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advantage of the problem formulation in stresses is direct determination of
stresses in the cross-section, unlike the classical formulation, when the result
of the approximate solution is the Prandtl stress function values, and the
determination of stresses is brought down to numerical differentiation. The
boundary integral equation of the second kind is obtained to formulate the
problem with respect to stresses. The procedure for solving the problem by
the boundary elements method is described, the system of solving equations
is compiled. Solutions of test problems on torsion of rods with rectangular
and channel cross-sections are presented. Comparison of the calculation
results with known analytical solutions illustrates the reliability and
permissible engineering accuracy of the obtained solutions.
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AHHOTaHI/Iﬂ. HpI/IBOHI/ITCﬂ IMNOCTAaHOBKaA 3aJa4u O KPYUCHHUU OTHOCHUTCIBHO
HaHpH)KeHI/Iﬁ " €€ pCIICHUC METOAOM I'PAaHUYHBIX 3JIECMCHTOB. OCHOBHBIM J0-
CTOMHCTBOM ZlaHHOﬁ IMOCTAaHOBKHU 3aJ1avuM SABJIACTCS HCTIOCPECACTBEHHOE OIIpe-
JACJICHUC Hal'[pﬂ)KeHHfI B CCUCHHHU, B OTIIMYUC OT KJIACCHYECKOM IIOCTAaHOBKH,

IZie pe3yabTaTOM NPHOIMKEHHOTO PELICHHs SIBISIIOTCS 3HaYeHUs (HYHKIHU
HanpsbkeHu# [Ipanaris, a onpeneiacHUe HaNpsHKEHUM CBOAUTCS K YUCIIEH-
HOMY AnddepeHnrpoBanuio. {1t TOCTaHOBKYU 3a/ladyll OTHOCUTENBHO HaIlps-
JKEHHUH ITOJIy4eHO TpPaHWYHOE MHTErpajibHOe ypaBHEHUE BTOporo poxa. Omnu-
CaHa MpoLeaAypa PelIeHHUs 331a4l METOJIOM TPAHUYHBIX JIEMEHTOB, COCTAB-
JIeHa CUCTEMa pa3peliaomux ypaBHeHui. [IpeacraBnens! peneHns TeCTOBBIX
3a7la4 O KPYYCHUHU CTEep)KHEH MPAMOYIOJILHOIO M IIBEJJIEPHOIO CEUEHHM.
ComnocraBieHue pe3yIbTaToB pacyeTa ¢ U3BECTHBIMHU aHATUTUYECKUMHU peLie-
HUSMH WIIIOCTPUPYET IOCTOBEPHOCTh M JOMYCTHUMYI HHXKEHEPHYIO TO4-
HOCTb IOJIyYEHHBIX PEIICHUH.
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Lalin V.V., Semenov D.A. Torsion problem:
stress statement and solution by the boundary
element method // CtpoutenbHas MexaHUKa
WHKSHEPHBIX KOHCTPYKIMHA U COOPYKESHHI.
2023. T. 19. Ne 4. C.339-348. http://doi.org/
10.22363/1815-5235-2023-19-4-339-348

KiroueBble coBa: KpydeHUe YNOpPYrux cTepxkHed, ypaBHeHue IlyaccoHa,
HHTErpajbHOE NPECTaBICHUE HANPSKEHUH, TPaHUYHOE UHTETPAIbHOE yPaB-
HEHUe, UHTEerpajibHOE YPaBHEHUE BTOPOTO poJa

1. Introduction

The torsion problem for elastic prismatic rods is one of the oldest problems in the theory of elasticity. It was
mathematically formulated by Saint-Venant in the middle of the 19th century. Before the broad spread of ECM,
many problems for bars with relatively simple shapes of cross-section were solved analytically. The obtained
solutions were summarized in the monograph [1].

With the creation of ECM, it became possible to obtain numerical solutions to the problem of torsion for
bars with an arbitrary cross-section. This led to the rapid development of numerical methods for solving torsion
problems and problems of potential theory that are similar in their mathematical formulation. In spite of their
considerable age, these problems are still the subject of research for many scientists and engineers. These works
contain formulations and methods for solving problems for inhomogeneous bars [2; 3], nanosized bars [4],
problems of dynamics [5] and others.

One of the widely used numerical methods for solving torsion problems is the boundary elements method
(BEM) [7-13]. This method has been actively developed since the 70s of the 20th century, but up to now its new
formulations continue to appear, including those for torsion problems of bars [14—18].

The traditional mathematical formulation of the torsion problem consists of finding the stress function'
[1; 19], and the stresses themselves are subsequently found by differentiation of the stress function [20; 21]. From
the point of view of determining the stresses in a cross-section in numerical solution, the formulation of the
problem regarding the stress function has two significant disadvantages. Since the result of the approximate
solution of the problem in such a formulation is actually the values of the stress function in the nodes of boundary
elements, then the determination of stresses is reduced to numerical differentiation. This leads to an additional
source of computational error. The second reason reducing the accuracy of the solution is the fact that the boundary
integral equation regarding the stress function is a numerically unstable equation of the first kind®.
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This paper presents a formulation of the torsion problem in stresses, derives the boundary integral equation
regarding stresses, and describes the procedure for solving the problem by the boundary elements method. In
difference from the classical formulation, the proposed formulation leads to an integral equation of the second
kind, and its numerical algorithm is a stable one’. The verification of the methodology was carried out on the
example of two cross-sections by means of comparing the numerical solution of the problem with the known
analytical one.

2. Methods
Formulation of the torsion problem regarding stresses

Consider the problem of torsion for a prismatic bar of an arbitrary cross-section under the action of two
external moments which lie in the plane of its outermost cross-sections. We consider the volumetric forces to be
equal to zero and the lateral surface to be free of external loads.

The following coordinate system has been choosen: the z-axis coincides with the axis of torsion, i.e., the axis
that remains unmoved when the bar is twisted; the x- and y-axes are mutually orthogonal and located randomly in
the plane of the cross-section.

The problem of torsion of a bar with cross-section S and contour 7/, is formulated in terms of the Prandtl
stress function F in the following way® [24]:

S:AF = =2, (1)

I': F = const, (2)

— N2 2 . = i = i
where A = 0y + 0y is Laplace operator on a plane; 0, = e 9y = 3y

If the area confined by the contour is single-linked, then the constant in equation (2) can be assumed to be
an arbitrary one, since it does not affect the values of stresses. Hereinafter we take F' at the boundary /" to be equal
to zero.

Required tangential stresses 7,, and 7,,, are expressed via the function F' by the formulas:

Ty = GOO,F, T,y = —GOOF, 3)

where G is the shear modulus; @ is an angle of the bar twisting per the unit of length.

In the numerical solution of problem (1), the determination of stresses will require numerical differentiation
according to formulas (3). The next step is to state the problem formulation, where the unknowns will be stresses
directly.

Equation (1) can be rewritten using equation (3):

0xTzy — 0yT, = 2G6. 4)
The functions 7,y and 7,, should satisfy the equation of equilibrium
OxTzx + 0y T4, = 0. (5)

Boundary condition on the surface /™
NyTy +NyT4 =0, (6)
where n, and n,, are projections of the vector of unit external normal to the contour 7.

Finally, the following formulation of the torsion problem relative to stresses is obtained:

3 Alexandrov A.V., Potapov V.D. Fundamentals of the theory of elasticity and plasticity. Moscow: Vysshaya shkola Publ.; 1990. (In
Russ.)
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. { OxTzx + 0yTzy =0 e
C0xTyy — 0y T,y = 2GO

I:nyT, +ny7,, =0. (8)

Then it is possible to find the tangential stresses in the cross-section without finding the values of the stress
function F by solving the system of equations (7)—(8).

The vector notation of the formulation (7)—(8) was given below with necessary explanations. It was supposed
that vector T with components 7y, 7.y, V is a gradient operator in the plane, n is a vector of external unit normal
to the boundary I, vector T is a vector 7. rotated by 7/2 clockwise when viewed from the z-axis. Thus, the
formulation of the problem (7)—(8) acquires the following form:

. V-t=0
5 {V-i': 2G6 ©)

rnt=t,=0. (10)

Boundary integral equations regarding the stress function

Let &, B be two arbitrary points in the plane, Rg, Rg are their radius vectors. Then the following notations
can be introduced:

R=R;—Rg, R=|R|=VRR. (11)

Also, the function v(x, y) were introduced, which is the fundamental solution of the Laplace equation in the
plane*:

v = [nR. (12)
By definition of a fundamental solution:

Asv = —278(E, B), (13)

where A is the Laplace operator, with differentiation on the coordinates of the point ¢; §(§, 8) is a Dirac delta
function with the following basic property [7]:

| a®rs.pase) = g, (14)
S

Here g(B) is an arbitrary continuous function; the notation dS () underlines that integration was performed
on the coordinates of the point £:

1, §ES,
c§) = {0,5, SEr, (15)
0, £¢S+T.

The next step was to write the second Green’s formula for the functions v(x, y) and F(x, y) [25]:
ov oF
f, [=v(AF) + FAv] dS = [, (FE - va) dr. (16)

The following form was obtained using equations (13)—(14):

4Tikhonov A.N., Samarsky A.A. Equations of mathematical physics: 6th ed. Moscow: House of Moscow State University Publ.;
1999. (In Russ.)
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2 ()F()——f (AF)dS+:f( ad Fav)dF
meGIF() = v Von on '
s r
Let us place the point & on the boundary of I, and take the value of the function c(¢) according to (15):
oF ov
nF(€)=f—v(AF)dS+f<v——F—) dr. (17)
an on
s r

The sought function in equation (17) in solving the torsion problem is the normal derivative of the stress
function £ at the boundary /". Thus, equation (17) with respect to Z—Z is a Fredholm equation of the first kind. The

numerical solution of the equation of the first kind can lead to highly inaccurate results, since equations of this
type are predominantly poorly specified and numerically unstable”.

Boundary integral equations regarding stresses

To obtain the boundary integral equations regarding stresses, it is necessary to have an integral representation
on the plane for the stress vector .
Suppose a is a unit tensor in the plane, ¢ is a basis co-symmetric tensor in the plane. If ey, e, are orthants

of the Cartesian coordinate system, then the introduced tensors have the following dyadic representation:
a=e.e,+ee, C=ee,—e.e,.

The main property of the introduced tensors:
a-b=b, c-b=Dh,

where b is an arbitrary vector.
Let us write the following representation of the Laplacian from an arbitrary vector ¢:

Ap=V-(aV-@+cV-9). (18)
Equation (18) was multiplied scalarly by the arbitrary vector f, transforming the right part using equality

[19]:
f-v-Qe=v-(@Q-f)-Q"-vf, (19)

where @ is an arbitrary tensor of the second rank; symbol “--” means the double scalar product of two tensors [19].
The obtained equation has the form:

fRo=V-(fV-@+fV-$)-V-@V-f-V -9V f. (20)
By integrating (20) over area S and using the formula of Ostrogradsky-Gauss [19]

fV-dezfn-de", (21
S r

which is valid for any vector b, the following formula was obtained:

jf -A<pd5=f(fnv-<p+ftV-?p)dr—f(v-fv-(p+V-iv-zp)ds, (22)
S r S

where f, =n-f, f; = t- f are projections of the vector f'on the normal and tangent to the contour /.

5 Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical methods. Moscow: Laboratoriya znanij Publ.; 2020. (In Russ.)
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If using equations (11)—(13) and assuming that ¢ = bInR in equality (22), where b is an arbitrary constant
vector, then the following formula for vector ¢ is got:

- R - R
Substituting this formula into (22) and using property (14), the next equation was obtained (if discarding an
arbitrary vector b)):

e @ = [ (g~ fige ) r @)+ [ (gzv T =77 ) aso) 049
N

r

Equality (24) is the required integral representation of an arbitrary vector f'in the plane. After replacing the
arbitrary vector f by the vector of tangential stresses T and using equations (9), (10), formula (24) can be written
in the form:

2nc(&)T(é) = —f dl"(ﬁ) +f — 266 dS(B). (25)

r

Using formula (25), it is possible to determine the value of vector T at any point of cross-section § if its
tangent projection 7, is known at the boundary /". To find the function 1, it is necessary to multiply (25) scalarly
by the vector t; (that is a unit vector tangent to the contour /" at the point §) and impose the condition ¢ € I'. Thus,

the following integral equation with respect to the function 7, (¢ - R= —n; * R) can be obtained:

(26)

1 n:-R 1
W@ - [ wdr) = -

r S

R2

Equation (26) is an integral equation of the second kind, unlike the formulation with the use of the stress
function £ (17).
The next step is to convert the integral in the right part of equation (26) into an integral over the contour:

S S r

As aresult, equation (26) takes the form:

n(f)—%f - Ggfn; ngln R dr (B). (27)

r r

The solution of equation (27) is the tangential stresses on the contour I, and one of them is the maximum
tangential stress in the section [19].

Boundary elements method

After that the discrete form of the integral equation (27) is written, using the so-called “constant” boundary
elements. The nodes, where the values of the unknown function are calculated, are in the middle of each element.
The value of the sought function within one boundary element is assumed to be constant. The boundary was
divided into N elements, and equation (27) was transformed into the form:

} ir; j=1r;
where i is the number of the boundary element.
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The function 7;; in equation (28) under the sign of the integral has the constant values in the area of each
element and, therefore, can be taken out of the sign of integral:

N N
1 n-Ry 26O _
T~ E T¢j f%dr(]) =-— E fni'"j'lnRijdr(])-
o ij —
j=1 rj J=1r;

If points i and j are located on the same element, then the integral

-R::
f i _ ”dl"(])
ry

is identically equal to zero due to orthogonality of vectors n;, R;;, and the integral

ij>

Lj
can be calculated analytically:
10 one . 11 q
nifnjlnRide(j)=§lf lnTEdf=El flnzd§+f In|é|dé | =
1 -1 -1 -1
-£ 1
—1l 2ll li l d Inéd —1l21l 2lim(¢&l )1)—lll 1
=gl| 2ing + g f nlél f+f ngdg | | =51 (2mg+ 2imEng ~O) = 1(1ng—1)
-1 €

The following notations were introduced:

1 n;: Rl] .
H;; = 6&;; —gj Rz dr@,
Fj Y

2GO . l
B = =22 |5\t Jy mi ey InRydr () + 1 (ms-1)6,.

i+j

where §;; is the Kronecker delta.
The obtained system of equations can be represented in a matrix form:

H T =B,
il Al Al
NXNNX1  Nx1

where T is a vector, whose components are unknown values of tangential stresses at the boundary.

3. Results and discussion

The calculations for two cross-sections (a rectangular and channel ones) were performed in order to verify
the described formulation of the problem. The dimensions of these cross-sections are shown in Figure 1.

To simplify the interpretation of the results, it was assumed that the values of the angle of section’s torsion &
(rad/cm) and shear modulus G (N/cm?) are equal to one, since their values do not affect the distribution of stresses
in the cross-section. The distribution of maximum tangential stresses along the boundaries of the cross-sections
was studied next. Only a part of the boundaries was considered due to the symmetrical distribution of stresses
along the cross-section: there are two edges for a rectangular cross-section (from point 1 to point 3, according to
Figure 1), and four edges for a channel section (from point 1 to point 5, according to Figure 1).
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The results of the calculation were compared with the
known analytical solution of the Poisson equation describing 1 3 —
the torsion of bars with constant profile® [1]. The calculations
were performed with consecutive reduction of the boundary
element size: 1, 0.5, 0.25 cm. < T_>
Figure 2 shows the results of the calculation of the
rectangular cross-section. ' H
Figure 3 presents the results of the calculation for the 1 2 —

channel cross-section. T L s ]

The table contains the comparative values of stresses for

1)

several nodes of the calculated cross-sections. Figure 1. Dimensions of design sections, cm
3,5
ol : W‘Q‘.
I 2,5 F
N N
§ § I
N N L
< L5 < I f \o
DA L5t f K
2 g 0 i 5 -3 -2 -1 0 1 2 3
X (cm) y (em)
a b
Figure 2. Distribution of tangential stresses along the boundary of a rectangular cross-section:
a — edge between points 1 and 2; b — edge between points 2 and 3
® __ analytical solution; —* — — 0.25 cm mesh; — 0.5 cm mesh; — 1 cm mesh
1,2
0,8
[ ]
1 F 0,7 + 0
N =~
Sos | ”§ 0,6 | L
E <
> 05
0,6
04 *
0’40 i 2 3 03 ——
0 0,2 0,4 0,6 0,8 1
x (cm) ¥ (cm)
15 1,3
125 + |
1 -
«\g ~ 1,1 F
S b 5
< g 1} *
05 F N
09 r
025
0 ! . ! . ! . ()’8 i 1 i 1 i 1
I 15 2 25 3 ! L3 2 23
x (cm) y (cm)

Figure 3. Distribution of tangential stresses along the boundary of a channel cross-section:

a — edge between points 1 and 2; b — edge between points 2 and 3;
¢ — edge between points 3 and 4; d — edge between points 4 and 5;

® __ analytical solution; —#*— — 0.25 cm mesh; — 0.5 cm mesh; — 1 cm mesh

¢ Timoshenko S.P., Goodyear D. Theory of elasticity. Moscow: Nauka Publ.; 1975. (In Russ.)
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Values of tangential stresses at the boundaries of design cross-sections

. Coordinate of node Size of boundary element Analytical solution Relative inaccuracy
Cross-section . . .
X, cm y, em 1cm 0.5 cm 0.25 cm of the Poisson equation | of the numerical method, %
-1.5 -3 1.582 - - 1.648 4
Rectangle 2 0.25 - 3.345 - 3.378 1
2 0.125 - - 3.371 3.387 0.5
1.5 0 1.022 - - 1.004 1.8
3 0.75 - 0.647 - 0.610 1.5
Channel
1.125 1 - - 1.232 1.242 0.8
1 1.125 - - 1.241 1.260 1.5

The analysis of the obtained results demonstrates the acceptable inaccuracy for solving the problem by the
method of boundary elements in stresses. On the basis of comparison of the calculation results with the analytical
solution, it has been shown that satisfactory accuracy was achieved on the coarsest mesh of boundary elements. It
has also been shown that acceptable accuracy was achieved in the nodes that are most important from the point of
view of evaluating the strength of the cross-section, which are located in the zones of extreme stresses along the
cross-section.

4. Conclusion

In this paper we have presented a formulation of the torsion problem in stresses, have derived the boundary
integral equation regarding stresses, and have described the procedure for solving the problem by the boundary
elements method. The main results are:

1. The integral representation of an arbitrary vector f'in the plane.

2. The integral representation of a stress vector T in the rod torsion problem.

3. The boundary integral equation of the second kind for the rod torsion problem.

4. The procedure for solving the proposed formulation using the boundary elements method.

5. The verification of the method on the example of two cross-sections.

It has been shown that the numerical solution satisfactory accuracy was achieved in comparison with the
analytical solution.
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