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Two cases are examined in the paper: propagation of waves in smoothly irregular and
statistically irregular dielectric waveguides. The peculiarities of approximate solutions of vector
electrodynamic problems in both cases are discussed. The offered methods are applicable for
analysis of similar dielectric, magnetic, optic and meta materials structures in enough broad
band of electromagnetic wavelengths.
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1. Introduction

Many papers (see, for example, [1, 2] and quoted there references) are devoted to
the analysis of propagation of a plane monochromatic light wave in planar multilayer
regular dielectric few-mode waveguides. A number of methods [1–13] are used for an
analysis of processes of transformation of quasi-waveguide modes, accompanying an
exchange of energy between modes and between modes with surroundings.

The asymptotic method of a solution of Maxwell’s equations [6] in our view is
better than other approaches for the description of processes of an evolution of quasi-
waveguide modes. The conservation in an obtained solution and boundary conditions of
terms, proportional to gradient of a dielectric permeability, allows taking into account
a vectorial character of propagation of a monochromatic electromagnetic field along
smoothly-irregular three-dimensional (3D) sections of multilayer dielectric multimode
waveguide.

Generalized Luneburg waveguide lens is a key functional element in such, for
example integrated-optical processors as radio-frequency-spectrumanalyzer, working
in real time scale [4]. A request to exactitude of calculation of parameters of similar
elements of integrated structures in nanometer range will hardly increase in connection
with existence of restrictions stipulated by diffraction effects.

The integrated-optical waveguide is one of basic elements of the integrated optics
and waveguide optoelectronics [2, 4, 8, 10]. In most cases waveguide serves as the
basis for creation of the various optical integrated circuits [4]. In this connection
the important direction in technology is the development of methods of creation of a
waveguide with a low level of losses of the intensity of the directed mode on scattering
by 3D irregularities (boundaries roughness and heterogeneities of the waveguide layers)
of the structure of a waveguide [14–36]. The light scattered in a waveguide can be
registered as radiated substrate-cover (substrate-air) and substrate modes, and as the
radiation, scattered in the plane of a waveguide.
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When neglecting polarizing effects the problem of waveguide 3D scattering is
reduced to a solution of known two-dimensional (2D) wave equation. Then we assume
absence of the cross-correlation relations between all types of irregularities (roughness
of the boundaries and/or heterogeneity of the layers of waveguide).

2. Maxwell’s Equations. Adiabatic Modes of
Smoothly Irregular Waveguiding Structure.

Boundary Conditions

Let’s begin a consideration from the analysis of features of propagation of eigenmodes
of an asymmetrical thin-film dielectric waveguide in the smoothly-irregular segment
(right part of the Fig. 1).

Figure 1. The cross-section of a researched integrated structure constructed by layers
1-4. The regular three layer waveguide is created by layers 1, 2, and 3

On the picture are designated: 1 is the framing medium or covering layer (air)
with an index of refraction 𝑛𝑐; 2 is the waveguide layer (three-layer regular part of
an integrated structure) with an index of refraction 𝑛𝑓 ; 3 is the substrate with an
index of refraction 𝑛𝑠; 4 is the thin-film Luneburg’s lens (irregular four-layer part of an
integrated structure) with an index of refraction 𝑛𝑙; 𝑅 is the radius the aperture of a
thin-film lens; 𝑑 is the thickness of a regular part of an integrated waveguide structure;
ℎ (𝑦, 𝑧) is the boundary of waveguide layer 4 and covering layer 1.

An example of such smooth irregularity is a thin-film generalized waveguide Luneb-
urg lens. As is known, the generalized Luneburg waveguide lens is an important
functional element in integrated-optic devices such as high-frequency spectrum ana-
lyzer operating on a real time scale. Requirements to the accuracy of calculation of
such waveguide lens strongly increase on the passage in a range of sub wave sizes,
which is related to the appearance of restrictions imposed by the diffraction effects [2].

Similar problems are encountered in numerous conjugating devices, which provide
the connection of various elements, for example, in an integrated optical circuit. The
efficiency of conjugation strongly depends on the matching of fields of the incident
wave and the waveguide mode, both in front of and behind the conjugation element.

The Maxwell’s equations for an electromagnetic field in a case of not absorbing
inhomogeneous linear isotropic medium (in the absence of currents and electric charges)
in a SI system receive the form:

rot
̃⃗︀
𝐻 = 𝜀

𝜕
̃⃗︀
𝐸

𝜕𝑡
, rot

̃⃗︀
𝐸 = −𝜇𝜕

̃⃗︀
𝐻

𝜕𝑡
, (1)

where 𝜀 = 𝜀𝑟𝜀0 is the dielectric permeability of a medium (layer); 𝜇 = 𝜇 𝑟𝜇0 is
the magnetic permeability of a layer; 𝜀𝑟, 𝜇𝑟 are the relative dielectric and magnetic
permeability accordingly (in a non magnetized medium it is necessary to take 𝜇 =
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1); 𝜀0 and 𝜇0 are the electrical and magnetic constants accordingly; 𝜔
√
𝜇𝜀 = 𝑛𝑘0, 𝑛

is the index of refraction of a layer, 𝑘0 = 2𝜋/𝜆0, 𝜔 = 2𝜋𝜈, 𝜈 is the frequency of an

electromagnetic field. �⃗�, �⃗� are electric and magnetic field intensity vectors; a symbol
tilde at vectors of fields reflects their complex character.

When deriving equations (1) one takes into account, that for a linear isotropic
medium the following relations are valid:

�⃗� = 𝜀�⃗�, �⃗� = 𝜇�⃗�,

where �⃗� is the electric induction vector, �⃗� is the magnetic induction vector.
In regular four-layer waveguide (see. Fig. 1) the thicknesses ℎ (𝑦, 𝑧) of a second

waveguide layer is constant also eigenmodes propagating along the plane 𝑦𝑂𝑧 in the
direction 𝑂𝑧, have well known kind [10].

In smoothly-irregular four-layer waveguide (right part of the 1) the thicknesses
of the second waveguide layer is not constant. In this case the Fourier method of a
separation of variables, used in regular case, is inapplicable.

In the paper [9] it is offered to use an asymptotic method of a solution of a set of
equations (1) for a smoothly-irregular dielectric integrated waveguide structure. Within
the framework of the approach given in paper [9] authors have kept two contributions,
circumscribing a so-called adiabatic approximation [6].

Then for search a concrete solution the method of “partial” separation of vari-
ables (Kantorovich’s method, known as a modified Galerkin’s method [11] of “partial”
separation of variables) was used.

This approach allows searching for a solution of the Maxwell’s equations with the
components of fields 𝑈 (𝑥, 𝑦, 𝑧) , dependent on three space variables, as the final series:

𝑈 (𝑥, 𝑦, 𝑧) =

𝑀∑︁
𝑚=1

𝑈𝑚𝑣 (𝑥; 𝑦, 𝑧)𝑈𝑚ℎ (𝑦, 𝑧) . (2)

The sequence (2) contains factors 𝑈𝑚ℎ (𝑦, 𝑧) dependent on horizontal variables 𝑦
and 𝑧, and factors 𝑈𝑚𝑣 (𝑥; 𝑦, 𝑧) dependent functionally on a vertical variable 𝑥, and
dependent parametric from horizontal variables.

In regular case: 𝑀 = 1 and 𝑈1
𝑣 (𝑥; 𝑦, 𝑧) = 𝑈1

𝑣 (𝑥). The necessary condition that is
possible to neglect the following members with 𝑚 > 1 is the condition |𝑈𝑚+1/𝑈𝑚| ≪ 1.

3. Scattering of Electromagnetic Monochromatic
Waves in a Statistically Irregular Waveguide

The scattering problem of a directed waveguide mode in a planar optical waveguide
containing stochastic irregularities is solved with the help of the theory of perturba-
tions [2, 18,31,32].

Generally for the description of an electromagnetic field �⃗� in an irregular waveguide
the equation is used, which in the rectangular Cartesian coordinates has the following
form:

∇2�⃗� +∇
(︂
�⃗�
∇𝜀
𝜀

)︂
+ 𝜔2𝜇𝜀�⃗� = 0, (3)

where ∇2 = Δ is Laplacian. The equation (3) is found with the help of the Maxwell’s
equations (1).

Then one considers the case of propagation in a waveguide along 𝑧-axis of the main
TE-mode (for TM-mode the analysis is carried out similarly). Then the full field in an
irregular planar optical waveguide can be written as the sum of fields of an incident
waveguide mode and the field of a scattered wave.

Then we can write equation (1) as the approximate three-dimensional equation.
Keeping in the obtained equation only members of the first order of smallness in respect
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of �⃗�𝑠 and Δ𝜀(�⃗�), we shall receive an approximate inhomogeneous wave equation, which

can be considered as a homogeneous wave equation with perturbation as a source �⃗�0𝑦

in the right part [31,32]:

∇2�⃗�𝑠 (𝑥, 𝑦, 𝑧) + 𝜔2𝜇𝜀0�⃗�𝑠 (𝑥, 𝑦, 𝑧) ≈ −𝜔2𝜇𝜀0Δ𝜀 (𝑥, 𝑦, 𝑧) �⃗�0𝑦 (𝑥, 𝑧) , (4)

where �⃗�0𝑦 is the solution of the homogeneous undisturbed equation circumscribing the
propagation of the main TE-mode in a waveguide.

From the power point of view, the “source” in a right part of the equation (4) is
the intensity of the mode, incident on an irregular area of waveguide and scattered in
all enclosing space (3D-scattering).

The solution of the given inhomogeneous wave equation can be obtained as a
convolution of some Green function 𝐺 (𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′) with the expression for the
source Δ𝜀 (𝑥′, 𝑦′, 𝑧′) [31,32]:

�⃗�𝑠 (𝑥, 𝑦, 𝑧) =

= −𝜔2𝜇𝜀0

∫︁∫︁∫︁
Δ𝜀 (𝑥′, 𝑦′, 𝑧′)𝐺 (𝑥, 𝑦, 𝑧; 𝑥′, 𝑦′, 𝑧′) �⃗�0𝑦 (𝑥

′, 𝑧′) d𝑥′d𝑦′d𝑧′. (5)

The analysis shows, that in this case it is impossible to neglect polarizing effects and
the consideration of the problem of waveguide scattering of light on three-dimensional
irregularities becomes hardly complicated, since the determination of analytical expres-
sion for a Green function represents here not at all trivial problem.

When neglecting the polarizing effects, originating during scattering, it is enough
to require, that the relative variation of the dielectric permittivity on a distance of one
wavelength was much less than unit. Then it is possible to use a simple wave equation:

Δ�⃗� + 𝑛2𝑘20�⃗� = 0, (6)

which is fair for each Cartesian component of the vector of electrical field. For
fundamental TE-mode, propagating along the axes 𝑧, under condition 𝜕/𝜕𝑦 = 0, this
formula accepts next form:

𝜕2𝐸𝑦
𝜕𝑥2

+
𝜕2𝐸𝑦
𝜕𝑧2

+ 𝑛2𝑘20𝐸𝑦 = 0, (7)

where 𝑛2 (𝑥, 𝑧) = 𝑛2
0 (𝑥, 𝑧) + Δ𝑛2 (𝑥, 𝑧) , 𝑛20 (𝑥, 𝑧) describes regular properties of an

appropriate medium of waveguide (accepts values 𝑛1, 𝑛2 or 𝑛3 accordingly), and the
component Δ𝑛2 (𝑥, 𝑧) describes irregularities of the structure of a waveguide (both
irregularity of the boundaries, and heterogeneity of a refraction index).

For application of the theory of perturbations the addendum Δ𝑛2 (𝑥, 𝑧) should not
be necessarily the value of the small order. There is quite enough, that the area, within
the limits of which this component differs from zero, was very narrow. The solution
of the equation (7) with help of the approximate method of “ideal modes” [2] is then
finding as the expansion of certain scattering field on the orthogonal set of the modes
of the rectilinear optical waveguide.

Thus the solution for component of a scattered field in any point of space with
coordinates 𝑥, 𝑧 takes form:

𝐸𝑦 =

∫︁
𝑞 (𝜌, 𝐿)𝐸𝑦 (𝜌, 𝑧) d𝜌, (8)

where 𝑞 is the effective amplitude of scattering TE-modes, defined as factor of expansion
of a field on all radiation modes; 𝜌 is the transversal component of the propagation
constant 𝛽 of the radiation modes.

The factors of expansion are fined from the orthogonality relations with the help of
the theory of perturbations. Both numerical methods of direct calculation and analytical
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methods of determination of an approximate value of the integral in expression (8)
can be used, for example, method of the stationary phase or saddle point method. If
the condition 𝜕/𝜕𝑦 = 0 is executed, it is possible to express any distribution of the
field of a waveguide as the superposition of orthogonal TE- and TM-modes of an ideal
rectilinear waveguide.

4. Dispersion Relations and Results of Numerical
Calculations for Three-Layer Regular Waveguide

For simulation the well known representation of dispersion relation in a trigonomet-
rical kind for thee layer waveguide was used [37]:

𝛽ℎ = arctg (𝜌/𝛽) + arctg (𝜂/𝛽) + (𝑚− 1)𝜋, (9)

where 𝛽 = 𝑘0
√︀
𝑛2
2 − 𝛾2 is the propagation constant of directed TE-mode along an axes

𝑧 (see Fig. 2); ℎ is the thickness of a waveguide layer; 𝛾 is the factor of phase slowing

down (effective waveguide refraction index); 𝜌 = 𝑘0
√︀
𝛾2 − 𝑛2

1 is the vertical component

of the propagation constant of directed TE-mode for 𝑥 > 0; 𝜂 = 𝑘0
√︀
𝛾2 − 𝑛23 is the

vertical component of the propagation constant of directed TE-mode for 𝑥 < −ℎ;
𝑚 = 0, 1, 2, . . . .

Figure 2. Dispersing relation 𝛾 = 𝛾 (ℎ) for the first five TE and TM modes of three-layer
polystyrene planar integrated-optical waveguide

The dispersing relations 𝛾 = 𝛾 (ℎ) for the first five TE and TM modes of a regular
three-layer polystyrene integrated-optical waveguide are represented in the Fig. 2.

The amplitude of the field in arbitrary units of the radiated substrate 𝑇𝐸5-mode
for 𝛾 = 2.099 are represented as the example in the Fig. 3.

The field of a radiated substrate TE modes are set as follows [37]:

|E𝑦 (𝑥; 𝛾)| =

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{︂
4𝜔0𝜇0𝜌

2
𝑓𝜌

2
𝑠𝑃0

𝜋|𝛽|𝑘20(𝑛2
2−𝑛2

1)[𝜌2𝑠+[𝜌2𝑓−𝜌2𝑠] sin2(𝜙𝑐−𝜌𝑓ℎ)]

}︂1/2

exp [−𝜌𝑐 (𝑥− ℎ)] , 𝑥 > ℎ,{︂
4𝜔0𝜇0𝜌

2
𝑠𝑃0

𝜋|𝛽|(𝑛2
2−𝑛2

1)[𝜌2𝑠+[𝜌2𝑓−𝜌2𝑠] sin2(𝜙𝑐−𝜌𝑓ℎ)]

}︂1/2

cos [𝜌𝑓 (𝑥− ℎ) + 𝜙𝑐] , 0 < 𝑥 < ℎ,{︁
4𝜔0𝜇0𝑃0

𝜋|𝛽|

}︁1/2

cos [𝜌𝑠𝑥+ 𝜙] , 𝑥 < 0,

(10)
where 𝑃0 is the power, transportable of the wave in waveguide in a direction of an 𝑧
axes through the width unit (on the 𝑦 axes), in calculations we took 𝑃0 = 1𝑊/𝑚.
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Figure 3. The amplitude of the field of a radiated substrate TE5-mode for 𝛾 = 2.099 of
three-layer 𝑇𝑎2𝑂5 planar integrated-optical waveguide

5. Dispersion Relations for Smoothly-Irregular
Waveguide

Dispersion relations for thin-film generalized waveguide Luneburg’s lens, being the
example of investigated by us smoothly-irregular integrated waveguide structures, were
obtained [5] in an approximation, when the sloping tangential boundary conditions
were replaced by their projections with a horizontal plane.

Taking into account of non horizontality of tangential boundary conditions, in-
troduces to Southwell’s relations a small correction on a parameter 𝛿, determined as
follows:

𝛿 = max
⃒⃒⃒
∇⃗𝑦, 𝑧𝛽

⃒⃒⃒ (︀
𝑘0𝛽

2
)︀−1

,

this is two-dimensional waveguide’s analogy of magnitude
⃒⃒⃒
∇⃗𝜀
⧸︁
𝜀
⃒⃒⃒
.

With the help of additional differentiations and with allowance for adiabatic behavior
of field intensities, we received from the Maxwell’s equations (1) expressions for field’s
components 𝐸𝑥, 𝐸𝑦, 𝐻𝑦, 𝐻𝑥 and quasi-waveguide equations for field’s components
𝐸𝑧, 𝐻𝑧 [9]. Let’s remark, that quasi-wave is the equation which is looking like a wave
equation in the left part of equality, in which right part instead of zero there is an
expression from unknown function, first order of smallness 𝛿 on a comparison with
expression in the left part.

In each of homogeneous areas:

𝐼𝑠 = {𝑥 ∈ ( −∞,−𝑑 ] ; 𝑦, 𝑧 ∈ (−∞,+∞)} ,
𝐼𝑓 = {𝑥 ∈ (−𝑑, 0); 𝑦, 𝑧 ∈ (−∞,+∞)} ,
𝐼𝑙 = {𝑥 ∈ [0, ℎ(𝑦, 𝑧)]; 𝑦, 𝑧 ∈ (−∞,+∞)} ,

𝐼𝑐 = {𝑥 ∈ [ℎ(𝑦, 𝑧), + ∞) ; 𝑦, 𝑧 ∈ (−∞,+∞)} ,

(11)

obtained quasi-wave equations are simplified to wave equations:

d2𝐸𝑧
d𝑥2

+ 𝜒2𝐸𝑧 = 0,
d2𝐻𝑧

d𝑥2
+ 𝜒2𝐻𝑧 = 0, (12)

where 𝜒2 is the transversal wave number equal in zero order of smallness 𝛿 approximation
to magnitude 𝜒2

0 = 𝑘20
(︀
𝜀𝜇− 𝛽2

)︀
. The solutions of the equations (12) are well-known [1,

2, 10].
Further we determine horizontal boundary conditions on the plane 𝑥 = −𝑑 and on

the plane 𝑥 = 0. Then we determine “not horizontal” boundary conditions. From three

components of a tangential field �⃗�𝜏 only two are linearly independent. Therefore, it is
quite enough to determine boundary conditions only for 𝐸𝜏𝑦 , 𝐸

𝜏
𝑧 . Similarly from three



Propagation of the Monochromatic Electromagnetic Waves in Irregular . . . 89

components of a magnetic field only two 𝐻𝜏
𝑦 and 𝐻𝜏

𝑧 also are linearly independent.
Therefore, the boundary conditions need to be determined only for them.

All twelve relations for three boundaries form a homogeneous system of linear
algebraic equations for amplitude coefficients 𝐴𝑠, 𝐵𝑠, 𝐴

±
𝑓 , 𝐵

±
𝑓 , 𝐴

±
𝑙 , 𝐵

±
𝑙 , 𝐴𝑐, 𝐵𝑐. This

system has a nontrivial solution, if it degenerates, i.e. if the determinant of the given
matrix 𝑀𝑎𝑡𝑟 is equal to zero [9]. The condition det (𝑀𝑎𝑡𝑟) = 0 is, as a matter of
fact, the dispersion relations for hybrid quasi-waveguide modes in a smoothly-irregular
section of a dielectric waveguide [9, 13].

6. Results of Numerical Calculations for
Smoothly-Irregular Four-Layer Waveguide

The parameters of the structure considered are following: refractive index of
substrate (𝑆𝑖𝑂2) 𝑛𝑠 = 1.470, refractive index of regular waveguide film (glass of the
mark Corning 7059) 𝑛𝑓 = 1.565, refractive index of second waveguide layer (𝑇𝑎2𝑂5)
with varying thickness ℎ (𝑦, 𝑧) 𝑛𝑙 = 2.100, refractive index of covering (air) 𝑛𝑐 = 1.000.

The dispersion dependences of phase slowing down coefficient of TE0 mode (effective
refraction index) on waveguide layers thickness in four-layer integrated-optical structure
including regular three-layer planar waveguide and thin-film generalized Luneburg
waveguide lens are presented in [38]. Therefore in the given work we do not examine
the dispersion dependences in detail.

On the vertical axis the values of 𝛽 for TE0 mode are indicated, and on the
horizontal axis the thicknesses waveguide layers in relative units 𝑑/𝜆 and ℎ/𝜆 are
indicated accordingly.

In the Fig. 4 the relative thickness 𝑑 of first (regular) waveguide layer from ≈ 0.4
to 3.0 are depicted, and the relative thickness ℎ (𝑧) of second (irregular) waveguide
layer from 3.0 to 3.8 are depicted accordingly.

Figure 4. The dispersion dependence of TE0 mode in three-layer and four-layer parts of
the integrated-optical structure presented in Fig. 1

Hence the left part of the figure presents the dispersion dependence of regular three-
layer planar waveguide and the right part is the dispersion dependence of four-layered
smoothly irregular waveguide.

The part of the dispersion dependence from ℎ ≈ 0.0𝜆 to ℎ ≈ 0.2𝜆 (directly after
3.0 on the Fig. 4) presents some transition (unsteady) regime in the Luneburg lens.

Taking into account the longitudinal wave number correct transition (𝜒→ 𝑖𝛾, 𝛾 →
−𝑖𝜒) along the same branch of two-valued function of taking square root of a complex
variable during coefficient 𝛽 transition from region 𝛽 < 𝑛𝑓 to region 𝛽 > 𝑛𝑓 is the
indispensable condition for elaborating strict calculations there.

The amplitude of the field in arbitrary units of the guided 𝑇𝐸4-mode for ℎ ≈ 0.5
(see Fig. 1), as the example of calculated fields, are represented in the Fig. 5.
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Figure 5. The amplitude of the field of a guided 𝑇𝐸4-mode for ℎ ≈ 0.5

7. Conclusion

We used the solution of the electrodynamic problem that takes into account the
vector character of propagating fields, thus providing a more adequate (compared to the
scalar case) description of real irregular and smoothly-irregular waveguide structures.
Using this solution, we can analytically describe the fields of smoothly deforming modes
of a dielectric waveguide, their interrelation, and the dispersion relations.

The offered method is applicable for analysis of similar dielectric, magnetic, and
meta- materials’ structures, including nonlinear in enough broad band of electromag-
netic wavelengths, that is doubtless advantage.
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Распространение монохроматических электромагнитных
волн в нерегулярных волноводах. Краткое введение в

анализ для случая плавных и статистических
нерегулярностей
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В статье рассмотрены два случая: распространение волн в плавно-нерегулярных и ста-
тистически нерегулярных диэлектрических волноводах. Обсуждены особенности прибли-
жённых решений векторных электродинамических задач в обоих случаях. Предлагаемые
методы применимы для анализа подобных структур из диэлектрических, магнитных, оп-
тических и мета материалов в достаточно широком диапазоне электромагнитных длин
волн.
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ма, плавно-нерегулярный диэлектрический волновод, многослойный волновод, волновод-
ная линза Люнеберга, граничные условия, асимптотический метод, квази-волноводные
моды, статистические волноводные нерегулярности, ТЕ и ТМ моды, волноводное рассея-
ние, метод функций Грина.




