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The article is an overview. We carry out the comparison of actual machine learning
libraries that can be used the neural networks development. The first part of the
article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit
Learn libraries, SciPy library stack. An overview of the scope of these libraries and
the main technical characteristics, such as performance, supported programming
languages, the current state of development is given. In the second part of the article,
a comparison of five libraries is carried out on the example of a multilayer perceptron,
which is applied to the problem of handwritten digits recognizing. This problem
is well known and well suited for testing different types of neural networks. The
study time is compared depending on the number of epochs and the accuracy of
the classifier. The results of the comparison are presented in the form of graphs of
training time and accuracy depending on the number of epochs and in tabular form.
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1. Introduction

Due to the vast development of machine learning and data science, it is
not possible to review the diversity of available software solutions. In this
section we will consider only the most popular libraries and frameworks for
neural networks development and machine learning.
The most common language for building neural networks at the moment is

the Python language [1]. There is a number of reasons why this language has
occupied this domain.
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— Python is easy-to-learn language actively used in the field of school
and university education. Because of this, it has gained popularity not
only in industrial programming, but also among professionals who use
programming as a research tool.

— The standard cpython interpreter makes it easy to create bindings for
C-function calls, allowing Python to be used as a convenient interface
for low-level libraries.

— The community has created a wide range of tools for interactive Python
code execution and data visualization (e.g. [2]–[4]). Especially it is useful
for scientific research, where almost always there is no original clear
algorithm of solutions and it is necessary to conduct a scientific search.

A significant disadvantage of Python is its low performance, which can be
overcome by writing critical parts of software in a compiled language (it is
usually C or C++) or by using cython [5] translator.
Many machine learning libraries are also written in two or more languages.

The part of software, which handles main part of computations, is usually
implemented in C or C++ (the core part or backend). Pure Python is used
for bindings to organize a convenient and easy to use interface (interface part
or frontend). So, if a library is implemented in pure Python, then in most
cases:

— It is an add-on to another, lower-level library and provides a more
user-friendly and easy-to-learn interface;

— It is designed for educational purposes or for prototyping.

Note also that all the libraries in this review are free open source software.
Also note that Python 2 support will be discontinued from the beginning of
2020 for vast majority of python libs.

2. Overview of machine learning (ML) libraries

From all reviewed libraries, only TensorFlow and PyTorch directly compete
with each other. Other libraries complement each other’s functionality and
specialize in their own area.

2.1. Scientific Python (SciPy)

Scientific Python libraries set is not directly related to machine learning, but
many machine learning libraries rely on Scientific Python components in their
work. Let us briefly describe the main components included in this set.

— NumPy [6] is the library which implements high performance arrays
and tools for them. The computational core is written in C (52% of
code base) with the interface part in Python (48% of code base). Linear
algebra functions heavily rely on LAPACK library. NumPy implements
variety of linear algebra methods for working with vectors, matrices and
tensors (multidimensional arrays in this case). It also supports parallel
computing by utilizing vector capabilities of modern CPUs.

— SciPy [7] is the library that implements many mathematical methods,
such as algebraic equations and differential equations solvers, polynomial
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interpolation, various optimization methods, etc. For a number of meth-
ods the Fortran (about 23% of the total code base) and C (20% of the
code base) libraries are used.

— Pandas [8] is the library designed to work with time series and table data
(DataFrame data structure). It is written almost entirely in pure Python
using NumPy arrays and is often used in machine learning to organize
training and test samples.

In addition to these three main libraries, the scientific Python stack also
includes Matplotlib [3] for data visualization and plotting, and a set of
interactive shells, such as iPython and Jupyter [2].

2.2. TensorFlow

TensorFlow [9], [10] is an open source library used primarily for deep machine
learning. It was originally developed on by Google’s divisions, but in 2015 it
was released as free open source software under the Apache License 2.0. The
current stable version is 2.1.0.
The computational core is written in C++ (60% of all code) using CUDA

technology, which allows one to utilize graphics cards in calculations. The
interface part is implemented in Python (30% of all code base). There are also
unofficial bindings for other languages, but only C++ and Python interfaces
are officially supported.
The library is based on the principle of data flows (dataflow), according to

which the program is organized in the form of computational blocks associated
with each other in the form of a directed graph which is called computational
graph. Data is processed by passing from one block to another.
Such application architecture makes it easy to use parallel calculations on

both multi-core CPUs and distributed cluster systems. In addition, it is well
suited for building neural networks in which each neuron is presented by an
independent component.
In addition to the computational graph, TensorFlow uses a data structure

called tensor. It is similar to the tensor from differential geometry in the
sense that it is a multidimensional array.

2.3. PyTorch

The PyTorch [11] library was created on the basis of Torch [12]. The original
Torch library was developed in C and used Lua as the interface. With the
growth of Python popularity in machine learning, Torch has been rewritten
in C++11/CUDA (60% code) and Python (32% code). Initial development
was conducted in the company of Facebook, but currently PyTorch is an
OpenSource library, distributed under a BSD-like license. The current version
is 1.3.1.
PyTorch, as well as TensorFlow, is built on the basis of dataflow concept.

The main difference from TensorFlow is that in TensorFlow computational
graph is static, then in PyTorch the graph is dynamic. This means that one
can modify the graph on the fly, adding or removing nodes as needed. In
TensorFlow, the entire graph must be specified before the model run.
The developers of PyTorch emphasize that Python is tightly integrated

into the library (library is more pythonic). This makes it easier to use than
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TensorFlow, as the user does not have to dive into low-level parts written in
C++.
It is worth noting, however, that TensorFlow surpasses PyTorch in popular-

ity, as it appeared earlier and is used in many educational courses on machine
learning.

2.4. Theano

Theano [13] library is a Python interface for the optimizing compiler. It allows
user to specify functions and after that translates them to C++. Then Theano
compiles C++ code to run it on the CPU (using g++ for compilation), or on
the graphics accelerator (using nvcc to utilize CUDA). In addition, automatic
differentiation algorithms are built into the library.
After optimization and compilation, the functions become available as reg-

ular python functions, but have high performance. Vector, matrix, and tensor
operations are supported and efficiently parallelized on available hardware
(multi-core processor or graphics accelerator).
With support for multidimensional array operations and automatic differ-

entiation, Theano is widely used as a backend for building neural networks.
In particular, it can be used by the Keras library.
Theano is written almost entirely in Python, but requires NumPy, SciPy, py-

CUDA and BLAS, as well as g++ or NVIDIA CUDA compilers (recommended
for optimal performance).
Development of the library was suspended in 2017, but resumed in 2018.

The current version is 1.0.4.

2.5. Keras

The Keras [14] library provides a high-level programming interface for building
neural networks. It can work on top of TensorFlow, Microsoft Cognitive
Toolkit (CNTK) [15] or Theano [13]. The library is written entirely in Python
and is distributed under the MIT license. Current version 2.3.1
The library is based on the following principles: ease of use, modularity,

extensibility.
The modularity principle allows you to separately describe the neural layers,

optimizers, activator functions, etc, and then combine them into a single
model. The model is fully described in Python. The created model can be
saved to disk for further use and distribution.

2.6. SciKit Learn

SciKit Learn [16] is the library for data processing. It implements various
methods of classification, regression analysis, clustering and other algorithms
related to classical machine learning. It is written almost entirely in Python
(98% of all code base), but uses NumPy and SciPy for algorithms implemen-
tation. Despite the fact that number of current version is 0.21.1, the project
is very stable, as it has been developing since 2007.
SciKit Learn is suitable for traditional machine learning and data prepro-

cessing tasks. This library does not support the concept of dataflow and
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does not allow one to create his own models. The absence of a computa-
tional graph does not allow flexible scale of models for multi-core processors
and graphics accelerators and forces to limit the degree of parallelism that is
implemented in NumPy.

3. Comparative analysis of machine learning libraries

3.1. Description and architecture of neural network

For the comparative analysis of deep machine learning libraries, we choose
the problem of handwritten digit recognition from the MNIST database and
the neural network [17] to solve it.
The MNIST database is contained in a CSV file, where comma-separated

digits are written. In a CSV file, the first value is a marker that represents
the corresponding digit. Next value is the size of the digit image in pixels,
consisting of 784 values and having a dimension of square 28x28.
The training file consists of 60 thousand copies, and the test file of 10

thousand copies. To solve the problem we choose the MLP (multilayer
perceptron) architecture. Perceptron was one of the first models of neural
networks, which was supposed to simulate the neural processes in human mind.
This model was proposed by Frank Rosenblatt in 1957 and first implemented
in 1960 [18]. A multilayer perceptron according to Rosenblatt differs from
a single layer in that it contains additional hidden layers.
The neural network (Figure 1) consists of an input layer, two hidden layers,

and one output layer. The input layer contains 784 neurons, the hidden layers
contain 256 neurons, and the output layer 10, according to the number of
features. The activation function in hidden layers is ReLU, which has the
form 𝑓(𝑥) = max(0, 𝑥) [19]. Stochastic gradient descent (SGD) [20] is used
as the optimization algorithm.
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Figure 1. A multilayer perceptron for the recognition of handwritten digits
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3.2. Software implementation of a neural network using various
libraries

With each library from the overview above, we built perceptron models.
Each neural network was trained, and training time and accuracy were
measured for a different number of training eras. We used these measurements
for comparative analysis of libraries. The constructed graphs describe the
dependence of learning time and accuracy on the number of eras (Figures 2–6).
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Figure 2. Results of a neural network built with the help of the Keras library
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Figure 3. Results of a neural network built with the help of the SciKit Learn library

The first plot shows the dependence of time on the number of epochs. The
second plot shows the dependence of accuracy on the number of epochs.
Below is the summary table of the results of neural network training at 50

epochs for different libraries (see Table 1).
On the diagram (Figure 7) the time and accuracy values are shown for the

considered libraries. All values are normalized.
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Figure 4. Results of a neural network built with the help of the PyTorch library
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Figure 5. Results of a neural network built with the help of the TensorFlow library
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Figure 6. Results of a neural network built with the help of the Theano library
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Table 1

Results of comparative analysis of machine learning libraries

Library Accuracy, % Time, sec.

MLPClassifier 93.45 146.90

Keras 98.56 113.80

TensorFlow 89.07 63.48

Theano 97.38 257.29

PyTourch 98.07 1492.29

MLPClassifier Keras Tensorflow Theano PyTourch0.0

0.2
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0.6

0.8

1.0
acc
time

Figure 7. The time and accuracy values

In the PyTorch library, the learning time increases faster than in all other
libraries with the growth of epochs, which time is approximately the same.
The learning time of TensorFlow, Scikit-learn and Keras libraries varies from
1 to 3 seconds per epoch. While this indicator in PyTorch exceeds 8 seconds,
which is several times higher than the training time of other libraries.
The accuracy of the TensorFlow library does not exceed 0.9, which is low

compared to other libraries. Scikit-learn also showed a low accuracy result.
The PyTorch library shows a good accuracy result only with a large number
of epochs, but with the growth of the number of epochs, the learning time
increases greatly. The minimum accuracy was 98.07. The Keras and Theano
libraries are the most accurate and their accuracy is kept at 0.98.

4. Conclusion

Based on the comparison of different libraries, a number of conclusions
can be drawn. Almost all libraries except PyTorch show approximately
the same learning time. In the case of PyTorch, the longer learning time
can be explained by the support of a dynamic computational graph, which
apparently imposes additional computational costs. In turn, the TensorFlow
library showed an average accuracy result, behind PyTorch and Theano.
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Обзор и сравнительный анализ библиотек машинного
обучения для построения нейронных сетей

М. Н. Геворкян, А. В. Демидова, Т. С. Демидова,
А. А. Соболев

Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Статья носит обзорный характер. В ней проведено сравнение актуальных биб-
лиотек машинного обучения, которые могут быть использованы для построения
нейронных сетей.
В первой части статьи даётся краткое описание библиотек TensorFlow, PyTorch,

Theano, Keras, SciKit Learn, стека библиотек SciPy (NumPy, SciPy, Pandas,
Matplotlib, Jupyter). Делается обзор области применения перечисленных биб-
лиотек и основных технических характеристик, таких как быстродействие,
поддерживаемые языки программирования, текущее состояние разработки. Сре-
ди рассматриваемых библиотек только PyTorch и TensorFlow непосредственно
конкурируют друг с другом. Остальные библиотеки взаимодополняют друг друга
и часто используются совместно при построении различных моделей машинного
обучения.
Во второй части статьи проводится сравнение пяти библиотек на примере мно-

гослойного перцептрона, который применяется к задаче распознания рукописных
цифр. Данная задача хорошо разработана и является модельной для тестиро-
вания различных реализаций нейронных сетей. Сравнивается время обучения
в зависимости от количества эпох и точности работы классификатора. Резуль-
таты сравнения представлены в виде графиков времени обучения и точности
в зависимости от количества эпох и в табличном виде.

Ключевые слова: машинное обучение, нейронные сети, MNIST, TensorFlow,
PyTorch




