Discrete & Continuous Models
@ & Applied Computational Science 2023, 31 (1) 526
W%

ISSN 2658-7149 (online), 2658-4670 (print) RttP://journals.rudn.ru/miph

Research article
UDC 537.8:512.723
DOLI: 10.22363/2658-4670-2023-31-1-5-26
EDN: VNJCSU

Julia language features for processing statistical data

Migran N. Gevorkyan',
Anna V. Korolkova!, Dmitry S. Kulyabov!:?

U Peoples’ Friendship University of Russia (RUDN University),
6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation

2 Joint Institute for Nuclear Research,
6, Joliot-Curie St., Dubna, Moscow Region, 141980, Russian Federation

(received: January 16, 2023; revised: March 13, 2023; accepted: April 10, 2023)

Abstract. The Julia programming language is a specialized language for scientific
computing. It is relatively new, so most of the libraries for it are in the active
development stage. In this article, the authors consider the possibilities of the
language in the field of mathematical statistics. Special emphasis is placed on
the technical component, in particular, the process of installing and configuring the
software environment is described in detail. Since users of the Julia language are often
not professional programmers, technical issues in setting up the software environment
can cause difficulties that prevent them from quickly mastering the basic features of
the language. The article also describes some features of Julia that distinguish it
from other popular languages used for scientific computing. The third part of the
article provides an overview of the two main libraries for mathematical statistics.
The emphasis is again on the technical side in order to give the reader an idea of the
general possibilities of the language in the field of mathematical statistics.

Key words and phrases: Julia programming language, statistic processing

1. Introduction

In this paper we give a brief overview of Julia [1] programming language
capabilities in the field of mathematical statistics. Julia is a fast compiled
language with dynamic typing, originally developed for scientific computing.
The language is relatively new, however, it has already reached version 1.8
and the core of the language is quite stable. An impressive number of modules
have been created for Julia and several books have been written [2—4].

There are a number of arguments in favor of learning and using the Julia
language:

— Just-in-Time compilation (JIT) [5] allows you to simultaneously achieve
high performance and ease of use of the interpreted language. Single-
threaded programs in Julia have the performance of programs in C/C++

and Fortran [6] and significantly exceed the interpreted languages, such
as R, Python, Matlab, SciLab, etc.

© Gevorkyan M.N., Korolkova A.V., Kulyabov D.S., 2023

This work is licensed under a Creative Commons Attribution 4.0 International License
BY NC

https://creativecommons.org/licenses/by-nc/4.0/legalcode

6 DCM&ACS. 2023, 31 (1) 5-26

— The syntax of Julia is simple and for researchers familiar with Python,
Fortran and R languages, it will not be difficult to master it at a basic
level in the shortest possible time.

— The language has built-in extensive capabilities for parallel and dis-
tributed computing, which are constantly being refined.

The authors tend to give a general idea of Julia language’s available
capabilities in the field of mathematical statistics and demonstrate a number
of examples that allow one to quickly grasp the features of the language and
move on to use it. At the beginning of the article we give a step-by-step
description of the configuration of the working environment for Unix-type
systems (macOS, GNU /Linux) and Windows. We do not give a consistent
description of the syntax of the language, but focus on some specific features
(dynamic dispatching, custom data types) that distinguish Julia from most
popular programming languages.

Libraries for mathematical statistics for Julia are combined under the
general name Julia Statistics [7, 8] and a separate section is allocated for them
on the official forum of language developers [9]. In the main part of this paper,
we give an overview of the modules StatsBase and Distributions [10, 11],
comparing their functionality with the libraries of the R language and the
scipy.stats library of Python [12].

2. Installation and configuration of Julia environment

There are several ways of programs development in Julia languages.

— Using REPL-shell (read-eval-print loop) in interactive mode, by running
the julia command from the terminal and entering instructions that
will be executed immediately, and the user will see the returned result.

— By saving the program source code to files with the extension j1 and then
passing them for compilation and launching to the julia JIT compiler
(same julia command).

— By using interactive shells, such as Jupiter Notebook [13] and Pluto [14].

We will describe the process of Julia installation, as well as Jupiter in-
teractive shell and all necessary modules in the GNU /Linux and Windows
environments. The installation does not require superuser rights and it can
be performed remotely by connecting via ssh, which can be convenient if
calculations are supposed to be performed on a remote server.

2.1. Installing Julia and the necessary packages

On the official Julia website, in the downloads section, binary files for
many systems are presented. Download the archive for the 64-bit version of
GNU /Linux:

wget https://julialang-s3.julialang.org/bin/linux/x64/1.8/juli
~ a-1.8.5-1inux-x86_64.tar.gz
- --no-check-certificate

Please note that the url may change, as it clearly indicates the current
version of the Julia distribution. Extract the files from the downloaded
archive:

M. N. Gevorkyan et al., Julia language features for processing statistical ... 7

tar -xvzf julia-1.8.5-1linux-x86_64.tar.gz

The directory julia-d386e40c17 will be created (or with another alphanu-
meric combination), which we will rename to just julia:

mv julia-d386e40cl7/ julia
export PATH=""/julia/bin:$PATH"

In the case of the Windows operating system, we will describe the instal-
lation of the portable version. In the same section of the official website,
download the 64-bit (portable) version for Windows and unpack the archive,
for example, into the following directory:

E:\Program Files\julia

In this directory, we will create the folder depot, and in it, the folder
config, in which we will create an empty text file startup. jl, which we
will need next. The Julia directory depot will host an index of modules from
the official repository, as well as installed modules and additional libraries.
The location of this directory is non-standard and in order for the Julia JIT
compiler to recognize it correctly at startup, you should create an environment
variable JULIA_DEPOT_PATH and assign it a value:

E:\Program Files\julia\depot

We also added the path to the Julia JIT compiler to the variable PATH
(executable file julia.exe)

E:\Program Files\julia\bin

After the installation is complete, run the Julia command shell. To do
this, run the command julia in the console. In the case of Windows, it is
recommended to use PowerShell or the new Windows Terminal application [15].
After launching, press the key] and switch to package management mode,
where you run the command update, which will download the package index.
You can also immediately install the necessary packages using the command
add, for example

add StatsBase Distributions Pluto Plots

The built-in package manager saves all package-related files to the stor-
age directory (depot), which is pointed to by the environment variable
JULIA_DEPOT_PATH. No other directories are involved.

On Unix systems — if the variable JULIA_DEPOT_PATH is not defined —
the corresponding directory is created in the user directory and is called
.julia. In it, you should also manually create a directory config with the
configuration file startup. j1.

At this stage, the installation and configuration of the compiler is complete
and we will proceed to the installation of additional tools that may be needed
to write programs on Julia.

2.2. Jupyter installation

Julia language code can be executed in the Jupyter environment, for which
you should install the Jupyter Notebook kernel, which is included in the
package IJulia. During the installation, the built-in Julia package manager
automatically downloads the Python distribution miniconda [16], places it
in the storage directory and installs with its help all the necessary python

8 DCM&ACS. 2023, 31 (1) 5-26

packages, including Jupyter Notebook. Since most Julia users probably
already have a Python distribution installed on the system, we will show you
how to use the already installed Jupyter in Julia. Even if there is no Python
distribution in the system, it seems more practical to install it separately, as
this will allow better control of the packages used.

Next, we will describe the process of installing Jupiter using the Miniconda
distribution into the user’s local directory. Download the installation script
from the official website:

wget https://repo.continuum.io/miniconda/Miniconda3-latest-Lin
- ux-x86_64.sh

and start the installation process:
bash Miniconda3-latest-Linux-x86_64.sh

During the installation process, you must read and accept the license
agreement by using the key Enter to scroll through the text and typing the
word yes to accept it. After that, the installer will prompt you to select the
directory where the distribution directory tree will be copied. By default,
this is the directory miniconda3 in the user’s home directory. Let’s leave it
unchanged, for which you should press Enter. The process of downloading the
necessary files will begin, after which the installer will offer to add the path
to the Python interpreter to the environment variable PATH. You should agree
by typing the word yes and pressing Enter. Then check that the following
line has been added to the file .bashrc located in the home directory:

export PATH=""/miniconda3/bin:$PATH"

where ~/miniconda3/bin is the path to the miniconda directory. If the
installer did not add this path automatically, you can do it manually.

After the anaconda installation is completed, the command conda will be
available with which you can manage the installed Python modules. Let’s
use this command to install the modules we need (Numpy, SciPy, Matplotlib
and Jupiter):
conda install numpy matplotlib scipy jupyter

The process of downloading and unpacking the required files can take
considerable time, and after completion, the miniconda directory will occupy
about 2.5 GB of disk space. To check the correctness of the installation, run
Jupiter by running the following command:

jupyter notebook --notebook-dir=" --port=7000

The interactive shell session will start. If launched on a local computer,
a browser will automatically open with a list of files and directories of the home
directory (option --notebook-dir="). If you run it on a remote computer,
you should add the option --no-browser, then you can connect to the session
that has started remotely by entering the address of the remote computer
into the local network in the browser address bar or organize an ssh tunnel.

Now, in the file startup.jl, which we previously created, but left empty,
we should add local environment variables that will point to the locations of
the executable files of the python interpreter and the jupyter shell:

ENV["PYTHON"] = "~/miniconda3/bin/python"
ENV["JUPYTER"] = "~/miniconda3/bin/jupyter"

Note that the variable ENV is a dictionary to which, when the compiler is
started, system and user environment variables are added, as well as a number

M. N. Gevorkyan et al., Julia language features for processing statistical ... 9

of local Julia parameters. This dictionary is available in any julia program
for reading and modification, which we used by adding two new keys to it.

After that, run REPL Julia with the command julia and install the
necessary packages:

add PyCall PyPlot IJulia

During the installation process, the package manager will see that the
variables PYTHON and JUPITER have been assigned values and the local copy
of miniconda will not be installed.

After the installation is completed, when Jupiter Notebook is launched,
the Julia kernel will be available and it will be possible to create and open
interactive notebooks with scripts in the Julia language.

In addition to Julia, we also installed the package PyCall, which greatly
simplifies calling functions from python modules, and the package PyPlot,
which makes it possible to use the library Matplotlib in Julia. In this article,
we will not use the capabilities of these packages, but for those users who are
used to standard Python scientific libraries, they may be useful, since they
transfer the usual functionality to Julia.

2.3. Pluto shell as an alternative to Jupiter

Using Jupyter with the Julia language has at first glance an unobvious
drawback associated with a fundamental feature of the architecture of the
language itself — multiple dispatching of functions. In the case of Jupyter, it
manifests itself as follows: when initially creating a function in a separate cell
and executing this cell once, no problems arise, however, if the programmer
decides to change the body of this function without changing the signature of
the arguments, then re-executing the cell with the modified code will lead to
an error. If the list of arguments has been modified, there will be no errors
during execution, but a new method will be created or, in other terminology,
an overloaded version of the function will be created. This difficulty can be
overcome by restarting the kernel, but this makes the process uncomfortable
if the cells contain resource-intensive calculations, which will have to be
done again every time. There will definitely be such cells, since the initial
initialization of graphical libraries for data visualization in Julia is extremely
slow, and the main advantage of Jupyter is precisely the interactive display
of the results of various data visualization.

The Julia development community has created an alternative shell called
Pluto. jl. At the moment, the repository of this package [17] ranks second in
the number of stars on GitHub, second only to the Julia compiler itself [18].

Shell Pluto. jl is generally similar to Jupyter, but has two key differences:

— reactivity (reactive);
— no hidden states (no hidden workspace state).

Reactivity lies in the fact that all cells of the interactive notebook are
immediately restarted if the variables on which they depend are modified,
even if these variables are contained in other cells.

The absence of hidden states means that if a cell is deleted, then all the
variables, functions and data structures contained in it are deleted from
memory and become inaccessible. It is also impossible to redefine variables
and functions in neighboring cells, which removes the problem with implicit
function overloading.

10 DCM&ACS. 2023, 31 (1) 5-26

To install Pluto, just run add Pluto in package management mode in
Julia REPL. No additional manipulations are required, since Pluto is written
in Julia only. At the time of writing, this package has reached version 0.19.22,
but it works quite stably. Among the disadvantages, it can be noted that the
interface is too minimalistic, as well as the demands on the amount of RAM.

To run the shell in Julia REPL mode, follow these instructions

import Pluto
Pluto.run()

At the same time, the browser will immediately be launched with a welcome
interface, and a link will be displayed in the console, which can be used for
remote connection.

Let’s note some features of the interactive notepad. To store the contents of
the notebook, a simple text file with the extension j1 is used, the entire code
of the cells is stored as a regular code in the Julia language, and standard
code comments are used to store meta information. This makes it possible to
execute Pluto notebooks like regular Julia programs, passing them to the JIT
compiler for execution.

Pluto has built-in support for local package environments. It automatically
detects the packages used by looking at instructions used and import and
downloading the necessary packages to the local directory. This is useful if
you need to transfer the created notebooks to third-party users, as well as
fix specific versions of libraries. However, this behavior can be disabled if
desired, for which the following code should be added to the first cell

begin
using Pkg
Pkg.activate()
end

This command will disable the local package manager and Pluto will use
the standard Julia environment that was created when the package update
was initially launched.

This code snippet illustrates another feature of Pluto which is called reac-
tivity. By default, each cell can contain only one line of code. In the case of
several lines, they must be framed with the construction begin ... end. This
may cause some inconvenience, but the shell itself determines such cells and
offers to automatically insert begin and end.

Pluto notepad allows you to add cells with comments in markdown format
in combination with IXTEX formulas. Unlike jupiter notebooks in Pluto, these
are not special cells, but standard ones with a multiline string preceded by
the md modifier, for example:

md"""# Header
The text of the comment and the equation $\dot{x} = f(x)$

mnn

Finally, we note that Pluto includes the module P1lutoUI, which allows you
to create interactive graphical interface elements such as sliders, drop-down
lists, text input fields, etc. and bind variables to them. This allows you to add
interactivity to the notebooks being created, which is useful, for example, for
selecting parameters for certain functions. Due to reactivity, when changing
the values of variables, all graphs that depend on them will also be rebuilt.

M. N. Gevorkyan et al., Julia language features for processing statistical ... 11

3. The main features of the Julia language

The Julia language was originally created for the field of scientific pro-
gramming and its syntax is very similar to the syntax of the Fortran and
Python languages, which are well known to specialists in scientific computing.
However, at the same time, it contains some specific features, and without
knowing them, it will be difficult to use third-party libraries effectively. We
will illustrate all the features with examples from probability theory and
mathematical statistics.

3.1. Custom data structures

One of the distinctive features of the Julia language is the high performance
of data types created by the user himself. In many modules there is large
number of custom data types and functions.

A composite data type in the first approximation resembles a structure
from the C-language. It is specified using the construct struct, inside which
the fields of the structure with the type annotation are listed. As an example,
consider setting a structure that stores the parameters of a normal distribution.

"Normal distributions"
struct Normal
"first moment"

p::Real
"standard deviation"
0::Real

end

Let’s list some important features.

— Since Julia provides full Unicode encoding support, Greek letters and
other symbols that are standard for mathematical formulas can be used
as field designations.

— A composite type and its fields can be provided with documentation lines
that explain the purpose of the structure and its fields. These strings
are similar to Python doc-strings, with the difference that they can be
supplied to almost any object and they must be specified before, not
after the declaration.

— Julia is a dynamically typed language, but it supports type annotations
that can be used by the compiler for code optimization and to limit
the types of variables passed to functions when they are called and to
structures when they are initialized.

After defining the structure, you can create objects of type Normal using
the default constructor.
N = Normal(O, 1)
@show typeof (N)
@show N.u, N.o

The macro @show prints the line of code that is passed to it and the result
of executing this line of code. So, in the example above, the following will be
printed to standard output:

typeof (N) = Normal
(N.u, N.o) = (0, 1)

12 DCM&ACS. 2023, 31 (1) 5-26

The default constructor is created automatically, but it can be set explicitly
in the body of the structure, for example, if you need to limit the scope of
acceptable values of the fields of the structure. After the checks, it is necessary
to allocate memory for the fields of the structure using a special function new.

struct Normal

M: :Real
0::Real
function Normal (u, o)
if o ==
throw (ArgumentError ("o != 0"))
end
return new(u, o)
end
end

Only one main constructor can be defined in the structure body. If you need
to define additional constructors, they should be set outside the structure. So,
you can define a constructor without arguments, which will set the parameters
of the standard normal distribution.

function Normal ()
return Normal(0.0, 1.0)
end

3.2. Multiple dispatch

Julia implements a multiple dispatching mechanism [5, 19, 20|, which,
according to the developers, is a more flexible mechanism compared to the
object-oriented approach applied to mathematical applications.

Each function in Julia can have many implementations called methods.
Implementations have the same name, but differ from each other both in the
number of arguments and their types. When calling a function, the compiler
analyzes the arguments passed to it and calls the desired implementation.
Various operators such as +, - are also functions and can be overridden for
any new data type.

To illustrate multiple dispatching, we additionally define a structure that
stores the parameters of the exponential distribution:

struct Exponential <: Distribution
X::Real
function Exponential(\)
if A <=0
throw (ArgumentError ("X > 0"))
end
return new(\)
end
end

Now we implement two functions that calculate the PDF of normal and
exponential distributions:

function pdf(d::Normal, x)
return 1/(sqrt(2*mn)*d.o) * exp(-(x-d.w)"2 / (2xd.c"2))
end

M. N. Gevorkyan et al., Julia language features for processing statistical ... 13

function pdf(d::Exponential, x)
return d.\ * exp(-d.*x)
end

It should be noted that the first arguments of the function are provided
with type annotations. This is done so that the compiler can call the desired
implementation depending on the type of the first argument:

N = Normal(O, 1)

E = Exponential(2)

@show pdf (N, 3) # <- call of the implementation for the normal
~ distribution

@show pdf(E, 2) # <- call of the implementation for the
~ exponential distribution

In addition, Julia allows you to automatically vectorize a scalar function,
that is, apply it to each element of some array, without having to implement
an additional method. To do this, it is enough to use a special syntax:

pdf. (N, [1, 2, 3, 4, 51)

To achieve a similar effect, R uses the function Vectorize, and Python
uses map or a list assembly.

4. Module StatsBase.jl overview

In the module StatsBase. j1 [10]| implement basic functions for working
with statistical samples presented as one-dimensional arrays. Due to the ease
of use of most functions, we will not dwell on examples, but will give only
short description of the main functionality of this module.

— Vectors of the sample weight coefficients (weight vectors).

— Functions that calculate the mean (geometric, harmonic, power and
weighted arithmetic mean).

— The simplest statistical functions.

— Moments that take into account the vectors of weight coefficients:
mathematical expectation, variance, standard deviation, skewness
coefficient, kurtosis coefficient and central moments of arbitrary
order.

— Standardized score (Z-score).

— Entropy calculations, such as standard, Rényi (generalized) entropy,
crossentropy, Kullback-Leibler divergence distance.

— Quantiles and mods.

— Robust statistics: truncation and winsorization of the sample.

— Comparing two samples, by calculating different discrete metrics.

— Calculation of scattering, covariance, and correlation matrices.

— Functions that calculate the frequency of occurrence of a particular value
in the sample.

— Calculation of histograms.

— Autocorrelation and autocovariance.

Functions from the module StatsBase. j1 is actively used in other modules,
so it is included in the list of dependencies of most statistical libraries created
for Julia.

14 DCM&ACS. 2023, 31 (1) 5-26

5. Module Distributions.jl overview
5.1. Brief overview of the module

The module Distributions. j1 [21| implements functions and methods
related to probability distributions (mainly one-dimensional discrete and
continuous, as well as a small number of multidimensional ones).

— Probability distribution Functions (CDF) and probability distribution
density functions (PDF).

— Functions for calculating statistical characteristics of distributions (ex-
pectation, variance, moments, modes, quantiles, kurtosis, etc.).

— Characteristic functions of distributions and generating functions of
moments.

— Methods for selecting distribution parameters based on statistical data
(distribution fitting) by the maximum likelihood method (Maximum
Likelihood) and the Sufficient Statistics method (Sufficient Statistics).

5.2. Module installation

In order to use the module Distributions.from, it must first be installed
using the command Pkg.add ("Distribution.from"). After that, it can be
imported using the instructions using or import. We use the second method
to avoid mixing the module namespaces Distributions. jl with the global
scope.

import Distributions
const dist = Distributions

Now dist will serve as a short synonym for Distribution and all functions
and variables defined in the module name area will be accessible via the
period operator..

5.3. Creating a probability distribution

Since Julia’s custom data types are not inferior in performance to the built-
in data types, in the module Distributions. jl1, probability distributions
are implemented as additional data types. For example, to set a normal distri-
bution, you should call the constructor Normal, passing to it two parameters:
i and o are the mathematical expectation and the standard deviation:

M, 0 = 0.0, 1.0 # location, scale
Normal = dist.Normal(u, o)

The wvariable Normal will now have the type Distributions.
Normal{Float64}. If you call the constructor without arguments, then the
standard normal distribution will be set, with =0 and o = 1.

Similarly, other distributions can be set, for example, the Beta distribution:
Beta distribution

a, B 1.0, 1.0 # shape
Beta = dist.Beta(a, B)

Complete lists of discrete and continuous distributions are given in the
tables 1 and 2. On the official documentation page [11] there is a description
of almost all implemented distributions, from which you can find out what

M. N. Gevorkyan et al., Julia language features for processing statistical ... 15

parameters and in what order you need to pass to the constructor and what
default values are provided for these parameters. Basically, developers adhere
to the established notation in the literature.

List of one-dimensional discrete distributions implemented in the module Distribut’irizl.eji
Ne | Function Description
1 | Bernoulli Bernoulli distribution
2 | BetaBinomial Beta-Binomial distribution
3 | Binomial Binomial distribution
4 | Categorical Categorical distribution
5 | DiscreteUniform | Discrete Uniform distribution
6 | Geometric Geometric distribution
7 | Hypergeometric Hypergeometric distribution
8 | NegativeBinomial | Negative Binomial distribution
9 | Poisson Poisson distribution
10 | PoissonBinomial | Poisson-Binomial distribution
11 | Skellam Skellam distribution

Table 2
A complete list of distributions implemented in the Distribution.jl module and similar
functions from the scipy.stats library from various modules of the R language

No | Distribution Function name
Distributions.jl scipy.stats R

1 Arcsine Arcsine arcsin [distr]

2 Beta Beta beta beta

3 Beta Prime BetaPrime betaprime {VGAM}

4 Biweight Biweight - -

5 Cauchy Cauchy cauchy cauchy

6 Chi Chi chi [Runuram]

7 Chisq Chisq chi2 chisq

8 Cosine Cosine cosin -

9 Erlang Erlang erlang gamma

16

DCM&ACS. 2023, 31 (1) 5-26

Table 2

A complete list of distributions implemented in the Distribution.jl module and similar
functions from the scipy.stats library from various modules of the R language

(continuation)
No | Distribution Function name
Distributions.jl scipy.stats R

10 | Epanechnikov | Epanechnikov - [epandist]

11 | Exponential Exponential expon exp

12 | Fisher FDist f f
Distribution

13 | Frechet Frechet frechet_r, [VGAM]

frechet_1

14 | Gamma Gamma gamma gamma

15 | Generalized GeneralizedExtreme genextreme [spatial
Extreme Value Extremes]
Value

16 | Generalized GeneralizedPareto genpareto [evd]
Pareto

17 | Gumbel Gumbel gumbel_r [VGAM]

18 | Inverse InverseGamma invgamma lextra Distr]
Gamma

19 | Inverse InverseGaussian invgauss [statmod]
Gaussian

20 | Kolmogorov Kolmogorov - [kolmim]

21 | K-S test KSDist kswobign [kolmin]

22 | K-S test one | KSOneSided ksone [kolmim]
side

23 | Laplace Laplace laplace [distr]

24 | Levy Levy levy [VGAM]

25 | Logistic Logistic logistic [VGAM]

26 | Log-Normal LogNormal lognormal lnorm

27 | Noncentral NoncentralBeta - beta
Beta

28 | Noncentral NoncentralChisq ncx2 chisq
Chisq

29 | Noncentral NoncentralF ncf sadists
Fisher

30 | Noncentral NoncentralT nct sadists
Student

31 | Normal Normal norm norm

M. N. Gevorkyan et al., Julia language features for processing statistical ... 17

Table 2
A complete list of distributions implemented in the Distribution.jl module and similar
functions from the scipy.stats library from various modules of the R language

(continuation)
No | Distribution Function name
Distributions.jl scipy.stats R
32 | NormalCanon | NormalCanon - norm
33 | Normal NormalInverseGaussian | - [ghyp]
Inverse
Gaussian
34 | Pareto Pareto pareto [VGAM]
35 | Rayleigh Rayleigh rayleigh [VGAN]
36 | Wigner Semicircle semicircular
semicircle
distribution
37 | SymTriangu- | SymTriangularDist - [triangle]
larDist
38 | Student TDist t t
39 | Triangu- TriangularDist triang [triangle]
larDist
40 | Triweight Triweight - -
41 | Uniform Uniform uniform unif
42 | Von Mises VonMises vonmises [mov MF]
43 | Weibull Weibull weibull _min, weibull
weibull_max

5.4. Calculation distributions characteristics

A number of functions listed in the table 3 are intended to obtain charac-
teristics of theoretical distributions. As an argument, they take a variable of
type Distribution and, depending on the distribution, return the requested
parameters. If this type of distributions does not have one or another pa-
rameter, an exception is thrown. For example, the dof function returns the
number of degrees of freedom of the distribution, so that for a normal distri-
bution it will end with an exception thrown, and for a Student distribution it
will return the value of the requested parameter.

Another set of functions is used to calculate statistical characteristics of
both theoretical distributions and empirical data. A complete list of these
functions is given in the table 4. Some of them are defined in the scope of
the Julia language base module (Base), as they overload standard functions
such as mean, median, etc. More specific functions are defined in the scope of
the module Distributions.

A number of functions can be used to calculate the statistical characteristics
of an empirical sample (i.e., take an array of random numbers as the first

18 DCM&ACS. 2023, 31 (1) 5-26

argument). For such functions in the table 4 in the column v there is a mark
+. Note that the function quantile supports an array as the first argument,
while the function cquantile does not.

List of functions for getting distribution parameters from the module Distributic:f;ll b_]li ’
Function Description
params (d) return description’s parameters
succprob(d) not implemented yet
failprob(d) not implemented yet
scale(d) return scale parameter (if not, throw error)
location(d) return location parameter (if not, throw error)
shape (d) return shape parameter (if not, throw error)
rate(d) return rate parameter (if not, throw error)
ncategories(d) | return number of categories
ntrials(d) get the number of trials
dof (d) return degree of freedom

Consider an example. So the function mean can be used to find the
mathematical expectation if one passes as an argument an object representing
some distribution. Or to calculate the average, if one passes an array of
numbers (representing a statistical sample).

mean(Normal) # return O
mean([1, 2, 3, 4, 5]) # return 3

5.5. One dimensional distributions

In the Distributions package.jl implemented 11 discrete distributions (ta-
ble 1) and 43 continuous one-dimensional distributions (see table 2). This
table gives a summary of the functions from Distributions.jl and its equiva-
lent functions from the library scipy.stats and language packages R. This
will allow readers familiar with R or scipy.stats to orient themselves.

5.6. Implementations of functions for calculating statistical
characteristics for different distributions

The table 5 shows the results of testing functions that calculate statistical
characteristics for various distributions. In the table, the sign + means that
the function is implemented for this distribution, and the sign - means that
there is no implementation. Note that these are implementations specifically
for theoretical distributions. It should also be borne in mind that the lack of
implementation may mean that there is no exact analytical formula for this
distribution.

M. N. Gevorkyan et al., Julia language features for processing statistical ...

19

Table 4

List of functions for calculating statistical characteristics of distributions from the module

Distribution.jl

Function Description \%
maximum(d) maximum value +
mininum(d) minimum value +
mean (d) mathematical expectation +
var (d) variation +
std(d) standard deviation +
median(d) median +
dist.mode(d) mode +
dist.skewness(d) asymmetry coefficient +
dist.kurtosis(d) kurtosis coefficient +
dist.isplatykurtic(d) -
dist.isleptokurtic(d) | checks the kurtosis coefficient (>0,<0,=0) |
dist.ismesokurtic(d) -
dist.entropy(d) entropy +
dist.pdf(d, t) PDF -
dist.cdf(d, t) CDF -
dist.logpdf(d, t) In from PDF -
dist.logcdf(d, t) In from CDF -
dist.mgf(d, t) generating function of moments -
dist.cf(d, t) characteristic distribution function -
quantile(d, q) quantile ¢ +
cquantile(d, q) complementary quantile 1 — g -
invlogcdf (d, t) inverse function for logedf -
invlogccdf(d, t) inverse function for logccdf -

DCM&ACS. 2023, 31 (1) 5-26

20

ON[BA OWIIX PIZI[RISUSY) | D + + + - - + + + + + + + + + + + + + o+ o+ o+ 4+

rIUWRY) | + + 4+ + + + + + + + + 4+ + + + 4+ + + o+ + + + o+

Y@ [+ + + - - + + + + + 4+ + + + + 4+ + + o+ o+ 4+ o+

uonnqLsIi(J oysid | + + + + - - + + + + + + + + + + + + + + + o+ 4+

erwuodxy | + 9 0+ 0+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4+ o+ o+ o+ o+ o+ o+

Aoqruypatedy] | + + + 4+ + o+ 4+ o+ o+ o+ -+ 4+ o+ o+ o+ o+ 4+ o+ o+ o+ o+ o+

Suery | + + o+ o+ o+ o+ o+ o+ o+ o+ 4+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

uilso)) | 0 o + + - - + + + + - 4+ 4+ 4+ + 4+ + + + + + + +

bstqgy | + + o+ + o+ o+ 4+ o+ o+ 4+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4

Mo |+ + + + - - 4+ 4+ + + 4+ + + + o+ o+ + o+ o+ o+ o+ o+ o+

Apone) | + + + + o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4+ o+ o+ o+

MSemIg | + + + + + 4+ + + + 4+ -+ o+ + + + + 4+ + + 4+ + 4+
QWILIJ B}y | + + + + - - + + + o+ - - - - -+ + + 4+ + + + O+
'Y | + + + + - - + + + 4+ + + 0+ + + + 4+ + + + + + 4+
@Q_WU.H«Q‘ + + + + - - + + + + + + + + + + + + + + + + +
uonnNqLIIsI(g H- - o) Q 0 8 = = o) [0} - - 2] 8 g8 0 < g B g8
' : : B B Q = H 03 o o [o 0. B 0 n (2] o N O (0] ot o o Hop
< < [m H 09 0Q H H ¢ 8 = O = [0} Qa Q& QK m =} i
= = [Q g H o 0] — ot = o H- - H
o o B ct Q. o} [e} 17} o o e} B m 8 g8
0Q 0Q ot H- Hh Hh ie} [©) t ct 0] 0] m m
[¢) (@] - ! < N o < H W
e} Q. = o = ' N oowm 0
[o Hh ® H =i =1
H ct H H
- ct ct
e} - -
o e}
(10110 19730 AU® — O ‘IOLI® UTRWOP — § ‘(I0IIPOYILN) pojuauIe[dull jou ST PoyouW — - ‘pajuewo[dull ST POYjoll — + :UOIRION])

‘1 woTANQTIISTQ SMPOW O} WOIJ SUOIINLIJSIP JO SOIPSLIOIORIRYD [BII)SIIR]S SUIPe[No[Rd I0] SUOIOUN] Jo uorjyejuotadu]
G 9l9®L

21

juepnjg [eIjuUAOUON | 4+ 0+ 4+ 0+ - -+ o+ 4+ o+ - - - - - - - 4+ o+ 4+ o+ o+ o+
IOUSIH [RIJUSOUON | + + + + - - + + + + - - - - - - - 4+ + 4+ + o+ o+
bsiy) rerjuodouoN | + + + + + 4+ + + + 4+ -+ o+ + + + - 4+ + + 4+ + 4+
vlod [RIJUDUON | + + + + - - + + + + - - - - - - - 3+ - - - % %
[PULION-8OT | + + + + - - + + + 4+ + + o+ + + + + 4+ + + 4+ + 4+
JISISOT | & ® + + o+ o+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

AT | ® + + + + + 4+ 4+ o+ 4+ o+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+ 4

ooedeT |9 ® + + + + o+ + + + + 4+ o+ 4+ o+ o+ o+ o+ o+ o+ o+ o+ o+

9PpI1s auo S-3M - - - - - - + - + - - - - - - - - - - - -+ 4+

S | - - - - - - + - 4+ - - - - - - - - - - - - 4+ +

Aoro8owOy | + o+ 4+ o+ - - o+ o+ o+ o+ = = - - - - 4+ 4+ o+ o+ o+ o+ o+
ueIssne) oSIaAU] | + + + + - - + + + 4+ -+ o+ + + + + 4+ + + 4+ + 4+

rwwe) osmwAUl | 4+ + + + + D + + + 4+ + 4+ + + + + 4+ + + + + 4+ O+

[equury) 0 0 + + - - + + + + + + + + + + + + + + + + +
Ojaled pozZijeloauoy) + + + + - - + + + + - + + + + + - + + + + + +
uoTnNqLIISI(T [H o Qa o =] — = o 9 o B - HoK m B B wn g 8 8 8
: o =] 5 Q c (09 o o Q o B ® [n £ ® O O o M O B ®
< < = [H 09 o H H + B = o Ial 0] Q. o o La} o =) "
= m = o - N 0 @ H oo 5 o = =
o o ot o} Q. o wn O M o B o 8 B
| 0 i o b SN G2 B m m
e} ¢} - = < N o < Hooon
e} Q. = [0} = = Nooowm 0
Qu H ® H [= =
h o H R
B ot o
o BB
o) Q

(uoryenurjuod) 1L uU0TINQTIISTQ SMPOW) WOIJ SUOTINLIISIP JO SOIISLIOORIRYD [BIIISIPR)S SUIRINO[RD 10] SUOIdUN] Jo uorjejuowodur]
¢ 9lq®L

M. N. Gevorkyan et al., Julia language features for processing statistical ...

DCM&ACS. 2023, 31 (1) 5-26

[Mqom

SOSIJ\] UOA

ULIOJTU)

T SPMTL],

JSI(JIR[NSURLIT,

TuLpNYg

JST([IR[NSURLIT WAG

UOTINLISIP S[DIIITUIAS TOUTIAN

yS[Aey

OUENER |

URISSTIBY) 9SIOAU] [BULION

uouR)[RULION

+

+

+

+

+

+

[RULION

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

UOTNQLIISI(]

Ipoo30TAUT

JpoS0oTAUT

oTTauenbo

sTTauenb

JO

J3u

Jpo8oT

7pdS0T

FPo

Ipd

Adoxquas

DTAINYOSOUST

bTaInyoadeTsST

oTqanyAqerdst

STS03aNy

SSouUMdYS

epou

uURTpaOW

pas

Ien

uesu

WNWTUTW

WnuwTxeu

22

(uoryenurjuod) T uUOTINQTIIST(Q S[NPOW 9} WOIJ SUOTINLIISIP JO SOIISLIOORIRID [BD1SIJR)S SUIIRINO[RD 10] SUOIoUNJ Jo uorjejueweduy
G 9l9®L

M. N. Gevorkyan et al., Julia language features for processing statistical ... 23

For those distributions for which at least one of the functions PDF and CDF
is implemented, graphs are constructed (see, for example in figures 1 and 2).

1.00 -
1.00

0.75
0.75

= o050
[

= 050 |

025 025

s L s s L s L s s L s L s L s s
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
x x

Figure 1. Example of Beta distribution PDF Figure 2. Example of Beta distribution CDF

5.7. The distribution parameters determination by the sample

To determine the parameters of the theoretical distribution over the sample,
you can use the universal function fit(d, x).

This function uses either the maximum likelihood method or the method of
sufficient statistics in its work. The first method is implemented in the function
fit_me, and the second one in the function suffstats. The developers
recommend using the function £it, which chooses the optimal method itself.
Consider an example of usage.

X = rand(Normal, 100)

A normal distribution whose coefficients
calculated based on a statistical sample
E_Normal = dist.fit(dist.Normal, X)

Selection of coefficients based on the sample is implemented only for a small
number of distributions available in the module. Among which:

— Bernoulli distributions, discrete uniform, geometric, binomial, categorical
and Poisson distributions;

— Beta, exponential, normal, gamma, Laplace, Pareto, uniform distribu-
tions.

As you can see, among the distributions there are no quite commonly used
ones, such as the Weibull distribution or the lognormal distribution.

6. Conclusion

As a result of the review of the capabilities of the Julia language in the
field of mathematical statistics, it can be concluded that in terms of the
richness of functionality, it is still inferior to the specialized R language and
the capabilities of Python libraries. However, it surpasses these languages in
the speed factor, and the intensity of the Julia language development makes
it possible to assume that the missing functionality will be implemented over
time.

24

DCM&ACS. 2023, 31 (1) 5-26

Acknowledgments

This paper has been supported by the RUDN University Strategic Academic
Leadership Program.

1]
2|
3]
4]
[5]

(6]

17l
18|

19]
[10]
[11]
[12]

[13]
[14]

References

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65—
98, Jan. 2017. DOI: 10.1137/141000671.

B. Lauwens and A. Downey, Think Julia. O’Reilly Media, Inc., 2019.

T. Kwong, Hands-on design patterns and best practices with Julia. Packt
Publishing, 2020.

C. T. Kelley, Solving nonlinear equations with iterative methods, Solvers
and Examples in Julia. STAM, 2022.

J. Bezanson, J. Chen, B. Chung, S. Karpinski, V. B. Shah, J. Vitek,
and L. Zoubritzky, “Julia: dynamism and performance reconciled by
design,” Proceedings of the ACM on Programming Languages, vol. 2,
no. OOPSLA, pp. 1-23, Oct. 2018. poI: 10.1145/3276490.

M. N. Gevorkyan, A. V. Korolkova, D. S. Kulyabov, and K. P. Lovetskiy,

“Statistically significant comparative performance testing of Julia and
Fortran languages in case of Runge-Kutta methods,” in Numerical
methods and applications. NMA 2018, ser. Lecture Notes in Computer
Science, G. Nikolov, N. Kolkovska, and K. Georgiev, Eds., vol. 11189,
Cham: Springer International Publishing, 2019, ch. 45, pp. 400—407.
DOI: 10.1007/978-3-030-10692-8_45.

“JuliaStats, Statistics and machine learning made easy in julia.” (2023),
[Online|. Available: https://juliastats.org/.

Y. Nazarathy and H. Klok, Statistics with Julia, Fundamentals for
Data Science, Machine Learning and Artificial Intelligence. Springer
International Publishing, 2021. por: 10.1007/978-3-030-70901-3.

“Julia forums.” (2023), |Online|. Available: https : / / discourse .
julialang.org.

“StatsBase.jl.” (2023), |Online|. Available: https : // github . com/
JuliaStats/StatsBase. jl.

“Distributions.jl.” (2023), [Online|. Available: https://github.com/
JuliaStats/Distributions. jl.

C. Fiihrer, J. E. Solem, and O. Verdier, Scientific computing with Python,

High-performance scientific computing with NumPy, SciPy, and pandas,
2nd. Packt Publishing Ltd., 2021.

D. Toomey, Learning Jupyter. Packt Publishing Ltd., 2016.

“Pluto.jl — interactive Julia programming environment.” (2023), [On-
line]. Available: https://plutojl.org/.

M. N. Gevorkyan et al., Julia language features for processing statistical ... 25

[15] “Windows terminal, console and command-line repo.” (2023), [Online|.
Available: https://github.com/microsoft/terminal.

[16] “Miniconda.” (2023), [Online|. Available: https://docs.conda.io/en/
latest/miniconda.html.

[17] “Pluto.jl GitHub.” (2023), [Online|. Available: https://github.com/
fonsp/Pluto.jl.

[18] “Julia GitHub.” (2023), [Online|. Available: https://github. com/
Julialang/julia.

[19] A. V. Korolkova, M. N. Gevorkyan, and D. S. Kulyabov, “Implementa-
tion of hyperbolic complex numbers in Julia language,” vol. 30, no. 4,
pp- 318-329, Dec. 2022. DOI: 10.22363/2658-4670-2022-30-4-318-
329.

[20] R. Muschevici, A. Potanin, E. Tempero, and J. Noble, “Multiple dispatch
in practice,” in OOPSLA’08: Proceedings of the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and appli-
cations, ACM Press, Oct. 2008, pp. 563-582. DOI: 10.1145/1449764.
1449808.

|21] M. Besancon, T. Papamarkou, D. Anthoff, A. Arslan, S. Byrne, D. Lin,
and J. Pearson, “Distributions.jl: Definition and modeling of probability
distributions in the JuliaStats ecosystem,” Journal of Statistical Software,
vol. 98, no. 16, pp. 1-30, 2021. DOI: 10.18637/jss.v098.116.

For citation:

M. N. Gevorkyan, A.V. Korolkova, D.S. Kulyabov, Julia language features
for processing statistical data, Discrete and Continuous Models and Applied
Computational Science 31 (1) (2023) 5-26. DOI: 10.22363/2658-4670-2023-
31-1-5-26.

Information about the authors:

Korolkova, Anna V. — Docent, Candidate of Sciences in Physics
and Mathematics, Associate Professor of Department of Applied Proba-
bility and Informatics of Peoples’ Friendship University of Russia (RUDN
University) (e-mail: korolkova-av@rudn.ru, phone: +7(495) 952-02-50,
ORCID: https://orcid.org/0000-0001-7141-7610)

Gevorkyan, Migran N. — Docent, Candidate of Sciences in Physics
and Mathematics, Associate Professor of Department of Applied Proba-
bility and Informatics of Peoples’ Friendship University of Russia (RUDN
University) (e-mail: gevorkyan-mn@rudn.ru, phone: +7 (495) 955-09-27,
ORCID: https://orcid.org/0000-0002-4834-4895)

Kulyabov, Dmitry S. — Professor, Doctor of Sciences in Physics
and Mathematics, Professor at the Department of Applied Probabil-
ity and Informatics of Peoples’ Friendship University of Russia (RUDN
University) (e-mail: kulyabov-ds@rudn.ru, phone: +7 (495) 952-02-50,
ORCID: https://orcid.org/0000-0002-0877-7063)

26 DCM&ACS. 2023, 31 (1) 5-26

VIIK 537.8:512.723
DOI: 10.22363,/2658-4670-2023-31-1-5-26
EDN: VNJCSU

BosmoxknaocTu sa3bika Julia gisa obpaborkm
CTATUCTUYECKUX JAHHBIX

M. H. I'eBopksan', A. B. Koposbkosa', 1. C. Kyns6os' ?

U Poccutickuts ynusepcumem dpyorc6v napodos,
ya. Muxayxo-Maxaas, 0. 6, Mockea, 117198, Poccus
2 O6sedunérmont unemumym adepnvi uccaedosarud,
ya. 2Koauo-Kropu, 9. 6, /lyora, Mockosckas obaacmo, 141980, Poccus

Annoranus. f3bik nmporpammupoBanus Julia siBisiercst crenuaan3upoOBaHHBIM S3bI-
KOM JIJIs HAYYHBIX BBIYUCJIEHUN. fI3bIK CpaBHUTEIBHO HOBBIM, ITO3TOMY OOJIBIITUHCTBO
OuOIMOTEK /I HETO HAXOJUTCS B AKTUBHOM CTa MU pa3pabOTKu. B crtaThe aBTOPHI
paccMaTpPUBAIOT BO3MOYKHOCTH ITPUMEHEHHUs sI3bIKa B O0JIACTH MATEeMaTHIECKON cTa-
tuctuku. OCoObIit AKIEHT IeTaeTCsd Ha TEXHUIECKON COCTaBJMIONe, B YaCTHOCTH
ITO/IPOOHO OIMCHIBAETCS MPOIECC YCTAHOBKYM U HACTPONKHU MPOrPAMMHOTO OKPYKEHHUSI.
Tak kak mosb3oBaresu sg3bika Julia 3a4acTyio He IBJAIOTCA TPOPECCUOHATHLHBIMU
POrPAMMUCTAMU, TEXHUYECKHE MOMEHTHI B HACTPOIKE ITPOrPAMMHOIO OKPY2KEHU s
MOT'YT BBI3bIBATH Yy HUX TPYIHOCTHU, IIPEHSATCTBYIONINE OBICTPOMY OCBOCHUIO 0A30BBIX
BO3MOYXKHOCTeH s3bIKa. B cTaThe OonuchIBaIoTCs HEKOTOpbIe ocobernnocTu Julia, KoTo-
pbIe OTJIUYAIOT €r0 OT JIPYTUX HOMIYJISPHBIX S3bIKOB, UCIIOJIB3YEMbIX JIJISI HAYIHBIX
BhIYuCIeHui. TakxKe Taérca 0030p JIBYX OCHOBHBIX OMOJIMOTEK JJIsi MaTeMaTUIeCKON
CTATUCTUKHU. YTIOP OISATb-TaKU JEJaeTCsd Ha TEXHUIECKOW CTOPOHE, YTOOBI JIaTh IUTa~
TEJTIO TIPeJICTaBIeHre 00 OOIMNX BO3MOXKHOCTAX A3bIKA B O0JIACTU MaTeMaTHYeCKON
CTATUCTUKH.

KuroueBbie cjoBa: s3bIK mporpammupoBanus Julia, 06paboTka cTaTUCTUIECKUX
JTAHHBIX

