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Partial differential equations of the first order, arising in applied problems of optics
and optoelectronics, often contain coefficients that are not defined by a single analyt-
ical expression in the entire considered domain. For example, the eikonal equation
contains the refractive index, which is described by various expressions depending on
the optical properties of the media that fill the domain under consideration. This
type of equations cannot be analysed by standard tools built into modern computer
algebra systems, including Maple.
The paper deals with the adaptation of the classical Cauchy method of integrating

partial differential equations of the first order to the case when the coefficients of the
equation are given by various analytical expressions in the subdomains G1, . . . , Gk,
into which the considered domain is divided. In this case, it is assumed that these
subdomains are specified by inequalities. This integration method is implemented
as a Python program using the SymPy library. The characteristics are calculated
numerically using the Runge–Kutta method, but taking into account the change in
the expressions for the coefficients of the equation when passing from one subdomain
to another. The main functions of the program are described, including those that
can be used to illustrate the Cauchy method. The verification was carried out by
comparison with the results obtained in the Maple computer algebra system.
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Introduction

Partial differential equations (PDE) of the first order arise in many applied
problems. The specificity of the problems in optics and optoelectronics is
that the coefficients of these equations are not defined by a single analytical
expression in the entire considered domain. Thus, for example, the eikonal
equation is a nonlinear first-order PDE, one of whose coefficients is the
refractive index, which is described by various expressions depending on the
optical properties of the media filling the considered domain [1]. The same
applies to the differential equations used to calculate the wave fronts and
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amplitudes in wave optics [2] or in the framework of the adiabatic waveguide
method (AWM) proposed by A.A. Egorov and L.A. Sevastyanov [3–5].
The standard method for integrating nonlinear PDE is the characteristic

method [6, 7], proposed in the 19th century by Cauchy. This method is
implemented in many computer algebra systems (CAS), including Maple [8].
Although the formulation of the Cauchy method as such does not imply this,
in all these implementations, the coefficients of the PDE are assumed to
be given by unique analytical expressions throughout the entire considered
domain. Therefore, to solve optical problems, it is necessary to develop
new software capable of integrating first-order PDEs in the case when the
coefficients of the equation are given by different analytical expressions in the
subdomains G1, . . . , Gk, into which the considered domain is divided.
This paper provides a mathematical description of this class of differential

equations, offers the adaptation of the Cauchy integration method to this
class of equations and its implementation as a Python program using the
library SymPy [9].

1. Piecewise elementary partial differential equations

We restrict our consideration to some domain G in the space Rn. We say
that this domain is divided into subdomains G1, . . . , Gk if two conditions are
met:

1) the intersection of any pair of subdomains is empty, that is, Gi ∩Gj = ∅
(i 6= j),

2) the closure of the union of these domains gives the closure of G, i.e.,

G = ∪Gi.

We call such a partition elementary, if for any i = 1, . . . , k we can specify
an elementary expression gi such that

Gi = {x ∈ G : gi(x) < 0} .

The function f with the domain of definition G will be called given piecewise
elementary if an elementary partition of the domain G into several subdomains
is specified, and in each of these domains an elementary expression is given
for f , i.e., an elementary partition G1, . . . , Gk of the domain G and such
elementary functions f1, . . . , fk exist such that

f |Gi
= f ∀i = 1, . . . , k.

Now let x, y, z, p, q be five independent variables whose set of real values
will be interpreted as a point in R5. Let f be a piecewise elementary function
defined in some domain G of this five-dimensional space. Then the expression

F (x, y, z, p, q) = 0, (1)

where

p =
∂z

∂x
, q =

∂z

∂y
,
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is a partial differential equation of the 1st order. We will refer to this kind of
PDE as piecewise elementary.
The algorithm for integrating a first-order PDE is not related in any way

with the form for specifying the differential equation and consists in finding
the characteristics [6, 7]. Recall that characteristics are curves in the five-
dimensional space xyzpq, which are integral curves for the characteristic
system of ordinary differential equations (ODE) for characteristics, which
is composed based on the given function F using arithmetic operations and
differentiation:

dx

Fp

=
dy

Fq

=
dz

p · Fp + q · Fq

=
−dp

Fx + p · Fz

=
−dq

Fy + q · Fz

, (2)

where

Fx =
∂F

∂x
, Fy =

∂F

∂y
, Fz =

∂F

∂z
, Fp =

∂F

∂p
, Fq =

∂F

∂q
.

According to the well-known Cauchy theorem, a characteristic that inter-
sects the plot of the solution of the equation (1) cannot leave this surface.

The 19th century authors integrated the ODE system (2) and using well-
known integrals reconstructed the solution of PDE (1). Of course, the class
of ODEs that are integrable in a symbolic form is very small [10], therefore,
in modern CAS this system is solved numerically, thus combining numerical
and analytical methods for integrating the PDE (1).
This technique can be described as follows. Let us know the curve C

through which the desired solution of (1) should pass, and the value of p and
q on the curve, or, equivalently, the curve in the space xyzpq, through which
the manifold

z = f(x, y), p =
∂f

∂x
(x, y), q =

∂f

∂y
(x, y)

generated by the solution z = f(x, y) of the considered PDE should pass.
Then the desired solution of PDE is woven from the characteristics released
from this curve. Replace the curve C with a broken line and from each
of its vertices let out an integral curve, solving the initial problem for the
characteristic system of ODE numerically, for example, according to the
Runge–Kutta method. In this case, we will use the coordinates x, y, z of
the vertex and the corresponding values of p and q as the initial data. In
the general case, as a result, we get a network in the five-dimensional space
xyzpq, the projection of which into the space xyz gives the skeleton of the
surface, which approximates the graph of the exact solution. Therefore, the
construction of this projection can complete an approximate solution of the
PDE with the data on the curve C. Degeneration happens only when the
curve C itself is a characteristic.
In the case when the PDE is piecewise elementary, it is necessary to make

only a clarification in this scheme: when solving an ODE using the finite
difference method, it is necessary at each step to find out to which domain
the found point (x, y, z, p, q) of the integral curve belongs and to calculate the
next point (x̂, ŷ, ẑ, p̂, q̂) using the corresponding expression Fi instead of F .
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Unfortunately, the standard functions built in computer algebra systems,
e.g., in CAS Maple, do not allow this refinement of their algorithm, and
are essentially useless in solving optical problems. Therefore, we wrote our
implementation of this algorithm in the Python programming language using
the SymPy [9] library. The code is laid out github.com [11] and is available
under a free license. We called this package MF_Solver_PDE.

2. MF_Solver_PDE

Our software is focused on finding a solution to a piecewise elementary
PDE (1) passing through the curve C in the space xyzpq.
The right side of the equation (1) is considered as a piecewise elementary

function of five variables (x, y, z, p, q). This means that the space xyzpq is
divided into several domains G1, . . . , Gk, which are specified by inequalities
g1 < 0, . . . , gk < 0. For each of these domains, the symbolic expressions
F1, . . . Fk are given such that

F |Gi
= Fi (i = 1, . . . , k).

Thus, to set the left-hand side of the equation (1) means to set the inequal-
ities describing the domains G1, . . . , Gk and the expressions F1, . . . , Fk. In the
SymPy package, like in any computer algebra system, we can work with such
data types.
The input data for our algorithm for the solution of PDE are:

— the number k;
— the inequalities describing domains G1, . . . , Gk;
— the expressions F1, . . . , Fk;
— the parametric representation for the curve C in R5, through which the

desired solution of PDE must pass.

The auxiliary parameters are:

— N , the number of points that will be taken on the curve C with an equal
parameter step;

— h, the ODE discretisation step.

To find the PDE solution:

1) we find the coordinates of N points on the curve C;
2) for each of them we form the initial problem of finding the characteristic

that goes out of this point, and solve it using the Runge–Kutta method.
We used the explicit fourth-order method with 4 stages [12,13].

As a result of performing the described steps, a set of points in R5 is
obtained, their projection into xyz space giving a set of points lying on the
plot of the desired solution z = z(x, y). By connecting with straight line
segments the adjacent points lying on the same characteristic and the points
found at the same step on two characteristics released from neighbouring
points on the curve C, we get a two-dimensional skeleton of the surface. It
can be turned into a surface plot using standard graphical tools available in
SymPy.
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3. Examples and verification

As the first example, consider the PDE

az = pq. (3)

We will search for its solution passing through a straight line given para-
metrically in xyzpq space C : x = 1, y = τ, z = bτ, p = aτ, q = b.

This solution can be written explicitly as z = (ax+ b− a)y.

The same solution obtained using our software is shown in Figure 1. The
discrepancy between the numerical and analytical solutions is presented in
Figure 2. It is clearly seen that the difference between numerical and analytical
solutions is less than 10−7 and grows as the error is accumulated with each
step.
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Figure 1. The solution of Eq. (3) using

our software
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Figure 2. Discrepancy between numerical

and analytical solutions of Eq. (3)
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Figure 3. The surface describing

the partial solution of the eikonal

equation

Figure 4. The surface describing

the partial solution of the eikonal

equation in the Maple program
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As the second example, let us consider a problem from geometrical optics.
The eikonal equation has the form p2 + q2 = n2(x, y).
Here n is the refractive index. Let for definiteness

n2 =

2− x2 − y2, x2 + y2 < 1,

1, x2 + y2 > 1.

In the present example, it is assumed that we have two domains: a circular
Lüneburg lens and the medium in which it is placed (e.g., air) [14,15]. The
solution obtained using our software is demonstrated in Figure 3.
To check the correctness of the program work we compare the graphical

solution, obtained using our program, with the Maple result. Certainly, in
Maple the equations were solved only within the circle, and the boundary
conditions have been chosen artificially. The Maple solution is shown in
Figure 4. As seen from the figures, the solutions visually coincide.

Conclusion

The paper presents the original software for the numerical solution of first-
order partial differential equations (PDE), the characteristic feature of which
is that the coefficients of equations in different domains G1, . . . , Gk are given
by different analytical expressions F1, . . . Fk such that F |Gi

= Fi ∀i = 1, . . . , k.
The software was tested on benchmark problems taken from geometrical

optics. A comparison with the results obtained by Maple was carried out.
The considered examples are illustrative. The software is potentially suitable

for solving any first-order PDEs, the left-hand parts of which are piecewise
described by very long symbolic expressions. Very complex equations of
this type arise, for example, in the framework of the adiabatic waveguide
method (AWM) proposed by A.A. Egorov and L.A. Sevastianov [3–5]. In
this theory, the equation that plays the same role as the eikonal equation in
geometrical optics is obtained by equating the determinant of a 8×8 matrix
to zero. Even composing the symbolic expression for the right-hand side
turns out to be a challenge for computer algebra systems. However, as soon
as this expression is found, the proposed algorithm allows constructing the
propagation of electromagnetic waves of the AWM in media with piecewise-
specified refractive index. It is this application that we see as the natural
scope of the software presented in this article.
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