USING DEEP CONVOLUTIONAL NEURAL NETWORKS FOR THREE-DIMENSIONAL CEPHALOMETRIC ANALYSIS; [ИСПОЛЬЗОВАНИЕ СВЕРТОЧНЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОВЕДЕНИЯ ТРЕХМЕРНОГО ЦЕФАЛОМЕТРИЧЕСКОГО АНАЛИЗА]

The study included the development of a new convolutional neural network (CNN) model for recognizing and fitting cephalometric points on cone-beam computed tomography (CBCT) slices for further 3D cephalometric analysis and evaluation of its accuracy. We used DICOM files for 192 cone beam tomograms in the study. Each set of files was imported into ViSurgery software (Skolkovo, Russia). Next, three-dimensional models of the patient’s soft tissues, bones, and teeth were generated, and 26 points were placed on the facial surface (soft tissue points), 38 on the skull surface (bone points), and ten dental cephalometric points per model. At the same time, the position of the points was corrected on CT plane slices in 3 planes. This study demonstrated the high efficiency of the image segmentation approach for training CNN to identify cephalometric points on CBCT. The proposed method, integrated into specialized software, has a high potential for reducing the labor intensity of the workflow. © Group of authors, 2024.

Авторы
Muraev A.A. , Oborotistov N.Yu. , Mokrenko M.E. , Shiryaeva T.V. , Aleshina O.A. , Ershov M.V. , Emel’yanov P.N. , Agarleva L.R. , Dolgalev A.A. , Zorych M.E.
Издательство
Stavropol State Medical University
Номер выпуска
2
Язык
Английский
Страницы
146-151
Статус
Опубликовано
Том
19
Год
2024
Организации
  • 1 The Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 2 Russian University of Medicine, Moscow, Russian Federation
  • 3 Dental clinic «NizhStomPlus», Nizhniy Novgorod, Russian Federation
  • 4 UBIC Technologies, Moscow, Russian Federation
  • 5 Stavropol State Medical University, Russian Federation
  • 6 Dental clinic «Ecomedservice», Minsk, Belarus
Ключевые слова
automatic identification; cephalometric point landmarking; computer-assisted diagnostics; cone-beam computed tomography; convolutional neural networks; three-dimensional cephalometrics
Цитировать
Поделиться

Другие записи

Titov K.S., Sorokina M.V., Paklina O.V., Kiselevskiy M.V., Lebedev S.S., Lunina A.V.
Российский биотерапевтический журнал. Федеральное государственное бюджетное учреждение "Российский онкологический научный центр им. Н.Н.Блохина" Российской академии медицинских наук. Том 23. 2024. С. 22-29