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In many applied problems, efficient calculation of quadratures with high accuracy
is required. The examples are: calculation of special functions of mathematical
physics, calculation of Fourier coefficients of a given function, Fourier and Laplace
transformations, numerical solution of integral equations, solution of boundary value
problems for partial differential equations in integral form, etc. For grid calculation
of quadratures, the trapezoidal, the mean and the Simpson methods are usually used.
Commonly, the error of these methods depends quadratically on the grid step, and
a large number of steps are required to obtain good accuracy. However, there are
some cases when the error of the trapezoidal method depends on the step value not
quadratically, but exponentially. Such cases are integral of a periodic function over
the full period and the integral over the entire real axis of a function that decreases
rapidly enough at infinity. If the integrand has poles of the first order on the complex
plane, then the Trefethen—-Weidemann majorant accuracy estimates are valid for
such quadratures.

In the present paper, new error estimates of exponentially converging quadratures
from periodic functions over the full period are constructed. The integrand function
can have an arbitrary number of poles of an integer order on the complex plane. If the
grid is sufficiently detailed, i.e., it resolves the profile of the integrand function, then
the proposed estimates are not majorant, but asymptotically sharp. Extrapolating,
i.e., excluding this error from the numerical quadrature, it is possible to calculate the
integrals of these classes with the accuracy of rounding errors already on extremely
coarse grids containing only ~ 10 steps.

Key words and phrases: trapezoidal rule, exponential convergence, error estimate,
asymptotically sharp estimates

1. Introduction

Applied tasks. In many physical problems it is needed to calculate integrals,
that cannot be obtained in terms of elementary functions. Here are some
examples:
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1) Calculation of special functions of mathematical physics: the Fermi-Dirac
functions, which are equal to the moments of the Fermi distribution, the
Gamma function, cylindrical functions and a number of others.

2) Calculation of the Fourier coefficients of a given function, Fourier and
Laplace transform.

3) Numerical solution of integral equations, both well-posed and ill-posed.

4) Solving boundary value problems for partial differential equations (in-
cluding eigenvalue problems) written in integral form, etc.

Calculation of quadratures. Trapezoidal rule, rectangle rule and Simp-
son’s rule are commonly used for grid computation of quadratures. Usually
the error of these methods quadratically depends on the grid step, and a large
number of steps is needed to obtain good accuracy.

However, there are a number of cases when the error of the trapezoidal rule
depends on the grid step exponentially, i.e. when the step is reduced by half,
the number of correct signs of the numerical result is approximately doubled.
This rate of convergence is similar to that of Newton’s method. Two such
cases are known. These are: the integral of the periodic function over the full
period and the improper integral of a function that decreases rapidly enough
at infinity.

If the integrand has first order poles on the complex plane, then for such
quadratures there are majorant error estimates of Trefethen and Weide-
mann [1], see also [2]-[10]. In [11], [12] the generalization of Trefethen and
Weidemann estimates is built for the case when the nearest pole of an inte-
grand function is multiple.

In this paper, new error estimates of exponentially convergent quadratures
of periodic functions over the full period are described. Integrand function can
have an arbitrary number of poles of an integer order on the complex plane.
If the mesh is detailed enough and the profile of the integrand resolved well,
then the proposed estimates are not majorant, but asymptotically accurate.

It is possible to calculate the integrals of the indicated classes with the
accuracy of round-off errors even on extremely coarse grids containing only
~ 10 steps by extrapolation (i.e., subtraction) of this error from the numerical
value of the quadrature.

2. Exponentially convergent quadratures

One of the classes of exponentially convergent quadratures are integrals of
periodic functions over the full period. By replacing z = exp (2miz/X) we
move from the integral over the period [0, X] to the integral over the unit
circle |z| = 1 on the complex plane. We choose the bypass direction of this
circle counter clockwise. In [1], the following statement is formulated and
proved:

Theorem 1. Let u(z) be analytic in the ring R™! < |z| < R, where
R > 1, and |u(2)] < My. We introduce a uniform grid on the unit circle

z, = exp (2min/N), n =0, N. Consider the integral and the trapezoidal rule
quadrature
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Then the estimate for the quadrature error holds
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It is obvious that, by replacing z = exp (iz), theorem 1 holds for integral
over full period of the function u (exp (iz)) on the real axis.

In the works [11], [12], it was shown that the dependence of the estimate (1)
from N can be not majorant, but asymptotically accurate. This holds, if u (2)
has only first order pole type singularities, and R is taken such that the closest
singularity to the unit circle lies on the boundary of the ring R™! < |2| < R.
In this case, the integrand function increases significantly if one approaches
the singularity from inside the ring. Thereby, the constant M|, loses its usual
meaning from theorem 1. We carefully studied proof of the theorem 1 given
in [1] and we found the possibility of significant strengthening the results of
this theorem, under some additional conditions on the integrand function.

3. Calculating the error

Let us consider in detail the contour integral over the unit circle of a function
that has one simple pole inside it and another simple one pole outside it. This
case corresponds to the integral considered in [1]. Suppose the point a; is
inside, and the point a, is outside |z| = 1 and, the function u (z) is analytic
in the ring R™! < |2| < R, where R = min {1/ |a,|, |ay|}. Then the integral
has the form

G = fg(Z)dZZ f ( LGN S 1CIV

z—ay) (2 —ay) (a) —ay)

|z|=1 |z|=1

We make one assumption for the sake of simplifying the calculations. Its
effect on the result is weak. Let u(z) = 1, then we rewrite the integrand
function in this form

1 1 1

z—ay)(z—ay) (a; —ay)(z—ay) * (ay —ay) (z—ay)

Now we decompose each fraction in the Laurent series as the sum of the
geometric progression

1 0o kq 1 00 ks

B a; z
9(2) = (ag — ay) > Sl > Fpt1
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We use the grid z,,, n = 0, N, which is introduced in theorem 1. Our goal
is to obtain an explicit expression for the grid step Az, = 2,1 — 2,

2mi(n+1 2min 2mi 1
Az, = exp (#) — exp ( N ) N Pn (W +0 (ﬁ)) . (2)

Discarding the @ (N~?) term in the expression for the grid step, we write
the trapezoidal rule quadrature in the following form

N—-1 20 N—-1
GN: Zg(’zn)Azn = Wzg(zn)zn
n=0

We substitute the representation of ¢(z,) by the sum of the series in
the quadrature and then swap the series and the finite sum. Last step is
allowed due to absolute convergence of the resulting double number series (each
member of the double series of modules can be estimated by the corresponding
member of an infinitely decreasing geometric progression, which has finite
sum). The following expression for the quadrature formula is obtained

oo N—-1 ast oo N—-1 52+1
— E E 1
G’N - s2+1 ’ (3)
s1=0 n= s5=0 n=

To perform these transformations, we need the following well known result

= nk N, kis a multiple of N,
Z exp j:27mW =
0 0, otherwise.

We convert the second sum in square brackets in the formula (3)

oo N-1 szt (s + 1) is a multiple of N,
Z Z 52+1 = ¢ (sg+1) = Npy, =
55=0 n= Py = —17 s

1/ay
NZ sz_ 1—1/a§V'

po=1 G2

We convert the first sum in (3)

> N-1 ast {51 is a multiple of N, }

sh

1
N =N .
Za 1—aN

' s = Npy, pp=0,00 =0 1
We get
271 1 1
Gy = +
N (a; — ay) {1_%\] aé\’—l}
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Finally, we calculate the quadrature error

1 1 1 1
Ayv=G— = 271 1— .
N=G=GOy i ((aq —ay) { 1_61{\[} * (ag —ay) [a?—l})

The obtained result can be easily generalized to the case when the function
u (z) does not equal identically to one. The derivation is similar but far too
cumbersome. Let us formulate the final result.

Theorem 2. Let the point z = a, be inside the unit circle, and let the point
z = aq be outside of it. Let the function u (z) be analytic on the entire complex
plane, with the possible exception of an infinitely distant point, and u # 0 at the
points z = ay 5. Then the trapezoidal rule for the integral G has the following
error estimation

Ay=G—Gy=
~on (G - e L)) @

Estimate (4) is not majorant, but asymptotically accurate. The only one
approximation that was made is contained in the approximate expression for
the grid step (2).

4. Validation

Calculations were carried out with the test integral having a known value

B sin (2) Y — 9 sin (a,)
J= 7§ : dz = gm0 (5)

z—ay)(z—ay) (aq — ay)

|z=1

where a; = 0.6+ 0.6i and a, = 2—4. In this case, 1/ |a;| ~ 1.2 and |ay| ~ 2.2,
so the value R from theorem 1 equals 1/ |a;|. During the calculations, the
following information was obtained: actual error, the Trefethen—Weidemann
estimate (1), our estimate (4) and the error after extrapolation.

The figure 1 shows quadrature error versus number of grid steps in the
semi-logarithmic scale. Here, the black dots represent the actual error, the
white circles represent our estimate, and the black squares represent the
Trefethen—Weidemann estimate with the constant M, = 1. Recall that this
constant loses its meaning from theorem 1, if the singularity lies on the
boundary of the ring.

The plot shows that our estimate coincides with the actual error already
at N > 4. The Trefethen—Weidemann estimate does not represent the initial
part of the curve. It describes the curve starting from N = 15. This estimate
is asymptotically accurate in N, but the true value of the constant M, is
unknown. Therefore, the Trefethen—Weidemann estimate cannot be used for
extrapolation. Thereby, the error estimate constructed in this paper is much
stronger than the Trefethen—Weidemann estimate.



256 DCM&ACS. 2021, 29 (3) 251-259

These conclusions are also confirmed by the figure 2. Here, we plot the
ratio of error estimates to actual accuracy versus number of grid steps. The
number 1 corresponds to the Trefethen—Weidemann estimate and the number
2 is for our estimate. It can be seen that when N > 4 our estimate is almost
indistinguishable from the actual error. Therefore, it can be excluded from
the quadrature (i.e. extrapolated). This dramatically increases the accuracy
of the calculation. One can also see that the Trefethen-Weidemann estimate
significantly less accurate in assessing the dependence of the error on the
number of nodes: the corresponding relation goes out to a constant on the
much more detailed grids than the estimate (4).

0 10 20 30 40 50 60 70
N

Figure 1. Graph of convergence of the Figure 2. Ratio of theoretical estimates (1)
trapezoidal formula. Symbols are described and (4) for the integral (5) to actual
in the text accuracy versus number of grid steps.
Symbols see in the text

5. Extrapolation of the error

Let us exclude the error (4) from the calculated quadrature by the formula

This is equivalent to introducing some new quadrature formula. The error
is shown in the figure 1 by white triangles. One can see that the speed of
convergence of the quadrature (6) radically exceeds even the exponential one.
The accuracy of round-off errors is achieved already at N ~ 15, which is ~ 10
times less than for the trapezoidal rule. Labor intensity of such computation is
comparable to the complexity of explicit formulas. This approach is essentially
new and exceeds the world level.

6. Conclusion

The described method is a powerful tool for solving physical problems. If
one can find transformation of variables that reduce integral to one of the
considered types, then the calculations are accelerated thousands of times.
In this paper 1) a fundamentally new estimate of the error of quadrature
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is constructed, it is asymptotically accurate. 2) Extrapolation procedure is
proposed, which provides calculation of the quadrature with the accuracy of
unit errors rounding, and it is already performed on very rough grids with
the number of steps from 5-15.
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AcuMOTOTUYECKN TOYHBIE OIEHKM 3KCIIOHEHIINAJJIbHOM!
CXOAMMOCTH JIJid POPMYJIbl TPallenuii

A. A. Besos!'?, B. C. Xoxjaues'

I Mockoscruti zocydapemeennuil yrusepcumem um. M. B. Jlomonocosa
Jenunckue 2opwt, d. 1, cmp. 2, Mockea, 119991, Poccus
2 Poccutickuti yrueepcumem 0pysctv napodos
ya. Murayzo-Maxaas, 0. 6, Mocxea, 117198, Poccus

Bo MHOTEMX NpUK/IAIHBIX 3a/a9ax TPeOyeTCs SIKOHOMUIHOE BBIYUCJIEHUE KBaIPATYD
C BBICOKO# TOYHOCTBIO. [IprMepamu SBASIOTCA: BHIYUCIEHUE CIIEITUAJILHBIX (PYHK-
nmuit MaTeMaTudIeckoil pusuku, pacaét KoddpdumnuentoB Pypbe 3amauH0# QyHKINH,
npeobpazoBanus Oypoe u Jlamraca, ducieHHOe pellleHne WHTETPAIbHBIX YDABHEHUI,
pellenre KpaeBbIX 3324 JJIsl YPABHEHUN B YACTHBIX IMPOU3BOJIHBIX B WHTErPAJIbLHOM
dopme u T.1. i ceTOYHOrO BBITUCICHUS KBAIPATYP OOBIYHO MCIIOJIB3YIOT METO/IbI
Tparenuii, cpepanx nu Cumiicona. OObIYHO MOTPEITHOCTD ITUX METO0B 3aBUCUT OT
Iara CTeIeHHbIM 00Pa30M, U JJIsI OJIyIEHHs XOPOIIeil TOUHOCTH TpedyeTcs OOJIbIoe
qucyio maroB. OJHAKO CYIIECTBYET PsiJi CIydaeB, KOrJa ITOrPEITHOCTh METOIA TPa-
Ienuil 3aBUCUT OT BEJIMYUHBI I1ara He KBaJIPDATUYIHO, & SKCIOHEHIMAILHO. TakuMu
CIIyYIasIMU SBJIAIOTCS WHTErPaJl OT MEPUOIMIECKON (DYHKIIMY 110 TIOJTHOMY [TEPUOILY
¥ MHTETPAJI 10 BCEHl YUCTOBON MPAMOi OT (DYHKIUHU, JTIOCTATOYHO OBICTPO YOBIBAIOIIEH
Ha OeckoHeuHOCTH. Ecu mogpiHTerpaibuas QyHKIMA UMEeT MOJII0CA TEPBOr0 MOPsI-
Ka B KOMIUIEKCHOU IJIOCKOCTH, TO JIJIsi TAKUX KBAJIPATYDP CIPABEJINBbI MAYKOPAHTHBIE
orerku TouHOCTH Tpederena u Baiinemana.

B pabote mocTpoenbl HOBBIE OIEHKU MOTPEITHOCTH SKCIOHEHITUAIBHO CXOISAIITIUXCS
KBJIPATYP OT MEPUOAMYECKUX (DYHKIMI 0 IToJIHOMY 1epuojty. llogpraTerpaabuas
dYHKIIMSA MOYXKET UMETh ITPOU3BOJIBHOE UUCJIO TOJIOCOB IEJOTO MOPSIKA HA KOM-
1J1eKCHOM mtockocTu. Econ ceTka mocrarodno 1oapobHast (paspemaer npoduiib
HOJIBIHTErPAIBHON (DYHKIMK), TO IIpejjlaraeMble OIEHKU SBJISAIOTCA He MAYKOPaHT-
HBIMH, & ACUMITOTHIECKH TOYHBIMU. IJKCTPATOJUPYs, TO €CTh WCKIIOYAS ITY
[IOTPEITHOCTD M3 YUCJIEHHOU KBAJIPATYPbhI, MOYXKHO BBIYHUC/ISTH HHTEIPAJIBI yKA3aHHBIX
KJIACCOB C TOYHOCTBIO OIMUOOK OKPYIJIEHUS YK€ Ha UPE3BBIYANHO IPyObIX CeTKaX,
cojziepkanmx Bcero ~ 10 mraros.

KimroueBsbie ciaoBa: (opMysia Tpamlernuil, SKCIOHEHIINAIbHAS CXOIUMOCTD, OIIEHKHU
TOYHOCTH, ACUMIITOTUIECKN TOYHBIE OTIEHKU



