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The quasi-potential approach is very famous in modern relativistic particles physics.
This approach is based on the so-called covariant single-time formulation of quantum
field theory in which the dynamics of fields and particles is described on a space-like
three-dimensional hypersurface in the Minkowski space. Special attention in this
approach is paid to methods for constructing various quasi-potentials. The quasi-
potentials allow to describe the characteristics of relativistic particles interactions in
quark models such as amplitudes of hadron elastic scatterings, mass spectra, widths
of meson decays and cross sections of deep inelastic scatterings of leptons on hadrons.
In this paper Sturm–Liouville problems with periodic boundary conditions on a seg-

ment and a positive half-line for the 2𝑚-order truncated relativistic finite-difference
Schrödinger equation (Logunov–Tavkhelidze–Kadyshevsky equation, LTKT-equation)
with a small parameter are considered. A method for constructing of asymptotic
eigenfunctions and eigenvalues in the form of asymptotic series for singularly per-
turbed Sturm–Liouville problems with periodic boundary conditions is proposed. It
is assumed that eigenfunctions have regular and boundary-layer components. This
method is a generalization of asymptotic methods that were proposed in the works
of A.N. Tikhonov, A.B. Vasilyeva, and V. F Butuzov. We present proof of theorems
that can be used to evaluate the asymptotic convergence for singularly perturbed
problems solutions to solutions of degenerate problems when 𝜀 → 0 and the asymptot-
ic convergence of truncation equation solutions in the case 𝑚 → ∞. In addition, the
Sturm–Liouville problem on the positive half-line with a periodic boundary conditions
for the quantum harmonic oscillator is considered. Eigenfunctions and eigenvalues
are constructed for this problem as asymptotic solutions for 4-order LTKT-equation.
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1. Introduction

The relativistic finite-difference analog of the Schrödinger equation
(Logunov–Tavkhelidze–Kadyshevsky equation, LTK-equation) with the quasi-
potential in the relativistic configurational space for the radial wave functions
of bound states for two identical elementary particles without spin has the
form [1]–[13]:

[𝐻rad
0 + 𝑉 (𝑟) − 2𝑐√𝑞2 + 𝑚2𝑐2]𝜓(𝑟, 𝑙) = 0, (1)

𝐻rad
0 = 2𝑚𝑐2 ch( 𝑖ℏ

𝑚𝑐
𝐷) + ℏ2𝑙(𝑙 + 1)

𝑚𝑟(𝑟 + 𝑖ℏ
𝑚𝑐)

exp( 𝑖ℏ
𝑚𝑐

𝐷) ,

where 𝑚 is a mass, 𝑞 is a momentum, 𝑙 is an angular momentum of each
elementary particle and 𝑉 (𝑟) is a quasi-potential (a piecewise continuous
function).

Asymptotic solutions in the form of regular and boundary layer parts
of boundary value problems for LTK-equation with the quasi-potential on
a segment and on a positive half-line were constructed in the works [14]–[16],
and the question of the asymptotic behavior of the solutions was investigated
when a small parameter 𝜀 → 0. Also in these works the truncation method
was applied to LTK-equation. Thus, LTK-equation of infinite order was
reduced to the equation of finite 2𝑚-order. Boundary value problems on
a segment and on a positive half-line were formulated for this “truncated”
equation (Logunov–Tavkhelidze–Kadyshevsky truncated equation, LTKT-
equation). Eigenfunctions and eigenvalues in the form of asymptotic series
were constructed for these problems and the solution behavior was studied
when the order of LTKT-equation tends to infinity 2𝑚 → ∞.
In the paper [17] mass spectra and probabilities of radiative decays of

heavy quarkonia were obtained in the framework of the constituent quark
model of hadrons based on the relativistic Logunov–Tavkhelidze–Kadyshevsky
equation.

Researchers pay a lot of attention to the description of quantum systems
that consist of one-dimensional linear chains of 𝑛 identical harmonic oscillators
with a nearest neighbor interaction. Periodic boundary conditions, where the
𝑛-th oscillator is coupled back to the first oscillator, and fixed wall boundary
conditions, where the first oscillator and the 𝑛-th oscillator are coupled to
a fixed wall, was considered in the paper [18], [19].

In this paper Sturm–Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2𝑚 relativistic finite-difference Schrödinger equation (Logunov–
Tavkhelidze–Kadyshevsky equation, LTKT-equation) with a small parameter.

For these singularly perturbed problems a method is proposed for con-
structing eigenfunctions and eigenvalues in the form of asymptotic series.
This method allows to obtain asymptotic solutions in the form of regular and
boundary-layer parts. It is also possible to investigate the question of asymp-
totic solutions behavior when 𝜀 → 0 and 2𝑚 → ∞. The Sturm–Liouville
problem for 4-order LTKT-equation on a positive half-line with periodic
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boundary conditions is formulated for the quantum harmonic oscillator quasi-
potential and eigenfunctions and eigenvalues in the form of asymptotic series
are constructed.

2. The Sturm–Liouville problems
for the LTKT-equation

We consider the quasi-potential equation [3]–[5] in a relativistic configura-
tion space for the radial wave functions of bounded states for two identical
elementary particles

[𝐻rad
0 + 𝑉 (𝑟) − 2𝑐√𝑞2 + 𝑚2𝑐2]𝜓(𝑟, 𝑙) = 0, (2)

𝐻rad
0 = 2𝑚𝑐2 ch( 𝑖ℏ

𝑚𝑐
𝐷) + ℏ2𝑙(𝑙 + 1)

𝑚𝑟(𝑟 + 𝑖ℏ
𝑚𝑐)

exp( 𝑖ℏ
𝑚𝑐

𝐷) =

=
∞

∑
𝑝=0

(−1)𝑝2𝑚𝑐2

(2𝑝)!!
( ℏ

𝑚𝑐
)

2𝑝
𝐷2𝑝 + ℏ2𝑙(𝑙 + 1)

𝑚𝑟(𝑟 + 𝑖ℏ
𝑚𝑐)

∞
∑
𝑝=0

1
𝑝!

( 𝑖ℏ
𝑚𝑐

)
𝑝
𝐷𝑝,

𝐷𝑝 = 𝑑𝑝

𝑑𝑟𝑝 ,

where 𝑚 is a mass, 𝑞 is a momentum, 𝑙 is a moment of elementary particles
and 𝑉 (𝑟) is a quasi-potential.
We can limit the speed of light to the infinity (𝑐 → ∞) formally. In this

case, the equation (1) becomes the non-relativistic Schrödinger equation [20]

[−ℏ2𝐷2 + ℏ2𝑙(𝑙 + 1)/𝑟2 + 𝑚𝑉 (𝑟) − 𝑞2] 𝜓(𝑟) = 0. (3)

Let physical parameter be ℏ = 1, 𝑚 = 1, 𝜀 = 1
𝑐 and 𝑙 = 0 (case of 𝑆-wave)

in (1) where

𝜆𝜀,∞ = 2𝑞2/√1 + 𝜀2𝑞2 + 1, 𝑣 = 𝑉 (𝑟), 𝑞2 = (1 + 0.25𝜀2𝜆𝜀,∞)𝜆𝜀,∞.

We can rewrite the equation (1) in the form as under

[𝐿𝜀
∞ − 𝜆𝜀,∞]𝜓𝜀,∞(𝑟) = 0, (4)

𝐿𝜀
∞ = 𝐿2 + 𝜀2

𝐿𝜀
∞ =

∞
∑
𝑝=1

𝜀2𝑝−2𝐿2𝑝 + 𝑣(𝑟), 𝐿2𝑝 = 2(−1)𝑝

(2𝑝)!!
𝐷2𝑝, 𝜀 ∈ (0, 1],

𝐿2 = 𝐿2 + 𝑣(𝑟) = −𝐷2 + 𝑣(𝑟),

𝐿𝜀
∞ =

∞
∑
𝑝=1

𝜀2𝑝−2𝐿2𝑝+2 =
∞

∑
𝑝=1

2(−1)𝑝+1

(2𝑝 + 2)!!
𝜀2𝑝−2𝐷2𝑝+2.
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The equation (1) is an infinite order differential equation with a small
parameter (𝜀 ≪ 1) at higher derivatives and we can classify it as singularly
perturbed equations.

We can truncate the equation (4) to a finite equation of 2𝑚-order with
𝑚 > 1 and it can be rewritten as follows

[𝐿𝜀
2𝑚 − 𝜆𝜀,2𝑚]𝜓𝜀,2𝑚(𝑟) = 0,

𝐿𝜀
2𝑚 = 𝐿2 + 𝜀2𝐿𝜀

2𝑚 =
𝑚

∑
𝑝=1

𝜀2𝑝−2𝐿2𝑝 + 𝑣(𝑟),

𝐿𝜀
2𝑚 =

𝑚−1
∑
𝑝=1

𝜀2𝑝−2𝐿2𝑝+2 =
𝑚−1
∑
𝑝=1

2(−1)𝑝+1

(2𝑝 + 2)!!
𝜀2𝑝−2𝐷2𝑝+2,

where 𝐿2 is the self-adjoint 2-order elliptic operator, 𝐿𝜀
2𝑚 is the self-adjoint

2𝑚-order elliptic operator, 𝜓𝜀,2𝑚(𝑟) is the solution of the 2𝑚-order equation.
We can formulate the boundary value problem 𝐴2𝑚

𝜀 on a segment [0, 𝑟0]
and the boundary value problem 𝐵2𝑚

𝜀 on a positive half-line [0, +∞) for
defining the eigenfunctions [𝜓𝜀,2𝑚,𝛾]∞𝛾=1 and the eigenvalues [𝜆𝜀,2𝑚,𝛾]∞𝛾=1 for

this differential equation as follows

[𝐿2𝑚 − 𝜆𝜀,2𝑚] 𝜓𝜀,2𝑚(𝑟) = 0, (5)

where
𝐷𝑖𝜓𝜀,2𝑚(0) = 𝐷𝑖𝜓𝜀,2𝑚(𝑟0), 𝑖 = 0, 1, … , 2𝑚 − 1, (6)

are the periodic boundary conditions of the problem 𝐴2𝑚
𝜀 , and

𝐷𝑖𝜓𝜀,2𝑚(0) = 𝐷𝑖𝜓𝜀,2𝑚(+∞), 𝑖 = 0, 1, … , 2𝑚 − 1, (7)

are the periodic boundary conditions of the problem 𝐵2𝑚
𝜀 .

If we assume 𝜀 = 0, we can get the degenerate problems 𝐴0 and 𝐵0 for
defining the eigenfunctions [𝜓0,𝛾]∞𝛾=1 and the eigenvalues [𝜆0,𝛾]∞𝛾=1 of following

type as under
[𝐿2 − 𝜆0]𝜓0(𝑟) = 0, (8)

where
𝐷𝑖𝜓0(0) = 𝐷𝑖𝜓0(𝑟0), 𝑖 = 0, 1, (9)

is the periodic boundary conditions of the problem 𝐴0, and

𝐷𝑖𝜓0(0) = 𝐷𝑖𝜓0(+∞), 𝑖 = 0, 1, (10)

is the periodic boundary conditions of the problem 𝐵0.

We can consider the question of the behavior of the eigenfunctions
[𝜓𝜀,2𝑚,𝛾]∞𝛾=1 and the eigenvalues [𝜆𝜀,2𝑚,𝛾]∞𝛾=1 of the problems 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀

in the case when a small parameter tends to zero (𝜀 → 0) but fixed order
2𝑚 of the operator 𝐿2𝑚, and in the case when the order 𝑚 is increased but
a small parameter 𝜀 is fixed.
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The eigenfunctions [𝜓𝜀,2𝑚,𝛾]∞𝛾=1 and [𝜓0,𝛾]∞𝛾=1 are the solutions of the corre-

sponding problems 𝐴2𝑚
𝜀 , 𝐴0 and 𝐵2𝑚

𝜀 , 𝐵0. These solutions are elements of
a Hilbert space 𝐻(ΩΓ) with an inner product (𝜓, 𝜑)𝐻(ΩΓ) = ∫

ΩΓ
𝜓(𝑟) 𝜑(𝑟) 𝑑𝑟

(𝜓, 𝜑 ∈ 𝐻(ΩΓ)), in which there is a set of a linear continuous self-adjoint oper-
ators 𝐴(ΩΓ) ∶ 𝐻(ΩΓ) → 𝐻(ΩΓ) of problems 𝐴2𝑚

𝜀 , 𝐵2𝑚
𝜀 , 𝐴0, 𝐵0 (𝐿𝜀

2𝑚, 𝐿2 ∈ 𝐴,
𝑚 > 2), where ΩΓ (Γ = 𝐴, 𝐵) is a domain of the operator (a subscript 𝐴
corresponds to a segment [0, 𝑟0] and a subscript 𝐵 is a positive half-line
[0, +∞)).

Let ‖𝐴(ΩΓ)‖𝐻 denotes the norm of operators 𝐴(ΩΓ) and we can write

‖𝐴(ΩΓ)‖𝐻 = sup
𝜓∈𝐻,𝜓≠0

‖𝐴𝜓‖𝐻
‖𝜓‖𝐻

, ‖𝜓‖𝐻 = (𝜓, 𝜓)1/2
𝐻 .

We can give the sufficient conditions for the solvability of the problems 𝐴0,
𝐵0 and 𝐴2𝑚

𝜀 , 𝐵2𝑚
𝜀 .

Condition 1. The operator 𝐿2 for the periodic boundary conditions of the
problems 𝐴0 or 𝐵0 must be positively defined, i.e.

(𝐿2(𝜓0), 𝜓0)𝐻(ΩΓ) = ∫
ΩΓ

𝐿2(𝜓0)𝜓0 𝑑𝑟 = ∫
ΩΓ

|𝐷𝜓0|2 𝑑𝑟 + ∫
ΩΓ

𝑣(𝑟)𝜓2
0 𝑑𝑟 ⩾ 0,

for any functions 𝑣(𝑟) ∈ 𝐶∞(Γ) and 𝜓0 ∈ 𝐻(ΩΓ) from domain ΩΓ, and it
must satisfy the boundary conditions of the corresponding degenerate problems
(𝐴0 or 𝐵0).

Condition 2. The operator 𝐿𝜀
2𝑚 under boundary conditions of problems

𝐴2𝑚
𝜀 or 𝐵2𝑚

𝜀 must be positive, i.e.

(𝐿𝜀
2𝑚𝜓𝜀,2𝑚, 𝜓𝜀,2𝑚)𝐻(ΩΓ) =

𝑚−1
∑
𝑝=1

2(−1)𝑝+1

(2𝑝 + 2)!!
𝜀2𝑝−2 ∫

ΩΓ

(𝐷2𝑝+2𝜓𝜀,2𝑚) 𝜓𝜀,2𝑚 𝑑𝑟 =

=
𝑚−1
∑
𝑝=1

2
(2𝑝 + 2)!!

𝜀2𝑝−2 ∫
ΩΓ

|𝐷𝑝+1𝜓𝜀,2𝑚|2𝑑𝑟 ⩾ 0,

for any functions 𝜓𝜀,2𝑚 ∈ 𝐻(ΩΓ) from domain ΩΓ, and it must satisfy the

boundary conditions of the corresponding singularly perturbed problem (𝐴2𝑚
𝜀 or

𝐵2𝑚
𝜀 ).

It is known that the degeneration of the problems 𝐴2𝑚
𝜀 , 𝐵2𝑚

𝜀 into the
problems 𝐴0, 𝐵0 are regular if the number of roots with negative real parts
and positive real parts of an additional characteristic equation, which in our
case has the form

𝑃(𝛼2𝑚) =
𝑚

∑
𝑝=1

(−1)𝑝

(2𝑝)!!
(𝛼2𝑚)2𝑝−2 = 0,
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coincide with the number of boundary conditions that drop down on the left
and, respectively, on the right when we replace the consideration problems
𝐴2𝑚

𝜀 , 𝐵2𝑚
𝜀 to problems 𝐴0, 𝐵0.

Let’s now consider the generalized characteristic form of the operator
𝑚
∑
𝑝=1

𝜀2𝑝−2𝐿2𝑝, which is obtained by replacing 𝐷2𝑝 with (𝑖𝜉)2𝑝

𝜋𝜀(𝜉) =
𝑚

∑
𝑝=1

2(−1)𝑝

(2𝑝)!!
𝜀2𝑝−2(𝑖𝜉)2𝑝.

The regular degeneration of the problems 𝐴2𝑚
𝜀 , 𝐵2𝑚

𝜀 to 𝐴0, 𝐵0 is fulfilled
if the following condition is true.
Condition 3. If the following inequality take place for the real part of the

sum 𝜋𝜀(𝜉)

Re (𝜋𝜀(𝜉)) =
𝑚

∑
𝑝=1

2
(2𝑝)!!

𝜀2𝑝−2𝜉2𝑝 ⩾ 𝐶
𝑚

∑
𝑝=1

𝜀2𝑝−2|𝜉|2𝑝 ⩾ 0,

where 𝐶 is not depended on 𝜉, then problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 degenerate into
problems 𝐴0 and 𝐵0 regularly.
Let’s assume that a set of eigenvalues 𝜆𝜀,2𝑚,1 ⩽ 𝜆𝜀,2𝑚,2 ⩽ … ⩽ 𝜆𝜀,2𝑚,𝑛 ⩽ …

and 𝜆0,1 ⩽ 𝜆0,2 ⩽ … ⩽ 𝜆0,𝑛 ⩽ … is ordered in ascending order [𝜆𝜀,2𝑚,𝛾]∞𝛾=1,

[𝜆0,𝛾]∞𝑖=1, and this set of eigenvalues corresponds to a complete orthonormal

set of eigenfunctions [𝜓𝜀,2𝑚,𝛾]∞𝛾=1, [𝜓0,𝛾]∞𝛾=1.

Since existence domains Ω𝐴 of operators 𝐿2𝑚 and 𝐿2 coincide for the
problems 𝐴2𝑚

𝜀 and 𝐴0 and also for any function 𝜓𝜀,2𝑚 ∈ Ω𝐴, that satisfies

the boundary conditions of the problem 𝐴2𝑚
𝜀 , the following inequality from

Condition 2

(𝐿𝜀
2𝑚𝜓𝜀,2𝑚, 𝜓𝜀,2𝑚)𝐻(Ω𝐴) ⩾ (𝐿2𝜓𝜀,2𝑚, 𝜓𝜀,2𝑚)𝐻(Ω𝐴),

holds true, then the following estimate inequality occurs 𝜆𝜀,2𝑚,𝛾 ⩾ 𝜆0,𝛾,
𝛾 = 1, 2, ….
A similar estimate takes place for the problems 𝐵2𝑚

𝜀 and 𝐵0.

3. Constructing of asymptotic solutions for boundary
value problems

3.1. General scheme for constructing of the asymptotics. Regular
and boundary series

We can use methods of the singular perturbations theory of differential
equations and find solutions to problems 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀 .

Let’s search for a formal solution 𝜓𝜀,2𝑚(𝑟) of the problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀
in the form of asymptotic series
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Θ𝜓𝜀,2𝑚(𝑟) = ̄𝜓2𝑚(𝑟, 𝜀) + Π2𝑚𝜓(𝜌1, 𝜀) + 𝑄2𝑚𝜓(𝜌2, 𝜀) =

=
∞

∑
𝑘=0

𝜀𝑘( ̄𝜓2𝑚,𝑘(𝑟) + Π2𝑚,𝑘𝜓(𝜌1) + 𝑄2𝑚,𝑘𝜓(𝜌2)), (11)

where a partial sum

Θ𝑗𝜓𝜀,2𝑚(𝑟) =
𝑗

∑
𝑘=0

𝜀𝑘( ̄𝜓2𝑚,𝑘(𝑟) + Π2𝑚,𝑘𝜓(𝜌1) + 𝑄2𝑚,𝑘𝜓(𝜌2)),

satisfies inequalities for solutions of the problem 𝐴2𝑚
𝜀

max
𝑟∈[𝛿𝐴,𝑟0−𝛿𝐴]

|𝜓𝜀,2𝑚 − Θ𝑗𝜓𝜀,2𝑚| < 𝑀𝐴 𝜀𝑗+1,

and the problem 𝐵2𝑚
𝜀

max
𝑟∈[𝛿𝐵,∞+)

|𝜓𝜀,2𝑚 − Θ𝑗𝜓𝜀,2𝑚| < 𝑀𝐵 𝜀𝑗+1,

and similar inequalities for the boundary conditions of these problems, where
𝑀𝐴, 𝑀𝐵 and 𝛿𝐴 ≪ 1, 𝛿𝐵 ≪ 1 are positive constants that are independent of
𝑟 and 𝜀.
The asymptotic solution for 𝜓𝜀,2𝑚 have the form as under

𝜓𝜀,2𝑚(𝑟) =
𝑗

∑
𝑘=0

𝜀𝑘( ̄𝜓2𝑚,𝑘(𝑟) + Π2𝑚,𝑘𝜓(𝜌1) + 𝑄2𝑚,𝑘𝜓(𝜌2)) + ̄𝑧2𝑚
𝑗 (𝑟),

̄𝑧2𝑚
𝑗 (𝑟) = 𝜓𝜀,2𝑚 − Θ𝑗𝜓𝜀,2𝑚,

where ̄𝑧2𝑚
𝑗 (𝑟) = 𝜀𝑗+1𝑧2𝑚

𝑗 (𝑟) is error of the asymptotic approximation of the
solution 𝜓𝜀,2𝑚 by a partial sum Θ𝑗𝜓𝜀,2𝑚.

We can write the regular part of the asymptotic expansion in the form

̄𝜓2𝑚(𝑟, 𝜀) ≡ ̄𝜓2𝑚,0(𝑟) + 𝜀 ̄𝜓2𝑚,1(𝑟) + 𝜀2 ̄𝜓2𝑚,2(𝑟) + … ,

and the singular parts of the asymptotic expansion have the forms as under

Π2𝑚𝜓(𝜌1, 𝜀) ≡ Π2𝑚,0𝜓(𝜌1) + 𝜀Π2𝑚,1𝜓(𝜌1) + 𝜀2Π2𝑚,2𝜓(𝜌1) + … ,

for describing the behavior of the solution on the left edge of a segment [0, 𝑟0]
or a positive half-line [0, +∞),

𝑄2𝑚𝜓(𝜌2, 𝜀) ≡ 𝑄2𝑚,0𝜓(𝜌2) + 𝜀𝑄2𝑚,1𝜓(𝜌2) + 𝜀2𝑄2𝑚,2𝜓(𝜌2) + … ,

for describing the behavior of the solution of the problem 𝐴2𝑚
𝜀 on the right

edge of a segment [0, 𝑟0].
It is known that the function 𝑄2𝑚𝜓(𝜌2, 𝜀) = 0 for the problem 𝐵2𝑚

𝜀 , since
the solution of the problem 𝐵0 is chosen so that it tends to zero when 𝑟 → +∞
together with all its derivatives. Here we use new independent (stretched)
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variables 𝜌1 = 𝑟/𝜀 and 𝜌2 = (𝑟0 − 𝑟)/𝜀 for the boundary functions Π2𝑚,𝑘𝜓,
𝑄2𝑚,𝑘𝜓 .
Similarly, we can present the simple eigenvalue of 𝜆𝜀,2𝑚 in the form of the

asymptotic series in powers of the small parameter 𝜀 in the form as under

𝜆𝜀,2𝑚 ≡ 𝜆2𝑚,0 + 𝜀𝜆2𝑚,1 + 𝜀2𝜆2𝑚,2 + … , (12)

where the partial sum

Θ𝑗𝜆𝜀,2𝑚 =
𝑗

∑
𝑘=0

𝜀𝑘𝜆2𝑚,𝑘,

satisfies the condition |𝜆𝜀,2𝑚 − Θ𝑗𝜆𝜀,2𝑚| < 𝑀̃ 𝜀𝑗+1, where 𝑀̃ > 0 is a positive
constant that is independent of 𝑟 and 𝜀.
So an asymptotic approximation of the eigenvalue 𝜆𝜀,2𝑚 has the form as

under

𝜆𝜀,2𝑚 =
𝑗

∑
𝑘=0

𝜀𝑘𝜆2𝑚,𝑘 + Δ̄2𝑚
𝑗 ,

where Δ̄2𝑚
𝑗 = 𝜀𝑗+1Δ2𝑚

𝑗 , 𝑏𝑎𝑟Δ2𝑚
𝑗 = 𝜆𝜀,2𝑚 − Θ𝑗𝜆𝜀,2𝑚 is an error of the asymp-

totic approximation of the eigenvalue 𝜆𝜀,2𝑚 for this partial sum.

In addition, we assume that the function 𝑣(𝑟) can be decomposed as
a convergent series in the neighborhood of the points 𝑟 = 0 and 𝑟 = 𝑟0

𝑣(𝑟) =
∞

∑
𝑠=−1

𝑣1
𝑠𝑟𝑠, 𝑣(𝑟) =

∞
∑

𝑠=−1
𝑣2

𝑠(𝑟 − 𝑟0)𝑠,

and

𝑣(𝜌1) =
∞

∑
𝑠=−1

𝑣1
𝑠𝜀𝑠𝜌𝑠

1, 𝑣(𝜌2) =
∞

∑
𝑠=−1

(−1)|𝑠|𝑣2
𝑠𝜀𝑠𝜌𝑠

2, (13)

where 𝜌1 = 𝑟/𝜀 and 𝜌2 = (𝑟0 − 𝑟)/𝜀 are the stretched variables.

3.2. The main terms of the asymptotic series

We can determine the terms of the asymptotic series of the decomposition
̄𝜓2𝑚,𝑘, Π2𝑚,𝑘𝜓, 𝑄2𝑚,𝑘𝜓 and 𝜆2𝑚,𝑘 of the problems 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀 if we

substitute the decomposition (11), (12) and (13) in the equation (5) and the

boundary conditions (6) of the problem 𝐴2𝑚
𝜀 and the equation (5) and the

boundary conditions (7) of the problem 𝐵2𝑚
𝜀 , and then we equate all members

of the series that stand at equal powers of a small parameter 𝜀.
We should use additional requirements for the boundary functions

Π2𝑚,𝑘𝜓(𝜌1) → 0, 𝑄2𝑚,𝑘𝜓(𝜌2) → 0, 𝑘 = 0, 1, 2, … ,

where 𝜀 → 0 and a fixed 𝑟. These requirements allows to select the solutions
Π2𝑚,𝑘𝜓 and 𝑄2𝑚,𝑘𝜓 that tend to zero outside the boundary layer only.
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3.2.1. Building a zero approximation of the asymptotic expansion

We can get the systems of equations and determine the solutions ̄𝜓2𝑚,0,

Π2𝑚,0𝜓, 𝑄2𝑚,0𝜓 and 𝜆2𝑚,0 of the problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 in a zero approxi-

mation in the form

[𝐿2 − 𝜆2𝑚,0] ̄𝜓2𝑚,0 = 0, 𝐿2 = −𝐷2 + 𝑣(𝑟),

𝐿1
2𝑚Π2𝑚,0𝜓 = 0, 𝐿1

2𝑚 =
𝑚

∑
𝑝=1

2(−1)𝑝

(2𝑝)!!
𝑑2𝑝

𝑑𝜌2𝑝
1

,

𝐿2
2𝑚𝑄2𝑚,0𝜓 = 0, 𝐿2

2𝑚 =
𝑚

∑
𝑝=1

2(−1)𝑝

(2𝑝)!!
𝑑2𝑝

𝑑𝜌2𝑝
2

,

𝐷𝑖 ( ̄𝜓2𝑚,0(0) + Π2𝑚,0𝜓(0)) = 𝐷𝑖 ( ̄𝜓2𝑚,0( ̄𝑟) + 𝑄2𝑚,0𝜓( ̄𝑟)) ,
Π2𝑚,0𝜓(𝜌1) → 0, 𝑄2𝑚,0𝜓(𝜌2) → 0, 𝜀 → 0, 𝑖 = 0, 1, 2, … , 2𝑚 − 1,

where ̄𝑟 = 𝑟0 for 𝐴2𝑚
𝜀 and ̄𝑟 → +∞ for 𝐵2𝑚

𝜀 .

The eigenfunctions [ ̄𝜓2𝑚,0,𝛾]∞𝛾=1 and the eigenvalues [𝜆2𝑚,0,𝛾]∞𝛾=1 coincide

with the solutions of the corresponding degenerate problems 𝐴0 or 𝐵0.

Thus, we can determine the boundary functions Π2𝑚,0𝜓(𝜌1), 𝑄2𝑚,0𝜓(𝜌2)
if we find the solutions of the boundary value problems as under

𝐿1
2𝑚Π2𝑚,0𝜓 = 0, 𝐿2

2𝑚𝑄2𝑚,0𝜓 = 0,

𝐷𝑖Π2𝑚,0𝜓(0) + 𝐷𝑖 ̄𝜓2𝑚,0(0) = 𝐷𝑖𝑄2𝑚,0𝜓( ̄𝑟) + 𝐷𝑖 ̄𝜓2𝑚,0( ̄𝑟),
Π2𝑚,0𝜓(𝜌1) → 0, 𝑄2𝑚,0𝜓(𝜌2) → 0, 𝜀 → 0, 𝑖 = 0, 1, 2, … , 2𝑚 − 1.

We can write the functions Π2𝑚,0𝜓(𝜌1) and 𝑄2𝑚,0𝜓(𝜌2) in the forms

Π2𝑚,0𝜓(𝜌1) =
𝑚−1
∑
𝜁=1

𝐶2𝑚,1
𝜁,0 exp(−𝛼2𝑚

𝜁 𝜌1),

𝑄2𝑚,0𝜓(𝜌2) =
𝑚−1
∑
𝜁=1

𝐶2𝑚,2
𝜁,0 exp(−𝛼2𝑚

𝜁 𝜌2).

Hence, the number of arbitrary constants 𝐶2𝑚,1
𝜁,0 and 𝐶2𝑚,2

𝜁,0 equals the number

of disappearing boundary conditions of problems 𝐴2𝑚
𝜀 or 𝐵2𝑚

𝜀 when we try
formulate the degenerate problems 𝐴0 or 𝐵0.

Let the values 𝛼2𝑚
𝜁 (𝜁 = 1, … , 2𝑚 − 2) be the roots of the additional charac-

teristic equation

𝑃(𝛼2𝑚) =
𝑚

∑
𝑝=1

(−1)𝑝

(2𝑝)!!
(𝛼2𝑚)2𝑝−2 = 0.
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Since an algebraic equation

Re (𝛼2𝑚
𝜁 ) > 0, 𝜁 = 1, 𝑚 − 1, Re (𝛼2𝑚

𝜁 ) < 0, 𝜁 = 𝑚, 2𝑚 − 2,

is biquadrate; thus, it has the same number of roots with positive and negative
real parts.
We can get the following relations from the boundary conditions

𝐷𝑖Π2𝑚,0𝜓(0) − 𝐷𝑖𝑄2𝑚,0𝜓( ̄𝑟) = −𝐷𝑖 ̄𝜓2𝑚,0(0) + 𝐷𝑖 ̄𝜓2𝑚,0( ̄𝑟),

where 𝑖 = 0, 1, 2, … , 2𝑚−1, and we can derive a system of 2𝑚 linear equations
like that

D2𝑚C⃗2𝑚 = b⃗2𝑚, (14)

for finding coefficients 𝐶2𝑚,1
𝜁,0 , 𝐶2𝑚,2

𝜁,0 (𝜁 = 1, 2, … , 𝑚 − 1), where a system has
form as under

D2𝑚 = (D
2𝑚
11 0

0 D2𝑚
22

) ,

and where
D2𝑚

11 = (𝑑1,𝑟𝜁)𝑚−1
𝑟,𝜁=1, 𝑑1,𝑟𝜁 = (−𝛼2𝑚

𝜁 )𝑟−1,

D2𝑚
22 = (𝑑2,𝑟𝜁)𝑚−1

𝑟,𝜁=1, 𝑑2,𝑟𝜁 = −(𝛼2𝑚
𝜁 )𝑟−1,

⃗C2𝑚⊤ = (𝐶2𝑚,1
1,0 , …, 𝐶2𝑚,1

𝑚−1,0, 𝐶2𝑚,2
1,0 , …, 𝐶2𝑚,2

𝑚−1,0),

b⃗2𝑚⊤ = (𝑝2𝑚
1 , … , 𝑝2𝑚

𝑚−1, 𝑞2𝑚
1 , … , 𝑞2𝑚

𝑚−1),
𝑝2𝑚

𝑖 = −𝐷𝑖 ̄𝜓2𝑚,0(0), 𝑞2𝑚
𝑖 = 𝐷𝑖 ̄𝜓2𝑚,0( ̄𝑟), 𝑖 = 0, 1, … , 2𝑚 − 1,

are block matrices.
Since the values of 𝛼2𝑚

𝜁 (𝜁 = 1, 2𝑚 − 2) are pairwise different and the
matrices D2𝑚

11 , D
2𝑚
22 , D

2𝑚 are non-degenerate and there is an inverse of D2𝑚

matrix (D2𝑚)−1, so then the only solution of the algebraic system (14) exists

and it has the form: C⃗2𝑚 = (D2𝑚)−1b⃗2𝑚.

Thus, a zero approximation of ̄𝜓2𝑚,0, Π2𝑚,0𝜓, 𝑄2𝑚,0𝜓, 𝜆2𝑚,0 of the prob-

lems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 could be constructed completely.

3.2.2. Further construction of the asymptotic series

We can get the systems of the equations for the problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 and

use the additional conditions for finding the solutions ̄𝜓2𝑚,𝑘, Π2𝑚,𝑘𝜓, 𝑄2𝑚,𝑘𝜓
and 𝜆2𝑚,𝑘 in the case 𝑘 > 0 in this form

[𝐿2 − 𝜆2𝑚,0] ̄𝜓2𝑚,𝑘 = 𝜆2𝑚,𝑘
̄𝜓2𝑚,0 − ℎ2𝑚

𝑘 (𝑟),

𝐿1
2𝑚Π2𝑚,𝑘𝜓 = 𝑔2𝑚

1𝑘 (𝜌1), 𝐿2
2𝑚𝑄2𝑚,𝑘𝜓 = 𝑔2𝑚

2𝑘 (𝜌2),

𝐷𝑖( ̄𝜓2𝑚,𝑘(0) + Π2𝑚,𝑘𝜓(0)) = 𝐷𝑖( ̄𝜓2𝑚,𝑘( ̄𝑟) + 𝑄2𝑚,𝑘𝜓( ̄𝑟)),
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Π2𝑚,𝑘𝜓(𝜌1) → 0, 𝑄2𝑚,𝑘𝜓(𝜌2) → 0, 𝜀 → 0, 𝑘 = 1, 2, … , 𝑖 = 0, 1, … , 2𝑚−1,

ℎ2𝑚
𝑘 (𝑟) =

[𝑘/2]⩽2𝑚

∑
𝑝=1

2(−1)𝑝+1

(2𝑝 + 2)!!
𝐷2𝑝+2 ̄𝜓2𝑚,𝑘−2𝑝 −

𝑘−1
∑
𝑝=1

𝜆2𝑚,𝑝
̄𝜓2𝑚,𝑘−𝑝,

𝑔2𝑚
1𝑘 (𝜌1) = −𝑣1

−1
𝜌1

Π2𝑚,𝑘−1𝜓 +
𝑘−2
∑
𝑝=0

(𝜆2𝑚,𝑝 − 𝑣1
𝑝𝜌𝑝

1) Π2𝑚,𝑘−𝑝−2𝜓,

𝑔2𝑚
2𝑘 (𝜌2) = 𝑣2

−1
𝜌2

𝑄2𝑚,𝑘−1𝜓 +
𝑘−2
∑
𝑝=0

(𝜆2𝑚,𝑝 − (−1)𝑝𝑣2
𝑝𝜌𝑝

2) 𝑄2𝑚,𝑘−𝑝−2𝜓.

If the parameter 𝜆 is a simple proper value of the self-adjoint operator 𝐴
that acting in the Hilbert space 𝐻(ΩΓ) and if the function 𝜓 ∈ 𝐻(ΩΓ) is
the corresponding normalized eigenfunction ‖𝜓‖𝐻(ΩΓ) = 1 then in the space
𝐻1(ΩΓ) (𝐻1(ΩΓ) is an orthogonal complement to the function 𝜓 in the space
𝐻(ΩΓ)) and then there is the operator 𝐴 − 𝜆𝐼 that has a bounded inverse
operator (𝐴 − 𝜆𝐼)−1

𝐻1(ΩΓ) (pseudo-resolvent).

Hence, the equation 𝐴𝜑 − 𝜆𝜑 = 𝜔𝜓 − ℎ, ℎ ∈ 𝐻(ΩΓ) can be solved and the
solution of this equation could be presented as under

𝜔 = (ℎ, 𝜓)𝐻(ΩΓ), 𝜑 = (𝐴 − 𝜆𝐼)−1
𝐻1(ΩΓ)(𝜔𝜓 − ℎ),

where (𝜔𝜓 − ℎ) ∈ 𝐻1(ΩΓ).
Thus, we can get the solutions ̄𝜓2𝑚,𝑘,𝑛 and 𝜆2𝑚,𝑘,𝑛 for any 𝑘 > 0

𝜆2𝑚,𝑘,𝑛 = (ℎ2𝑚
𝑘 , 𝜓0,𝑛)

𝐻(ΩΓ)
= ∫

ΩΓ

ℎ2𝑚
𝑘 (𝑟) 𝜓0,𝑛(𝑟)𝑑𝑟, 𝑛 = 1, 2, … ,

̄𝜓2𝑚,𝑘,𝑛 = (𝐿2 − 𝜆2𝑚,0,𝑛)−1
𝐻1(ΩΓ)

ℎ2𝑚
𝑘 ,

where 𝐻1(ΩΓ) is the orthogonal complement to eigenfunctions 𝜓0,𝑛 ∈ 𝐻(ΩΓ),
(Γ = 𝐴, 𝐵) of the degenerate boundary value problem 𝐴0 or 𝐵0, where
‖𝜓0,𝑛‖𝐻(ΩΓ) = 1.
We can find the boundary functions Π2𝑚,𝑘𝜓(𝜌1), 𝑄2𝑚,𝑘𝜓(𝜌2) for 𝑘 > 0

from the boundary value problems in the form

𝐿1
2𝑚Π2𝑚,𝑘𝜓 = 𝑔2𝑚

1𝑘 , 𝐿2
2𝑚𝑄2𝑚,𝑘𝜓 = 𝑔2𝑚

2𝑘 , (15)

𝐷𝑖Π2𝑚,𝑘𝜓(0) − 𝐷𝑖𝑄2𝑚,𝑘𝜓( ̄𝑟) = −𝐷𝑖 ̄𝜓2𝑚,𝑘(0) + 𝐷𝑖 ̄𝜓2𝑚,𝑘( ̄𝑟), (16)

Π2𝑚,𝑘𝜓(𝜌1) → 0, 𝑄2𝑚,𝑘𝜓(𝜌2) → 0, 𝜀 → 0, 𝑖 = 0, 1, … , 2𝑚 − 1. (17)

We can write the functions Π2𝑚,𝑘𝜓 and 𝑄2𝑚,𝑘𝜓 as under

Π2𝑚,𝑘𝜓(𝜌1) = Π2𝑚,𝑘
̃𝜓(𝜌1) + Π2𝑚,𝑘𝜓∗(𝜌1), (18)

𝑄2𝑚,𝑘𝜓(𝜌2) = 𝑄2𝑚,𝑘
̃𝜓(𝜌2) + 𝑄2𝑚,𝑘𝜓∗(𝜌2), (19)
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where

Π2𝑚,𝑘
̃𝜓(𝜌1) =

𝑚−1
∑
𝜁=1

𝐶2𝑚,1
𝜁,𝑘 exp (−𝛼2𝑚

𝜁 𝜌1) ,

𝑄2𝑚,𝑘
̃𝜓(𝜌2) =

𝑚−1
∑
𝜁=1

𝐶2𝑚,2
𝜁,𝑘 exp (−𝛼2𝑚

𝜁 𝜌2)

are the general solutions of the homogeneous equations (15), (17), and

Π2𝑚,𝑘𝜓∗(𝜌1) =
𝑚−1
∑
𝜁=1

̄𝐶2𝑚,1
𝜁,𝑘 (𝜌1) exp (−𝛼2𝑚

𝜁 𝜌1) ,

𝑄2𝑚,𝑘𝜓∗(𝜌2) =
𝑚−1
∑
𝜁=1

̄𝐶2𝑚,2
𝜁,𝑘 (𝜌2) exp (−𝛼2𝑚

𝜁 𝜌2) ,

are the partial solutions of these inhomogeneous equations.

Since, the roots 𝛼2𝑚
𝑖 are pairwise distinct, then the Vronsky determinants

𝑊 [𝑒−𝛼2𝑚
1 𝜌1 , … , 𝑒−𝛼2𝑚

𝑚−1𝜌1] , 𝑊 [𝑒−𝛼2𝑚
1 𝜌2 , … , 𝑒−𝛼2𝑚

𝑚−1𝜌2] ,

that are composed of the function systems [exp (−𝛼2𝑚
𝜁 𝜌1)]

𝑚−1

𝜁=1
and

[exp (−𝛼2𝑚
𝜁 𝜌2)]

𝑚−1

𝜁=1
, are non-zero.

Using the method of constant variation, we can find the partial solutions
of the inhomogeneous equations (15), (17), i.e.

D2𝑚
11 Ω⃗1 = F1, D2𝑚

22 Ω⃗2 = F2,

Ω⃗⊤
1 = (

𝑑 ̄𝐶2𝑚,1
𝜁,1 (𝜌1)
𝑑𝜌1

, … ,
𝑑 ̄𝐶2𝑚,1

𝜁,𝑚−1(𝜌1)
𝑑𝜌1

) ,

Ω⃗⊤
2 = (

𝑑 ̄𝐶2𝑚,2
𝜁,1 (𝜌2)
𝑑𝜌2

, … ,
𝑑 ̄𝐶2𝑚,2

𝜁,𝑚−1(𝜌2)
𝑑𝜌2

) ,

F⊤
1 = (0, … , 0, 𝑔2𝑚

1𝑘 ), F⊤
2 = (0, … , 0, 𝑔2𝑚

2𝑘 ),
where det |D2𝑚

11 | ≠ 0, det |D2𝑚
22 | ≠ 0.

We can find the functions ̄𝐶2𝑚,1
𝜁,𝑘 (𝜌1) and ̄𝐶2𝑚,2

𝜁,𝑘 (𝜌2) from the systems as

under Ω⃗1 = (D2𝑚
11 )−1F1, Ω⃗2 = (D2𝑚

22 )−1F2.
After integrating and substituting the solutions in (18), (19), we can find

as many arbitrary constants as the boundary conditions of the problems 𝐴2𝑚
𝜀

or 𝐵2𝑚
𝜀 fall out when we proceed to analysis of the degenerate problems 𝐴0

or 𝐵0.
Thus, this algorithm allows us to find the asymptotic solutions of the

problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 with any desired degree of accuracy of a small

parameter 𝜀𝑗.
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4. Asymptotic analysis of the solutions

We can formulate the following theorem for the justification of the asymp-
totic solutions of the problems 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀 .

Theorem 1. If the self-adjoint elliptic operators 𝐿2, 𝐿2𝑚 satisfy Conditions

1-3 for the problems 𝐴2𝑚
𝜀 , 𝐵2𝑚

𝜀 , 𝐴0, 𝐵0 and the function 𝑣(𝑟) ∈ 𝐶∞ is
represented as the uniformly converging series in the neighborhood of the point
𝑟 = 0 and the neighborhood of the point 𝑟 = 𝑟0

𝑣(𝑟) =
∞

∑
𝑠=−1

𝑣1
𝑠𝑟𝑠, 𝑣(𝑟) =

∞
∑

𝑠=−1
𝑣2

𝑠(𝑟 − 𝑟0)𝑠,

the asymptotic solutions of boundary value problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 exist.
The corresponding 𝑛 eigenvalue 𝜆𝜀,2𝑚,𝑛 and the corresponding 𝑛 eigenfunction

𝜓𝜀,2𝑚,𝑛(𝑟) of the operator 𝐿2𝑚 have the following asymptotic representations

𝜆𝜀,2𝑚,𝑛 ≡ 𝜆2𝑚,0,𝑛 + 𝜀𝜆2𝑚,1,𝑛 + 𝜀2𝜆2𝑚,2,𝑛 + … + 𝜀𝑗+1Δ2𝑚
𝑗 ,

𝜓𝜀,2𝑚,𝑛(𝑟) =
∞

∑
𝑘=0

𝜀𝑗( ̄𝜓2𝑚,𝑘,𝑛(𝑟) + Π2𝑚,𝑘,𝑛𝜓(𝜌1) + 𝑄2𝑚,𝑘,𝑛𝜓(𝜌2)) + 𝜀𝑗+1𝑧2𝑚
𝑗 (𝑟),

where 𝜆2𝑚,0,𝑛 = 𝜆0,𝑛 is 𝑛-th simple eigenvalue and ̄𝜓2𝑚,0,𝑛(𝑟) = 𝜓0,𝑛 is the

𝑛-th function of the operator 𝐿2 for boundary value problems 𝐴0 and 𝐵0; the

functions ̄𝜓2𝑚,𝑘,𝑛(𝑟), Π2𝑚,𝑘,𝑛𝜓, 𝑄2𝑚,𝑘,𝑛𝜓 and the values of 𝜆2𝑚,𝑘,𝑛 for 𝑘 > 0
are determined from the systems of the equations and the boundary conditions
given in Paragraph 2.

The estimations for the residual members ̄𝑧2𝑚
𝑗 (𝑟) and Δ2𝑚

𝑗 have form as

under ‖𝐷 ̄𝑧2𝑚
𝑗 ‖𝐻 + ‖ ̄𝑧2𝑚

𝑗 ‖𝐻 = 𝑂(𝜀𝑗+1), Δ2𝑚
𝑗 = 𝑂(1), for 𝑝-order derivative of

the partial sum Θ𝑗𝜓𝜀,2𝑚,𝑛 is ‖𝐷𝑞+2 ̄𝑧2𝑚
𝑗 ‖𝐻 = 𝑂(𝜀𝑗−𝑞+1), 1 ⩽ 𝑞 ⩽ 𝑠, 𝑠 ⩾ 2𝑚−2,

in the inner subdomain [𝛿, 𝑟0 − 𝛿] is ‖𝐷𝑞+2 ̄𝑧2𝑚
𝑗 ‖𝐻 = 𝑂(𝜀𝑗+1), |𝑞| ⩽ 𝑠, in border

regions (0, 𝛿] and [𝑟0 − 𝛿, 𝑟0) is ‖𝐷𝑞+2 ̄𝑧2𝑚
𝑗 ‖𝐻 = 𝑂(𝜀𝑗−𝑞+1), 1 ⩽ |𝑞| ⩽ 𝑠.

Proof. It is assumed that the function Θ𝑗𝜓𝜀,2𝑚,𝑛(𝑟) satisfies the boundary
conditions of the problems 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀 and

‖𝜓0‖𝐻 = ‖ ̄𝜓2𝑚,0‖𝐻 = 1, ‖𝜓𝜀,2𝑚‖𝐻 = 1 + 𝑂(𝜀).

Using series for the constructions of a solution, we can get

[𝐿𝜀
2𝑚 − Θ𝑗𝜆𝜀,2𝑚] Θ𝑗𝜓𝜀,2𝑚(𝑟) = 𝜀𝑗+1 ̄𝑓2𝑚

𝑗 ,

where ̄𝑓2𝑚
𝑗 is the restricted function (‖ ̄𝑓2𝑚

𝑗 ‖𝐻 = 𝑂(1)).
According to the estimate, we have the evaluation in the form as under

inf
𝑛

|𝜆 − 𝜆𝜀,2𝑚,𝑛| ⩽ ||𝐿𝜀
2𝑚𝜓 − 𝜆𝜓‖𝐻/‖𝜓‖𝐻,
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where 𝜓 ∈ ΩΓ is an arbitrary function from the scope of the operator 𝐿𝜀
2𝑚

and 𝜆 > 0 is an arbitrary real number.
Using the evaluation ‖𝜓𝜀,2𝑚‖𝐻 = 1 + 𝑂(𝜀), we can get that

𝜆𝜀,2𝑚,𝑛 − Θ𝑗𝜆𝜀,2𝑚 = 𝜀𝑗+1Δ2𝑚
𝑗 ,

where |Δ2𝑚
𝑗 | ⩽ ‖ ̄𝑓𝑗‖𝐻/‖Θ𝑗𝜓𝜀,2𝑚‖ℎ. Hence, we can get the estimate Δ2𝑚

𝑗 =
𝑂(1).
Let 𝑇 0

𝑑 be a closed linear shell consisting of eigenfunctions Θ𝑗𝜓𝜀,2𝑚,𝑛(𝑟),
corresponding to the corresponding eigenvalues Θ𝑗𝜆𝜀,2𝑚,𝑛, that are lying on

a segment [𝜆0,𝑛 − 𝑑, 𝜆0,𝑛 + 𝑑], where 𝑑 is a number 𝑑 > Σ (‖ ̃𝑙𝜀2𝑚𝜃𝑗𝜓𝜀,2𝑚 −
Θ𝑗𝜆𝜀,2𝑚 Θ𝑗𝜓𝜀,2𝑚‖𝐻 ⩽ 𝜎), then there is such a function ̃𝜓𝑇 ∈ 𝑇 0

𝑑 , ‖ ̃𝜓𝑇‖𝐻 = 1,
for which the following inequality ‖Θ𝑗𝜓𝜀,2𝑚 − ̃𝜓𝑡‖ℎ ⩽ 2Σ/𝑑 is satisfied.
If 𝜀 is sufficiently small, then the following inequalities occur

𝜆𝜀,2𝑚,𝑛−1 − 𝜆0,𝑛−1 ⩽ 𝑑, 𝜆𝜀,2𝑚,𝑛 − 𝜆0,𝑛 ⩽ 𝑑, 𝜆𝜀,2𝑚,𝑛+1 − 𝜆0,𝑛+1 ⩽ 𝑑,

where 3𝑑 = min[𝜆0,𝑛 − 𝜆0,𝑛−1; 𝜆0,𝑛+1 − 𝜆0,𝑛].
Thus, a segment [𝜆0,𝑛 − 𝑑, 𝜆0,𝑛 + 𝑑] contains the single eigenvalue 𝜆𝜀,2𝑚,𝑛

of the operator 𝐿𝜀
2𝑚, which is relevant to the single normalized eigenfunction

𝜓𝜀,2𝑚,𝑛(𝑟), which coinciding with the normalized function ̃𝜓𝑇, and there is
the estimation

‖𝜓𝜀,2𝑚,𝑛 − Θ𝑗𝜓𝜀,2𝑚,𝑛/‖Θ𝑗𝜓𝜀,2𝑚,𝑛‖𝐻‖𝐻 ⩽ 𝑂(𝜀𝑗+1).

Thus, we can get the estimation ‖𝑧2𝑚
𝑗 ‖𝐻 = 𝑜(1), where ̄𝑧2𝑚

𝑗 = 𝜀𝑗+1𝑧2𝑚
𝑗 =

̄𝜓𝜀,2𝑚,𝑛 − 𝜃𝑗𝜓𝜀,2𝑚,𝑛, and
̄𝜓𝜀,2𝑚,𝑛 = ‖Θ𝑗𝜓𝜀,2𝑚,𝑛‖𝐻 𝜓𝜀,2𝑚,𝑛.

Since the inequality 𝜆𝜀,2𝑚,𝛾 ⩾ 𝜆0,𝛾, 𝛾 = 1, 2, … is true and there is the ratio

[𝐿𝜀
2𝑚 − Θ𝑗𝜆𝜀,2𝑚]Θ𝑗𝜓𝜀,2𝑚(𝑟) = 𝜀𝑗+1 ̄𝑓2𝑚

𝑗 , ‖ ̄𝑓2𝑚
𝑗 ‖𝐻 = 𝑜(1),

we can get the following estimations

‖[𝐿𝜀
2𝑚 − 𝜆𝜀,2𝑚] ̄𝑧2𝑚

𝑗 ‖𝐻 = 𝑂(𝜀𝑗+1)

and ‖𝐿𝜀
2𝑚 ̄𝑧2𝑚

𝑗 ‖𝐻 ⩽ ‖[𝐿𝜀
2𝑚 − 𝜆𝜀,2𝑚] ̄𝑧2𝑚

𝑗 ‖𝐻 + |𝜆𝜀,2𝑚| ‖ ̄𝑧2𝑚
𝑗 ‖ℎ = 𝑜(𝜀𝑗+1).

Using Conditions 1–3 and assuming that the function ̄𝑧2𝑚
𝑗 satisfies the

boundary conditions of the problems 𝐴2𝑚
𝜀 and 𝐵2𝑚

𝜀 , we can get the following
estimations

‖ ̄𝑧2𝑚
𝑗 ‖2

𝐻 ⩽
𝑚−1
∑
𝑝=1

𝜀2𝑝‖𝐷𝑝 ̄𝑧2𝑚
𝑗 ‖2

𝐻 + ‖𝐷 ̄𝑧2𝑚
𝑗 ‖2

𝐻 + ‖ ̄𝑧2𝑚
𝑗 ‖2

ℎ ⩽ ̄𝐶 𝜀2(𝑗+1) ‖𝑊̄ 2𝑚
𝑗 ‖2

ℎ,
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where the constant ̄𝐶 > 0 which is independent of 𝑟 and 𝜀 and the function
𝑤̄2𝑚

𝑗 is the restricted function for which the estimation ‖𝑤̄2𝑚
𝑗 ‖𝐻 = 𝑂(1) takes

place.

This implies the estimate for ̄𝑧2𝑚
𝑗 that is in the conditions of the theorem.�

5. Solutions behavior analysis of the problems 𝐴2𝑚
𝜀

and 𝐵2𝑚
𝜀 in the case 𝑚 → ∞

Here we investigate the question about the behavior of the eigenfunctions
and the eigenvalues of 𝐴2𝑚

𝜀 and 𝐵2𝑚
𝜀 problems in the case of unlimited

increasing of 2𝑚-order LTKT-equation.
Let’s consider the problems of 𝐴2𝑚

𝜀 , 𝐵2𝑚
𝜀 and 𝐴2𝑚+2

𝜀 , 𝐵2𝑚+2
𝜀 for finding

[𝜓𝜀,2𝑚,𝛾]∞𝛾=1, [𝜆𝜀,2𝑚,𝛾]∞𝛾=1 and [𝜓𝜀,2𝑚+2,𝛾]∞𝛾=1, [𝜆𝜀,2𝑚+2,𝛾]∞𝛾=1. Here we assume

that the eigenvalues are arranged in order of monotonic increase.
Let the relations

Δ2𝑚+2
2𝑚 𝜓𝜀,𝑛 = 𝜓𝜀,2𝑚+2,𝑛 − 𝜓𝜀,2𝑚,𝑛, Δ2𝑚+2

2𝑚 𝜆𝜀,𝑛 = 𝜆𝜀,2𝑚+2,𝑛 − 𝜆𝜀,2𝑚,𝑛,

take place, where ‖𝜓𝜀,2𝑚+2‖𝐻 = 1, ‖𝜓𝜀,2𝑚‖𝐻 = 1.
We can formulate the following

Theorem 2. If the positive self-adjoint elliptic operators act in the space

𝐻(ΩΓ), 𝐿2, 𝐿2𝑚 and satisfy Conditions 1–3 for the problems 𝐴2𝑚
𝜀 , 𝐵2𝑚

𝜀 , 𝐴0,
𝐵0, then we have the following estimates for 𝑚 → ∞

|Δ2𝑚+2
2𝑚 𝜆𝜀,𝑛| ⩽ ‖𝐿𝜀

2𝑚+2 − 𝐿𝜀
2𝑚‖𝐻 ⩽ 2𝜀2𝑚

(2𝑚 + 2)!!
,

‖Δ2𝑚+2
2𝑚 𝜓𝜀,𝑛‖𝐻 ⩽ 2𝜀2𝑚

(2𝑚 + 2)!!
.

Proof. We can get the ratios

Δ2𝑚+2
2𝑚 𝐿 = 𝐿𝜀

2𝑚+2 − 𝐿𝜀
2𝑚 = 2(−1)𝑚+1𝜀2𝑚

(2𝑚 + 2)!!
𝐷2𝑚+2,

𝜆𝜀,2𝑚+2,𝑛 ⩽ sup
𝜑

[((Δ2𝑚+2
2𝑚 𝐿 + 𝐿𝜀

2𝑚)𝜑, 𝜑)𝐻] ⩽ 𝜆𝜀,2𝑚,𝑛 + 𝜆̄,

‖𝜑‖𝐻 = 1, (𝜑, 𝜓𝜀,2𝑚,𝛾)𝐻 = 0, 𝛾 = 1, 𝑛 − 1,

where 𝜆̄ is the largest positive eigenvalue of the operator Δ2𝑚+2
2𝑚 𝐿, and there

is the following inequality 𝜆̄ ⩽ ‖Δ2𝑚+2
2𝑚 𝐿‖𝐻.

We get the inequalities |Δ2𝑚+2
2𝑚 𝜆𝜀,𝑛| ⩽ ‖𝐿𝜀

2𝑚+2 − 𝐿𝜀
2𝑚‖𝐻, where

|Δ2𝑚+2
2𝑚 𝜆𝜀,𝑛| ⩽ 2𝜀2𝑚/(2𝑚 + 2)!! .
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Thus, there is the equality

[𝐿𝜀
2𝑚+2 − 𝜆𝜀,2𝑚+2]Δ2𝑚+2

2𝑚 𝜓𝜀 = 2𝜀2𝑚

(2𝑚 + 2)!!
̄𝑣2𝑚,

where ̄𝑣2𝑚 is the restricted function, ‖ ̄𝑣2𝑚‖𝐻 = 𝑂(1), ( ̄𝑣2𝑚, Δ2𝑚+2
2𝑚 𝜓𝜀)𝐻 = 0.

We can assume that the operator (𝐿𝜀
2𝑚+2 − 𝜆𝜀,2𝑚+2) has a limited inverse

operator (𝐿𝜀
2𝑚+2 − 𝜆𝜀,2𝑚+2)−1

ℎ1
(a pseudo-resolvent) and there are the ratios

Δ2𝑚+2
2𝑚 𝜓𝜀 = 2𝜀2𝑚

(2𝑚 + 2)!!
(𝐿𝜀

2𝑚+2 − 𝜆𝜀,2𝑚+2)−1
𝐻1

̄𝑣2𝑚,

and ‖Δ2𝑚+2
2𝑚 𝜓𝜀,𝑛‖𝐻 ⩽ 2𝜀2𝑚

(2𝑚 + 2)!!
. Thus, the theorem is proved. �

6. Construction of an asymptotic solution in the case
of the oscillator potential

We can consider the boundary value problem 𝐵2𝑚
𝜀 on the [0, ∞+) axis

with the quasi-potential of a linear harmonic oscillator in the form 𝑣(𝑟) = 𝑟2.
Analysis of this problem allows to describe the behavior chains of harmonic
oscillators with periodic boundary conditions when they are very far apart
from each other.

The solution of the degenerate boundary value problem 𝐵0 is an orthonor-
mal system of Hermite functions

𝜓0,𝑛 = [𝑛!2𝑛√
𝜋]−1/2

exp(−𝑟2/2)𝐻𝑛(𝑟), 𝜆𝑛 = 2𝑛 + 1, 𝑛 = 1, 3, 5, … ,

where

𝐻𝑛(𝑟) = 𝑛!
[𝑛/2]

∑
𝑚=0

(−1)𝑚 2𝑟𝑛−2𝑚

𝑚!(𝑛 − 2𝑚)!
.

We can show that the zero approximation has equality ̄𝜓2𝑚,0,𝑛 = 𝜓0,𝑛.

We can find the functions Π2𝑚,0,𝑛𝜓(𝜌1) and 𝑄2𝑚,0,𝑛𝜓(𝜌2) in the form

Π2𝑚,0,𝑛
̄𝜓(𝜌1) =

𝑚−1
∑
𝑘=1

𝐶0𝑘𝑛 exp(−𝛼𝑘𝜌1), 𝑄2𝑚,0,𝑛𝜓(𝜌2) = 0,

𝐶0𝑘𝑛 =
𝑚−1
∑
𝑠=1

𝜀𝑠−1𝐴𝑘,𝑠
𝑑𝑠 ̄𝜓2𝑚,0,𝑛(0)

𝑑𝑟𝑠 ,

𝐴1,𝑠 = 1
∏𝑙≠𝑠(𝛼𝑙 − 𝛼𝑠)

, 𝑙, 𝑠 = 1, … , 𝑚 − 1,
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𝐴2𝑞,𝑠 = 𝐴2𝑞+1,𝑠 = −

2𝑞
∑
𝑟=1

(−1)𝑟

(2𝑟)! 𝛼2𝑟−2
𝑠

∏𝑙≢𝑠(𝛼𝑙 − 𝛼𝑠)
, 𝑞 = 1, 2, … , (𝑚−1)/2, 𝑙, 𝑠 = 1, … , 𝑚−1,

𝐷𝑖 ̄𝜓0,𝑛(0) = [𝑛!2𝑛√
𝜋]−1/2𝐷𝑖[exp(−𝑟2/2)𝐻𝑛(𝑟)]|(𝑟=0), 𝑛 = 1, 3, 5, …

The first approximation of the solution has the forms

̄𝜓2𝑚,1,𝑛 = 𝜓0,𝑛, 𝜆2𝑚,1,𝑛 = 0,

Π2𝑚,1,𝑛
̄𝜓(𝜌1) =

𝑚−1
∑
𝑘=1

𝐶1𝑘𝑛 exp(−𝛼𝑘𝜌), 𝑄2𝑚,1,𝑛𝜓(𝜌2) = 0,

𝐶1𝑘𝑛 =
𝑚−1
∑
𝑠=1

𝜀𝑠−1𝐴𝑘,𝑠
𝑑𝑠 ̄𝜓2𝑚,1,𝑛(0)

𝑑𝑟𝑠 .

The next approximation has the following ratios

̄𝜓2𝑚,2,𝑛 = 𝜓0,𝑛, 𝜆2𝑚,2,𝑛 = 𝜀1
4

(𝑛2 + (𝑛 + 1)2), 𝑛 = 1, 3, 5, … ,

Π2𝑚,1,𝑛
̄𝜓(𝜌1) =

𝑚−1
∑
𝑘=1

𝐹𝑘𝑛(𝑟, 𝜀) exp(−𝜀−1𝛼𝑘𝑟), 𝑄2𝑚,2,𝑛𝜓(𝜌2) = 0,

𝐹𝑘𝑛(𝑟, 𝜀) = 𝑅𝑘𝑛 + 𝜌1𝑇𝑘𝑛, 𝑅𝑘𝑛 = 𝐶1𝑘𝑛 − 𝜆2𝑚,0,𝑛

𝑚−1
∑
𝑝=0

𝐶1𝑝𝑛𝐵𝑝,𝑘,

𝑇𝑘𝑛 = −𝐶1𝑘𝑛𝜆2𝑚,0,𝑛𝐵̄𝑘,𝑘, 𝐵̄𝑘,𝑘 = 1
∏𝑗≢𝑘(𝛼𝑗 − 𝛼𝑘)

,

𝐵𝑘,𝑘 =

𝑚−1
∑

𝑗=1,𝑗≢𝑘
(𝛼𝑘 − 𝛼𝑗)

∏𝑗≢𝑘(𝛼𝑗 − 𝛼𝑘)2 , 𝐵𝑝,𝑘 = 1
(𝛼𝑝 − 𝛼𝑘)∏𝑗≢𝑘(𝛼𝑗 − 𝛼𝑘)

.

Thus, we can continue the procedure for constructing the asymptotic series
and building an asymptotic solution of the problem under consideration with
accuracy up to any given order 𝜀.

7. Conclusions

Recently, there is a great interest in studying properties of bound states

of a quarkonium such as charmonium 𝑐 ̄𝑐 and bottomonium 𝑏𝑏̄. These states
are similar to the properties of positronium (the bound state of an electron
and a positron). Special attention of researchers who deal with bound states
of quarks is paid to quasi-potential methods. The quasi-potential approach
allows to describe the characteristics of relativistic elementary particles such
as amplitudes of hadron elastic scattering, mass spectra and widths of meson
decays, and the cross sections of deep inelastic scattering of leptons on
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hadrons. Since experimental measurements of relativistic elementary particles
are carried out with high accuracy, the quark systems models allow to use the
precision calculation of various parameters. Experiment has amassed a wealth
of high precision data on quarkonium production in relativistic heavy ion
collisions at RHIC and LHC in different kinematical regimes that provides
a challenging testing ground for theory and phenomenology.

We use a quasi-potential approach in our work. The quasi-potential method
in the field theory is based on a two-time Green function for particle systems.
The bounded states of such systems are described by a wave function that
satisfies a quasi-potential Schrödinger-type equation that depends on energy
and non-local potential. The main advantage of this quasi-potential equation is
its three-dimensional character. We have shown the absence of a non-physical
parameter of relative time for this equation. This quasi-potential wave
equation can be obtained for any system numbers of particles with arbitrary
spins. This approach was successfully applied to calculate corrections to
the energy levels of hydrogen-like systems within the framework of quantum
electrodynamics. The great number of properties of the elementary particles
amplitude scattering at high energies is explained using a quasi-potential
Lippman–Schwinger equation with a Gaussian potential. The quasi-potential
method has a number of advantages among the methods of studying the
relativistic two-body problem. The advantage of this approach is that quasi-
potential equations are written out in three-dimensional space, which makes
it possible to use the methods of non-relativistic quantum mechanics.

In this paper Sturm–Liouville problems with periodic boundary condi-
tions on a segment and a positive half-line are formulated for the truncated
to order 2𝑚 relativistic finite-difference Schrödinger equation (Logunov–
Tavkhelidze–Kadyshevsky equation, LTKT-equation) with a small parameter.
For these singularly perturbed problems a method is proposed for construct-
ing asymptotic solutions with accuracy up to any given order 𝜀. With the help
of this method asymptotic solutions in the form of regular and boundary-layer
parts are obtained and the question of asymptotic solutions behavior when
𝜀 → 0 is investigated.
The behavior of solutions is investigated in the case 𝑚 → ∞ and estimation

of this behavior is given. It makes possible to determine the convergence of
solutions of the Sturm–Liouville problems for LTKT-equation with periodic
boundary conditions in the case 𝑚 → ∞.
In non-relativistic quantum mechanics, the particle in a one-dimensional

lattice is a problem that occurs in the model of a periodic crystal lattice. The
potential is caused by ions in the periodic structure of the crystal creating
an electromagnetic field, so electrons are subject to a regular potential inside
the lattice. This is a generalization of the free electron model, which assumes
zero potential inside the lattice.

In this work the Sturm–Liouville problem on the positive half-line with
a periodic boundary conditions for the quantum harmonic oscillator is con-
sidered and eigenfunctions and eigenvalues are constructed as asymptotic
solutions for 2𝑚-order LTKT-equation. Their solutions allow to describe the
behavior chains of harmonic oscillators with periodic boundary conditions
when they are very far apart from each other. We can use more complex
quasi-potentials and describe the bounded states of the elementary particles
in the quark-gluon plasma.
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Асимптотическое решение задачи Штурма–Лиувилля
с периодическими граничными условиями

для релятивистского конечно-разностного уравнения
Шрёдингера

И. В. Амирханов1, И. С. Колосова2, С. А. Васильев2

1Объединённый институт ядерных исследований
ул. Жолио-Кюри, д. 6, Дубна, Московская область, Россия, 141980

2 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Описание взаимодействия релятивистских частиц в рамках квазипотенциаль-
ного подхода широко применяется в современной физике. Этот подход основан
на так называемой ковариантной формулировке квантовой теории поля, в ко-
торой эта теория рассматривается на пространственно-подобной трёхмерной
гиперповерхности в пространстве Минковского. Особое внимание в этом подходе
уделяется методам построения различных квазипотенциалов, а также использо-
ванию квазипотенциального подхода для описания характеристик связанных
состояний в кварковых моделях, таких как амплитуды адронного упругого рассе-
яния, масс-спектры и ширины распадов мезонов, сечения глубокого неупругого
рассеяния лептонов на адронах.
В настоящей работе сформулированы задачи Штурма–Лиувилля с периоди-

ческими граничными условиями на отрезке и на положительной полупрямой
для усечённого релятивистского конечно-разностного уравнения Шрёдингера
(уравнение Логунова–Тавхелидзе–Кадышевского, LTKT-уравнение) с малым
параметром при старшей производной.
Целью работы является построение асимптотических решений (собственных

функций и собственных значений) в виде регулярных и погранслойных ча-
стей решений для этой сингулярно возмущённой задачи Штурма–Лиувилля.
Основная задача исследования состоит в асимптотическом анализе поведенче-
ских решений рассматриваемой задачи в случае 𝜀 → 0 и 𝑚 → ∞. Нами был
предложен метод построения асимптотических решений (собственных функ-
ций и собственных значений), который является обобщением асимптотических
методов решения сингулярно возмущённых задач, представленных в работах
А.Н. Тихонова, А.Б. Васильевой и В.Ф. Бутузова. Основной результат дан-
ной работы — доказанные теоремы об асимптотической сходимости решений
сингулярно возмущённой задачи к решениям вырожденной задач при 𝜀 → 0
и сходимости решений усечённого LTKT-уравнения в случае 𝑚 → ∞. Кроме то-
го, в статье нами рассматривается задача Штурма–Лиувилля на положительной
полуоси для LTKT-уравнения 4-го порядка с периодическими граничными усло-
виями для квантового гармонического осциллятора. Для этой задачи построены
асимптотические приближения собственных функций и собственных значений
и показана их сходимость к решению вырожденной задачи.

Ключевые слова: асимптотический анализ, сингулярно возмущённое
дифференциальное уравнение, задача Штурма–Лиувилля, релятивистское
конечно-разностное уравнение Шрёдингера, периодические краевые условия,
квазипотенциальный подход


