2
3 -2

S)
7
-1 1 0)(0 1
1
1
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-1 1 0)(14 1
X=| 1 -5 3|]15|=|2
0 3 -2)(21 3

3. .

3. The Cramer Rule. In § 24.1, we already considered the Cramer rule for
solving a system of two equations with two unknowns. We generalize it to
the case of any number of unknowns.

Theorem 25.1 (Kramer’s theorem). Let a system of n linear equations

with n unknowns be given AX =B _|f A0 , then system has only one
solution:

|
A

Al

X, =

CA (25.10)

A
A

where A means the matrix obtained from A by replacing its ith column
with a column of freeterms B (i=1, 2, ..., n).
Evidence. We write in expanded form, taking into account (25.10) the

solution of the system X = A"B of the system AX =B

Xl A.I.l A12 Aln bl
X, A By o Ay lb,

X X

1.
| A
Xn Anl An2 Ann bn

According to the rule of multiplying matrices, we get:

i(Anbl + A2ib2 ot Aqibn) _

X, =
A
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However, the expression in parentheses is the expansion of the determinant

|A| in the ith column: A+ A, +...+ Ay, :|A| :

oA

So, |A| . The theorem is proved..

Formulas (25.9) are called the Cramer formulas, and the rule for solving
systems using these formulas is called the Cramer rule.

Cramer's formulas are mainly of theoretical value. Their application for
solving systems with a large number of unknowns would lead to
cumbersome calculations. However, these formulas have a very important
merit: they give an explicit expression of the meanings of all unknowns.

25.3. Compatibility of systems of linear
equations

Consider matrix A and the extended matrix A of system (25.1). It is
known that the rank of a matrix is equal to the largest number of its linearly
independent columns. Therefore, attaching a column of free terms to the
matrix A, we either obtain a matrix whose rank is one more than rank A or
do not increase the rank - if the column of free terms is a linear combination
of the remaining columns:

ay, a, a, by
a a a b.
S e B e B
a‘ml amZ a'mn bm . (2510)

It is easy to see that equality (25.10) is equivalent to the fact that system

X =Kp, X =Kg, oo X, =K

(25.1) has a solution n. The question of
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compatibility of a system of linear equations is solved by the following
theorem.

Theorem 25.2 (Kronecker-Capelli theorem). The system of linear
equations (4.1) is compatible if and only if the rank of its extended matrix

Ais equal to the rank of its matrix A.

Evidence. 1. Let system (25.1) be compatible and lets K Kyyor Ky be its

solution. We substitute these numbers for unknowns and obtain a system
of identities that is equivalent to equality (25.10), which means that the
column of free terms is a linear combination of columns of the matrix A.
It follows that

rg A=rg A
2. Lets given that rgA=rg A. Then any maximal linearly independent
column system of the matrix A remains a maximal linearly independent

column system in the matrix A . Therefore, in particular, the column of
free terms is a linear combination of columns of this system, and it follows
that the column of free terms is a linear combination of all columns of the
matrix A, i.e. equality of the form (25.10) holds. This, in turn, means that

numbers Ky Ky, kg (among which, of course, some may be zeros)

constitute a solution to the system (25.1). We proved that the compatibility

rg A=

of system (25.1) follows from the equality rg A . The proof is over.

Now take a look at the application of the Kronecker-Capelli theorem: Let

G A=TGA=T |1 this case, we say that the rank of system (25.1) is .

Then system (25.1) is compatible.
If T =" then the system is defined. Its unique solution can be calculated
either according to the Kramer rule or by reduction to the form (25.4). If
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X

red e X

I'<N the system is reduced to the form (25.5). Unknowns
declare free and transfer to the right side of the equations. In the left parts

remain terms containing unknowns Xl, XZ, X called the basis:
a11X1 + a12X2 +..t alrxr = bl - a‘l,r+lxr+l T a‘1an’
! ! ’ ! !
Xy o+ B X =0; =85 Xy — e — B X

a.(r—l)x _ b(r—l) _ a(r—l)x

it r r rr+l M+l T T Y n

From the last equation find X substitute its value (depending on free

unknowns) in the penultimate equation, find Xi-1 and so on. This way find
unknowns Xl, XZ, X, , expressed by free variables, which can have any
values. Therefore, system (25.1) in this case has an infinite number of
solutions.
Giving free unknowns arbitrary values and obtaining the corresponding
values of basic unknowns, we obtain all solutions of system (25.1).
Example 25.7. Solve the system of equations:

X, + 2X, + X, =5,

3X, +5X, — X; +2X%, =13,
X, +3X, + X, +2X, =7,
X+ X, =X =3.

Solution. We compose an extended matrix and apply the Gauss method:
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12 0 15 1 2 0 1 5 1 2 0 1| 5
3 5 -1 2|13 0 -1 -1 -1|-2 0 -1 -1 -1|-2
- -

13 127, {0 1 1 1 2, |0 O O 0| O
11 -1 0|3 0 -1 -1 -1|-2 0O 0 0 o050
We see that 9 A=rgA= 2, in particular, the minor composed of the
coefficients of and in the first two equations is nonzero:

1 2
=-1%0
0 -1

and all third-order minors are zero. Unknowns Xl, X take as basis ones,

the others, i.e. X3, X

X +2X,=5-X,
— X, ==2+X+X,

4 declare as free and put to the right side of equation:

Giving free variables arbitrary values X3 =Gy , Xy =Gy , we find an infinite

number of solutions to the system:
X, =1+2¢,+¢,, X, =2-C, —C,, X3 =C;, X, =C,

25.3. Homogeneous equation systems

A system of linear equations is called homogeneous if in all its equations
the free terms are equal to zero:
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;X +8X, +. 8, X, =0,
Ay X+ ApX, +..+8,,X, =0

2n”*n ’

Ay X +a,X, +...+a,, X, =0. (25.11)

Obviously, such a system always has a zero (or trivial) solution:

%=0,%=0,.. % =0 Tporefore, a homogeneous system is always

compatible. (It is also clear that rg A=rg A )

Of interest is the question of the existence of nonzero solutions to this
system. If the determinant of the system (25.11) is nonzero, then the system
has only a zero solution (this follows from Cramer's theorem).

The following statement is true (we give it without proof).

Theorem 25.3. A homogeneous system has a nonzero solution if and only
if the rank of this system is less than the number of unknowns.

In particular, with a system has a nonzero solution if and only if its
determinant is equal to zero.

We will write down every solution to the system (25.11):

X, =C, X, =Cy, -y X, =C

N as arow vector ¢ =(Cl,C2,..,,Cn).
We note the properties of solutions of homogeneous systems:

1. If row vector ¢ = (Cl’cz Cn) —the solution of the system (25.11), then

for each number k vector ke = (kcl’ ke, kC”)

(25.11) as well.

C=

is a solution of the system

(Cl’cz""’cn) and vector © :(cl,cz,...,cn) are solutions
of the system (4.11), then the sum of these vectors C + €' is a solution of

the same system.

2. If vector
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25.3. Homogeneous equation systems

The validity of these properties is verified by direct substitution of the
indicated solutions into the equations of the system. (We invite the reader
to do this on their own.)

From the formulated properties it follows that each linear combination of
solutions of a homogeneous system is also a solution to this system.
Obviously, if a homogeneous system has a honzero solution, then it has an
infinite number of solutions. From the set of solution vectors of the
homogeneous system (25.11), one can choose a basis. This basis is called
the fundamental system of solutions of the homogeneous system (25.11).
The system (25.11) in this case has many different fundamental systems of
solutions.

Theorem 25.4. If the rank r of the system of linear homogeneous equations
(25.11) is less than the number of unknowns n, then any fundamental
system of solutions to the system (25.11) consists of solutions.

(We accept Theorem 25.4 without proof.)

We indicate a method for finding fundamental systems of solutions to the
system (25.11). We must take any system of linearly independent (n-r) -
dimensional vectors, take the components of each of these vectors for the

L X

values of free unknowns “r+1* - *n and find the corresponding values for
r basis unknowns. We obtain n-r solutions of the system of equations
(25.11) that make up the fundamental system.

Usually, it is most convenient to take (n-r) -dimensional unit vectors (1, 0,
.. 0),(0,1,..,0),..(0,0,..,1) as value vectors for free unknowns.
Example 25.8. To solve a system:

X +2X%,+ X3+ X, — 3% =0,

2X, +3X, + X;+2X,+ X, =0,

2X, +5X, + 3%, + 2%, —13%x, =0,

X + X, + X, + 4%, =0,

X, — X, —2X; +X,+18x, =0.
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Solution. Transform the system matrix:

1 2 11 -3 1 2 11 -3
2 3 12 1] gy [0 -1 -10 7
2 5 3 2 _13 o 1 10 -7|>
1 1 01 a4 bklb=bog 1 19 7
1 -1 -2 1 18 0 -3 -3 0 21

1 2 1 1 -3
0 -1 -1 0 7
-0 0 0 0 0]
0 0 00 O
0 0 00 O
We get a system equivalent to the original:
X, +2X, + X+ X, —3%;, =0
{ — X, — X, + 7%, =0.

X

We choose as basic unknowns*t u X2 (the coefficients in them form a

minor other than zero):
X, 42X, = —X3 — X, +3X;
X, = X, — 7 Xs.

We get a fundamental system of solutions:
e = (1,-1,1,0,0), e, = (1,0,0,1,0), €; =(-11,7,0,0, 1).

25.5. Heterogeneous systems.
Structure of the general solution of the system of linear heterogeneous
equations
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Consider a system of linear inhomogeneous equations (25.1):

A X +apX, .t X, :blv

Ay X + 8 Xy + o+ 8y X, =Dy,

X +a,,X ... +a, X =b
and its corresponding homogeneous system (25.11)

X +a X, +..+a,X, =0,
Ay Xy + 8y X, + .o+ 3y, X, =0,

2nn

A X + A%, +. X, =0,

obtained from system (25.1) by replacing the free terms with zeros.

We establish a connection between the solutions of systems (25.1) and
(25.11). The following statements are true:

1. The sum of any solution to system (25.1) with any solution to the
corresponding homogeneous system (25.11) is again a solution to system
(25.2).

2. The difference of any two solutions of the system (25.1) is the solution
of the corresponding homogeneous system (25.11).

The proofs of these statements are very simple. We prove, for example, the
second.

Let ¢ :(Cl’CZ"“’C“) and "C“) are two solutions of the

system (25.1). We substitute the difference of these solutions
c-c'=(c,—¢c/,c,—C},...,Cc, —C)

¢’ =(c|,c},..

to left part of any i-th equation of the
system (25.11) and regroup summands:

o, (e, —c))+ay,(c, —c))+..+a,(c, —c)=(a,C +0,C, +..+ 0, C

in~n
—(ailcl'+ocizcg +...4a; C’):bi —-b, =0.

in-=n
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The equation turns into the identity 0 = 0.

From these two statements it follows that, finding one solution to the
system of linear inhomogeneous equations (25.1) and adding it to each of
the solutions to the corresponding homogeneous system (25.11), we obtain
all solutions to the system (25.1).

In other words, the general solution of the system of linear equations (25.1)
is the sum of any particular solution to this system with the general solution
of the corresponding homogeneous system (25.11).

Example 25.9. To solve a system:

X\ +2%,+ X+ X, — 3%, =4
2X + 3%, + X3 +2X,+ X, =6
2%, + 95X, +3%; + 2X, —13x, =10
X + X, +X,+ 4, =2
X, — X, —2X; +X,+18x, =-2

Solution. The homogeneous system corresponding to this system is
considered in Example 25.8. Transforming the extended matrix of this
system, we come to the system:

X, +2X, = 4—X%X;— X, +3X
=X, =2+ X —7Xs.
We find one of the particular solutions to this system. The easiest way to
do this is by setting X = X¢ = %s = 0 we get a solution 0 = (0, 2, 0, 0,
0). (A particular solution in which all the values of free unknowns are equal
to zero is sometimes called basis.)

The fundamental system of solutions of the corresponding homogeneous
system is already found in Example 25.8. We use it and get a general
solution to this heterogeneous system:
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(0,2,0,0,0)+ Ki"(1,-1,1,0,00+ K" (-1,0,0,1,0) + K" (C11, 7, 0, 0,
1),

Giving the coefficients Ky, Ky, ks all possible values, we get all the

solutions of this system.

Questions

1. Can an indefinite system of linear equations be incompatible?

2. What is called a general solution of a system of linear equations?

3. Can a system containing seven equations with five unknowns be
equivalent to a system of four equations with five unknowns?

4, To which system of linear equations does the Cramer rule apply?
5. Is the inverse matrix method applicable to indefinite system of linear
equations?

6. Can a homogeneous system of linear equations be incompatible?

7. What is called the fundamental system of solutions of a
homogeneous system of linear equations?

8. How many solutions does the 4-ranked fundamental system of
solutions of a homogeneous system of equations with six unknowns?

9. What is the structure of the general solution of a system of linear
inhomogeneous equations?
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Chapter 26. Linear operators

26.1. The concept of a linear operator

Let two vector spaces U and V be given.
Definition. If a certain rule A is given, according to which each vector U

of space U is assigned a unique vector V= A(U) of the space V, then an

operator A acts from U to V. The vector V= A(U)is called the image of

the vector U , and the vector U is the prototype of the vector V .

Operator A(U) is called linear if it satisfies the following two conditions:

1) for any two vectors U2 and U2 of the space U
A(Ul +U, ) = A(U1)+ A(Uz );

2) forany U from U and any number |
A(AT)=2A(T)

The concept of a linear operator is one of the fundamental concepts of
linear algebra.

ThenletU:Rn,V:Rm.

Later we will see that if in the space R" set some basis el, e2, € , and

in the space R™ set some basis fl, fZ, fm, then linear operator A if
defined by matrix size MxN

Solet &, & €1 is some basis of space R" Take an arbitrary vector
X and expand it in terms of basis:

X = X6 + X8, +...+ X, €,

A(x)

Operator is a linear then
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26.1. The concept of a linear operator ‘

AX) = % A@)+ %A@, )+..+x,AE,)

(26.1)

However, each of the vectors A(ei) (i=1,2,...,n)is a vector from the

space R™ , therefore, it can be decomposed into a basis fl, f2, fm:

AE)=a,f +a,f,+.+a,f, (26.2)
- o AE)
Substituting the decomposition i/ (i=1,2,...,n)from (5.2) to (5.1),
get:
A(X)= xl( f+a, f+..+a, m)+x2(a12f1+a22f2+...+a f)+

m2 'm

—h

—h

+.. +x( +a2nf wta, m).

n

Regrouping the terms and collecting the coefficients for fl, f2, fm,

we get

A( ) (allx +312X + .. +a1n n) 1 (a‘21x +a22x +.. +a2n n) f2+

+ot (@, X +a,,X, +ora, X )

(26.3)
Let yl, YZ, Yim be coordinates of the vector image X . i.e. coordinates
of the vector y= A()_() in basis fl, f2, f . Then

AR) =y fi+y, bty b (26.4)

Due to the uniqueness of the expansion of the vector along the basis, the
right-hand sides of equalities (26.3) and (26.4) coincide. Hence:

435 ‘




‘ Chapter 26. Linear operators

Y1 = a4 X +a,X; .+ X,
Y, = Ay, X, + Ay, X, +.ot 8y X

2n"*n

VYim = @mX T 85X, ..+ a,, X,

(26.5)
The matrix A of system (26.5) is called the matrix of the operator A with
respect to the basis él, éZ, € and fl, f, - f :
& 8y .- By,
A — a21 a22 a’Zn
aml amZ amn

So, a matrix of size m - n corresponds to each linear operator

. n m
A:RT>R . Obviously, the converse statement is also true: a linear

. n m
operator AR >R corresponds to a square matrix of size m - n.

If we consider the vectors x=(xl,x2,...,xn) and 7=A()_():

(yl’ Yar ym) as column matrices:

X Y1
X = X, Y = Y,
XI’] ym

then equality y= A(X) , or system (26.5) which is the same, can be written
in the form of matrix equality:

Y=AX
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- - . - n
where A is a matrix of a linear operator. In particular, when spaces R

and R™ match, space R" is mapped into itself through operator 4. In this
case, the operator matrix is a square matrix of order n.

26.2. Actions with linear operators

For linear operators, the operations of addition and multiplication by a
number are defined.

1. The sum of two linear operators Aland A2is called the operator (
A+ Ay defined by the equality:
(A +A,) (%)= A(X)+ A(X)

2. The product of the linear operator 4 by a number? is the operator
LA defined by the equality:
MA(X) = A(A(X)).

It is known that every linear operator R" that maps into itself is determined
by the corresponding square matrix. Therefore, the described operations
correspond to similar operations on operator matrices - addition and

multiplication by a number. The operators (A1+A2) and Mare also
linear.

Zero operator 0 is defined as an operator that translates every vector of

n .
Space R In a zero vector 0 .

Obviously, (A+ 0): A for each operator 4.
For linear operators, the multiplication operation can also be defined.
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3. The product of linear operatorsAl and A, is the operator (AlAz)
defined by the equality:

(AA,)(x)=A(A(X))

The product of two linear operators is also a linear operator.
The identity operator E is defined as follows:

E(x)=x

Obviously, (AE)=(EA)=A for each linear operator A4.

26.3. Eigenvectors and eigenvalues of
linear operator

Definition. Nonzero vector X € R" called eigenvector of linear operator
A, if there is such a number * that:

A(X)=2x_ (26.6)

And number * is an eigenvalue of operator A.
If A is a matrix of an operator 4, then number | satisfying equality (26.6),

called eigenvalue of matrix A, and vector X is an eigenvector of matrix A.
Equality (26.6) can be written in matrix form:

AX=2AX or AX=L1EX (26.7)
From the last equation:
(A-2E)X =0 (26.8)

If A:(a‘i),i,jzl,z,...,n,then
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a,; — A &, &y
A—\E = 8y B —h . &
ay, Ay, e A —A . (26.9)

Equation (26.8) is equal to the system of linear homogeneous equations:

(ail_}\’)'xl +apX, o+ X, =0,
a, X +(ay, =L)X, +...+a, %, =0,

2n*n

a,% +a,X +..+(, —1)-x, =0. (26.10)

Since the eigenvector is not zero, the homogeneous system (26.10) must
have a nonzero solution. As is known, a homogeneous system of n
equations with n unknowns has a nonzero solution if and only if its
determinant is zero. Therefore

ap—h A, .. A,
a a—-A .. a
21 22 2n :O
a, a, .. a,—A ,Or|A—kE|:0 (26.11)

Equation (26.11) is called the characteristic equation of the matrix, and
the left side of this equation is called the characteristic polynomial of
matrix A (or operator A).

Obviously, equation (26.11) is an algebraic equation of degree n. Its roots
are the eigenvalues of the matrix A. Substituting each of the roots into the
system (26.10) and solving it, we obtain the corresponding eigenvector.
Example 26.1 Find the eigenvalues of the eigenvectors of the linear
operator A given by the matrix:

439 ‘




‘ Chapter 26. Linear operators

s 3

~2E[=0 for this

Solution. We draw up the characteristic equation |
matrix:
4-n 1

2 3-A
Solving the determinant, we obtain
M —-71+10=0

=0

The root of the equation are hy = 5 hy =2, Substituting M =3 4o the
system (26.11) with N =2 get
{(4—5)-x1+x2=0 {—x1+x2:0

2%, +(3-5)-x, =0, 2, — 2X, = 0. *)

is a solution of the

T.C.

Eigenvector corresponding to the eigenvalue Ay =5

system which is equivalent to the equation:
X —X, =0

Declare X2 a free unknown and consider %2 = C, get the first eigenvector

% =(c,c)=c(L1)

Then substitute 2 = 2.
{le +X,=0
2%, + X, =0. (%)
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=d

This system is also equivalent to one equation. Consider X2

X, :(—%,dj=—g(1v -2)

2

l.e. ¢ and d are arbitrary numbers, then an infinite number of vectors can

’ get

correspond to one eigenvalue. In particular, assuming, that ¢ =1and

d =-2 \e obtain eigenvectors that are fundamental solutions of the
corresponding homogeneous systems (*) and (**). They have the form,

% =(11) gng X, =(1-2),

Questions

1 What defines a linear operator in the basis of space R"

2 Does any n-th order square matrix define in a linear operator in R "
?

3 Which linear operator is called null?

4 Write the characteristic equation for the matrix

27

5. How many different eigenvalues can a third-order matrix have?

6. Is the number | = 5 an eigenvalue of the matrix
5 3
A=
0 1),
7. Is the vector X = (2' 3) an eigenvector of the matrix

1 2
A:
b 3

441 |




—‘ Chapter 27. Quadratic forms {—
Chapter 27. Quadratic forms

27.1. Basic concepts

F(X, Xy, 000 X,)

Definition. A quadratic form of n unknowns

X Xgs e Xy is a sum, each term of which is either a square of one of these

variables, or a product of two different variables.

2
Example 27.1. Sum X*—3xy+2y is a quadratic form of two unknowns:

X7 42X, Xy — 3%, Xy +4X2 — X, X,

X HY; sum is a quadratic form of three

unknowns X1 Xss X3.

(Note that similar terms are already given in the above quadratic forms.)
Each quadratic form can be written in a standard form. The following
commonly used symbols are used.

a, +a,,+..+a

Any type sum " is written as

n
&y + A totad, =4
i=k

In particular,

n
a+a,+.+a, =) 4
i=1

If the sum is considered, the terms of which % are provided with two
indices i and j, moreover,i=1,2,..,m;j=1, 2, ..., n, then you can first
take the sum of elements with a fixed first index, i.e.

n n n
Za”’ Zazj, Zamj
i1 =1 =1
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and then add up all these amounts. Then for the sum of all these elements
we get the record

™M=
M-

I
LN
—_

I
LN

Ch

(27.1)

You can also add first the terms & with a fixed second index, and then the
amounts already received:

I (27.2)

Therefore

m n n m

IDIEDWILY

i=l j=1 = j=1 i=l , (273)

i.e. in double amount, you can change the summation order.

The sums (27.1) and (27.3) can be considered as the sum of the elements
of matrix MxN:

WU

a a. . a

ml mj mn

If we add the elements of each row in this matrix and then add the sums
obtained, we have (27.1); if we first add up the elements of each column
and then add up what happened, we have (27.2).

Let us now return to the question of the standard form of a quadratic form.
Assuming that similar terms are already given in quadratic form
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, We introduce the following notation: the coefficient

2
of the quadratic form X for is denoted as i , and the coefficient of the

F=F(X, X0 X,;)

product for “itor 1#1 is denoted as 28y Since, obviously,

X X; = XX 2a; . .
171 the coefficient in this product could be denoted as = 7', i.e. it

is assumed that

%= (27.4)
XX .

Then term Za” XiX; can we written as

23;X,X; = <';1”x,xj+a],xjxI

F=F(X,Xy, .0 X, )

and the entire quadratic form IS written as the sum

of all possible terms % %X, , Where i and j independently of each other
take all values from 1 to n:

F(Xl’XZ" o X Zzall i

= = (27.5)

. - 2
(In particular, if =1 then get &% .) Note that with double summation,

the summation sign is often used. Equality (6.5) can be written as

F X X, )= Y20

i1 (27.5)

The coefficients % of the quadratic form (27.5) obviously form a square
matrix A= (a“) of order n; it is called a matrix of quadratic form

F= F(xl,xz,...,xn), and the rank r of A is called the rank of this
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quadratic form. If, in particular, i.e. matrix A is non-degenerate, then the

quadratic form F :F(Xl’XZ"“’Xn) is also called non-degenerate.

Equality (27.4) means that the elements of matrix A, symmetric with
respect to the main diagonal, are equal to each other, i.e. matrix A is
symmetric. Obviously, for any n-th order symmetric matrix, we can
indicate the well-defined quadratic form (6.5) of n unknowns whose
coefficients are elements of matrix A.
Example 27.2. Write a quadratic form

F = F(X, Xy, X3 ) = X2+ 4X,X, + 2X2 —3X, X, + X2 + X, X,

in standard form and find its matrix.
Solution. After reduction of similar members, we get

2 2 2 2 2 2
X, +AX X, +2X5 —2X, X5 X5 = X[ +2X, X, +2X, X 4+ 2X5 — X, X3 — XX, + X5 =
=X X, +2X X, + 0 X X5 +2X, X +2X, X, — X, X5 + 0+ XgX; — X5 X, + X5 X,
Matrix of quadratic form is:

1 2 0
A=2 2 -1

0 -1 1

The quadratic form (27.5) can be written in matrix (vector-matrix) form
using the product of rectangular matrices.

Note that matrix A is symmetric if and only if it coincides with its
transposed one, i.e. when

A=A

Denote by X the matrix column of the unknowns:
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We show that in the matrix notation the quadratic form has the following
form:

F=XAX. (27.6)

Indeed, product AX will be a column matrix:

D X
zazl j

Zam i
n

(Here we write © instead of 1! to avoid unnecessarily cumbersome
recordings.)
Now multiplying this column matrix on the left by matrix

X" = (X, Xy e, X

n

XAX = ZZa,J X, =

i=l j=1

n), get

’

which was to be demonstrated.
Example 27.3. Write the quadratic form from Example 6.2 in matrix form.
Solution. Using the matrix A, found in Example 6.2, we obtain
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1 2 0)(x
F=(x,%.%)[2 2 -1]|x,
0 -1 1){x

Let us now consider how the quadratic form changes during the linear
transformation of unknowns. Let a linear transformation of the unknown

X1 Xy veer X

n
X = Zcik Yk
k=1 ,i=1,2,...,n (27.7)
With matrix C= (Cik ) , in other words, a linear transformation is given
X =CY (27.8)
where Y — unknown column Y1r Y2+ Yo
We use one of the properties of the matrix transpose operation:
(AB)' =B'A", (27.9)
According to (27.9) we get from (27.8)
X'=(CY)=yC" (27.10)

From here

F=XAX =(YC')A(CY)=Y'(C’AC)Y F=Y'AY

, TN ,

where

A=C'AC (27.11)

Matrix A will be symmetrical. Indeed, since, then A'=A taking into
account property (6.9)

A'=(C'AC)'=C'(C'A) =C'AC=CAC=A
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So, we have proved the following theorem.
Theorem 27.1. A quadratic form with matrix A as a result of a linear
transformation with matrix C turns into a quadratic form from new

unknowns with matrix C'AC .
Suppose now that the transformation matrix C is non-degenerate. Then,

obviously, Cis also a non-degenerate matrix. In this case, the product

C'AC s the product of the matrix A by non-degenerate matrices, and
therefore the rank of this product is equal to the rank of matrix A.

We have obtained the following theorem.

Theorem 27.2. The rank of a quadratic form does not change under a non-
degenerate linear transformation.

Example 27.4. There is a quadratic form

F=F(x,X)=X+2xXx, -3%5

Find a quadratic form G(yl,yz), obtained from a given linear
transformation

X =2Y; =Y, X =Y+,
Solution. We write the matrix of this quadratic form A and the
transformation matrix C:

vl o) o)

The matrix of the desired quadratic form A according to (6.11) has the

form
~ 2 1\[(1 /(2 -1 5 -4
A=C'AC = =

(—1 J(l —3](1 1} (—4 —4]

Hence, G(y.,y,)=5y; —8Y,y, ~4y;
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Example 27.5. There is a quadratic form:
F = F(X,, Xy, X5 )= X7 +5X2 —4%2 + 2X,X, — 4%, X,

Find a quadratic form G(yl’yz’yS), obtained from a given linear

transformation
1

1 5 1 1
Xl=y1_§y2+gy3’ X, =Ey2_EY3' stg

Solution. We write the matrix A of a given quadratic form and the

Ys

transformation matrix C and calculate A= C'AC .

11 -2 1 -y ¥
A= 15 0|C=l0 % -¥%
—2 0 -4 0 0 ¥

1 0 0) 1 1 -2)(1 -% %) (10 0
15 0/l0 % -%|=l0 1 o0

% —-% %)\ -2 0 -4)\0 0 %) (0 0 -1

>
I
|
NN
NN
o

Hence, G =G Y2 ¥a) =i +¥; -3

Example 27.5 shows that with well-chosen linear transformations, the
appearance of a quadratic form can be significantly simplified.

27.2. Canonical view of a quadratic form

We state that a quadratic form has a canonical form if its matrix is

diagonal (aij =0 where | # j):
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a, O 0
A 0 a, 0
0 0 .. a

nn

Obviously, in this case the quadratic form is the sum of squares of
unknowns of the form

n
F=a,X +8,X) +..+a,X; =D a;x’

i=1
In particular, the quadratic form G obtained in Example 6.5 has a canonical
form.
We have found that the rank of a quadratic form does not change under
non-degenerate linear transformations (see § 27.1). Let a quadratic form

F (X0 X000 X, )
transformation

by, +b,y; +...+byr (27.12)

be reduced to a canonical form by a nondegenerate linear

where Y1 Y2 Yo are new unknowns. Here any coefficients

b, by, ..., b, can be zeros.

It is easy to prove that the rank of the quadratic form is equal to the number
of non-zero coefficients in the canonical form to which the given quadratic
form is reduced.

Indeed, if a quadratic form of rank r is reduced by a nondegenerate linear
transformation to the form (27.12), this means that the matrix of the
transformed quadratic form has the form
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b, 0 .. O
0 b, .. 0
0 0 .. b

n

has rank r as well. And this is equivalent to the fact that there are r non-
zero elements on the main diagonal.

The following main theorem on quadratic forms is true (we present it
without proof).

Theorem 27.3. Every quadratic form can be reduced to a canonical form
by some non-degenerate linear transformation.

It should be noted that any quadratic form can be reduced to a canonical
form in various ways. Moreover, the canonical form to which this quadratic
form is reduced is not uniquely determined for it.

Example 27.6. There is a quadratic form
F =2XxX, =6X,X; +2X;X;

Check that it is canonical by a linear transformation:

1 1
X1=Ey1+§y2+3y3’

X, =ly1_1y2_y3
2 2 1
X3 = Y3
Solution:
»o%ho 3
C=|¥y -% -1
0 O 1
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We get

_ v ¥ 00 1 1\(% % 3 » 0 0

A=Y -% 0|1 0 -3||¥ -¥% -1|=|0 -% O
3 -1 1)1 -3 0)l0 0 1 0O 0 6

i.e. the quadratic form is reduced to

1 1

SV Y: +6y§.

Example 27.7. There is a quadratic form from example 6.6:
F =2x,X, —6X,X; +2X;X;

Verify that the linear transformation:
X =Y, +3y2 +ZY3’

X, = y1+3y2 +2y31

X3 = Y,
also makes this form canonical.
Solution:
1 3 2
C=|1 -1 -2
0O 1 0
Get
1 1 0)(0 1 1)1 3 2 2 0 0
A=[3 -1 1||1 0 -3||1 -1 -2|=/0 6 O
2 -2 0){1 -3 0)\O 1 0) (O O -8

i.e. quadratic form from example 27. 6 is reduced to another canonical
form:
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2y; +6y; —8y;

From examples 27.6 and 27.7 we see that the same quadratic form
F =2X,X, —6X,X; +2X;3%;

and as a result of one non-degenerate linear transformation has acquired
the form

1, 1
G=§yf—§y§+6y§’

and as a result of another linear transformation
G, =2y; +6y, -8y,
Despite the fact that G and G, are noticeably different from each other, they
still have one common property: they contain the same number of positive
and negative coefficients (two and one, respectively). This is no
coincidence. The following statement holds (we give it without proof).
Theorem 27.4 (law of inertia of quadratic forms). The number of
positive and the number of negative coefficients in the quadratic form in
the canonical form, to which the given quadratic form is reduced by a non-
degenerate linear transformation does not depend on the choice of this
transformation.

Along with the canonical form, the normal form of a quadratic form is
also considered, i.e. the sum of squares of unknowns with coefficients of
+1or-1.

In particular, in the example 27.5 quadratic form

F =X} +5%7 — 4% +2X,X, — 4% X
converted to the form

2 2 2
G= Yi Y, V3

which is not only canonical, but also normal.
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It is easy to verify that a quadratic form transformed to a canonical form
can always be reduced to a normal form by a non-degenerate linear
transformation.

Indeed,

2 2 2 2
G=0Cyy +-+C Y —CrtYir = —C Y, ,
where v G Caar o Cr gpg positive.

Then the transformation =~ V&iYi i=1,2,..7), Zi=Yi (G=r+1,
..., ) leads G to its normal form;

2 2 2 2
G=z+.+2, -2, —..— 1

The law of inertia of quadratic forms can now be formulated as follows:
the number of positive and negative squares in the normal form of a
quadratic form does not depend on the choice of a linear non-degenerate
transformation by which the quadratic form is reduced to this form.

27.3. Positive and negative defined
guadratic forms

Definition. Quadratic form F(Xl’ Xareo X") is called a positive definite if,
for all unknown values, of which at least one is nonzero, the inequality

FO X0 %,) 5 g

If F(xl,xz,...,xn) < 0 for all unknown values, of which at least one is

nonzero, the quadratic form is called a negative definite.

It is easy to prove (we will not do this) that a quadratic form of n unknowns
is positive definite if and only if it is reduced to a normal form consisting
of n positive squares.
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We formulate one of the frequently used criteria for a positive (negative)
definite quadratic form.

Theorem 27.5. In order for the quadratic form F = X’AX to be positively

(negatively) defined, it is necessary and sufficient that all eigenvalues A
of matrix A are positive (negative).
Example 27.8. Find out if a quadratic form

F =2%/ —4X,X, +5X’

Is positive defined.
Solution. Matrix A of this quadratic form is

S|

We draw up the characteristic equation:

2-% -2| _,
=N -7%+6=0
-2 b5-A
The roots of the characteristic equation hy = 6, ho=1 are positive;

therefore, the quadratic form is positive definite.
We formulate one more frequently used criterion for positive definiteness
of a quadratic form.

a; 8, - @,
A_|Bn B2 o B
Let B oy 8m ) be a matrix of quadratic form F = X'AX

The main minors of this matrix are the determinants
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& A, .. A
a a a e a
A =ay, A, = & 4, v A= 21 Y22 2n
8y 8y
ad, A, ... Ay

Theorem 27.6 (Sylvester criterion). In order for the quadratic form
F = X'AX  to be positive definite, it is necessary and sufficient that all the
principal minors of matrix A are positive:

A, >0,A,>0,.., A, >0

In order for the quadratic form to be negative definite, it is necessary and

sufficient that the signs of the main minors A Ay s A

A, <0

(We also accept this theorem without proof.)

Example 27.9. Using the Sylvester criterion, verify that the quadratic form
F =2x? —4x,X, + 5%}

nalternate, and

from example 27.8 is positive defined.
Solution:

-2

2
Al:a11:2>O,A2:‘ =6>0

The principal minors of matrix A are positive, therefore, according to the
Sylvester criterion, the quadratic form is positive definite.
Example 27.10. Find out if a quadratic form

F =5% + X2 +6X. +4X,X, —10%,X; — 4X, X,

is positive defined.
Solution. We calculate the main minors:
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5 2 -5
fs A |52 M2 1 2=l
R R -5 -2 6

The major minors are positive; therefore, this quadratic form is positive
definite.

Questions

1. Is the expression XX # XX+ XXy o quadratic form?
2. How is a quadratic matrix determined? Is a quadratic matrix always
square?

3. What is called the rank of a quadratic form?

4, How is a quadratic matrix A transformed with a non-degenerate
linear transformation C?

5. How is the rank of the quadratic form related to the number of non-
zero coefficients in the canonical form to which this form is reduced?

6.  What is the law of inertia of quadratic forms?

7. Is the normal type of a quadratic form its canonical type?

8. What is the normal form of a positive definite quadratic form?
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Chapter 28. Double and triple
Integrals

28.1. Basic concepts related to double
integral

Consider the integration of functions of two arguments. The results that we
get here can be generalized to the case of functions of three or more

arguments. Let there be a closed bounded area D on the plane Oxy, and let
a bounded function 2= f(%¥) pe given in the area D. We divide area D
by a network of some lines into arbitrary parts Dl, D2, Dn that do
not have common internal points. For eachi=1, 2, ..., n we denote by AS;
the area of some partial area Di Next, we will do the following: 1) select

D and calculate the

an arbitrary internal point (&.mi) in each partial area
value of the function at this point; 2) we smartly press this value F(&m)

by the area ASi of this partial area Di; 3) we compose the sum of such
products:

o =YL, f(&n)AS;. (28.1)

Expression (28.1) is called the integral sum for a function fx, y)in the
area D. (Note that different integral sums correspond to different partitions

of the area D into partial domains and different points & ).)
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Ya

For further discussion, we need the concept of the diameter of the area. We
call the diameter of the area the largest distance between points lying on
the boundary of the region. (Note that for a plane closed area bounded by

a continuous curve, the diameter is the largest chord). Let denote by l ( )

the largest of all diameters of the partial areas:

h=maxdiam(D;) -1

Definition. If there exists a finite limit of the integral sum (28.1) for A =0
, which does not depend on the method of dividing the area D into partial

areas D , but on the choice of points (E-'i ’”i), then this limit is called the

double integral from the function f(xy) over the area D and is denoted
by

” f(x,y)dS J.J. f(x, y)dxdy

wm D
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A function f(xy) for which there is an integral over the area D is called
integrable in the area D, and the area D — is called the integration area.

28.2. Classes of integrable functions

Theorem 28.1. If the function  *%¥) is continuous in a closed bounded
area, then it is integrable in this area.

We accept this theorem without proof. Note that a similar theorem was
previously formulated in the textbook in chapter 14 for a certain integral
of a function of one argument. There, a theorem was formulated on the
integrability of a bounded function of a single argument with a finite
number of discontinuity points. A similar statement holds for the function
of two arguments (only here we are not talking about discontinuity points,
but discontinuity lines).

Theorem 28.2. Let a function ' *Y) be bound in a closed bounded
area D and have discontinuities only on a finite number of lines, which are

graphs of continuous functions of the form ¥ = 9(x) or X=N(Y) Then the

function (% ¥)is integrable in the area D.

We also accept this theorem without proof.

We see that in the case of two arguments, the class of integrable functions
is wider than the class of all continuous functions.
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28.3. Geometric sense of double integral

Let a continuous non-negative function 2= f(%¥) be defined in the area

D. Let us consider in space OXYZ

z=f(

the body V, bounded below by the area

D, above by the surface X, y)1 and from the sides by a cylindrical

surface, with generators parallel to the axis OZ (Fig. 28.2).
Z

h
z=f(x, )
O »
T -~ i
o .
X w
Fig. 28.2

This is a cylindrical body (or a curved cylinder, or a cylindroid).
From the definition of the double integral, it follows that the double

integral over the area D of a continuous non-negative function f(xy) is
equal to the volume of the cylin-shaped body with base D bounded from

above by the surface = f(xy),
Vv =”f(x,y)dxdy
D

Obviously, the volume of the cylindroid, whose height is equal to unity

(i.e., limited by the plane Z=1 above) is numerically equal to the area of
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the base. Therefore, the double integral of unity is equal to the area of the

integration area:

S =”dxdy
D

where S —is the area of D.

28.4. Double integral properties

One should pay attention to the deep analogy that exists between the
concepts of an ordinary (single) definite integral and double integral: in
both cases, we consider some function f, only in the first case — the function

of one argument F(x) given on the segment [a.b] of the axis OX, and in

the second — the function of two arguments fo.y) given on a part of the

OXY In both cases, the domain of definition of the function is

plane
divided into parts and in each of these parts it is arbitrarily selected at the
point at which the value of the function is calculated, and this value is

multiplied by the measure of the corresponding partial area. Only in the
case of one argument, such a measure was the length AXi of the partial
segment (%1, Xi], and in the case of two arguments — the area ASi of the

partial area Di Then, in both cases, the integral sum was compiled and the
passage to the limit was carried out. Note that the definition of the integral
of a function of three or more variables (a triple integral, an n-fold integral)
is constructed in the same way.
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From the above, it follows that the main properties of the double integral

are similar to the properties of a single definite integral (and are proved
similarly). Therefore, we restrict ourselves to the wording of some of them.

Property 1. The double integral of the sum of two integrable functions

(%) and 9(%¥) over the area D exists and is equal to the sum of the
double integrals over the area D for each of these functions:

[JLf (e y)+ gx y)ldxdy = [ £ (x, y)axdy + [[g(x, y)dxdy

Property 2. The constant factor can be taken out of the double integral sign:
if C=CoNnst then

J.J‘cf (x,y)dxdy = c” f(x, y)dxdy

Property 3. If the area D is the union of two areas D1 and D2 that do not
have common internal points, and in each of these regions the function

f(xy) is integrable, then this function is integrable in the area D and the
equality holds

” f(x,y)dxdy = ” f(x, y)dxdy + ” f(x, y)dxdy

f(x,y)>0

Property 4. If the inequality ' holds in the whole area of

integration, then
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[ £ (x y)ixdy > 0.

D

28.5. Calculation of double integral

To calculate the double integral, it is usually reduced to the repeated one,
i.e. to such an integral, which is calculated twice by applying the usual
integration process, first according to one of the arguments, then according
to the other. This technique is based on the following theorem, which we
accept without proof.

Theorem 28.3. Let the function | (*%¥) be defined and continuous in the
area D, which is bounded by the lines ¥ = 1) y=y,(x) x=a x=b
. and y(x)< VZ(X), a<b and the functions 1(¥) ang Y2(x) are
continuous on the segment [a, b]. Then the equality holds

IS T -

al y1(x)

Va

Y =nlx)




28.5. Calculation of double integral

Note that the right-hand side of equality (28.2) is a repeated integral, which
is also written in a different form:

y2(x)
dx I f(x,y)dy
y1(%)

D —

Consider the special case of equality (28.2) for yl(x):c:const,

y»(x)=d =const.

b d
” f(x,y)dxdy = Idxj f(x,y)dy
D a . (283)
We also note that if the area D is bounded by the lines * = Xl(y), X =%p(y)

JY=c ¥=0 \ihere x(y)< XZ(y), ¢ <d | then the following analogue

of equality (2) holds:

2(y) d  x(y)
”f(xydxdy .[[ .[1; xy)dx]dy—jdy js(x y) dx

Xl(y ¢ Xl(y

D ¢ (28.4)
Let's move on to the examples.

” xy dxdy
Example 28.1. Calculate the double integral D , Where the area D

is bounded by lines X =3, x=5; ¥=0 y=1 ¢
D={(x,y)|33x£5; 0< ysl}
Solution. The area D is rectangular. We apply the formula (3):
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”xydxdy = j.dxj.xydy
D 30 .

We calculate the internal integral, assuming x is constant:

=1
21y
y

ixydy = x7

X
o 2

We now calculate the external integral. To do this, integrate the resulting
function in the range from 3 to 5:

X X 25 9

2 4 4 4
3 3
Consequently,

”xydxdy = j’.dxixydy =4
D 3 0

”xzydxdy
Example 28.2. Calculate the double integral D , ifthe area D is

_ 2 2 _
bounded by the lines X=0 y_01 XTH+Y" =4 and x>0, y=0

Decision. Let's make a figure.
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Ya

5 y=vd—x?
D
0| 2 x
Fig. 4

We see that D is a quarter of a circle of radius 2 centered at (0, 0), located
in the first quarter. It follows that the domain D is bounded on the left and

right by the straight lines X=0and X=1, and from below and above by

2
the lines Y =9 andY =V4=X"  Therefore, in accordance with formula
(2),
2

H x2ydxdy = idx 4.f);(2y dy
D 0 0

We calculate the internal integral, assuming x is constant:

\/m 2 y:V4_X2 2 2
2 2y X“\4—x
.[x ydy =X e = 5
0 y=0

We now calculate the external integral:

2
=)y
0

2l 3 5| 15
0.

So,
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2 \/4—x2 32

”xzydxdy = _[dx Ixzydy =<
15
D 0 0 )
”(x + y)dxdy
Example 28.3. Calculate the double integral D , if the area D
— _ 2

is bounded by the lines ¥ =X and ¥ =2~ X"

Solution. Find the limits of integration with respect to x. To do this, we find

_ _ 2
the abscissas of the points of intersection of the lines Yy=Xand ¥=2-X

. The joint solution of these equations gives X1 = -2 , X2 =1 Let's make a

figure.

Fig. 28.5

The area D is bounded on the left and on the right by lines X =—2 and X =1

2 _
,ontop—byalineY=2~X" and below — by a line Y =*. We apply the
formula (28.2):

”(x +y)dxdy = .1[dx 2_J‘X(x +y)dy

We calculate the integral over dy (assuming x is constant):
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2- 2
2-X
= x(2 —x? )+ -
2

y=2—x2

x2 2
Jox+ y)dy=(xy+y7]
X y=X

2 4
—(x2+x—jzx——x3—%x2+2x+2.

2 2

Now we calculate the external integral:

1 4 5 4 3
J. X——x3—1x2+2x+2 dx = X——X——7—+x + 2X
2 2 10 4 6

_lo1 (32 16 56 , ,\__9
10 4 20

1

-2

”xzydxdy
Example 28.4. Calculate the double integral D , it the area D is

bounded above by an arc of a circle y=+1 , and below by segments

of lines Y= at X<0 and Y =0 for x>0

Fig. 28.6

Decision. The lower boundary of the area D consists of segments of two

lines Y= X and ¥= 0 intersecting at the origin. Therefore, it divides the
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Oy

into two areas 2t and P2 and represents the
integral as the sum of two integrals (see property 3):

area D with the axis

”x y dxdy = J.J'x ydxdy+”x y dxdy

Dy

Having set the limits of integration in the last two integrals, we obtain

o 1k 1 1k
”x ydxdy = j dx J.x ydy+jdx fx ydy =

J2 —X

2

_ :[Fsz(l—x )—%x4}dx+_[ X (1 X )d 428/_

2

N

Replacement of variables in double integral

Let the function f(x’ y) be continuous in some closed bounded area D,
therefore, there exists a double integral

” f(x, y)dxdy

and let a transition from the variables X, y to the new variables u, v be
possible:

x=x(uv) y=y(uv), (28.5)

The old variables x, y will be considered the Cartesian coordinates of the

current point of one plane OXY . The new coordinates u, v will be
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considered the coordinates of the current point of another plane O *uv

Thus, we will consider two planes: (x¥) and (”’V), in which the

coordinate systems O and O *UV are given, respectively.

A transformation (28.5) is called regular if the following two conditions
are satisfied:

1) this transformation of variables establishes a one-to-one correspondence
between the points of the area D on the plane OXY and the points of a
certain area D™ on the plane O *uv :

VA VA

o
>

0 x O*

=Y

Fig. 28.7

consequently, u and v are determined from formulas (5) uniquely using
inverse transformation formulas:

u=u(xy) v=v(xy). (28.6)

2) functions * = X(.v) y=y(uv) and functions¥ =u(xy) v=v(xy)
are continuous together with their partial derivatives on the areas D and
D* including their boundaries, and, in addition, their determinant
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x
J(u,v)= ou ov
(uv) &y

ou - ov (28.7)
iS nonzero.

We now formulate the rule for converting a double integral to new
variables.

Theorem 28.4. Let the function ' *%¥) be continuous in a closed bounded
area D, and let a regular transformation (28.5) be given that maps the area
D to a closed bounded area D*. Then the formula for changing variables
holds

” f(x,y)dxdy = .f[ f (x(u,v), y(u,v))| I (u,v)|dudv

where | J (u,v) is the absolute value of the transform determinant

&
I(u,v)= 2; g
a

(28.7)
The proof of this theorem is not given here.

J(u,v)

Note that the determinant of transformation (28.5), i.e. , is called

Jacobian determinant or the Jacobian.
A conversion of the form called the transition to polar coordinates

X=rcose Y=rsing (OS(pSZTt)
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is very often used to calculate the double integral. The Jacobian of this

transformation is calculated simply:

x o
or op| |cose —rsing|
Jr,e)= = .
(r.9) oy Y| |sing rcose
or op

Let's look at some examples.

Example 5. Calculate the double integral

J- I dxdy

1+ x2 +y

2 2
if the area D —is a circle: X t¥ =1

Solution. We apply the transformation

(taking into account the fact that | J (r’(P)| -

dxdy rdrdp o rdr
'g1+x2+y _'Ul+r I £1+r2.

Obviously,

1
1
j rdrzzlln(1+r2] =1In2
oL+ 2 0o 2

Therefore, the desired integral is
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2n
jm—zd(pznan
5 2

Example 6. Calculate the integral

”e‘xz‘yzdxdy
D

2 2 2
. . . . <
where the area of integration isa circle; X *¥ = R,

Solution. Passingto  polar coordinates, we obtain

jje—xz‘yzdxdy=TdQTe_r2dr =—1Te_r2 Rd(P=Tc(l—e_R2)
) Ty 24 0

Example 7. Calculate the double integral

J =”e‘x2‘y2dxdy
D

)

if area D — is the entire plane O®Y . Using the result obtained, calculate the
integral

+00 2
| = Ie‘x dx

—00

Solution. We use the result obtained in the previous example, where this
double integral is calculated for the case when the area D is a circle
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28.5. Calculation of double integral

x2+y2§R2

. If the radius R is unlimitedly increased, then in the limit the
area D coincides with the entire plane. Therefore, if we denote the integral

calculated in Example 6, by Jr , We obtain

R—o R—®

3= lim Jg = lim n(l—eszzn

The integral J is an improper double integral. It can be proved that it is
equal to the corresponding double integral:

+00

J= Idee‘Xz‘yzdy:n

But obviously,

T e Yy = T e eV dy=e* T e dy

—00 —00

Since a certain integral does not depend on the designation of the
integration variable, then

+00 2 +00 9
Je‘y dy = J.e‘x dx =1
—00 —00
SO
+00 —+00
2 2
J= j le X dx=1 Ie‘x dx =12
—o0 —00

Thus,
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|2=Tc_

Consequently,
~+00 2
| = I e dx=+n

This integral* plays a very important role in probability theory and
statistics. It should be noted that we could not calculate this integral
directly (using the indefinite integral), since the indefinite integral

je‘xzdx

is not expressed in elementary functions.

Questions
1. What is the integral sum for a function f(x,y) in the two-

dimensional area D?
2. How is the double integral of a function f(x,y) over an area D

determined?

3. What is the geometric meaning of the double integral?

4. Is it possible to calculate the area of a region using the double
integral?

5. What is re-integral?

6. How is the rule for changing variables in the double integral
formulated? What is the Jacobian conversion?

x|t is usually called the Poisson integral, although it was first calculated by Euler.
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7. What is the formula for the transition to polar coordinates in the
double integral?

28.6. Triple integrals

The triple integral of a function f (X’ Ys Z) is determined in the same way
as the double integral.
Let a bounded function f(M): f(x, y’Z)'be given in some closed

bounded area V' of three-dimensional space. We divide the area Viinto N
arbitrary regions that do not have common points with volumes

AV}, AVy. AV, ". We denote by A the largest of the diameters of these

areas. In each area, we choose an arbitrary point M; (‘—’gi i évi) and make
up the sum

ngf(éi’nilgiﬁvi

(28.8)

The sum (28.8) is called the integral sum for the function f(x, Ys Z)over
the area V .

Definition. If there is a finite limit | of the sum (1) for A— 0, then this

limit is called the triple integral of the function f (X’ Y Z) over the area Y
and is denoted by one of the following symbols:

| = I”f(x y,z)dVv :_mf(x, y, z dxdydz
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In this case, the function f (X’ Ys Z) is called integrable in the area V' Note
(without proof) that a continuous function is integrable.
As in the case of double integrals, the calculation of triple integrals reduces

to the calculation of integrals of lower multiplicity. Let a three-dimensional

area S be bounded, closed, and such that any line parallel to the axis Oz,
intersects its boundary at no more than two points whose abscissas Zl(X’ y)
and ZZ(X’ y)satisfy the condition zl(x, y)g ZZ(X' y), and that there is a

triple integral for the function f (X’ Yy Z)

I :J'”f(x, y, z Jdxdydz

(28.9)

V.

Suppose, in addition, for any of the ** ¥ from area 1’ that is the projection

Oxy,

of the area ¥ onto the plane there exists a single integral

z,(x.y)

Ifxyz
(xy)

Then there exists a double integral over the area Vi

”[ZE(JX.?(X, Y, z)dz]dxdy

z(xy)
And this double integral is equal to the triple integral (28.9).

Now, in the triple integral (28.9), we pass from variables to new variables

U Vs W, using the formulas

x=x(uv,w) y=y(uv,w) z=z(v,w) (28.10)
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Suppose that the transformations (2) are one-to-one, and denote bys' the

region that they translate into S,
Then, if functions (2) have continuous first-order partial derivatives

- ! -
in the area S and a non-zero determinant

ou ov ow
@ o a
ou ov ow

)

then for the triple integral (1) the formula for changing variables is valid:
IH f(x,y,z)dxdydz =

.”.[ x(u, v, ), y(u,v, w),z(u,v, w)]3 (u, v, w)dudvdw.
(28.11)

‘](U’V’W)is called the Jacobi determinant or the

u, Vv, w.

The determinant
Jacobian of variables X' ¥+ Z in variables

u,v,w

The numbers are called curvilinear coordinates of a point

(X' Y, Z). In practice, two types of these coordinates are often found.
1. Cylindrical coordinates. The cylindrical coordinates of a point

(x.y.2) are the numbers 2 %% where” and % - are the polar

coordinates of the point(x’ y). The transformation is defined by the
formulas

X=pCOS@,y=psSing,z2=12
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and so the Jacobian of transformation

cosp —psing O
J(p,p,2)=|sing pcosgp 0 =p
J= 0 0 1

and the general formula (28.11) takes the form

J-J.J. f(x,y, 2)dxdydz = J.J‘J. f(pcosg, psing, z)pdpd pdz

2. Spherical coordinates. Spherical coordinates 9.0 are given by
X=rcosgsind y=rsingsing, z = rcoséd

Find the Jacobian

cos@singd —rsingsing  rcosgcosd
J(r,p,0)=|sinpsind rcospsin® rsinpcosd|=r?siné
cosé 0 —rsind

and formula (3) takes the form
” f(x,y,z)dxdydz =
\

j” f(rcospcosé,rsingsin@,rcosd)? sin Adrded6.
=V

480 ‘




29.1. Basic definitions

Chapter 29. First order
differential equations
and their applications

29.1. Basic definitions

Definition. A differential equation is an equation

' ()=
F6y, Y y™)=0 (20.1)
which connects an unknown function y , its independent argument X | and

' (n)

its derivatives Y s e Y"". The order of a differential equation is the
largest order of the derivative that appears in the equation.

2

y/ _c y — exx2

For example, X is a first-order differential equation and
y'+4y=0 _ a second-order differential equation.
Definition. The solution of a differential equation is a function y= (P(X)
that, when substituted into equation (29.1), turns it into an identity.
In this chapter, we will consider first-order differential equations, i.e.
equations of the form

F(xy.y)=0 (29.2)

In case it is possible to express Y from equation (29.2), it has the form:

y'=f(xy) (29.3)
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Equation (29.3) is called a first-order equation resolved with respect to
the derivative.

In the theory of differential equations, the main problem is the question of
the existence and uniqueness of the solution. We present, without proof, a
theorem that answers this question.

Theorem 29.1 (Cauchy theorem). Let there be a differential equation

!

(29.3) and let a function f(xy) and its partial derivative f(x) be
continuous in some domain D of plane Oxy. Then in some neighborhood

M(Xo’ 3/0)e D

of any inner point , there exists a unique solution of

equation (29.3) satisfying the condition Y ~ Yo at X = o,

The graph of the solution of the differential equation is called the integral
curve. The domain D contains an infinite set of integral curves. The
Cauchy's theorem states that, under certain conditions, only one integral
curve passes through each inner point of the domain D. The conditions that

set the value of function y at a fixed point X0 are called initial conditions

(or Cauchy conditions) and are written in the form y(x0)= Yo or in the
form

Y\, = Yo (29.4)

The problem of finding a solution to equation (29.3) satisfying the
condition (29.4) is called the Cauchy problem.

Figure 29.1 illustrates theorem 29.1. The entire domain D is filled with
integral curves, and they can neither intersect nor touch each other.
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0 X

Fig. 29.1. Integral curves

Theorem 29.1 allows us to describe the set of solutions of a differential
equation as a general solution.

Definition. The general solution of the differential equation (29.2) is the
function

=¢x, Oy = ¢(x, )
y=4¢ y=4¢ (205)
depending on X and arbitrary constant C if the following conditions hold:
1) for any value of constant C, the function (29.5) is the solution of the
differential equation (29.2);

2) no matter what the initial condition (29.4) is, there is a value C= CO,

such that function y= (p(X, CO) satisfies this initial condition.

®(x,y,C)=0

The general solution written in an implicit form: is called

the general integral.

Definition. If ConstantC =Gy is fixed in the general solution (29.5), then
(29.5) is called a particular solution.
A particular solution presented implicitly is called a particular integral.
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To solve a differential equation is to find its general solution or general
integral.

29.2. Types of first-order differential
equations and methods of their solution

Equations with separable variables

A first-order differential equation is called an equation with separable
variables, if it can be represented as:

d

= t(x)a(y)

dx , (29.6)
The method for solving this type of equation is called separation of

variables. We multiply both sides of equation (29.6) by dX and divide by
g(y), setting g(y) #0 :

Ay _ (x)dx

aly) _ (20.7)

This is an equation with separated variables. Since the differentials are
equal, the indefinite integrals are also equal (more precisely, they differ by
constant), therefore

I%:j f(x)dx+C

where C is an arbitrary constant.

Example 29.1. Solve the equation XY ~ Y = 0
Solution. Let us separate the variables. To do so, we present the equation
in the form
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Xd_y:

dxy

we multiply both parts by dX and divide by Xy,
gy _ox

y X
Integrating both sides of this equation we obtain

In|y|=In|x/+C,

3 ~inic

. . C
We represent an arbitrary constant in the form !

general integral will have the form
In|y|=In|x|+In|C|

, then the

Hence the general solution is ¥ =CX o, replacing =C by C:
y =Cx

2y
Example 29.2. Solve the differential equation x* =1 and find a
particular solution that satisfies the initial condition y(0)=1.

Solution. Let us separate the variables:

dy _ 2xy?

dx  x*-1

dy _ 2xdx

y?  x*-1

By integrating we obtain:
1o x*-1+c

y
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Hence the general integral is
y(ln ‘xz —ﬂ+C):1

Substituting the initial conditions y(O):l: 1-(0+C)=1 we obtain C =1
. Therefore,

B 1
V= In ‘xz—]hl

Homogeneous first-order differential equations

Function f (X’ y) is called homogeneous of degree n function, if for any
A

f(Ax,Ay)=2"f(x,y)

_ 2
For example, the function f (X’ y)— =Y s homogeneous of degree 2

y
f(x,y)=2
since 2xny =y Y :kz(xy—yz), and the function () X has

M_y
X-

degree zero since AX
A differential equation

y'=f(xy)

is called homogeneous if f(x, y) is a homogeneous function of degree
zero.
This equation can be solved as follows. We transform the right-hand side

=1 f(xy)=fOxnry)= f(l,lj
of the equation by setting X X/,
The equation takes the form
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i)
X/, (29.8)

y
u=- "
We do the substitution X, jie. YZUX Then Y =UXHU
Substituting this expression of the derivative into equation (29.8), we

obtain

du
—=f(,
Ut X (Lu)

This is an equation with separable variables:

du du dx

=f(1 FICOn T

X Lu)-u | or fLu)-u x
Hence

ek

Having found the function u =U(X), we must return to the function
y = UX

Xty

Example 29.3. Solve the equation X=y,
Solution. Let us make sure that the equation is homogeneous:
AX+AYy  X+Y y

— 1y X

=u

=y Changing the variables and substituting U into

2
f(l,u)—u:lJr—u—u:1+u

the equation we obtain, given 1-u 1-u
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I1+u -[_+C

Hence

arctg u —%In (1+ u2)= In|x|+C

Returning to function y , We obtain the general integral:

2
arctgl—lln [1+(Xj J=In|x|+C
X 2 X

First-order linear differential equations

The first-order linear differential equation is an equation of the form
y' + p(x)y =q(x) (29.9)

This equation is called linear because the unknown function y and its

derivative y are included into the equation linearly, i.e. they have the first
degree, without intermittent multiplication.

One of the methods for solving the linear equation (29.9) is the Bernoulli
method, which is as follows. We will seek a solution to equation (29.9) in

the form y:u(x)v(x):uv_ One of these functions can be taken

arbitrarily, the other is determined based on equation (29.9). Having made

y=uv

the substitution , We obtain:

u'v+uv'+ puv=q
or

uv+u(v' +pv)=q (29.10)
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Choose a function ¥ = V(X), such that

dv
) —+pv=0
VA pv=0 1 dx .

Separating the variables, we find
dv

— =—pdx
v

(29.11)

Integrating, we obtain
In|v :—.[ pdx+In|C,| or vece ™

where € =1C1,

Since any non-zero solution of equation (29.11) is sufficient for us, we take
_ —I pdx .
v(x)=e as function V' = v{x) ,

dx
where Ip is some primitive.

Substituting the found value V(X) into equation (29.10) we obtain:

du
w)=al), o e
Hence
du _q(x)

dx v(x)

We find the general solution for u= U(X):

i [ g
jv(x)d c'
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Substituting U and V into the formula ¥ =YY we finally find
a(x)
= —~<dx+C
y v(x)“ W X+ }

Remark. It can be proved that the general solution of equation (29.9) is the
sum of any particular solution of it and the general solution of

accompanying it homogeneous equation y'+ p(x)y - 0.

' 2 3
y'——y=2x
Example 29.4. Solve the equation X :
Solution. Having made a change of variables Y=UW"\ve obtain
2uv
uv+uy - —=2x°
X i)
2V
u'v + u(v’ ——j =2x°
X *)
Equate the expression in brackets to zero:
, 2V dv  2dx
V—-——=0 —=—
X , whence v X,

We find the function V:

Inv=Inx* v=x*

- 2 . .
Substituting Y =X""into (*), we find u:

d—u—2x
ux?=2x° dx , u=x’+C
Hence
y=(x2 +C)x2.
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Bernoulli equation

The Bernoulli equation is an equation of the form

y'+p(x)y =a(x)y"

where n;tO, n;tl.

The Bernoulli equation can also be solved by the Bernoulli method.

' _ \y2xX
Example 29.5. Solve the equation y+2y=y'e :
y=uv.

Solution. Let us change the variables as

u'v +uv' + 2uv = (uv e

u'v+u(v' +2v)=(uv)e”

Equate the expression in brackets to zero:
V+2v=0

We separate the variables:

ﬂ =-2dx
Y

We find V:

Inv=-2x

v=e

Substitute V into the equation (**):
u'e™ =u’ee*

hence

, ie. dx
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We separate the variables:

du
— =e "dx
u

We integrate:

—lz—e’X+C
u

We find u (replacing C by —C)):

1
u=—
e +C
Therefore, the general solution will be
y= e y= L
e +C or e* +Ce™

29.3. Application of differential equations
In continuous-time economic models

Consider some examples of applications of differential equations in
dynamic problems of economy. The independent variable here is time t.
Time in economic dynamics can be considered both continuous and
discrete. We consider continuous time since in this case, it is possible to
use the tools of differential calculus and differential equations.

Let us start with examples of applying the simplest first-order differential
equations - equations with separable variables.

We consider an equation of the form

y'=g(y) (29.12)
Obviously, this is a special case of a differential equation with separable
variables. Such equations are often found in issues of economic dynamics
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(sometimes they are called autonomous equations, but in the theory of
differential equations this term is not commonly used).

If Y is a root of the equation 9(y)=0 y = const), then Y=Y isa
solution of equation (29.12). This solution is called stationary.

Natural growth model

Let us denote as y(t) the output intensity. It is assumed that the products
are sold at a fixed price p and that the market is unsaturated, i.e. all

manufactured products are sold out. We call the difference I = I(t)
between the total investment and depreciation costs net investment. To

increase the output intensity y(t) , the net investment | must be greater than
zero. From the assumption of market unsaturation it follows that as a result
of the expansion of production, an increase in income will be obtained, a
part of which will again be used to extend the output. This will lead to an
increase in output intensity.

It is assumed that the intensity of output Y'is directly proportional to the
increase in net investment, i.e. the so-called principle of acceleration
takes place:

y'=ml (29.13)

where m is the acceleration rate (M=CONSt) | et a be the rate of net
investment, i.e. part of the income py, obtained from the sale of products

spent on net investments, 0 <@<1 Then

| =apy (29.14)
Substituting the expression I from (29.14) into (29.13), we obtain
, a a
y =22y Lk
M Letusdenote M , then
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y'=ky, (29.15)

Equation (29.15) is an equation with separable variables. We separate the
variables:

Y _
y

Integrating, we find the general solution:
In|y|=kt+InC

y=Ce" (29.16)

Let the volume of output Yo pe fixed at the initial moment of time t :tO:

Y(to): Yo ,
Y, =Ce'® .

Then we can find the constant C:
C — yoefkto

consequently,

_ k(t-to)
y=Y& (29.17)

Equation (29.17) is called the natural growth equation. This equation also
describes the demographic processes, the processes of radioactive decay,
the reproduction of bacteria.
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Keynes dynamic model

We consider the simplest balance model. Supposing that Y(t) is national

income, E(t) is government spending, S(t) is consumption, I (t) is an
investment. All these quantities are functions of time t.

Let us make up the balance equations. First of all, the sum of all expenses
should be equal to national income:

Y(t)=S(t)+1(t)+E(t)

The total consumption S(t) consists of domestic consumption of some of
the national income plus final consumption. The first term has the form

a(t)Y (t) where a(t) is the coefficient of propensity to consume (
0< a(t)<1); the second is denoted by b(t):
S(t)=a(t)y (t)+b(t)

Finally, the size of the investment is characterized by the product of the

acceleration rate M= m(t)

I(t)=K@EY'(t)

and the marginal national income:

We obtain the system

Y(t)=S(t)+1(t)+E(t)

S(t)=a(t)v (t)+b(t)

I (t): m(t)Y’(t)' (29.18)
All functions included into equations (29.18) are positive.

It is assumed that functions a(t), b(t), m(t) and E(t) are given, i.e. they
are characteristics of the functioning of a given state.
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It is required to find the dynamics of national income, i.e. find Y as a
function of time t.

We substitute the expressions for S(t) from the second equation and I(t)
from the third equation of the system (29.18) into the first equation:

Y(t)=alt)y (t)+b(t)+m(t)y(t)+ E(t)
We express Y’(t):

Y'(t)= 1r—nz()t)Y(t)_ b(t)+ E(t)

or
Y(t)- 1- a(t)Y __bt)+E(t)

mt) mt) (29.19)
This is a linear differential equation:

Y'(t)+ pe)Y =alt)

1-al(t) b(t)+ E(t)
pﬁ):_]aﬁﬁj qﬁ)=———;«a——

where ,

We already know the method for finding a general solution to a linear first-
order equation (see § 29.2). However, its implementation as applied to
equation (29.19) would be very cumbersome. Consider the special case
when the main parameters a, b, and m are constant. Then equation (29.19)

is simplified:

_1—aY __b+E
m m (29.20)

This is a linear differential equation with constant coefficients.

YI
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As already noted (see p. 379), the general solution of the inhomogeneous
equation is the sum of its particular solution and the general solution of
the accompanying homogeneous equation. As a particular solution Y of
equation (29.20), we take the solution obtained for Y'=0 je.
v _ b+E

l1-a

This solution is called equilibrium.

Since E>O’ O<a<1,thenv>o_

y_178y g

The general solution of the homogeneous equation m has

l1-a
ot o=—
Yo=Ce™ \vhere M (Obviously, @ >0 ) Therefore, the

general solution of equation (29.20) has the form

b+E
Y(t)= - a+Cexp(?tJ

)

the form

or
E 1-
Y(t)=2E g o-122
1-a , where m
If at the initial moment Yo <Y , then C=Y,-Y <0 and the national

income decreases with time under the fixed parameters a, b, m and E. If

Yo>Y ,then € >0 and the national income grows.
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Y 4

<Y

Fig. 29.2. Integral curves of equation (29.20)

Samuelson equation
The samuelson equation is the equation:

p'=k[D(p)-S(p)] (29.21)

Here D(p) and S(p) are, respectively, the value of supply and demand
at the price p k> O. Equation (29.21) models the relationship between

the change in price p and the unmet demand D(p)— S(p)'
We consider the simple case when supply and demand are defined by linear
functions:

D(p)=a-bp. S(p)=m+np

where a, b, m, n are some positive numbers. At the same time, obviously,
a>M since at zero price demand exceeds supply. In this case, equation
(29.21) has the form

p'=k(a—m)-k(n+b)p (29.22)
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Equation (29.21), and therefore, (29.22), is a linear differential equation.
Find a solution to the homogeneous equation corresponding to equation
(29.22):

p'=—k(n+b)p
or

dp

9P _ _k(n+b
o = k(+b)p

We separate variables and integrate:

%?:—an+Mm

In|p|=—k(n+b)t +In[C|

_ —k(n+b)t
p(t)=Ce™ "t (20.23)
Like in the previous case, we can use the equilibrium solution

p(t)= P = const as a particular solution to equation (29.22), where P is

the root of the equation D(p)-$(p)=0 (in this case p’=0). From
(29.22) we find

a-m

n+b

p=
We obtain the general solution of equation (29.22):

_a-m —k(n+b)t
p(t) T Ce |

(29.24)
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Questions

1. What is called a differential equation?

2. What is the order of a differential equation?

3. What is called a solution of a differential equation?

4. How is the Cauchy problem formulated for a first-order differential
equation?

5. What is the general solution of a first-order differential equation?
6. What does solving a differential equation mean?

7. What equation is called a differential equation with separable
variables?

8. What function is called a homogeneous function of degree n?

9. What kind of a first-order differential equation is called
homogeneous?

10.  What kind of a first-order differential equation is called linear?

11.  What is the Bernoulli method for solving the differential equation?
Which first-order differential equations does it usually apply for?

12, What is called the natural growth equation? What processes does
this equation describe?

13.  What is the Keynes dynamic model?

14.  What does the Samuelson equation look like? What is the meaning
of its values?
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Chapter 30. Differential
equations of the second and
higher orders

30.1. Basic definitions

A differential equation of the second order has the form:

F(x,y,y.,y")=0 (30.1)
or

y' =ty y) (30.2)
Conditions

Y(%)=Yo ¥(%)=Y (30.3)

are called the initial conditions.

Definition. Function y:(P(X’Cl'C2) is called the general solution of

C

equation (30.1) if it is a solution of equation (30.1) for any values ~1 and

CZ, and if for any initial conditions (30.3) there are unique values of

_ 0 0 N 0 ~O
constants C=C , C, _CZ, such that the function y—(p(x,Cl ’CZ)
satisfies these initial conditions.

_ 0 0
Definition. Any function y—(p(x,Cl ’Cz)

obtained from the general
solution Y = (P(X’Cl'cz) of equation (30.1) for certain constant values

_ 0 0
C=C : C, =G, is called a particular solution.
In some cases, solving a second-order differential equation can be reduced
to sequential solving of two first-order differential equations.
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30.2. Differential equations allowing
reduction of order

1. The equation does not explicitly contain the desired function vy, i.e. has
z

the form F(X’ Y’ y"): 0 In this case, it is sufficient to substitute y'=
. Then y'=17 and the equation takes the form:
F(x,z,2')=0

i.e. itis a first order equation with respect to z.
Let us find the general solution

Z= (P(X'Cl)

We make the reverse substitution
y = (P(X’ Cl)

Hence
y = [(x,C )dx+ C,

Example 30.1. Solve the equation XY +Y =0

Solution. Let 2=Y . Then ¥ =%  andthe original equation has the form

dz

X—+2=0
x2'+2=0 or dx ’
whence
dz  dx

z X
Integrating we obtain
= & y' = &
X or X




30.2. Differential equations allowing reduction of order

Solving the last equation, we obtain:
y=C,In|x+C,

2. The equation does not explicitly contain argument X, i.e. has the form
(y’ Y.y )= 0. In this case, the order of the equation can be reduced

letting y=z= z(y)_ Then

dz
V'=2,=2)y, =22, =7—
dy
Example 30.2. Solve the equation y’ (y’)
Solution. By the substitution y'= z(y) we reduce this equation to a
first-order equation:
z%—zzzo Z(E—Zj=0
dy or dy .

The first solution of this equation is Z=0 or ¥ =C  where C =const
Next we obtain

j—; -2z=0

Separating the variables and integrating, we obtain
z2=Ce’

We make the reverse substitution:

dy C ey
dx

Variables are also separated here:
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e ’dy =C,dx

-e’=Cx+C,

Since C and C, are arbitrary constants, we can write (taking -G
instead of Cl, and -G, instead of C2):

e’ =Cx+C,

y=-In(Cx+C,)

Obviously, this solution also includes the solution y=C obtained above.

3. The equation has the form y = f(y)_ This is a particular case of the
equation considered in Sec. 2. Therefore, it is solved by substituting

, n — Z %
y=2= Z(y), dY  As a result of such substitution, this equation
is converted into a first order equation:
dz
.l—=
&y (y).
Hence
zdz = f(y)dy

Integrating, we obtain
ZZ
=] )y +C,

Hence

Z= J_r\/Z(Cl +I f (y)dy)’
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i.e.

N dy = +dx
S osfele[10w) ole+ ()

Integrating the left and right sides of the last equality, we obtain the general
integral.

2yty" =1 y(%jzl
Example 30.3. Find a particular solution: y'y =4

o

, 0z
y'=z—
Solution. Making the substitution dy | we find
y’z a2 _y
dy
Hence
z az = is zdz = d_);
dy y* y
Integrating, we obtain
1
S S R
2y 2y
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1
X==
Assuming here 2 and considering that at this value x we have
y=z=1

, We see that we need to take the plus sign in front of the radical,

c,=2

1
then we find 2 Thus,

3 1
2= |-
2 2y°

or, which is the same,

dy 3 1 dy [3y’-1
19 92 Oy 2

dx 2 2y ’ or dx 2y

Hence

—\/Eydy =dx

V3y* -1

Y
The integral from the left side is taken by the substitution t=3y _1,
dt=6ydy

%wﬁyz ~1=x+C,

_1 ﬁ.\/_zl_kcz 3214_(;2 szl
At 2 we find 3 2 , or 3 2 , whence 6.
We obtain

%,/By2 ~-1= x+%
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Squaring and making obvious transformations, we finally obtain

2y2=3x2+x+%

30.3. Linear differential equations of
order n

A linear differential equation of order n is an equation of the form

2, ()Y +a, (x)y" +..+a,, (x)y +a,(x)y = F(x) (30.5)

This equation is called linear, because the unknown function y and its
! /4 (I’])

derivatives Y , y s e Y™ are included into it linearly, i.e. in the first

degree, not multiplying among themselves. Here aO(X), al(x)’

a”—l(x), a4 (X) F(X) are given functions of x (in particular, they can be
constant), and for all values of x from the domain in which we consider
equation (30.4) (otherwise the order of the equation would not be equal to

n) Therefore, we can divide both sides of the equation by aO(X) and
transform it to the form

y(n) + pl(x)y(n_l) +..t pn—l(X)y’+ Py (X)y = f(X)’ (30.5)
LAk a0 FO)
e "7 a0) P00 =60

In what follows, we will write a linear differential equation in the form
(30.5). The function f(x) in equation (30.6) is called the free term. If

f (X) identically equals zero, then equation (30.6) is called homogeneous;
in this case, it obviously has the form
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Y+ ()Y et Py (X)y P (X)y =0 (30.6)

Otherwise, equation (30.5) is called inhomogeneous. The function f(x)
in (30.5) is called the right-hand side (or free term) of equation (30.6).

In what follows, we will present the theory and carry out the proofs, as a
rule, for second-order equations, since here we can study all the main laws

of interest to us. So, in what follows we will mainly deal with equations
y"+ p(x)y +a(x)y = f(x) (30.7)

First of all, we establish some basic properties of linear homogeneous
equations.

Structure of the general solution of a homogeneous linear
differential equation

Let us consider an equation of the form
y"+p(x)y +a(x)y =0 (30.8)
In the future, we will see that in order to be able to solve equation (30.7),

in which f(x)i 0, we must also be able to solve equation (30.8). We
consider two simple properties of solutions of equation (30.8).

1. 1f Yo is a solution to equation (30.8), and C is a constant, then product
Yo is also a solution to this equation.

Proof. Substitute ¥ ~ Yo into equation (30.8). Since

y'=Cy, y'=Cyg

the left side as a result of the substitution looks like

Cys + p(x)C y; +a(x)Cyy.

or, which is the same,
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C (v + p()ys +a(x)yo)

since Y0 is a solution of differential equation (30.8), the expression in
brackets is identically equal to zero. Thus, equation (30.8) turned into an
identity. The statement is proved.

2.1f Y1 and Y2 are solutions of differential equation (30.8), then their sum

Y1 Y2 js also a solution to this equation.
Proof. Since

Y=¥1+Y2, Y'=Yi+Y,

and since Y1 and Y2 are solutions of equation (30.8), the following
identity equalities hold:

¥y + p(x)y; +a(x)y, =0 Y+ P(x)Y; +a(x)y, =0 ()

Substituting the sum Y12 into equation (30.8) and taking into account
the identities (*), we obtain

(Vi +¥,) + POy +¥s) +a(ely; +,)=
= (y7+ p(x)y; +a(x)y, )+ (v5 + p(x)y; +a(x)y,)=0+0=0.
So, equation (30.8) turned into an identity. The statement is proved.

Definition. Two functions Y1 and Y2 are called linearly independent if
the identity equality

Ky, +K,y, =0 (30.8%)
has the only possible solution
k,=k, = O.
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If there exists a nonzero solution (**), then functions Y1 and Y2 are called
linearly dependent.

Obviously, functions Y1 and Y2 are linearly independent if and only if
their relation is not constant:

L # const

Y,

Definition. If Y1 = yl(x)1 Y, = yz(x), then the determinant
Yi Y

!

Y1 Vs
is called the Wronski determinant of these functions.

W (x)= A A

Lemma 30.1. If the functions Y2 = Y1(X) and Y2 =Y2(%) are linearly

dependent on the segment [a, b], then the Wronski determinant, composed
of them, is identically equal to zero on this segment; if the functions are

linearly independent on [a, b], then the Wronski determinant is nonzero
on [2:0],

Proof. Let functions Y1 and Y2 be linearly dependent on the segment
[a, b]. Then these functions are proportional on [a, b], ie. N :ky;_
W (x)

Therefore, the determinant contains proportional columns, therefore

it is equal to zero on the segment [a, b]:
k
wio=| =t o
Vi Yol Y1 kv

The first part of the lemma is proved.

510 ‘
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We prove the second part of the lemma by contradiction. Let functions

Yi = yl(X) and Y2 = Y2 (X) be linearly independent on the segment [a, b]
; assume that the determinant W(X) is identically equal to zero on this
segment. Then its columns are necessary proportional: Y, =Ky, : Y, =ky

. But this means that functions Yt and Y2 are proportional, and therefore,
linearly dependent, which contradicts the condition of the lemma. The
proof is complete.

W (x)

Lemma 30.2. If the Wronski determinant , composed for solutions

Y1 and Y2 of the homogeneous linear equation (30.8) is not equal to zero

X=

for some value X0 on the segment [a, b], and the coefficients of the

equation are continuous on this interval, then W (X) does not vanish at any
value X on this interval.

Proof. Since Y1 = yl( ) and Y2 = YZ(X) are solutions of equation (30.8),
the following identities hold:

yr+ p(x)y; +q(x)y, =0 yy+ p(x)y; +a(x)y, =0

We multiply both sides of the second equality by Y1 and both sides of the
first - by Y2 and subtract the first from the second. We obtain:

(1Y = ¥1y2)+ P(X) (¥¥5 — Y1) =0 (309)
The difference in the second bracket is the Wronski determinant W(X).

Indeed, W(X) =V1Y2 = W1Ya We differentiate W(X):

W/(X)= Y,y = ¥i¥a) = Vi¥s + Yi¥s — Vi¥s — Vi¥s = Vi¥5 = V1Y,
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As we can see, the difference in the first bracket (30.9) is a derivative of
the Wronski determinant, therefore, equation (30.9) can be represented as

W'+ p(xW =0 (30.10)
i.e. is a differential equation with separable variables. We find a solution
of this equation that satisfies the condition W(XO) =W, , supposing
w (X°)¢ 0 . Separating the variables, we obtain
dw
— =—p(x)dx
w =P |
Integrating, we find
InW = —j p(x)dx+InC
Hence,
W X
In c- —X{ p(x)dx
and we obtain the general solution of equation (30.10):
W=C exp(— I p(x)de
%o . (30.11)

(Recall that ®¥P2 means €° forany a.)
Formula (30.11) is called the Liouville formula.
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We now define constant C so that the initial condition W(XO):WO is

satisfied. We substitute * = %0 into the left and right sides of the equality
Xo
I p(x)dx=0

(30.11). We obtain (given that *o ):

W, =C

We substitute the found value C =W, into equality (30.11). So, the

solution to equation (30.10), satisfying the initial conditions W(XO) =W, :

has the form

W =W, exp [— J' p(x)dx}
Then (since the exponential function does not vanish at any value of the

W, #0

argument, and since by hypothesis) it follows from the last

equality that W # O at no value of x. The proof is complete.
From the previously proved properties 1. and 2. of the solutions to the
homogeneous linear differential equation (30.8) it follows that the linear

combination of solutions yl(x) and yZ(X) equation (30.8), i.e.
y= Clyl(x)"‘czyz(x),
where C, and C, are constants, is also a solution to equation (30.8).

Let us now formulate and prove the theorem that describes the structure
of the general solution of a homogeneous linear differential equation.
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Theorem 30.1. If yl(x) and yz(x) are linearly independent on [a,b]
particular solutions of the homogeneous linear differential equation (30.8),
then the general solution of this equation has the form

y =Cyy,(x)+C,,(x) (30.12)

where C, and C, are arbitrary constants.

Proof. It was previously established that a linear combination (30.12) is a
solution of equation (30.8); it must be proved that it is the general solution,
i.e. it must be shown that for any initial conditions there are such values of

constantscl and CZ, for which this linear combination is a solution
satisfying these initial conditions.

X, €[a,b]

Let us take any number and any numbers y°, Yo and make up

the initial conditions:
Y()=Yo ¥(%)=Yo
The fulfillment of these conditions for the function (30.12) means that
{Clyl(xo)+ C.¥2(%)= Yo,
Cly{(xo)"' C, yé(xo): Yo-
We obtained a linear system of two equations with respect to unknown

constants C, and C2. The determinant of this system is Wronski

determinant W(XO), and since Y1 and Y2 are linearly independent, this
determinant is not equal to zero. Therefore, the system has a unique

solution for any values of the right-hand sides Yo ang Yo
C = Clo C,= Cg
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Substituting these values in the solution (30.12), we obtain a particular
solution satisfying the given initial conditions. Since the initial conditions
are given arbitrarily, we can state that solution (30.12) is a general solution
to equation (30.8). The theorem is proved.

Remark. If we discard the condition for the linear dependence of the

functions Y1 and y2, then the function (30.12), although it remains the
solution of the differential equation (30.8), will no longer be its general
solution.

Indeed, let, for example,

Ve
Y,

Then Y1 =Yz and (30.12) has the form
y=C,y, +C,Yy, =5C,y, +C,y, =(5C, +C,)y, =Cy,

where 5C, +G, =C. In other words, in case functions Y1 and Y2 are
linearly dependent, the number of arbitrary constants in (30.12) can be
reduced to one by introducing new notation, and a function containing one
arbitrary constant cannot be the general solution of differential equation
(30.8).

The meaning of the theorem proved (30.1) is that it reduces the problem of
finding the general solution of differential equation (30.8) to a simpler
problem, which is the problem of finding two linearly independent
particular solutions of this equation. We will deal with this last task now,
but we will restrict ourselves to the simplest case when the coefficients of

the equation are constant: p(x)=p= const. q(x)=q = const :
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Homogeneous linear differential equations with constant
coefficients

We consider an equation of the form
y'+py'+ay=0 (30.13)

where p and g are some constants.

Let us first find the general solution of equation (30.13). By Theorem 30.1,
in order to do this, it is necessary to find two linearly independent particular
solutions of equation (30.13).

We will seek for a solution of equation (30.13) in the form

_ Akx
y=¢", (30.14)
Since
y¢ — kekx yﬂ — kzekx
substituting (30.14) into the left-hand side of (30.13), we obtain

k?e" + pke™ + e =0 e"x(k2 + pk +q):0_

or

So, for (30.14) to be a solution of equation (30.13), k must be a root of the
guadratic equation

k*+pk+q=0 (30.15)

This equation is called the characteristic equation for the differential
equation (30.13).
Three cases are possible.

1. The roots (30.15) are real and different: k, = a k, =D ,a#b Then
(30.13) has two solutions:
ax bx

Yy =¢€ y, =€

These solutions are linearly independent since
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ax

# const

ebx .

The general solution of equation (30.13) is as follows:
y=Ce™ +Cpe™

Example 30.4. Solve the equation Y ~ Sy'+4y=0
Solution. We compose the characteristic equation:

k?-5k+4=0
We find the roots: Ky :1, k, = 4, so the general solution to this equation
is

y=Ce*+Ce™

2. The roots of equation (30.15) are real and coincident: k =k, =a (
a=—2
2 ). One of particular solutions of equation (30.13) will be

Y. = C1eax .

However, we cannot find a second solution Y2 yet, such that Y1 and Y2
are linearly independent.
However, in this case, it turns out that, along with the solution

Yi= e*

equation (30.13) has a solution
yzzxeax
We will verify this. In order for the characteristic equation

2 _
k*+pk+q=0 to have equal roots, which are expressed in the form
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4 , It is necessary for the discriminant to be equal to

zero: 4 . In other words, the condition of coincidence of the roots

p
k, =k, =——
Then P 2 and one of the solutions of equation (30.13) will be

the function

p

yi=¢€¢°
Let us make sure that the solution of equation (30.13) will also be

p

y, =Xe ?

We find derivatives Y2 and Y2 :

o P e P e
y2:e —Exe yzz—pe +Txe

We substitute Y2 and its derivatives into the left side of equation (30.13)
Pep? Pep Py
—pe2+7xe2+p eZ—Ee2 +0oxe 2

Having made the obvious transformations, we obtain
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p* ), o
q—— | xe 2
4

This expression is equal to zero (since 4 ), and the statement is
proved.

p p

——X —X

— 2 — 2
So, y1=¢ and Y2 =X So, and are two solutions of equation
(30.13) in case the roots of the characteristic equation coincide. Linear

independence of Y1 and Y2 is obvious. Therefore, the general solution of
differential equation (30.13) has the form

So, we note once again that the following statement is true: if the

k =k, =

characteristic equation has coinciding roots a’ then along with

the function

y, =e”

the solution of differential equation (30.13) is also the function

y, = xe*

Then the general solution of equation (30.13) is the function

y=Ce” +C,xe™ (30.16)
It should be noted that in case the characteristic equation has two different

— _ _ ax
roots kl =4a , kZ =b=a , the function y=2xe

the differential equation (30.13).

will not be a solution of

Example 30.5. Solve the equation y'—4y'+4y=0
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Solution. The characteristic equation k®—4k+4=0 has two coinciding

roots k =k
follows:

2= 2. Therefore, the general solution of the equation is as

2x 2X
y=Cpe” +C,xe”"

3. The roots of the characteristic equation are complex conjugates:

K,=o=xpi .. L a2 )
12 =& B , where i is the imaginary unit, ! =-1 In this case, we can

prove that the general solution of equation (30.13) is
y =e*(C, cosBx + C, sin fx)

(We accept this statement without proof.)
Example 30.6. Solve the equation y'—4y'+13y=0 :

Solution. The characteristic equation k®-4k+13=0 has the roots

k,,=2+3i . i L
1,2 3 . The general solution to this equation is

y =e*(C, cos3x +C, sin 3x)

30.4. Structure of the general solution of
an inhomogeneous linear differential

equation
We now move to an inhomogeneous linear differential equation
y"+p(x)y' +a(x)y = f(x) (30.17)

Along with it, we consider the homogeneous linear equation with the same
left-hand side, i.e the equation

y'+p(x)y'+a(x)y=0 (30.18)
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Equation (30.18) is called the corresponding or accompanying equation
of the differential equation (30.17).

Theorem 30.2. If ¥ is a particular solution of the differential equation

(30.17), and Yo is the general solution of its accompanying equation
(30.18), then their sum

y=Yo+y (30.19)

is the general solution of the differential equation (30.17).

(In other words, the general solution of an inhomogeneous linear
differential equation is the sum of its particular solution and the general
solution of the corresponding homogeneous equation.)

~

Proof. 1. Let Y be a particular solution of the inhomogeneous equation

(30.17), and Yo=Cu¥1 +CoY, be the general solution of the

accompanying homogeneous equation. First, we make sure that the
function

Y=Y+ y
is a solution of equation (30.17). We substitute the function (30.19) into
the left side of the equation (30.17):

Yo+ 5"+ p) (5 + )+ a(x) (o + )

Regrouping the terms, we obtain
[y + p(x) ¥ +a(x) yo ]+ [§"+ p(x) ¥+ a(x) V]

Since Y0 is a solution of equation (30.18), the expression in the first
square brackets is zero. Since Y is a solution of equation (30.17), the
expression in the second square brackets is equal to f (X) . S0, substituting

(30.19) into equation (30.17), we obtain the identity f (X) - f (X)
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Therefore, function (30.19) is indeed a solution of differential equation
(30.17).

2. Now we need to make sure that function (30.19) is a general solution of
the nonhomogeneous equation (30.17). Let y be any solution of the

inhomogeneous equation (30.17), and let Y be the solution of the same
equation (30.17).

Consider the difference ¥ Y. We will show that this difference is a
solution of the homogeneous equation (30.18). In order to do so, we
substitute it into the left side of equation (30.18) and group the
corresponding terms:

(y=¥) +p(xNy-9) +q(><)(y 7)

=[y"+ p(x)y'+a(x)y]-[7" + p(x)§" +a(x)¥]= f(x)- f(x)=0.
Therefore, this difference is a particular solution of the homogeneous
equation (30.18), and this solution can be written in the form

y_y:nyl‘i'CSyz,

where Cl and C2 are the corresponding values of constants C, and C,
in the formula for the general solution of the homogeneous equation.
We have proved that any solution of equation (30.17) can be obtained by

formula (30.19) by appropriate selection of the constants C, and CZ.
Therefore, function (30.19) is a general solution of the inhomogeneous
linear differential equation (30.17). The proof is complete.

While proving Theorem 30.2, we proved the following properties of
solutions of linear differential equations:

1. 1f Y is a solution of the inhomogeneous differential equation (30.17),

and Y is a solution of the accompanying homogeneous equation (30.18),
then their sum is a solution of the inhomogeneous equation (30.17).
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2. 1f Y1 and Y2 are two solutions of the inhomogeneous differential

equation (30.17), then their difference Y=Y17Y2 js a solution of the
accompanying homogeneous equation (30.18).

The proved Theorem 30.2 indicates a method for finding the general
solution of the inhomogeneous equation (30.17): it is necessary to find
the general solution of the accompanying homogeneous equation (30.18)
and some particular solution to the equation (30.17).

We are able to find a general solution of the homogeneous equation
(30.18), however, only for the case of constant coefficients:

p(x):p:const, q(x)=q=const 1y problem of finding a

particular solution to the inhomogeneous equation (30.17) in the
general case is very complicated. We will consider it only for simple cases,
especially for situations when the coefficients of equation (30.17) are

constant and the right-hand side f (X) has a special form. So, we now turn
to an inhomogeneous linear equation

y"+py'+ay = f(x) (30.20)

where P»d=00nst,

In the future, we will use symbols Ry (X) and Qn (X) to denote polynomials
of degree n:

P(x)=a,x"+ax"" +..+a X+ a,

Q,(X)=bpx" +bx"* +...+b, x+b,

We consider three different particular types of function f (X) :
A F)=R()
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The right-hand side of equation (30.20) is a polynomial of degree n. Since
the derivative of the polynomial is a polynomial, we can try to find a

~

particular solution Y of equation (30.20) also in the form of a polynomial
whose coefficients are not yet known, but to find them there exists the
method of undetermined coefficients that we already know.

Example 30.7. Find the general solution of the equation

y" =3y’ +2y=2x°-7x* —4x+10
Solution. We see that if we substitute a polynomial of the third degree
y=ax’ +bx® +cx+d

into the left side of this equation, then a polynomial of the third degree will
also appear on the left side. We will try to choose the coefficients a, b, ¢, d
in such a way that the equation turns into an identity. We differentiate the
polynomial and substitute it into the left side:

y'=3ax’ +2bx+c y" =6ax+2b

6ax + 2b —3(3ax? + 20X+ ¢ )+ 2(@x® +bx? + cx+d )= 2x° — 7x* — 4x +10
2ax® +(—9a+ 2b)x* +(6a—6b —2¢)x + 20 —3c + 2d = 2x> — 7x* —4x +10

x| 2a =2,

x?|-9a+2b =7,
X | 6a—6b+2c =-4,
x° 2b—3c+2d =10.

Solving the resulting system, we find
a=1 b=1c=-2 d=1
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We obtain a particular solution of the given differential equation:
y=x"+x*-2x+1

The accompanying equation has the form

y'=3y'+2y=0

Its characteristic equation

k?-3k+2=0

has the roots K1 = 2, k, =1
accompanying equation is

, and therefore the general solution of the

Yo =Ce” +Ce"

According to Theorem 30.2, the general solution of this equation is
y=Ce” +Ce" +x° +x* -2x+1

In connection with this example, an assumption may arise that a particular
solution y of the differential equation

y"+ py'+ay =P, (x)

should be sought for in the form of some polynomial of the same degree
and we only need to select the coefficients of this polynomial. However,
this assumption is erroneous.

Consider the equation

y' -y =4x* -9x* —6x -2

Let us try to find Y in the form of a polynomial of the same third degree:

yax® +bx* +cx +d
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Differentiating Y and substituting it into the left side of the equation, we
obtain:

6ax+2b—(3ax2 + 2bx+c): 4x° —9x%* —6x—2

—3ax® +(6a+20)x+2b—c=4x° —9x* —6x -2

The identical equality of these polynomials, the degrees of which are
different (on the left-hand side there is a polynomial of the second degree,
and on the right-hand side there is the third), it is impossible for any a, b,
¢, and d.

Our attempt was unsuccessful because we did not take into account that
when differentiating the degree of the polynomial decreases by one, and
on the left side of this equation there is no term containing an unknown
function y (and only terms containing derivatives of this function are
present). Therefore, for the left side of this equation to become a
polynomial of the same (third) degree, we must take a polynomial of
degree one greater than y, i.e. polynomial of the fourth degree. However,
in this case, the free term of this polynomial will not be taken into account
since it will vanish during differentiation. Therefore, we must take a
polynomial of the form

Q,(x)=ax* + bx® +cx? + dx
or
XQ, (%) = x(ax® +bx? +cx+d)

(Recall that we are only looking for a particular solution.)
Taking into account the considerations expressed here, we will seek for a
solution of the given equation

y' —y =4x® - 9x* —6x—2
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v 3 2 4 3 2
a5 Y = xQ,(X) = x(ax® +bx? + cx+d )= ax* +bx® + cx X e

differentiate Y and substitute y and Y in the left-hand side of this
equation:

y' =4ax® +3bx* + 2cx +d y” =12ax* + 6bx + 2c
12ax + 6bx + 2¢ — (4ax® + 30x? + 2cx +d ) = 4x° — 9x° — 6X — 2

—4ax® +(12a—3b)x? +(6b —2¢)x+ 2c —d = 4x* —9x® —6x -2

x| —4a =4,

x?| 12a-3b =-9,
X 6b —2c =-6,
x° 2c —d=-2.

Solving the resulting system, we obtain
a=-1 b=-1c¢c=0 d=2,

""__4_ 3
Hence Y =X —X +2X

We find now Y°. To do S0, we compose a characteristic equation, find its
roots, and use them:

k’-k=0 ’

k(k-1)=0

We obtain the general solution of the accompanying equation:
Yo=C,+Cpe"

The general solution of this equation is

y=C,+Cpe" —x* =%’ +2x_
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So, with 4= 0 and Py (X) on the right-hand side, we found a particular

solution Y in the form of a polynomial of degree n + 1:

Y =xQ,(x)

Reasoning in a similar way, in the case when not only g, but also p= O,

the solution Y can be found in the form

y =xQ,(x)

(However, in this case, it is enough to integrate the right-hand side twice.)
Let us summarize the first result and indicate methods for finding a
particular solution of differential equation (30.20) in case the right-hand
side is a polynomial.

If f(X)ZP”(X), where Pn(x) is a polynomial of degree n, then a

particular solution Y must be sought in the form:

. y=Q,(x):ifq=0:
° yszn(X),ifqzo,pio;
. 7=x'Q,(x):f a=0. p=0.

These rules are also preserved in those cases when we are dealing with
higher-order differential equations.

Example 30.8. Solve the equation ¥ +9Y' =10x+12

2
Solution. We make up the characteristic equation: k®+5k =0 jts roots

are K1 =0 K, =

the form:

-5 .Sinced= 0 , we will seek for a particular solution in
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y =X(Ax+B)=Ax*+Bx
Substituting it in the original equation:
2A+5(2Ax+B)=10x+12

We equate the coefficients at the same degrees of X:
10A =10,
2A+5B =12.

=~ 2
Hence, A=1 B=2 Y=X +2X  The general solution of the

Y, =C, +Ce™>

accompanying equation is . Therefore, the general

solution of this equation is

y=C,+Cpe™ +x*+2x

Example 30.9. Find the general solution of the differential equation
y"—2y"—y' +2y=2x>-3x*-12x+8

Solution. Here, the coefficient of y on the left-hand side is nonzero;
therefore, we seek for y in the form of a polynomial of the same degree
as the polynomial on the right-hand side, i.e. as QS(X):

y =ax® +bx* +cx+d

We differentiate:

Sm

y'=3ax’ +2bx+c y" =6ax+2b y"=6a

We substitute y and its derivatives:
6a— 2(6ax + 2b)— (3ax + 2bx + ¢ )+ 2(ax® + bx? + cx+d ) = 2x° —3x? 12X +
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2ax’ +(—3a+2b)x* +(~12a—2b + 2c)x +6a—4b —c+2d =
=2x3 —3x? —12x+8,

X3 2a =2,
x?| —3a+2b =-3,
X |[—12a—-2b+2c =-12,

x| 6a-4b- c+2d=8.

We find the coefficients; 8=1, b=0 ¢=0 d=1 gq
y=x"+1

We solve the accompanying equation:
y'-2y"-y'+2y=0

k3—2k2—y+2=0’

k1:2, K, :1, K, :—1.

We find the general solution of the accompanying equation:
Yo =Cie” +Cpe" +Ce ™

Finally, we obtain:

Yo =Ce” +C" +Ce " +x*+1

Let us consider another example with a differential equation, the order of
which is higher than two.
Example 30.10. Find the general solution of the equation

y W4+ y" = 24x+36 _

vt 3
Solution. We are seeking for Y in the form of * Ql(X):
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y =x*(ax+b)=ax* +bx?
J'=4ax’ +3bx* §'=12ax’ +6bx y"=24ax+6b ' =24a
Substituting, we obtain
24a+24ax+6b =24x+36
24a =24,
24a+6b =36.
Hence, a=1 b=2; y=x"+2x"
We solve the characteristic equation:
k*+k®= 0

k*(k+1)=0

k, =k, =k, =O, k,=-1

We obtain

Yo =Ci+Cx+Cx* +Cje ™

We find the general solution of this equation:
y=C,+Cx+Cx* +Cpe " +x" +2x°

We now turn to consideration of equations with a more complex right-
hand side.

B. Let f(x):e‘”‘Pn(x). The considered earlier case f(x)=P(x) is

obtained from thisat & =0, Formally speaking, it could not be considered
separately. So, we need to solve the equation

y"+ py'+ay =e”P,(x) (30.21)
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We will try to reduce this problem to the previous one, i.e. to the case when
the polynomial is on the right-hand side of the equation. We apply the
substitution

y:e(XXZ

where z is a new unknown function Z= Z(X). We find derivatives:
y! — aeaxz +e0LXZ!

2 nOX X o f X o1

y'=a‘e”z+0e*z +oe”z+e*z

Substituting v, Y and Y into the left-hand side of the equation, we
perform obvious transformations:
a’e™z+ 206”7 +e%7" + p(ae‘*xz + e“xz’)+ qe™z = P, (x)

e”z"+ (20ce“‘X + pe™* )z' + (ocze"‘X + poe™ +qge™ )z =e”P, (x)
Reducing by €

2"+ 20+ p)z' + (oc2 + po+ q)z =P (x)

We obtained an equation of the kind already considered:

2"+ pz'+qz = P,(x)

_ = _ 2
where P=20+ P G =0"+Pa+0 Therefore, we can apply the same
rule:

° 7=Q,(x):if g=0’+ pa+q=0;
¢ 7=xQ,(x):fg=a?+pa+q=0, P=20+p=0;
¢ 7=xQ,(x) fg=0’+pa+q=0, P=2a+p=0.
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— 2

Note that the condition 970 je @ TPA+0#0 eans that the
2 _

number { is not a root of the characteristic equation X + PK+d=0

Therefore if (is not a root of the characteristic equation, we seek the
5 _ S AO0X v — ax

solution as _Q”(X), or (given that y=¢e Z) as V=€ Q“(X).

Before considering the remaining conditions, we note that the solution of

2 _
the characteristic equation k*+pk+q=0 has the form:

2

k1,2:_£+ P q

27 Va4
2 2
L g=0 P #(
If at the same time 4 , Le. 4 , then both roots of the
characteristic equation are different and, obviously, none of them is equal
_P _P
2. “7 je 200tp#0

So, if (s the single root of the characteristic equation, then 200+ p#0

,i.e. G=O’ ﬁio. If (is a root of the characteristic equation and
p2

20+ p=0 5 4=0
t+P=Y"then 4 , ie. ( is the double root of the
characteristic equation. We summarize all of the above (and recall that
y= e‘“z)
If f(x)=e P“(X), then ¥ must be sought as:
° y =e™Q, (x) if (isnot a root of the characteristic equation;
° ¥ = xe™Q, (X) if (is the single root of the characteristic equati
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. y = x%e™Q, (x) if (is the double root of the characteristic equat

" ' _ 3x
Example 30.11. Solve the equation y'-3y'+2y=2e .

Solution. We make up the characteristic equation: k?® —3k + 2 Its roots
are Ki=1 k=2

Obviously, @ =3 is not a root of the characteristic equation. Therefore
y=Ce* y'=3Ce* y"=9Ce*
equation: | 1

9Ce* —3.3Ce™ +2Ce™ = 2e™

. We substitute all this into the original

We obtain C =1, Consequently,

y — e3x

Obviously, the general solution of the accompanying homogeneous
equation is

Y, =C.e* +Ce™

We finally obtain

y=Ce* +C,e** +e*

" r_ X
Example 30.12. Solve the equation y'+2y'= (3X + 7)e :
Solution. Here @ =1, We compose and solve the characteristic equation:

k2+2k=O,
k=0 k,=-2
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We see that ( is not a root of the characteristic equation. Therefore

y =Q1(x)e = (ax+b)e . We differentiate Y and substitute it into the
right-hand part of the equation:

y' =ae* +(ax+ble* =(ax+a+b)e”
y'=ae* +(ax+a+h)e* = (ax+2a+bje*

(ax+2a+b)e* +2(ax+a+b)e* =(3x+7)*

We reduce it by €* and combine the like terms:
3ax+4a+3b=3x+7

We obtain the system

3a =3
4a+3b=7

Hence a=1 b=1. ¥ =(x+1)*

The géneral s;)Iution’ of the accompanying homogeneous equation is

Yo =C +Ce™

Finally, we obtain

y=C,+Ce ™ +(x+1)*

(Please note: here q=0 , but we did not take this into account, unlike case

A, since in this case it is only taken into account whether (is a root of the
characteristic equation.)

" ' _ 2x
Example 30.13. Solve the equation y'+y -6y= (1OX + 2)e .
Solution. We solve the characteristic equation:

k?+k-6=0
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k=2 k,=-3

So, (=2isthe single root.
The general solution of the accompanying homogeneous equation is

2x -3X
Yy, =Ce” " +Cue

We find y . Obviously, y must be sought as
¥ = xQ,(x)e?* = x(ax+b)e?* = (ax? +bx)e?
J' = (2ax+b)e? + 2(ax? + bx)e?* = (2ax? + 2ax + 2bx +b e’

J" = (4ax + 2a+b)e? + 2(2ax* + 2ax+ 2bx + bp?* =

= (4ax® +8ax + 4bx + 2a + 3b p>",

We substitute all these expressions in the original equation:
(4ax? + 8ax + 4bx + 2a + 30 e + (2ax + 2ax + 2bx + b)e?* —
—6(ax? + bx)e? = (10x +2)e?

Reducing by e” and combining the like terms, we obtain:
10a =10,
2a—2b=2,

— X2e2x

ie.a=1 b=0, Consequently, y . We obtain

y=Ce®™ +Ce”™ +x%e™
" ' _ _ -X
Example 30.14. Solve the equation ¥ +2Y TY= (6x-2)e
Solution. Here { = —1 is a double root of the characteristic equation

~

k?+2k+1=0 Therefore, we seek the particular solution Y in the form
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¥ =x2Q,(x)e™y = x2Q,(x)e™ _ x?(ax+b)e ™ = (ax3 +bX2)e‘X
We have:
J' = (3ax? + 2bx e — (ax® +bx? Je* = (~ax® + (32 —b)x? + 2bxJe .

J" = (~3ax? + 2(3a—b)x + 2b)e * —(— ax® + (3a—b)x* + 2bx)e* =
= (ax® + (— 6+ b)x? + 6ax — 4bx + 2b)e ™.

We substitute it into the original equation; after combining the like terms,
we obtain

(6ax+2b)e™ =(6x—2)e ™

S (w3 2 )\q—X

Hence,a=1, b=-1: y—(x —X )e .

_ —X —X
We also find Yo = Ce +Cyxe .
We obtain the general solution:
y=Ce*+C,xe”* + (x3 —x° )e‘X
Naturally arises the question of finding a particular solution of a
differential equation of the form

y'+py'+ay = f,(x)+ ,(x)
where fl(x) and fZ(X) are functions of different kinds (for example,

_ 2 _AX
fl(x) =ax” +bx+c , fz(x) =¢€ ). The following statement holds.
Lemma. If y1 is a solution of the differential equation

y"+ py' +qy = f,(x)

and y» is a solution of the differential equation

y"+ py' +ay = f,(x)
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then the sum of these solutions Y = Y11 Y2 s the solution of the
differential equation

y'+ py' +qy = f,(x)+ f,(x)

(this lemma is called the “superposition principle”.)
Proof. The lemma is proved easily - by direct substitution. We substitute

the sum ¥ = Y17 Y2 into the left-hand side of the equation. We obtain the
expression

(Vi +¥2)"+ PV +Y,) +a(Y; +Y,)

Regrouping the terms, we obtain

(yi+ py; +ay,)+ (5 + py; +ay,)

But since yi is a solution of the equation y'+py'+ay = fl(x), the
expression in the first brackets is identically equal to fl(x). For a similar
reason, the expression in the second bracket is equal to fZ(X). So, the left-
hand side is identically equal to fl(x)+ fz(x)_ The equation turns into an
identity: fl(x)+ fZ(X)E fl(x)+ fZ(X). The proof is complete.

Note that the assertion proved is also true for the case when the coefficients
pand qdependonx: P~ p(x), q= q(x)_

"+5y'=10x+12+6e*

Solution. Solving the equation y"+5y':10x+12, we obtain:

Yo =C,+Ce™ §,=x*+2x

Example 30.15. Solve the equation y

(see Example 30.8). Obviously, Y2 =€

_ -5x 2 X
. Therefore, the general solution is y=C+C ™ + X +2x+e :
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C. Let f (X) =F (X)eax Cospx+Q, (X)eax sinfx . In this case, we can use

the technique applied in the previous case if we pass from trigonometric
functions to exponential ones. In a more detailed course of mathematics,
the Euler formula is considered, which expresses an exponential function
with an imaginary exponent in terms of trigonometric functions (here i is

. 2
the imaginary unit, I” =—1):
e™ =cosx+isinx (30.22)
Substituting —x instead of x in this formula, we obtain
e =cosx—isinx . (30.23)
From equalities (30.22) and (30.23) it is easy to find COSX and SIN X
ix —ix

eix +e—ix
COSX = T sinx =

2i

These formulas are also called Euler formulae. Applying them, we obtain

w ein + e—in w eiﬁx _e—in
f(x)="P,(x)e T+Qn(x)e T,
or
(1 1 (wripe , [ L 1 (o=iB)x
F0=( 5P 00+ 5 Q00)e "+ ZR0-Z @00

Here in square brackets are the polynomials whose degrees are equal to

the largest of the degrees of P (X) and Qn (X) i.e. to the largest of the
numbers m and n. Thus, we have obtained the right-hand side of the form
considered in case B. Moreover, we can prove (we do not give this proof)

that we can find a particular solution Y that does not contain complex
numbers.
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So, if f(x)= Pm(x)e“‘xcosﬁx+Qn(x)e"xs,in[3x,then Y should be
sought in the form:
° ¥ = u(x)e™ cospx +v(x)e™* sin Bx - If a.+if isnotarootof

the characteristic equation;
. y = x(u(x)e™ cosx +v(x)e** sinx)» if c+ip is a root of
the characteristic equation.

Here U(X) and V(X) are polynomials whose degrees are equal to the largest

degree of polynomials Pm(x) and Q, (X)

Remark. Note that the indicated forms of particular solutions are preserved
also in the case when in the right-hand side of the differential equation one
of the polynomials, Pm(x) or Q, (X) is identically equal to zero, i.e. either
f(x)=P,(x)e™ cospx
or

f(x)=Q,(x)e™ sin px

Let us consider in more detail a simpler case - a special case of case C.
Co. Let f (X) =M cospx+Nsinpx. Applying Euler's formulae, we
rewrite the differential equation

y"+ py'+qy = M cosBx+ N sin3x
as

iBx —ipx iBx _ A-ipx
Y +py +ay =M S +2e +NE 2.e
|

Letting for brevity
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M N M N
— =M, ——-=N,
2 2 , 2 2 ,
We obtain
y"+py'+qy =Me™ + Ne ™ *)

According to Lemma 30.3, the solution Y of our differential equation is

the sum of the solutions Y1 and Y2 of equations
y'+py' +ay =Mpe™ y"+py'+ay=Nge™

Note that the imaginary number B cannot be the double root of the

2 —
quadratic equation K+ PK+0d=0

numbers.

whose coefficients p and g are real

v " ' _ iBx
A particular solution Y1 of the equation y'+py' +ay=Me has the
form:
° y, = Ae™, if i is not a root of the characteristic equation;

° y, = Axe™ If if is aroot of the characteristic equation.

= " i _ —ipx
A particular solution Y2 of the equation y'+py'+ay=Nge has the
form:
. y, = Be ™, if—i is nota root of the characteristic equation;

° ¥, = xBe ', if —iB is aroot of the characteristic equation.

Obviously, the numbers B and _1B either both are, or both are not the
roots of the characteristic equation (since if a+ip is a root of the quadratic

equation, then a—Ip is also a root of this equation).
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Therefore, a particular solution of our equation will have the form:
° V:Aeiﬁx +Be ™ , if +iB are not the roots of the

characteristic equation;

° y:X(AeinJrBe—iﬁX) jif +ip are the roots of the

characteristic equation.
We apply the Euler formula [see (30.22) and (30.23)] and obtain

Ae®™ + Be™™ = (A+B)cospx +i(A—B)sin fx = acospx + bsin fx
where, for brevity, A+B=2a_ i(A-B)= b

Hence we obtain the rule for finding a particular solution of the differential
equation

y'+ py' +qy =M cospx+Nsinpx

So, if f(x): Mcospx + Nsinpx , then a particular solution Y must be

sought in the form

° y =acosPx-+bsinBx, if i®is not a root of the characteristic
equation;
° V= x(a cosPx +bsin BX), if i® is a root of the characteristic
equation.

Example 30.16. Solve the equation y'+y'~2y =8sin2x :

2 —
Solution.. The characteristic equation k®+k—2=0 pas the roots k= 1,

k2 =_2. Here p= 2, therefore, B is not a root of the characteristic

equation. Therefore, a particular solution Y must be sought in the form
y =Ccos2x+ Dsin 2x
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y' =-2Csin 2x + 2D cos 2x
y"=-4Ccos2x-4Dcos2x

Substitute:
—4Ccos2x—4Dsin2x—2Csin2x+ 2D cos2x —
—2(Ccos2x+ Dsin 2x)=8sin 2x,

(~6C +2D)cos 2x +(— 2C —6D)sin 2x =8sin 2x

We equate the coefficients at COS2X and Sin2x;

-6C+2D =0,
-2C-6D =8.
c-_2 p=_8
Hence S, S . Consequently,

Y:—ECOSZX—gsin 2X
5 5

We find Yo:
Yy, =Ce* +Ce™

We obtain the general solution:

y=Ce*+Ce™ —%(ZCOS 2X +65in 2x)

Example 30.17. Solve the equation Y 4y =c0s2x.
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Solution. The characteristic equation k?+4k =0 has the roots k=2 :

k, :_2'. Here BZZ, therefore, B is the root of the characteristic
equation; therefore, a particular solution Y must be sought in the form

y = x(C cos2x + Dsin 2x)

We differentiate:
y' = Ccos2x+ Dsin 2x = 2x(— Csin 2x + D cos 2x)

y" = 2(~Csin 2x + D cos 2x)+ 2(~ Csin 2x + D cos 2x) +
+4%(~C c0os 2x — Dsin 2x) = 4(— C sin 2x + D c0s 2x )+
+4x(~C cos 2x — Dsin 2x).

Substituting into the equation, we obtain:

4(—Csin 2x+ D cos 2x)+ 4x(— C cos 2x — Dsin 2x) +
+4x(C cos 2x + Dsin 2x) = cos 2x.

Combining the like terms, we obtain
—4Csin2x+4Dcos2x = cos 2X

Equating the coefficients at C0S2X and SiN2X | we obtain: —4C =0,

1
4D =1:hence, € =0, 4. Thus, a particular solution to this equation
is
~ 1.
==sin2x
y 4

The general solution of the accompanying homogeneous equation is

Yy, =C, cos2x +C, sin 2x

Finally, we obtain

544 |




30.4.|Structure of the general solution of an inhomogeneous linear differential eq+ation

y =C, cos2x+C,sin 2x+%sin 2X

Example 30.18. Solve the equation
y"—y =e?(6cosx—2sinx)

Solution. Here =2 B=1. The characteristic equation k?-1=0 has

the roots kl:l, Ky==1 gince @ +IB=2+1 i5 not the root of the
characteristic equation, we are seeking a particular solution in the form

y =e*(cosx+ Dsinx)

We find ¥ and ¥':
y' = 2e%*(C cos x + Dsin x)+e**(~ Csin x+ Dcos x)

y" = 4e*(C cos x + Dsin x)+ 2% (~ Csin x + D cos x) +
+2e”(—Csinx+ Dcosx)+e”(-Ccosx—Dsinx)=

=e?*(3C cos x + 4D cos x + 3Dsin x — 4C sin x).

Substituting the obtained expressions into the equation and combining the
like terms, we obtain (after reduction by ezx):

(2C +4D)cosx+(2D - 4C)sin x =6cos X — 2sin X

Equating the coefficients at COS X and SiNX | we obtain the system
2C +4D =6,
-4C +2D =2.

Solving this system, we find € =1, D=1
A particular solution of this equation is
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y =e”*(cos x +sin x)

The general solution to the accompanying equation is
Yo =Ce"+Ce”
We obtain the general solution of the given equation:

y =C.e* +C,e " +e”(cos x +sin x)

Questions

What is the general form of a second-order differential equation?
What is a general solution of a second-order differential equation?
What differential equations can be reduced in order?

What is called a linear differential equation of order n?

What linear differential equation of order n is called homogeneous?
. What are the properties of solutions of a linear homogeneous
differential equation?

7. What system of functions is called linearly independent?

8. What does the Wronski determinant for two functions look like?

0. What is the structure of the solution of a homogeneous linear
differential equation?

10. What is the characteristic equation?

11.  What does the general solution of a second-order homogeneous
linear differential equation look like when the roots of the characteristic
equation coincide?

12.  What is the structure of the general solution of an inhomogeneous
linear differential equation? How can one obtain a general solution of the

ok whE

differential equation y'+py'+ay = f(x), knowing the solution of the
differential equation y'+py+ay=0,
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13.  Inwhat form should a particular solution of the differential equation

y'+py'+ay = Pn(x) be sought when the right-hand side Pn(x) is a
polynomial of degree n? Is this particular solution always also a
polynomial of degree n?

14.  In what form should a particular solution of the differential equation

y" + py' + qy = eax Pn (X) be Sought?
15. What is the superposition principle?

16. What is the rule for finding a particular solution of the differential

equation y"+ py'+qy =M cospx+ Nsinfx,

Chapter 31. Difference
equations

31.1. Basic definitions

In mathematical applications, among functions of continuous argument,
we also have to deal with functions of discrete argument — i.e. with
functions defined on a finite (or countable) discrete set. Examples of such
functions are functions defined by tables, numerical sequences (see chapter
14), series (see section IX).

Discrete argument functions are usually denoted by f(xk) or y(xk)_ The

distance b =% X k=1, 2, ... between adjacent values of the
argument can be any positive numbers. However, the most interesting

h=htorank=12 ...

This number h is usually called a sampling step. In this case, X =khn

thing is the case where values h are the same:

, and
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= f(kh)

function f(xk) becomes the number function k, i.e. f(xk) C k=

1,2 ...

Definition. A grid on a segment [a,b]
segment. Grid points are called its nodes.
Note that we were already dealing with grids and their nodes — when we
defined the concept of a definite integral and when we were engaged in the
approximate calculation of definite integrals using the formulas of
rectangles and trapezoids and the Simpson formula (see § 22.5).

is any finite set of points of this

A grid is called uniform if its nodes divide a segment [a,b] into equal

segments. The length h of such partial segment is called the grid step.
h_b—a

Obviously, N where n is a number of partial segments.

The set of points in [a.b]

{x, =a+kh, k=0,1,2,..,n}

forms a uniform grid with step h.

In case the nodes of the grid divide segment [a, b] into unequal segments,
the grid is called nonuniform.

Definition. A function defined at grid points is called a mesh function.
The corresponding values of the mesh function at grid nodes are usually

denoted by Y or fi . If the mesh function is defined on a uniform grid,

then its values are denoted by y(k)’ where k is the number of a grid node
(k=0,1,2,..,n).Inthis case, the mesh function is considered as a function
of integer argument.

In order to obtain the corresponding mesh function y(kh) from the

function of continuous argument y(x), it is necessary to replace argument
x with kh.

548 ‘




31.1. Basic definitions ‘

2
Example 31.1. For function Y =%X *X  defined on interval [0, 1],
compose uniform grid with n = 4 and the corresponding mesh function.
Solution. Obviously, the grid step h = 0.25. We get the grid {0, 0.25, 0.5,
0.75, 1}. The mesh function is also a set consisting of five numbers: {0,
0.5,15, 3,5}
An analogue of the first derivative of the continuous argument function is
the first difference of a grid function.

The first-order difference or the first difference of mesh function y(k)
, denoted by Ay(k), is defined as:
Ay(k)=y(k +1)-y(k) (31.1)

2
The second difference A y(k) of function y(k) is defined as the first
difference from its first difference:

Ay(k)=Ay(k +1)-Ay(k) (31.2)

Substituting the values AY(K) ang Ay(k+1), determined by formula
(31.1), we obtain:

Ay(k)=y(k +2)-2y(k +1)+ y(k)

3
The difference 2 y(k) is determined similarly. Generally, the difference
of any order is determined in the same way. In this case, the m-th order

difference A" y(k) can be represented as a linear combination of values
y(k) y(k +1), y(k+m) o particular,

Ny(k)=Ay(k +1)—Ay(k)=y(k +3)-3y(k +2)+3y(k +1)—- y(k)
Example 31.2. Find all differences up to the m-th order inclusively for
function Y()

— eotk
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Ay(k) — ea(k+l) _ eak — (ea _1)eak .

Solution.
We see that the first difference is proportional to the function itself e .
Hence, Ay(k)= (e“ —1)2e°"‘ | Ay(k)= (e“ —1)3e°‘k |
Ay(k)=(e* —1)"e*

Definition. Equation of. form

Fk, y(k), Ay(K), ..., A"y(k))=0 (31.3)

where y(k) is an unknown function of integer argument, and Ay(k),

A”‘y(k) — its differences, is called a difference equation or a finite
difference equation of the m-th order.

The solution of a difference equation is any mesh function that turns it
into an identity.

Earlier, we made sure that finite differences of various orders can be
expressed in terms of original mesh function values. Therefore, equation
(31.3) can be represented as:

Rk, y(k+m) ..., y(k +1), y(k))=0 (31.4)

Difference equations have numerous applications in discrete-time models
of economic dynamics.

31.2. Linear difference equations

Definition. Difference equation of the form
ay(k)y(k +m)+a,(k)y(k +m-1)+..+a,(k)y(k)= f (k) (315)
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where aj(k) and f(k) are known functions, and y(k + j) is an unknown

function fromk (j =0, 1, ..., m), moreover am(k) and aO(k) are not equal

at any k, called the m-th order linear difference equation.
a

In case coefficients ao, al, ..., _™ are constants, methods for solving such
equations are similar to methods for solving linear differential equations
with constant coefficients.

Together with an inhomogeneous equation

aoy(k+m)+ayk+m-1)+..+a,y(k)=f(k) (31.6)
the corresponding homogeneous equation is considered
aoy(k+m)+a1y(k+m—1)+...+amy(k)=O_ (3L.7)

For difference equations (in particular, for linear difference equations), as
well as for their differential analogues, the concepts of general and
particular solutions are defined.

General solution of equation (31.6) has the form:

()= 0(c,0, . ;)

where G Cm are arbitrary constants; their number is equal to the order
of the equation.
Particular solution of equation (31.6) is distinguished by setting the

values of function y(k) at m arbitrary but consecutive points.

As well as for linear differential equations, the concept of a linearly
independent system of solutions is determined, it is proved that the general
solution of equation (31.6) has the form

y(k) = yo(k)+y(k) (31.8)
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where yo(k) is a general solution of the corresponding homogeneous

equation (31.7), and y(k) is some particular solution of the original
equation (31.6).

In the future, we will restrict ourselves to the consideration of the second-
order difference equations. The results that we will obtain can be extended
to difference equations of higher orders.

So, we consider a second-order homogeneous linear difference equation:

y(k+2)+ py(k+1)+ay(k)=0 (3L.9)
We will search the solution to this equation in the form:

y(k)=2,

We obtain a characteristic equation after obvious simplifications:

2+ pr+q=0, (31.10)

Three options are possible.

1. Both roots |; and lz of equation (31.10) are real and distinctive. In this

case, the general solution has the form:
k k

Yo(k)=CA% +C,A5 _ (31.11)

Example 31.3. Find a general solution for the difference equation

y(k +2)-5y(k+1)+6y(k)=0

2
Solution. Characteristic equation A" =5k +6=0 pas two distinctive real

roots: A = 3, A, =2 . Therefore, according to formula (31.11), the general
solution of the given equation is mesh function

Yo(k)=0¢,3 +¢c,2°
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2. Both roots are real and equal to each other: M=% =% Then the
general solution has the form

Yo(k) =1 +c ke

3. The characteristic equation has complex conjugate roots A =0t Pl :
hy=a—Bi

Represent the roots in trigonometric form: A, =r(coso+ising)

.. Y
7»z="(COS(P_'S'n(P), where the module is "=V P and the

goP

argument ¢ is defined by the ratio a,
The general solution has the form

yo(k)=r*(c, coske +c,sinko)

Let us now turn to the second-order inhomogeneous linear difference
equation:

y(k+2)+ py(k +1)+ay(k)= f(k). (31.12)
Its general solution has the form (31.8). To find a particular solution y(k)

of equation (31.12) the method of indefinite coefficients is often used.
Example 31.4. Solve equation

y(k +2)-7y(k +1)+10y(k)= 46"

Solution. To find a general solution to the corresponding homogeneous
equation, we compose the characteristic equation:

W2 —Th+10=0

Its roots are M = 5, A =2 Hence,
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Yo(k) =05 +c,2

To find a particular solution V(k) to the original equation, we use the
indefinite coefficients method. We will search y(k) in the form
V(k) =c6" . Substituting this expression in the equation, we obtain:
c6"? —7¢c6"* +10c6" = 46"

c{(36 - 42+10)-6" = 46"

Hence, =1 which means,
y(k)=6"

Adding yO(k) and S/'(k)’ we get the general solution of the equation:
y(k)=c,5" +c,2" + 6"

31.3. The Samuelson —Hicks business
cycle model

As an example of the difference equations application, we consider the
Samuelson—-Hicks business cycle model known in macroeconomic
theory. This model uses the assumption that the volume of investment is
directly proportional to the growth of national income. This assumption —
acceleration principle already known to us — is described by the following
equation:

1(k)=x(y(k 1) y(k-2)). (31.13)

where | is the proportionality coefficient called the acceleration factor

( | >0), I(k) is the amount of investments in the period k (in the k-th
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calendar year), and y(k—l), y(k—2) is the national income in the

previous periods — in the (k_l)-th and (k_z)-th respectively. It is

C(k)

assumed that consumption in the considered k-th period also linearly

depends on the value of national income y(k _1) for the previous period:
C(k)=ay(k-1)+b (31.14)

It is assumed that income y(k) is divided between producers and
consumers. Therefore

y(k)=C(k)+1(k) (31.15)

We substitute in (31.15) the expression for l(k) from (31.13), as well as
the expression for C(k) from (31.14):
y(k)=ay(k —1)+b+x[y(k —1)- y(k-2)]

We get the so-called Hicks equation:
y(k)—(a+x)y(k =1)+xy(k—2)=b (31.16)

If we assume that the values a and | are constant over the considered time
periods, then equation (31.16) is a second-order linear inhomogeneous
difference equation with constant coefficients.

If we assume that the value of national income remained constant over the
considered period, i.e.

y(k)=y(k-1)=y(k-2)=7
we can find a simple particular solution to equation (31.16):
y=(a+x)y-x7+b

From here
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y=b(l-a)" (31.17)

Expression (1_ a) 1 in formula (31.17) is called the Keynes multiplier.

Example 31.5. Consider the Samuelson-Hicks model, provided a = 0,48,
=0,72, b = 1,3. Find a general solution to the Hicks equation.

Solution. In this case, equation (31.16) has the form:

y(k)-12y(k -1)+0,72y(k —2)=13

The particular solution to this equation, according to (31.17), is

~ 13
k)=—"—-—-=25
y( ) 1-0,48

We write the characteristic equation:
M -1,21+0,72=0 _

A, =06£0,6i= 0,6-\/5(005E +isin Ej
Its roots are 4 4
The general solution to the corresponding homogeneous equation is

yo(k)= (0,6\/§)k(c1 cos%(ﬂ:2 sin T%(j
We get the general solution of this equation:

y(k)=2,5+ (O,Gﬁ)k(cl Cos%k +¢,sin %kj

In the considered example, dynamics are oscillatory with a damping
amplitude. Obviously, with complex conjugate roots of the characteristic
equation with the absolute value exceeding one, dynamics would be
growing. In general, depending on the values of a and | dynamics can be
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Questions

growing or damping and at the same time have or not have an oscillatory
character.

Questions

1. Which functions are called mesh functions?

2. How are the first, second and subsequent differences of the grid
function determined?

3. What equations are called finite-difference?

4, What is a characteristic equation for homogeneous linear difference
equation?

5. How to find a general solution to the inhomogeneous difference
equation?
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Section IX. SERIES

Chapter 32. Number series

32.1. Concept of numeric series

Definition. Consider an arbitrary numerical sequence
al a‘2 an

ey 9 see e

The formally composed infinite sum of all elements of this sequence, i.e.
expression of the form

a+a,+..+a,+.. (32.1)

is called a numeric series or simply series.

a a, a

The numbers themselves n, ... are called terms of series, the

a

n-th term of series “™ is the general term of series.

A series is considered given if its general term ~ N is given. For example,
to set series

it is necessary to indicate that its terms are given by the formula
1

a =—
" 2n.

o0

2%

Series (32.1) is also written as =t
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Note that from the real numbers theory we only know what the sum of a
finite number of numbers means. The sum of an infinite number of terms
has not yet been determined.

Consider the sum of a finite number with the first terms of series:

S, =a,

S,=a,+a,,

S;=a,+a, +a,,
S,=a,+a,+a;+...+a,,

called partial sums of series (32.1).

Since the number of series terms is infinite, the partial sums of series form
an infinite numerical sequence:

Sl SZ 83 oo Sn e

Definition. A series is called convergent if there is a finite limit to
sequence of its partial sums, i.e.

limS, =S
N (32.2)

Otherwise, the series (32.1) is called divergent.
The number S defined by (32.2) is called the sum of series.
Let series (32.1) converge, S be its sum. Consider the difference between

$-S5,= . The value Iy is

limr, _||m(s S,)=0
called a remainder of series. It's obvious that n—>« n—>e

If series (32.1) converges, its sum is written in the form of symbollc
equality

value S and partial sum Sy of this series:

S=>a,
S:a1+a2+...+an+..., or il
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Example 32.1. Consider a series composed of infinite geometric
progression terms:

b+bg+bg®+..+4bq" " +... (32.3)

S

Partial sum “n of this series is the sum of n terms of geometric progression:

S, =b+bg+bg®+...+bg""

This sum, as known, with q#1 has the form

Sn:b(l—q”): b by’
1-9 1-q 1-q.

limg"=0
If |q| <1, that Hbq . Therefore

lims, = lim| —2_ 24" |__P
n—o n— oo 1_q 1_q 1_q

b
S=——
i.e. series (32.3) converges and its sum 1-q .

It is easy to verify that for |q| 21

Example 32.2. Consider series

series (32.3) diverges.

i -
Obviously, n(n+1) n N+1 Therefore

o)
+___
n n+l
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If you open brackets, then all summands, except the first and last one, will
be mutually destroyed. We get

1
S, =1-——
n+1
limS, =1 ) _ _
From here n—>= . S0, the series converges and its sum is equal to 1.

32.2. Basic properties of series

a +a,+..+a, +.

Property 1. If series " converges and its sum is equal

to S, then for any number A series Ag +Aa, +..+ha, ...

also
converges and its sum is equal to AS
Proof. Let a convergent series be given
a+a,+...+a, +... (32.1)
and let She its sum. Form series
xal+Xa2+...+Xan+..._ (32.4)
Let
S,=a +a,+..+a,
S, =Aa, +Aa, +...+Aa,

r_ limS, =S

Then, obviously, Si=AS gyt by condition "= " . So
limS) =limAS, =AlimS_ =AS
n—o0 n—o0 n—o0 , QED

a+a,+..+a, +.. b, +b, +...+b, +...

Property 2. If series and

converge and their sums are equal to S and S’ respectively, then series
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(alib1)+(32ib2)+"'+(an ibn)+"' also converges and its sum is
equal to SES',

Proof. Consider series

& +a, o ta, . (32.1)
b, +b, +...+b, e (32.5)
(a1+bl)+(a2+b2)+(a3+b3)+...+(an+bn)+.... (32.6)

"n

Let S”, S", n be the partial sums of series (32.1), (32.5), (32.6)
respectively:
S,=a +a,+a;+...+a,

S, =b +b, +b,+...+b,
Sr’::(a1+b1)+(a2 +b2)+(aa +b3)+"'+(an +bn)

_ limS, =S ,
Let She the sum of series (32.1): "—>= andlet S’ be  the sum

! !

imS/ =
of series (31.5): ">» " . Then there is a limit
limS” =lim(S, +S/)=limS, +1imS’ =S +§'
N—o0 N—o0 N—o0 N—o0

i.e. series (32.6) converges and its sum is equal  to S+8"

Property 3. Dropping a finite number of series terms does not affect its
convergence (divergence).

Proof. In this case, all partial sums of series, starting from a certain sum,
will change by the same constant number, equal to the sum of dropping
terms. Therefore, a sequence of original series partial sums has a finite limit
if and only if there is a finite limit to the sequence of series partial sums
obtained from the original by dropping a finite number of terms.
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We distinguish another property as well.

Necessary criterion of series convergence

Property 4. General term & of the converging series tends to zero with
n— oo

limS, =S
Proof. Let the series converge and its sum be equal to S, i.e. "=
_q _ limS =S
Obviously, e . Also obviously that n—>= "t . Therefore,
Ilma_llm( nl)_IlmS —limS, ,=S-S=0
n—o nN—o0

Note that we established only a necessary criterion for convergence, which

lima =
is not sufficient. From the fact that "= it does not follow yet that
the series converges.
11 1
1+—+—+...+—+...
Example 32.3. Consider series 2 3 n , which is called

harmonic.
Obviously, for harmonic series, the necessary criterion for convergence is

lima, :Iim1=0

satisfied "~” =N . Despite this let us prove that a harmonic
series diverges. Assume the opposite, i.e. that the series converges and
limS, =S lim§S,, =S
n—> . In this case, obviously, n—>e0 , therefore:
Iim(SZH—Sn):IimSZn—IimSn:S—S:0 *)
But
1 1 1 1 1 1 1 1

S,,-S,=—+—+.+—>—+—+.+—=N-—=—

n+l n+2 2n  2n 2n 2n 2n 2
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S,, S>1

ie. 2 and this is contrary to equality (*). The resulting
contradiction means that our assumption of a harmonic series convergence
is incorrect.

Note that we can prove the divergence of a series with the help of the
necessary criterion for convergence.

Example 32.4. Investigate the convergence of series

> 2n-1 3 5 2n-1

Z 4 +

= /N+5 12 19 26 n+5

2n — l 2
lima, =lim
Solution. "~ = 7n+5 7 , therefore, this series diverges.

32.3. Series with non-negative terms

A series with non-negative terms (i.e., series whose terms are all non-
negative) are the simplest type of number series. The main property of a
series with non-negative terms: the sequence of the partial sums of such
a series is non-decreasing.

Convergence criterion

Theorem 32.1. For convergence of a series with non-negative terms, it is
necessary and sufficient that the sequence of its partial sums is bounded.
Proof. 1. Necessity. Let the series converge. This means that the sequence
of its partial sums converges. A convergent sequence, as you know, is
limited.

2. Sufficiency. Since the partial sums sequence of series is bounded and
monotonic, it converges by Theorem 14.4.
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Comparison criterions

Theorem 32.2 (the first comparison criterion). Let two series with
positive terms be given:

o0

da,=a+a+..+a, +..

=] , (32.7)
Db, =b+b,+..+b, +...
= , (32.8)

moreover & = b, for all n. Then the convergence of series (32.7) follows
from the convergence of series (32.8), and the divergence of series (32.8)
follows from the divergence of series (32.7).

S

Proof. Let = be the partial sum of series (32.7), Sh be the partial sum of

S, <S

series (32.8). From the theorem’s conditions it follows that If

!

series (32.8) converges, then sequence {Sn} is bounded. Therefore,

sequence {Sn} is also bounded and converges by Theorem 14.4, i.e.
series (32.7) converges.
If series (32.7) diverges, then series (32.8) also diverges. Indeed, if series

(32.8) converges, then series (32.7) should also converge (as it has just
been proved above). The theorem is proved.

Note that under the conditions of Theorem 32.2, series (32.8) is called the
majorant of series (32.7), and series (32.7) is called the minorant of
series (32.8).

The proved theorem can also be stated in the following convenient form
for memorization: if the majorant converges, then the minorant converges;
if the majorant diverges, then the majorant diverges.
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We consider applications of Theorem 32.2.

i 1

n
Example 32.5. Investigate the convergence of series n=! 2'+n,
1 1 SES
n An . n
Solution. Obviously, 2" +N 2" and series n-L 2

converges (sum of
infinite decreasing geometric progression). Consequently, this series also
converges.
=1
Example 32.6. Investigate the convergence of series n=! Jn :
1 1 1

—_>= =
Solution. Since Jn N and series 1" diverges (this is harmonic
series), then this series diverges.
Theorem 32.3 (the second comparison criterion). Let (32.7) be a series
with non-negative terms and (32.8) — with positive terms, and let there be

a non-zero finite limit

Then both series (32.7) and (32.8) converge or diverge together.
Proof. According to the definition of the limit for arbitrary €~ 0 there
exists such N that for all "> N that the following inequality is satisfied:

a
l-e<2<l+e¢
b, or (I-e)b, <a, <(+e)b,

Let series (32.8) converge. Then by property 1 (see §32.2) series

0

> (I+ek,

n= , and by theorem 32.2 series (32.7) converges. Similarly, if
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I—¢)b,
series (32.7) converges, then by theorem 32.2 seriesé( )b converges
and by the same property 1 series (32.8) converges.
The statement of series divergence theorem is proved similarly.
Comment. It can be assumed that the common terms of series (32.7) and

(32.8), i.e. 4 and b, are infinitesimal at n — oo (otherwise everything
would be clear by itself: series, whose common term does not tend to zero,
diverges). Therefore theorem 32.3 can be reformulated as follows: if terms

% and b, of two positive series are infinitesimal of the same order, then

these series converge or diverge together.

i 3n-7
2
Example 32.7. Investigate the convergence of series n=t n

v 1

Solution. Let us compare this series with divergent harmonic series n=t n
(see example 32.3). Since

p— 2_
|im(3n ! ;1)=|im_3” M _320

n—oo 2 2

n n n—oo n
then this series diverges.

Other convergence criteria

Note that both comparison criterions discussed above (theorems 32.2 and
32.3) have the same disadvantage: to investigate the convergence of any
positive series with this criterion, for comparison with this series it is
necessary to choose some other series, the convergence (or divergence) of
which is known. There are no general methods for finding such a series. It
all depends on intuition, on how extensive the researcher's stock of such
"reference™ series is, the convergence or divergence of which is known.
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Therefore, it is very useful to have at your disposal such convergence
criteria, for which it is not necessary to involve any new series, except for
the studied one.

2.2,

Theorem 32.4 (D'Alembert criterion). Let for series n=!  there be a
limit

. a

lim—" =

n—o0 a
n

(32.9)

Then, when I <1 the series converges, and when 1>1 the series diverges.
Proof. Due to the definition of limit for any € > 0| there exists such number
N that for all N> N inequalities are satisfied:

a
l—e<™ <] +¢
a, _ (32.10)

1. Let 1 <1, Then take such €, that | *€<1. Denote |+8:q. From
inequalities (32.7) we have:

a‘n+1 < q

a a

n , or n+1 < anq

forall "> N we get a system of inequalities

2
Ay,p < aN+1q, Ay, <ay,0<ayu(Q o

So, the terms of series starting from An+2 are smaller than the
corresponding terms of decreasing geometric progression. Therefore, the
series converges.
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2. Let | >1 Then take such €, that | =€>1 Then it follows from the left

inequality (32.10) that &> for )l N>N , i.e., the terms of series

starting from (N +1) -th increase, so the limit of the common term is not
equal to zero; hence, the series diverges.

0 2

Example 32.8. Investigate the convergence of series n-!

2 2 2
lim 20 — |im w:”_ :nmwzid
. n—oo an n—wl 2 2" oo 20 2
Solution:

Consequently, the series converges on the basis of D'Alembert criterion.

Comment. When | =1, the series can both converge and diverge. In
- D 2-ND Y- |

particular, for series n=L "' and n=l"" | as it is easy to see, =1 put the

first of them (the harmonic series), as we know, diverges, and the second
one, as we learn later, converges.

2.3,
Theorem 32.5 (Cauchy criterion). If for terms of series "<l thereisa
limit
limy/a, =1

n—o0
)

that series converges when | <1 and diverges when | >1.

The Proof of this theorem is also based on the fact that when | <1, the
terms of the series starting from some number are less than the terms of

some infinite decreasing geometric progression and when 1>1 the total
term of series does not tend to zero.

1. Let | < 1. Take some number q satisfying the relation I<q <1.
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limy/a, =1
Since e * " , then starting from some number N = N the inequality

will be satisfied
Va, -1|<q-I
It follows that
v/a, <q

or, which is the same,

a,<q" (*)
forall N2 N

Compare two series:

8+, +t Ay Ty Fay, (32.1)
qN +qN+l+qN+2+l“. (**)

The terms of series (**) form a decreasing geometric progression (its
denominator is g, by condition q <1). Therefore, series (**) converges. We
know that discarding a finite number of series terms does not affect its
convergence. It follows from condition (*) that the terms of series (32.1 ")

starting with AN are smaller than the corresponding terms of converging
series (**). Therefore, series (32.1) converges.

2. Let 1> In this case, it is easy to verify that the limit of the series
general term is not equal to zero; therefore, the series diverges. The
theorem is proved.

o0 1 n
-3
Example 32.9. Investigate the convergence of series n=t nj .
Solution. Apply the Cauchy criterion
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. . |
limya, :Ilm(l—ﬁ =e ==-<1

n—o0 N—0’ e

Therefore, the series converges.

Note that when | =1 the Cauchy criterion also does not answer the
question of the series convergence.

It should be noted that Cauchy and D'Alembert criteria are effective mainly
for finding out the convergence of «rapidly» converging series, whose
terms are infinitesimal of the same (or higher) order as the terms of
decreasing geometric progressions. We have already noted that the
D'Alembert criterion does not answer the question of convergence or
divergence of harmonic series

11 1
I+ —+—+..+—+..

2 3 n

which, as we know, diverges, as well as the convergence or divergence of
generalized harmonic series

1 1

1
l+?+3_2+"'+F+"'

which, as we will know soon, converges.
Theorem 32.6 (integral convergence criterion). Let the terms of series

2.2,
. . >a.>.>a >
n=1 not increase, i.e. 4= =28y = , and let f(x) be such

continuous non-increasing function defined for X 21 that
tW)=a f(2)=a, fln)=a,
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pILH

Then for the convergence of series n=t | it is necessary and sufficient
that the integral

T f(x)dx

converges.

proof. Since () is monotone, then for X €[N n+1]

inequality is satisfied | (n)= f(x)= f(n +1), or

a,>f(x)>a,,

the following

(32.11)

for any n.
Integrate (32.8) on segment [, n+1].
n+1 n+1 n+1
Ia dx>I dx>_|'an+1
We have

_[ n+l

n . (32.12)
Consider series
2 n+1
I dx + J. dx +..+ I dx +..
1 ) (32.13)

S

Its n-th partial sum “n has the form
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Sn:JZ.f dx+I X) dx +.. +th1 )dx +.. +th1 dx_thlf(x)dx
1

n

(32.14)

The convergence of series (32.10) means the existence of finite limit of its
partial sums sequence (32.11), i.e. the convergence of improper integral

J f(x)dx
1 since

n+l o0
lims, =lim [ f(x)dx= [ f(x)dx
1

If the series converges, then, according to theorem 32.2, due to the left
inequality (32.12), series (32.13) must also converge, and hence improper

If(x)dx _[f(x)dx
integral 1 . Conversely, if integral 1 converges, i.e. series
(32.13) converges, then by the same theorem 32.2 series

0

Do =a,+a, .t +a, .
n=1

28
must converge and therefore, this series =1 .
=1

o

Example 32.10. Find out for what & >0 serigs 1N converges (this
series is called generalized harmonic).

1

f(x)= e
Solution. Consider function X X 21 This function is
monotonously decreasing. Therefore, the convergence of the given series
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T dx

Xd

is equivalent to the convergence of improper integral * = . It was
previously established (example 24.2) that this integral converges when

a>1 gng diverges when O<a<1 Therefore, this series converges when
o >1 and diverges when ¢ <1,

32.4. Series with terms of the arbitrary
sign

Let us proceed to the study of series containing both positive and negative
terms.

Definition. The number series is called alternating if it has an infinite
number of both positive and negative terms.

Consider series

da,=at+a+..+a, +..
1 *)
and besides, the series

0

D lan|=lan+[ag]+ ...+ [ay ] + ...

n=1 . (**)
It can be proved that from the convergence of series (**) follows the
convergence of series (*).

Series (*) is called absolutely convergent if series (**) converges.

Series (*) is called conditionally convergent if it converges, but series
(**) composed of modules of its terms diverges.
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2.3,

Definition. A number series n=t is called alternating if for any n the
a

terms of series & and S+ have different signs. Assuming >0 , you
can write the alternating series in the form

0
n+1

(-1)"c, =c,—c, +C;—C, +...+(-1)"c, +...
n=1

, (32.15)

where &~ O.

We formulate and prove sufficient criteria for the convergence of image
series.

Theorem 32.7 (Leibniz criterion). If the terms of alternating series
(32.15) decrease in absolute value:

C,>Cp>...>C,>...

and the limit of general term of this series for N —> % s zero, i.e.

limc =0
N , the series converges, and its sum does not exceed the first
term: S <G,

Proof. Consider a partial sum of series (32.15) with an even number of
terms Szm =G~ C2+Cs —Cy+ ot Cony —Com it can e represented as
Som = (€, =C,)+(c5 =, )+ 4 (Cons = Con).

Due to the theorem condition, all differences in brackets are positive, so
sequence {SZm} is increasing.

On the other hand, Sa can be represented as

SZm =G _(Cz _CS)_(CA _CS)_"'_(CZm—Z _CZm—l)_CZm,
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hence Som < G

So sequence {SZ"‘} increases and is limited, hence it has limit
lim SZm=S S

M _From inequality >2m <% it follows that S <G,
— limc,,,, =0
Since Samia = Som + Comu and by condition ™« am , then
limS,, ., =1mS, =S
m—oo m-—oo .
limsS, =S |
So, for any n (both for N=2M  and for N=2M+1y ne ,i.e.

the series converges.

3 (-1
Example 32.11. . Investigate the convergence of series n=t n.
1
C,=—
Solution. In this case, N and the conditions of Leibniz criterion are
fulfilled. Therefore, this series converges. However, the series composed
1
of terms’ modules of given series is harmonic series =1 N and, as we
know, diverges. Therefore, this series converges conditionally.
o . . lime, =0
Comment 1. In the Leibniz theorem not only is condition ">« , but
C,>C,>...>C,>..

also condition " is essential.

Consider, for example, series
1 B 1 - 1 3 1 N
V2-1 J2+1 77 Un+1-1 Jn+l41

The terms of this series tend to zero, but the monotonicity condition is not
satisfied.
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1 1 11,

_ —2 -
1 1 2

Jntl-1 Jn+l+l n

Py ooy

9 e

Therefore, this series can be represented as:
2 2 N 2
2+1+—+...+—+... -
n e
This series diverges since it is obtained from the harmonic series by
doubling all its terms.
Comment 2. In the process of proving the Leibniz theorem, we saw that

S S

increasing ~2m approaches S. ~2m+1 on the contrary, decreases.

Consider Samu more detailed:

Since each of differences written in brackets according to the condition is
positive, then obviously,

S;>S5;>S,>...

Thus, if the series satisfies the conditions of Leibniz theorem, then sums
Sa are approximate values of sum S with the disadvantage and sums

Samia _ with the excess.
Comment 3. Sum S of series satisfying the conditions of the Leibniz
theorem does not exceed in absolute value its first term and has the same
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sign as the first term. Indeed, S1 =&, S2 =& =8 >0 Therefore, from
inequality

S,<S<S;

we get

0<S<c

Further, we note that the remainder of a series satisfying the conditions of
Leibniz  theorem is itself a series satisfying these conditions, and the just

made comment applies to it. If the sum of the n-th remainder is equal to fn
, then equality
S=S§, +r,

allows us to make the following conclusion: the error made when replacing
the sum of series satisfying the conditions of the Leibniz theorem with its
partial sum has the same sign as the first dropping term, and the absolute
value is less than it.

Questions
What is the common term of series?

How is the seventh partial sum of series determined 5, ?

What number series is called convergent?

What is the limit of the convergent series common term?

What is the remainder of the series?

. What number series is called harmonic? Does harmonic series
converge or diverge?

7. Will the series with positive terms converge for which the ratio limit
of the subsequent term to the previous one is equal to 2?

8. What properties should the function used in the convergence integral
criterion, have?

9. What limit expression is used in the Cauchy criterion?

S A
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> 1
2

n=1 n

10. For which values is ( of generalized harmonic series
convergent?

11. Isit possible to establish the convergence or divergence of harmonic
(generalized harmonic) series using D'Alembert criterion?

12.  Will the alternating series converge for which the series of its terms
modules converge?

13. What series is called conditionally convergent?

14.  What conditions are sufficient for the convergence of a signed
series?

15. Let the series satisfy conditions of the Leibniz theorem. How to
estimate the error made when replacing the sum of this series with its
partial sum?

Chapter 33. Functional series

33.1. Basic concepts

Let us consider a series whose members are functions defined in
some domain D;:

DU (%)= (x)+ uy(x)+..+u, (x)+..

=i . (33.1)

This series is called functional series.

By giving x specific numerical values, we get different numerical series
that can converge or diverge.

The set of all values x at which the functional series converges is called

the convergence region of series. Obviously, if D" is the region of
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convergence of the series (33.1), then D' <= D . The sum of the series is the

function of x in the convergence region. It is denoted by S(x),

Let us compose partial sums Sn(x) for (33.1) as well as for number

series. If the series (33.1) converges and its sum is equal to S(X), then

S(x)=S, (x)++, (X) (33.2)
where Iy (X) is the sum of series un+1(X)+un+2(X)+“', i.e.
h (X) = un+1(x)+ un+2(x)+ . (33.3)

The value I (X) is called the remainder of the series (33.1).

Since for every x in the convergence region of series we obtain the

_limsS_(x)=S(x) o .
equality n—= , then, taking into account (33.2) we obtain

i, (x)= lim [5(6)-5,(9]=0

Thus, the remainder Iy (X) of the convergent series tends to zero as n

—> 00,

The convergence of series (33.1) in D" means that for each X D’ a
limS, (x)=S

sequence of partial sums {Sn(x)} converges: n—« ”( ) " . According

to the definition of the limit of a numerical sequence, for every € >0 there

exists a positive integer N such that for all numbers N> N holds
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|S(x)-S,(x)| <&

(33.4)

Here, N depends on . Indeed, for the same € >0 but another x , it is

necessary to choose another N to provide the inequality (33.4). Consider
an example. Let there be a series

T+ X+X2 4. +X"+... |

1 1
X== X=-—
It obviously converges as 5 and 10 . Let £=0,0004 |t
1
X== )
5, we obtain
1 1 1
I+ ++=—+..
5 5 5
Its sum (by the formula of the sum of infinitely decreasing progression) is
SIS R
1+ 4
5
We need to take N =N; =5 for given &=0,0004 g satisfy (33.4).
Indeed, SS :1’2496, S _85 :0’0004, and if N>5, then
S-S, |<0,0004
1
X=—
For 10 we have:
1 1 1
1+ —+—+..+—+.
10 10 10
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10

S="—"=111111...
Its sum 9

If N=N,=3 then for >N, in particular for N=4,
| S-S, | =111111...-1111=0,00011... < 0,0004

1
X=2=
Therefore, for € =0,0004 \ye needtotake N=5as 5 and N =3
X = i = 1 X = i
as 10 . It is clear that inequality (33.4) holds for 5 and 10
as N=5,

Is it always possible to find a number N for a given € >0 such that

for any N> N and for all X€ D’ inequality (33.4) holds? No. There are

functional series for which this is not possible.
Definition. The functional series (33.1) is said to be a uniformly

convergent function series in domain D'if for any € >0 there exists a
number N such that for any N> N and for all X € D’

|S(x)-S,(x)| <&

Number N , mentioned above, depends only on € and does not depend

onx: N=N(e),

The concept of uniform convergence is a very complex concept. It is
not possible for now to study a convergent series in a general form.
Consider an important special case of uniformly convergent series -
majorizable series.

Definition. A functional series
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Uy (X)+ Uy (X)+... 41U, (X)+..

is called majorizable in some domain if there exists such a convergent
number series

C+C+...+C, +... (33.5)
with positive terms that for all x from a given domain, the inequalities

| ul(X)| Scl’ | UZ(X)| < C2’ e | Un(X)| SCn ) e (33.6)

hold.

(Mind the fact that a series is called majorizable if there exists a
precisely convergent numerical majorant for it.)
For example, a functional series

sinx sin2x sin3x sin nx
+ + +...

2 22 23
is a series majorizable on the whole number line since the inequalities
smnnx < in
2 2" n=1,2,..),
hold for all x and a series
1 1 1 1
_+_2+_3+"'+_n+"'
2 2 2 2

being a geometric progression, converges.

According to the definition, if a series is majorizable in a certain
domain, then it absolutely converges in this domain. Now we introduce the
following theorem.

Theorem 33.1 (Weierstrass M-test). Let the functional series
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Uy ()4 Uy (%) + .o, (X)+. (33.7)

be majorizable on [a,b]; then it converges uniformly on [a,b].
Proof. Denote by S’ the sum of the series (33.5):

!
S'=C+C+.+C +Cpy e (338)

! !
Let Sn be the n-th partial sum, I be a remainder of the series (33.5) after
the n-th term. Then

! ! !
S'=5,+1
Since the series (33.5) converges

lims! =§’

n—oo

Therefore,

H ’
limr, =0

n—oo

As already noted, the sum of the functional series (33.1)

S(x)=S,(x)+1,(x) (33.2)

where Sn(x) is the n-th partial sum and I (X) is a remainder of the series:

rﬂ (X) = un+1(X)+ un+2(x)+
According to condition (33.6)

| un+l(x)| < Cn+1, | un+2(x)| < Cn+2 s e
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!

mr/ =0 {r } . .
and UnJ is numerical sequence, then

li
for all x€[a.b]. Since nw "
for any € >0 there exists a number N, independent on x, such that for all

nsN | h|<e

|S(x)-S,(x)| <

. Therefore,

for all N>N and for all x<[a,b]. So, the series (33.7) converges on

[a,b] uniformly. That completes the proof.

33.2. Properties of a uniformly convergent
series
Continuity of the sum of a series

Consider series

Uy (X) 4 Uy (X)+ ..o+ (X)+ . | (33.0)

here u,(x),u,(x), ..., up(x), ... are continuous functions on [a.b]. It is
well known that the sum of continuous functions is a continuous function,
but this is true for a finite number of terms. Any partial sum of series (33.1)

S, (X)=u,(x)+u,(x)+...+u, (x)
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is a continuous function on [a.b]. Is the sum of the series (33.1)
continuous? It turns out that there are series of continuous functions having
a discontinuous sum.

Example 33.1. Consider the following series

14+ (X=1)+ (1€ = %)+ (€ =X )+t (X" =X+ *)

Members of this series are continuous functions for each x.

Let us make sure that this series converges on [0,1] and its sum is a

S

discontinuous function. Indeed, the partial sum of this series n(X) has the

5.0

form

S(x)=lims,(x)=0

. Obviously,

as 0<x<1,

S@)=1.

Thus, the point X =1 is a point of discontinuity of the sum S(x). This

series converges irregularly on [0,1], Indeed, for un(x) we obtain

n

| S(X)_ Sn(x)| =X . For every fixed n, obviously, Ixi_rg = 1. Therefore

if €<1  then it is impossible to provide inequality | S(X)_S”(X)| <€

for each X <[0,1] at the same time.
Thus, the series (*) consists of continuous functions but its sum is

discontinuous function. Series converges irregularly on [0, 1], therefore,
this series is not majorizable.
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Theorem 33.2. If functions Un(X) are defined onla.b] and are

continuous on [a. b], and series

Uy (X) 4 Uy (X) 4+ ...+ (X)+. (33.)

converges uniformly on [2.P] to the sumS(X), then S(X) is also

continuous on [a.b]

Proof. Consider an arbitrary point Xo on [2.b] and let S(X) be a

continuous sum at that point. Since for any nand X € [a,b] equality

S(x)=S,(x)+r (x)

holds, then, in particular,

S(%)=5,(%)+1,(%;)

15(0)-S000) 15,65, 06) /1,00 15,6)|. -

In order to prove the continuity of S(x) we need to show that for € >0

| X=X, |<d

there exists O >0, such that for all x inequalities

| S(X)_ S(X0)| <€ holds. Since this series converges uniformly, then for

given € >0 there exists a number N, such that forall N>N

|r(x)|<§

n

(33.9)
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X=X

for all Xe[a,b], in particular, for 0. This inequality holds, in

particular, for N=N +1. Moreover, the function Sn(x) is continuous at

the point X being the sum of a finite number of continuous functions as
Nn=N+1 Therefore, for a given €>0 there exists >0, such that

| X=X, <8

, we obtain

€
S.(X)=S, (%)<=
It follows from (**), (33.9) and (33.10) that for all x, such that

| X=X, | <8

, we have
|S(x)-S(x)| <&
So, we proved the continuity of the sum S(x) at an arbitrary point

X € [a’ b]. Therefore, S(x) is continuous on [, b], That completes the

proof.
Theorem (33.2) is valid (by virtue of Theorem 33.1) for a majorizable
series. In other words, the following statement holds.

Teopema 31.3. If continuous functions are majorizable on [a, b], then

the sum of such functions is a continuous function on [a, b].
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Term integration and differentiation of series

Theorem 33.4. If Un(X) (n=1, 2, ...) are continuous functions on

[, b] and the series of such functions converges to s(x) uniformly on

[2,b], then the series can be integrated term by term from a to b, where
the integral of the sum is equal to the sum of the integrals of the series
terms:

b

IS(x)dx =_Tul(x)dx+Tuz(x)dx+...+iun(x)dx+...

a

(33.11)

Proof. Denote by Sn(x) the n-th partial sum of the series (33.11). Its
uniform convergence means that for any € >0 there exists a number N,

such that for every N> N and for all x <[a,b]

10-8,0] <55

The sum S(X) is continuous function on [a., b] by virtue of Theorem 33.3.

Partial sum Sn(X) is also continuous on [a, b] since it is the sum of a

S

finite number of continuous functions. Therefore, S(X) and n(x) are

integrable on [&,b] and

b

iS(x)dx - j S, (x)dx

a

b

<I| S(x)—Sn(x)|dx<(b—a)r::s

a
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—

So,

!m{is(x)dx—(i dx+ju X)dx + . +ju xﬂzo

a

b

S(x)dx

which means that the series (33.11) converges to the sum a . That

completes the proof.

Remark. Obviously, if the series converges on [a,b] uniformly, then

it converges on any segment [, x] where a<x<b, Therefore, under the

conditions of Theorem 33.4, the equality

a

holds.

Theorem 33.5. Let functions uq(x),u,(x),...,

continuous derivatives on [a.b]. If a series

Uy (X)+U, (X)+ U ()

converges to the sum S(x) on [2,P] and a series

U (X) 4 U (X) 4+ .o+ U (%) +

Is(t)dt =Iul(t)dt +ju2(t)dt+...+jun(t)dt +.

(33.12)

up(x),... have

(33.1)

(33.13)

converges on [a.b] uniformly, then the sum S(x) of the series (33.13) has

a derivative on [a.b] such that
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S'(x) = (X) 4+ U (X) 4 oo+ (%) +.

Proof. Let S (X) be the sum of the series (33.13). Since the series
(33.13) converges uniformly on [a, b], then by virtue of the remark to
Theorem 33.4, it can be integrated term by term on any segment [a, X],

a<x<b:

t)dt_J.u1 dt+ju t)dt +.. +Iu t)dt +..

m'—.x

Obviously, for all n

Therefore,

§(t)dt = [ul(x)_ ul(a)]+ [UZ(X)— Uz(a)]"' et [Un(X)— un(a)]+

D ey

Due to the conditions of Theorem

S(x) =, (X)+ Uy (X)+ oo +U, (X) +...

S(a)=u,(a)+u,(a)+...+u,(a)+..

Hence,
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Therefore,
S'(%) = (x)+ Uy (%) + ...+ U (x)+...

That completes the proof.

33.3. Power series

Definition. Functional series

ax =a, +ax+ax +.+ax +..
o (33.14)

is called a power series. Coefficients aO, a, ..., an, ... are called the

coefficients of the power series (33.14).

Convergence region of the power series

Since the series (33.14) converges at X =0, then the convergence
region of this series is always a nonempty set.
Theorem 33.6 (Abel theorem). 1. If series (33.14) converges at some

pointxz % (XO ;60), then it absolutely converges for all X', such that
|X|<|X0|. 2. If the series (33.14) diverges at some point X=X, then it

diverges for all X', such that |X| > |X1|
Proof. 1. By condition, number series
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ianxg =8y + X, + X+t A X .
n=0

n
converges, therefore, its general term aX, tends to zero as N—>0,

n
Hence, sequence {anxo} is bounded, i.e. there exists a number M >0,
such that for all n

n
aﬂ XO

<M (33.15)

Consider a series which consists of the absolute values of the terms of
the series (33.14):

i ax" =|a0|+|a1x|+‘a2x2‘+...+ ax"|+...
= . (33.16)

Rewrite it in the form

2 n

. n X 2 X n X
D lax :|a0|+|a1x0|-—+‘a2x0‘-— ot @ Xl = e
n=0 Xo Xo

(33.17)

X
g=—<1

Let X< XO. Then Xo . It follows from (33.15) and (33.17)

that the terms of series (33.16) are less than the corresponding terms of the
convergent series

Y

n=0

n 2

=M +M

n

X

Xo

X
X

X
Xy

M +..+M +...

X
X

0
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being the sum of the infinite decreasing geometric progression with the

denominator 9 <1, Therefore, series (33.16) converges due to the direct
comparison test, i.e. the series (33.14) converges absolutely.

2. The series (33.14) diverges at X =% due to the condition. Lets prove
that it diverges for all x satisfying the condition . Assume the

opposite, i.e. series (33.14) converges for some X, such that |X| > |X1| . Then

it converges at X=X due to the first statement of Theorem but this is
contrary to the condition. That completes the proof.

The Abel theorem allows us to determine the location of the points of
convergence and divergence of a power series. It follows from the Abel

theorem that if a power series converges at X:XO, then it converges
absolutely on the interval (_|X0| ! |XO|); if a power series divergesat X =%

, then it diverges everywhere outside the segment [_|X1| ' |X1|] It follows
that there exists a number R, such that a power series converges absolutely

on the interval (=R, R) and diverges out of [~ R, R].

Number R is called the radius of convergence, interval (— R, R) is
called an interval of convergence of the power series. The series can as

converge as diverge at the ends of the convergence interval (i.e. at X=-R

and X=R),
Now we introduce a method for finding the radius of convergence
of a power series. Consider the series (33.14). Apply the d'Alembert's ratio
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test to this series at the fixed point x (Theorem 32.4). The series converges
if

1
H an-*—lanr —_h an+1
lim| =22 = lim|x| | =2 <1
N—o0 anx N—00 an
. |a
lim—% =L
Let "7l @ . The series (33.16) converges according to the

d'Alembert’s ratio test if |X|L <1 and converges if |X|L > 1. Therefore, the

X<— X>=
series (33.14) converges absolutely as L and diverges as L . Thus,

1
L is the radius of convergence of the series (33.14), i.e.

a

R =Ilim—
a

n—oo

n+l|

(33.18)

Moreover, in particular, it can be R=0 or RZOO, i.e. the region of

convergence can consist of one point or coincide with the whole number
line.

Example 33.2. Find the region of convergence of the power series

0 Xn
n=1 n .
1 1
Solution. Here " n, "™ n+1.Find the radius of convergence

by the formula (33.18):
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a

n

an-¢—1

_limn g

n—o0 n

R =1lim

N—0|

The convergence interval is(—1 1),
We now clarify the behavior of the series at the ends of the

=

convergence interval: a) alternating series =1 ' converges on the basis
-1

of Leibnizas X = —1 (see Theorem 32.7); harmonic series n-1 N diverges

as X =1, So, the series converges (conditionally) at the left end of the

convergence interval and diverges at the right end.
Example 33.3. Find the region of convergence of the power series

n

= X
=0 N (Recall that O'=1)
Solution. Find the radius of convergence by the formula (33.18):
1
~ lim M —lim(n+1)= oo

n—o nt n—o

R = lim|-®

_—n_
N—0o0 an+l

This series converges absolutely on the whole number line.

Properties of power series

Let function T (X) be the sum of a power series:

f(x)= ianx“
n=0

: (33.19)
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its convergence interval is (-R, R); then the function T (%) is said to be

decomposable into a power series on (=R, R).

It follows from the Abel theorem that a power series is majorizable on
any segment lying entirely within the convergence interval. Therefore,
power series have a number of properties similar to those of ordinary
polynomials.

The proof of theorems on the properties of power series is based on
the uniform convergence of the power series on any segment contained in
the convergence interval.

Theorem 33.7. If [= 1. 7] lies entirely within a converges interval of a
power series

2 n
g, taXxX+aX +..+ax +..

(33.14)
then this series is majorizable on any [-r.r].
Proof. Consider a number series
2 n
3o |+]a, |r+|a, |r* +..+| &, |r o (33.20)

We need to prove that for the series (33.20) there is a convergent
numerical majorant (with positive terms) as r < R, where R is the radius of
convergence of the series.

According to the Abel theorem this series converges since r < R.

n < n
Inequalities ‘ XS | %, | r are satisfied for the terms of the series (33.14)

<r . . . -
as | X | =T ,i.e. X€ [-rr]. Therefore, the series (33.14) is majorizable on

[-r.r] That completes the proof.
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Corollary. A power series converges uniformly on any segment lying
entirely within the convergence interval.
Indeed, according to the Weierstrass theorem, the series converges

uniformly on [—r.r] sinceitis majorizable on [-r.r]lasr<R.
Theorem 33.8. The sum of a power series is a continuous function on
any segment lying entirely within the convergence interval.
This theorem follows from Theorems 33.1, 33.2 and 33.7.

Theorem 33.9. A power series can be integrated on any segment [0, x]

term by term as — R <X <R In this case, the integral of the sum of the
series is equal to the sum of the integrals of the series members:

n=1

X/ o
a a
I > a,x" dx=a0x+3x2+—2x3+...+ x4
) 2" "3 n+1

This theorem directly follows from the previous Theorems 33.4 and
33.6.

Let us now find out the possibility of differentiation of the power
series term by term.

Theorem 33.10. Let function f(X) be decomposable into a power
serieson (=R, R)

f(x)=> ax"=a,+ax+a,x’ +.+ax" +..
= . (33.19)

Then the power series

D na X" =a, +2a,X+3a,x" +...+na X" +...
= , (33.21)
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obtained by differentiation of the series (33.19), has the same convergence

interval (—R,R) and the function f(X) has decomposable derivative

() on the whole (— R, R):

f'(x)=a, +2a,x+3a,%" +..+na,x"" +... (33.22)

Proof. Let us show that series (33.21) is majorizable on any [-r,r]
as r < R. Take an arbitrary point o satisfying the condition F<h< R.
The series (33.14) converges at that point, therefore, general term of this

series tends to zero as X= rO, and as a result, it is bounded. In other words,

limar'=0 .
now "0 , S0 there exists number M > 0, such that

|an|r0n<M (n=1,2,..)).

Then, as X <[~ r.r] we have
n-1 M n-1
: § ofr r
‘nanx”1‘£‘nanr“‘=n|an|r0“— <n—| —
rO r0 rO

Denote o Tl -asq <1,

n-1 < n-1 .
So, ‘nanx ‘_nMOq . Therefore, all terms of series (33.21) are

not greater than the corresponding terms of the majorant numerical series
for the specified x
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Mo +2MgQ+3MQ° +...+nMq" ™ +...

The last series converges according to the d'Alembert's ratio test. Denote

a,=n Moqn_l, &, = (n+1)M0q“_ Then

jim 21 _ i (142087

=0<1
n—so0 a[’1 n—ow nq“‘l q .

So, series (33.21) is majorized on the segment [-r, r], then due to
Theorem 33.5 we can state that series (33.19) is differentiable term by term

and the equality (33.22) is true.

Since for any X € (=R, R) there exists r < R, such that x<[-r.r] it
follows that series (33.21) converges at any inner point of the interval
(-R.R),

We proved that the radius of convergence can not be decreased after
the differentiation of the series.

To complete the proof of the theorem, one must now show that the
radius of convergence can not increase as a result of differentiation.

Assume the opposite, i.e. the series (33.21) converges for some X > R,
By integrating this series from 0 to X2, where R <X; <X we would

obtain the convergence of the original series (33.19) at point X2, and this
contradicts the condition of Theorem. Thus, the interval of convergence of
series (33.19) is the interval of convergence of series (33.21) obtained by
differentiation of series (33.19). That completes the proof.

Theorems 33.9 and 33.10 mean that power series (within their
convergence interval) behave like ordinary polynomials with respect to
differentiation and integration.
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By applying Theorem 33.10, it is easy to verify that a function that
decomposes into a power series is infinitely differentiable on the
convergence interval of this series.

Power series with an arbitrary center

A power series is a functional series of the form

ian(x—xo)” =a, +a, (X=X, )+ ay(x=x, ) +..4a (x=x; )" +...
n=0

(33.23)
This is a power series in powers of the binomial X=X
power series (33.14) is a special case of series (33.23).
To determine the region of convergence of series (33.23), we make the
substitution:

0. Obviously, the

X=X =X
After this substitution, series (33.23) takes the form:

a,+a X +a,X*+..+a X"+.. _ (33.24)

Let (—R, R) pe the interval of convergence of series (33.24). Then

[x—=X| <R X=x|>R

(33.23) converges as and diverges as
Therefore, the interval of convergence of series (33.23) is the set of all

—R<X=%<R . % -R<X<¥+R

values x satisfying inequality
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Therefore, the interval of convergence of series (33.23) is the interval

(XO R, Kot R) centered at Xo . All properties of the power series (33.14)
are fully preserved for the power series (33.23).

Questions

1. What s the region of convergence of the functional series?

2. Which functional series is called uniformly convergent?

3. What kind of functional series is called majorizable? Is every
majorizable series uniformly convergent?

4, Is the sum of the functional series consisting of continuous functions
always continuous?

5. What kind of functional series is called a power series?

6. What is the radius of convergence of a power series? Can the radius
of convergence be equal to zero or infinity?

7. What are the main properties of a power series?
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34.1. Decomposition of functions into a power series ‘

Chapter 34. Taylor and
Maclaurin series

34.1. Decomposition of functions into a
power series

Assume that function f(X) can be decomposed into a power series

on a certain interval (- R, R)

2 n
f(x)=a, +ax+ax’ +.+a X" +.. (34.)

It follows from Theorem 33.4 that this series can be differentiated term
by term any number of times. Then, differentiating the equality (34.1) n
times, we obtain:

f'(x)=a, +2a,X+...+na x"" +...

f"(x)=2a, +..+n(n-Lja x"? +...

f™(x)=nla, +(n+1)n---3-2-a

n+1

X+...

Assuming X =0 we have f(O):ao, f'(0)=a,, f"(0)=2a,
M(n) -
f (O)_ n!an. Hence

_170)
N (n=0,1,2,..). (34.2)

n
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Substituting the obtained coefficients (34.2) into (34.1), we obtain the

decomposition of function f (x) intoa power series:

' " (n)
f(x)=f(0)+ f (0)x+ f (0)x2+...+—]c (O)X" +...
i 2! n! . (343)

The series (34.3) is called the Maclaurin series for the function f (x).
We have proved the following theorem.

Theorem 34.1. If a function f(X) can be decomposed into a power

serieson (— R, R), then this series is Maclaurin series for (x).
Theorem 34.1 implies that the decomposition of a function into a power
series is unique. The coefficients of this decomposition are uniquely
determined by the formulas (34.2).
It is known that the Maclaurin formula is valid for any function which

has its derivatives up to the (n+1) order (see (17.18)):

f(x):f(0)+i0)x+L(O)x2+...+ f(n)(o)x”+ X

1 21 n! (n+1)!

here & is a point between 0 and x (€ = 6x,0<6 <1)

If we denote the remainder term by Rn(x):

f(n+l)((t-.>) n+l
(n+1)! X

R,(x)=

’

and the partial sum of the Maclaurin series as Sn(x), then the Maclaurin
formula can be written as follows:
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" 34.1. Decomposition of functions into a power series ‘7
f(X): Sn (X)+ Rn (X) (34.4)

Equation (34.4) implies the criterion for the decomposability of a
function in a Maclaurin series.
Theorem 34.2. A necessary and sufficient condition for an infinitely

differentiable function T (X) to be decomposed into a Maclaurin series on
(=R, R) is that the residual term of the Maclaurin formula for this
function tended to zero at the specified interval as n—o0,

mS,(x)= f(x)

li
Proof. 1. Necessity. Let n— for all Xe(=R, R). Then

for all X< (=R, R) according to (34.4)
im R )= [ (005, ()= 10 1

R.(x)=0

0

lim
2. Sufficiency. Now let n—x forall X (=R, R). Then

from (34.4) we get
ims, ()= lim{ () R, (3]}~ F()~0= 1(x

i.e. the Maclaurin series converges to function f (X). That completes the
proof.

_limR (x)=0 o
Note that if n-« , then the Maclaurin series does not
represent a given function, although it may converge (to some other

function).
Maclaurin formula is a special case of the Taylor formula (see (17.7)
and (17.12)):
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f(x)= f(a)+ia>(x_a)+%f‘)(x_a)2+...+

Ry ()= ) gy

where (n+1)!

If function  (X) has derivatives of any order in the neighborhood of

point X =2 then we can obtain an infinite series called the Taylor series:

f'(a f"(a ) f"(a .
fla)+ W x-a)e T ap s @

The Maclaurin series is a special case of the Taylor seriesas a=10,

The Taylor series for function f (x) converges to this function if and
only if the residual term in the Taylor's formula for this function tends to

Zero: r|1|—To R (X): 0 .

<M

. . o f(“)(x)
It is easy to make sure that if all derivatives are bounded:
IimR, (x): 0
(n=1,2,...), then n>» .

34.2. Decomposition of some elementary
functions in the Maclaurin series

_ aX
1. Let f(x)_e . According to the Taylor formula
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2 n
X X X
e*=1+—+—+..+—+R ()
r 2 n! ,
( ) n+l
R,(x)= e’
where (n+1)! ,0<0<1,
: _ - limR,(x)=0
Since for any fixed x the value €” is bounded, then n-w .
Therefore, for all X< (— o0, )
X X X"
e =l+—+—+..+—+..
2 nt (34.5)
2. Similarly, we obtain the Maclaurin decomposition of functions
. limR (x)=0
f(x)=sinx and f(x)=0c0sx (see § 17.3; here also n—= () for
all x):
3 2n+1
SINX = X oot (— 1) o
3 (2n+1)! (34.6)
2 2n
COSX =14t (—1) S
2! () (34.7)

m
3. Consider the function f(X):(l-l— X) , Where m is an arbitrary
constant number. We have

f(x)=+ )" £00=mlE+x)™ £7(0)=m(m-1)({+x)"*

ce s

‘f M(x)=m(m-1)---(m-n+1)1+x)""
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For X=0;

£(0)=1, F'(©)=m, " (0)=m(m-1),
£0(0)=m(m-1)---(m-n+1)
We get a series called binomial:

1. X+m(m l)X2+ +m(m—1)---(m—n+1)xn+
il 21 n!

a,
a

R =1Ilim

N—> 0!

n+1|,

Let us define the radius of convergence of this series
Since
m(m-1)---(m-n+1) X - m(m-1)---(m—n+1)(m-n)
n! h (n+2)!

a =

n

n+1
m-n

R=Ilim———=

N—x

~|-1/=1

we obtain
Thus, the binomial series converges for X<(=11) and diverges

outside of line segment [-2.2].
Estimation of the remainder of this series is associated with certain

e _ limR,(x)=0
difficulties, therefore, we accept without any proof, that n—« as
xe(=1,1)

So, for xe(-11)
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34.2. Decomposition of some elementary functions in the Maclaurin series‘

m(m-1) X2 4.+ m(m-1)---(m-n+1) X" +...

2! n!

@+x)" 14 Dy
il

(34.8)

Note that if m is a positive integer, then starting with the term

containing X™**, all coefficients are zero and the series turns into a finite
polynomial.

4. For m=—1 the binomial series has the form

L e ot (1) X"+
1+x . (34.9)

Integrate this equality from 0 to x, where |X| < 1:

Tl% :_X[(l—t+t2 — (D )t
0 0

Hence we get the decomposition of function f(x)=1n(21+x):

2 3 n+l_n
X X -1) "x
In (1+x)= x——+——...+()—+...

2 3 n _ (34.10)
This equality holds on (-1,1), 1t can be shown that it is also true for

X =1. Thus, the convergence region of the series (34.10) is (-11].
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34.3. Application of power series to
approximate calculations

It is possible to obtain the values of these functions with any accuracy
using the decomposition of elementary function in Maclaurin series. To do
this, we need to take a sufficient number of terms of the series. The
accuracy of the calculation is determined by the residual term of the
Maclaurin formula.

_AX
1. Consider the decomposition of exponential functions f(X) =€
As already noted,
XZ n
e =1+ X+—+..+ —+R (X)
2! n!
n+l
X
n\X)= —lee
where (n +1)- and for all x the exponential function
decomposes into the series
2 n
X X
e =1+ X+—+..+—+..
2! nt (34.5)

The radius of convergence of this series is infinite, i.e. the series
converges on the entire number line.

The series (34.5) can be calculated only for small values of x. If the
absolute value of x is large, then the series is represented as the sum of
integer and fractional parts:

x=E(x)+q,

610 ‘




34.3. Application of power series to approximate calculations ‘

here E(X) is integer part of x (i.e. the largest integer not exceeding) and
q is a fractional part, 0=0 <1 Then

e* =eFed

The first multiplier =™ which is an integer power of a number €, can

be found using multiplication. The second, i.e. €* — using decomposition
(34.5).
The residue of the series is estimated as follows:
n+l

X
0<R
<RG)<AS

Example 34.1. Find \/E with accuracy 10°°,

1
— k-1 = ok1(y, 1\

Solution. According to (34.5) we have Uy _1, 2 (k _1)!

1 Uy
U, = ¢ U =—, .
, 2°k! (k=1,2,...,n), then 2k . We obtain
1 1

e?=>u + Rn(—)
k0 2).

Let us count the terms with two spare signs:
U, =1 Us = —% = 0,00026042

: 10 ,

U, = ”—20 — 0,50000000 U = ;‘—Z —0,00002170
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u, = % — 0,12500000 u, = r—z — 0,00000155

U, = -2 = 0,02083333 U, = -7 = 0,00000010
6 , 16

u, =%=o,00260417 S, =1,64872117

Rounding the sum to six decimal places after the decimal point, we
obtain

Je =1648721

2. Consider decomposition of the logarithm and the calculation of
the values of the logarithmic function. Logarithmic function

f(x)=1n(1+x) decomposes into a power series on (—1.1]:

2 3 4 n+l
n@ex)=x—>+ 2 X p s
2 3 4 n+l . (34.11)

Direct application of this series is complicated, in particular, because of its

slow convergence. Replace argument x with — Xiin (34.11):

2 3 4 7 n+l (34.12)
Subtract (34.12) from (34.11):
1+ X x® x°
In—=2| x+—+—+...
3 5

1-x , (34.13)

here |X| <1.
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The series (34.13) converges faster than a geometric progression with
1+x

_\2
the denominator 4=% . In addition, the expression 1— X can take any

positive values at the specified X . Therefore, formula (34.13) is very
convenient for calculating logarithms.

Since the terms of the series (34.13) are smaller than the terms of the
2Q+ﬁ+ﬁ+J

geometric progression , the remainder of the series is

estimated as follows:

2X2n+1

R, < 5
(2n+1)1—x i (34.14)

Example 34.2. Calculate In8 with the accuracy 10°C.

1+x:8

Solution. From 1— X we obtain X=0,777... it is better to rewrite

8
8=e’—
as e’ to accelerate the convergence of the series. Then

In8:|nez+|n%:2+|n§ 1+x %
e

e’ . Assuming 1-x e* we obtain

8¢’

> =0,03969989

8+e . It follows from (34.14), that the remainder is
approximately equal to the first of the discarded terms for such x. As in the

previous example, we will perform calculations with two positive signs:

X=

u, =2x=0,07939978
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3

u,=2 % ~0,00004171
X5

U, =2+ =0,00000004

We obtain In8= 2,079441 .

(Functions Sin X and COSX can be calculated similarly using their

decomposition into Maclaurin series.)
3. Consider calculating values of integrals that are not expressed
through elementary functions using Maclaurin series. It is known that

2
the integral € " is not an elementary function.
Example 34.3. Find the integral

a 2

Ie*X dx

0

Solution. In order to compute the integral we decompose the integrand

in a series replacing x in the decomposition by — x*:

Integrating both parts of this equality, we obtain:

a

3 5 7

3 X5

2 x’ a
R e e
1 1.3 2.5 3.7 .

a a a

1 1.3 2.5 3.7
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We can compute the given integral with any degree of accuracy and
any a using this equality. In particular, it is enough to take seven terms of
1

e ¥ dx
decomposition in order to compute o with the accuracy up to 10~
4, Then we obtain

1
j e dx ~ 0,7468
0

Note that modulo of the remainder of the series does not exceed
modulo of the first discarded term since the series is alternating.

Questions

1. What is the Maclaurin series? What function can it be defined for?

2. Does the Maclaurin series of a function f (x) necessarily converge
to this function?

3. What is the criterion for the decomposability of a function in the
Maclaurin series?

4. What is the Taylor series?

What is the binomial series? What is its region of convergence?

6. Give examples of using series in approximate calculations.

o

Chapter 35. Fourier series

The power series considered earlier makes it possible to represent the
function T (X) in the form of the sum (with corresponding coefficients) of

the simplest functions, which are powers of X:
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2 3 n
1, % X0 X, X (35.))

We consider functional series in which instead of degrees X trigonometric
functions are selected. Trigonometric function system

1, COSX, sinx, cos2x, sin2x, COSNX, sinnx, (35.2)

is well studied in elementary mathematics.
Definition 1. Series

a : : .
?°+a1cosx+bls|nx+a2 CoS 2x +b, sin 2x + a, cos 3x + b, sin 3x + ...

a & :
= 70 + > (a, cosnx+b, sinnx)
n=1

(35.3)

is called trigonometric series, and numbers Aora, b, a,,b, . are
called the coefficients of the trigonometric series.
Note that all functions of system (35.2) are periodic with a total period of

27t . Therefore, any partial sum of the trigonometric series (35.3) is also
a periodic function with a period of 27z . Hence, if this series converges

on [-7, ﬂ], then it converges on the whole number line and its sum is a
periodic function with a period of 2z since it is a limit of a sequence of
periodic partial sums.

Orthogonality is an important property of the trigonometric system (35.2).

Definition 2. Functions f(X) and 9(x) are mutually orthogonal on

[a,b]. if
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b

j f(x)g(x)dx =0

a

Theorem 35.1. Two functions of the system ( .2) are mutually orthogonal

on [-7.7],

Indeed, if K # 0 and k is an integer then

_[cos kxdx = %sinkx]”ﬁ =0

’

]Esin kxdx = —%coskxl”ﬂ =0.

It means that function T (*)=1 is orthogonal to functions COSNX or

sinnx of the system (35.2).

There remains verifying the validity of the next equalities for K # n:

j cos kxcos nxdx =0,

7,, (+)

Jsin kxcos nxdx = 0,
r **)

Isin kxsin nxdx = 0.

r (* % *)

Consider the first of these three integrals. Since
cos kxcos nx = %[cos(k +n)x+cos(k —n)x],

then
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Icos kxcos nxdx = % j[cos(k +n)x+cos(k —n)xJdx =
1[sin(k +n)x s sink—n)x |, _ 0
_2| k+n k-n |7

Similarly, applying the corresponding formulas

sinkxcos nx = %[sin(k +n)x+sin(k —n)x]

sinkxsinnx = %[cos(k —n)x —cos(k +n)x]

we prove the validity of the remaining two equalities. That completes the
proof.
We will need the following two equalities

T V2
Icos2 nxdx = 7, J'sinz xdx = 7.

= (35.4)
They are easily proved using formulas
) l1+cos2a . , 1-cos2ax
cos“a=———, sin“ag=——.
2 2
Indeed,

Icos2 o = I(1+ cos 2nx Jdx = 1(x + 2 sin 2nx}‘ =T
J 23 2" " 2n

The second equality in (35.4) is proved similarly.

Decomposition of functions in a Fourier series.

Theorem 35.2. Let function f(X) be integrable on [-7.7] and
decomposable into a trigonometric series
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f(x)= o, > (a, cosnx+b, sinnx)
n=1 (35.5)
where series can be integrated term by term when multiplied by a limited
function, then such decomposition is unique.
Proof. To calculate the decomposition coefficients, we use the formulas

()= (==*=) and (35.4). We integrate the series (35.5) on [— 7. 7} we
see that all the integrals on the right-hand side, except the first, vanish.
Therefore

]5 f(x)olx:%a0 ]{dx= a, .

-

Hence

a, :i I f (x)dx.

(35.6)
Now multiply the series (35.5) by €OSMX, 150 and integrate again on

[~ 7. 7], Then, all terms of the integrated series vanish, except for the term

containing a, due to the orthogonality of the trigonometric system. We
obtain

I f (x)cos nxdx = Ian cos’nxdx = a,r
Hence
a, = 1 I f (x)cos nxdx.

T (35.7)
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Similarly, multiplying the equality (35.5) by SINNX and integrating on

[~ 7. 7] we obtain
I f (x)sin nxdx = Ibn sin® nxdx = b, 7.

Hence

b, == [ £ (x)sin nxdx
7T s (35.8)

Formulas ( 35.6) - (35.8) uniquely determine all the decomposition

coefficients. That completes the proof.

Numbers 8y, Ay, bn’ determined by formulas (35.6) — ( 35.8), are called
Fourier coefficients while the trigonometric series (35.5) is called the
Fourier series of function f ().

Convergence of the Fourier series.
Now we introduce the definition of the periodic continuation of the

function f(X) defined on [-7.7]. we say that periodic function F(x),
defined on the whole number line with a period of 27 | is a periodic

continuation of the function f(X), if F(x)= f(x) on [~ 7. 7]

We raise the following question: what properties should a function have to
provide the convergence of its Fourier series and the sum of its Fourier
series to be equal to the values of a given function at the corresponding
points?

Definition. Function f () is called a piecewise monotonic function on

[a,b], if this segment can be divided by a finite number of points Xi: Xz,
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Xn—l’ b)

. X1 on the intervals (&, %), (X, %;), . .. , (

function is monotonic on each of these intervals.
It is easy to verify that a piecewise monotonic function can have only

such that the

discontinuities of the first type. Indeed, if X =C is a discontinuity point
f(x), then, due to the monotonicity of the function, there are finite limits

f(c—0), f(c+0) j.e. C isa discontinuity point of the first type.
Now we introduce a theorem that gives sufficient conditions for the

representability of a function f (x) by the Fourier series.

Theorem 35.3. Let f(X) be a piecewise monotonic and bounded on
[—m, ] periodic function with a period of 27z ; then its Fourier series
converges at all points on [—m, ]. The sum S(x) of the series is equal to

the value of function T (%) at the points of continuity of the function. The
sum of the series at the points of discontinuity is equal to the arithmetic

mean of the limits of function f (X) on the right-hand and left-hand sides,

i.e. if X=C is a discontinuity point of f(x). then

S(x),. - f(C_O); f(c+0).

We accept this theorem without proof.

It is easy to understand that the class of functions represented by Fourier
series is wide. In particular, it is significantly wider than the class of
functions represented by the sum of a power series. Therefore, the Fourier
series are widely used in various sections of mathematics and its
applications.
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Note that there are other sufficient conditions of the decomposability of a
function in a Fourier series.

Let f(x) satisfy the conditions of Theorem 35.3. Then the sum of the
Fourier series is a periodic function with period of 27 . We can continue
it to the whole number line using its graph on [-7. 7] Let f(X) be
continuous on [ 7 7]. Then the sum of its Fourier series coincides with

f(x) on the whole (~7.7) and, therefore, it is continuous on this
interval, as well as on any interval (2k —1)7,(2k +1)7), k = 0,+1,+2,...
. Moreover, if f(=7)= f(x), then the sum of the Fourier series will be a

continuous function on the entire axis. If f(=7)= f(z), then points

X =(2k+1)r, k04142, _

for the sum of the series. The sum of the series at these points is
f (— 7z')+ f (72')

— 5

.. are discontinuity points of the first type

Example 35.1. Let f(x) = x and f(—=7)# f(z). Therefore, the sum of

its Fourier series is a discontinuous function. Let us construct this series.
According to (35.6) — (35.8) we have

1% 111 .
d, :—IXCOSHXdX:— — XSInnx
T z|n

i e _[sin nxdx} =0
n—lz
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T n

b, _1 jxsin nxdx =1{—Excosnx
n

i_r;;'l'%J.COS nXdX} = _ECOS Nz = (_1)n4

The Fourier series for this function has the form

y o Z(SIZ X 5|n22x sin 3x j 22 M sin nx

This decomposition is valid for (—7.7), but if X=27 the sum of the
seriesis 0.

Fig. 35.1
e Example 35.2. Letf(x) = x2and f(#)= f(=7). Therefore, the sum

of its Fourier series is a continuous function on the entire axis. This
2
function coincides with x2 on [~ 7. 7] and equals (X_Zk”) on any

segment [(2k —1)7z,(2k +1)7], k =+1,+2,...
For N =0, obviously
17 2 27 2 2 X3
a, =— | xdx=—|x"dx=——
° 71"[ ﬂ'[ 7 3
For 1=1,2,3, ... we have

1%, 2% 2
anz—Ix cosnxdx=—J‘x cos nxdx = —| x* sin nx
V3 m

3—2'[ Xsin nxdx} =
0
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V4
4
n
- Icos nxdx} =(-1)" .
0

n

4
_n’z

It is easy to verify that bn =0

decomposition has the form:

, 7 COSX €OS2X  COS3X
X* = 4 - +

3 L1 4 9

for all M therefore, the Fourier series

3

& n COS X
= ? z
n=1

Fig. 35.2

We can decompose the function defined on an arbitrary segment [-11]

into a trigonometric series similar to the Fourier series. In this case, the
decomposition has the form

a, & .
24 Z[an cos ™ 4 b sin n_ﬂxj
2 ' (35.9)

n=1 I
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|
a :1I £ (x)cos “%dx, b, :}I f (x)sin 7% dx,
° | I ' N=o0,1,2,....

If f(X) is an even function on [—1L.1] ie if f(=x)= f(x),

b

x €[~ 1,1] then its Fourier coefficients “n in (35.9) are equal to zero. Let

us prove it. We have
11 Cnax 1 ¢ CnaX . N
b, :—J‘ f(x)sin——dx =~ j f(x)sm—dx+jsm—dx .
1 | I | A
Make a substitution x = —t in the first integral. Then, using the parity of
f and oddness of the sine, we obtain

0 0

jf(x)sinnTﬂxdx=—I —t)sin 2% =—j sm—dx
—l |

Our assertion follows from here and from the previous equality.

In this case, coefficients a, can be calculated by formulas

| I
a, Z%j f(x)dx, a, :IEJ' f(x)cos%dx,
0 0 =1,2,....

It is similarly proved that if f(X) is an odd function, then
2| _nax
b, =—| f(x)sin——dx.
an — 0’ n I .(.)- ( ) I
Thus, if the function is even, then its Fourier series (35.5) contains only
cosines, and if it is odd, it contains only sines. In the examples considered
above, we saw, in particular, that the decomposition of the odd function
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f(x)=X contains only sines, and the decomposition of the even function

f(x)=x2

contains only cosines.

Standard deviation.
Representation of a function by an infinite series has the practical meaning
that the finite sum of the first N terms of a series is an approximate

expression of the decomposable function. In this case, it becomes
necessary to evaluate the error.

Consider an arbitrary function Y = f(x) on [2,b] and estimate the error

when replacing this function with another function o(x). Let

max|f(x)—(p(x] be a measure of an error on [&.b] ie. the largest

deviation function #(x) from f(x). However, sometimes the largest
deviation is inconvenient to take as a measure of approximation, and not
only because the study of this value is difficult, but it is often more
important to reduce the error "on average" than to decrease the largest
deviation solving the function approximation problem. In such cases, the

mean square deviation is taken as a measure of error 9 where
2 1 % 2
6% = ——|[f(x)-(x)] dx
b—as
Let us find out the nature of the approximate representation of the periodic

function f(x) by trigonometric polynomials of the form

s, (x)= a—2° + Zn:(ak 00s kx+ b, sinkx)

k=1
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here ao’ a, bl' az, bzv ..

. an, bn are Fourier coefficients, i. e. the

sum of the first (2n +1) members of the Fourier series.

Let f(x) be a periodic function with a period of 27z . Among all
trigonometric polynomials of order n

a L .
?O +> (e coskx+ f3, sinkx)
k=1
we need to find the polynomial for which the mean-square deviation
2

52 =2 [| #(0-22 ~ 3 (o, coskx+ 4, sinkx) | dx,

has the least value by choosing coefficients % and ﬂ k.

The answer to this question gives the following Theorem.

Theorem . Among all trigonometric polynomials of order 1, the smallest
mean-square deviation from function f (X) has the polynomial whose

coefficients are the Fourier coefficients of the function T (X) .

We accept this theorem without proof. Also, without proof, we note that
for any bounded piecewise monotonic function the mean-square deviation

obtained by replacing this function with the N-th partial sum of the Fourier

2
series tends to zeroas M % i. e. o, >0 as N— 0.
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Chapter 36. Basic concepts of
linear programming

This book does not provide any systematic presentation of linear
programming. Here we consider only some examples of optimization
problems with limitations given by linear inequalities.

36.1. Resource problem

During economic activities of a single enterprise or the whole industry, it
is often necessary to determine how to use available resources to achieve
the maximum output. With a large number of possible solutions to this
problem, it makes sense to choose the best one.
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Chapter 36. Basic concepts of linear programming

Mathematically, this problem is usually reduced to finding the maximum
or minimum value of a function on a set defined by a system of inequalities.
Let an enterprise produce from m types of resources n types of products.

Let the production of the j-th type of product consume % units of the i-th
type of the resource. Matrix A=\g is called technological.

Let </ be a specific profit margin from the sale of one unit of the j-th

product. These specific profit margins form vector ¢ Z(C"cl"”’cﬂ).

Then the product CX =cx+ox +..tex, is an amount of profit,

received from the sale of X units of manufactured product, where

/) We denote this profit as f (X )

Let b be a number of units of the i-th resource available to the enterprise.
Then the need to take into account that the limited resources when drawing
up production plants is expressed by the system of inequalities:

X +a,X, +...+3, X, < bi’ i=1,...m (36.1)

These resources being provided, it is required to produce such a
combination of goods at which an enterprise’s profit would be maximum.
In other words, it is required to find the maximum value of function

f(X): CX X+ F G Xy nder conditions (36.1). The problem

defined this way is called the optimization problem. It is written as
follows:
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f(X)=01X1+szz+---+Can — max (36.2)

Ay X +a,X, +...+a,X, <b,
8y X, +8pX, +...+ 3y, X, <D,

X +a,,X, +..+a,.X, <b, (36.3)

xlzo’xzzo’_“’ xnzo_ (36.2)
Function f (X ) is called a target function.

Definition. A valid solution (a plan) of this problem is vector X, satisfying
the constrained system (35.3) and non-negative conditions (35.4).

The set of valid solutions forms a domain of valid sets.

Definition. An optimal solution (plan) of the problem is a valid solution,
such that its target function reaches its maximum (minimum).

36.2. General problem of linear
programming

Let us formulate in general terms a problem of linear programming: to
find an extremum of linear function under linear constraints on variables.
Moreover, the set of variable values that satisfy all the linear constraints of
a problem is called a valid set and a linear function, whose extremum is
found, is a target function.

In practice, it is to apply linear programming for solving such problems
where there are hundreds or thousands types of resources and types of
products. The most popular algorithm for solving a problem of linear
programming is the so-called simplex-method.
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The presentation of this method is beyond the scope of our course. Without
proof, we give only two theorems that contain the theoretical basis of the
simplex method (and linear programming in general).

Theorem 36.1. The problem of linear programming has an optimal solution
if and only if the target function is bounded on the valid set in the direction
of the extremum.

Before formulating the second theorem we note that the valid set, on which

the extremum is found, is a polyhedral body (for 7 =2 is a polygon for

n=3jsa polyhedron in three-dimensional space). The vertices of this
polyhedral body are called the corner body.

Theorem 36.2. If an extremum of the considered function of linear
programming solution is reached, then it is reached in the corner point of
the valid set.

Note that there is a finite number of corner points. The Simplex-method is
a directed enumeration of the corner points of a valid set.

Let us consider a solution of linear programming with two variables with
the graphical method.

Example 36.1. Solve a linear programming problem:

f(X)=3x, +2x, — max

X —%+2>0, (1)
3% -2%x,-6<0, (2
x,-3<0, (3)

%20 x,20

Ox,x

Solution. We take a rectangular system 2 on a plane (fig. 36.1).
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X

24 M ©

NI / \/

318 C_@3

y

2 7=(3,2)

1__

1 Dl 1 -
2 1,2 3 4 5 X

1+

2+

Fig. 36.1

We constructa line Xt ~ %2 + 2=0 corresponding to the first constraint. To

select the desired half-plane, we must substitute coordinates of any point,

which doesn’t lie on the straight line, for example, O(O’ 0) :0-0+2>0
, ininequality (1). We obtain a strict inequality. Thus, point O lies in a
half-plane of solutions.

Similarly, we construct lines 3% —2% —6=0 54 x, =3=0

the corresponding half-planes.

and choose

. . - > >
We also take into account the condition of non-negativity X1 = 0 , B2 = 0
The intersection of all five half-planes gives us the desired valid set gives

us the pentagon OABCD.
We construct a level line, for example, for / =0 3% +2% =0 \wWemove
a level line in the normal direction. The last point along which the level

line still crosses the valid set will be the maximum point. In our case, this
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is point C. We find its coordinates by solving equations of lines which
intersect at point C:

3X, —2X, —6=0,
X, —3=0,

we obtain X =4 % =3 e calculate fr = f(4,3)=18 .

It often happens that variables in problems of linear programming are
integers. Such problems are more difficult to solve and the special methods
have been developed for them. But if such a problem has two variables,
then it is possible to solve it graphically. It is necessary to move a level line
and to find the last integer point.

max

36.3. Elements of duality theory

The central part of linear programming is a dual theory. Any problem of
the linear programming can be associated with another problem, which is
called dual (or conjugate).

Both problems (initial and dual to it) form a pair of dual problems. Each of
the problems is dual to another one of the considered pair.

Let us consider a resource allocation problem. Let for production of n

types of products R, P2, F, m types of resources 5 : SZ, S are

used (this can be various types of raw materials, electricity, semi-finished
products, etc.).
The volume of each type of resources is known; in other words, a vector of

B = (bl,bz,..-,bm)’ is known.

resources
) a, . )
The consumption rate ¥ of the i-th resource for the production of one

unit of the j-th type of product, i.e. the technological matrix A= (a”),
i=1,2,...,m;j=1,2, ..., nis known. Moreover, the profit of the sale of
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one unit of each product type is known, i.e. the profit vector
C=(e6ym,)

row vector.)

A manufacturer draws up a production plan that provides the maximum
profit. The mathematical model of this problem, as already noted, in an
expanded form is written as:

is known. (Here vector B is a column vector, and C is a

f =c X +CX, +...+C.X, > max: (36.2)
ByX + 8%, Tt A, X, < By
A, X + 8yX, + ...+ 8, X, <Dh,,

2nn

X +8,,X +...+a,X, <b,

(36.3)

X X %20 (36.4)

X . . . .
Here "1, j=1, 2, ..., nis the volume of production of the j-th type of
product. In the compact form, the target function and constraint system are
usually written in the form:

n
f :chxj — max
j-1

n
Zaijxj <h
=t i

=12, ...,m,

2

>
205 15 n

Suppose that there is a buyer who wants to re-buy partially or fully the
resources reserved to complete this task. In market economy, there are no
categorical refusals; usually, everything is determined by the price and
the terms of sale.
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Let us consider the dual problem which solution determines the terms for

the sale of resources. Denote the estimate (price) of the i-th resource as Ji
, then the vector of these estimates will have a form V=050 V) .
The cost of acquiring the i-th type of raw materials in quantity b is

obviously equal to by, . A buyer, obviously, wants to pay less, so for them,
the target function has a form

o=by +by,+..+b y, —>min. (36.5)

However, it is beneficial for the manufacturer acting as a seller to evaluate
its resources in such a way that their total cost spent on each product of the

j-th product is not less than the profit € , that the seller would receive from
the sale of this product, i.e.

Yyt ay Y, et ayy, 2 cj.
Thus, the system of constraints of the problem has a form

ailyl + a21y2 +.o..+ amlym = Cl’
a12y1 + a22y2 +..t amzym 2 CZ’

a, Y, +a,, Y, +..ta,Y, =C,. (36.6)

Moreover, obviously, estimates of all the types of resources are non-
negative:

Y120 i_12 .m (36.7)

So, conditions (36.5)—(36.7) define the new problem of linear

programming. It is called a dual problem to the initial problem (36.2)—
(36.4).
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Let us consider closely the connection between the initial and the dual

problems:

1)  coefficients €/ of the target function of the initial problem are free
terms of the system of constraints (36.6) of the dual problem;

2)  free terms b, of the system of constraints (36.3) of the initial
problem are coefficients of the target function of the dual problem;

3)  the coefficient matrix of the constraint system of the dual problem
is the transposed matrix of coefficients of the constraint system of the
initial problem.

Further, it will be clear that if one of the dual problems has an optimal
solution, then another also has an optimal solution (see theorem 36.4).
The pair of problems, considered above, refers to the so-called symmetrical
problems. In the theory of duality two pairs of symmetrical dual problems
are considered. We present them in the matrix-vector form (on the left side

is an initial problem, on the right side is a dual one):

1 f=CX - max, ¢ =YB — min,
AX<B, YA2C = (36.8)
X20. Y20

o f=CX - min, ¢ =YB — max,
AX 2B YA<C (369
X >0 Y>0

Recall that here
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C:(cl,cz,...,cn), Y = (Y, Yorenr ¥y

&, .. &, by X,
A: a‘21 a‘22 a'2n B— b2 X — XZ
am1 a'm2 amn bm Xn

Note, that in the duality theory non-symmetrical pairs of dual problems are
also used, but we will not consider them.

We now formulate more clearly the rules of constructing the dual
problem:

1. The target function ¢ of the dual problem must be optimized in the

opposite way to f, i.e. if f— max’ then @ = MM anq vice versa.

2. On the right side of the constraints of the initial problems are the
coefficients for the variables of the target function of the dual function.

3. Matrices of the coefficients for the unknowns on the left sides of the
constraints of both problems (initial and dual) are mutually transposed.
Moreover, if the initial problem has a dimension 72 7 (m constraints with
n unknowns), then the dual problem has a dimension 77 =7

Example 36.2. Create a dual problem to the problem:

f =X +4X, + X; > max

— X +2X, + X3 <4,
—2X, —3X, — X3 < -6,
3%, + X, +2%X; <9,

>
205 123
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Solution. Let us multiply the righthand sides of the constraints by the
corresponding variable of the dual problem and construct a target function
(which should be minimized, as the target function of the initial task is
maximized):

4y, —6Yy, +9y, > min

We transpose the matrix of coefficients for unknowns in the left-hand sides
of the constraints of the initial problem, replace all inequalities with the
opposite, and write in the righthand sides the corresponding coefficients of
the target function of the initial task:

- Y1_2y2 +3y3 211

2y1 _3y2 +Ys; 2 4,

Yi—Y, +2y3 >1.
Finally, we obtain the dual problem in the form

¢ =4y, -6y, +9y, > min

_Y1_2y2+3y3 21,
2y, =3y, +Y; 24,
yl_y2+2y3 211

$i20 2103

Example 36.3. Create the dual problem to this problem:
f =2x, +3%; +2x, > min

{ X, — X, + 2X; + 3%, > 9,
— X = 2X, + X5 +2X, <=8,

ijO' j:1,4.
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Solution. Since the target function is minimized, so all the inequality
constraints should have the form «>». Therefore, we transform the initial
problem by multiplying the second inequality constraint by -1. The initial
problem is written as

f =2x, +3%; +2x, > min

X, — X, +2X, +3X, 29,

X, +2X, — X3 —2X, 28,
X > O, j=14
Now we create the dual problem similar to how it was done in the previous
example:

¢ =9y, +8y, > max

YitY, <2,
_y1+2y2£01
2)’1_y233’
3Y1_2y232’

%2012

Duality theorems establish a connection between optimal solutions of
pairs of dual problems.

Let us consider a symmetrical pair of dual problems (36.8):

I f =CX — max (| ¢=BY —>min
AX<B, YA>C
X>0 Y>0
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(Remind that if problem (I) has dimension M>N  then problem (1) has
dimension MM )

Note the main inequality of the duality problem.

Theorem 36.3. Let X be any valid solution of initial problem (I), and Y is
any valid solution of the dual problem (I1). Then there is an inequality

f(X)<o(Y) (36.10)

Proof. Since all the variables in the both problems are non-negative, we
obtain (taking into account ¥4 = C'):

f(x)=CX <(YA)X *)

Due to associativity of matrix multiplication and taking into account
AX <B

(YA)X =Y (AX)<YB=o(Y) (*9)

Combining (*) and (**), we obtain

f (X ) < (P(Y), g.e.d.

Let us note, in particular, that as applied to the problem considered in
example 35.4, inequality (35.10) means

2%, + 3%, +2X, <9y, +8y,

Consequence forms the main inequality: if a valid set of one of the

problems I, 1 is not empty, then the target function of another problem is
bounded in extremum direction on its valid set.

Indeed, for example, let the set D of the initial problem be not empty, i.e.

there exists at least one point X'eD, Then, according to inequality
(35.10), for any point Y from the valid set of problem Il inequality
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0
(P(Y)z f(X ) holds, i.e. all the values of function ¢ are bounded below

(30
by one number / (X )
Theorem 36.4 (the main duality theorem). If one of the dual problems |
or Il has an optimal problem, then another one has an optimal solution, and
the extremum values of target functions are equal:
max f =ming (36.11)
(We accept this theorem without proof).
One of the main consequences of the main duality theorem is a criterion of

optimality of valid solutions. Let X" and ¥ are valid solutions of the
initial and the valid problems | and Il. For these solutions to be optimal,
the equality

F(x°)=0olv®) (36.12)

Proof. 1. Necessity. Let X° and Y° be optimal solutions. Then
f(XO):maxf (p(YO):min(p

main duality theorem.

and equality (36.12) follows from the

2. Sufficiency. Let inequality (36.12) hold and let X" pean arbitrary point
froma valid set of the initial problem. Then by virtue of the main inequality

(36.10), we obtain f(X)S(p(YO)z f(XO). Thus, -f(XO)zmaXf Jie.
X" is a maximum point.

It is similarly proved that point YO, for which inequality (36.12) holds, is
a minimum point.
Theorem 36.5 (the second duality theorem). In order for the valid

solutions X:(xl’xi’""x") and Y=(y],y2,...,y,,,) to be optimal
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solutions for the pair of dual problems I and 11, it is necessary and sufficient
that the following equalities hold:

X; (Zai,-yi _ijzo
i=1

j=1,2,..,n (36.13)

Y, LZaijxj —bij:O
= Ji=1,2,...,m (36.14)

(We accept this theorem without proof.)

We clarify the meaning of equalities (35.13) and (35.14). For example, the
second means that if the optimal solution is substituted into the constraint
system (35.3), the i-th constraint of the initial problem is satisfied as a strict
inequality, then the i-th coordinate of the optimal solution of the dual
problem is equal to zero. Otherwise, if the i-th coordinate of the optimal
solution of the dual problem is not equal to zero, then the i-th constraint of
the initial problem when substituting the optimal solution becomes equal.

These conditions establish the balance between problems | and Il. That is
why theorem 36.5 is also called the equilibrium theorem.

Example 36.4. Solve the problem:
4%, +3X, —30X; — min

X,  —6X%;2>1
X, —9X;3 2 2,
X, Xy, X3 20

Solution. There are three variables in this problem. It is not possible to
solve it graphically such as in example 35.1. Let us create the dual problem,
solve it graphically and then solve this problem using the second duality
theorem.
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So we create the dual problem:

y, +2y, = max

y, <4 ()
y,<3  (2)
- 6Y1 - SYZ < _301 (3)

Yir Y, 20

We solve it graphically. In fig. 36.2 the domain of valid solutions, normal

n= (1’ 2) and an optimal solution — a point (4, 3) are shown.

Y2 |
o (D
5";
3 (2)
O__ I T I4 5[\(]3)[ T T 116.._ 3)1
T I~
Fig. 36.2

Now we find the solution of the initial problem using the second duality
theorem.

Since the third constraint of the dual problem is a strict inequality for
=473 then 570 Then, since 11>0.02>0
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X =6x; =1, x, =5x; = 2, hence M1 =1 % =2 Thys the optimal

solution of the initial problem is a point (1, 2, 0).
Example 36.5. Solve the problem using the second duality theorem:
2X, +6X, +3%; > min

3+ X, —3X, <0,
X, —2X, + X5 2 2,
X, Xy, X3 20

Solution. For this problem, we create a dual one. Firstly, we reduce all the
inequalities to the form «>», since the target function is minimized:
2%, +6X, + 3%, — min
— X, +3X, >3,
X, —2X, + X3 2 2,
X Xy X32 0
Now we write the dual problem:

3y, +2y, = max

-Y +Y,; 52
3y, — 2y, <6,
Y. <3,
Yir ¥, 20
This problem coincides with the problem in example 36.1 (but there are

variables *1> ¥2 and here there are variables 1> V2). Let us use its solution
=4 y=3
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Since the first constraint of the dual problem is satisfied as a strict
inequality, then 1 =Y'since Y1 >0 72> 0 4pen

— X, +3X, =3,
X, —2X, + X3 = 2,

hence X2 =1 X =4
So, the optimal solution to the initial problem is (0, 1, 4).
Now let us consider a problem with four variables, which we can also
reduce to the dual problem, which is solved graphically.
Example 36.6. For the following problem create the dual one, solve it and
find a solution to the initial problem, using the second duality theorem:
2X, + X, —3Xy + X, = max

X, + 2X, -X, <4,

X, — X, + X +3%, <1,
X, Xy, X3, X, 20
Solution. Create the dual problem:
4y, +y, > min

Y, +Y, =2,
2Y1_Y2 >1,
y, =23,
-y, +3y, 21
Yir Y, 20
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Solving it graphically, we find a point (1, 1).

Now we apply the second duality theorem for finding the solution of the
initial problem. We see that the third and the fourth constraints of the dual
problem hold as strict inequalities.

Thus, *2 =0 % =0 11 addition, since Y1 >0 Y>>0,
X, + 2X, -X, =4,
X =X, + X3 +3X, =1,

hence (taking into account that <& — %4 = 0) we obtain % =2 X, =1,

Thus, an optimal solution of the initial problem is a point (2, 1, 0, 0). In

this case, obviously, F (X mex = @Y Jin =5 .

Questions

1. What s a technological problem?

2. What is an optimization problem? How is it written?

3. What is the valid solution of the optimization problem? What
solution is called optimal?

4. How is the problem of linear programming formulated?

5. How are the initial and dual problems of linear programming
connected?

6. Let the initial problem of linear programming have a dimension
mxn \What is the dimension of the dual problem?

7. What is the main inequality in duality theory?

8. How is the main duality theorem formulated?

9. Can a linear programming problem with two variables be dual to a
five variable problem?
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Chapter 37. Summary of
balance analysis

37.1. Leontief model

Effective functioning of diversified economy is possible only if there is a
balance between sectors. Suppose that the entire production sphere of
economy is represented by n so-called clean industries.

A clean industry is a conditional concept, a part of economy, relatively
integral, producing its own homogeneous product and determined only by
the type of product (such as, for example, extraction of raw materials,
energy, agriculture, etc.). Some of the products are used for internal
production-consumption (both by this industry and other industries), while
the other part is intended for consumption in non-production sphere.
Consider the production process for a certain period of time (usually a year
is such an interval).

We introduce the following notation:

X

i — atotal output of the i-th industry (gross output);

i _ the volume of production of the i-th industry consumed by the j-th
industry in the production process;

Yi' __ the volume of products of the i-th industry, intended for
consumption in the non-productive sphere (the volume of final
consumption).

Since the gross output of the i-th industry is equal to the sum of
consumption in manufacturing and non-manufacturing sectors:

n
X = inj +Yi
= =12, ...n (37.1)




37.1. Leontief model

Equations (37.1) are called balance relations.

Since the products of different industries have different dimensions, we
will consider the value of the interindustry balance, when all the values
included in (37.1) have a value expression.

The mathematical model that allows us to analyze the relationship between
industries was developed in 1936 by the American economist W. Leontief.
W. Leontief, analyzing the American economy in the period before the
Second World War, paid attention to the following important
circumstance: for a long time, the values

Xii=1,2,...n (37.2)

vary slightly and can be considered as constant numbers.

This is because the production technology has remained almost constant
for quite some time.
The above allows us to make the following assumption: for the output of

A X ..
products of the j-th industry of volume " , it is necessary to spend

products of the i-th industry volume a‘jxi, where % is a constant
coefficient. This assumption is called the linear hypothesis. According to
this hypothesis

i=1,2,...,n (37.3)

Xij = X,
According to the linearity hypothesis, the numbers % are constant, they
are called direct cost coefficients.

Now, equations (37.1) taking into account (37.3) can be written in the form
of a system:
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X =8 X +a,X, e+ 3, X, + Y,
Xy, =au X +a,X, +...+a, X, +Y,,

Xy = 8uX +8,X, +oot 8 X, + Y, (37.4)

We introduce the gross output vector X , the direct cost matrix A and the

final consumption (or final product) vector Y.

Xl all a12 aln yl
X a a, .. a y
< = 2 A= 21 22 2n y — 2
Xn an1 a‘n2 ann yn

(37.5)
Now the system (37.4) in matrix form has the form

X=AX+Y (37.6)
Equation (37.6) is called the linear interindustry balance equation.
Together with the interpretation (37.6) of the vector X , matrix A and
vector 37, this equation is called the Leontief model.

The main task of the interindustry balance is to find a gross product vector
X that, given the known direct cost matrix A, provides a given vector of

final consumption . In other words, how many products of different
types should be produced to ensure a given level of final consumption?
Obviously, the problem boils down to solving the equation (system of

linear equations) (37.6) with an unknown vector * , with a known matrix

A and for a given vector - .
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In short, we agree to call the matrix A non-negative if all its components

are non-negative. In this case, we write 42 0.A nonnegative vector is
defined similarly.

In the problem above, obviously, A20, y=0 (this directly follows from
the economic sense of A and ¥ ). The sought vector ¥ must also be non-

negative: X =0,
We rewrite equation (37.6) in the form

(E-A)x=y (37.7)
If (E —A is nondegenerate matrix, then there exists a matrix inverse to it
(E N A)il and there is (and, moreover, the only) solution to equation
(37.7):

x=(E-A)"Y (37.8)
Matrix S = (E-A) called the total cost matrix.

Find out the economic meaning of the total cost matrix 5= (S”).
Consider the unit vectors of the final product:

1 0 0
_ 0| _ 1 _ 0
1= Y, = Y. =

0 0 1

For them, from (11.8) we obtain the corresponding gross output vectors:
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S'11 S'12 S1n
— S21 - S22 - SZn
X = X = Xy =

Sn1 Sn2 B Snn

Therefore, each element % of matrix S is the gross output of the i-th
industry, necessary to ensure the output of a unit of the final product of the
j-th industry.

A matrix 420 js called productive if for any vector 20 there exists

a solution X =0 to equation (37.6). In this case, the Leontief model is
called productive.

It turns out that there is no need to require the existence of a solution * =0
of equation (37.6) for any vector y= 0. It is enough to establish the

existence of such a solution for at least one vector y20 , as the following
theorem shows, which we will accept without proof.
Theorem 37.1. If for 40 and for some vector 7 = 0, equation (11.6)

has a solution * =0 then the matrix A is productive.
There are various performance criteria. Here are two of them.

The first criterion for productivity. A matrix 4 = 0 is productive if and

(£-4)"

only if the matrix exists and is non-negative.

The second criterion for productivity. A matrix 4 = 0 js productive if
the sum of the elements of any of its columns does not exceed unity:

i=1 .
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37.2. Linear exchange model

Concepts of the eigenvector and eigenvalue of the matrix are applicable, in
particular, to the analysis of the process of reciprocal buyings.

Let us consider the following question: what should the relationship
between the budgets of countries be if they trade with each other so that it
is mutually beneficial, i.e. there is practically no deficit for each of these
countries. To answer this question, we consider a linear model of
exchange or a model of international trade.

Let there be n countries. We denote their national budgets by X X2,

ey

o Let % be a share of the budget X ,which the j-th country spends on
the purchase of goods from the i-th country. We assume that the entire
national budget of each country is spent only on the purchase of goods
either within the country or outside it, i.e. fair equality:

Zn:aij =1
i=1

i=1,2,...n. (37.9)

. . . a.
Consider a matrix composed of these coefficients ™ :

&y Ay - A,
A= a‘Zl a22 e a2n
B Gz e B ) (37.10)

It is called the structural matrix of trade.

In accordance with (37.9), the sum of the elements of any column of matrix
Ais equal to unity.

For the i-th country, the profit from domestic and foreign trade will be
equal to
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P = QX+ Xy et B X,

(37.11)

The condition for the balance of trade is formulated as follows: the profit
from the trade of each country should be no less than its national budget,

. > X .
i.e. trade must be balanced for every country: Pi =% forall i,or
Ay X + 8, X, T+ 3 X, 2 X; i=1,2,. (37.12)

Theorem 37.2. Equity-free trade condition is the following
Pi=Xi-1,2...n

Proof. Assume the opposite, i.e. Pi > % gor any i. Then the strict
inequality holds:

Z P > in
=) i1

We write this equality taking into account (37.11):

(8%, + Xy + oo 8y, X )+ (8% + By Xy oo By X ) ot
(@ X+ 8%y e+ B X ) > X Xy e X

nn“n

(37.13)

Grouping the terms, we obtain:
X, (8, + 8y .ty )+ XAy + 8y +otay, )t

+ %, (@, + 8y, + oAy, ) > X Xy et X

It follows from (37.9) that all sums in parentheses are equal to unity. We
get a contradiction:

X1+ xp+. . +x, > x4+ X

Therefore, strict inequality p; > x; is impossible for any i. Therefore, all
inequalities p; = x;, take the form of equalities:
pi=x;,1=1,2,...,n. (37.14)
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We introduce the vector of budgets:

Then the system of equalities (11.14) takes the form:
AX =X (37.15)
This equation means that the eigenvector of matrix A corresponding to the

eigenvalue A =1, consists of the budgets of countries conducting balanced
trade. So, the problem was reduced to finding the eigenvector of the

structural matrix of trade that corresponds to an eigenvalue A=1.

Example 37.1. The structural matrix of trade of the three countries has the
form:

0,2 03 05
A=104 04 03
04 03 0,2
Under what conditions is trade balanced in these countries?
Proof. We rewrite equation (37.15) in the form (A B E))_( =0 :
-08 03 05 )\(x 0
04 -06 03 ||x,|=|0
04 03 -08)\x 0

The rank of this system is two. Solving it, we get
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_13,

=%

x2=Ex3
9

Assuming %3 = 36 (to avoid fractional numbers), we obtain a vector
X = (39, 44, 36)

which can be taken as an eigenvector.
So, the trade balance of these countries is achieved provided their budgets
are in the ratio:

X X, X, =39:44:36

Questions

1. What is the linearity hypothesis?

2. What form does the equation of linear interindustry balance have?
3. What is called the Leontief model?

4. Which matrix is called the total cost matrix? What is the economic
meaning of this matrix?

5. Which matrix is called productive? In which case is the Leontief
model called productive?

6 What are the criteria for matrix productivity?

7. What is the structural matrix of trade? What are the columns of this
matrix characterized by?

8. What is the condition for balanced trade?
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