Over the last three years, a growing amount of reports highlighted the exceptional catalytic performances of Aquivion PFSA in many challenging chemical reactions. To date, all these studies employed Aquivion PFSA in powder form and the impact of shaping Aquivion PFSA on its catalytic performances has never been reported, although this aspect is of prime importance for implementation on a larger scale. Often considered as a matter of practical interest in the current literature, the shaping of a catalyst is actually mandatory and is clearly a key research topic for catalyst design and chemical engineering. Here, we explored the effect of shaping Aquivion PFSA on (1) its catalytic performances (i.e. yield, reaction rate and space time yield), (2) its ease of recovery at the end of the reaction (i.e. filtration, recyclability) and (3) its deactivation rate. In particular, we found that shaping Aquivion PFSA into micropellets was a good compromise (between powder and macropellets) to maintain acceptable catalytic performances while considerably facilitating the recovery of Aquivion PFSA at the end of the reaction. Last but not least, by properly controlling the reaction conditions, it was possible to limit the deactivation of Aquivion PFSA shaped into micropellets, a recurrent problem in catalytic carbohydrate processing. © 2019 The Royal Society of Chemistry.