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Abstract. The work is devoted to the construction of computational algorithms im-
plementing the method of correction of thermographic images. The correction is
carried out on the basis of solving some ill-posed mixed problem for the Laplace equa-
tion in a cylindrical region of rectangular cross-section. This problem corresponds to
the problem of the analytical continuation of the stationary temperature distribution
as a harmonic function from the surface of the object under study towards the heat
sources. The cylindrical region is bounded by an arbitrary surface and plane. On
an arbitrary surface, a temperature distribution is measured (and thus is known).
It is called a thermogram and reproduces an image of the internal heat-generating
structure. On this surface, which is the boundary of the object under study, convec-
tive heat exchange with the external environment of a given temperature takes place,
which is described by Newton’s law. This is the third boundary condition, which to-
gether with the first boundary condition corresponds to the Cauchy conditions — the
boundary values of the desired function and its normal derivative. The problem is
ill-posed. In this paper, using the Tikhonov regularization method, an approximate
solution of the problem was obtained, stable with respect to the error in the Cauchy
data, and which can be used to build effective computational algorithms. The paper
considers algorithms that can significantly reduce the amount of calculations.

Key words and phrases: thermogram, ill-posed problem, Cauchy problem for the
Laplace equation, integral equation of the first kind, Tikhonov regularization method

1. Introduction

Improving the quality and information content of images obtained by
thermal imaging methods using a thermal imager that registers thermal
electromagnetic radiation from the surface of the object under study in the
infrared range by their mathematical (digital) processing is an urgent problem.
In particular, in medicine, thermal imaging has become an effective diagnostic
tool [1-4]. The image on the thermogram, which is a visualization of the
temperature distribution on the surface of the patient’s body, makes it possible
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to assess functional anomalies in the state of his internal organs. At the
same time, the image on the thermogram in some cases turns out to be
somewhat distorted due to the processes of thermal conductivity and heat
exchange. The paper proposes a method of image correction on a thermogram
within a certain mathematical model. As an adjusted thermogram, the image
of the temperature field on the plane near the density of heat sources is
considered as more accurately transmitting the image of heat sources. It
is proposed to obtain this field as a result of the continuation (similar to
the continuation of gravitational fields in geophysics problems [5]) of the
temperature distribution from the surface from which the initial thermogram
is taken. The problem under consideration is ill-posed, since small errors in
the initial data (the initial thermogram) may correspond to significant errors
in solving the inverse problem. To construct its stable approximate solution,
the Tikhonov regularization method [6] is used.

2. Mathematical model and problem statement

Let’s consider a physical and mathematical model, in which we set the task
of continuing from the boundary of the stationary temperature distribution.

The physical model is a homogeneous heat-conducting body in the form of
a rectangular cylinder, bounded by the surface S and containing heat sources
with a time-independent density function that create a stationary temperature
distribution in the body. We associate the density function of heat sources
with the object under study. We assume that a given temperature distribution
(equal to zero) is maintained on the lateral faces of the cylinder, and on the
surface S there is convective heat exchange with the external environment of
temperature U, described by Newton’s law, according to which the density
of the heat flux at the point of the surface S is directly proportional to the
temperature difference inside and outside.

Let’s move on to the mathematical model. In a rectangular cylinder
D* ={(z,y,2): 0< <1, 0<y<l, —00o<z<oo} CR? (1)
consider a cylindrical region
D(F,00) ={(%,y,2): 0<z<l,,0<y <, F(z,y) <z<oo}, (2)
limited by the surface
S={(z,9,2): 0<x<l,,0<y<l, 2= F(z,y) < H}. (3)
We’ll assume that we also know that
a, < F(z,y) <ay < H, (z,y)ell, (4)
M={(z,y): 0<x <, 0<y<l,}. (5)

Let T be the set of side faces of the domain D(F,00). In the domain
D(F,00) we consider the following mixed boundary value problem for the
Laplace equation



0. Baaj, On the application of the Fourier method to solve the problem ... 207

(Au(M) =p(M), M € D(F,),

ou
__ =h _
) an‘s (UO U’)
U|1—\ — O,

s (6)

Lu limited at z — oo.

The problem (6) corresponds to the steady-state temperature distribution
created by heat sources with the distribution density function p, on the
surface S — a third boundary condition is set corresponding to convective
heat exchange with a medium of temperature U, with a coefficient h, zero
temperature is set at the boundary I'.

We assume that the function p is such that the solution of the problem (6)

exists in C?(D(F,0))(CY(D(F,00)). In particular, the solution of the
problem (6) allows us to find u|g, i.e. the temperature distribution of u on
the surface S, which we will call a thermogram.

Now let the thermogram be obtained as a result of measurements. Let
us now set the inverse problem. We set the problem of continuation of the
temperature distribution from the surface towards the sources in order to
obtain an adjusted thermogram as the temperature distribution wu|,_; on the
plane z = H, closer to the density carrier than the surface S.

We assume that the carrier of the function p is located in the domain
z > H, then the solution of the problem (6) in the domain

D(F,H) ={(z,y,2): 0<x<l,,0<y<l, Flv,y) <z< H} (7)

satisfies the Laplace equation. The set of side faces of the domain D(F, H) is
denoted by I';.

Inverse problem. Let the function be given within the framework of the
model (6)
f= u|s. (8)

It is required to find u| = Since the value of H sufficiently arbitrarily
z=

defines the plane between the support of p and the surface S, then in fact the
inverse problem consists in obtaining a solution u in the domain D(F, H) of
the boundary value problem

(Au(M) =0, M e D(F,H),

ul = f,

§ Ul _ g (9)
3| = MU0 =D

u’ =0.

\ Ty

We assume that the function fin (8), (9) is taken from the set of solutions
to the direct problem (6), so the solution to the inverse problem exists in

C*(D(F, H)) C(D(F, H)).
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Note that in the problem (9) on the surface S of the form (3), Cauchy
conditions are set, that is, the boundary values f of the desired function v and
the values of its normal derivative are set, so the problem (9) has a unique
solution. The boundary z = H of the domain D(F, H) is free and, thus, the
problem (9) is unstable with respect to errors in the data, i.e. ill-posed.

The function u|,_; will be considered as an adjusted thermogram. Since
the plane z = H is located closer to the support of density p, it should be
expected that the corrected thermogram more accurately conveys information
about the distribution of heat sources than the original thermogram.

Further we give an explicit representation of the exact solution of the
problem (9).

3. Exact solution of the inverse problem

~ Based on the [7] scheme, an exact solution of the problem (9) is constructed
" I[i]t ©(M, P) be the source function of the Dirichlet problem in the cylinder
b Au(P) = —p(P), P € D>,
u‘x:o,zm =0, u‘y:O,ly =0, (10)
u—0 at |z| — oc.

In the domain z,; < H in the cylinder (1), we introduce the notation

dp

(M) = / [h(Uo—f(P))sO(M,P)—f(P)%D(M,P) dop. (1)
S

In [8], the following representation of the solution of the problem is ob-
tained (9)
u(M)=v(M)+ ®(M), MeD(F,H), (12)

where the function @ is calculated on the known functions f and f;, and the
function v has the form:

N . Tnx . T™my
(M) =— o, . (a)expik,,,(# —a)}sin sin ,
0= 3 Bl by - a)sin T an L
M(z,y,2) € D(—o0, H),
where 1o
n? m?
knm = W(Z—Q + l_2> (14)
x y
and & (a) — Fourier coefficients of the function ®(M)
~ 4
¢ (a)=-— ®(x,y,a)sin T sin medasdy (15)
Ll L, L,

II(a)
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on the auxiliary plane:
M(a) = {(z,y,2): 0<2 <, 0<y<l, z=a}, a<a. (16)

For a ® function of the form (11) considering that dop = 1y (x p, yp)dx pdy p,
where the normal n; to the surface S is calculated by the formula

n; = grad (F(r,y) —2) =V, F—k, n;=|n, (17)

we will use the representation

o) = [ [B(U = S yp) oL, P s (op.p)-

IT
— f(@p.yp) (00, V (M, P))|,_ |dapdyp. (18)

When calculating the function ®(M)|yserr(,) on the rectangle Il(a) for the
source function p(M, P), you can use the formula

95(‘“4?} )
2 7knm|ZM7ZP‘
(& Sinﬂ-nx'MSin nmyMSinﬂnxPSinﬂ-myP, (19)
Tl Z k [ [ [ [
Y nm=1 nm T Y T Y

which for z,;, = a and P € S takes the form

2 S - xPayP>_a)
p(M, P) = L Z X
X sin M iy TTYM Gy TREP ) TP, (20)
L, I, L, L,

The series converges uniformly, since the exponent is estimated by
exp{—~k,,,(a; —a)}. When calculating the function ® in (12), the source
function at a, < z;;, < H and P € S takes the form

2 0 e_knm<ZM_F(xP7yP))
p(M,P) =" 3 x
laly o2 K
x sin M iy TYM ) TP ) TP (21)
L, l, L, L,

The series converges uniformly on any fixed plane z,, = const, since
the exponent is estimated by exp{—Fk,,,(z); — a5)}, that is important for
applications. At the points z,; < a,, the source function can be calculated
by the reflection method.
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4. Construction of an approximate solution
to the problem

Let the function f in the problem (9) be given with an error, that is, instead
of f, the function f? is given, so that

17— fllo,mm < 0. (22)

In this case, the function (11) is calculated approximately

w7(0) = [ [0y = ey M, P, g p. )~

— f(s(xpa yp)(ny, Vpp(M, P))|P€S} drpdyp. (23)

The approximate solution to the problem (9) is constructed using the
Tikhonov regularization method [6] and in accordance with (12) has the form

ul (M) =02 (M) + ®° (M), M < D(F,H), (24)

(e

where ®° is a function of the form (23) and

(
)
m
(

> % (a)exp{k,,, (2 a)} . mnx Ty,
M) =— Y M2 sin — i 2o (25
ve (M) 2. Tt aexp{2k,, (H —a)} sin 3 sin L (25)

Note that the members of the series (25) differs from the members of the
series (13) by the regularizing factor (1 + «exp{2k,,,,(H —a)})~!, ensuring
the convergence of the series.

In the numerical solution, the bulk of the calculations is related to the
calculation of the Fourier coefficients of the function ®° by the formula (15).

The next section is devoted to the calculation of Fourier coeflicients with
a significant reduction in the amount of calculations.

5. Calculation of Fourier coefficients

As follows from the formulas (15), (23), (20), when calculating the Fourier
coefficient for each pair of indices n and m, a superposition of the following
calculations is required: summation of the series for ¢, integration on the
surface S, integration on the rectangle II(a). Thus, when discretizing |9] the
problem (N, points on the variable x, N, points on the variable y) when

calculating Fourier coefficients, about O(J\fgg]\fy)4 operations are required.
This is the largest volume of operations when constructing a solution to the
problem (9), during which, in addition to time, there is a loss of accuracy
and an additional error is formed in calculating the Fourier coefficients and
solving the problem as a whole.

It seems advisable to carry out some of these operations analytically,
reducing the subsequent amount of calculations, namely. Let us carry out the
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integration in the formula for calculating the Fourier coefficients (15) under
the sign of the integral in (23) and under the sign of the sum in (20), and use
the orthogonality of the complete system of functions

{Sin 7rlnx sin W;ny} . (26)

€T Y

n,m=1

Calculate the Fourier coefficient from the first term in (23)

~ 4
(I)l,nm(a> - ﬁ / @1<x7y7 CL) sin Trlnx sin Tr;nydaj‘dy =
Ty

z Yy

4
= / sin 2% sin 7rflmy dxdyx

X/[h(Uo—f5($P7QP>)90(MaP)‘pesm(xpay])) dzpdyp. (27)
Il

By integrating on the rectangle II(a) under the sign of the integral on the
rectangle II, using the representation (20), we calculate the value

4
- / sin sin7Tmyd:1:dycp(M,P)|PE =

[l L, [ S
Ylia) y
4 2 > k1 (F(zpyp)—a)
= L / sin lex sin WzydxdyE /Z - o X
I(a) n,m'=1

sin l sin l . (28)

'z . mm'y . mn'zp . mmyp
@ Ly @ y

By performing integration under the sign of the sum of uniformly convergent
series and using the orthogonality of the system (26), we obtain

4
ﬁ / sin WZZE sin Wzydxdygp(M, P)|Pes B
I(a)
4 9 0o —k: n/m’ (F(zp,yp)—a) lmly . Wn/xp . ﬂ-m/yP
AN Z o g OO SIS o
2 —kpm (F(zp,yp)—a)
_ € sin “0EP iy TP (29)
lxly knm l:c ly

Using (29), for the Fourier coefficients (27), replacing integration variables
xp and yp with  and y, we get
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~ 2
P, a):llk X

z'y"Vnm

TNT ™y

x/{ — fox,y))e Fnm(F@y)=aln (z, 4)sin l sin l dzdy. (30)
I

T Yy

From the formula (30) it follows that to calculate the Fourier coefficient of
the function ® on the rectangle I1(a) there is no need to calculate the function
itself. You can use the formula (30), which formally coincides with the formula
(15) for the Fourier coefficients on the system (26) of some function depending
on the Fourier indices and including information about the surface S in the
form of a function F'and the normal n; calculated by the formula

n(2,y) =/ (Fy(2,9))? + (Fy(2,9))* + 1.

In this case, the number of operations has the order of O(NxNy)Q, that is,

the second order in terms of the number of points, which is two orders of
magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).

Similarly, the Fourier coefficient of the second term is calculated in the
formula (23)

= 4
(1)2,nm(a) = l l / ®2 ('x? y7 a) Sin 7Tl/n/$ Sin Tr;nydwdy =

= N /sinﬂlnxs' 7Tl ydxdyx

x Yy

/ xPayP 1117VP90(M P))‘ ]dxpdyp- (31)
I

Using the representation (20), we calculate the value

2 e e_kn/m/<F(xP7yP>_a) . Wn/x
E sin X
L, o z
n ,m /=1 nm e
/ / /
.mm'y  mn'zp . mm'ypmn
X sl ——= cos ——sin — l F (zp,yp)+
y @ y '
+ 2 s e_kn’m’(F(xPayP)_a) . mn’ T
E sin X
Ll 2 ko l
n’,m’=1 n'm T
/ / / /
.omm'y . 'z ™'y pTm
X sin sin P cos P Fo(xp,yp)+

[ [ [ [

Yy €z Y Yy
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/ /
. mm'y . mzp . mm
X sin sin P sin Jp. (32)

[ [ [

Yy €T Yy

By integrating on the rectangle I1(a) under the sign of the integral on the
rectangle II, performing integration under the sign of the sum of a uniformly
convergent series and using the orthogonality of the system (26), we obtain

4
— / sin — - sin 2 dzdy (ny, Vpp(M, P))|P€S =

[l l, [
Yl y
2 e_knm(F(mP’yP)_a) TN . Tm ™
= k !cos l L sin lyPl F (xp,yp) +
xy nm x y T
+ sin TP o TP TN F/ (zp,yp) + Kk, sin e T (33)
L, L, 1, "7 L, L,
Hence and from (31) follows
i 2 [ g (F(y)-a)
¢)2,nm<a> l2l k f T y nm
zly nm
X F;(x, Y) COS Wlnx sin W;nyda:dy—k
x y
2
T /f‘S (x,y)e (F(z,y)— ‘L)F’(:E y) sin 2 cos meclazdynL
lxlzknm L, L,

— / fo(x, y)e Fnm (F@y)=a) gip 7Tln:13 sin ﬂ-lmyda:dy. (34)

€T Y

Thus, the Fourier coefficient <f>27nm(a) is calculated as the sum of formally
calculated Fourier coefficients over orthogonal systems

% 0o
. T™Thxr . Ty ™Tmx . Tmy
Sin Sin , COS Sin y
n,m= n,m=
oo (35)
. TThX T™my
{Sll’l I COS I }
x Y n,m=1

of functions depending, among other things, on the indices of the Fourier
coefficients. In this case, as well as when calculating the Fourier coefficient

from the first term, the number of operations has the order of O(NxNy)Z,
that is, the second order in terms of the number of points, which is two orders
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of magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).
Summing (30), (34), we get the Fourier coefficient

&)nm<a) - i)l,nm(a) + (’IBQ,nm<a>' (36)

According to the remarks to the formulas (30), (34) in general, the number
of operations when calculating the Fourier coefficients using these formulas
relative to the number of N N, points on the thermogram has the order of

O(N,N,)2.
To calculate the Fourier coefficients using the formulas (30), (34), the
Hamming method [10] is used.

6. Conclusion and discussion

Stable solution of the inverse problem (9) can be used for mathematical
processing of thermograms taken with a thermal imager, in particular, in
medicine [4], in order to correct the image on the thermogram. Note that
taking into account the blood flow leads to the need to use the metaharmonic
equation [11, 12| in problem (9). As already mentioned, a thermogram, with
one or another reliability, convey an image of the structure of heat sources
inside the body. Refinement of the image on the thermogram can be carried
out within the framework of the problem (9). In this case, the function fis
associated with the original thermogram, and the function u;; is considered
the result of processing the thermogram. Since the function u; represents
the temperature distribution on a plane closer to the studied heat sources
than the original surface S, we can expect a more accurate reproduction of
the image of the sources on the calculated thermogram u;. The results of
calculations carried out on a model example show the effectiveness of the
proposed method and algorithm based on the formulas (24), (25), (23), (36),
which can be used to process thermographic images.
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O npumenenun meroma Pypbe AJIs pellleHus 3a1a49u
KOppeKIumu TepMorpadmndecKux n300pa>KeHui

Obanga Baaxk

Poccutickuti ynusepcumem dpyatcovr Hapodos,
ya. Murayxo-Maxaas, d. 6, Mockea, 117198, Poccus

Anvoranusi. Pabora 1ocBgiieHa mocTpOeHUIO0 BbIYUCIUTEbHBIX aJITOPUTMOB, pe-
AJU3YIONUX METOJI KOPpeKInu TepMmorpadudeckux n3zobpaxkenuii. Koppekriiust
OCYIIIECTBJIACTCS HAa OCHOBE PEIIeHUd HEKOTOPOU HEKOPPEKTHO ITOCTABJICHHONW CMeIllaH-
HOIl 3aj1a49u JIJIsi ypaBHeHus Jlamjaaca B MUJINHIPUIECKOH 00IaCTH MPSMOYTOJIBHOTO
cedeHusl. JTa 3a/1a9a COOTBETCTBYET 33/a4e aHAJIUTHIECKOTO MPOJIOIKEHNsT CTAIHO-
HapHOT'O PaCIIpPejie/IeHUs TeMIIepaTypPhl KaK rapMOHUYECKON (DYHKITUU C TTOBEPXHOCTH
HCCJIE/LyeMOTO O0bEKTa B CTOPOHY MCTOYHUKOB Teria. [lunmnapuieckast 001acTh orpa-
HMY9€CHa HpOI/IBBOHBHOﬁ IIOBEPXHOCTHIO U IIJIOCKOCTBIO. Ha HpOI/ISBOHBHOﬁ ITIOBEPXHOCTHU
nu3Mepsercs (M TakuM 00pa30M, 3aJ[aH0) PaCIpeJie/ieHne TeMIePATyPbl, HA3bIBAEMOe
TEPMOIrPAMMOI ¥ BOCIIPOU3BO/IsIee N300pazKeHne BHYTPEHHEeH TerIOBbIIe TAIONIeNl
CcTPYKTYpbl. Ha 3T0i moBepxHOCTH — IpPaHUIE UCCJIEyeMOro 00beKTa — UMEET MECTO
KOHBEKTHUBHBIN TEIJIOOOMEH C BHEITHEH CPeJioi 3a/aHHOW TeMIIepaTypPhbl, KOTOPDIH
OIMCBIBAETCS 3aKOHOM HpioTOHA. DTO TpeThe KpaeBoe yCJIOBUE, KOTOPOE B COBO-
KYIHOCTHU C IIEPBBIM KPaeBbIM YCJIOBHEM COOTBETCTBYET 3aJIaHUIO ycjioBuii Komm —
FPAHUYIHBIM 3HAYEHUSM UCKOMON (DYHKIUU U €€ HOPMAJIbHOI IIPOM3BOMHON. 3a1ada
HEKOPPEKTHO IIOCTaBJIEHA. B CTaTbe IIPUMEHECHUEM METOLa PEryJjadpu3daln TI/IXOHOBa
[IOJIy YEHO MTPUOJIMKEHHOE PeIieHne TI0CTaBJIeHHOM 3a/1a191, YCTONINBOE 110 OTHOIIEHUTO
K IIOI'PENTHOCTH K JaHHbIM Ko, 1 KoTopoe MOXKeT ObITh MCIOJIb30BAHO JJjIsi IIOCTPO-
enns 3(pPEeKTUBHBIX BBIYUC/IUTEIbHBIX aJrOPUTMOB. B pabore paccMaTpuBaroTCst
AJITOPUTMBI, TTO3BOJISIONINE CYIIECTBEHHO YMEHBIIUTb 00beM BbIYUC/IEHUA.

KiroueBbie cjioBa: TepMorpaMmma, HEKOpPEeKTHas 3a/a4a, 3aja4da Komm jijisd ypas-
nenwust Jlarmiaca, naTerpajbHOe ypaBHEHHE IIE€PBOTO POJia, METOJ PErysipu3ariiu
Tuxonosa



