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Two cases are examined in the paper: propagation of waves in smoothly irregular and
statistically irregular dielectric waveguides. The peculiarities of approximate solutions of vector
electrodynamic problems in both cases are discussed. The offered methods are applicable for
analysis of similar dielectric, magnetic, optic and meta materials structures in enough broad
band of electromagnetic wavelengths.
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1. Introduction

Many papers (see, for example, [1,2] and quoted there references) are devoted to
the analysis of propagation of a plane monochromatic light wave in planar multilayer
regular dielectric few-mode waveguides. A number of methods [1-13] are used for an
analysis of processes of transformation of quasi-waveguide modes, accompanying an
exchange of energy between modes and between modes with surroundings.

The asymptotic method of a solution of Maxwell’s equations [6] in our view is
better than other approaches for the description of processes of an evolution of quasi-
waveguide modes. The conservation in an obtained solution and boundary conditions of
terms, proportional to gradient of a dielectric permeability, allows taking into account
a vectorial character of propagation of a monochromatic electromagnetic field along
smoothly-irregular three-dimensional (3D) sections of multilayer dielectric multimode
waveguide.

Generalized Luneburg waveguide lens is a key functional element in such, for
example integrated-optical processors as radio-frequency-spectrumanalyzer, working
in real time scale [4]. A request to exactitude of calculation of parameters of similar
elements of integrated structures in nanometer range will hardly increase in connection
with existence of restrictions stipulated by diffraction effects.

The integrated-optical waveguide is one of basic elements of the integrated optics
and waveguide optoelectronics [2,4,8,10]. In most cases waveguide serves as the
basis for creation of the various optical integrated circuits [4]. In this connection
the important direction in technology is the development of methods of creation of a
waveguide with a low level of losses of the intensity of the directed mode on scattering
by 3D irregularities (boundaries roughness and heterogeneities of the waveguide layers)
of the structure of a waveguide [14-36]. The light scattered in a waveguide can be
registered as radiated substrate-cover (substrate-air) and substrate modes, and as the
radiation, scattered in the plane of a waveguide.
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When neglecting polarizing effects the problem of waveguide 3D scattering is
reduced to a solution of known two-dimensional (2D) wave equation. Then we assume
absence of the cross-correlation relations between all types of irregularities (roughness
of the boundaries and/or heterogeneity of the layers of waveguide).

2. Maxwell’s Equations. Adiabatic Modes of
Smoothly Irregular Waveguiding Structure.
Boundary Conditions

Let’s begin a consideration from the analysis of features of propagation of eigenmodes
of an asymmetrical thin-film dielectric waveguide in the smoothly-irregular segment
(right part of the Fig. 1).

| | 1 Luneburg lens
Tlh(y.2)+0 Tlh(y.2)+0

m 0 H’ |m y:2)-0 4
? 2 d
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Direction of mode propagation

Figure 1. The cross-section of a researched integrated structure constructed by layers
1-4. The regular three layer waveguide is created by layers 1, 2, and 3

On the picture are designated: 1 is the framing medium or covering layer (air)
with an index of refraction n.; 2 is the waveguide layer (three-layer regular part of
an integrated structure) with an index of refraction ny; 3 is the substrate with an
index of refraction ng; 4 is the thin-film Luneburg’s lens (irregular four-layer part of an
integrated structure) with an index of refraction n;; R is the radius the aperture of a
thin-film lens; d is the thickness of a regular part of an integrated waveguide structure;
h (y, z) is the boundary of waveguide layer 4 and covering layer 1.

An example of such smooth irregularity is a thin-film generalized waveguide Luneb-
urg lens. As is known, the generalized Luneburg waveguide lens is an important
functional element in integrated-optic devices such as high-frequency spectrum ana-
lyzer operating on a real time scale. Requirements to the accuracy of calculation of
such waveguide lens strongly increase on the passage in a range of sub wave sizes,
which is related to the appearance of restrictions imposed by the diffraction effects [2].

Similar problems are encountered in numerous conjugating devices, which provide
the connection of various elements, for example, in an integrated optical circuit. The
efficiency of conjugation strongly depends on the matching of fields of the incident
wave and the waveguide mode, both in front of and behind the conjugation element.

The Maxwell’s equations for an electromagnetic field in a case of not absorbing
inhomogeneous linear isotropic medium (in the absence of currents and electric charges)
in a SI system receive the form:

= 8E = aﬁ
tH =ec— tE = —pu—ro 1
ro “orr ot (1)

where ¢ = €,6¢ is the dielectric permeability of a medium (layer); pu = p,po is
the magnetic permeability of a layer; €., u, are the relative dielectric and magnetic
permeability accordingly (in a non magnetized medium it is necessary to take pu =
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1); g0 and g are the electrical and magnetic constants accordingly; w./pe = nkg, n
is the index of refraction of a layer, kg = 27/\,, w = 27v, v is the frequency of an

electromagnetic field. F, H are electric and magnetic field intensity vectors; a symbol
tilde at vectors of fields reflects their complex character.

When deriving equations (1) one takes into account, that for a linear isotropic
medium the following relations are valid:

D=cE, B=uH,

where D is the electric induction vector, B is the magnetic induction vector.

In regular four-layer waveguide (see. Fig. 1) the thicknesses h (y, z) of a second
waveguide layer is constant also eigenmodes propagating along the plane yOz in the
direction Oz, have well known kind [10].

In smoothly-irregular four-layer waveguide (right part of the 1) the thicknesses
of the second waveguide layer is not constant. In this case the Fourier method of a
separation of variables, used in regular case, is inapplicable.

In the paper [9] it is offered to use an asymptotic method of a solution of a set of
equations (1) for a smoothly-irregular dielectric integrated waveguide structure. Within
the framework of the approach given in paper [9] authors have kept two contributions,
circumscribing a so-called adiabatic approximation [6].

Then for search a concrete solution the method of “partial” separation of vari-
ables (Kantorovich’s method, known as a modified Galerkin’s method [11] of “partial”
separation of variables) was used.

This approach allows searching for a solution of the Maxwell’s equations with the
components of fields U (z,y, z) , dependent on three space variables, as the final series:

M
U(a:,y,z) = Z U:)n (:E;y, Z) U;Lﬂ (Z/, Z) . (2)

m=1

The sequence (2) contains factors U™ (y, z) dependent on horizontal variables y
and z, and factors U] (x;y, z) dependent functionally on a vertical variable x, and
dependent parametric from horizontal variables.

In regular case: M =1 and U. (z;y, 2) = U} (x). The necessary condition that is
possible to neglect the following members with m > 1 is the condition |Uy,41/Un| < 1.

3. Scattering of Electromagnetic Monochromatic
Waves in a Statistically Irregular Waveguide

The scattering problem of a directed waveguide mode in a planar optical waveguide
containing stochastic irregularities is solved with the help of the theory of perturba-
tions [2, 18,31, 32].

Generally for the description of an electromagnetic field F in an irregular waveguide
the equation is used, which in the rectangular Cartesian coordinates has the following
form:

V2E +V (E?) + w?ueE =0, (3)

where V2 = A is Laplacian. The equation (3) is found with the help of the Maxwell’s
equations (1).

Then one considers the case of propagation in a waveguide along z-axis of the main
TE-mode (for TM-mode the analysis is carried out similarly). Then the full field in an
irregular planar optical waveguide can be written as the sum of fields of an incident
waveguide mode and the field of a scattered wave.

Then we can write equation (1) as the approximate three-dimensional equation.
Keeping in the obtained equation only members of the first order of smallness in respect
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of E and Ae(7), we shall receive an approximate inhomogeneous wave equation, which

can be considered as a homogeneous wave equation with perturbation as a source Ey,
in the right part [31,32]:

V2E, (z,y,2) + w’peoEs (1,y, 2) & —w?puegAe (z,y, 2) E’gy (x,2), (4)

where Eoy is the solution of the homogeneous undisturbed equation circumscribing the
propagation of the main TE-mode in a waveguide.

From the power point of view, the “source” in a right part of the equation (4) is
the intensity of the mode, incident on an irregular area of waveguide and scattered in
all enclosing space (3D-scattering).

The solution of the given inhomogeneous wave equation can be obtained as a
convolution of some Green function G (x, y, z; o/, y', z’) with the expression for the
source Ae (2/,y', 2") [31,32]:

—

ES ('('E7 y’ Z) =
= —w?uegy // Ae (2, 2) G (z, y, z; 2, y, 2') By, (2, 2) dz’dy/dz’.  (5)

The analysis shows, that in this case it is impossible to neglect polarizing effects and
the consideration of the problem of waveguide scattering of light on three-dimensional
irregularities becomes hardly complicated, since the determination of analytical expres-
sion for a Green function represents here not at all trivial problem.

When neglecting the polarizing effects, originating during scattering, it is enough
to require, that the relative variation of the dielectric permittivity on a distance of one
wavelength was much less than unit. Then it is possible to use a simple wave equation:

AE +n*k2E =0, (6)

which is fair for each Cartesian component of the vector of electrical field. For
fundamental TE-mode, propagating along the axes z, under condition 9/dy = 0, this
formula accepts next form:

0*E, 0°E,
+
Oz2 072

+n*k3E, =0, (7)

where n? (z,2) = n (x,2) + An? (z,2), n3 (z,2) describes regular properties of an
appropriate medium of waveguide (accepts values nj, ne or ng accordingly), and the
component An? (z, z) describes irregularities of the structure of a waveguide (both
irregularity of the boundaries, and heterogeneity of a refraction index).

For application of the theory of perturbations the addendum An? (z, z) should not
be necessarily the value of the small order. There is quite enough, that the area, within
the limits of which this component differs from zero, was very narrow. The solution
of the equation (7) with help of the approximate method of “ideal modes” [2] is then
finding as the expansion of certain scattering field on the orthogonal set of the modes
of the rectilinear optical waveguide.

Thus the solution for component of a scattered field in any point of space with
coordinates z, z takes form:

E, = /Q(f% L) Ey (p,z)dp, (8)

where ¢ is the effective amplitude of scattering TE-modes, defined as factor of expansion
of a field on all radiation modes; p is the transversal component of the propagation
constant § of the radiation modes.

The factors of expansion are fined from the orthogonality relations with the help of
the theory of perturbations. Both numerical methods of direct calculation and analytical
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methods of determination of an approximate value of the integral in expression (8)
can be used, for example, method of the stationary phase or saddle point method. If
the condition /0y = 0 is executed, it is possible to express any distribution of the
field of a waveguide as the superposition of orthogonal TE- and TM-modes of an ideal
rectilinear waveguide.

4. Dispersion Relations and Results of Numerical
Calculations for Three-Layer Regular Waveguide

For simulation the well known representation of dispersion relation in a trigonomet-
rical kind for thee layer waveguide was used [37]:

ph = arctg (p/B) + arctg (n/B) + (m — 1), 9)

where 8 = koy/n2 — 72 is the propagation constant of directed TE-mode along an axes
z (see Fig. 2); h is the thickness of a waveguide layer; v is the factor of phase slowing
down (effective waveguide refraction index); p = ko\/7? — n? is the vertical component
of the propagation constant of directed TE-mode for z > 0; n = ko+/7? — n3 is the

vertical component of the propagation constant of directed TE-mode for x < —h;
m=0,1,2,....
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Figure 2. Dispersing relation v = v (h) for the first five TE and TM modes of three-layer
polystyrene planar integrated-optical waveguide

The dispersing relations v = «y (h) for the first five TE and TM modes of a regular
three-layer polystyrene integrated-optical waveguide are represented in the Fig. 2

The amplitude of the field in arbitrary units of the radiated substrate T Es-mode
for v = 2.099 are represented as the example in the Fig. 3.

The field of a radiated substrate TE modes are set as follows [37]:

y (@57)] =

4w0M0PfPSPo o b
{ﬂmk%(ngn )[szr[pf pS sin? (¢.— pfh) } exp l‘ )} , T > N,

i/2

4wo pop3 Po cos[py (x — h) + ¢c],0 <z < h,

{ﬂlﬁl(nz—n 2)[p2+[p2—p2] sin?(pe—psh)]
1/2
{%} cos [psz + |,z <0,

(10)
where Py is the power, transportable of the wave in waveguide in a direction of an z
axes through the width unit (on the y axes), in calculations we took Py = 1W/m.
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Figure 3. The amplitude of the field of a radiated substrate TEs-mode for v = 2.099 of
three-layer T'a2Os planar integrated-optical waveguide

5. Dispersion Relations for Smoothly-Irregular
Waveguide

Dispersion relations for thin-film generalized waveguide Luneburg’s lens, being the
example of investigated by us smoothly-irregular integrated waveguide structures, were
obtained [5] in an approximation, when the sloping tangential boundary conditions
were replaced by their projections with a horizontal plane.

Taking into account of non horizontality of tangential boundary conditions, in-
troduces to Southwell’s relations a small correction on a parameter J, determined as
follows:

§ = max ’6%25‘ (koBQ)_l ;

this is two-dimensional waveguide’s analogy of magnitude ‘65 / 5’ .

With the help of additional differentiations and with allowance for adiabatic behavior
of field intensities, we received from the Maxwell’s equations (1) expressions for field’s
components F,, F,, H,, H, and quasi-waveguide equations for field’s components
E.,H, [9]. Let’s remark, that quasi-wave is the equation which is looking like a wave
equation in the left part of equality, in which right part instead of zero there is an
expression from unknown function, first order of smallness § on a comparison with
expression in the left part.

In each of homogeneous areas:

Iy={ze(—o00,—d]; y,z€(—00,+)},
It ={z € (—d,0); y,z€ (—o00,+00)},
I ={z€[0,h(y,2)]; y,z€ (—00,+0)},
I.={z€[h(y,2), + ©); y,z€ (—00,+0)},

obtained quasi-wave equations are simplified to wave equations:

d’E,
dz?

d’H,
dz?

+X’E. =0, +x*H. =0, (12)
where x? is the transversal wave number equal in zero order of smallness § approximation
to magnitude x§ = k3 (e — ?) . The solutions of the equations (12) are well-known [1,
2,10].

Further we determine horizontal boundary conditions on the plane x = —d and on
the plane x = 0. Then we determine “not horizontal” boundary conditions. From three

components of a tangential field E. only two are linearly independent. Therefore, it is
quite enough to determine boundary conditions only for E7, E7. Similarly from three
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components of a magnetic field only two H; and H] also are linearly independent.
Therefore, the boundary conditions need to be determined only for them.

All twelve relations for three boundaries form a homogeneous system of linear
algebraic equations for amplitude coefficients AS,BS,Ai,B}—L,Ali,Bli,AC,BC. This
system has a nontrivial solution, if it degenerates, i.e. if the determinant of the given
matrix Matr is equal to zero [9]. The condition det (Matr) = 0 is, as a matter of
fact, the dispersion relations for hybrid quasi-waveguide modes in a smoothly-irregular
section of a dielectric waveguide [9,13].

6. Results of Numerical Calculations for
Smoothly-Irregular Four-Layer Waveguide

The parameters of the structure considered are following: refractive index of
substrate (Si02) ns = 1.470, refractive index of regular waveguide film (glass of the
mark Corning 7059) ny = 1.565, refractive index of second waveguide layer (T'a20Os)
with varying thickness h (y, z) n; = 2.100, refractive index of covering (air) n. = 1.000.

The dispersion dependences of phase slowing down coefficient of TE( mode (effective
refraction index) on waveguide layers thickness in four-layer integrated-optical structure
including regular three-layer planar waveguide and thin-film generalized Luneburg
waveguide lens are presented in [38]. Therefore in the given work we do not examine
the dispersion dependences in detail.

On the vertical axis the values of 8 for TEg mode are indicated, and on the
horizontal axis the thicknesses waveguide layers in relative units d/A and h/\ are
indicated accordingly.

In the Fig. 4 the relative thickness d of first (regular) waveguide layer from = 0.4
to 3.0 are depicted, and the relative thickness h (z) of second (irregular) waveguide
layer from 3.0 to 3.8 are depicted accordingly.

2,04

14 T T T T T T T T
05 10 15 2,0 25 3.0 35 40

d/r, hiy, arb.u.

Figure 4. The dispersion dependence of TEyg mode in three-layer and four-layer parts of
the integrated-optical structure presented in Fig. 1

Hence the left part of the figure presents the dispersion dependence of regular three-
layer planar waveguide and the right part is the dispersion dependence of four-layered
smoothly irregular waveguide.

The part of the dispersion dependence from h =~ 0.0\ to h ~ 0.2\ (directly after
3.0 on the Fig. 4) presents some transition (unsteady) regime in the Luneburg lens.

Taking into account the longitudinal wave number correct transition (x — iy,y —
—ix) along the same branch of two-valued function of taking square root of a complex
variable during coefficient 3 transition from region 5 < ny to region 8 > ny is the
indispensable condition for elaborating strict calculations there.

The amplitude of the field in arbitrary units of the guided T'E4-mode for h ~ 0.5
(see Fig. 1), as the example of calculated fields, are represented in the Fig. 5.
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Figure 5. The amplitude of the field of a guided T F4-mode for h = 0.5

7. Conclusion

We used the solution of the electrodynamic problem that takes into account the

vector character of propagating fields, thus providing a more adequate (compared to the
scalar case) description of real irregular and smoothly-irregular waveguide structures.
Using this solution, we can analytically describe the fields of smoothly deforming modes
of a dielectric waveguide, their interrelation, and the dispersion relations.

The offered method is applicable for analysis of similar dielectric, magnetic, and

meta- materials’ structures, including nonlinear in enough broad band of electromag-
netic wavelengths, that is doubtless advantage.

Ll

10.
11.

12.
13.

References

Derugin L. N., Marchuk A. N., Sotin V. E. Properties of Flat Asymmetrical
Dielectric Waveguides on a Substrate from a Dielectric // Izvestiia Vuzov Radio-
electronika. — 1967. — Vol. 10, No 3. — Pp. 134-141.

Marcuse D. Light Transmission Optics. — New York: Van Nostrand, 1972.
Katsenelenbaum B. Z. The Theory of Irregular Waveguides with Slowly Changed
Parameters. — Moscow: Izdatelstvo USSR’ Academy of Sciences, 1961.
Hunsperger R. G. Integrated Optics: Theory and Technology. — New York:
Springer-Verlag, 1984.

Southwell W. H. Inhomogeneous Optical Waveguide Lens Analysis // JOSA. —
1977. — Vol. 67, No 8. — Pp. 1004-1014.

Babich V. M., Bulderev V. S. Asymptotic Methods in Problems of Diffraction of
Short Waves. — Moscow: Nauka, 1972.

Shevchenko V. V. Smooth Transitions in Open Waveguides (Introduction in the
Theory). — Moscow: Nauka, 1969.

Snyder A. W., Love J. D. Optical Waveguide Theory. — London: Chapman and
Hall, 1983.

Sevastianov L. A., Egorov A. A. The Theoretical Analysis of Waveguide Prop-
agation of Electromagnetic Waves in Dielectric Smoothly-Irregular Integrated
Structures // Optics and Spectroscopy. — 2008. — Vol. 105, No 4. — Pp. 576-584.
Adams M. J. An Introduction to Optical Waveguides. — New York: John Wiley,
1984.

Kantorovich L. V., Krylov V. I. Approximate Methods of the High Mathematic
Analysis. — Leningrad: Fizmatgiz, 1962.

Streng G. Linear Algebra and it of Application. — Moscow: Mir, 1980.

FEgorov A. A., Sevast’yanov L. A. Structure of Modes of a Smoothly Irregular
Integrated-Optical Four-Layer Three-Dimensional Waveguide // Quantum Elec-
tronics. — 2009. — Vol. 39, No 6. — Pp. 566-574.



Propagation of the Monochromatic Electromagnetic Waves in Irregular. . . 91

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Marcuse D. Radiation Losses of Dielectric Waveguides in Terms or the Power
Spectrum or the Wall Distortion Function // Bell System Tech. J. — 1969. —
Vol. 48, No 10. — Pp. 3233-3242.

Suematsu Y., Furuya K. Propagation Mode and Scattering Loss of a Two Dimen-
sional Dielectric Waveguide with Gradual Distribution of Refractive Index // EEE
Trans. on MTT. — 1972. — Vol. 20, No 7. — Pp. 524-531.

Tsai T. L., Tuan H. S. Reflection and Scattering by a Single Groove in Integrated
Optics // IEEE J. of QE. — 1974. — Vol. 10, No 3. — Pp. 326-332.

Tamir T. Integrated Optics. — New York: Springer-Verlag, 1975.

Sodha M. S., Ghatak A. K. Inhomogeneous Optical Waveguides. — London:
Plenum Press, 1977.

Miyanaga S., Imai M., Asakura T. Radiation Pattern of Light Scattering from the
Core Region of Dielectric-Slab-Optical Waveguides // IEEE J. of QE. — 1978. —
Vol. 14, No 1. — Pp. 30-37.

Walter D. J., Houghton J. Attenuation in Thin Film Optical Waveguides Due
to Roughness-Induced Mode Coupling // Thin Solid Film. — 1978. — Vol. 52. —
Pp. 461-476.

Hall D. G. Scattering of Optical Guide Waves by Waveguide Surface Roughness:
a Three-Dimensional Treatment // Optics Letters. — 1981. — Vol. 6, No 12. —
Pp. 601-603.

Andler G., Egorov A. A., Cheremiskin I. V. Determination of Parameters of a
Roughness of an Optical Surface by the Scattering in a Dielectric Waveguide //
Optics and Spectroscopy. — 1984. — Vol. 56, No 4. — Pp. 731-735.

Imai M., Ohtsuka Y., Haneda N. Out-of-Plane Scattering from Ion Exchanged
Optical Waveguides // J. of Appl. Physics. — 1985. — Vol. 57, No 11. — Pp. 4879—
4882.

Hall D. G. In-Plane Scattering in Planar Optical Waveguides: Refractive-Index
Fluctuations and Surface Roughness // JOSA. A. — 1985. — Vol. 2, No 5. —
Pp. 747-752.

Juk N. P. Figen Waves of an Average Field in a Statistically Irregular Planar
Waveguide // Jurnal Tehnicheskoi Fiziki. — 1986. — Vol. 56, No 5. — Pp. 825-830.
Siro F. Vaskez S. d. F., Egorov A. A., Cheremiskin I. V. To a Problem on
Determination of Statistical Characteristics of Irregularities of Thin-Film Wave
Guides // Optoelectronics, Instrumentation and Data Processing. — 1991. —
No 2. — Pp. 51-55.

Egorov A. A. Characteristics of a Radiation, Scattered on Roughness of a Surface
of a Substrate of a Planar Waveguide // Surface. Physics, chemistry, mechanics. —
1994. — No 5. — Pp. 72-76.

Egorov A. A. Theory of Waveguide Optical Microscopy // Laser Physics. — 1998. —
Vol. 8, No 2. — Pp. 536-540.

Paulus M., Martin Oliver J. F. A Fully Vectorial Technique for Scattering and
Propagation in Three-Dimensional Stratified Photonic Structures // Optical and
QE. — 2001. — Vol. 33. — Pp. 315-325.

Yegorov A. A. A new Algorithm of Restoring the Autocorrelation Function of
Subwavelength Statistic Surface Roughness by Light Scattering in Integrated
Optical Waveguide in the Presence of a High Additive Stochastic Noise // Proc.
SPIE. — 2002. — Vol. 4900. — Pp. 792-801.

Egorov A. A. Vector Theory of the Waveguide Scattering of Laser Radiation in the
Presence of Noise (Method of Modes and Method of Green’s Function) // Laser
Physics. — 2004. — Vol. 14, No 8. — Pp. 1072-1080.

Egorov A. A. Theory of Waveguide Light Scattering in an Integrated Optical
Waveguide in the Presence of Noise // Radiophysics and Quantum Electronics. —
2005. — Vol. 48, No 1. — Pp. 57-67.

Egorov A. A. Use of Wiener-Paley Transform for Processing of Waveguide Far-Zone
Light Scattering Data // ICO Topical Meeting on Optoinformatics/Information
Photonics 2006. September 4-7. — St. Petersburg. Russia: 2006. — Pp. 234-235.
Egorov A. A. 3D Waveguide Light Scattering. Rigorous and Approximate Analysis //
ICO Topical Meeting on Optoinformatics/Information Photonics 2006. September
4-7. — St. Petersburg. Russia: 2006. — Pp. 371-372.



92

Egorov A.A. et al.

35.

36.

37.

38.

Egorov A. A. Inverse Problem of Scattering of Monochromatic Light in a Sta-
tistically Irregular Waveguide: Theory and Numerical Simulation // Optics and
Spectroscopy. — 2007. — Vol. 103, No 4. — Pp. 638-645.

Egorov A. A. Theoretical Research of a Correctness of an Inverse Problem of
Waveguide Scattering of a Laser Radiation in a Statistically Irregular Integrated-
Optical Waveguide in Absence of a Noise // Journal of Radio Electronics. — 2009. —
No 4. — Pp. 1-20.

Egorov A. A., Stavtsev A. V. Development and Research of a Complex of Programs
for Calculation of Main Characteristics of Integrated-Optical Waveguides in a
System of Visual Programming Delphi and C++ // Journal of Radio Electronics. —
2009. — No 8. — Pp. 1-20.

Egorov A. A., Sevastyanov A. L., Lovetskiy K. P. Zero Approximation Model of
Integrated-Optical Generalized Luneburg Lens // Bulletin of PFUR. Ser. Mathe-
matics. Computer science. Physics. — 2009. — No 3. — Pp. 55-64.

VAK 517.15: 517.95: 519.62: 535.4: 621.38

PacnpocTpaneHrne MOHOXpPOMATUYECKUX JIEKTPOMArHUTHBIX
BOJIH B HeperyJspHbIX BoJIHOBoAaX. KpaTkoe BBe/jeHuE B
aHaAJU3 /Ui cJiy4das MJIABHBIX U CTATUCTUIECKUX
HeperyJisipHOCTel

A.A. Eropos *, JI. A. CeBactbsroB ', A. JI. CeBactpsanos , A. B.

CraBies '
* Unemumym obweti pusuru um. A.M. IIpoxoposa PAH
ya. Basuaosa, 0.38, Mocksa, 119991, Poccus
' Kagpedpa cucmem menexommynurayui
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Murayxo-Maxaas, 0.6, Mocksa, 117198, Poccus

B crarpe paccMOTpeHBI JiBa CiIydas: PACIPOCTPAHEHUE BOJIH B IIJIABHO-HEPETYJISIDHBIX U CTa-
THCTAYECKU HEPErYJISIPHBIX JUJIEKTPHIECKUX BOJHOBOJAX. OOGCYKIeHbI 0COOEHHOCTH IIpUbIIU-
JKEHHBIX PeIeHnT BEKTOPHBIX 3JIEKTPOJMHAMUYECKUX 33124 B 060oux ciydasx. [Ipemiaraembre
MEeTObI TPUMEHUMBI TSI aHAJIN3a TOJOOHBIX CTPYKTYD U3 [AUIICKTPUICCKUX, MATHUTHBIX, OII-
TAYECKUX U MeTa MaTePUaJOB B JOCTATOYHO HINPOKOM JHANa30HE 3JIEKTPOMArHUTHBIX JIJINH
BOJIH.

KuroueBsbie cioBa: ypaBHeHHs MakcBesia, BEKTOPHAs JIEKTPOINHAMUYIECKAs PObIIe-

Ma, IJIABHO-HEPETyJISPHBIN JUSIEKTPUIECKUN BOJTHOBOJ, MHOTOCJIOWHBIN BOJIHOBOJI, BOJTHOBO/I-
Hag nuH3a JI1oHebepra, rpaHUYHbIE YCIOBHUS, ACHMITOTUIECKUM METO/T, KBa3U-BOJTHOBO/IHBIE
MOJIbI, CTATUCTAYECKHE BOJIHOBOIHBIE HeperyssapHocT, TE u TM Mozapl, BOJTHOBOZHOE paccesi-
Hue, Mmetoi dyukiumit ['puna.





