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We implement several explicit Runge-Kutta schemes that preserve quadratic
invariants of autonomous dynamical systems in Sage. In this paper, we want to
present our package ex.sage and the results of our numerical experiments.

In the package, the functions rrk solve, idt solve and project 1 are constructed
for the case when only one given quadratic invariant will be exactly preserved.
The function phi_solve 1 allows us to preserve two specified quadratic invariants
simultaneously. To solve the equations with respect to parameters determined
by the conservation law we use the elimination technique based on Grébner basis
implemented in Sage. An elliptic oscillator is used as a test example of the presented
package. This dynamical system has two quadratic invariants. Numerical results of
the comparing of standard explicit Runge-Kutta method RK(4,4) with rrk _solve are
presented. In addition, for the functions rrk solve and idt solve, that preserve only
one given invariant, we investigated the change of the second quadratic invariant
of the elliptic oscillator. In conclusion, the drawbacks of using these schemes are
discussed.

Key words and phrases: Explicit Runge-Kutta method, quadratic invariant, dy-
namical system, Sage

1. Quadratic invariant and conservative RK scheme

One of most widespread mathematical models is an autonomous system of
ordinary differential equations, i.e., the system of the form

dx
%:f(l'), t>o7 (1)
2(0) = 29,

where: t is an independent variable, commonly interpreted as time; x is
a vector (zq,...,x,); fis a vector function (fy, f5, ..., f,,), when in applications
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its element f;, (i = 1,2,...,n) is often taken as a rational or an algebraic
function of the coordinates x4, ..., x, or one can be reduced to this form by
some transformation of variables.

Definition 1 (Goriely [1]). If there exists a function I of x, such that, for
any solution z(t) of system (1), the condition

“< dx;, O - ol
Vi@ @) =3 g = 3 Sla0) g =0,
1

k=1 k=

holds, then I is called the first integral or invariant of the system (1). If x(¢)
is any exact solution of system (1) then I(z(t)) is independent of ¢. If [
is a polynomial of degree 2 with respect to = then it is called a quadratic
invariant.

Any quadratic invariant after a linear transformation can be rewritten in

the form
I(z(t)) = (t)TSx(t) = (Sz(t),z(t)) = const, (2)

where (- ,-) denote the Euclidean inner product on R™ and S € R™ " is
a symmetric, constant matrix.
To determine an uniform grid (with a step At) of the time interval [0, T

we take
t, =nAt (n=0,...,N).

We will interpret {z"} as an approximation to the exact solution z(t) at
time t5 + n At, i.e.
x(ty + nAt) ~ x".
For the system (1) Runge-Kutta scheme (RK scheme) with s stages can
be written as

ki:x”—FAtZaijf(k:j), i=1,2,...,s (3)
j=1
and s
2 =g ALY b f (k). (4)
i=1

Below the parameters a,; and b,(i = 1,2,...,5,j = 1,2,...;s) will be ar-
ranged in an array

C1 | @11 G2 G
Co | Qg1 Qoo Qo
Cs 5 a’52 ass

by by by

where
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is known as the Butcher table [2], [3] and will be called the coefficients of
the RK scheme. The RK method is explicit if a,; = 0 for 7 < j, otherwise is
implicit.

We want to construct numerical solutions z°,z!,...,2" such that the
quadratic invariant I(x) is preserved numerically, i.e.

(Sz™, 2"y = (Sx%, 2% i =1,..., N. (5)

In this case the RK method will be called S-conservative RK scheme.
Ref. [4]-[6] indicated that the RK method preserves the quadratic first
integrals of system (1) iff the coefficients of such RK method satisfy
b,a.. +b.a

1] J jl_blbj :Oa Z?j: ]-7"'78- (6)
Such Runge-Kutta methods are called symplectic.

Obviously, no explicit RK schemes satisfies the symplectic condition [6], [7].
Unfortunately, during using the implicit schemes, we must solve a system of
non-linear algebraic equations at each step. This is very complex problem,
so implicit schemes require more resources than explicit RK schemes [8].
Furthermore numerical solutions of nonlinear system (for ex., by the Newton
method) introduce new errors that sometimes we cannot estimate effectively
[9]. Thus, the integrals could not be preserved exactly. For this reason,
many authors try to construct numerical methods for solving the system of
differential equations (1) with the preservation of algebraic integrals without
the need to solve nonlinear algebraic equations.

To overcome these difficulties Buono and Mastroserio [10] suggested
a method that uses explicit RK schemes for the construction of new finite-
difference schemes which exactly preserve invariants. Below we will call it the
Buono method for shorthand. Of course, these new schemes are not standard
RK schemes, but they are usually called an explicit RK scheme preserving
invariants [8]. These schemes preserve only one specified invariant. We imple-
mented several such schemes in Sage and investigated what happens to other
invariants. Next, we investigated the method from th article [11] by Calvo
et al. which is an extension of the Buono method and can be used as a con-
servation one or more invariants. Below we will call it the Calvo method for
shorthand.

2. Explicit RK scheme of preserving one quadratic
invariant

2.1. The Buono method
To make the explicit RK scheme conservative, we follow to Buono and

Mastroserio [10]. We scale the weights b, by a parameter v,, € R at the step
n, i.e. use

el =2+ ALY 7, b f (k) (7)
=1
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instead of ™! obtained by the formula (4) numerical solution after one time
step.
Using the shorthand

S
A, =) bf(ky),
i—1
the parameter v, could be estimated by the conservative condition, i.e.

<Sa:fyl+1 Ty — (S a™) = v, At(2(Sz™, A,) + 7, AHA,,AL)). (])

1y
Thus, we preserve the invariant (Sx, ), if we take

O 2(Sz™A)
TN, A, )

For Runge-Kutta schemes of order p this expression is close to 1, i.e
T =1+ 0(AP)

as At — 0, see Buono at al. [10, prop. 4] for p = 4 and Zhang at al. |8,

lemma 3.3|. Thus, the new numerical solution xfy‘“ can be considered as an

approximation either to x(t,, + At) with the RK weights scaled by =,,, or to
x(t, + v,At) with the time At scaled by 7,. Zhang at al. [8] denote the
method defined by (3) and (7) with the interpretation

et~ x(t, + v, At)

as the relazation Runge—Kutta method (RRK), while the method using

it~ x(t, + At)
this is called the increment direction technique (IDT). Note that the value of
the scalar parameter -, at each step depends on the quadratic invariant that
appears in rrk or idt method.

Theorem 1 (Zhang et al. [8]). Let the original RK scheme be defined by
(3) and (4) has order p, then the method defined by (3) and (7) has:

— (RRK method) If the solution :/I:,’y’”r1 15 interpreted as an approrimation to

x(t,, + v, At), the method has order p.

— (IDT method) If the solution JJZ“ 1s interpreted as an approximation to

x(t, + At), the method has order p — 1.

In our package ex.sage for Sage [12] the function rrk_solve(P1,F,ics)
returns the numeric points (0, 2°), (7,At, x!), - with the parameters:

— P1 is a quadratic invariant;

— F is the right sides of system (1)

— ics is the initial condition

— the default At =0.1,7 = 10

— 4-stage explicit RK scheme with the Butcher table
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— NN O
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Function idt_solve () returns the numerical points (0, z°), (At, z!), - with
the parameters:

— P1 is a quadratic invariant;

— F is the right sides of the system (1)

— ics is the initial condition

— the default At =0.1,7 =10

— 4-stage explicit RK scheme with coefficients the same as the previous
table.

Users can redefine these variables in both functions, for ex., by adding
dt=0.01 or new explicit RK method.

2.2. Elliptic function test

To test this routine, we investigate a nonlinear oscillator. By the definition of
Jacobi functions [13|, p = snt, ¢ = cnt, r = dnt is a particular solution to
a nonlinear autonomous system of differential equations

p=qr,q=—pr, i =—k’pq (10)
with the initial conditions
p=0,g=r=1att=0.
This autonomous system has two quadratic integrals of motion
pP’+¢>=1 and Ek*p?+r2=1 (11)

We can solve the autonomous system (10) by rrk or idt methods that
preserve only the first or second integral. For certainly, we take k = 1/2 and
indicated above initial condition.

sage: var('p,q,7")

sage: load('ez.sage')

sage: k=1/2

sage: s=4

sage: F=[r*q,-p*r,-k~2*pxql

sage: list_of_integral=[p~2+q~2,k~2*p~2+r~2]

sage: ics=[p==0,q==1,r==1]

sage: idt_solve(P1=list_of_integral[0],ics=ics,F=F,dt
sage: rrk_solve(Pl=1list_of_integral[0],ics=ics,F=F,dt
sage:

< Bl=rrk_solve(P1=1list_of_integral[0],ics=ics,F=F,dt=0.1,T=40)
sage:

- B2=rrk_solve(P1=list_of_integral[1l],ics=ics,F=F,dt=0.1,T=40)
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sage: G=line([[t,p] for [t,p,q,r] in
< B1],color='red',axes_labels=['t’', 'p'])+point ([[t,p] for
- [t,p,q,r] in B2],frame=true)
sage: max(abs(k~2*p~2+r~2-1) for [t,p,q,r] in B2 )
sage: max(abs(p~2+q~2-1) for [t,p,q,r] in B2)
sage: max(abs(k~2*p~2+r~2-1) for [t,p,q,r] in Bl )
sage: max(abs(p~2+q~2-1) for [t,p,q,r] in B1)
sage: Gl=line([[t,k~2*p~2+r~2-1] for [t,p,q,r] in
< B1l],axes_labels=['§t$’', '$k~2p-2+r-2-
«~ 1$'],tick_formatter=[None,RR(10e-
< 18).n(digits=1)],frame=true)
sage: G2=line([[t,p~2+q~2-1] for [t,p,q,r] in

[N

<

Y

B2] ,axes_labels=['§t$’', '$p-2+q~2-
18'] ,tick_formatter=[None,RR(10e-
18) .n(digits=1)],frame=true)

In figure 1 we can see a graph of the solution found by rrk method with
exact conservation of p? 4+ ¢? = 1. Rrk give a condensation of the greed points
in those arches of the graph where the curvature has a maximum.

-0.51

0 5 10 15 20 25 30 35 40

t

Figure 1. Graph of p(t), rrk, dt = 0.1

The second integral k?p? + r2 — 1 is not exactly preserved, but its value
fluctuates with a small amplitude of 10~7 (figure 2). We also use rrk with
exact conservation of k?p? 4+ 72 = 1. In this case first integral grows by
leaps bounds and quickly becomes larger than 1072 (figure 3). Thus, the
preservation of one integral does not preserve others

Let’s compare the Buono method with the standard rk4 at the same step
size dt (which denote At in the rrk method).

sage:
sage:
end_points=20)

<

var('p,q,r,t")
QRK=desolve_system_rk4(F, [p,q,r], ics=[0,0,1,1,], ivar=t,
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sage: G3=line([[t,p~2+q~2] for [t,p,q,r] in
~ B2],color='red')+point([[t,p~2+q~2] for [t,p,q,r] in
< QRK] ,axes_labels=['$§t$’', '$p-2+q~28'], tick_formatter=[None,
< RR(10e-18).n(digits=1)],frame=true)

sage: G4=line([[t,k"2*p~2+r~2-1] for [t,p,q,r] in

B1] ,axes_labels=['$t$’', '$k~2p-2+r-2-1$'] ,tick_formatter=[None,
~ RR(10e-18).n(digits=1)], color='red’') +
o point([[t,k~2xp~2+r~2-1] for [t,p,q,r] in QRK],frame=true)
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Figure 2. Second invariant for rrk method with exact conservation of first invariant
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Figure 3. First integral for rrk with exact conservation of k?p? +r2 =1

The rrk method with the exact conservation of the first invariant p?+¢% = 1
preserves both integrals better than rk4 (figure 5) but the rrk with the exact

conservation of k%p? + 72 = 1 preserves the first integral worse than rk4
(figure 4).
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Figure 4. First invariant for rrk method with exact conservation of second invariant
k%p? + 12 =1 (red) and for standard rk4
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Figure 5. Second invariant for rrk method with exact conservation of first invariant
p? + ¢? =1 (red) and for standard rk4 (blue)

From the numerical experiments, we came to the conclusion that preserving
multiple integrals requires a different approach.
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3. The Calvo method for one invariant
3.1. The Calvo method

Let us take two popular explicit RK methods for examples: the RK4 and
Euler methods. RK4 method has 4 stages and 4th approximation order. We
calculate four axillary quantities at nth step

k‘lil‘n,

ky=a™ + 5 f(ky)At,

ka=a™ + 5 f(ky)At,

ky=x" + f(kg)At
and then the quantity

1

Bam) = o + At (1) + 30 0) + 57 0) + 5T R))  (12)

which is used in standard way as z™*!. Similarly, by the Euler method, we
calculate in the step n one axillary quantity k; = 2™ and the quantity

¢r(2") = a™ + f(ky) At (13)

which is used in standard way as 2"*!. We can describe this scheme by
Butcher table with additional row:

0O]/]0 O O O
1 | 1

11l 00 0
1 1

1o 2 00
110 0 1 O
¢ 15 5 5 &
d11 0 0 0

Calvo et al. [11] extend the Buono method by coupling these two schemes:
in the step n we take

23 = g(a") — A (6(a") — 6y (a™)), (14)

where A\, € R is the scalar parameter that can be determined by the conser-
vation law, i.e.

I(zi™) = I(zm). (15)
Using (12) and (13) we have

1 5 1 1
it = gn 4 (E - EA"> f(ky)At + (g + §>‘n> f (ko) At+

+ (5450 ) Flmae+ (4 00, ) fk)ae (10
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Thus, (15) gives an algebraic equation to determinating the parameter A,
at each step. Calvo et al [11] proved that approximation order of this new
scheme is equal to 3. They investigated more general case when coupling any
two explicit RK scheme.

If I is a quadratic invariant then we have a quadratic equation for A,
one of the roots of which goes to 0 at At — 0 and the other goes to co. In
numerical experiments we choose the parameter A\, as real number which is
close to the value 0. In CAS sagemath, we use symbolic calculation to solve
this equation (15) with respect to A,,, and use the function roots to get this
value, since our calculation is performed in the ring R (Real Field with 53 bits

of precision). So, there is a small error, since in Q will get the exact value,
but it is very time-consuming.

3.2. Elliptic function test

We implement the described scheme in Sage as the function project_1().
Function project_1() returns the numerical points (0, z"), (At, x!),--- with
the parameters:

— list_of_integral is an invariant required to be conserved;
— F is the right sides of the system (1)

— ics is the initial condition

— dt is the step size,T'is the end point of time t.

Let us take the elliptic function for example.

sage: load('ez.sage')

sage: var('p,q,7, k")

sage: k=1/2

sage: list_of_integral=[p~2+q~2,k~2*p~2+r~2]

sage: F=[rxq,-p*r,-k~2*p*q]

sage: ics=[p==0,q==1,r==1]

sage: Bl=project_1(list_of_integrall[0],F,ics,dt=0.1,T=20)
sage: max([abs(p~2+q~2-1) for [t,p,q,r] in B1])

sage: P=line([[t,p] for [t,p,q,r] in

- B1],axes_labels=['$t$’', '$p$'] ,tick_formatter=[None,RR(10e-
< 15).n(digits=1)],frame=true, color='red’')+point([[t,p] for
s [t,P,q,r] in Bl])

sage: P1=line([[t,p~2+q~2-1] for [t,p,q,r] in

~ B1l],axes_labels=['§t$’', '$p~2+q~2-

« 18'],tick_formatter=[None,RR(10e-

- 15).n(digits=1)],frame=true,

- color='red’)

sage: P2=line([[t,k"~2*p~2+r~2-1] for [t,p,q,r] in

< B1l],axes_labels=["'§t$’', '$k"2*p-2+r-2-

o 18'],tick_formatter=[None,RR(10e-

- 15) .n(digits=1)],frame=true)

sage: B2=project_1(list_of_integrall[1l],F,ics,dt=0.1,T=20)
sage: max([abs(p~2+q~2-1) for [t,p,q,r] in B2])

sage: PO=line([[t,p] for [t,p,q,r] in

. B2],axes_labels=['$t$’', '$p$'] ,tick_formatter=[None,RR(10e-
< 15).n(digits=1)],frame=true, color='red’')+point([[t,p] for
- [t,p,q,r] in B2])
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sage: PO1=line([[t,p~2+q~2-1] for [t,p,q,r] in

< B2],axes_labels=['$t$’', '$p-2+q~2-

«~ 1$'],tick_formatter=[None,RR(10e-

< 15).n(digits=1)],frame=true)

sage: P02=line([[t,k~2*p~2+r~2-1] for [t,p,q,r] in
< B2],axes_labels=['§t$’', '$k-24p-2+r-2-

- 18$'],tick_formatter=[None,RR(10e-

< 16).n(digits=1)],frame=true)

In figure 6 we can see that the solution founded by the Calvo method with
exact conservation of the first invariant p? + ¢?> = 1 and the second invariant
k?p? + r? = 1 gives a condensation of greed points in those arches of the
graph where the curvature has a maximum.

1.0 4
) /\ A /\
,  0.00
- \/ v \/
—1.0 1
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t
1.0 4
) /\ /\ /\
. 0.00
- \/ v \/
—1.0 1
5 10 15 20
t

Figure 6. Graph of p(t), for the Calvo method with exact conservation of p? + ¢ = 1,
dt = 0.1(up one) and that of k2p? + r2 = 1 (down one)
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The second integral k?p? 4+ r2? = 1 in not be exactly preserved, but its value
fluctuates with a small amplitude 1077 (figure 7) by the Calvo method with
exact conservation of the first invariant p? 4+ ¢ = 1. The Calvo method with
exact conservation of the second invariant k?p? + 2 = 1 shows that the first
invariant p? + ¢ = 1 grows with an error of no more than 10~° (figure 8).
Thus, preserving one integral does not preserve the other.
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t
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—3.5x1077 4
0 5 10 15 20

Figure 7. First and second integrals for the Calvo method with exact conservation of
2, 2
p +q =1
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2.0 x 10716 4
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—2.0x 10710 v
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E2sp?+r2—1
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Figure 8. First and second integrals for the Calvo method with exact conservation of
E?p?2 +r2 =1

4. Scheme for preserving two invariants
Theoretically, the Calvo method allows to construct schemes that preserve

several invariants. We take two pairs of RK methods defined by the following
two extended Butcher tables:

00 0 0 0 00 0 0 0
1 |1 1 |1
11l 0 0 0 11l 00 0
1 1 1 1
510300 0 3]0 5 00
10010 0]1 0 10
¢ 15 5 5 3 15 5 5 &
¢ |1 0 0 0 ¢ |0 1 0 0
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The first embedded RK method corresponding to the first table is con-
structed by combining the standard RK4 method, which has order 4, with
the Euler method, which has order 1. The second embedded RK method cor-
responding to second table is constructed by combining the standard RK4
method, which has order 4, with a second order explicit RK scheme.

We are trying to find an explicit RK scheme of the type:
oot = o(a") — an (6(a”) — dy(2")) = B, (d(a") — dy(2™)),  (17)

where «,,, 5,, € R are two scalar parameters, which can be determined by
using the conservation laws, i.e.

Lzt = L(z™), i=1,2, (18)

where I; and I, are two invariants of system (1).
By definition, we have

5

6™ = on(am) = (=g flk) + (k) + (k) + (R ) At

and . ) X ,
6(™) = 6a(a) = (Ghy — ko ks + by ) AL

Thus, (18) gives us a system of two equations with respect to two unknowns
a,, and (3,. In numerical experiment, we choose the parameters «,,, 5,, as
real numbers close to the value 0.

In this way we have a system of algebraic equations for calculating pa-
rameters and we must solve this system at each step. Thus, we lose the
main advantage of the exact methods. Sage has numerous tools for apply-
ing operations on the field of ideals. In our numerical experiments we use
the elimination technique based on Grobner basis [14] to solve (18). Namely,
in each step n, after constructing multivariate polynomial ideal in variables
a,,, B, generated by (18), we use Sage built-in function elimination_ideal
to obtain an univariate equation in variable 3,,. The function roots over ring
R is used to solve this equation. Substituting one of the value of 3, which
is close to 0 to (18), the value of another parameter «,, can be obtained by
using the function roots again.

Consider elliptic function test.

We construct the function phi_solve_1() to implement the routine de-
scribed above.

We implement the described scheme in Sage as the function phi_solve_1().
Function phi_solve_1() returns the numerical points (0, z°), (At, z!), .- with
the parameters:

— list_of_integral is two invariants that are required to be conserved;
— F is the right sides of the system (1);

— ics is the initial condition;

— dt is the step size,T'is the end point of time t.

Let us take the elliptic function as example.
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sage: var('p,q,r,t")

sage: k=1/2

sage: s=4

sage: F=[r*q,-p*r,-k~2*pxq]

sage: list_of_integral=[p~2+q~2,k~2*p~2+r~2]

sage: ics=[p==0,q==1,r==1]

sage: L=phi_solve_1(list_of_integral=list_of_integral, F=F,
< ics=ics, dt=0.1, T=20)

sage: max([abs(k~2*p~2+r~2-1) for [t,p,q,r] in L])
sage: G4=line([[t,k~2*p~2+r~2-1] for [t,p,q,r] in
- L],axes_labels=["'§t$’', '$k-2+p-2+r-2-

o 18'],tick_formatter=[None,RR(10e-

- 20).n(digits=1)],frame=true)

sage: max([abs(p~2+q~2-1) for [t,p,q,r] in L])
sage: G5=line([[t,p~2+q~2-1] for [t,p,q,r] in

~ L],axes_labels=["'§t$', '$p-2+q-2-

o 18'],tick_formatter=[None,RR(10e-

- 20).n(digits=1)],frame=true)

The Calvo method allows to preserve both invariants and thus significantly
surpasses the other methods presented in the previous sections. Figure 9
shows that the error k%p? 4+ r? — 1 remains constant in size at 1076, while
figure 10 shows the error p? 4+ ¢? — 1 remains constant in size at 1073, We
can say that these errors are due to the implementation of the calculation in
solving equation (18) over the ring R instead of the algebraic closed field Q in
CAS Sage [15]. From this point of view, we can conclude that this method
can be considered as a method that exactly preserves exactly both quadratic
invariants in the elliptic function test.

Al
W J W

—5.0x 10716 4

~1.5x 1071 4

0 5 10 15 20
t

Figure 9. The first integral k?p? 4+ r2 — 1 for T = 20, dt = 0.1
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9.9 x 10713 4

8.0 x 10713 4

6.0 x 10713 4

4.0x 10713 4

pP+q* -1

2.0 x 1071 A

0.00
—2.0x 10713 4 “

0 5 10 15 20
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Figure 10. The second integral p? + ¢ — 1 for T' = 20, dt = 0.1

5. Conclusion

We have investigated several implementation of explicit RK schemes that
preserve invariants. To preserve one invariant the Buono and Calvo methods
require solving one algebraic equation with one unknown at each step. In
our example, this equation is quadratic, so we can find its numerical solution
without any difficulties. From the numerical experiments, we concluded that
the exact conservation of one invariant is not an obstacle for changing of
the other invariants. Thus, the conservation of multiple integrals requires
a different approach.

The Calvo method which preserves several invariants has a drawback: it
requires solving a system of algebraic equations with several unknown variables
at each step, i.e. has the same drawback as standard implicit RK methods
have. Fortunately, in our tests the system we obtained is much simpler than
the system described by the midpoint scheme.
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O peanmuzanuu aBHbIX cxeM PyHre—KyTTbI
C COXpaHeHWEeM KBaJpPaTUIHBIX NHBAPUAHTOB
AMHAMUYIECKUX CUCTEM

FOit u!, M. . Manerx?

L Vinusepcumem Katiau
Katiau, 556011, Kumat
2 Poceutickuti ynueepcumem 0pysctvs napodos
ya. Muxayzo-Maxaas, 0. 6, Mocxsea, 117198, Poccus

ABTOpamMu peasin30BaHO HECKOJIBKO ABHBIX cxeM PyHre—KyTThl, KOTOpbIE COXpaHs-
IOT KBa/I[paTUIHbIC NHBAPDUAHTHI aBTOHOMHBIX JUHAMUYICCKUX CUCTEM B Sage. B CTaThe
MIPEICTABJIEH IAKET €X.Sage U Pe3yJIbTAThl YUCIEHHBIX SKCIIEPUMEHTOB.

B nakere dynxiun rrk _solve, idt _solve u project 1 mocTpoeHsr Jj1st cirydast, KOIIa
TOJILKO OJIWH 33/ IAHHBIN KBAAPATUIHBIN WHBApUAHT OyaeT coxpanéu Touno. OyHKins
phi_solve 1 mo3BosseT COXpaHUTL OJHOBPEMEHHO IBA YKA3AHHBIX KBATIPATHIHBIX
nHBapuaHTa. 1 pelreHust ypaBHEHUI OTHOCUTEIHLHO ApPaMeTPOB, OIIPEIeIIeMbIX
3aKOHOM COXPaHEHUsl, UCIOJIb30BaHA METO/INKA UCKJIIOUeHNsT Ha OCHOBe OasmcoB I'péo-
Hepa, peaju3oBaHHasd B Sage. B KadecTBe TECTOBOTO NpUMEPA IPEICTABIEHHOTO
[MaKeTa UCIHOJIb3YeTCs SJIIANTHIECKUH OCHUJIIATOD. DTa JAMHAMUYIECKAs CHCTEMa,
HAMEET JIBa KBAIPATUIHBIX MHBapHaHTa. IIpecTaBieHsl YUC/IeHHbIE PE3YJILTATE CPaB-
HeHus1 craHgaprHoro sisHoro meroia Pynre—Kyrrer RK(4,4) ¢ rrk_solve. Kpowme
Toro, ana dyuxkmnuii rrk solve m idt solve, coxpaHsomuxX TOJHKO OIWH WHBaPU-
AHT, MCCAEIOBAHO U3MEHEHIE BTOPOIO KBAAPATUYHOIO MHBAPUAHTA, SJLIUIITHIECKOTO
OCIMJLIATOpA. B 3aK/Ii0UeHre paccMaTPpUBAIOTCsT HEJOCTATKU UCIIOJIB30BAHUS ITUX
CXEM.

Karouessbie cjioBa: siBHBIA MeTon PyHre—KyTThl, KBagpaTudHbIil HHBAPUAHT, JUHA-
MHUYECKas CUCTEMA, Sage





