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This paper presents the conditions of optimality for a problem with linear phase constraints
in an infinite dimensional normal space with separated locally convex topology demonstrated
using the works of M.F. Sukhinin in infinite dimensional normal spaces, his theory of differ-
ential equations in these spaces when functions are not Bochner-integrable and have no de-
rivative of Gateaux. Problems with phase constraints were analyzed in finite spaces by many
authors like L.S. Pontryagin, L. Graves, V.G. Boltyanskiy, R.V. Gamkrelidze, A.A. Milyutin,
A.V. Dmitruk, N.P. Osmolovskij and others. Using the theory of differential equations of
Prof. M.F. Sukhinin published in his monograph [1], applying the Gamkrelidze and Pon-
tryagin’s method illustrated in book [2], we enounced and proved theorems for linear mixed
constraint in the separated locally convex space X.
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1. Integral, Differentiability and Properties

When functions of the type f(t,xz) = sin(tx), were x = z(w), w € [0,1] or
flt,z(w),w) = wsin(tx(w)/w) are used in a problem, one should ask what we mean
talking of derivatives. The first function is nowhere differentiable by Freshet as a
function from L, to L,, but is y—differentiable as a function f : L, — (L,, o). Here v
is a system of bounded subsets of L,,, o is the weak topology. The second has no deriv-
ative of Gateaux at no point, but is y—differentiable as a function f : Loo — (Lo, 0),
were o is the weak® topology. To use properly these functions and others with the
same particularities, we need the following theory in infinite dimensional spaces.

1.1. Integral and Properties

Here X is a Banach space with an additional locally convex topology,

— B(X) is the unite ball of X,

— b(X) is the set of all bounded subsets of X,

— ¢(X) is the set of all sequently compact subsets of X,

— p(X) — is the set of seminorms, defining the topology 6,

— 0 — a separated locally convex topology in X, satisfying the conditions:
1. B(X) — is closed in Xy,
2. (B(X))g — is sequently complete,
3. b(X) C b(Xp).

Example. Let Y, Z — be Banach spaces, X = /(Y, Z) with the strong operator’s
topology . Then the mentioned properties are satisfied.
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Here the set £, (Xg, Xg) is the space of linear sequently continue operators of Xy
into Xy, with convergence by virtue of v. #¢(Xy, Xp) is the same set with strong
convergence topology.

Let I = [a, 8] CR,E C M(I), M(I) — is the set of measurable subsets of I. Let
¢ : E — Xy be uniformly continuous, ¢(F) € b(X), a =t1 < t2 < ... < t, = [,
5@ EEZ' :LOE Let

max; At; —0

Qi = {g(&)g(lz’)o’ Ei#0, o /d)(t)dt = lim Y @
) 7 ) E 1:1

with respect to the topology 6. This limit exist and doesn’t depend on the parameters.
The defined integral satisfies the next properties:

1. Vb € £(Xy,R) : z/zggb(t)dt :gw(t)dt.

2. Vi € ((Xp,R) : |1/Jb[¢(t)dt‘ < Hwa[qu(t)Hdt.
3. Vo1, 02, A1, A2 € R, [(M1(t) + Aaga(t))dt = Ay [ ¢1(t)dt + A2 [ ¢o(t)dt.
E E B
4. Ap(E, Xg) = {¢ : E — Xp|¢ is a class of equivalent measurable functions and

1/p
£||¢(t)||Pdt < oo} for 1 <p < oo, [|¢la, = [l10]ll, = (£||¢(t)|i”dt> :
5. For ¢ € A1(E, Xy), [ ¢(t)dt = lim,, oo [ ¢(t)dt, K,, — is compact in E, ¢|k, :
B K

K, — Xy — is continuous, ¢|x, : K, —>nX — is bounded, and u(E \ K,) — 0.
The space of Bochner-integrable functions is a closed in Aq(FE, Xp).

t
6. For ¢ € A1(E, Xp), the function @ : t — ®(t) = [ ¢(s)ds € Xy — is differentiable

a
almost everywhere and its derivative is ®'(t) = ¢(t).
7. ®(t) — is absolutely continuous as function of I into X.

8. Wi(I, X,) = {f 1Jac X,3a € 1,36 € Av(I, Xo) ¢ f(t) = a+f¢(s)ds}.

The defined integral also satisfies other properties of the Lebesgue integral neces-
sary in this paper (see [1, § 6]).

1.2. Differentiability and its Properties
Def 1. The function r : U — X is said to be y-small at x¢ € U, if

Vpep(X) YCenr3dd >0 VheC V|| <o, zo+theU: p(r(xo+th)) <|[t.

Def 2. The function f : U — X is said to be v-equivalent to the operator A €
Y, X)at zg € U, if r(h) = f(xo+ h) — f(zo) — Ah is y-small at 0. Moreover, if A is
defined for all h € X, then f is y-differentiable and its y-derivative at xg is A.

Def 3. f is sequently (v,71)-Lipshitzian at 2o € U, if VC C v V{h,} C C
V{tn} S Co(R), tn 7é 0, xzo+tyh,ecU: {t;l[f(l'o + tnhn) — f(l’o)]} € 1.

Def 4. The mapping f : Xy — Y is said to be open at zg , if VQ2 C X, g € intQ) :
f(xg) € f(Q). If the contrary yields, we said that the mapping f is critical at xg
(see [3, p. 781-839)]).

Def 5. If X, Y are seminormal spaces, then the mapping f : X — Y is said to be
correct (see [4, p. 223-228]) or have the covering property ( see [5, p. 39-44], [6, p. 11—
46]) at xo , if 3¢ > 0 V9 €]0, ¢t f(zo) +e0B(Y) C f(zo + 6B(X)). If the contrary
yields, we said that the mapping f is quasicritical at xg.
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Def 6. Let X, Y — be seminormal spaces. The mapping f : X — Y is lipschitzian
at xo € X, if 3r > 0, 3¢ > 0 V0 €]0,¢[: f(zo+ 6B(X)) C f(zo) +1IB(Y).

Remark 1. Let X be a locally convex space. Ay : Z — Y — is a linear operator,
Ay el(Y,X),and f: U — Y and g : f(U) — X are respectively y—equivalent to A;
at zo and y;—equivalent to Ag at f(xg). If f is sequently (v,~1)-Lipshitzian at xg,
then go f : U — X is y-equivalent to Az o Ay at xg.

Remark 2. On the critical and quasicritical properties.

. From the covering property of the mapping at a point follows its openness at this
point, or in other words, from the criticity of the mapping at a given point follows its
quasicriticity at this point.

. If Xy, Y, Z, — are topological spaces, the mapping f : X — Y is continuous at
xg € X, and g : f(X) — Z is critical at f(xg), then go f: X — Z is critical at xg.

. If X, Y, Z — are seminormal spaces, the mapping f : X — Y is lipschitzian at
xog € X, and the mapping ¢ : f(X) — Z is quasicritical at f(xg), then go f: X — Z
is quasicritical at xg.

2. Formulation of the Problem

2.1. General Settings

Let J be a convex functional, A(t) € Aq([to, 1], 15(Xo, Xo)),
—B(t) € A ([to, t1], L(R", Xp)), hi(t) € I(I1,1(Xq,R)), bi(t) € I(I,R").

Let be defined the mapping Q : (zo,71,%t0,t1) — Q(z0,71,t0,t1) € RY. Let be
given the equations:

z(t) = A(t)z(t) + B(t)u(t), uvwelU, =ze€lX, (1)
we put x(to) = o, (t1) = 1, (2)

Hi(8), 2] + H()u(t) <0, i=T,5, 3)

(R (t), z(t)] + b (t) <0, j=1,1, (4)

Q — is quasicritical at (z, 27,15, t7). (5)

Question: Find de necessary conditions of existence of the solution of the system
(1)—(4), for which at the given point @ is quasicritical.

In order to answer to this question, we check separately the subsystem (1)—(3), with
(5) and the subsystem (1)—(2), (4)—(5). Having the results from the two subsystems,
we combine them to find the answer to the question for the system (1)—(5).

Simultaneously, we use the answers to get the necessary conditions of existence of
the optimal control for problems with linear constraints in the form of Pontryagin’s
principle of maximum in infinite dimensional spaces. To get this result, it suffices to
take in the above problem @ = (Q, J), if we want to investigate in infinite dimensional
banach space the case of the optimal control problem formed by (1)—(4) and the next
equations:

Q($0,$1,t0,t1) = O) (6)
J(xo,x1,t0,t1) — min. (7)

Let set the next conditions on X, 6 and +, that allow us work with the defined
integral and to differentiate by virtue of the topology the functions that we use:

LU BOOD) —supTin  swp (il f(a ) — F@I,
2D t=0 pet—1(D—2)NB(X)]
Lipb(D,Xg,’Y) = {f X — X9|L(fa ||||’B(X)7D) < OO},
I[f1lx = /Il + L(f, B(X), D).
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In the space Lipy(D, Xp,7) is defined a topology with the next basis at 0:

E(p, C, Q) = {[fIp(f(2)) + L(f,p, C, Q) <1},
where p € p(Xy),C € v, and Q € ¢(U).
. B(X) —is closed in Xy, (B(X))p — is sequently complete,
o(X) Cy Cb(Xy), VC € v VA € £(Xg, Xg) Hzn} C C, {Azn} C,
(Cer,C cC)=C" en,
. (Cey,M>0) = [-M,M|C € ~,
. (Cen,C eq)=CUC €.

U W N

2.2. Problem with Regular Constraints

As announced, let check the case of the subsystem (1)-(3), (5). Let
h(t) = (R'(t),...,h5(t))T € [¢(Xy,R)]?, z=(Z,z), blt) = (b ),...,b%(t))7,
Z(t) = [h(t),z(t)] + b(t)u(t). The solution {z*,u* 5,5, x5, 25} of the given system
is also solution of (I1):

2(t) = / As)z(s)ds + / B(s)u(s)ds + o, (8)
= / [h(s), 2(s)lds + / b(s)u(s)ds. )

The optimal solution of our system also satisfies the necessary conditions of opti-
mality for the system (8)—(9) with the mapping (5), for which holds the proposition:

2.2.1. Existence of the Admissible Solutions

Proposition 1 (Existence of the admissible solutions). The system (8)-
(9) has a solution T = (Z,z) € Ai([to,t1],Xe X R®) for each u € Li(R"),
A € Ai([to, t1], £(Xo, Xp)) that we can express by the formulas:

(1) = R(t, to)z0 + / R(t,1) o B()u(l)dl, (10)
(1) :/[h,x(de/b(Z)u(odz. (11)

This is a direct consequence of the next result from [1]:

Proposition 2 (Existence and uniqueness of the integral equation’s solution). Let
y € Ao(I,Xp), to € I, b(X) = b(Xp), X — is an infinite dimensional normal space,
0 — is a separated locally convex topology in X, and v C b(X), A(t) : ([to,t1] —
0(Xg, X)) is O-integrable. Then the equation

t t
x(t) — /A(s)x(s)ds =y(t) has x(t) =y(t)+ /?R(t, s)A(s)y(s)ds
t() tO
as unique solution in Aoo(I, Xg). Here Wi (I1,0,(Xg,Xg)) 2 R: 1 x I — £,(Xp,Xp)

is the resolvent kernel of ' = A(t)xz. We have

R (t,s) = —R(t,s) 0 A(s), R,(t,s) = A(t) o R(¢t, s).
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Proof. Vn € N, Vu € U, 3l,(u) € [to,t1], up, € U, A, € A(I,4,(Xg,Xs)),

B, € Ai(1,04(R", Xp)), byn € Li(I,L(R",R?)) :

L. p([to, t1] Ny (u)) < £, I, (u) — is compact;

2. u, — is continuous on II, (u) and lim wu, (t)=u(t);

3. A, — is continuous on IL, (u) and lim A, (t)=A(t);

4. B, — is continuous on II,(u) and lim B, (t)=B(t);

5. b, — is continuous on IL,(u) and lim b, (t)=b(t); II,,(u) C I,41(u).

Using the defined approximations for the given systems on II(u), we obtain a
continuous solution x,, by the enounced proposition with R, (¢, t). Taking into account

the properties of 6, it easily comes out that R,(to,t) — R(to,t) and z, — =z on
(u) = UpZy M (u). )

Let now study the problem on II;(u) with the defined sequences. In order to
reduce the quantity of indexes in this paper, we will denote the sequences just as their
limits, as they can’t be misunderstood in this case, keeping in mind that after all our
operations the results should be turned to the limits of the used functions.

Let set to(é) = to+edto, tl(E) =t1+edty, fo(&) = Z+edTo, u(t, 8) = u*(t)+55u(t),

z1(e) = &7 + €01 + Yo (e0Z(, Ou). (12)

Equations (10)—(11) define f(Zo,u,to,t1) = Z(t1), and (12) a continuous operator
o: Ry — 19(@0) X ’19(@1) X ’19(750) X ﬁ(tl).

For the case of the optimal control problem, let ¢ = J(xf,z7,t5,t7).
Then for each solution of (8)—(9) we have Q(Zo, f(Zo,u,to,t1),t0,t1) = 0 and
J(Zo, f(Zo,u,to,t1),to,t1) = c. And, for the quasicritical mapping we have

Q o ¢(£)(0Z0, 071, 0tg, 6t1) — is critical at ¢ = 0.

From here we find some &, for which kd@ > 0. (see [1])
Therefore, the optimal solution of the initial problem should satisfy the necessary
conditions of optimality given by the result of the next problem:

Q(e) = Q 0 (¢) (920, 671, dto, 6t1) = 0, (13)
J(e) = J o ¢(¢)(62¢, 021, 6ty, dt1) — min. (14)

For (13)—(14) and vectors from the above solution, as the critical value of ¢ is 0,
we obtain for some m € RN, n e R~ {0}, wu(t):[t;,t;] — R® the following:

inOAJ_JO + inlAi’l + mQtO(Sto + mQtlét -+ nJa—;OAi“g -+ nJilAi'l +
121
iy St + 1y, 5t + / (1), 2(t) — A()5x(t) — B(t)su(t)]dt +
i
t1

+ / (1), [, (1)) + b(£)Su(t)]dt < 0, (15)

0

Ax(t) = Rt t8)6z0 + R(t, 1) (A(H)z* () + Bt)u*(t))5t —

— R(E ) (A + B ()5t + / R(t,1) o B(1)ou(l)dl, (16)

5
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55 (t) = ([h, 2™ ()] +b(E)u* (£))5t — ([h, zo] + (U (t0))5to + [h, dx ()] +b(t)du(t). (17)

From (15)-(16), we obtain the following:

— [(mQu, + nday +9(17)) 0 R(41, 1), Alto)xg + Bltg)u” (o) +
+ [mQay + 1y, Altg)xg + Bltg)u™ ()] + mQy, + 1y, =0, (18)

(MQg, + ndy,, A(t])x] + B(t])u" (t])] + nJy, + mQy, =0, (19)
t
mQu, + il + 6(E), [ REEDBOSOA| <0. 1)
;

Knowing from the above inequalities that m(y) = magj(H(z/),u) = H(y,u"),
ue

H(,u) = [¢(t), B(t)u], using the regularity of the set U, we find functions
(), v1(t), -+ ,vs(t), for which

B(t) 0 Bt) = VuH(b,u") = u(t) o b(t) + 3 v Vuidal) =

= p(t)b(t)ou(t) = [ (), B(t)ou(t)].
On the other hand, taking into account rang(b(t))=s, we find a measurable A(t),
satisfying [B(t) + A(t)b(t), du(t)] = 0. Then [¢)(t), A(t)] = —u(t), and

h(t) = —y(t) o A(t) + u(t)h,

V() = =mQqo, —nday,  P(t5) = (E7)R(t7, 15) — /M(S)ho R(s, tg)ds.

£

Taking into account this fact, (21) vanishes and (18)-(20) become:

[(t5), A(to)zo + Blto)u™ (tg)] = —mQr, — ndy, (18")

[(t1), A(t))z1 + B(tD)u™ (t7)] = mQy, + nJy,, (19)

P(ty) = mQyy + Ny - (20)

Let define 7, , 7%, 7: to < 71,7i < Tip1, T = t1, T; € Uy (w). Here I, (u) C M(I)

with measure p(Il,(u)) = 1/«, and the used functions are uniformly continuous on
T, (u), for all & € N. Such a subset exist according to [1, § 6.9.10].

Let 0ty > 0,...,0ty > 0, 6t € R and {v1,...,vx} C U, (v; = v; is possible). Let
I =1 + el +e(l; + 6t;)], i = 1, k, for I; defined as follows:

ot — (0t; + -+ 0tg), if 7, =73
Ii =< — (0t + -+ ty), if 7, =7 <73
—(5tl‘+"'+(5tj), ifTZ‘:Ti+1:"':Tj<Tj+1 (j<k‘)
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We choose ¢ so that I; N I; =0, and I; C [t,t1 + €dt], and define

e u(t), Vt¢ Iy (u) NURT, ) Vit ¢ T, (u) NUNT,,
=10 Ve LN bult) = v—u(t), Wt € I N I (u).

Considering in (15) that the integrals vanish, oty = 0, dxg = 0, é7, = 0t = 0, we
obtain [mQy, + ndy,, B(t7)du(ty)] > 0, what leads to

H(p(t7), u(ty)) < H(@(t1), w"(8)), (21)
[(t) o h,x™] 4+ p(t) o b(t)u =0, (22)
(1) 0 A(t) = —(t) + (1) o b (23

Using u(t) = —[¢(t), A(t)], we obtain

() = —p(£)(A(t) + A(t) o h) and

- / (A(s) + A(s) o h)da(s)ds. (23*)

2

Therefore, (16) becomes

k
Z (t7,7:) o B(1i)(vi — u™(m;))dt; (16")

=0

where R(t, 1) is the resolvent kernel of (23*). Coming back to (15) with the previous
changes and (16'), we obtain

V() = YR, ™), [(7), B(mi)du(m)] < 0 or
H((7e), u(r)) < H(4p(), u* (7)) for all k. (217)
(

We can conclude that (21”) holds for all ¢ € I1, (u). And taking the limit in the proved
expressions, we obtain the necessary conditions for the optimal control and (21”) holds
on T(u) = U, T ().

The result makes sense only if 1 (t]) = mQy, + nJ,, # 0. This condition is guar-
anteed if for some ig, {Q% , J,, } is linearly independent. The satisfaction of the above
condition and those of the problem formulation leads to the following theorems.

2.3. Theorems

Here we enounce theorems for different cases, taking into account the above trans-
formation.

Theorem 1 (Analog of the maximum principle).  Let
{z*(t),u*(t),xf, 27,65 <t <t} — be the measurable optimal solution of
(1)-(3), (6)«(7). Let x (t) € WI(I,Xg) and u*(t) € Loo(I,R").  Let
A e A(I,Xg). Q is b(X}F) x b(R?) — differentiable at (zf,z},t5,t7). If

Q : I(xy) x I(@F) x I(tg) x 9(t;) — RY is continuous in I((xf, x7)), rang (b(t))=s
and for some io, {QN (xf,x},t5,t%), Ju, (xf, 25,85, t7)} is linearly independent,
then F(t) € Wi([ts,t7],0,(Xe,R)), and u(t) € Li(I,R%), for which holds:
VueU 3F(u): p(Il(u)) = t7 —t§ and ¥Vt € I1(u),

#(t) = A(t)2* (t) = Hy(b(t),w (1)) = B()u* (1), (24)
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P(t) = =9 (t)A(t) + p(t) o h(t), (25)
H(p(t), ut)) < H(p@),w (1)),  [u(t) o h(t), 2" (8)] + p(t) o b(t)u™(t) =0,  (26)

where p(t) comes from the maximum’s condition;

[¢b(to), Altg)zo + Bto)u™ (tg)] = —mQy — iy, (tg) = mQa, + nJmo, (27)
[W(81), A(t1)2T + B(t)u" (1)) = mQu, +ndiy,  P(t7) = —mQu, —nds,. (28)

From this theorem follows:

Corollary 1 (Integral ~ form  of the maximum principle). Let
{z*(t),u*(t),xf, 27,65 < t < ti} — be the measurable optimal solution of
the given system.  Let z*(t) € W{(I,Xy) and u*(t) € Loo(I,R").  Let
A € M(I,Xg). Q is b(X2) x b(R?) — differentiable at (zf,x%,t5,t7). If
Q : I(xy) x I(x}) x I(ty) x I(t3) — RY is continuous in 9((xf, 7)), rang (b(t))=s and
for some ig, {Q¥ ,Jy,} s linearly independent, then i (t) € Wi ([t5, 1], ¢, (X, R)),
and p(t) € L1(I,R®), for which holds : Yu € U,

(1) = ap + / A(s)a*(s)ds, @ = —p(t)A(t) + u(t) o h(t), (29)

/H (), u(t))dt < /H (), u* (1))dt (30)

where p(t) comes from the maximum’s condition;

[V (o), Alto)wo + Blig)u™ ()] = —mQu, — 1y, P(t5) = mQu, + nJiﬂo’ (31)
[0(t1), A(t)1 + B(t1)u™ (81)] = mQy, + nJy,, (t7) = —=mQu, — sy, (32)
[1(t) o h(t), 2" ()] + pu(t) © b(t)u™ (t) = 0. (33)

If @ = Q(x1,t0,t1) and J = J(x1,t0,t1), and xo is a known vector, then the
variation vanishes at this point, and we easily get from the proof of the theorem 1 and
corollary 1

Corollary 2 (Case of fixed initial point). Let {x*(t), u*(t), 7, t§ < t < t7} —
be the measurable optimal solution of the problem. Let x*(t) € W{(I,Xy) and
u*(t) € Loo(I,R™). Let A € Ai(I, Xp). Q is b(Xg)xb(R?)— differentiable at (x%, 5, t%).
If Q : 9(x7) x 9(ty) x I(t;) — RY is continuous in 9(x}) for fized values tj,t;,
rang (b(t))=s and for some ig {QL (x},t5,t7), Jo, (7,15, t1)} is linearly independent,
then there exist Y(t) € Wi([t§, 7], € (Xo,R)), and p(t) € L1 (I,R®), for which holds:
Vu e U J(u) : p(I(u)) =t — t§,

D(t) = —(DA() + p(t) o h(t), (34)
H(y(t),u(®)) < H((t),u™(t),  [u(t) o hya™ ()] + p(t) o b(t)u(t) =0, (35)

where p(t) comes from the maximum’s condition;

[¥(to), Alto)wg + Blto)u™(tg)] = —=mQy, — niJi, (36)
[W(81), A(t1)2T + B(t)u" (1) = mQu, + iy, (1) = —mQu, —nds,. (37)

If xg, to are known parameters, then 6ty = 0, dx¢p = 0 and the next corollary hold:
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Corollary 3 (Case of fixed initial point and initial time). Let
{z*(t), u*(t), xo,xl,to <t < t7} — be the measurable optimal solution of the problem.
Let 2*(t) € W(I, Xg) and u*(t) € Loo(I,R"). Let A € Ay(I, Xg). Q is b(Xy) x b(R)—
differentiable at (x},t7). If Q : 9(x%) x I(t]) — RY is continuous in 9(x%) for the
fized value t}, rang (b(t))=s and for some ig {QN (x3,t}), Jo, (x,t])} is linearly
independent, then there exist (t) € ¥([to,t]],€4(Xg,R)), and u(t) € Li(I,R?), for
which holds: Yu € U 3Ml(u) : a(Il(u)) =t — to, Vt € (),
)

V(1) = () A(t) + u(t) o h(t
H(p(t),u(t)) < H(p(t),u™ (), [u(t) o h(t), 2" ()] + u(t) 0 b(t)u™(t) = 0, (39)

where p(t) comes from the maximum’s condition;

[Y(t1), AtD)x1 + B(E)w" (87)] = mQu, + ndiys (t7) = —mQuy —nday. (40)

Corollary 4 (Integral form for fixed initial point and time). Let
{z*(t), u*(t), xf, 7,15 <t < t7} — be the measurable solution of the problem for which

Q is quasicritical. Let z*(t) € Wi (I, Xg) and u*(t) € Loo(I,R™). Let A € A1(I, Xp).
Q is b(Xg) x b(R)— differentiable at (x,t}). If Q : 9(x%) x I(t]) — RY is continuous
in 9(ax}) for the fized value ¢ , rang (b(t))=s and for some iy, Q¥ (x},t7) # 0,
then there exist ¥(t) € Wi([to, t5],0+(Xo,R)), and u(t) € Li(I,R®), for which holds
Vue U :

t

a”(t) = o + /(A(S)w*(S) + B(s)u’(s))ds, () = —()A() + u(t) o h(t),  (41)

/H(w(s u(s))d /H (42)

[u(t) © h(t), 2" ()] + M(t) o b(t)u’(t) =0,

where p(t) comes from the mazimum’s condition;
(1), A7)y + B(t)u” (87)] = mQpy,  $(t7) = —mQq,. (43)

2.4. Case of Irregular Phase Constraints

Now let be given the system (I)* that consist of (1)—(2), (4)—(5). For this sys-
tem, we suppose that for each « the constraints’ mapping have almost everywhere k,
derivatives. We set k = max{k,}, where k, is the least number for which

ko _ _ —
(iltk ([h (t), w(tﬂ + boc(t>) ‘(1): [ha(t), 2(t)] + ca(t)u(t) + ba(t),

ca(t) #0, c(t)=1(c1,...,¢), rang(b(t)) =1

Let define the next variables:

ko—1 _ _
(1) = s ([Fa(t),2(0] +Ba(0) |(1>, i—Th 1L

yaz()—o Z_kOt?k

Yau(t) = = ([ha(t), 2(1)] +ba( )
Yi = (yl,m S 7?/1,1'),
Yilli = (Y1155 - > Y1,il5) -
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Using the properties of the defined parameters, we have

Y1 (t) = —[h(t),z(1)] — c(t)u(t) — b(t),
Ui(t) =yia(t), i=2,k—1,
29k (U)Yr(t) = (Y1 k=15 YLky—1)5
z(t) = (w(t), yr(t), -, yk(t)).

The system (I)* equivalent to a system of the kind (I) with a new

. @1($0_7x17t07t1) B
Ya,1(t) + et [ha(t)w(t)] +ba(t)) I}
Q(j()ajhthtl) =

Yorko—1(t) + ([l ( ) z()] +ba(1)) (1)
a=1,1

Hence holds an equivalent of the expression (15) for all variations with some
Pos €R,m e RN N {0} and m = (m, pl 1,y Pl s Plas- - PLi,):

(melO)Axo =+ (QOl)Aml + (mQt0)6t0 + (mQt1)5t1+

+ 5 [ 01 (5yas + [ha(t), 02(t)] + ca(t)du(t))di+

o= 1t0

l tl . k -1 tl (15*)
+ Zl f Mo kg (2%71@& Yo, kg 5ya ko —1)dt + El 22 f He, z(éya % 5yo¢,i—1)dt+
a=l1tg «@ 1 to

+ } [(t), dx(t) — A(t)ox(t) — B(t)du(t)]dt > 0.

Therefore, we obtain for the optimal control problem the conditions:
ty

)

H(E) = m@u 41, + Y30 <6t§t — [halt),a <t>}—j;[ha<t>,x*<t>}>

a=1i=1 (1)
H (té) = _mQto - n‘]to Z Z <8t dti a(t)?x*(t)]> )
a=11i=1 (1)
!
¢(t) = —¢(t)A(t) + Z ,U*a,lhoe(t)’ q)[)(tz;) = meo + ndz,, (44)
b 9 @t g
¢(t>{) = _meﬂl - Z Zpa zgm dti— 1 h ( ) (t)] ’ (45)
a=11i=1 (1)
l —
H (u(t]) = 3 pran () (ca (8 u () +B(t])) <
< H (u ( z a1 () (ca (1) w* (5) +(£1)), (46)

/:La,i(t) = *,U'Oé,i+l(t)7 Mo (ti) = 7p<11,i7 Mai (ta) = 07 1= ]-7 k— ]-7 (47)



Pontryagin’s Principle of Maximum for Linear Optimal Control Problems. .. 15

S (@) (halt), 2" (0] + ca®)u'(t) + bal(t) =0, a =T, (48)
Varying now the points of contact with the boundary set

G={z € X : [ha(t),z(t)] + ba(t) =0},

by setting the points 7 = tep, 7o = tes, Where te,, — is the point of entry and t., —
is the point of exit, we obtain a varied solution that differs from the optimal solution
only in the small neighborhoods of t., and te,. Then, we set Axy = Az(t;,) = 0,
Az = Ax(t)), 0yai(th) =0, 0yai(ts,) = 0, Ayai(th,) =0, i = 2, ke, a = 1,1
Using these considerations in (15*), we obtain:

H(th) = Hite) - Zual (te) ([ (ten) 2 (1)) + o (1) 0 (000) +B (1) ), (49)

H (i) = H(th) - Z_: o (t5) ([ha (1) 0" (82)] + ca (t5) w” (t5) + B (¢) ) - (50)

Therefore, we can introduce the next conditions on the used functions:
Condition 1. A: [ — ((Xy, Xg) — is measurable, and

A() € WIHI, (X, X)),

Condition 2. B: I — ((R", Xy) — is measurable, and
B(.) € Ai(I,((R", X)),

Condition 3. h: I — (X, R") — is measurable, and h(.) € W (I, {(, Xg,R!)),

Condition 4. b: I — ((R",R") — is measurable, and b(.) € WF(I,RY),

Condition 5. @ and J - b(X7 xR?)-differentiable at (xf,x3,t5,t) and continuous
in its neighborhood, where (x§, x7,t5,t7) — is the quasicritical (optimal parameter) of
the problem.

Theorem 2  (Irregular case). Let hold conditions 1-5. Let
{z*(t),u*(t), xf, 27, t§ <t<t’1‘} — be the measurable optimal solution of the
problem. Let z*(t) € W(I,Xg) and u*(t) € Lo(I,R"). If rang(c(t))=l and
for some io, {QN (xf,x},t5,t7), Juy (2§, 27, t5,t7)} is linearly independent, then
F(t) € Wi ([t5,t7] .4y (Xo,R)), and pa,i(t) € WE(I,R), for which holds : Yu € U
Al(w) = p(M(u)) = 8 — 15,

2 (t) = A(t)z* + B(t)u*(t), (51)
l
P(t) = =) A®) + D pran(t) o halt), (52)

l l

H(u(t)) = D paa(t)ea(t)ult) < H(u () = Y pai(t)ealt)u’(2), (53)

a=1 a=1

where piy,1(t) comes from the maximum’s condition;

S

H(t) = H (t0) == 3 o (t2n) ([ha (t2) o (1)) + e (t2) u* (1) + B (2))

H ()~ H (14) = = 32 pan () (Iha (12) 2 (2] o (2) " (2) 45 05)
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* 8 ¢ R * ts
1) =@ —ni - 3ok (S8 o)) e
a=1i=1 (1)
1 ko 8 dz i ti(
H(t) =mQu +ndu, +) ) pha (at T Lha(®), 2" ()] = dtl [tz (t)]) :
a=1i=1 (1)
(55)
P (t5) = mQqy, + anO and hold (47) and (48), (56)
. iz o di—! g
b (t]) = —mQuy — ndsy — Z > Paize gy (), 2" ()] (57)
a=11i=1 (1)

We say that a solution of the system of equations is quasicritical for the mapping Q,
if it offers the quasicritical point of this mapping. As consequence of the above theorem
we have the integral form of the theorem:

Corollary 5 (Integral form of the conditions of singularity). Let hold the con-
ditions 1-5. Let {x*(t), u*(t), =3, 7, t§ < t < t7} — be the measurable quasi-
critical solution of the problem. Let x*(t) € W (I,Xy) and u*(t) € Loo(I,R"). If
rang (c(t))=l and for some ig, QX # 0, then F(t) € Wi([t§,t7],¢4(Xg,R)), and
pai(t) € WE(ILR), for which holds: Vu € U,

() = x5+ / (A(s) ) + B(s)u*(s))ds, (58)
b= —(AW) + Z fo (8) 2 ha(0) (59)
[ ) Z pa (D)cas / (H (u (1)) - Z praa (B)ca(t)” ()3, (60)

where fiq,1(t) comes from the mazimum’s condition;

H(th,) — H (to,) = — zl: frat (ten) ([ha (ten) s (ton)] + ca (ton) u™ (ton) + b (t;n)) :
H (t) = H (t5) = - z ot (1) ([ha () 0" (62)] + ca (t5) " (62) + 5 (25))

() = —mQe, - ZZ i (i e 0])| (61)

<t1>—m@t1+22 b (1 s a0 0] = 55 [0 0] @

(tg) = QOm and hold (47) and (48), (63)

B = e - Y3 i (2 s o)) | (61)
a=11=1 (1)
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2.5. General Case of Linear Mixed Constraints

It’s easy to prove, that other versions of the two theorems also hold for this case.
For the case when all the equations are taken into account, the irregular constraints
influence the maximums’ condition, and using the first two cases and the condition of
regularization of the general system, we can state the following theorem:

Theorem 3 (General case). Let hold the conditions 1-5. Let
{z*(t),u*(t),xf, 25,85 < t < tf} — be the measurable quasicritical solution
of the problem (1)—(5). Let z*(t) € W{(I,Xy) and u*(t) € Lo(I,R7). If
rang (b(t), c(t))=s + I. Then J(t) € Wi([t,t5],6,(X0,R)), and pai(t) € Wi (I,R),
w(t) € Li(1,R?), for which holds: Yu € U,

t

2() = ot + / (A(s)z*(s) + B(s)u*(s)) ds, (65)

28

b= ) + Z fra1 (t) © ha(t) + pu(t) o h(t), (66)

[ ) Zuamca Hu(t))dt /H(u ®)) Zual caltyu’ (1))dt, (67)

where f1q,1(t), p(t) comes from the mazimum’s condition;

*

H (t5) = —mQi, —Zme (at BT -a@),x*(t)]) i (68)
a=1 1=1 (1)
R B A d’ K
1) =mQu + 3 b (5 s (0,070 = 5 e @])| (09
a=1i=1 (1)
Y (t5) = MQay, (70)
) - U ka ) 9 a-' . 1
pieD = me = 33 k(g g o2 ))| ™)
a=1i=1 a

l —
H<t;rn) - H(t;n) = - Z /’Laﬂ(t;n) ([ha(t;n)v Z‘* (t;nﬂ + Ca(t;n)u*(t;n) + B(t;n)> ’
a=1

l
H(te_m> - H@::z) - = Z /J’a,l(t:m ([ha(t:z),l’* (t_e'_z ] + Ca(t:m)u* (t:z) + Z(t:z ) )
[u()R(t), A)x(8)] + p(t)b(t)u”(t) = 0,
and hold (47) and (48).

As a consequence we have the Pontryagin’s principle of maximum for linear optimal
control problems:

Corollary 6 (General Case for the optimal control problem). Let hold the con-
ditions 1-5. Let {x*(t),u*(t),z§,x5,t5 < t < ti} — be the measurable optimal
solution of the general problem. Let x*(t) € W(I,Xp) and u*(t) € Loo(I,R").
If rang(b(t),c(t))=s + 1 and for some iy, {Qg’l(ma,xf,t(ﬁ,tf),le(xg,xf,ta,ti)} 18
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linearly independent, then F(t) € Wi([th, t7],44(Xe,R)), and pa,i(t) € Wi(I,R),
wu(t) € Li(1,R?®), for which holds: Yu € U  3IM(u) : p(Il(w)) =t — ¢,

i*(t) = A(t)z* (t) + Bt)u*(¢), (72)
l

P(t) = —p(t)A(t) + Z fia,1(t) © ha(t) + po h(t), (73)

Z fhon1 (8)ca (B)u(t) < Z fra1 (B)ca (B)u (1), (74)

where fiq,1(t), p(t) come from the marimum’s condition, hold (47) and (48);

Sl

H () = H (t) = = 3 s (120) ([a () oo™ (1)) + ca (ton) u* (t2) + B (¢2))

H ()~ H(5) = = 32 po (01) ([ha () 2° (02)] 0 (02) " (05) +542)).

F(6) = —mQu — 7 = 3" S (5 oy (t),x*@]) . (75)
U ka ) ;Zdli,l - . t
H ) = mQu s+ 23 o (i [0 0] = G )27 0)) o
(76)
(65) = Qs MO, A2 OO () =0 )
b (t) = ~mQu, - ZZ i (g7 g B0 @])]

In addition to this, one can obviously show that, if U is a bounded convex set, then
the optimal control u*(t) takes values on its boundary, precisely on the intersections
of consecutive components of this boundary [2, § 17].

The results of this paper also hold if in (1)—(5) the equation of the trajectory has
the form & = A(t)z(t) + u(t)B(t)x(t) + C(t)u(t) and the constraints are of the form
[RE(t) +u(t)ki(t), z(t)] +b(t)u(t) = 0. The only difference between this version and the
detailed one is given by the conditions on the constraints.

In this work H*(t), H(u*(t)) denotes H (1 (t),u*(t)).

Remark 3. The theory seems to be a familiar one, but if one doesn’t understand
the meaning of the sequently continuity, the derivation by virtue of the system of
bounded subsets v, the operators’ equivalency in topological Banach spaces, the in-
tegrability with respect to the topology, he will be unable to value this paper, as it’s
very easy to get lost thinking of the usual problems [1, § 6.1].
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IIpuanun makcumyma lloHTpsirnHa B JIMHENHBIX 3a/ja9axX CO
CMeINIaHHBIMYU OT'PAHUYEHUSIMU B O€CKOHEYHOMEPHOM
IIPOCTPAHCTBE

M. Jloursa

Kagedpa dudpdepernuyuarvonuis ypashenut U MAmemamuieckots Guauru
Poccutickuti yrusepcumem 0pysrchvl Hapodos
ya. Muxayxo-Maxaas, 6, Mocksa, Poccus, 117198

BriBesienbl HeOOXONUMBIE YCIOBUSI OINTHMAJILHOCTH B HEKOTODPBIX 3aJatdax C JIMHEHHBIMU
PEryJIIDHBIMYU W HEPETYJISPHLIMUA OTPAHUYEHUSIMA B HOPMHUPOBAHHOM ITPOCTPAHCTBE C OCO-
601t OTIETMMOI JIOKAJIBHO BBIMYKJIOH TOMOJIOrHEl, ocHOBBIBasiCh Ha Tpymax M.®. Cyxununa.
Ncnonb3yembie GyHKIMM MOTYT He ObITH MHTErpUpyeMbIMHU 10 BoxHepy u He 6bITH Jaudde-
peHnupyeMbiMu TIO ['aTO B OOBITHOM CMBICJIE. 3/1€Ch M3JI0KEHA TOIMBITKA 0000IATh Pe3yiIb-
TaThl, MOJyIEeHHbIE B KOHETHOMEPHBIX mpocTpanctsax JI. I'peitzom, JI.C. IloHTpsaruubiM,
B.I". Boarsuckum, P. B. Tamkpennaze, A.B. JImurpykom, A.A. MumoruubiM, E.®@. Murmenko,
Max-I1leitnom u np. He ucciiemoBanuble 3a7a9u OMUCAHHOTO BBIMIE TUMA PACCMATPUBAIOTCS
B J@HHOM paboTe, onmupasiCh Ha Teopun udOEPEHITUPOBAHUS 110 CUCTEME TIOJIMHOXKECTB, K-
BUBAJIEHTHOCTU (DYHKIMIA U OMEPATOPOB B JIOKAJIBHO BBIMYKJIOM 6AHAXOBOM MPOCTPAHCTBE, U
MHTETPUPOBAHMUS IO JIOKAJIBHO BBIMTYKJION Tomostorun, n3yioxkennoit M.@. CyxuHUHBIM B CBOEit
monorpadmn [1]. ChopMymMpoBaHbI 1 JOKA3aHBI TEOPEMBI JJIs CJTyHast, KOra ha3oBbie Orpa-
HUYEHUSI U CMEIAHHbIe OTPAHUYEHUs CyTh JIMHEHHbIE (DYHKIUN TPAEKTOPUY U YIIPABJIEHUS B
6ECKOHETHOMEPHOM JIOKAJIBHO BBIMTYKJIOM OTIEJIUMOM ITPOCTPAHCTBE C HOPMOIA.





