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Abstract: In this paper, we analyse a queueing system with two servers where the arrival and service
processes are interdependent. The evolution of these processes is governed by transitions on the
product space of three Markov chains, which are descriptors of the arrival and service processes. The
transitions in this Markov chain follow a semi-Markov rule and the exponential distribution governs
the sojourn times in the states. The stability condition of the system is derived and the stationary
distribution is calculated for the system in equilibrium. Several important performance measures are
provided, and numerical illustrations of the model are presented.
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1. Introduction

Queueing theory is a branch of applied mathematics that studies waiting lines or
queues. It finds widespread applications in various fields, including telecommunications,
computer networks, manufacturing systems, and service industries. Two server queueing
models are particularly significant, as they offer insights into scenarios where multiple
servers handle arriving customers or tasks. While traditional queueing models assume
independent arrival and service processes, in many practical situations these processes are
interconnected in a way that can significantly impact system performance and behaviour.
The study of queues with interdependent arrival and service processes helps in understand-
ing how these mutual influences shape queue dynamics, waiting times, resource utilisation,
and overall system efficiency.

1.1. Literature Review of Queues with Interdependence in Arrival and Service Processes

Mitchell et al. [1] investigated an M/M/1 queue in which the arrival and service
processes are linked through correlated random variables, conforming to a bivariate ex-
ponential distribution. This approach sheds light on how correlations between customer
service times and the time between their arrival impact the system. Courtois et al. [2]
generalized the M/G/1 queuing process by assuming both the arrival and service rates to
be essentially arbitrary functions of the number of customers currently using the system.
In addition, they assumed that the amount of service demanded by a customer is condi-
tioned by the queue length at the moment service is begun for that customer. Sengupta [3]
investigated a single-server semi-Markovian queue with a first-come-first-served policy in
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which both the arrival and service processes follow a semi-Markov process. Boxma et al. [4]
considered a storage model with a dual interpretation: as a distinctive queueing model fea-
turing interdependence between service requests and subsequent inter-arrival times, and
as a fluid production/inventory model operating within a two-state random environment.

Muller et al. [5] studied a queueing system characterised by partial correlation, focus-
ing on the interplay between the quantity of work (service time) introduced by a customer
and the subsequent inter-arrival time, which the authors assumed to be interdependent.
The focus of the study revolved around a distinctive single-server multi-station alternating
queue configuration in which the interplay between preparation and service times involves
intricate auto- and cross-correlation patterns. Their investigation was carried out across
two distinct scenarios. Vlasiou et al. [6] addressed a configuration involving a single-server
multi-station alternating queue characterised by interrelated preparation and service times
and exhibiting both auto- and cross-correlations. Adan et al. [7] presented a comprehensive
investigation into a single-server queue system in which both the inter-arrival times and the
service times depend on a common discrete time Markov chain. This model represents an
extension of the well-known MAP/G/1 queue, incorporating interdependencies between
inter-arrival and service times. Iyer et al. [8] analysed queueing models characterised by
joint density of the inter-arrival and service times. These models involve a mixture of joint
densities, and find natural applications in scenarios involving a single server catering to
multiclass populations through a shared queue. Additionally, this approach can help to
model interdependencies between inter-arrival and service times in the context of queue
control models. Buchholz et al. [9] focused on a queueing system in which the inter-arrival
times exhibit correlation and the service times are correlated with the inter-arrival times.
They established a compelling connection between this correlated queueing model and the
MMAP[K]/PH[K]/1 queue, a well-studied structure to which matrix geometric algorithms
are readily applicable. Kim et al. [10] analysed the wait time distribution in an M/M/1
queue in which the inter-arrival time between the n-th and (n + 1)-th customers along
with the service time of the n-th customer are modelled as correlated random variables
characterised by Downton’s bivariate exponential distribution. Krishnamoorthy et al. [11]
examined a queueing system with finite Markov-dependent arrival and service batch sizes,
and additionally considered correlated successive inter-arrival and service time durations.
Dai et al. [12] investigated a unique category of correlated queue in which the service
duration of an arriving customer hinges upon the inter-arrival time separating them from
the previous customer.

Moiseev et al. [13] examined a two-stage queuing system with infinite servers in
which customers arrive according to a Markovian Arrival Process (MAP). In this system,
the service times at the first stage and the probability of transitioning to the second stage
depend on the type of request, which is determined by the state of the underlying Markov
chain of MAP when the request arrives. The authors’ analysis of this model utilized the
multi-dimensional dynamic screening method.

1.2. Literature Review of Queues with Multiservers

The literature abounds with extensive research concerning queueing models that
involve multiple servers and operate under the assumption of independent arrival and
service processes. Kleinrock [14] laid the foundation for analysing queueing systems
with multiple servers. The earliest works focused on fundamental models characterised
by independent customer arrivals and exponential service durations. These pioneering
studies offered essential insights into the behaviour of queueing systems, particularly in
the context of systems featuring multiple servers. These foundational investigations laid
the groundwork for subsequent advancements in the field. Cohen [15] played a crucial
role in advancing this trajectory by expanding the analytical framework to accommodate
batch arrivals and service times. This extension was a pivotal step, contributing to a more
comprehensive understanding of the dynamics of queueing systems with multiple servers.
Neuts et al. [16] addressed a notable challenge by highlighting the analytical complexity of
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queueing systems involving more than two heterogeneous servers. They aptly observed
that in such scenarios the steady-state behaviour of the system can only be explored through
algorithmic approaches. Building upon this observation, Krishna Kumar et al. [17] studied
an M/M/2 queueing system characterised by heterogeneous servers.

There are a number of recent papers dealing with two-server queueing systems,
including [18–28], to which interested readers may refer.

A semi-Markov process is both a Markov renewal process and a generalization of
the Markov process. Unlike Markov renewal processes, which focus on the number of
visits to each state, a semi-Markov process considers random variables describing the time
spent in each state before transitioning. In discrete-time Markov processes, transitions
occur after fixed unit time intervals; in continuous-time Markov processes, transitions
follow exponential distributions for the time spent in each state. A semi-Markov process
resembles a Markov process in terms of state-to-state transitions; however, it is set apart by
the time spent in each state before moving to the next state being a random variable with
parameter(s) that depend on both the state it is currently in and the one to be visited next.

In a semi-Markov process, changes of the occupied states take place according to a
Markov chain rule; nevertheless, a random amount of time between changes is required.
Suppose that a process can be in any one of N states 1, 2, 3 . . . , N and that each time it enters
state i, i = 1, 2, 3, . . . , N it remains there for a random amount of time before transitioning
to state j with probability Pij. The state j that is to be visited next is chosen at the time
that state i is visited. The sojourn time in i depends on both i and j. Let the time until the
transition from i to j have a distribution Fij, and let Z(t) denote the state at time t; then,
{Z(t) : t ≥ 0} is called a semi-Markov processes.

To define a semi-Markov process, it is necessary to have a finite state space Markov
chain (MC). This MC can be one-dimensional or higher, and must be finite. Associated
with the MC is its initial probability vector (IPV) and one-step transition probability matrix
(TPM). The semi-Markov process evolves as follows. First, choose an initial state j according
to the IPV. A particle occupies this state. At this moment, the next state (say, k) to be visited
by the particle is chosen; this is sampled using the one-step TPM. The sojourn time of
the particle in j is distributed based on the mean time in j as µjk. At the end of this time,
the particle transits to k; at this epoch, the next state (say, m) to be visited is chosen using
the one-step TPM. In k, the sojourn time has a mean value µkm. This process continues;
the continuous time process is referred to as a semi-Markov process. The sojourn time
distribution Fij can be exponential or any general distribution (with the non-negative part
of the real line as support). In this paper, the sojourn time distribution is taken as the
exponential distribution.

We consider a two-server queueing system in which the arrival and service processes
are interdependent. Numerous studies in the existing literature have investigated the
interdependence among random variables and processes through various analytical meth-
ods. In this paper, we analyse the interdependence among arrival and service processes
using a semi-Markov approach. This is a new approach first introduced by Achyutha
Krishnamoorthy in 2021 (see [29,30]). The procedure is as follows. Suppose that n processes
evolve in an interdependent fashion, as explained below. Assume that these n processes
are generated through transitions in the states of n finite state space-distinct Markov chains.
They may or may not have absorbing states. Considering the product space of these
Markov chains, a Markov chain is imposed on this product space. This chain has an initial
probability vector and a one-step transition probability matrix. The combined process
evolves through transitions in the elements of the product space. We may assume that
these transitions are governed by a semi-Markov rule, with the exception of the sojourn
time in each stage|state (n-tuples) being exponentially distributed based on a parameter
with dependence on the current state and the one to be visited next (as governed by the
one-step transition probability matrix on the product space Markov chain).

In [31], the authors examined two distinct queueing models. Model I used a single-
server working vacation queueing system in which the arrival and service processes
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were interdependent. The evolution of the arrival and service processes occurs through
transitions within the product space of two separate Markov chains of orders m and n,
respectively. The transitions in the product spaces of these Markov chains are governed by a
semi-Markov rule, with sojourn times in the states governed by an exponential distribution
with parameters depending on the state it is in and the state to be visited next, which
are determined according to the Markov chain rule. During working vacation periods,
service is delivered at a reduced rate. The duration of these vacation intervals follows
an exponential distribution with the parameter η. In contrast, the second model is based
on independent arrival and service processes following phase-type distributions with
representations (ααα, T) of order m and (βββ, S) of order n, respectively. The service time during
normal operation is the phase-type distribution indicated above, whereas that during
working vacation is a phase-type distribution with representation (βββ, θS), 0 < θ < 1.

In the present paper, we analyse a queueing system with two servers having inter-
dependent arrival and service processes. The evolution of these processes is governed by
transitions in the product space of three Markov chains. The transitions in this Markov
chain follow a semi-Markov rule and the exponential distribution governs the sojourn
times in the states.

1.3. Motivation

In queueing theory literature, many papers have been developed to analyse arrival
and service processes which are mutually independent with the exception that service
can be rendered only when the server and at least one customer to receive the service are
available. A few papers have considered successive inter-arrival times and/or successive
service times to be correlated, for example, Markovian or batch Markovian arrival/ service
processes. Even fewer papers have considered the interdependence of arrival and service
processes. For example, the inter-arrival times An between the n− 1 and n-th customers and
the service time Sn of the n-th customer were correlated for n = 1, 2, . . . . by Sengupta [3,32].
Van Houdt [33] subsequently filled certain gaps in the work of Sengupta [3]. In all these
papers, the authors made specific distributional assumptions with respect to the arrival
and service times. Thus, the question arises as to whether it is necessary to specify the
distributions of the inter-arrival and service times of customers. It is this question that led
us to design the presented approach to multi-server queues.

Thus, in this paper we make no assumptions about the inter-arrival and service time
distribution. More importantly, no such assumption can be meaningfully made in the
context of modelling this interdependence. There are at most three papers [29–31] that
have appeared in the stochastic modelling literature employing this new approach, and
no cases involving more than one server have been considered under this framework in
the extant literature. Thus, the methodology presented here is quite novel. This procedure
can be extended to queues of a finite number with more than two servers. The dimension
increases by one as the number of servers increases.

Markov chains provide the simplest dependence among a sequence of random vari-
ables. In the present modelling, we assume that arrival and service rendered by the two
servers evolve within the product space of three Markov chains: one each for arrival, service
by server 1, and service by server 2. Thus, our approach is completely new, especially in
service systems with multiple servers.

1.4. Practical Applications

In the correlated inter-arrival time and service time, we can use the following example:
with An being the sequence of independent and identically distributed inter-arrival times
and Sn the sequence of service times of successive customers, the stress is on the correlation,
that is, whether the correlation is positive, negative, or zero. A negative correlation indicates
that if the inter-arrival time An is large, the corresponding service time Sn turns out to be
comparatively small, and vice versa. In the positive correlation case, this indicates a “direct
proportion” between the two. In our model of interdependence, quick transitions in the
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arrival phases indicate faster arrival. Accordingly, the servers can accelerate their service
speed or, equivalently, their service rate. In the correlated arrival and service processes
indicated above, the n-th customer to arrive receives service at a future time after arrival, as
the server can be busy at the customer’s arrival epoch. While the situation in our model is
the same, the reflection of the interdependence of arrival and service is seen simultaneously.
This helps to accelerate or decelerate the rate of service provided by the servers. These
kinds of adjustments can be seen in the production process; if customers arrive at a fast
rate, the production needs to be adjusted to ensure that the queue size does not blow up.

In large airports, when non-domestic flights flights land the passengers are required to
proceed to the immigration section. A queue of such passengers is formed; at the head of
the queue, the person who manages the distribution of passengers directs them to different
immigration counters depending on the slots available at each counter. The processing
of each passenger passes through distinct stages in a forward direction. With only slight
modifications, the model discussed in the paper can be implemented to clear long queues
of passengers efficiently.

Another practical application of a two-server queueing model with interdependent
arrival and service processes can be found in scenarios involving distributed data process-
ing or computing. In such scenarios, data packets or tasks arrive at a network of servers,
and the rate of arrival and processing time can be influenced by the current state of the
servers in the network. The arrival rate of data packets may be influenced by the current
number of idle or busy servers. For example, if both servers are idle, the arrival rate may
increase, as more data processing capacity is available. Conversely, if both servers are busy,
the arrival rate might decrease as new data packets wait to be processed. In such a scenario,
the service rate for each server can depend on its current workload.

The salient features of the model discussed in this paper are as follows:

• We introduce a new approach to analysing two-server queueing systems with interde-
pendent arrival and service processes.

• The presented analysis does not involve the Kronecker product/sum, unlike the queue-
ing models with independent arrival and service processes analysed using matrix
geometric methods.

Notations and abbreviations used in this paper:

• CTMC: continuous-time Markov chain.
• LIQBD: level-independent quasi-birth and death.
• eee: column vector of 1s of appropriate order.
• QBD: quasi-birth and death.

The remainder of the paper is organized as follows: in Section 2, the model is math-
ematically formulated; in Section 3, we perform a steady-state analysis of the studied
queuing model after establishing the stability conditions of the system; in Section 4, perfor-
mance measures are computed and presented; finally, numerical illustrations of the two
models are discussed in Section 5.

2. Model Description and Mathematical Formulation

Consider a queueing system with two heterogeneous servers S1 and S2 in which the
arrival and service processes are interdependent. When a customer arrives with both
servers idle, server S1 provides service. When both servers are occupied, an arriving
customer joins an infinite capacity queue. When the system becomes empty, both servers
remain idle. The arrival process passes through several stages, including back and forth. An
arriving customer who finds a free server enters for service immediately. The service process
provided by server S1 has n1 stages, while that provided by server S2 has n2 stages. These
proceed in the forward direction. The arrival process has m stages. Three Markov chains
govern the arrival and service processes. Service provided by S1 is governed by the Markov
chain X = {Xn} and service provided by S2 is governed by the Markov chain Y = {Yn}.
The state space of the Markov chain {Xn} is {1, 2, 3, . . . , n1, n1 + 1}, while that of the
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Markov chain {Yn} is {1, 2, 3, . . . , n2, n2 + 1}. The arrival process is governed by a Markov
chain Z = {Zn} with state space {1, 2, 3, . . . , m, m + 1}. We can consider the Markov
chain on the product space S = X × Y × Z with state space {{1, 2, 3, . . . , n1, n1 + 1}×
{1, 2, 3, . . . , n2, n2 + 1} × {1, 2, 3, . . . , m, m + 1}}.

The absorbing states of this Markov chain are {(i, j, m + 1) : 1 ≤ i ≤ n1; 1 ≤ j ≤ n2}
⋃

{(i, n2 + 1, k) : 1 ≤ i ≤ n1; 1 ≤ k ≤ m}⋃{(n1 + 1, j, k) : 1 ≤ j ≤ n2; 1 ≤ k ≤ m}⋃{(n1 +
1, n2 + 1, k) : 1 ≤ k ≤ m}⋃{(n1 + 1, j, m + 1) : 1 ≤ j ≤ n2}

⋃{(i, n2 + 1, m + 1) : 1 ≤ i ≤ n1}⋃{(n1 + 1, n2 + 1, m+ 1)}. Changes in the first coordinate due to transitions indicate service
phase changes provided by server S1, those in the second coordinate indicate service phase
changes provided by server S2, and those in the third coordinate indicate arrival phase
changes. The transitions are interdependent in the sense that the sojourn time in any state
(i, j, k) depends on this state as well as the one (say, (i

′
, j
′
, k
′
)) to be visited next. This sojourn

time is assumed to be exponentially distributed with parameter δ(i,j,k)(i′ ,j′ ,k′ ). Because the
transitions are interdependent, within a short interval it is possible for none, one, two, or
even all coordinates to change with positive probability when a transition occurs. The state
space indicated above is for this general case; however, we assume here that at most one
change takes place with positive probability. This assumption leads to an infinitesimal
generator which is highly sparse. Let the initial probability vector of the arrival process
be ααα = (ααα, αm+1), where ααα = (α1, α2, α3, . . . αm). We can further simplify the assumption
that the service processes for both servers start from stage 1 and move in the forward
direction only, that is, the service processes are in the order 1→ 2→ 3→ 4 . . . n1 → n1 + 1
and 1 → 2 → 3 → 4 . . . n2 → n2 + 1, respectively. The initial probability vectors of the
service processes of both the servers are (1, 0, 0, . . .) n1 + 1 and n2 + 1 component vectors,
respectively. Further, to ensure that arrivals do not occur too quickly, we assume that
αm+1 = 0.

2.1. The QBD Process

The model described in Section 2 can be studied as a Level-Independent Quasi-Birth–
Death (LIQBD) process (see Latouche et al. [34]). First, we define the following notations.
At time t, let:

N(t) be the number of customers in the system.
S1(t) be the the phase of the service provided by server S1.
S2(t) be the phase of the service provided by server S2.
A(t) be the phase of arrival.

Here, {(N(t), S1(t), S2(t), A(t)) : t ≥ 0} is an LIQBD process with state space
Ω̃= {{(0, ∗, ∗, k) : 1 ≤ k ≤ m}⋃{(1, i, ∗, k) : 1 ≤ i ≤ n1; 1 ≤ k ≤ m}⋃{(1, ∗, j, k) : 1 ≤

j ≤ n2; 1 ≤ k ≤ m}⋃{(q, i, j, k) : 1 ≤ i ≤ n1; 1 ≤ j ≤ n2; 1 ≤ k ≤ m; q ≥ 2}}. In the absence
of customers, no service can be provided; this is indicated by the * in the position of the
service coordinates (the third and fourth coordinates of the 4-tuple). If only one customer is
in the system, either S1 or S2 is idle, when S2 is idle it is represented by (1, i, ∗, k) and when
S1 is idle it is represented by (1, ∗, j, k), where 1 ≤ i ≤ n1; 1 ≤ j ≤ n2; 1 ≤ k ≤ m.

2.2. Transitions

The transitions are described in Table 1.
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Table 1. Transition rates.

From To Rate Remarks

(0, ∗, ∗, k) (0, ∗, ∗, k
′
) δ(∗,∗,k)(∗,∗,k′ ) 1 ≤ k, k

′ ≤ m, arrival phase change

(0, ∗, ∗, k) (1, 1, ∗, k
′
) αk′ δ(∗,∗,k)(1,∗,m+1) 1 ≤ k, k

′ ≤ m arrival occurs

(1, i, ∗, k) (1, i, ∗, k
′
) δ(i,∗,k)(i,∗,k′ ) 1 ≤ k, k

′ ≤ m; 1 ≤ i ≤ n1 arrival phase change

(1, n1, ∗, k) (0, ∗, ∗, k) δ(n1,∗,k)(n1+1,∗,k) 1 ≤ k ≤ m service completion at S1

(1, i, ∗, k) (1, i + 1, ∗, k) δ(i,∗,k)(i+1,∗,k) 1 ≤ k ≤ m; 1 ≤ i ≤ n1 − 1 service phase change at S1

(1, i, ∗, k) (2, i, 1, k
′
) δ(i,∗,k)(i,1,m+1)αk′ 1 ≤ k, k

′ ≤ m, 1 ≤ i ≤ n1 arrival occurs

(1, ∗, j, k) (2, 1, j, k
′
) δ(∗,j,k)(1,j,m+1)αk′ 1 ≤ k, k

′ ≤ m, 1 ≤ j ≤ n2 arrival occurs

(1, ∗, j, k) (1, ∗, j + 1, k) δ(∗,j,k)(∗,j+1,k) 1 ≤ j ≤ n1 − 1; 1 ≤ k ≤ m; service phase change at S2

(1, ∗, j, k) (1, ∗, j, k
′
) δ(∗,j,k)(∗,j,k′ ) 1 ≤ j ≤ n2; 1 ≤ k, k

′ ≤ m arrival phase change

(1, ∗, n2, k) (0, ∗, ∗, k) δ(∗,n2,k)(∗,n2+1,k) 1 ≤ k ≤ m service completion at S2

(2, n1, j, k) (1, ∗, j, k) δ(n1,j,k)(n1+1,j,k) 1 ≤ j ≤ n2; 1 ≤ k ≤ m service completion at S1

(2, i, n2, k) (1, i, ∗, k) δ(i,n2,k)(i,n2+1,k) 1 ≤ i ≤ n1; 1 ≤ k ≤ m service completion at S2

(q, i, j, k) (q + 1, i, j, k
′
) αk′ δ(i,j,k)(i,j,m+1) 1 ≤ k, k

′ ≤ m; 1 ≤ i ≤ n1; 1 ≤ j ≤ n2; q ≥ 2 arrival occurs

(q, i, j, k) (q, i, j, k
′
) δ(i,j,k)(i,j,k′ ) 1 ≤ k, k

′ ≤ m; 1 ≤ i ≤ n1, 1 ≤ j ≤ n2; q ≥ 2 arrival phase change

(q, i, j, k) (q, i + 1, j, k) δ(i,j,k)(i+1,j,k) 1 ≤ k ≤ m; 1 ≤ i ≤ n1 − 1; 1 ≤ j ≤ n2; q ≥ 2 service phase change at S1

(q, i, j, k) (q, i, j + 1, k) δ(i,j,k)(i,j+1,k) 1 ≤ k ≤ m; 1 ≤ i ≤ n1; 1 ≤ j ≤ n2 − 1; q ≥ 2 service phase change at S2

(q, n1, j, k) (q− 1, 1, j, k) δ(n1,j,k)(n1+1,j,k) 1 ≤ k ≤ m; 1 ≤ j ≤ n2; q ≥ 3 service completion at S1

(q, i, n2, k) (q− 1, i, 1, k) δ(i,n2,k)(i,n2+1,k) 1 ≤ k ≤ m; 1 ≤ i ≤ n1; q ≥ 3 service completion at S2

The infinitesimal generator of the CTMC is

Q∗ =



B1 B0
B2 C1 C0

C2 A1 A0
A2 A1 A0

A2 A1 A0
. . . . . . . . .


.

Here, B1 is a square matrix of order m which contains the transition rates within level
0, B0 is a matrix of order m× (n1 + n2)m which contains transition rates from level 0 to
level 1, B2 is a matrix of order (n1 + n2)m×m which contains transition rates from level 1 to
level 0, C1 is a square matrix of order (n1 + n2)m which contains the transition rates within
the level 1, C0 is a matrix of order (n1 + n2)m× n1n2m which contains transition rates from
level 1 to level 2, C2 is a matrix of order n1n2m× (n1 + n2)m which contains transition rates
from level 2 to level 1, A0 represents transition rates from level n to level n + 1 for n ≥ 2,
A1 represents transition rates within the level n for n ≥ 2, and A2 represents transition
rates from the level n to level n− 1 for n ≥ 3. All of these are square matrices of order
n1n2m.

The matrix B1 is provided by
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b1 δ(∗,∗,1)(∗,∗,2) δ(∗,∗,1)(∗,∗,3) . . . . . . δ(∗,∗,1)(∗,∗,m)

δ(∗,∗,2)(∗,∗,1) b2 δ(∗,∗,2)(∗,∗,3) . . . . . . δ(∗,∗,2)(∗,∗,m)

δ(∗,∗,3)(∗,∗,1) δ(∗,∗,3)(∗,∗,2) b3 . . . . . . δ(∗,∗,3)(∗,∗,m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(∗,∗,m)(∗,∗,1) δ(∗,∗,m)(∗,∗,2) δ(∗,∗,m)(∗,∗,3) . . . . . . bm


,

which is a square matrix of order m where bi= −[
m
∑

j=1,j 6=i
δ(∗,∗,i)(∗,∗,j) + δ(∗,∗,i)(1,∗,m+1)]; 1 ≤

i ≤ m.
We define the matrix F as

α1δ(∗,∗,1)(1,∗,m+1) α2δ(∗,∗,1)(1,∗,m+1) α3δ(∗,∗,,1)(1,∗,m+1) . . . . . . αmδ(∗,∗,1)(1,∗,m+1)
α1δ(∗,∗,2)(1,∗,m+1) α2δ(∗,∗,2)(1,∗,m+1) α3δ(∗,∗,2)(1,∗,m+) . . . . . . αmδ(∗,∗,2)(1,∗,m+1)
α1δ(∗,∗,3)(1,∗,m+1) α2δ(∗,∗,3)(1,∗,m+1) α3δ(∗,∗,3)(1,∗,m+1) . . . . . . αmδ(∗,∗,3)(1,∗,m+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1δ(∗,∗,m)(1,∗,m+1) α2δ(∗,∗,m)(1,∗,m+1) α3δ(∗,∗,m)(1,∗,m+1) . . . . . . αmδ(∗,∗,m)(1,∗,m+1)


,

which is a square matrix of order m.
Then, B0 can be expressed as

[
F 000 000 . . . . . . 000

]
.

We write D1 as
δ(n1,∗,1)(n1+1,∗,1)

δ(n1,∗,2)(n1+1,∗,2)
δ(n1,∗,3)(n1+1,∗,3)

. . .
δ(n1,∗,m)(n1+1,∗,m)

,

which is a square matrix of order m.
We define the matrix D2 as

δ(∗,n2,1)(∗,n2+1,1)
δ(∗,n2,2)(∗,n2+1,2)

δ(∗,n2,3)(∗,n2+1,3)
. . .

δ(∗,n2,m)(∗,n2+1,m)

,

which is a square matrix of order m.

Then, B2 =



000
000
...

D1
000
000
...

D2


.
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We define

Ei



ei1 δ(i,∗,1)(i,∗,2) δ(i,∗,1)(i,∗,3) . . . δ(i,∗,1)(i,∗,m)

δ(i,∗,2)(i,∗,1) ei2 δ(i,∗,2)(i,∗,3) . . . δ(i,∗,2)(i,∗,m)

δ(i,∗,3)(i,∗,1) δ(i,∗,3)(i,∗,2) ei3 . . . δ(i,∗,3)(i,∗,m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(i,∗,m)(i,∗,1) δ(i,∗,m)(i,∗,2) δ(i,∗,m)(i,∗,3) . . . eim


which as a square matrix of order m, where

eiq = −[
m

∑
k=1,q 6=k

δ(i,∗,q)(i,∗,k) + δ(i,∗,q)(i,1,m+1) + δ(i,∗,q)(i+1,∗,q)]; 1 ≤ i ≤ n1, 1 ≤ q ≤ m;

Gi =


δ(i,∗,1)(i+1,∗,1)

δ(i,∗,2)(i+1,∗,2)
δ(i,∗,3)(i+1,∗,3)

. . .
δ(i,∗,m)(i+1,∗,m)


as a square matrix of order m with 1 ≤ i ≤ n1 − 1;

Hj =



hj1 δ(∗,j,1)(∗,j,2) δ(∗,j,1)(∗,j,3) . . . δ(∗,j,1)(∗,j,m)

δ(∗,j,2)(∗,j,1) hj2 δ(∗,j,2)(∗,j,3) . . . δ(∗,j,2)(∗,j,m)

δ(∗,j,3)(∗,j,1) δ(∗,j,3)(∗,j,2) hj3 . . . δ(∗,j,3)(∗,j,m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(∗,j,m)(∗,j,1) δ(∗,j,m)(∗,j,2) δ(∗,j,m)(∗,j,3) . . . hjm


as a square matrix of order m, where

hjp = −[
m

∑
p=1,p 6=k

δ(∗,j,p)(∗,j,k) + δ(∗,j,p)(∗,j,m+1) + δ(∗,j,p)(∗,j+1,p)]; 1 ≤ j ≤ n2, 1 ≤ k ≤ m,

and

Jj =


δ(∗,i,1)(∗,i+1,1)

δ(∗,i,2)(∗,i+1,2)
δ(∗,i,3)(∗,i+1,3)

. . .
δ(∗,i,m)(∗,i+1,m)


as a square matrix of order m with 1 ≤ j ≤ n2 − 1.

Using these, we can write
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C1 =



E1 G1
E2 G2

. . . . . .
En1−1 Gn1−1

En1 000 000
000 H1 J1

H2 J2
. . . . . .

Hn2−1 Jn2−1
Hn2



.

Let

Ki =



α1δ(i,∗,1)(i,1,m+1) α2δ(i,∗,1)(i,1,,m+1) α3δ(i,∗,1)(i,1,m+1) . . . . . . αmδ(i,∗,1)(i,1,m+1)
α1δ(i,∗,2)(i,1,m+1) α2δ(i,∗,2)(i,1,,m+1) α3δ(i,∗,2)(i,1,m+1) . . . . . . αmδ(i,∗,2)(i,1,m+1)
α1δ(i,∗,3)(i,1,m+1) α2δ(i,∗,3)(i,1,,m+1) α3δ(i,∗,3)(i,1,m+1) . . . . . . αmδ(i,∗,3)(i,1,m+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1δ(i,∗,m)(i,1,m+1) α2δ(i,∗,m)(i,1,m+1) α3δ(i,∗,m)(i,1,m+1) . . . . . . αmδ(i,∗,m)(i,1,m+1)


where i varies from 1 to n1. Ki is a square matrix of order m.

Let

Lj =



α1δ(∗,j,1)(1,j,m+1) α2δ(∗,j,1)(1,j,m+1) α3δ(∗,j,1)(1,j,m+1) . . . . . . αmδ(∗,j,1)(1,j,m+1)
α1δ(∗,j,2)(i,j,m+1) α2δ(∗,j,2)(1,j,,m+1) α3δ(∗,j,2)(1,j,m+1) . . . . . . αmδ(∗,j,2)(1,j,m+1)
α1δ(∗,j,3)(∗,j,m+1) α2δ(∗,j,3)(∗,j,m+1) α3δ(∗,j,3)(1,j,m+1) . . . . . . αmδ(∗,j,3)(1,j,m+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1δ(∗,j,m)(1,j,m+1) α2δ(∗,j,m)(1,j,m+1) α3δ(∗,j,m)(1,j,m+1) . . . . . . αmδ(∗,j,m)(1,j,m+1)


where j varies from 1 to n2. Lj is a square matrix of order m.

Ki =
[

Ki 000 000 . . . . . . 000
]

is a matrix of order m× n2m.

L =



L1 000 000 . . . . . . 000
000 L2 000 . . . . . . 000
000 000 L3 . . . . . . 000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
000 000 000 . . . . . . Ln2

 is a square matrix of order n2m.

With these notations, C0 takes the form

C0 =



K1 000 000 . . . . . . 000
000 K2 000 . . . . . . 000
000 000 K3 . . . . . . 000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
000 000 000 . . . . . . Kn1

L 000 000 . . . . . . 000


.
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Let

Mi =


δ(i,n2,1)(i,n2+1,1)

δ(i,n2,2)(i,n2+1,2)
δ(i,n2,3)(i,n2+1,3)

. . .
δ(i,n2,m)(i,n2+1,m)



be a square matrix of order m for 1 ≤ i ≤ n1. Furthermore, let Pi =


000
000
...

Mi

 be a matrix of

order n2m×m with 1 ≤ i ≤ n1.
We define

Qj =


δ(n1,j,1)(n1+1,j,1)

δ(n1,j,2)(n1+1,j,2)
δ(n1,j,3)(n1+1,j,3)

. . .
δ(n1,j,m)(n1+1,j,m)


as a square matrix of order m for 1 ≤ j ≤ n2.

V =



Q1 000 000 . . . . . . 000
000 Q2 000 . . . . . . 000
000 000 Q3 . . . . . . 000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
000 000 000 . . . . . . Qn2

 is a square matrix of order n2m.

Then,

C2 =



P1 000 000 000 000 . . . . . . 000 000
000 P2 000 000 000 . . . . . . 000 000
000 000 P3 000 000 . . . . . . 000 000

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
000 000 000 000 000 . . . . . . Pn1 V

.

We define

Sij =



Sij1 δ(i,j,1)(i,j,2) δ(i,j,1)(i,j,3) . . . . . . δ(i,j,1)(i,j,m)

δ(i,j,2)(i,j,1) Sij2 δ(i,j,2)(i,j,,3) . . . . . . δ(i,j,2)(i,j,,m)

δ(i,j,3)(i,j,1) δ(i,j,3)(i,j,2) Sij3 . . . . . . δ(i,j,3)(i,j,m)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
δ(i,j,m)(i,j,1) δ(i,j,,m)(i,j,2) δ(i,j,m)(i,j,3) . . . . . . Sijm


as a square matrix of order m with 1 ≤ j ≤ n2.

In the above, Sijh = −[
m+1
∑

k=1,h 6=k
δ(i,j,h)(i,j,k) + δ(i,j,h)(i,j+1,h) + δ(i,j,h)(i+1,j,h)] for 1 ≤ h ≤ m

with 1 ≤ j ≤ n2.
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Take

Tij =


δ(i,j,1)(i,j+1,1)

δ(i,j,2)(i,j+1,2)
δ(i,j,3)(i,j+1,3)

. . .
δ(i,j,m)(i,j+1,m)

,

which is a square matrix of order m with 1 ≤ j ≤ n2 − 1.

Let Ni =



Si1 Ti1
Si2 Ti2

Si3 Ti3
. . . . . .

Si(n2−1 Ti(n2−1)
Sin2


be a square matrix of

order mn2 with 1 ≤ i ≤ n1.

Let Uij =


δ(i,j,1)(i+1,j,1)

δ(i,j,2)(i+1,j,2)
δ(i,j,3)(i+1,j,3)

. . .
δ(i,j,m)(i+1,j,m)

 be a

square matrix of order m for 1 ≤ j ≤ n2.

Let Wi =



Ui1
Ui2

Ui3
. . . . . .

Ui(n2−1)
Uin2


be a square matrix of order

mn2 with 1 ≤ i ≤ n1 − 1.
Using the above notations, A1 can be written as

A1 =



N1 W1
N2 W2

N3 W3
. . . . . .

Nn1−1 Wn1−1
Nn1


.

Let Di =
[

Pi 000 000 . . . . . . 000
]

be a square matrix of order n2m for 1 ≤ i ≤ n1.
Using these, A2 can be expressed as

A2 =



D1
D2

D3
. . .

Dn1−1
V Dn1


.

We define Fij as follows:
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Fij =



α1δ(i,j,1)(i,j,m+1) α2δ(i,j,1)(i,j,m+1) α3δ(i,j,1)(i,j,m+1) . . . . . . αmδ(i,j,1)(i,j,m+1)
α1δ(i,j,2)(i,j,m+1) α2δ(i,j,2)(i,j,m+1) α3δ(i,j,2)(i,j,m+1) . . . . . . αmδ(i,j,2)(i,j,m+1)
α1δ(i,j,3)(i,j,m+1) α2δ(i,j,3)(i,j,m+1) α3δ(i,j,3)(i,j,m+1) . . . . . . αmδ(i,j,3)(i,j,m+1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
α1δ(i,j,m)(i,j,m+1) α2δ(i,j,m)(i,j,m+1) α3δ(i,j,m)(i,j,m+1) . . . . . . αmδ(i,j,m)(i,j,m+1)


where j varies from 1 to n2. Fij is a square matrix of order m.

Then, we can write

Gi =



Fi1
Fi2

Fi3
. . . . . .

Fin2−1
Fin2


,

which is a square matrix of order mn2 with 1 ≤ i ≤ n1.
These help us to represent A0 as follows:

A0 =



G1
G2
G3

. . .
Gn1−1

Gn1


.

Next, we proceed to compute the stability condition of the system and obtain the
system state probability vectors. From each of these vectors, the system occupying a
specific state can be computed.

3. Steady State Analysis

In this section, we perform steady-state analysis of the queueing model by initially
determining the stability condition of the system.

3.1. Stability Condition

The infinitesimal generator A = A0 +A1 +A2 is



G1 +N1 +D1 U1
G2 +N2 +D2 U2

G3 +N3 +D3 U3

. . .
. . .

Gn1−1 +Nn1−1 +Dn1−1 Un1 − 1
V Gn1 +Nn1 +Dn1 ,


which is a square matrix of order n1n2m

Let πππ = (πππ1, πππ2, πππ3, . . . . . . , πππn1) denote the steady-state probability vector of the
generator matrix A.

Here, πππ is of dimension 1× n1n2m and πππr is of dimension 1× n2m for r = 1, 2, . . . n1.
The steady state probability vector πππ satisfies the equations

πππA = 0, πππe = 1. (1)
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Using Equation (1), we obtain

πππ1[G1 +N1 +D1] +πππn1 V = 000 (2)

πππ1U1 +πππ2[G2 +N2 +D2] = 000 (3)

πππ2U2 +πππ3[G3 +N3 +D3] = 000 (4)

πππn1−1Un1−1 +πππn1 [Gn1 +Nn1 +Dn1 ] = 000 (5)

πππ1 × e +πππ2 × e + . . . . +πππn1 × e = 1. (6)

By solving the above system equations, we can find πππ1, πππ2, πππ3, . . . . . . πππn1 .
The LIQBD description of the model indicates that the queueing system is stable if
and only if the left drift exceeds the right drift (see Theorem 3.1.1 of Neuts [35]), that

is,
πππA0e < πππA2e, (7)

πππA0e = πππ1G1e +πππ2G2e +πππ3G3e + . . . +πππn1Gn1e =
n1

∑
i=1

πππiGie, (8)

πππA2e = πππ1D1e +πππ2D2e +πππ3D3e + . . . +πππn1Dn1e +πππn1 Ve =
n1

∑
i=1

πππiDie +πππn1 Ve. (9)

Theorem 1. The given system is stable if and only if

n1

∑
i=1

πππiGie <
n1

∑
i=1

πππiDie +πππn1 Ve. (10)

3.2. The Steady State Probability Vector of Q∗

Let xxx be the steady state probability vector of Q∗: xxx = (xxx0, xxx1, xxx2 . . .), where xxx0 is of
dimension 1×m, xxx1 is of dimension 1× (n1 + n2)m, and xxx2, xxx3, . . . xxxn1 are of dimension
1× n1n2m.

Under the stability condition, we have xixixi = xxx2Ri−2, i ≥ 3, where the matrix R is the
minimal nonnegative solution to the matrix quadratic equation

R2A2 + RA1 +A0 = 0

and the vectors xxx0, xxx1 and xxx2 are obtained by solving the equations

xxx0B1 + xxx1B2 = 0 (11)

xxx0B0 + xxx1C1 + x2x2x2C2 = 0 (12)

xxx1C0 + xxx2(A1 + RA2) = 0 (13)

subject to the normalizing condition

xxx0eee + xxx1eee + xxx2(I − R)−1eee = 1. (14)

Having obtained the system state probability vectors, we can now make use of them
to compute important performance measures.

4. Performance Measures

Formulae for key performance measures are derived.

• The probability that both of the servers are idle: pidle = xxx0e.
• The probability that only Server 1 (S1) is idle:

p1idle =
n2

∑
j=1

m

∑
k=1

xxx1∗jk
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• The probability that only Server 2 (S2) is idle:

p2idle =
n1

∑
i=1

m

∑
k=1

xxx1i∗k

• The probability that Server 1 is busy:

P1busy =
∞

∑
q=2

n1

∑
i=1

n2

∑
j=1

m

∑
k=1

xxxqijk +
n1

∑
i=1

m

∑
k=1

xxx1i∗k

• The probability that Server 2 is busy:

P2busy =
∞

∑
q=2

n1

∑
i=1

n2

∑
j=1

m

∑
k=1

xxxqijk +
n2

∑
j=1

m

∑
k=1

xxx1∗jk

• The probability that both the servers are busy:

Pbusy =
∞

∑
q=2

n1

∑
i=1

n2

∑
j=1

m

∑
k=1

xxxqijk

• The probability of q customers being in the system: Pq = xxxqe.
• The expected number of customers in the system:

ECS =
∞

∑
q=1

qxxxqe

• The expected number of customers in the queue:

ECQ =
∞

∑
q=2

(q− 2)xxxqe

5. Numerical Illustration

In this section, we provide four numerical illustrations of our model.
We take n1 = 2, n2 = 3, and m = 2. The state space of the arrival process is 1, 2, 3,

where the transient states are 1,2 and the absorbing state is 3. The state space of the service
process provided by server 1 (S1) is {1, 2, 3}, where the transient states are 1,2 and the
absorbing state is 3. The state space of the service process provided by server 2 (S2) is
{1, 2, 3, 4}, where the transient states are 1,2,3 and the absorbing state is 4. Then, the
state space of the Markov chain X = {(i, j, k) : 1 ≤ i ≤ 3; 1 ≤ j ≤ 4; 1 ≤ k ≤ 3}. The
absorbing states of X are: {{(i, j, 3) : 1 ≤ i ≤ 3; 1 ≤ j ≤ 4}⋃{(i, 4, k) : 1 ≤ i ≤ 3; 1 ≤
k ≤ 3}⋃{(3, j, k) : 1 ≤ j ≤ 4; 1 ≤ k ≤ 3}}⋃{(3, 4, k) : 1 ≤ k ≤ 3}⋃{(3, j, 3) : 1 ≤ j ≤
4}⋃{(i, 4, 3) : 1 ≤ i ≤ 3}⋃{(3, 4, 3)}.

We assume that at most one coordinate change in a transition has a positive probability.
In the absence of customers, no service can be provided, as indicated by a * symbol in the
position of the service coordinates. Here, ααα = (0.7, 0.3), αm+1 = 0. The case of more than
one coordinate change in a single transition (only up to three being possible in the present
case, as we have the service stages provided by each server as first two coordinates and the
changes in the arrival phases as the last coordinate) can be considered in a similar fashion.
Consequently, we obtain a much less sparse transition rate matrix.

5.1. Illustration 1

The transition rates are taken as shown in Tables 2 and 3.
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Table 2. Transition rates.

(2
,1

,1
)

(2
,1

,2
)

(2
,2

,1
)

(2
,2

,2
)

(2
,3

,1
)

(2
,3

,2
)

(2
,1

,3
)

(2
,2

,3
)

(2
,3

,3
)

(2
,4

,1
)

(2
,4

,2
)

(3
,1

,1
)

(3
,1

,2
)

(3
,2

,1
)

(3
,2

,2
)

(3
,3

,1
)

(3
,3

,2
)

(1, 1, 1) 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 1, 2) 0 3.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 1) 0 0 3.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 2) 0 0 0 2.3 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 1) 0 0 0 0 2.8 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 2) 0 0 0 0 0 2.3 0 0 0 0 0 0 0 0 0 0 0

(2, 1, 1) −10.7 3.1 2.8 0 0 0 1.7 0 0 0 0 3.1 0 0 0 0 0

(2, 1, 2) 2.6 −12.3 0 3.1 0 0 3.1 0 0 0 0 0 3.5 0 0 0 0

(2, 2, 1) 0 0 −13.1 2.4 3.8 0 0 3.2 0 0 0 0 0 3.7 0 0 0

(2, 2, 2) 0 0 2.7 −11.1 0 2.2 0 3.1 0 0 0 0 0 0 3.1 0 0

(2, 3, 1) 0 0 0 0 −9.5 1.1 0 0 2.6 3 0 0 0 0 0 2.8 0

(2, 3, 2) 0 0 0 0 1.9 −12.1 0 0 2.5 0 4.2 0 0 0 0 0 3.5

Using the transition rates shown in Tables 2 and 3, we obtain the values of the perfor-
mance measures as follows.

Pidle = 0.0134

P1idle = 0.0420

P2idle = 0.0365

P1busy = 0.9445

P2busy = 0.9501

Pbusy = 0.9081

ECS = 10.7079

ECQ = 8.8133

5.2. Illustration 2

The transition rates are taken as shown in Tables 4 and 5.
Using the transition rates shown in Tables 4 and 5, we obtain the values of the perfor-

mance measures are as follows.

Pidle = 0.0040

P1idle = 0.0122

P2idle = 0.0113

P1busy = 0.9838

P2busy = 0.9847

Pbusy = 0.9725

ECS = 40.4592

ECQ = 38.4907

5.3. Illustration 3

The transition Rates are taken as shown in Tables 6 and 7.
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Table 3. Transitions rates.
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(∗
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(1
,1

,3
)

(1
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(1
,3

,3
)

(2
,1

,3
)

(∗, ∗, 1) −4.5 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.2 0 0 0 0 0 0 0 0

(∗, ∗, 2) 2.4 −5.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 0 0 0 0 0 0 0 0

(1, ∗, 1) 0 0 −8.1 3.2 3.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0 0 0

(1, ∗, 2) 0 0 2.4 −6.7 0 2.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0

(2, ∗, 1) 0 0 0 0 −6.5 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 0 0 0 0 0 0 2.2

(2, ∗, 2) 0 0 0 0 2.1 −5.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 0 0 0 1.9

(∗, 1, 1) 0 0 0 0 0 0 −6.2 1.7 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 0

(∗, 1, 2) 0 0 0 0 0 0 2.2 −6.4 0 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0 0 0

(∗, 2, 1) 0 0 0 0 0 0 0 0 −6.1 2.4 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0

(∗, 2, 2) 0 0 0 0 0 0 0 0 2.9 −8 0 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0

(∗, 3, 1) 0 0 0 0 0 0 0 0 0 0 −6.7 2.2 0 0 0 0 0 0 0 0 0 0 0 2.1 0 0 0 2.4 0

(∗, 3, 2) 0 0 0 0 0 0 0 0 0 0 2.1 −8.5 0 0 0 0 0 0 0 0 0 0 0 0 3.8 0 0 2.6 0

(1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0 −11.2 3 2.6 0 0 0 0 0 0 0 0 0 0 2.6 0 0 0

(1, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 2.8 −11.7 0 2.7 0 0 0 0 0 0 0 0 0 3.1 0 0 0

(1, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8.9 1.5 2.2 0 0 0 0 0 0 0 0 0 2.1 0 0

(1, 2, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.2 −10 0 2.5 0 0 0 0 0 0 0 0 2 0 0

(1, 3, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −10.7 1.9 4.2 0 0 0 0 0 0 0 0 1.8 0

(1, 3, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 −11.4 0 3.4 0 0 0 0 0 0 0 3.2 0
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Table 4. Transition rates.
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(3
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(3
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)

(3
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,1
)

(3
,3

,2
)

(1, 1, 1) 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 1, 2) 0 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 1) 0 0 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 2) 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 1) 0 0 0 0 2.7 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 2) 0 0 0 0 0 2.6 0 0 0 0 0 0 0 0 0 0 0

(2, 1, 1) −11.1 3.5 2.6 0 0 0 1.8 0 0 0 0 3.2 0 0 0 0 0

(2, 1, 2) 2.4 −11.9 0 3.3 0 0 3 0 0 0 0 0 3.2 0 0 0 0

(2, 2, 1) 0 0 −13.2 2.6 3.2 0 0 3.5 0 0 0 0 0 3.9 0 0 0

(2, 2, 2) 0 0 2.5 −12.8 0 3.4 0 3.5 0 0 0 0 0 0 3.4 0 0

(2, 3, 1) 0 0 0 0 −9.3 1 0 0 2.9 3.1 0 0 0 0 0 2.3 0

(2, 3, 2) 0 0 0 0 1.5 −12.3 0 0 2.2 0 4.9 0 0 0 0 0 3.7

Using the transition rates shown in Tables 6 and 7, we obtain the values of the perfor-
mance measures as follows.

Pidle = 0.0023

P1idle = 0.0064

P2idle = 0.0059

P1busy = 0.9913

P2busy = 0.9918

Pbusy = 0.9854

ECS = 78.0583

ECQ = 76.0752

5.4. Illustration 4

The transition rates are taken as shown in Tables 8 and 9.
Using the transition rates shown in Tables 8 and 9, we obtain the values of the perfor-

mance measures as follows.

Pidle = 0.0020

P1idle = 0.0055

P2idle = 0.0051

P1busy = 0.9925

P2busy = 0.9929

Pbusy = 0.9874

ECS = 89.0997

ECQ = 87.1143

From the above numerical illustrations, it can be concluded that when the transition
rates increase, the values of ECS, ECQ, P1busy, P2busy, and Pbusy increase, while the values
of Pidle, P1idle, and P2idle decrease as the transition rates increases.
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Table 5. Transition rates.
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,3
)

(1
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)

(1
,3

,3
)

(2
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,3
)

(∗, ∗, 1) −4.6 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.1 0 0 0 0 0 0 0 0

(∗, ∗, 2) 2 −4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0

(1, ∗, 1) 0 0 −8.9 3.6 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 0

(1, ∗, 2) 0 0 2.9 −7.3 0 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 0

(2, ∗, 1) 0 0 0 0 −6.1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2.1

(2, ∗, 2) 0 0 0 0 2.8 −5.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 0 0 0 1.6

(∗, 1, 1) 0 0 0 0 0 0 −6.1 1.9 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1 0 0 0

(∗, 1, 2) 0 0 0 0 0 0 2.7 −6.8 0 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.5 0 0 0

(∗, 2, 1) 0 0 0 0 0 0 0 0 −6.2 2.5 2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.4 0 0

(∗, 2, 2) 0 0 0 0 0 0 0 0 2.7 −7.4 0 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1 0 0

(∗, 3, 1) 0 0 0 0 0 0 0 0 0 0 −7 2.4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2.6 0

(∗, 3, 2) 0 0 0 0 0 0 0 0 0 0 1.9 −8.6 0 0 0 0 0 0 0 0 0 0 0 0 3.9 0 0 2.8 0

(1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0 −10.2 3.1 2.3 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0

(1, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 2.5 −11.1 0 2.9 0 0 0 0 0 0 0 0 0 2.5 0 0 0

(1, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −10.5 1.7 3.2 0 0 0 0 0 0 0 0 0 2.3 0 0

(1, 2, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 −8.5 0 2.1 0 0 0 0 0 0 0 0 1.7 0 0

(1, 3, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12.1 2.1 4.5 0 0 0 0 0 0 0 0 2.8 0

(1, 3, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.8 −11.6 0 3.2 0 0 0 0 0 0 0 3 0
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Table 6. Transition rates.
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(1, 1, 1) 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 1, 2) 0 3.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 1) 0 0 3.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 2) 0 0 0 2.7 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 1) 0 0 0 0 2.9 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 2) 0 0 0 0 0 2.9 0 0 0 0 0 0 0 0 0 0 0

(2, 1, 1) −12.2 3.8 2.9 0 0 0 2.1 0 0 0 0 3.4 0 0 0 0 0

(2, 1, 2) 2.7 −12.8 0 3.3 0 0 3.2 0 0 0 0 0 3.6 0 0 0 0

(2, 2, 1) 0 0 −15.4 2.9 3.8 0 0 3.8 0 0 0 0 0 4.9 0 0 0

(2, 2, 2) 0 0 2.8 −12.6 0 3 0 3.6 0 0 0 0 0 0 3.2 0 0

(2, 3, 1) 0 0 0 0 −11.2 1.3 0 0 3.1 3.9 0 0 0 0 0 2.9 0

(2, 3, 2) 0 0 0 0 2 −13.9 0 0 2.6 0 5.4 0 0 0 0 0 3.9
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Table 7. Transitions rates.
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(∗, ∗, 1) −5.1 1.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.3 0 0 0 0 0 0 0 0

(∗, ∗, 2) 2.4 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.6 0 0 0 0 0 0 0 0

(1, ∗, 1) 0 0 −9.2 3.8 3.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 0

(1, ∗, 2) 0 0 3.1 −7.9 0 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0

(2, ∗, 1) 0 0 0 0 −8 2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.5 0 0 0 0 0 0 2.2

(2, ∗, 2) 0 0 0 0 3 −6.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.9 0 0 0 0 0 1.7

(∗, 1, 1) 0 0 0 0 0 0 −6.8 2.2 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0 0

(∗, 1, 2) 0 0 0 0 0 0 2.9 −7.2 0 2.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0 0

(∗, 2, 1) 0 0 0 0 0 0 0 0 −6.6 2.6 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6 0 0

(∗, 2, 2) 0 0 0 0 0 0 0 0 2.9 −7.9 0 2.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0

(∗, 3, 1) 0 0 0 0 0 0 0 0 0 0 −7.7 2.6 0 0 0 0 0 0 0 0 0 0 0 2.2 0 0 0 2.9 0

(∗, 3, 2) 0 0 0 0 0 0 0 0 0 0 2.2 −9.4 0 0 0 0 0 0 0 0 0 0 0 0 4.1 0 0 3.1 0

(1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0 −10.7 3.4 2.4 0 0 0 0 0 0 0 0 0 0 1.7 0 0 0

(1, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 2.7 −12.3 0 3.1 0 0 0 0 0 0 0 0 0 2.8 0 0 0

(1, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −11.6 1.9 3.4 0 0 0 0 0 0 0 0 0 2.8 0 0

(1, 2, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.5 −9.5 0 2.4 0 0 0 0 0 0 0 0 1.9 0 0

(1, 3, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −13.1 2.4 4.7 0 0 0 0 0 0 0 0 3.1 0

(1, 3, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 −12.7 0 3.5 0 0 0 0 0 0 0 3.3 0
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Table 8. Transition rates.
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(1, 1, 1) 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 1, 2) 0 3.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 1) 0 0 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 2, 2) 0 0 0 2.8 0 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 1) 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

(1, 3, 2) 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

(2, 1, 1) −12.6 3.9 3 0 0 0 2.2 0 0 0 0 3.5 0 0 0 0 0

(2, 1, 2) 2.8 −13.2 0 3.4 0 0 3.3 0 0 0 0 0 3.7 0 0 0 0

(2, 2, 1) 0 0 −15.8 3 3.9 0 0 3.9 0 0 0 0 0 5 0 0 0

(2, 2, 2) 0 0 3 −13.4 0 3.2 0 3.8 0 0 0 0 0 0 3.4 0 0

(2, 3, 1) 0 0 0 0 −12.1 1.4 0 0 3.2 4.5 0 0 0 0 0 3 0

(2, 3, 2) 0 0 0 0 2.1 −14.7 0 0 2.7 0 5.9 0 0 0 0 0 4
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Table 9. Transitions rates.
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(∗, ∗, 1) −5.3 1.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.4 0 0 0 0 0 0 0 0

(∗, ∗, 2) 2.5 −5.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.7 0 0 0 0 0 0 0 0

(1, ∗, 1) 0 0 −9.5 3.9 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

(1, ∗, 2) 0 0 3.2 −8.2 0 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 0 0 0

(2, ∗, 1) 0 0 0 0 −8.3 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.6 0 0 0 0 0 0 2.3

(2, ∗, 2) 0 0 0 0 3.1 −6.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1.8

(∗, 1, 1) 0 0 0 0 0 0 −7.1 2.3 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.3 0 0 0

(∗, 1, 2) 0 0 0 0 0 0 3 −7.5 0 2.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 0 0 0

(∗, 2, 1) 0 0 0 0 0 0 0 0 −6.9 2.7 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 0 0

(∗, 2, 2) 0 0 0 0 0 0 0 0 3 −8.2 0 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.3 0 0

(∗, 3, 1) 0 0 0 0 0 0 0 0 0 0 −8 2.7 0 0 0 0 0 0 0 0 0 0 0 2.3 0 0 0 3 0

(∗, 3, 2) 0 0 0 0 0 0 0 0 0 0 2.3 −9.7 0 0 0 0 0 0 0 0 0 0 0 0 4.2 0 0 3.2 0

(1, 1, 1) 0 0 0 0 0 0 0 0 0 0 0 0 −11.1 3.5 2.5 0 0 0 0 0 0 0 0 0 0 1.8 0 0 0

(1, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 2.8 −12.7 0 3.2 0 0 0 0 0 0 0 0 0 2.9 0 0 0

(1, 2, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −12 2 3.5 0 0 0 0 0 0 0 0 0 2.9 0 0

(1, 2, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.6 −9.9 0 2.5 0 0 0 0 0 0 0 0 2 0 0

(1, 3, 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −13.5 2.5 4.8 0 0 0 0 0 0 0 0 3.2 0

(1, 3, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.1 −13.1 0 3.6 0 0 0 0 0 0 0 3.4 0
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6. Conclusions

In this paper, we have analysed a queuing system in which the arrival process and
services handled by two servers are interdependent. The evolution of these processes is
governed by transitions occurring in the product space of three Markov chains according
to a semi-Markov rule, with sojourn times in states following the exponential distribu-
tion. Using the matrix geometric method, we have analysed the model and computed
various performance measures. Additionally, we have included numerical illustrations of
the model.

We propose extending the model presented here to a more general case. In this paper,
we have assumed that upon the arrival of a customer in the system, the starting phase of
the next arrival is chosen according to the initial probability vector. It is possible to extend
this to the case in which the next arrival phase is the phase in which transition occurs
consequent to the arrival of the customer.

In this paper, we have discussed service by both servers in stages while moving in
the forward direction. This could be extended to the case in which the service processes
are in stages and can make several forward and backward jumps. In addition, it would
interesting to study how the system evolves with a larger number of servers. In future work,
we propose analysing a PH/two-server interdependent service model and an MAP/two-
server interdependent service model and comparing them numerically.

Author Contributions: Conceptualization, S.S. and A.K.; methodology, S.S. and A.K.; validation, S.S.
and A.K.; formal analysis, A.K.; writing—original draft preparation, S.S. and A.K.; writing—review
and editing, S.S., A.K. and D.K.; supervision, A.K.; project administration, A.K.; funding acquisition,
D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This paper has been supported by the RUDN University Strategic Academic Leadership
Program (recipient D.K., funding acquisition; writing—original draft preparation). The reported
study was funded by Russian Science Foundation, project number 22-49-02023 (recipient D.K.,
writing—review and editing).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No publicly available database is used in this paper. So there is no
link available. The given numerical works are based on parameter values which do not breach the
stability condition.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analysis, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.

References
1. Mitchell, C.R.; Paulson, A.S. M/M/1 queues with interdependent arrival and service processes. Nav. Res. Logist. Q. 1979, 26,

47–56. [CrossRef]
2. Courtois, P.J.; Georges, J. On a single-server finite queuing model with state-dependent arrival and service processes. Oper. Res.

1971, 19, 424–435. [CrossRef]
3. Sengupta, B. The semi-Markovian queue: Theory and applications. Stoch. Model. 1990, 6, 383–413. [CrossRef]
4. Boxma, O.J.; Perry, D. A queueing model with dependence between service and interarrival times. Eur. J. Oper. Res. 2001, 128,

611–624. [CrossRef]
5. Müller, A. On the waiting times in queues with dependency between interarrival and service times. Oper. Res. Lett. 2000, 26,

43–47. [CrossRef]
6. Vlasiou, M.; Adan, I.J.; Boxma, O.J. A two-station queue with dependent preparation and service times. Eur. J. Oper. Res. 2009,

195, 104–116. [CrossRef]
7. Adan, I.J.B.F.; Kulkarni, V.G. Single-server queue with Markov-dependent inter-arrival and service times. Queueing Syst. 2003, 45,

113–134. [CrossRef]
8. Iyer, S.K.; Manjunath, D. Queues with dependency between interarrival and service times using mixtures of bivariates. Stoch.

Model. 2006, 22, 3–20. [CrossRef]

http://doi.org/10.1002/nav.3800260106
http://dx.doi.org/10.1287/opre.19.2.424
http://dx.doi.org/10.1080/15326349908807154
http://dx.doi.org/10.1016/S0377-2217(99)00396-3
http://dx.doi.org/10.1016/S0167-6377(99)00060-7
http://dx.doi.org/10.1016/j.ejor.2008.01.027
http://dx.doi.org/10.1023/A:1026093622185
http://dx.doi.org/10.1080/15326340500294561


Mathematics 2023, 11, 4692 25 of 25

9. Buchholz, P.; Kriege, J. Fitting correlated arrival and service times and related queueing performance. Queueing Syst. 2017, 85,
337–359. [CrossRef]

10. Kim, B.; Kim, J. The waiting time distribution for a correlated queue with exponential interarrival and service times. Oper. Res.
Lett. 2018, 46, 268–271. [CrossRef]

11. Krishnamoorthy, A.; Joshua, A.N. A BMAP/BMSP/1 queue with Markov dependent arrival and Markov dependent service
batches. J. Ind. Manag. Optim. 2021, 17, 2925–2941. [CrossRef]

12. Dai, W.; Hu, J.Q. Correlated queues with service times depending on inter-arrival times. Queueing Syst. 2022, 100, 41–60. .
[CrossRef]

13. Moiseev, A.; Shklennik, M.; Polin, E. Infinite-server queueing tandem with Markovian arrival process and service depending on
its state. Ann. Oper. Res. 2023, 326, 261–269. [CrossRef]

14. Kleinrock, L. Queueing Systems: Theory; John Wiley: Hoboken, NJ, USA, 1975; Volume 1.
15. Cohen, J.W. Batch arrivals in queueing systems. Queueing Syst. 1982, 1, 25–52.
16. Neuts, M.F.; Takahashi, Y. Asymptotic Behavior of the Stationary Distributions in the GI/PH/c Queue with Heterogeneous Servers; Applied

Mathematics Institute Technical Report; University of Delaware: Newark, NJ, USA, 1980; Volume 57B, 30p.
17. Kumar, B.K.; Madheswari, S.P. An M/M/2 queueing system with heterogeneous servers and multiple vacations. Math. Comput.

Model. 2005, 41, 1415–1429. [CrossRef]
18. Krishnamoorthy, A.; Divya, V. A Two-Server Queueing System with Processing of Service Items by a Server. In Applied Probability

and Stochastic Processes; Springer Nature: Singapore, 2020; pp. 307–333.
19. Ayyappan, G.; Archana, G. Analysis of MAP/PH1, PH2/2 Queueing Model with Working Breakdown, Repairs, Optional Service,

and Balking. Appl. Appl. Math. Int. J. (AAM) 2023, 18, 1.
20. Bouchentouf, A.A.; Messabihi, A. Heterogeneous two-server queueing system with reverse balking and reneging. Opsearch 2018,

55, 251–267. [CrossRef]
21. Klimenok, V.; Dudin, A.; Vishnevsky, V. Priority multi-server queueing system with heterogeneous customers. Mathematics 2020,

8, 1501. [CrossRef]
22. Krishnamoorthy, A.; Sreenivasan, C. An M/M/2 queueing system with heterogeneous servers including one with working

vacation. Int. J. Stoch. Anal. 2012, 2012, 145867. [CrossRef]
23. Lin, B.; Lin, Y.; Bhatnagar, R. Optimal policy for controlling two-server queueing systems with jockeying. J. Syst. Eng. Electron.

2022, 33, 144–155. [CrossRef]
24. Samouylov, K.; Dudina, O.; Dudin, A. Analysis of Multi-Server Queueing System with Flexible Priorities. Mathematics 2023, 11, 1040.

[CrossRef]
25. Saravanan, V.; Poongothai, V.; Godhandaraman, P. Admission control policy of a two heterogeneous server finite capacity retrial

queueing system with maintenance activity. OPSEARCH 2023, 1–24. . [CrossRef]
26. Tian, N.; Zhang, Z.G. A two threshold vacation policy in multiserver queueing systems. Eur. J. Oper. Res. 2006, 168, 153–163.

[CrossRef]
27. Yue, D.; Yue, W.; Yu, J.; Tian, R. A heterogeneous two-server queuing system with balking and server breakdowns. In Proceedings

of the Eight International Symposium on Operations Research and its Applications (ISORA’09), Zhangjiajie, China, 20–22
September 2009.

28. Zhao, C.; Wang, Z. The impact of line-sitting on a two-server queueing system. Eur. J. Oper. Res. 2023, 308, 782–800. [CrossRef]
29. Krishnamoorthy, A. Analysis of Interdependent Processes: A Semi-Markov Approach. Bull. Kerala Math. Assoc. 2020, 17, 49–68.
30. Krishnamoorthy, A. Analysis of Reliability of Interdependent Serial, Parallel and The General k-out-of-n: G System: A New

Approach. J. Indian Soc. Probab. Stat. 2022, 483–496. [CrossRef]
31. Sindhu, S.; Krishnamoorthy, A.; Kozyrev, D. On Queues with Working Vacation and Interdependence between Arrival and

Service Processes. Mathematics 2023, 11, 2280. [CrossRef]
32. Sengupta, B. Markov processes whose steady state distribution is matrix-exponential with an application to the GI/PH/1 queue.

Adv. Appl. Probab. 1989, 21, 159–180. [CrossRef]
33. Van Houdt, B. A matrix geometric representation for the queue length distribution of multitype semi-Markovian queues. Perform.

Eval. 2012, 69, 299–314. [CrossRef]
34. Latouche, G.; Ramaswami, V. Introduction to Matrix Analytic Methods in Stochastic Modeling; Society for Industrial and Applied

Mathematics: Philadelphia, PA, USA, 1999.
35. Neuts, M.F. Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach; Courier Corporation: Chelmsford, MA, USA, 1994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11134-017-9514-5
http://dx.doi.org/10.1016/j.orl.2018.02.001
http://dx.doi.org/10.3934/jimo.2020101
.
http://dx.doi.org/10.1007/s11134-021-09718-7
http://dx.doi.org/10.1007/s10479-023-05318-1
http://dx.doi.org/10.1016/j.mcm.2005.02.002
http://dx.doi.org/10.1007/s12597-017-0319-4
http://dx.doi.org/10.3390/math8091501
http://dx.doi.org/10.1155/2012/145867
http://dx.doi.org/10.23919/JSEE.2022.000015
http://dx.doi.org/10.3390/math11041040
.
http://dx.doi.org/10.1007/s12597-023-00669-6
http://dx.doi.org/10.1016/j.ejor.2004.01.053
http://dx.doi.org/10.1016/j.ejor.2022.12.016
http://dx.doi.org/10.1007/s41096-022-00133-6
http://dx.doi.org/10.3390/math11102280
http://dx.doi.org/10.2307/1427202
http://dx.doi.org/10.1016/j.peva.2012.01.001

	Introduction
	Literature Review of Queues with Interdependence in Arrival and Service Processes
	Literature Review of Queues with Multiservers
	Motivation
	Practical Applications

	Model Description and Mathematical Formulation 
	The QBD Process
	Transitions

	Steady State Analysis 
	Stability Condition
	The Steady State Probability Vector of  Q*

	Performance Measures
	Numerical Illustration
	Illustration 1 
	Illustration 2 
	Illustration 3 
	Illustration 4 

	Conclusions
	References

