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1. Introduction

Principally the static axially symmetric problem in general relativity has been
formulated and developed in a most elegant manner by Weyl [1]. Among static solutions
of the Einstein—-Maxwell equations the first and at the time very important result was
obtained by Reissner [2] and Nordstréom [3]. The further works by Majumdar [4] and
Papapetrou [5] followed for the problem of the electrostatic field. By means of the
method of singular sources it is possible to construct asymptotically flat metrics which
reduce to the generalizations of the Schwarzschild metric in the absence of magnetism.

2. Basic Equations

The metric of the static axisymmetric gravitational field can be written in the
canonical Weyl coordinates in the form

1
ds? = 7 [€*7(dp? + dz?) + p*dp?] — fdt*.

The fact that the static Einstein—-Maxwell equations allow the existence of either
the electric potential, or magnetic one, results from the stationary Einstein—-Maxwell
equations.

In this case we set and magnetostatic Einstein equations have the form

. o Ll o 2
ulAu = (Vu)? + ?(VA;),), v <p2VA3) =0. (1)
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Here u=+/f, A = 57+ p . % + Eyel V= Pog +z0% (po and Z are unit vectors)
and As(p, z) is the magnetic component of the electromagnetic 4-potential.

The second equation in (1) can be viewed as the condition for the existence of a

new potential A5 connected with Az by relations

0Ay  f 9As A, f 0As
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In that case Egs (1) can be rewritten as
JAF = (VI +2f(VAY?,  [AAL = (VA) - V. (3)
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One can easily see that the electrostatic Einstein—-Maxwell equations have the same
form as Egs. (3). Therefore, we can put A4 = A}, where A4 is the electric component

of the electromagnetic 4-potential A; = [0, 0,0, —A4(p, z)]
While A3 = A4 = 0 the Eqgs (1), (2) turn to the Weyl vacuum static equations:

fAf = (Vh)? (4)
With the substitution f = €% (4) becomes linear:

0 1 oy 9%
AI/)_T,DQ+;‘87/)+@. (5)

3. Method of Singular Sources

The right-hand side of (5) contains zero though actually there should be a certain
singular unction characterizing the distribution of sources.
Let o(p, z) denote the mass density of such sources, and let us rewrite (5) in the

form 5 - o2
1
- — | p= — =—4 .
This equation has the solution
1 / /
w J(p 72 ) dV/ (7)

Tax ) =]
14

In the coordinates p, ¢, z we have
dV’ = p'dp’'dy’d7/,

7= 7' = p? + p/* = 2pp’ - cos(p — ) + (2 — )%,

Since the left-hand side of (6) does not depend on ¢, we can set ¢ = 0 in the
integral.
If we choose
5(p" = po)

J(pl7 Z/) = Tg<p07 Z):
where pg = const, d(p’ — po) is Dirac’s d-function, we obtain

“+o00 27

o(po, 2') - d¢’ - d2’
T B : (®)
V% + pd = 2popcosy’ + (z — 2')
z/'=—00 p’'=0
Example 1. Let pg = 0, 09(2’) = 16(2’). Integration of (8) then leads to
m
p=-—— (9)

/02 + 22 ’
i.e. to the Chazy—Curzon solution.

Example 2. Let o¢(z') = §p = const. With this choice we come to the Zipoy

solution:
_ 2 )2
¢:501n<z mo + /p? + (2 —myp) ) (10)

2 \z+mo+p?*+ (2 —mg)?
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If we put 6o = 1 in (10), we obtain the Schwarzschild solution

) 2my x:mio—l, y = cos v

/= r ' \z=mory, p=mo/ (22 —1)(1—1y?)
Example 3.
a)

= i dz’ _lnz—l—\/pz—i—zQ (11)
70 VRt P .

It is the soliton solution
b)

In this case we have

, z+/p*+2°
=ln—F——.
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Example 4. o(2') = 9(2') - 00(%"), po =0,

1, —m<zZ<m 2 2 a?
ﬁ(Z/)_{O —m >z >m’ 70() = .JO'K( 0 )

™

Here K is elliptic integral of the first kind. In this case

. 1 0’0(2/) z/
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If we put app = 0 in (12), then we obtain Schwarzschild solution (10).
Example 5. Let o(po, 2’) = 5 6(2')9(2"), p # 0. In this case

K ( 4ppo
2m \ (p+p0)2+22
V(p,2) = —- = 2 : (13)
T \(p+po)?+z
If we put pg = 0, then we obtain the Chazy—Curzon solution.
Example 6. Let o(pg, z') = ¥(2’). In this case

m

_ ! 1 4ppo o
"o “_4 V(p+po)? + (2= 2')? = <\/(p+po)2+(z—z’)2> = (14)

If we put pg = 0, we obtain Schwarzschild solution.
Example 7.

K ( 4ppo )
2 21,72
¥(p, 2) = / (p+p0)2+ ds
" (p+po)? + 27

(15)
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If we put py = 0, then we obtain the soliton solution (11).

Example 8.

+oo 4
() K (ol
W(p2) =~ / 7 (Ve )>dz’. (16)

p+po)? + (2= 2')?

If we put po = 0, then we obtain the soliton solution (11).

4. The Weyl-Bonnor—Papapetrou—Majumdar Class of
Solutions of Einstein—Maxwell Equations

1. Let us consider the subclass of the Weyl electrovacuum solutions of the equa-
tions (3)
(1 —ad)e? 4 %0 (1—e*)

=— 72 AY=0. 1
L—a2e?’ "3 1—ade v=0 (7

u =
The solution (17) includes also the most famous Weyl-Reissner—Nordstrém spherical-
symmetric solution.
If we put ¢ from (14) in (17), we obtain the generalization of the Reissner—Nordstrém
solution.
2. The subclass of Papapetrou—Majumdar solution

_ 1 p_ ¥ _
u—1+¢, A3—1+¢, Ay = 0.

a) For ¢ = %, we have the gravitational field of magnetic dipole [6]:
P+ z
_[, poz  17° PV . oz 17 8
f= + (pz +22)3/2 ’ 3= (p2 —|—z2)3/2 ) + (p2 +z2)3/2 ’ ( )

9 K / 4ppg .
b) For ¢ = Ho 9 ( oreo)”+ 2> , we have the generalization of (18).

0z V/ (p+p0)2+22
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Metoa cMHTYJASAPHBIX UCTOYHUKOB B 33a/ladaX 3JIEKTPOBaKyyMa
DMHIITETHA
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Kagedpa meopemuneckoti pusuru
Poccutickuti ynusepcumem dpyotcovl 1apodos
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C moMoIIpbIo METO/Ia CUHTYJ/ISIPHBIX UCTOYHUKOB BO3MOYKHO IOCTPOEHHE OOOOIEH N3BECT-
HBIX 3JIEKTPOBAKYYMHBIX DelIeHUH.
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