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Abstract: Magnesium is the eighth-most abundant element in the world and its alloys have a
widespread application in various industries such as electronic and transport (i.e., air, land, and sea)
engineering, due to their significant mechanical properties, excellent machinability, high strength to
weight ratios, and low cost. Although monolithic Mg metal is known as the lightest industrial metal
(magnesium density is 30% less than the density of the aluminum, and this unique property increases
the attractiveness of its usage in the transportation industry), one of the significant limitations of
magnesium, which affects on its applications in various industries, is very high reactivity of this metal
(magnesium with an electronegativity of 31.1 can give electrons to almost all metals and corrodes
quickly). To overcome this problem, scholars are trying to produce magnesium (Mg) alloys that
are more resistant to a variety of loads and environmental conditions. In this regard, Mg alloys
include well-known materials such as aluminum (Al), Zinc (Zn), Manganese (Mn), Silicon (Si), and
Copper (Cu), etc., and their amount directly affects the properties of final products. In the present
review paper, the authors attempted to present the latest achievements, methods, and influential
factors (finish-rolling, pore defects, pH value, microstructure, and manufacturing processes, etc.)
on the fatigue life and corrosion resistance of most significant Mg alloys, including AM50, AM60,
AZ31, AZ61, AZ80, AZ91, ZK60, and WE43, under various conditions. The summarized results and
practical hints presented in this paper can be very useful to enhance the reliability and quality of
Mg-made structures.
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1. Introduction

In today’s world, various industries are moving towards the use of lightweight ma-
terials and new alloys with enhanced properties in order to achieve different goals, such
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as improving quality and increasing comfort and efficiency. The transportation indus-
try is not separate from this category, and in various fields such as land transportation
(from passenger vehicles to the transportation of goods by trolleys and trucks), sea, and
air transportation seeks to reduce fuel consumption and as a result, reduce air pollution,
decrease the production of harmful gases for the ozone layer, etc. In the meantime, marine
engineering has not been far from this issue, and researchers have made many efforts in
this direction. Some of the alloys that have been used as a suitable substitute for steels are
various types of aluminum alloy series. However, in recent years, special attention has been
paid to the applications of super-light magnesium alloys. However, due to mechanical and
dynamic characteristics, it is necessary to strengthen this alloy compared to aluminum. In
this regard, one of the important properties of the material that has received much attention
from scientists is fatigue properties in low, high, and very high cycle regimes. In other
words, industrial parts and machines are exposed to complex and repetitive dynamic loads
for which there is no clear trend, such as loads caused by sea waves clashing on the hull of
ships, the pile-foundation of offshore platforms, and marine structures. Various methods
have been proposed to strengthen fatigue characteristics of magnesium alloys. Meanwhile,
the most practical method is to make Mg alloys by adding different rare elements. Thus, in
the present review paper, the effect of adding different elements on the fatigue properties
of magnesium was discussed.

Magnesium is a chemical element with the symbol Mg and atomic number 12. This
solid metal has a gray and shiny appearance that is very similar in appearance to the other
five elements in the second group of the periodic table. It has been known that all elements
of this group (alkaline earth elements) have the same electron configuration in the outer
shell and a similar crystal structure. Moreover, magnesium is the eighth most abundant
element in the world (about 2.1% of the Earth’s crust is made up of magnesium) and the
largest magnesite mining in 2017 were China, Russia, Brazil, and Turkey, respectively.
Magnesium produced in the United States comes from three sources: seawater, brine, and
minerals. Seawater is processed by companies in California, Delaware, Florida, and Texas
to obtain magnesium. Brine is water that is even saltier than seawater. The most common
magnesium production process used in China is the silicothermic reaction. In this process,
the existing oxides are reduced at high temperatures in the presence of silicon. This process
is usually executed using ferrosilicon. However, it can be performed in the presence of
carbon at a temperature of 2300 ◦C [1]. However, in America, the story is a little different.
In the United States, magnesium is extracted by utilizing a process called DOW. In this
process, magnesium chloride obtained from brine or seawater is melted and electrolyzed [2].
Mg2+ cation is the second most abundant cation in sea water and is considered a huge
source of magnesium. To obtain magnesium from water, calcium hydroxide is added to
seawater to produce magnesium hydroxide precipitate:

MgCl2 + Ca(OH)2 → Mg(OH)2 + CaCl2 (1)

The pure Mg is a highly reactive metal, which is naturally found only in combination
with other elements as a cation with a capacity of +2, such as Dolomite (MgCO3), Carnallite
(KMgCl3), and Epsomite (MgSO4). Therefore, to achieve its purity it must be produced
artificially. At present, this metal is mainly obtained by electrolysis of magnesium salts
obtained from brine and is primarily used as an essential component in the production
of aluminum-magnesium alloys. In fact, the importance of magnesium is due to its low
density compared to aluminum, which in combination with this metal produces light and
strong alloys. These alloys are known as magnalium. Most magnesium alloys are made
from a combination of this metal (Mg) with others [3] such as Al, Zn, Mn, Si, Cu, Zr, and
rare metals, which are divided to cast alloys (i.e., AZ63, AZ81, AZ91, AM50, AM60, ZK51,
ZK61, ZE41, etc.) and wrought alloys (i.e., AZ31, AZ61, AZ80, ZK60, M1A, HK31, etc.).

Magnesium alloys have a hexagonal lattice structure that affects the fundamental
properties of these alloys. Hexagonal lattice plastic deformation is more complex than
cubic crystal metals such as aluminum, copper, and steel. Nowadays, thermomechanical
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processed Mg alloys are being used. Generally, the name of magnesium alloys is often
indicated by two letters and two numbers. For example, AZ91 means a magnesium alloy
with 9% aluminum and 1% zinc [4]. In recent years, global demand for magnesium has
grown significantly, especially in the automotive and aluminum industries. Additionally,
the expansion of steel and aluminum production industries in the Persian Gulf countries
and the use of magnesium as a sulfurizing agent in the steel industry has led to increased
demand for magnesium in this region. It is predicted that the demand for this metal
in the world will reach over 5928.1 million US dollars in 2027, from 4115 million US
dollars in 2019 [5]. In short, magnesium alloys in most sectors of industry and human life,
including automotive (clutch and brakes, and housing), aerospace (helicopter rotor fittings,
wheels, and gearbox), maritime (shore and offshore platforms), commercial (computer
housings, hand tools, ladders, and textile machines), and other sectors, have had undeniable
influence [6,7]. This element is used to create nodular graphite in cast iron [8]. Furthermore,
it can also be used as a galvanic anode (sacrifice) in pipes, boats, and water heaters. Today,
magnesium batteries are one of the investment items to produce rechargeable batteries.
Due to its low density and desirable mechanical and electrical properties, magnesium is
widely used in the manufacture of mobile phones, personal computers and tablets, cameras,
and other electronic components. This element can also be used to create flashes in cameras.

Despite these many advantages, this element and its alloys have low corrosion re-
sistance, fatigue properties, and creep strength. The presence of iron, nickel, copper, and
cobalt strongly activates corrosion in magnesium alloys [9]. In greater amounts than usual
alloys, these metals precipitate as intermetallic compounds, and the deposition sites act as
active cathode sites. These sites regenerate water and cause magnesium loss. Obviously,
by controlling the amount of these metals, corrosion resistance can be significantly im-
proved. Moreover, adequate manganese can overcome the corrosive effects of iron in these
alloys. The addition of a cathodic substance also removes atomic hydrogen from the metal
structure. Evidence has shown that the tendency of magnesium to creep declines at high
temperatures by adding scandium and gadolinium. In addition, flammability is greatly
reduced by a small amount of calcium in the alloy. In addition to the issue of corrosion and
creep, attention to resistance to high pressures and cyclic loads are also very important.
In other words, magnesium alloys are subjected to multi-input complicated loading de-
pending on the marine conditions, which must be able to withstand these loads at different
depths [10,11]. The issue of fatigue failure is also a major challenge in the research of
scientists and manufacturers of magnesium alloys because a large part of the applications
of magnesium alloys are in moving parts, and it is possible to experience cyclic forces
almost wherever there is movement. In this regard, numerous studies have shown that the
main cause of failure of industrial parts during operation is the destructive phenomenon of
fatigue [12–14]. The fatigue life of a component depends directly on various factors from
production to maintenance, and not choosing the right type of material to produce the final
product can reduce its service life. It seems that application of novel techniques such as
artificial intelligence, genetic algorithms, and fuzzy decision-making methods can be useful
to apply new Mg alloys with higher reliability and quality [15–17].

As mentioned, magnesium alloys have a wide range of applications in various sectors
of life and industry. However, their structural flaws and shortcomings cannot be ignored.
Efforts have been made to improve the quality and reliability of these alloys to deal with
adverse conditions. For example, the dynamic marine atmospheric corrosion behavior of
AZ31 has been studied [18]. They measured the corrosion rate of alloy after one year in
an ocean environment. They also reported the max. depth of corrosion pits. Jiang et al.
have studied corrosion behavior of EW75-Mg alloy in the research vessel KEXUE during
the ocean voyage [19]. For this purpose, they performed various tests on samples in two
directions of extrusion and perpendicular to the extrusion direction. Xie et al. have focused
on the effects of different Ca contents on the corrosion behavior of AZ31 alloys based on
marine applications [20]. Moreover, Yang et al. have investigated atmospheric corrosion
behavior of AZ31 alloy after one year in a harsh marine environment [21]. They also
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measured and reported the corrosion rate and pit depth. In the current article with a detailed
review of the latest research in this field, the most practical and reliable achievements
and approaches used to improve the fatigue life and corrosion resistance of the major
types of Mg alloys, including AM50, AM60, AZ31, AZ61, AZ80, AZ91, ZK60, and WE43,
are presented.

2. A Brief Overview of the Mg Alloys Studied in this Study

Given the composition of Mg alloys, there are more than a dozen magnesium alloys.
However, only a few of them have industrial and practical applications and the rest have
limited or only laboratory applications. The compositions of Mg alloys discussed in the
following are presented in Table 1 to provide better insight into the main elements of
each alloy.

Table 1. Composition of main Mg alloys (weight percent).

Elements Al Mn Zn Si Ce Cu Y Re Nd Zr Other Mg

AM60 [22] 6.29 0.28 0.05 0.02 - - - - - - 0.0026 Bal.
AM50 [23] 4.70 0.32 0.13 0.03 - 0.004 - - - - 0.0094 Bal.
AZ31 [24] 3.1 0.54 1.05 0.1 - - - - - - 0.045 Bal.
AZ61 [25] 6.0 0.34 0.67 0.01 - 0.002 - - - - 0.002 Bal.
AZ80 [26] 8.24 0.20 0.67 0.012 - - - - - - 0.0065 Bal.
AZ91 [27] 8.7 0.25 0.65 0.006 - - - - - - 0.0045 Bal.
ZK60 [28] 0.001 0.005 5.693 0.008 0.027 0.002 - - 0.062 0.860 0.008 Bal.
WE43 [29] - 0.13 0.20 - - - 4.16 3.80 - 0.36 - Bal.

3. Effect of Simultaneous Addition of Aluminum and Magnesium
Elements (Mg-Al-Mn)
3.1. AM60

This alloy (AM60) has good strength, proper energy-absorbing properties, and great
ductility and castability. The main chemical compositions of AM60 alloy are magnesium,
aluminum, manganese, zinc, and silicon. The mechanical properties of AM60 magnesium
alloy are given in Table 2.

Table 2. Mechanical properties of AM60 magnesium alloy [30].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 225–240
Yield stress YS MPa 130

Elastic modulus E GPa 45
Hardness (Brinell) HB —- 65

The first discussion about producing any new alloy and material is related to its
proper structure and behavior in the face of environmental conditions. In general, improper
microstructure and internal defects (microcrack and porosity) greatly reduce the life of
the final product depending on the type of loads applied [31]. In summary, the most
common methods of improving the quality of microstructure and grain size of AM60
magnesium alloy are thermal treatment [22] and mechanical processes such as the Severe
Plastic Deformation (SPD) method [32]. One efficient technique to reduce the weight of
automotive mechanical components is the use of AM60 high pressure casting, which is
debatable due to internal porosity [33]. The fatigue crack propagation is correlated by the
gradual transfer between Intergranular and Transgranular (cleavage) failure mechanisms
at the crack tip, which is affected by the plastic zone size and Linear Elastic Fracture
Mechanics (LEFM) [34,35]. Figure 1 presents the effect of microstructures on the formation
and growth of fatigue cracks through Scanning Electron Microscopy (SEM) observations. In
this regard, the presence of oxide inclusions in most metal materials, especially magnesium
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alloys, can be seen due to the high reactivity of this element, which can reduce the fatigue
life of alloy [36].
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Figure 1. Influence of microstructure on advent and propagating microcrack “Reused with permission
from Elsevier by License No. 5494601058390” [36]; (a) The crack tip of extruded AM60 at a high ∆K;
(b) The macro-cracks near oxide and Al–Mn particles.

It should be noted that the shape and arrangement of the pores are also significant
other factors affecting initial and propagation crack. Although it has been declared that
surface roughness is not a considerable agent, it is better to do more research to prove this
issue [37]. Kadiri et al. have stated that the fatigue crack propagation mechanism of AM60
alloy includes four main stages [38]: 1. incubation, 2. the small crack at the interface of the
Al-rich eutectic/dendrite cell, 3. the small crack proceeds within the eutectic, and 4. the
long crack formation stage. Figure 2 clearly shows the effects of the size and shape of the
pores on the stress concentration and therefore the strain concentration. The larger the pore
size, the higher the strain concentration zone [39].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 29 
 

 

life of the final product depending on the type of loads applied [31]. In summary, the most 
common methods of improving the quality of microstructure and grain size of AM60 
magnesium alloy are thermal treatment [22] and mechanical processes such as the Severe 
Plastic Deformation (SPD) method [32]. One efficient technique to reduce the weight of 
automotive mechanical components is the use of AM60 high pressure casting, which is 
debatable due to internal porosity [33]. The fatigue crack propagation is correlated by the 
gradual transfer between Intergranular and Transgranular (cleavage) failure mechanisms 
at the crack tip, which is affected by the plastic zone size and Linear Elastic Fracture Me-
chanics (LEFM) [34,35]. Figure 1 presents the effect of microstructures on the formation 
and growth of fatigue cracks through Scanning Electron Microscopy (SEM) observations. 
In this regard, the presence of oxide inclusions in most metal materials, especially magne-
sium alloys, can be seen due to the high reactivity of this element, which can reduce the 
fatigue life of alloy [36]. 

(a) (b) 

Figure 1. Influence of microstructure on advent and propagating microcrack “Reused with per-
mission from Elsevier by License No. 5494601058390” [36]; (a) The crack tip of extruded AM60 at a 
high ∆K; (b) The macro-cracks near oxide and Al–Mn particles. 

It should be noted that the shape and arrangement of the pores are also significant 
other factors affecting initial and propagation crack. Although it has been declared that 
surface roughness is not a considerable agent, it is better to do more research to prove this 
issue [37]. Kadiri et al. have stated that the fatigue crack propagation mechanism of AM60 
alloy includes four main stages [38]: 1. incubation, 2. the small crack at the interface of the 
Al-rich eutectic/dendrite cell, 3. the small crack proceeds within the eutectic, and 4. the 
long crack formation stage. Figure 2 clearly shows the effects of the size and shape of the 
pores on the stress concentration and therefore the strain concentration. The larger the 
pore size, the higher the strain concentration zone [39]. 

 

 

Figure 2. The effects of the pore size and shape on the strain concentration zone “Reused with
permission from Elsevier by License No. 5494610474468” [39].

The high-pressure die-cast AM60 Mg alloy is prone to inverse surface macro-segregation
under specific process conditions. Indeed, macro-segregation causes initial fatigue cracks on
cast surfaces and decreases the alloy life due to the slip incompatibility of brittle intermetallic
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eutectic components in the macro-segregation regions [40]. One of the proposed techniques
to improve the fatigue life and structural characteristics of the AM60 alloy is to use Equal
Channel Angular Pressing (ECAP), which reduces grain size and dislocations. However, it
should be noted that the effectiveness of this technique depends on the number of passes
and the temperature used. For example, studies by Kulyasova et al. and Akbaripanah et al.
have found that to gain a more proper microstructure and mechanical behavior, temperature
and passes should be set at temperatures below 150 ◦C and the two passes, respectively (see
Figure 3) [41,42]. Additionally, it is stated that only after two passes, UTS of Am60 increases
up to 9 MPa. In addition to this progress, the most improvement in both HCF and LCF of the
AM60 alloy was gained after two passes of ECAP. Moreover, High-Pressure Torsion (HPT) is
also employed to enhance the microstructure, crystallographic texture, and hardness of AM60
magnesium alloy, while 1

2 turn had better results compared to higher turns [43].
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Environmental and humidity conditions are the serious factors that have a significant
impact on reducing the fatigue life and corrosion resistance of AM60 magnesium alloy,
which must be considered in design factors [44,45]. In brief, common and practical methods
for assessing the corrosion rate of magnesium alloys include Mg ion release measurement,
electrochemical methods, weight loss measurement, and hydrogen evolution measure-
ment [46]. As shown in Figure 4, the pH value can have a considerable influence on the
fatigue life of AM60 magnesium alloy. Evidence indicates that AM60 alloys in the face of
higher pH have greater fatigue life than the lower values. This is due to the formation of
stable magnesium hydroxide, which delays hydrogen diffusion and matrix dissolution [47].
In this regard, the anodizing process is recommended for AM60 magnesium alloy with the
thickness of 5µm due to fewer internal defects compared to more thicknesses [48].

3.2. AM50

AM50 alloy such as AM60 has good strength, proper energy-absorbing properties,
and great ductility and castability. This lightweight alloy is also widely used in high-tech
industries, such as electronics, aerospace, and automotive. The main chemical compositions
of AM50 alloy are magnesium, aluminum, manganese, zinc, and silicon. The mechanical
properties of AM50 magnesium alloy are listed in Table 3.

Although the high fatigue strength and low density of AM50 magnesium alloy can
be a proper reason to replace aluminum alloys, some shortcomings such as the tendency
for corrosion and creep, reduction in fatigue life in the high-cycle state, and low Young’s
modulus should not be ignored [50]. Strain amplitude is an influential factor on cyclic
stability, hardening, and softening, which its relationship with reversals follow Basquin and
Coffin–Manson laws. Moreover, during the Low-Cycle Fatigue (LCF) state, dynamic-strain
aging occurs at the total strain amplitude of 1.5 pct, and Transgranular cracks emerge at
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the surface and then are turned into Transgranular modes [51]. Shrinkage pores are the
main sites for the formation of main cracks, in such a way that several cracks form near
the shrinkage pores and then propagate, leading to fatigue cracking through the Al-rich
eutectic [52]. A serious factor that should be considered about all materials is related to
the sensitivity to stress concentration. For example, Marsavina et al. have investigated
the effect of stress concentration induced by R-notch and V-notch on fatigue properties of
AM50 magnesium alloys [23]. As shown in Figure 5, the fatigue strength has been reduced
from 55.85 MPa by 25% and 61.2% for the R-notch and V-notch types, respectively, which
indicates the relatively high sensitivity of this alloy to sharp notches [23].
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Buffered Saline (PBS) solutions, including (a) HCF region of S-N curve, and (b) corrosion rate [47].

Table 3. Mechanical properties of AM50 magnesium alloy [49].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 210–230
Yield stress YS MPa 125

Elastic modulus E GPa 45
Hardness (Brinell) HB —- 60

One proposed method to improve texture quality, mechanical properties, and fatigue
characteristics is utilizing the hot rolling process [53]. In addition, researchers’ studies
and industrialists’ experiences indicate that the fatigue properties of metals and alloys
with higher tensile strength are better. As a result, there is a direct relationship between
the ultimate tensile strength and the fatigue limit (about one half). Based on the results
of this research, the best combination of strength and ductility was obtained with a roll
speed of 5 m/min and a roll temperature of 200 ◦C. In addition, the texture and the yield
stress depend on roll speed and temperature, respectively [53]. Increasing Ca value can
improve formability due to decreasing r-value (the Lankford values extracted from a plastic
strain of 10% of deformed samples) and increasing n-value (the strain hardening exponent
values obtain from a strain interval from 5% to 15% of tensile tests) [54]. The compressive
yield stress of Twin roll cast commercial AM50 magnesium alloy is about 70% of its tensile
yield stress caused by the firm basal texture. In addition, the Rolling Direction (RD) has
a higher fatigue toughness than the Transverse Direction (TD) due to 54% more tensile
elongation [55]. Figure 6 presents the effect of temperature on the fatigue life of cast
AM50 magnesium alloy, which has an inverse impact. Generally, at temperatures close to
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100 degrees, cleavage fracture of Mg-dendrites and α-Mg grains occurs, while for higher
temperatures, the small fatigue cracks cleave the Mg grains, which were smoothened due
to the high temperature [56].
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Figure 6. Effects of different temperatures on fatigue characteristics of AM50 magnesium alloy
“Reused with permission from Elsevier by License No. 5494620116925” [56]. (a) SEM image of fatigue
crack tip at σmax = 128 MPa, T = 150 ◦C 8C, N = 4109; (b) SEM image of plastic slip vestiges near crack
tip at σmax = 125 MPa, T = 150 ◦C 8C, N = 5819; (c) S–N curves of cast AM50 magnesium alloy in
different temperatures.
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4. Effect of Simultaneous Addition of Aluminum and Zinc Elements (Mg-Al-Zn)

Zinc is a rare but essential element for the human body. It is reported that the addition
of 1–6 wt% of Zn to pure magnesium can change static properties, such as yield stress
and ultimate tensile strength. In this regard, Zhang et al. have stated that the maximum
UTS is obtained when zinc is kept up to 4% by the weight [57]. Nevertheless, in a review
article published in 2022, Istrate et al. have showed that the relationship between the
percentage of zinc added to magnesium and the change in yield stress and ultimate tensile
strength is not direct and linear [58]. For example, the yield stress in magnesium alloy
with 7% zinc is lower than the yield stress in magnesium alloy with 5% zinc. Moreover,
they investigated the corrosion properties of this alloy in different environments as anodic,
cathodic, or compound reactions. In this way, they focused on biocorrosion, and the
practical target for that was dental implants. In addition, they compared the corrosion
rate in magnesium alloys with different percentages of calcium. However, much research
has not been completed in the field of fatigue behavior of this alloy (i.e., Mg-Ca), so it is
avoided to deal with it separately. The focus of this section is dedicated to adding different
percentages of aluminum and zinc elements to pure Mg.

4.1. AZ31

AZ31 alloys have proper machinability and light weight, and while they are prone to
corrosion, they are anodized to avoid this phenomenon. The main chemical compositions
of AZ31 alloy are magnesium, aluminum, zinc, manganese, and silicon. The mechanical
properties of AZ31 magnesium alloy are given in Table 4.

Table 4. Mechanical properties of AZ31 magnesium alloy [59].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 260
Yield stress YS MPa 200

Elastic modulus E GPa 44.8
Hardness (Brinell) HB —- 49

Looking at recent research, it can be seen that recent studies have gone toward ex-
ploring the effects of microstructure on AZ31 magnesium alloy behavior and how they
can modify their structure to promote the performance of AZ31magnesium alloy. Nakai
et al. have found that twinning and detwinning play main roles on the AZ31 magnesium
alloy [60]. They stated that twinning occurs under both types of microstructures, including
texture and random orientation, if the compressive stress is greater than the compressive
yield strength, while detwinning occurs only in the texture structure if tensile stress is
less than the tensile yield strength. Fatigue Crack Growth (FCG) is accelerated due to the
appearance of tensile twins made by the compression side of R =−1. In other words, as was
mentioned when the maximum compressive stress exceeds the compressive yield strength,
the velocity of fatigue crack growth is also increased [61]. Additionally, cyclic hardening is
increased during fatigue caused by the increase in the dislocation density. Moreover, the
increase in the total strain amplitude can cause twinning effects to be prevalent, leading to
saving more energy at higher total strain amplitudes [62]. The High-Frequency Impacting
and Rolling (HFIR) process showed significant results in increasing microhardness and
fatigue life of AZ31 magnesium alloy so that it could increase the fatigue life by 28.6%, as
demonstrated in Figure 7 [63].
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Anes et al. have found that the stress scale factor can be a useful method to estimate
the fatigue life of AZ31 B-F, and they proposed a threshold model for assessing safe or
unsafe states under proportional loading conditions (Figure 8) [24]. Moreover, Equation (1)
was used to calculate the safety factor of the AZ31B-F magnesium alloy based on the pro-
portional loadings, where λ is stress amplitude ratio and σa is the normal stress amplitude.
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A summary of achievements and approaches related to the AZ31 magnesium alloys are
presented in Table 5.

n =
96.29− 67.9× λ

σa
(2)J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 29 
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Table 5. The summary of novel research on the AZ31 magnesium alloys.

Author Year Method Results

Jamali et al. [64] 2022

- Analysis of the deformation and
crack initiation mechanisms

- Fully-reversed, strain controlled
cyclic deformation along the

rolling direction after 50 cycles

1- Distinct deformation bands were found in more than one
out of four grains due to tensile twins or pyramidal slip.

2- Cracking has occurred in large grains caused by
Transgranular cracks parallel to the pyramidal slip bands or

twin boundaries.

Kim et al. [65] 2022

- LCF properties of AZ31 sheets
with different thicknesses

- Twin-roll casting and subsequent
hot rolling and fully reversed
strain-controlled fatigue tests

1- Tensile yield strength and texture intensity increase by
decrease in the thickness of the sheet.

2- In-plane isotropic fatigue properties.
3- Total strain energy density is a proper fatigue damage

parameter for predicting fatigue life.

Guo et al. [66] 2021 - Fatigue performance evaluation
based on self-heating

1- A new fatigue limit assessment method has been proposed
based on the statistical analysis of self-heating data.

Yamada et al. [67] 2021 - Equal-Channel Angular
Pressing (ECAP)

1- The efficiency of ECAP on fatigue life depends on the value
of stress amplitude.

2- Strength is more efficient than ductility to improve
fatigue life.

Nischler et al. [68] 2021 - Fatigue behavior of hot-bent

1- A novel uniaxial hot-bent specimen.
2- The texture was changed.

3- Increase in the Schmid factor.
4- Observations of Macroscopic bands of twinned grains due

to tension twins even in compression tests of the
hot-bent specimens.
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Table 5. Cont.

Author Year Method Results

Guo et al. [69] 2020

- Infrared thermography
- Utilizing data processing
method to compensate the

temperature rise of the fixture

1- AZ31 magnesium alloy had undergone cyclic hardening
during fatigue phenomenon.

2- A special thermal model has been proposed that can
estimate the fatigue limit.

Lei et al. [70] 2021

- The uniaxial
ratcheting-fatigue interaction

- The influences of stress level and
stress rate

1- The compressive ratcheting will occur in the
whole-life cycles.

2- The effect of stress rate on the whole-life ratcheting
depended on the mechanism that controls the

plastic deformation.
3- Reduction in the fatigue life occurs during the asymmetric

stress-controlled cyclic deformation by the
ratcheting deformation.

Yang et al. [71] 2018
- The relationship between

microstructure and
tensile behaviors

1- Twinning−detwinning was the main
deformation mechanism.

2- Decrease in the average grain size after fatigue test.

Meng et al. [72] 2019 - The effect of precompression
along the extrusion direction

1- Decrease in the tensile yield strength rapidly after applying
precompression. Moreover, the ultimate tensile strength is

increased with the rise of precompression deformation.

Srivatsan et al. [73] 2012
- Effects of nanoparticles of

aluminum oxide and micron size
nickel particles

1- The elastic modulus, yield strength, and ductility
were increased.

Wang et al. [74] 2012 - The effects of zirconate and
phosphate chemical liquids

1- This method can reduce the stress-intensity factor and the
fatigue crack growth rate.

2- The zirconate liquid was more effective than
phosphate liquid.

Another way to prevent corrosion of AZ31 magnesium alloy, except for anodizing,
is to use the top coating. Shaha et al. have studied the influence of the Cold Spray (CS)
process (AA7075 powder) and Electrostatic Painting (EP) on the corrosion resistance of
AZ31 B Cast Mg Alloys in presence of 3.5% NaCl solution. From Figure 9, a combination of
the cold spray and electrostatic painting (CS + EP) improves the fatigue life of the sample,
under load of 80 MPa, up to 107 cycles [75].
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4.2. AZ61

AZ61 alloys have excellent machinability and lightweight castability, while they are
like AZ31 alloys, prone to corrosion, which are anodized to avoid this phenomenon. The
main chemical compositions of AZ61 alloy are magnesium, aluminum, zinc, manganese,
and silicon. The mechanical properties of AZ61 magnesium alloy are presented in Table 6.

Table 6. Mechanical properties of AZ61 magnesium alloy [76].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 310
Yield stress YS MPa 230

Elastic modulus E GPa 44.8
Hardness (Brinell) HB —- 60

This alloy is used in the automotive industry, especially in load-bearing constituents,
due to its considerable strength and light weight. However, it is very important to study
the behavior of this alloy under cyclic loading. In a study performed on wrought AZ61
magnesium alloy, it was reported that cracks appear at the surface and slip bands [77,78]. In
these alloys, Mn content must be controlled, otherwise, for a high Mn content state, Al–Mn
intermetallic inclusions may be formed, leading to the decrease in fatigue strength [79].
There are several types of surface treatment methods to improve the quality and fatigue
life of magnesium alloys. An examination was completed on surface treatments of barrel
processing, micro-peening, and shot peening to identify the superior method. As illustrated
in Figure 10, shot peening was found to reduce the fatigue life of AZ61 magnesium alloy
by up to 30% due to high surface defects and roughness, while barrel processing and
micro-peening improved the life by up to 15% [80].

Uematsu et al. have found that Fatigue Crack Propagation (FCP) rate is primarily
affected by the level of humidity and hydrogen embrittlement, whereas the anodic disso-
lution is at the second stage [81]. It should be considered that hydrogen diffusion itself
depends on the stress intensity factor range (∆K) and humidity. The effect of coatings can
be beneficial or detrimental on AZ61 magnesium alloy, depending on their reaction with
substrate. This fact can be deduced from the results of a study executed by Huang et al. [82].
Figure 11 shows Ni-Cu coated samples have lower Low-Cycle Fatigue (LCF) resistance than
Cu or with alkaline states followed by acidic Cu due to the induced high residual tensile
stress [82]. A summary of achievements and approaches related to the AZ61 magnesium
alloys are presented in Table 7.

Table 7. The summary of novel research on the AZ61 magnesium alloys.

Author Year Method Results

Huang et al. [83] 2021

- Effects of different values of
micro-silicon carbide (m-SiC)

particles on the mechanical and
fatigue properties

- The homogenization heat treatment

1- m-SiC particles led to improve Yield Strength (YS)
and Ultimate Tensile Strength (UTS).

2- The increase in m-SiC particles makes the fatigue
strength decrease.

Jain et al. [84] 2017

- Study of fatigue behavior using
Nano indentation

- Aged and solution
treated conditions

1- Cyclic hardening occurred in the aged case.
2- Slip lines and twins appeared in the solution

treated case.

Kakiuchi et al. [25] 2015 - The effect of hydrogen on Fatigue
Crack Propagation (FCP)

1- The hydrogen increased FCP rates compared to
air condition.

2- The acceleration of the FCP can be related to
hydrogen embrittlement and diffusion.
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Table 7. Cont.

Author Year Method Results

Němcová et al. [85] 2014 - Impact of Plasma Electrolytic
Oxidation (PEO) on the fatigue life

1- Reduction in fatigue life by 38% and 56% in the
presence of air and NaCl, respectively.

Hwang et al. [86] 2013 - Samples reinforced with Silicon
Carbide particles (SiCp)

1- Higher tensile strength and hardness.
2- The smaller grain size.

Bhuiyan and
Mutoh [87] 2011

- Conversion coated and painted
AZ61 magnesium alloy

- Various corrosive environments

1- The remarkable effect of the coating and painting
layer to enhance corrosion in counter with high

humidity and NaCl environments.

Kakiuchi et al. [88] 2011 - Effect of film elastic modulus on
fatigue life

1- Diamond-Like Carbon (DLC) film improved the
fatigue strength.

2- Cracks originated near the boundary of DLC film
and base metal.

Jordon et al. [89] 2011
- Effects of twinning, slip,

and inclusions
- MultiStage Fatigue (MSF) model

1- The extrusion direction of AZ61 magnesium alloy
had higher yield strength, Taylor factor, and fatigue

life than the extrusion transverse direction because the
extrusion transverse direction has the low Critical

Resolved Shear Stress (CRSS) for basal slip activation.
2- The particle size is more important than the

anisotropy to evaluate the number cycles.

Zeng et al. [90] 2009
- The impacts of the artificial ageing

heat treatment and loading frequency
on Fatigue Crack Propagation (FCP)

1- Reducing the loading frequency caused to increase
the FCP rate.

2- The FCP velocity is facilitated by the artificial aging
heat treatment.

1 
 

 

Figure 10. S–N curve of mechanical surface stress relieving treated AZ61 specimen “Reused with
permission from Elsevier by License No. 5494631235674” [80].
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4.3. AZ80

AZ80 alloys have excellent machinability, lightweight castability, while they are like
other AZ alloys, prone to corrosion, which are anodized to avoid this phenomenon. The
main chemical compositions of this alloy are magnesium, aluminum, zinc, manganese, and
silicon. The mechanical properties of AZ80 magnesium alloy are listed in Table 8.

Table 8. Mechanical properties of AZ80 magnesium alloy [91].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 380
Yield stress YS MPa 275

Elastic modulus E GPa 44.8
Hardness (Brinell) HB —- 82

Like other research that has been carried out on previous alloys, scholars have made
efforts to explore a better understanding of AZ80 magnesium alloy behavior under diverse
conditions, to provide practical solutions for improving the quality and fatigue life of these
alloys. A fairly comprehensive study has been conducted by Xiong and Jiang to examine the
effects of orientations on the fatigue crack growth and fatigue life of rolled AZ80 magnesium
alloy [92]. The results showed the cyclic hardening behavior under fully reversed strain-
controlled loading conditions for all specimens considering different orientations, including
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90◦ (RD, rolled direction), 60◦ (ND60), 30◦ (ND30), and 0◦ (ND, normal direction). In
addition, twinning–detwinning and dislocation slips are the main factors of cyclic plastic
deformation in high and low strain amplitudes, respectively. Additionally, the ND samples
had the lowest fatigue life compared to other types, while ND30 and ND60 samples showed
the same behavior and more than RD samples. The Equal Channel Angular Pressing (ECAP)
with two passes causes the highest yield strength, ultimate strength, and fatigue life, while
more passes caused to a decrease in fatigue life, though the grain size increases. Moreover,
the ECAP enhances the ductility and crack growth resistance of AZ80 magnesium alloy [93].
Experimental observations have shown that both lower frequency and bigger stress ratio
increase fatigue crack propagation [94]. The influence of Shot Peening (SP) treatment on
the fatigue life of notched samples showed that the optimum shot peening mode (high
Almen intensities) boosted the fatigue life by about 60% (45 to 110 MPa) [95]. In addition,
Zhang et al. have reported that the high roughness and surface defects due to shot peening
treatment had little impact on the notched fatigue strength of the AZ80. One of the known
weaknesses of AZ alloys is their sensitivity to adverse and corrosive environments.

The documentation indicates that the fatigue life of AZ80-T5 magnesium alloy is
reduced by about 78% under 5% NaCl environment, due to the formation of corrosion
pits on the sample surface and then rapid propagation of the initial cracks, even at low
stress amplitudes (corrosion pit formation is depicted schematically in Figure 12) [26].
A summary of achievements and approaches related to the AZ80 magnesium alloys are
presented in Table 9.
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Table 9. The summary of novel research on the AZ80 magnesium alloys.

Author Year Method Results

Gryguć et al. [96] 2021 - Different forging temperatures

1- Strain Energy Density (SED) was a proper fatigue
damage parameter because was less sensitive to the

changes of yield strength due to texture-induced
anisotropy in the forging process.

Zhao et al. [97] 2021 - The effects of precipitates and aging
treatments on low-cycle fatigue

1- Aging treatments improved the hardness by
about 20%.

2- The T5 (direct-aging treatment) treatment was more
effective than T6 (solution + aging treatment) in terms

of compression and tension yield strength.
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Table 9. Cont.

Author Year Method Results

Gryguć et al. [98] 2020 - Consideration of multiaxial and
proportional loading

1- The non-proportionality in multiaxial loading is
destructive for the fatigue life, while the impact of

proportionality is just on the shear response.
2- Along the plane of maximum normal stress, the

pure axial cracking behavior is dominated by
transverse cracks.

Zhao et al. [99] 2020
- Disc and rim samples of the

extruded AZ80 automotive wheel
- Strain controlled fatigue tests

1- Rim samples have slightly better mechanical
properties compared to the disc samples.

2- Increasing the strain amplitude caused to rise the
activation of twinning and detwinning.

Gryguć et al. [100] 2018
- The effects of

microstructure/texture and
thermo-mechanical history

1- Strain energy density is an appropriate parameter to
predict the fatigue damage.

2- The cast-forged and extruded-forged showed an
increase in fatigue life.

Huo et al. [101] 2017 - Effects of cyclic torsion and
low-temperature annealing

1- The tensile and compressive yield stresses rose with
the increase in grain refinement.

2- The cyclic torsion and low-temperature annealing
enhanced fatigue strength by 70% (70 to 120 MPa).

Zhang and
Lindemann [102] 2005 - The effect of roller burnishing 1- The optimum condition could enhance fatigue life

by 110%.

4.4. AZ91

AZ91 alloys are the lightest type among the AZ group and have excellent corrosion
resistance, strength, and castability. The main chemical compositions of AZ91 alloys are
magnesium, aluminum, zinc, manganese, and silicon. The mechanical properties of AZ91
magnesium alloy are shown in Table 10.

Table 10. Mechanical properties of AZ91 magnesium alloy [103].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 240–250
Yield stress YS MPa 160

Elastic modulus E GPa 45
Hardness (Brinell) HB —- 63

Addition or modification of the secondary elements’ content is an active part of the
Research and Development (R&D) process to present former Mg alloys with superior
mechanical behavior and quality. For example, Rare-Earth Elements (REE) are the sec-
ondary elements that can be added to the AZ91 magnesium alloys (1 wt% RE) to turn
into AZE911. This change can increase fatigue life by about 40%, while this amount of RE
did not have a significant effect on hardness and ultimate tensile strength, as illustrated
in Figure 13a [104]. The use of alumina fiber (Saffil) can be useful to increase the elastic
modulus, yield strength, fatigue strength, and fatigue crack initiation resistance due to the
rise of the volume fraction of fiber [105]. The artificial cooling method is another useful
mechanical treatment to increase tensile and compressive strength and fatigue life due to
grain size reduction and increase in Mg17Al12 amounts [106]. In addition, Severe Plastic
Deformation (SPD) is one of the methods that has shown good results in some magnesium
alloys. Fintová and Kunz have reported that using Equal Channel Angular Pressing (ECAP)
have a significant effect on the ductility, yield, and tensile strength of AZ91 magnesium
alloys [107]. In this regard, fatigue life increased due to ECAP (6 passes and T = 300 ◦C) in
LCF regime. However, this method did not have a significant impact on lifetime in the HCF
regime, as shown in Figure 13b. In addition to the mechanical properties of alloys that have



J. Mar. Sci. Eng. 2023, 11, 527 18 of 28

been influenced by the type of coating, the process of applying coatings also has a serious
impact (e.g., cold-sprayed NiCrAl coating performed better than plasma-sprayed NiCrAl
coatings in terms of hardness, wear resistance, and corrosion resistance [108]). A summary
of achievements and approaches related to the AZ91 magnesium alloys are presented in
Table 11.

Table 11. The summary of novel research on the AZ91 magnesium alloys.

Author Year Method Results

Ahmadian and
SallakhNiknezhad [109] 2021 - Effect of shot peening treatment

on corrosion properties 1- Improvement of corrosion resistance.

Fintová et al. [27] 2021 - Mechanisms of the fatigue
crack initiation

1- Slip markings were crack initiation sites.
2- There was a direct relation between the size and

number of slip stress amplitude.

Anandan and
Ramulu [110] 2020

- Effects of surface conditions on
fatigue life under various

machining conditions

1- The higher feed rate of machining (1 µm) caused
higher surface roughness and to create voids on

the surface.
2- The feed rate of 0.1 mm/rev showed the highest

fatigue life.

Azadi et al. [111] 2014
- Thermo-mechanical fatigue (TMF)

- Low-Cycle Fatigue (LCF) at
different temperatures

1- Cyclic hardening behavior occurred.
2- The higher temperature caused the alloy to have a

brittle fracture.
3- LCF at high temperature had higher lifetime than

LCF at the room temperature.

Lin et al. [112] 2013 - Uniaxial LCF failure behavior of
hot-rolled AZ91

1- The fatigue life increased by increasing and
decreasing the stress ratio and the peak stress,

respectively.
2- A modified Basquin model is presented to evaluate

fatigue life of AZ91 alloys.

Chen et al. [113] 2013 - Uniaxial asymmetric
stress-controlled cyclic loading

1- Cracks started from the surface.
2- The fatigue life increased by increasing and

decreasing the stress ratio and the peak
stress, respectively.

3- The stress ratio and peak stress affected twinning
deformation mechanism and the stress intensity

factor range.

Korzynski et al. [114] 2011
- Influence of turning and dynamic
bearing ball peening on the surface

condition and fatigue life

1- The fatigue strength improvement due to
compressive stress and surface hardening by

ball peening.

Ishihara et al. [115] 2010 - Effects of defect-sizes in the
diecast AZ91 magnesium alloy

1- Defects inside diecast AZ were the origin of
crack initiate.

2- Distributions of the sizes and densities for defects in
diecast AZ were presented.

Murugan et al. [116] 2009
- Impact of transverse load on the

HCF behavior of low-pressure
cast AZ91

1- Pores were places for emerging cracks.
2- The fatigue life of the transversely loaded

low-pressure cast AZ91 samples were higher than the
gravity cast samples.
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5. Effect of Simultaneous Addition of Zinc and Zirconium Elements (Mg-Zn-Zr)

ZK60 alloys have proper machinability and light weight, and while they are prone to
corrosion, they are anodized to avoid this destructive phenomenon. The main chemical
compositions of ZK60 alloy are magnesium, zinc, and zirconium. The mechanical properties
of ZK60 magnesium alloy are given in Table 12.

Table 12. Mechanical properties of ZK60 magnesium alloy [117].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 365
Yield stress YS MPa 305

Elastic modulus E GPa 44.8
Hardness (Brinell) HB —- 88
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The presence of Cerium (Ce) is one of the main differences of ZK60 magnesium alloys
from previous ones. The effect of Ce value on ZK60 magnesium alloys characteristics has
been investigated [118]. It was found that this element causes more fine crystal grains and
increases tensile strength, while elongation increases first, and when Ce value exceeded
0.94%, decreased. As mentioned earlier, SPD processes such as Multiaxial Isothermal
Forging (MIF) affects significantly toward improving fatigue life in both low-cycle and
high-cycle states [119]. Investigating the behavior of ZK60 magnesium alloy under fatigue
loading greatly helps to predict and reduce the possibility of sudden failure. Xiong and
Jiang have claimed that at tension mode and strain less than 3.0%, the fatigue phenomenon
occurs, including crack initiation, small crack growth, and final failure [120]. Albinmousa
et al. have tried to identify comprehensively the fatigue cracks behavior of V-notched ZK60
magnesium samples using X-ray tomography (Figure 14), and to provide a relationship
between the number of cycles and the crack surface area, which was a power relation-
ship [121]. ZK60 magnesium alloys under adverse environmental conditions are prone to
rapid failure, such as AZ alloys. A summary of achievements and approaches related to
the ZK60 magnesium alloys are presented in Table 13.
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Table 13. The summary of novel research on the ZK60 magnesium alloys.

Author Year Method Results

Xiong et al. [122] 2022
- Influence of pre-corrosion on
fatigue life of modified ZK60

magnesium alloy

1- A total strain energy model was proposed to predict
fatigue life of modified ZK60.

2- β parameter was proposed to express the correlation
between fatigue life and the cyclic deformation

mechanism.
3- When twinning-detwinning dominated cyclic

deformation, the fatigue life decreases by increasing the β
parameter.

Xiong and Yu [123] 2022 - Effects of surface
treatment methods

1- Residual dislocation-retwining, dislocation slip,
residual twins-dislocation slip interaction, and dislocation

slip are the main reasons of the ratcheting deformation
under various loading conditions.

Liu et al. [124] 2021 - Impacts of different loading
environments on fatigue life

1- Various loading environments significantly affect
fatigue life and the failure mode.

Meng et al. [125] 2020 - Effects of phase difference and
stress ratio

1- The mechanism is wavy-slip for various phase
and conditions.

Morri et al. [126] 2020 - Influence of plasma
electrolytic oxidation

1- The plasma electrolytic oxidation caused to reduce
fatigue strength by about 15%.

Albinmousa [127] 2021 - Notch effect on ZK60
Magnesium alloys

1- The Strain Energy Density (SDE) approach is a practical
and reliable method to evaluate fatigue life.

2- It is stated that the notch geometry affects fatigue life.
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Table 13. Cont.

Author Year Method Results

Pahlevanpour et al. [128] 2019
- The anisotropic fatigue

behavior of extrusion (ED) and
radial (RD) directions

1- ED had higher fatigue strength than RD due to lower
plastic strain energy.

Pahlevanpour et al. [129] 2018 - Effects of different directions
of ZK60 extrusion

1- Twin lamellae and profuse twinned grains dominated
extrusion direction (ED).

2- Slip bands dominated the radial direction (RD).
3- The quasi-static behaviors were dissimilar for various
directions, while the cyclic behavior in LCF regime was

dependent on direction.

Karparvarfard et al. [130] 2019
- Influences of cast and
cast-forging on ZK60

magnesium alloys

1- Cast-forged samples had higher fatigue strength.
2- The Persistent Slip Bands (PSB) and intermetallic were

the main places of crack initiation at high cycle
fatigue state.

Chang et al. [131] 2016 - Impact of thin film
metallic glass

1- The W-TFMG coating enhances fatigue life by
approximately 4 times.

2- The Z-TFMG coating is enhanced fatigue life by
about > 250 times.

Dong et al. [132] 2014 - The aging effects on cyclic
deformation and fatigue life

1- The aging process had significant impacts on the strain,
fracture stress, and the stress–strain response under both

monotonic compression and tension mode.
2- The aging process had slight effects on fatigue life and

cyclic deformation.

Yu et al. [133] 2012 - Cyclic deformation and
LCF properties

1- Under high strain amplitudes, the main reason for crack
initiation is due to the twinning–detwinning process.
2- Under low strain amplitudes, dislocation slips or

interaction between dislocation slips and residual twins
has an important role in crack initiation.

6. Effect of Simultaneous Addition of Yttrium and Rare Earth Elements (Mg-W-REE)

WE43 alloys have proper corrosion resistance, high strength, and mechanical prop-
erties. The main chemical compositions of WE43 alloy are magnesium, gadolinium, and
yttrium. The mechanical properties of WE43 magnesium alloy are shown in Table 14.

Table 14. Mechanical properties of WE43 magnesium alloy [134].

Properties Symbol Unit Value

Ultimate tensile strength UTS MPa 274
Yield stress YS MPa 215

Elastic modulus E GPa 44.2
Hardness (Brinell) HB —- 85–105

WE43 magnesium alloys, compared to the previous alloys, have not been properly
studied in terms of structural and functional aspects under different loading and environ-
mental conditions. Experimental studies have shown that the direct-chill casting method to
produce WE43 magnesium alloys has good effects on reducing the average grain size and
improving the mechanical properties such as hardness, yield strength, etc. [135]. Moreover,
various heat and mechanical treatments have been performed to improve the quality of
the alloys and metals. The effects of T5 (aged for 48 h at 204 ◦C) and T6 (underaged and
peak-aged) on WE43 magnesium alloys have been investigated and it was found that
T5 aging process had a much higher effect than T6 aging process on the fatigue life of
WE43 magnesium alloy. In addition, average short crack growth rates were independent of
conditions [136,137]. From Figure 15, the increase in the environmental temperature can be
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a destructive factor in reducing the life of WE43-T5 magnesium alloy. However, the Trans-
verse Direction (TD) has shown higher fatigue strength than the Rolling Direction (RD) and
greater resistance to increasing temperature. Furthermore, pre-strain in the compression
state had a higher impact on fatigue life, while in the tension state, fatigue just slightly
increased at low stress amplitudes [138]. Gu et al. have stated that the cause of cracking
in WE43 alloys is related to micropores [29]. In addition, the cyclic loading, surrounding
environment, alloying elements, and microstructures are major factors affecting the fatigue
life of WE43 magnesium alloys.
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7. Future Recommendations

This section is dedicated to the direction of future work, which the authors addressed
based on their experience, capabilities and knowledge, available equipment, and above-
mentioned literature review. Therefore, these suggestions are only for research purposes
and there are no claims on them, and other researchers can contact the corresponding au-
thor to have cooperation in any of the following areas. Several articles have been devoted to
extracting the fatigue properties of magnesium alloys, but it is rare to find a document that
has reported the fatigue strength under different loading conditions (i.e., tension-tension,
tension-free, tension-compression, free-compression, compression-compression, bending,
torsion, and combination modes such as multiaxial loading), so one of the future research
directions is to investigate the effect of loading type on the fatigue strength of different
categories of magnesium alloy. In addition, in medical applications such as dental implants,
it has been shown that the addition of calcium is very effective to improve biocorrosion
properties, but from the fatigue viewpoint, attention has not been paid to this alloy, which
can be added at the end of the previous research direction. Moreover, identifying the
mechanisms of fatigue crack growth in different classification of Mg alloy and depending
on their texture due to two properties improvement operations, including heat treatment
and severe plastic deformation, should be investigated. In addition, magnesium is an alloy
with high reactivity, so it oxidizes quickly, and the effects of the form and arrangement
of pores caused by oxidation on the mechanism of crack growth, crack growth rate, and
fatigue should be considered. Finally, the techniques presented to reduce the crack growth
rate, such as laser shock pinning, ultrasound peening, rolling, and punching, etc., should
be examined in different classifications of magnesium alloy and the effectiveness of each
of them should be determined optimally. Finally, the authors try to apply different ma-
chine learning techniques to predict the mechanical, metallurgical, material, and fatigue
properties of magnesium alloys.
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8. Conclusions

As has been mentioned in detail, there are diverse types of magnesium alloys depend-
ing on the composition of the elements such as aluminum, zinc, manganese, silicon, copper,
rare metals, etc. In the present paper, more than 95% of the most novel and practical studies
related to magnesium alloys consist of AM50, AM60, AZ31, AZ60, AZ80, AZ91, ZK60, and
WE43 were reviewed to stand out their outcomes and guide prospective research in this
segment. In summary, the most important points can be stated as following:

• Corrosion is a serious and common issue having been considered for most magnesium
alloys. Despite much research, a complete and accurate understanding of these alloys’
behavior subject to adverse environmental conditions has not yet been provided, and
the proposed solutions and methods have worked for a specific alloy or condition.

• Contrary to many studies on fatigue life and crack behavior of aluminum alloys
and steels under various loading conditions, the investigation of these concepts for
Mg alloys have not been comprehensively and accurately explained, and most of
mentioned works have repeated the similar procedure or presented approaches for a
limited range of Mg alloys.

• The use of numerical and modeling methods in recent research is rarely seen, though
these methods can help increase the speed of research and provide a more reliable
explanation under different working conditions.

• A series of the methods and techniques proposed to improve the fatigue life and other
mechanical properties should be carefully considered depending on the type of alloy,
and one setting or approach cannot be used for all kinds of Mg alloys.

• Despite the development of artificial intelligence and a variety of optimization meth-
ods, the lack of these methods can be clearly realized in the discussion of production
and prediction of Mg alloys’ characteristics in the presence of different amounts of
elements and environmental and working conditions.
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