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A waveguide with a constant, simply connected section 𝑆 is considered under the
condition that the substance filling the waveguide is characterized by permittivity
and permeability that vary smoothly over the section 𝑆, but are constant along
the waveguide axis. Ideal conductivity conditions are assumed on the walls of the
waveguide. On the basis of the previously found representation of the electromagnetic
field in such a waveguide using 4 scalar functions, namely, two electric and two
magnetic potentials, Maxwell’s equations are rewritten with respect to the potentials
and longitudinal components of the field. It appears possible to exclude potentials
from this system and arrive at a pair of integro-differential equations for longitudinal
components alone that split into two uncoupled wave equations in the optically
homogeneous case. In an optically inhomogeneous case, this approach reduces the
problem of finding the normal modes of a waveguide to studying the spectrum of
a quadratic self-adjoint operator pencil.

Key words and phrases: waveguide, normal modes, hybridization of normal modes,
eigenvalue problem, quadratic operator pencils

1. Introduction

Consider a waveguide representing a cylinder of constant cross-section 𝑆
filled with an optically inhomogeneous substance, which we will characterize
with a permittivity and a permeability. Hereinafter, we will make use of
a Cartesian coordinate system, the 𝑂𝑧-axis of which coincides with the
waveguide axis. We will assume that the permittivity and permeability do not
depend on 𝑧, but are piecewise smooth functions of 𝑥, 𝑦. The normal modes
of a waveguide are non-trivial solutions of Maxwell’s equations of the form

⃗𝐸(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, �⃗�(𝑥, 𝑦)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, (1)

satisfying the conditions of ideal conductivity of the waveguide walls. Here
the positive parameter 𝜔 is the circular frequency of the wave, 𝑘 = 𝜔/𝑐 is the
wave number, and the complex parameter 𝛽 is the phase constant.
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Substitution of the expression (1) into Maxwell’s equations yields 8 equa-
tions for 6 unknowns 𝐸𝑥, … , 𝐻𝑧, containing two parameters, 𝑘 and 𝛽. It is
usually assumed that the wavenumber of the considered waves is given, and
then we get an eigenvalue problem with respect to the spectral parameter 𝛽.
This problem was successfully solved in the case of constant 𝜖 and 𝜇, thanks
to the introduction of two scalar potentials, the electric and magnetic Borgnis
functions 𝑢 and 𝑣 [1], [2]. In the attempt to study a general case undertaken
in the beginning of 2000s [3]–[5], it was not possible to introduce potentials
and the problem was investigated with respect to three randomly chosen field
components. With this approach, the normal waves of the waveguide turned
out to be eigenfunctions of some non-self-adjoint quadratic operator pencil
acting in a space specially selected by the functional.

Not all properties of a hollow waveguide can be extended to the case
of a waveguide filled with an optically inhomogeneous substance. We can
confidently reject the hypothesis of the field decomposition into TE- and
TM-waves, since the existence of hybrid modes has been proved analytically
in half-filled waveguides [6, § 3.5]. With less confidence, one can reject the
hypothesis that the propagation constants of normal modes cannot have both
real and imaginary parts. In a series of numerical experiments [7]–[9], it
was shown that the propagation constants of the normal modes of an axially
symmetric waveguide with a dielectric core can leave the real and imaginary
axes of the 𝛽 complex plane. However, to calculate these eigenvalues, we
used the truncation method and standard solvers to find the eigenvalues of
non-self-adjoint matrices. Our experiments in FreeFem++ [10] showed that
solvers of this kind can introduce a complex addition to the spectrum of
a self-adjoint problem.

We have recently succeeded in extending the theory of Borgnis functions
to the case of a waveguide filled with optically inhomogeneous matter [11],
[12]. In this case, we have increased the number of potentials to four. Mode
hybridization makes one think that the system of equations for the potentials
does not split in the general case, but we cannot exclude the fact that this
system is written in a self-adjoint form. In this paper, we intend to present
such a self-adjoint formulation of the problem of finding the normal modes of
a waveguide.

2. Representation of the electromagnetic field using
electric and magnetic potentials

Let for simplicity the waveguide cross section 𝑆 be a planar simply connected
domain with smooth boundary 𝜕𝑆, and let the permittivity 𝜖 and permeability
𝜇 be smooth functions of 𝑥, 𝑦. Denote as 𝑍, 𝑇 the segments of finite of infinite

length on the axes 𝑧 and 𝑡, respectively and assume 𝜕𝑠 = 𝜕
𝜕𝑠 in all cases except

𝜕𝑡 = 1
𝑐

𝜕
𝜕𝑡 . The unit external normal vector to the curve 𝜕𝑆 will be denoted as

�⃗� = (𝑛𝑥, 𝑛𝑦, 0)𝑇, and the tangent vector in the 𝑥𝑦-plane as ⃗𝜏 = (−𝑛𝑦, 𝑛𝑥, 0)𝑇.

Also for brevity let us assume that

⃗𝐴⟂ = (𝐴𝑥, 𝐴𝑦, 0)𝑇 and ∇ = (𝜕𝑥, 𝜕𝑦, 0)𝑇, ∇′ = (−𝜕𝑦, 𝜕𝑥, 0)𝑇
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and

Δ𝑞𝑢 = div(𝑞∇𝑢) = 𝜕
𝜕𝑥

𝑞𝜕𝑢
𝜕𝑥

+ 𝜕
𝜕𝑦

𝑞𝜕𝑢
𝜕𝑦

.

As in the theory of Borgnis functions, the scalar function 𝑢 turning into
zero at the boundary will be referred to as electric potential and the scalar
function satisfying the Newmann condition 𝜕𝑛𝑣 = 0 at the boundary — as
magnetic potential 𝜕𝑆 × 𝑍 × 𝑇. Hereinafter electric and magnetic potentials
are denoted by 𝑢 and 𝑣, respectively, with different indices.

The main result about the four potentials established by us earlier [12]
is that the electromagnetic field allows a representation in terms of four
potentials, namely, two electric potentials 𝑢𝑒, 𝑢ℎ and two magnetic ones
𝑣𝑒, 𝑣ℎ:

⃗𝐸⟂ = ∇𝜕𝑧𝑢𝑒 + 1
𝜖
∇′𝜕𝑡𝑣𝑒, �⃗�⟂ = ∇𝜕𝑧𝑣ℎ − 1

𝜇
∇′𝜕𝑡𝑢ℎ. (2)

Therefore, below we seek the solution of Maxwell’s equations in a waveguide
in the form (2) without any loss of generality.

3. Maxwell’s equations in terms of potentials

Substituting expression (2) into Maxwell’s equations, we get 8 rather
than 6 independent equations. Four of these equations allow expressing the
potentials in terms of the longitudinal field components 𝐸𝑧 и 𝐻𝑧. The relation
is determined by classical boundary-value problems. The electric potentials
can be found as solutions of Dirichlet problems

⎧{
⎨{⎩

Δ𝜖𝑢𝑒 + 𝜖𝐸𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,
𝑢𝑒 = 0 on 𝜕𝑆 × 𝑍 × 𝑇

(3)

and
⎧{
⎨{⎩

Δ 1
𝜇

𝑢ℎ + 𝜖𝐸𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝑢ℎ = 0 on 𝜕𝑆 × 𝑍 × 𝑇 .
(4)

The magnetic potentials can be found as solutions of Newmann problems

⎧{
⎨{⎩

Δ1
𝜖
𝑣𝑒 + 𝜇𝐻𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝜕𝑛𝑣𝑒 = 0 on 𝜕𝑆 × 𝑍 × 𝑇
(5)

and
⎧{
⎨{⎩

Δ𝜇𝑣ℎ + 𝜇𝐻𝑧 = 0 in 𝑆 × 𝑍 × 𝑇 ,

𝜕𝑛𝑣ℎ = 0 on 𝜕𝑆 × 𝑍 × 𝑇 .
(6)
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In this case from Maxwell’s equations it follows that

𝜕𝑡 ∬
𝑆

𝜇𝐻𝑧𝑑𝑥𝑑𝑦 = 𝜕𝑧 ∬
𝑆

𝜇𝐻𝑧𝑑𝑥𝑑𝑦 = 0. (7)

In problems of monochromatic wave propagation 𝜕𝑡 is equivalent to multi-
plication by the number 𝑖𝜔, therefore from (7) the solvability of the above
problems with the Neumann conditions follows.

The rest two equations can be written in the form

⎧{{
⎨{{⎩

Δ𝜖 (𝜕2
𝑧 𝑢𝑒 − 𝜕2

𝑡 𝑢ℎ − 𝐸𝑧) = 𝜕𝑧𝜕𝑡
𝜕(𝑣ℎ, 𝜖𝜇)
𝜕(𝑥, 𝑦)

,

Δ𝜇 (𝜕2
𝑧 𝑣ℎ − 𝜕2

𝑡 𝑣𝑒 − 𝐻𝑧) = −𝜕𝑧𝜕𝑡
𝜕(𝑢𝑒, 𝜖𝜇)
𝜕(𝑥, 𝑦)

.
(8)

Substituting here the expressions for the potentials in terms of the field
longitudinal components 𝐸𝑧 and 𝐻𝑧, which are obtained by solving the
problems (3)–(6), we rewrite this system in the form

(
̂𝐴𝑒 0

0 �̂�ℎ
) 𝜕2

𝑧 ⃗𝐹 − (
̂𝐴ℎ 0

0 �̂�𝑒
) 𝜕2

𝑡 ⃗𝐹 − (𝜖 0
0 𝜇

) ⃗𝐹 = ( 0 ̂𝐶
̂𝐶∗ 0

) 𝜕𝑧𝜕𝑡 ⃗𝐹 , (9)

where as an unknown we consider ⃗𝐹 = (𝐸𝑧, 𝐻𝑧)𝑇, composed of the field

longitudinal components. Here ̂𝐴𝑒, … , �̂�ℎ are symmetric positively defined

integral operators acting in 𝐿2(𝑆), and ̂𝐶 is a non-symmetric integral operator.
This operator makes impossible the separation of the problem into two
independent problems, due to which the hybridization of modes occurs. We
will call it a hybridization operator.

4. Normal modes of a waveguide

Normal mode (1) corresponds to a solution of the system (9) in the form

𝐸𝑧 = 𝐸𝑧(𝑥, 𝑡)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡, 𝐻𝑧 = 𝐻𝑧(𝑥, 𝑡)𝑒𝑖𝑘𝛽𝑧−𝑖𝜔𝑡.

Taking the dependence on 𝑧, 𝑡 into account, we can formulate the problem
of finding the normal modes of the waveguide as an eigenvalue problem

𝛽2 (
̂𝐴𝑒 0

0 �̂�ℎ
) ⃗𝐹 − (

̂𝐴ℎ 0
0 �̂�𝑒

) ⃗𝐹 + 1
𝑘2 (𝜖 0

0 𝜇
) ⃗𝐹 = 𝛽 ( 0 ̂𝐶

̂𝐶∗ 0
) ⃗𝐹 (10)

with respect to the spectral parameter 𝛽.
Thus the problem of finding normal modes reduces to the analysis of the

spectrum of the polynomial operator pencil

̂𝐴2𝛽2 + ̂𝐴1𝛽 + ̂𝐴0, (11)
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where the coefficients ̂𝐴0,
̂𝐴1,

̂𝐴2 are self-adjoint operators with respect to

a scalar product in 𝐿2(𝑆) × 𝐿2(𝑆); the senior coefficient ̂𝐴2 is a positively

defined and completely continuous operator; the operator ̂𝐴1 is completely

continuous and the operator ̂𝐴0 is bounded and reversible. The pencils of
such form arouse in the linear theory of small damped oscillations and were
studied by M.G. Krein and G. K. Langer [13, §12].

5. Conclusion

By introducing four potentials, we were able to reduce the problem of wave
propagation in a waveguide filled with an inhomogeneous substance to a linear
second-order partial differential equation (9), the coefficients of which are
self-adjoint operators. In this case, the problem of finding normal waves is
reduced to studying the spectrum of the quadratic operator pencil (11). Thus,
the formulation of the eigenvalue problem retains the symmetry characteristic
of scalar eigenvalue problems.

This means, first of all, that with discretization by the truncation method,
we obtain a problem for the eigenvalues   of a quadratic self-adjoint matrix
pencil. By means of the known procedure [13, §12] it can be reduced to

the generalized eigenvalue problem ̂𝐴𝑢 = 𝛽�̂�𝑢, where ̂𝐴, �̂� are self-adjoint
matrices. This opens up possibilities for using specialized eigenvalue solvers.

The proposed formulation is also convenient for theoretical research, since
the physical meaning of its terms is clear. In particular, the linear element of
the pencil describes the hybridization of modes in a waveguide filled with an
optically inhomogeneous medium. A natural next step will be to study the
perturbation of a hollow waveguide by a weakly inhomogeneous substance.
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Нормальные моды волновода как собственные
векторы самосопряжённого операторного пучка

М. Д. Малых

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В статье рассматривается волновод постоянного односвязного сечения 𝑆 при
условии, что заполняющее волновод вещество характеризуется диэлектрической
и магнитной проницаемостями, меняющимися плавно на сечении 𝑆, но посто-
янными вдоль оси волновода. На стенках волновода взяты условия идеальной
проводимости. На основе найденного ранее представления электромагнитно-
го поля в таком волноводе при помощи четырёх скалярных функций — двух
электрических и двух магнитных потенциалов — уравнения Максвелла записа-
ны относительно потенциалов и продольных компонент поля. Из этой системы
удаётся исключить потенциалы и записать пару интегро-дифференциальных
уравнений относительно одних продольных компонент, расщепляющихся на два
несвязанных волновых уравнения в оптически однородном случае. В оптически
неоднородном случае этот подход позволяет свести задачу об отыскании нормаль-
ных мод волновода к исследованию спектра квадратичного самосопряжённого
операторного пучка.

Ключевые слова: волновод, нормальные моды, гибридизация нормальных мод,
задача на собственные значения, квадратичные пучки


