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The paper considers a class of smoothly irregular integrated optical multilayer
waveguides, whose properties determine the characteristic features of guided propaga-
tion of monochromatic polarized light. An asymptotic approach to the description of
such electromagnetic radiation is proposed, in which the solutions of Maxwell’s equa-
tions are expressed in terms of the solutions of a system of four ordinary differential
equations and two algebraic equations for six components of the electromagnetic field
in the zero approximation. The gradient of the phase front of the adiabatic guided
mode satisfies the eikonal equation with respect to the effective refractive index of
the waveguide for the given mode.
The multilayer structure of waveguides allows one more stage of reducing the model

to a homogeneous system of linear algebraic equations, the nontrivial solvability
condition of which specifies the relationship between the gradient of the radiation
phase front and the gradients of interfaces between thin homogeneous layers.
In the final part of the work, eigenvalue and eigenvector problems (differential and

algebraic), describing adiabatic guided modes are formulated. The formulation of
the problem of describing the single-mode propagation of adiabatic guided modes is
also given, emphasizing the adiabatic nature of the described approximate solution
of Maxwell’s equations.

Key words and phrases: smoothly irregular integrated optical multilayer waveg-
uides, eigenvalue and eigenvector problem, single-mode propagation of adiabatic
guided modes

1. Introduction

Fundamental results in the theory of regular waveguides were obtained for
closed (metallic) waveguides by A.N. Tikhonov and A.A. Samarskii [1], and for
open (dielectric) waveguides by A.G. Sveshnikov [2] and V.V. Shevchenko [3].
Among the irregular waveguides, one can distinguish transversely irregular and
longitudinally irregular waveguides. For transversely irregular waveguides, the
equations and the corresponding solutions allow the separation of variables [4].
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Here the incomplete Galerkin method developed by A.G. Sveshnikov [2], [5],
[6] received the greatest recognition.

For closed longitudinally irregular waveguides, B. Z. Katsenelenbaum de-
veloped the method of cross sections [7], which was generalized for open
longitudinally irregular waveguides by V.V. Shevchenko [8]. These models do
not describe depolarization and hybridization of guided modes in irregular sec-
tions of waveguides. A.A. Egorov, L.A. Sevastyanov and A. L. Sevastyanov
developed the foundations of the theory of smoothly irregular 3D dielectric
and, in particular, integrated optical waveguides [9], [10], which was success-
fully applied to a number of three-dimensional integrated optical waveguides
and smoothly irregular 3D waveguide devices based on them [11]–[13]. The
mathematical basis of the model of adiabatic guided modes (AGMs) is the as-
ymptotic method and the method of coupled modes. The asymptotic method
for solving a boundary value problem for a system of differential equations
with respect to a small parameter 𝛿 allows it to be reduced to a system of or-
dinary differential equations with special boundary conditions, the method
of solving which is known. The coupling of two second-order equations for
modes of two different polarizations when solving the original system of equa-
tions by the asymptotic method, manifests itself in the first approximation as
a weak (of the order of 𝛿) coupling of two linear oscillators. It reflects the vio-
lation of the structure regularity caused by a change in the phase constant of
smoothly irregular dielectric waveguides.
In this paper, we consider an approach to the construction of a model

of propagation of electromagnetic radiation in integrated optical smoothly
irregular waveguide structures. Traditionally, such models are described using
Maxwell’s equations. The paper considers only monochromatic radiation,
depending on time as exp(𝑖𝜔𝑡). Such time dependence of the solution allows
considering a model of steady-state guided propagation of electromagnetic
radiation.

2. Basic concepts and notations

Guided propagation of monochromatic polarized electromagnetic radiation
in integrated optical waveguides is described by Maxwell’s equations. The
electromagnetic field is described using complex amplitudes. A material
medium is considered, consisting of dielectric subdomains that fill the entire
three-dimensional space. The permittivities of the subdomains are different
and real, and the permeability is everywhere equal to the permeability of
vacuum. It follows that in the absence of foreign currents and charges, the
induced currents and charges are equal to zero.
In the absence of foreign charges and currents, the scalar Maxwell’s equa-

tions follow from the vector ones, and the boundary conditions for the normal
components follow from the boundary conditions for the tangential compo-
nents [14]. The constitutive equations are assumed to be linear. Thus, the
electromagnetic field in a space filled with dielectrics in the Gaussian system
of units is described by equations

rotE = −1
𝑐

𝜕B
𝜕𝑡

, rotH = −1
𝑐

𝜕D
𝜕𝑡

, D = 𝜀E, B = 𝜇H, (1)
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where E,H are the electric and magnetic field strength vectors, D is the
electric displacement vector, B is the magnetic flux density vector, 𝑐 is the
velocity of electromagnetic waves in vacuum.

At the interface between dielectric media 1 and 2, the tangential compo-
nents of electric and magnetic field strengths satisfy the following boundary
(matching) conditions:

H𝜏|1 = H𝜏|2, E𝜏|1 = E𝜏|2. (2)

The asymptotic boundary conditions for guided modes at infinity

‖E‖ −−−−→
|𝑥|→∞

0, ‖H‖ −−−−→
|𝑥|→∞

0, (3)

ensure uniqueness of the solution of the problem (1)–(3).

In equations (1), 𝜀 is the medium permittivity, 𝜇 is the medium permeability.
Let us denote by 𝑛 = √𝜇𝜀 the refractive index of the medium (hereinafter —

of a dielectric layer of the considered multilayer dielectric structure).

3. The considered class of objects

The object of our consideration is the guided propagation of monochromatic
electromagnetic radiation of the optical range in thin-film integrated opti-
cal structures. Such structures are complex waveguide structures formed by
the deposition of additional waveguide layers of various (smoothly irregular)
geometric configurations on the base waveguide. As a base waveguide, we con-
sider a regular planar three-layer waveguide filling the entire three-dimensional
space (open waveguide): a substrate layer (substrate) is located in the lower
half-space, then a guiding layer of constant thickness is located, and a cladding
layer is located in the upper half-space. In this case, the guiding layer (core)
is optically denser compared to the substrate and the cladding. By a thin-film
waveguide, we mean a waveguide whose core thickness is comparable to the
wavelength of propagating radiation.

Integrated optical waveguide structures are formed by introducing into the
three-layer planar dielectric waveguide additional layers of variable thickness
ℎ(𝑦, 𝑧). The additional waveguide layers are specified by the interface between
the additional and waveguide layers 𝑥 = ℎ(𝑦, 𝑧) and directly affect phase
distribution 𝜑(𝑦, 𝑧) and effective refractive index 𝑛eff(𝑦, 𝑧) of the composite
waveguide system. The phase velocity is smaller and the effective refractive
index 𝑛eff(𝑦, 𝑧) is greater in the locations where the total thickness of the
waveguide layers is greater.

In particular, it can be a few-mode integrated optical waveguide imple-
mented in the form of a three-layer dielectric “plate”. On this structure, a local
but smoothly irregular optical inhomogeneity is deposited, i.e., an additional
dielectric layer of variable thickness. A thin-film waveguide generalized lens
(TFWGL) (see Figure 1) is an example [11], [12].
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Figure 1. Schematic of Luneberg TFWGL with an additional waveguide layer having

cylindrical symmetry

In such integrated optical waveguide, a normal mode of the planar waveguide
(allowed by the structure1, see Appendix) travelling from infinity (or from
a point source in the plane of the planar waveguide) is deformed when meeting
the localized irregularity (optical inhomogeneity). However, it preserves the
structure of a ‘transverse resonance’, i.e., the structure of a standing wave
in the ‘transverse’ (vertical) direction. Gorelyshev, Neishtadt et al. [20], [21]
formulate this conditions as conservation of an adiabatic invariant.
After passing the irregularity region, the deformed “adiabatically invariant”

guided (quasi)mode restores the initial (vertical) parameters of a normal mode
of a regular waveguide (or transforms into a superposition of normal modes).
For convenience, let us define the Cartesian coordinate system so that all

spatial subdomains corresponding to infinite dielectric layers be bounded by
planes parallel to the 𝑦𝑂𝑧-plane and surfaces asymptotically parallel to the
𝑦𝑂𝑧-plane, so that hereafter 𝜀 = 𝜀(𝑥), 𝜇 = 1.
We will call smoothly irregular the optical structures satisfying the inequal-

ities specified by the geometry of the additional waveguide layer:

∣𝜕ℎ
𝜕𝑦

∣ , ∣𝜕ℎ
𝜕𝑧

∣ ≪ 1.

In weakly inhomogeneous 3D media the electromagnetic radiation prop-
agation is described by locally planar waves or adiabatic approximations
to the solutions of the Maxwell’s equations, obtained using the asymptotic
method [22]. By analogy with locally plane and locally spherical 3D waves [22],

1From the theory of planar regular waveguides [15]–[19] it is known that an electromagnetic

wave propagates through a regular waveguide in the form of a normal guided mode.
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[23], we seek the guided propagation of electromagnetic monochromatic po-
larized radiation in a smoothly irregular integrated optical waveguide in the
form of modified locally normal guided modes of reference waveguides1.
The adiabatic approximation of the solution of Maxwell’s equation obtained

in this way will preserve the adiabatic invariants that reflect the guided
character of light propagation (the so called transverse resonance condition [15],
[26].
This work is devoted to the search for a model of adiabatic guided prop-

agation of monochromatic electromagnetic radiation in smoothly irregular
integrated optical structures. The technique for finding it is based on an as-
ymptotic approach in the form of locally normal guided modes of a locally
planar reference waveguide. The adiabatic approximation of the solution of
Maxwell’s equations obtained in this way will preserve adiabatic invariants
reflecting the waveguide nature (the so-called transverse resonance condition)
of light propagation.

4. Basic equations of the adiabatic guided mode model

Let us recall the earlier assumptions made for the considered integrated
optical waveguides and the electromagnetic radiation propagating along them.

1. Electromagnetic radiation is optical and monochromatic with a fixed
wavelength 𝜆 ∈ [380; 780], nm.

2. The thickness of the guiding layer (core) of the base thin-film waveg-
uide is comparable to the length of the propagating monochromatic
electromagnetic radiation 𝑑 ∼ 𝜆.

3. The surface of additional waveguide layer (𝑥 = ℎ(𝑦, 𝑧)) satisfies the

limiting conditions ∣𝜕ℎ
𝜕𝑦

∣ , ∣𝜕ℎ
𝜕𝑧

∣ ≪ 1.
4. The integrated optical waveguide is a material medium consisting of
dielectric subdomains that fill the entire space.

5. The permittivities of the subdomains are different and real, and the
permeability is everywhere equal to the magnetic permeability of vacuum.

6. There are no external currents and charges. It follows from this that in
the absence of external currents and charges, the induced currents and
charges are equal to zero.

7. A Cartesian coordinate system is introduced as follows: the interfaces
between the dielectric media of the basic three-layer waveguide are parallel
to the 𝑦𝑂𝑧-plane. In this case, the subdomains of space corresponding
to the cladding and substrate layers are semi-infinite, the additional
waveguide layers are asymptotically parallel to the 𝑦𝑂𝑧-plane, so that
𝜀 = 𝜀(𝑥).

In Cartesian coordinates associated with the geometry of the substrate (or
a three-layer planar dielectric waveguide), Maxwell’s equations are written in
the form

1The notion of reference waveguides (dielectric planar) is presented in papers by Kat-

senelenbaum and Shevchenko [7], [8], [24], [25].
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𝜕𝐻𝑧
𝜕𝑦

−
𝜕𝐻𝑦

𝜕𝑧
= 𝜀

𝑐
𝜕𝐸𝑥
𝜕𝑡

, 𝜕𝐸𝑧
𝜕𝑦

−
𝜕𝐸𝑦

𝜕𝑧
= −𝜇

𝑐
𝜕𝐻𝑥
𝜕𝑡

,

𝜕𝐻𝑥
𝜕𝑧

− 𝜕𝐻𝑧
𝜕𝑥

= 𝜀
𝑐

𝜕𝐸𝑦

𝜕𝑡
, 𝜕𝐸𝑥

𝜕𝑧
− 𝜕𝐸𝑧

𝜕𝑥
= −𝜇

𝑐
𝜕𝐻𝑦

𝜕𝑡
,

𝜕𝐻𝑦

𝜕𝑥
− 𝜕𝐻𝑥

𝜕𝑦
= 𝜀

𝑐
𝜕𝐸𝑧
𝜕𝑡

,
𝜕𝐸𝑦

𝜕𝑥
− 𝜕𝐸𝑥

𝜕𝑦
= −𝜇

𝑐
𝜕𝐻𝑧
𝜕𝑡

.

(4)

To construct the model of adiabatic guided modes (AGMs) we represent the
solutions of (4) in the form of locally normal guided modes of a locally planar
reference waveguide (see [7], [8], [27]), which in the method of asymptotic
expansion take the form

⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑠=0

⃗𝐸𝑠(𝑥, 𝑦, 𝑧)
(−𝑖𝜔)𝛾+𝑠 exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} , (5)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡) =
∞

∑
𝑠=0

�⃗�𝑠(𝑥, 𝑦, 𝑧)
(−𝑖𝜔)𝛾+𝑠 exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)} . (6)

In the notation ⃗𝐸𝑠(𝑥, 𝑦, 𝑧, 𝑡), �⃗�𝑠(𝑥, 𝑦, 𝑧, 𝑡) the separation of 𝑥 with a semi-
colon means the following assumption

∥𝜕 ⃗𝐸𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑦

∥ , ∥𝜕 ⃗𝐸𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑧

∥ ∼ 1
𝜔

∥𝜕 ⃗𝐸𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑥

∥ , 𝑗 = 𝑥, 𝑦, 𝑧 (7)

and

∥𝜕�⃗�𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑦

∥ , ∥𝜕�⃗�𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑧

∥ ∼ 1
𝜔

∥𝜕�⃗�𝑠(𝑥, 𝑦, 𝑧)
𝜕𝑥

∥ , 𝑗 = 𝑥, 𝑦, 𝑧, (8)

where ‖ ‖ is the Euclidean norm and 𝜔 is the circular frequency of the
propagating monochromatic electromagnetic radiation.

Using the approach of the asymptotic expansion method with respect to
the dimensional small parameter 𝜔−1 [23], [28], [29], we substitute expres-
sions (5), (6) into the system of equations (4) and equate the coefficients at

equal powers of the small parameter 𝜔−1. As a result, with the relations (7)
and (8) taken into account, in the zero approximation of the method of as-
ymptotic expansion with respect to small parameter we arrive at a system of
homogeneous equations:

−𝑖𝑘0
𝜕𝜑
𝜕𝑦

𝐻𝑧
0 + 𝑖𝑘0

𝜕𝜑
𝜕𝑧

𝐻𝑦
0 = 𝑖𝑘0𝜀𝐸𝑥

0 , (9)

−𝑖𝑘0
𝜕𝜑
𝜕𝑧

𝐻𝑥
0 − 𝜕𝐻𝑧

0
𝜕𝑥

= 𝑖𝑘0𝜀𝐸𝑦
0 , (10)
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𝜕𝐻𝑦
0

𝜕𝑥
+ 𝑖𝑘0

𝜕𝜑
𝜕𝑦

𝐻𝑥
0 = 𝑖𝑘0𝜀𝐸𝑧

0 , (11)

−𝑖𝑘0
𝜕𝜑
𝜕𝑦

𝐸𝑧
0 + 𝑖𝑘0

𝜕𝜑
𝜕𝑧

𝐸𝑦
0 = 𝑖𝑘0𝜇𝐻𝑥

0 , (12)

−𝑖𝑘0
𝜕𝜑
𝜕𝑧

𝐸𝑥
0 − 𝜕𝐸𝑧

0
𝜕𝑥

= 𝑖𝑘0𝜇𝐻𝑦
0 , (13)

𝜕𝐸𝑦
0

𝜕𝑥
+ 𝑖𝑘0

𝜕𝜑
𝜕𝑦

𝐸𝑥
0 = 𝑖𝑘0𝜇𝐻𝑧

0 . (14)

By means of simple transformations, we reduce it to the form of interest to
us. Namely, from the relation (12) we get the expression

𝐸𝑥
0 = −𝜕𝜑

𝜕𝑦
1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 ,

which we substitute into equations (13)–(14) that take the form

−𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0

𝜕𝜑
𝜕𝑧

(−𝜕𝜑
𝜕𝑦

1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 ) − 𝑖𝑘0𝜇𝐻𝑦

0 , (15)

𝜕𝐸𝑦
0

𝜕𝑥
= −𝑖𝑘0𝜇𝐻𝑧

0 − 𝑖𝑘0
𝜕𝜑
𝜕𝑦

(−𝜕𝜑
𝜕𝑦

1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 ) . (16)

From relation (9) we get the expression

𝐻𝑥
0 = 𝜕𝜑

𝜕𝑦
1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0 ,

and substitute it into equations (10)–(11), which take the form

−𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0𝜀𝐸𝑦

0 + 𝑖𝑘0
𝜕𝜑
𝜕𝑧

(𝜕𝜑
𝜕𝑦

1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0) , (17)

𝜕𝐻𝑦
0

𝜕𝑥
= 𝑖𝑘0𝜀𝐸𝑧

0 − 𝑖𝑘0
𝜕𝜑
𝜕𝑦

(𝜕𝜑
𝜕𝑦

1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0) . (18)

Ultimately, Maxwell’s equation reduced in the zero approximation to two
algebraic equations and four differential equations of the first order.

At any fixed values of (𝑦, 𝑧), equations (15)–(16), (17)–(18) take the form
of a system of ordinary differential equations of the first order. Hereinafter, we
deal with the zero approximation of the asymptotic expansion with respect to
the small parameter; therefore, the index of the order of smallness is omitted:

𝑑𝐻𝑧

𝑑𝑥
+ 𝑖𝑘0

𝜇
𝜕𝜑
𝜕𝑧

(𝜕𝜑
𝜕𝑦

𝐸𝑧 − 𝜕𝜑
𝜕𝑧

𝐸𝑦) + 𝑖𝑘0𝜀𝐸𝑦 = 0,

𝑑𝐻𝑦

𝑑𝑥
+ 𝑖𝑘0

𝜇
𝜕𝜑
𝜕𝑦

(𝜕𝜑
𝜕𝑦

𝐸𝑧 − 𝜕𝜑
𝜕𝑧

𝐸𝑦) − 𝑖𝑘0𝜀𝐸𝑧 = 0,
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𝑑𝐸𝑧

𝑑𝑥
+ 𝑖𝑘0

𝜀
𝜕𝜑
𝜕𝑧

(𝜕𝜑
𝜕𝑧

𝐻𝑦 − 𝜕𝜑
𝜕𝑦

𝐻𝑧) − 𝑖𝑘0𝜇𝐻𝑦 = 0,

𝑑𝐸𝑦

𝑑𝑥
+ 𝑖𝑘0

𝜀
𝜕𝜑
𝜕𝑦

(𝜕𝜑
𝜕𝑧

𝐻𝑦 − 𝜕𝜑
𝜕𝑦

𝐻𝑧) + 𝑖𝑘0𝜇𝐻𝑧 = 0.

In addition, for any fixed values of (𝑦, 𝑧) the algebraic equations are valid

𝐸𝑥
0 = 1

𝜀
(𝜕𝜑

𝜕𝑧
𝐻𝑦

0 − 𝜕𝜑
𝜕𝑦

𝐻𝑧
0) , 𝐻𝑥

0 = 1
𝜇

(𝜕𝜑
𝜕𝑦

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
𝐸𝑦

0) .

Remark 1. In the proposed form (5)–(6) of the desired solutions of

Maxwell’s equations the quantities
𝜕𝜑
𝜕𝑦

and
𝜕𝜑
𝜕𝑧

have the meaning of phase

constants of guided propagation of radiation in the directions 𝑂𝑦 and 𝑂𝑧 in
all layers of the waveguide simultaneously, i.e., they determine the effective
refractive index of the waveguide under study for the given adiabatic guided
mode:

(𝜕𝜑
𝜕𝑦

(𝑦, 𝑧))
2

+ (𝜕𝜑
𝜕𝑧

(𝑦, 𝑧))
2

= 𝑛2
eff(𝑦, 𝑧). (19)

From the analysis carried out, we conclude that with the accepted assump-
tions the zero approximation to the guided solution of Maxwell’s equations is
given by the following relations:

{
⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡)
} = {

⃗𝐸0(𝑥; 𝑦, 𝑧)
�⃗�0(𝑥; 𝑦, 𝑧)

} exp {𝑖𝜔𝑡 − 𝑖𝜑(𝑦, 𝑧)} ,

with

𝜀
𝜕𝐸𝑦

0
𝜕𝑥

= −𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐻𝑦
0 − 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐻𝑧

0 ,

𝜀𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 + 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐻𝑧
0 .

𝜇
𝜕𝐻𝑦

0
𝜕𝑥

= 𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐸𝑦
0 + 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐸𝑧

0 ,

𝜇𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 − 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐸𝑧
0 .

(20)

and

𝐸𝑥
0 = −𝜕𝜑

𝜕𝑦
1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 , 𝐻𝑥

0 = 𝜕𝜑
𝜕𝑦

1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0 (21)

as well as

(𝜕𝜑
𝜕𝑦

(𝑦, 𝑧))
2

+ (𝜕𝜑
𝜕𝑧

(𝑦, 𝑧))
2

= 𝑛2
eff(𝑦, 𝑧).
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For thin-film multilayer waveguide, consisting of optically homogeneous
layers, from (2) the conditions of the electromagnetic field matching at the
interfaces between the media follow:

�⃗� × ⃗𝐸− + �⃗� × ⃗𝐸+ = 0, (22)

�⃗� × �⃗�− + �⃗� × �⃗�+ = 0. (23)

From (3) the asymptotic conditions follow

𝐸0
𝑦 , 𝐸0

𝑧 , 𝐻0
𝑦 , 𝐻0

𝑧 −−−−→
𝑥→±∞

0. (24)

The system of equations (20), (24) for any fixed (𝑦, 𝑧) defines a problem of

finding eigenvalues (∇⃗𝜑)
2

𝑗
(𝑦, 𝑧) and eigenfunctions (𝐸𝑗

𝑦, 𝐸𝑗
𝑧, 𝐻𝑗

𝑦, 𝐻𝑗
𝑧)𝑇(𝑦, 𝑧),

normalized to unity:

∞

∫
−∞

∣𝐸𝑗
𝑦∣

2
𝑑𝑥 = 1,

∞

∫
−∞

∣𝐻𝑗
𝑦∣

2
𝑑𝑥 = 1.

5. Algebraic model of adiabatic guided modes

In the case of a multilayer integrated optical waveguide consisting of
homogeneous dielectric layers (possible, with complex permittivities) the
relations (20), (22)–(24) are valid with generally non-horizontal interfaces
between the layers (see Figure 2).

Figure 2. Structure of a multilayer thin-film waveguide
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In this case, in each inner layer the four-dimensional system of ordinary
differential equations with constant coefficients has a four-parameter system
of fundamental solutions. Then the general solutions of equations (20) in the
layers take the form

⃗𝑈(𝑥; 𝑦, 𝑧) = 𝐶1
⃗𝜉1𝑒𝛾+𝑥 + 𝐶2

⃗𝜉2𝑒𝛾−𝑥 + 𝐶3
⃗𝜉3𝑒𝛾+𝑥 + 𝐶4

⃗𝜉4𝑒𝛾−𝑥,

𝐸𝑦(𝑥) =
−𝐼(𝐴2 − 𝐴4)√−𝜇𝜀 + 𝜕𝜑2

𝜕𝑦 + 𝜕𝜑2

𝜕𝑧 𝜇 exp{−𝑘0√𝜕𝜑2

𝜕𝑦 + 𝜕𝜑2

𝜕𝑧 − 𝜇𝜀𝑥}
𝜕𝜑
𝜕𝑦

𝜕𝜑
𝜕𝑧

−

−
exp{𝑘0√𝜕𝜑2

𝜕𝑦 + 𝜕𝜑2

𝜕𝑧 − 𝜇𝜀𝑥} (𝐴1 + 𝐴3) (𝜇𝜀 − 𝜕𝜑2

𝜕𝑦 )
𝜕𝜑
𝜕𝑦

𝜕𝜑
𝜕𝑧

,

𝐻𝑧(𝑥) =
−(𝐴2 + 𝐴4) (𝜇𝜀 − 𝜕𝜑2

𝜕𝑧 ) exp{−𝑘0√𝜕𝜑2

𝜕𝑦 + 𝜕𝜑2

𝜕𝑧 − 𝜇𝜀𝑥}
𝜕𝜑
𝜕𝑦

𝜕𝜑
𝜕𝑧

−

−
𝐼(𝐴1 − 𝐴4)𝜀 exp{𝑘0√𝜕𝜑2

𝜕𝑦 + 𝜕𝜑2

𝜕𝑧 − 𝜇𝜀𝑥} √𝜕𝜑2

𝜕𝑦
𝜕𝜑2

𝜕𝑧 − 𝜇𝜀
𝜕𝜑
𝜕𝑦

𝜕𝜑
𝜕𝑧

,

𝐻𝑦(𝑥) = (𝐴2 + 𝐴4) exp{−𝑘0√𝜕𝜑2

𝜕𝑦
+ 𝜕𝜑2

𝜕𝑧
− 𝜇𝜀𝑥} ,

𝐸𝑧(𝑥) = (𝐴1 + 𝐴3) exp{𝑘0√𝜕𝜑2

𝜕𝑦
+ 𝜕𝜑2

𝜕𝑧
− 𝜇𝜀𝑥} ,

where
�⃗� = (𝐻𝑧(𝑥; 𝑦, 𝑧); 𝐸𝑧(𝑥; 𝑦, 𝑧); 𝐻𝑦(𝑥; 𝑦, 𝑧); 𝐸𝑦(𝑥; 𝑦, 𝑧))𝑇

and 𝛾± = ±𝑘0√−𝜀𝜇 + 𝜑2
𝑦 + 𝜑2

𝑧.

The rest components of the electromagnetic field are calculated using
formulas (21), and all the six components enter the explicit form of rela-
tions (22), (23).
In the substrate and cladding layers due to asymptotic conditions the

two-dimensional systems of ordinary differential equations with constant
coefficients have two-parametric systems of fundamental solutions.
The solution unique for all layers satisfies the matching conditions at the

interfaces between the layers, i.e., determines a system of linear algebraic
equations for indefinite coefficients, which specify the expression of particular
solutions in the layers in terms of the systems of fundamental solutions.
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At an arbitrary smooth interface between two dielectric media, described
by the equation 𝐹(𝑥, 𝑦, 𝑧) = 𝑥 − ℎ(𝑦, 𝑧) = 0 (see Figure 3), conditions (22)
and (23) take the form

[�⃗� × ⃗𝐸] = (𝐸𝑦
𝜕ℎ
𝜕𝑧

− 𝐸𝑧
𝜕ℎ
𝜕𝑦

; −𝐸𝑧 − 𝐸𝑥
𝜕ℎ
𝜕𝑧

; 𝐸𝑦 − 𝐸𝑥
𝜕ℎ
𝜕𝑦

)
𝑇

, (25)

[�⃗� × �⃗�] = (𝐻𝑦
𝜕ℎ
𝜕𝑧

− 𝐻𝑧
𝜕ℎ
𝜕𝑦

; −𝐻𝑧 − 𝐻𝑥
𝜕ℎ
𝜕𝑧

; 𝐻𝑦 − 𝐻𝑥
𝜕ℎ
𝜕𝑦

)
𝑇

. (26)

Figure 3. Equation of a normal to the interface between the layers

In the expressions (25) and (26) the denominator √1 + (𝜕ℎ
𝜕𝑦 )

2
+ (𝜕ℎ

𝜕𝑧 )2
in

the expressions for the normal was omitted, since it is nonzero and coincides
in both sides of equations (25), (26). It is worth noting that only two of three
components of the obtained vectors (25) and (26) are linearly independent.
Therefore, for writing the boundary conditions we will use the following
expressions:

(𝐴1
𝑧 + 𝐴1

𝑥
𝜕ℎ
𝜕𝑧

)∣
𝑥=ℎ(𝑦,𝑧)

= (𝐴2
𝑧 + 𝐴2

𝑥
𝜕ℎ
𝜕𝑧

)∣
𝑥=ℎ(𝑦,𝑧)

,

(𝐴1
𝑦 − 𝐴1

𝑥
𝜕ℎ
𝜕𝑦

)∣
𝑥=ℎ(𝑦,𝑧)

= (𝐴2
𝑦 − 𝐴2

𝑥
𝜕ℎ
𝜕𝑦

)∣
𝑥=ℎ(𝑦,𝑧)

,

where ⃗𝐴 = { ⃗𝐸, �⃗�}. Moreover, for a planar boundary 𝐹(𝑥, 𝑦, 𝑧) = 𝑥 – const
the above expressions simplify to the following form:

𝐴1
𝑦∣

𝑥=const
= 𝐴2

𝑦∣
𝑥=const

, 𝐴1
𝑧∣

𝑥=const
= 𝐴2

𝑧∣
𝑥=const

.

The above relations should be completed with the asymptotic condition (24).
Thus, in each inner layer of a 𝑘-layer waveguide the four-dimensional

general solution is parametrized by four indefinite coefficients, in the substrate
and cladding layers at the expense of asymptotic conditions the number of
coefficients is reduced by two in each layer. Therefore, there is a total of
4(𝑘 − 2) + 2 + 2 = 4(𝑘 − 1) coefficients. To each of (𝑘 − 1) interfaces four
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equations correspond, making the total of 4(𝑘 − 1). Thus, we have 4(𝑘 − 1)
linear homogeneous algebraic equations for 4(𝑘 − 1) unknown coefficients.
Returning to the calculation of the electromagnetic field in the multilayer

waveguide, we seek a nontrivial solution to the homogeneous system of linear
algebraic equations with respect to the coefficient of expansion over the
fundamental system of solutions in each dielectric layer:

𝑀 (ℎ(𝑦, 𝑧), ∇ℎ(𝑦, 𝑧), 𝜑(𝑦, 𝑧), ∇𝜑(𝑦, 𝑧)) ⃗𝐴 = ⃗0. (27)

To find nontrivial fields ⃗𝐸, �⃗� at an arbitrary point (𝑦, 𝑧) the condition of
solvability should be satisfied for the system of homogeneous linear algebraic
equations

det (𝑀 (ℎ(𝑦, 𝑧), ∇ℎ(𝑦, 𝑧), 𝜑(𝑦, 𝑧), ∇𝜑(𝑦, 𝑧))) = 0. (28)

Thus the system of homogeneous linear algebraic equations (27), nontrivially
solvable under the condition (28), is an algebraic model of adiabatic guided
modes in a smoothly irregular multilayer integrated optical waveguide. The
roots of equation (28) are a set of eigenvalues and the solution of the system of
equations (27) after substitution of each particular root is the corresponding

eigenvector normalized by the condition ∥ ⃗𝐴∥ = 1.

6. Results

Thus, in the course of several stages of sequential reduction, we have
formulated a number of problems of modeling the adiabatic guided modes in
a smoothly irregular integrated optical multilayer waveguide.

Problem 1. The problem of finding eigenvalues and eigenfunctions within
the AGM model

{
⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡)
} = {

⃗𝐸0(𝑥; 𝑦, 𝑧)
�⃗�0(𝑥; 𝑦, 𝑧)

} exp {𝑖𝜔𝑡 − 𝑖𝜑(𝑦, 𝑧)} , (29)

is formulated as follows:

𝜀
𝜕𝐸𝑦

0
𝜕𝑥

= −𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐻𝑦
0 − 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐻𝑧

0 ,

𝜀𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 + 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐻𝑧
0 .

(30)

𝜇
𝜕𝐻𝑦

0
𝜕𝑥

= 𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐸𝑦
0 + 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐸𝑧

0 ,

𝜇𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 − 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐸𝑧
0 .

(31)
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Eigenfunctions (𝐸0
𝑦 , 𝐸0

𝑧 , 𝐻0
𝑦 , 𝐻0

𝑧 )𝑇
𝑗

(𝑥; (∇𝜑)2
𝑗 ) correspond to eigenvalues

(∇𝜑)2
𝑗 .

The accompanying components of the electromagnetic field are calculated by
the formulas:

𝐸𝑥
0 = −𝜕𝜑

𝜕𝑦
1
𝜀

𝐻𝑧
0 + 𝜕𝜑

𝜕𝑧
1
𝜀

𝐻𝑦
0 , 𝐻𝑥

0 = 𝜕𝜑
𝜕𝑦

1
𝜇

𝐸𝑧
0 − 𝜕𝜑

𝜕𝑧
1
𝜇

𝐸𝑦
0 . (32)

Problem 2. The problem of finding eigenvalues of eigenfunctions within the
AGM model

{
⃗𝐸(𝑥, 𝑦, 𝑧, 𝑡)

�⃗�(𝑥, 𝑦, 𝑧, 𝑡)
} = {

⃗𝐸0(𝑥; 𝑦, 𝑧)
�⃗�0(𝑥; 𝑦, 𝑧)

} exp {𝑖𝜔𝑡 − 𝑖𝜑(𝑦, 𝑧)} ,

is formulated as follows:

𝜕2𝐸𝑦
0

𝜕𝑥2 + 𝑘2
0 (𝜀𝜇 − (∇𝜑)2) 𝐸𝑦

0 = 0,
𝜕2𝐻𝑦

0
𝜕𝑥2 + 𝑘2

0 (𝜀𝜇 − (∇𝜑)2) 𝐻𝑦
0 = 0. (33)

Eigenfunctions (𝐸0
𝑦 , 𝐻0

𝑦 , )𝑇
𝑗

(𝑥; (∇𝜑)2
𝑗 ) correspond to eigenvalues (∇𝜑)2

𝑗 .

The accompanying components of the electromagnetic field are calculated by
the formulas

𝜀
𝜕𝐸𝑦

0
𝜕𝑥

= −𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐻𝑦
0 − 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐻𝑧

0 ,

𝜀𝜕𝐸𝑧
0

𝜕𝑥
= 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐻𝑦

0 + 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐻𝑧
0 .

𝜇
𝜕𝐻𝑦

0
𝜕𝑥

= 𝑖𝑘0 (𝜕𝜑
𝜕𝑦

) (𝜕𝜑
𝜕𝑧

) 𝐸𝑦
0 + 𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑦
)

2
) 𝐸𝑧

0 ,

𝜇𝜕𝐻𝑧
0

𝜕𝑥
= −𝑖𝑘0 (𝜀𝜇 − (𝜕𝜑

𝜕𝑧
)

2
) 𝐸𝑦

0 − 𝑖𝑘0 (𝜕𝜑
𝜕𝑧

) (𝜕𝜑
𝜕𝑦

) 𝐸𝑧
0 .

(34)

Problem 3. Following the ideology of the cross section method, the steady-
state regime of guided propagation of electromagnetic radiation within the

frameworks of the AGM model, i.e., the solution of Maxwell’s equations 𝑟𝑜𝑡�⃗� =
𝑖𝑘𝜀 ⃗𝐸, 𝑟𝑜𝑡 ⃗𝐸 = −𝑖𝑘𝜇�⃗� with asymptotic conditions ( ⃗𝐸, �⃗�)

𝑇
(𝑥) −−−−→

𝑥→±∞
⃗0 is

sought in the form of a sum

( ⃗𝐸, �⃗�)
𝑇

(𝑥, 𝑦, 𝑧) = ∑
𝑗

𝐶 ⃗𝛽𝑗
(𝑦, 𝑧) ( ⃗𝐸, �⃗�)

𝑇
(𝑥, ⃗𝛽𝑗),
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where ( ⃗𝐸, �⃗�)
𝑇

(𝑥, ⃗𝛽𝑗) are solutions to the equations (30)–(31), (32) with

additional condition:

∇⃗ ( ⃗𝐸, �⃗�)
𝑇

(𝑥, 𝑦, 𝑧) = − ∑
𝑗

𝑖𝛽𝑗𝐶 ⃗𝛽𝑗
(𝑦, 𝑧) ( ⃗𝐸, �⃗�)

𝑇
(𝑥, ⃗𝛽𝑗),

where ⃗𝛽(𝑦, 𝑧) = ∇⃗𝜑(𝑦, 𝑧).

Problem 4. Following the ideology of the method of cross sections, the
steady-state regime of guided propagation of electromagnetic radiation within
the frameworks of the AGM model, i.e., the solution of Maxwell’s equa-

tions 𝑟𝑜𝑡(𝑟𝑜𝑡�⃗�) = 𝑘2
0𝜀𝜇 ⃗𝐸, 𝑟𝑜𝑡(𝑟𝑜𝑡 ⃗𝐸) = 𝑘2

0𝜀𝜇�⃗� with asymptotic conditions

( ⃗𝐸, �⃗�)
𝑇

(𝑥) −−−−→
𝑥→±∞

⃗0 is sought in the form of a sum

( ⃗𝐸, �⃗�)
𝑇

(𝑥, 𝑦, 𝑧) = ∑
𝑗

𝐶 ⃗𝛽𝑗
(𝑦, 𝑧) ( ⃗𝐸, �⃗�)

𝑇
(𝑥, ⃗𝛽𝑗),

where ( ⃗𝐸, �⃗�)
𝑇

(𝑥, ⃗𝛽𝑗) are solutions to the equations (33), (34) with additional

condition:

∇⃗ ( ⃗𝐸, �⃗�)
𝑇

(𝑥, 𝑦, 𝑧) = − ∑
𝑗

𝑖𝛽𝑗𝐶 ⃗𝛽𝑗
(𝑦, 𝑧) ( ⃗𝐸, �⃗�)

𝑇
(𝑥, ⃗𝛽𝑗),

where ⃗𝛽(𝑦, 𝑧) = ∇⃗𝜑(𝑦, 𝑧).

The single-mode regime is specified by ansatz

( ⃗𝐸, �⃗�)
𝑇

𝑗
(𝑥, 𝑦, 𝑧) = 𝐶 ⃗𝛽𝑗

(𝑦, 𝑧) ( ⃗𝐸, �⃗�)
𝑇

(𝑥, ⃗𝛽𝑗)

with the additional condition

∇⃗ ( ⃗𝐸, �⃗�)
𝑇

𝑗
(𝑥, 𝑦, 𝑧) = −𝑖 ⃗𝛽𝑗𝐶 ⃗𝛽𝑗

(𝑦, 𝑧) ( ⃗𝐸, �⃗�)
𝑇

(𝑥, ⃗𝛽𝑗),

where ⃗𝛽(𝑦, 𝑧) = ∇⃗𝜑(𝑦, 𝑧).

Remark 2. Similar to the method of cross sections [24], [25], [30], the
solution of the last equation has the form

𝐶 ⃗𝛽2
𝑗
(𝑦, 𝑧) = 1

𝛽(𝑦, 𝑧)
exp

⎧{
⎨{⎩

𝑖𝑘0

𝑦,𝑧

∫
𝑦0,𝑧0

(𝛽𝑦(𝑦, 𝑧)𝑑𝑦 + 𝛽𝑧(𝑦, 𝑧)𝑑𝑧)
⎫}
⎬}⎭

,

which together with relations (29), (30)–(31), (32) concludes the description
of the adiabatic character of the model under consideration.
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7. Conclusion

The development of methods for the rigorous and approximate analysis of
smoothly irregular integrated optical waveguides requires the development
of new mathematical models of the corresponding objects, as well as the
use of new methods for studying the problems arising in this case. The
fundamental problem of electrodynamics of smoothly irregular waveguide
three-dimensional (3D) structures is the development of stable methods and
algorithms for solving the corresponding Maxwell’s equations.
The paper considers an approach to the formulation of the problem of prop-

agation of electromagnetic radiation in integrated optical smoothly irregular
waveguide structures. Traditionally, similar problems are formulated based
on Maxwell’s equations. In this paper, only monochromatic radiation is con-
sidered, which is reflected in the dependence of solution on the frequency
of propagating radiation. This type of time dependence of the solution al-
lows considering a steady-state electrodynamic problem for electromagnetic
radiation.
The problem of finding the eigenvectors (guided modes) and eigenvalues is

considered using the model of adiabatic guided modes in the framework of the
zero approximation of the asymptotic expansion for a planar regular three-
layer optical waveguide. Considering that the permittivity and permeability
are piecewise constant functions, the problem is solved in each subdomain
with constant values of 𝜀, 𝜇 with subsequent matching of solutions at the
interfaces between the dielectric media. In each layer 𝜀, 𝜇 have constant values,
and the construction of the entire fields ⃗𝐸, �⃗� requires setting and solving the
problem of finding 𝜑(𝑦, 𝑧).
The paper considers a class of smoothly irregular integrated-optical multi-

layer waveguides, the properties of which determine the characteristic features
of waveguide propagation of monochromatic polarized light in them. An as-
ymptotic approach to the description of this type of electromagnetic radiation
is proposed, reducing the solutions of the system of Maxwell’s equations to
a form, which is expressed in terms of the solutions of a system of four ordi-
nary differential equations and two algebraic equations for six components of
the electromagnetic field in the zero approximation.
The multilayer structure of waveguides allows one more stage of reducing the

model to a homogeneous system of linear algebraic equations, the nontrivial
solvability condition of which specifies the relationship between the gradient
of the phase front of radiation and the gradients of interfaces between thin
homogeneous layers.
In the final part of the work, eigenvalues and eigenvector problems (differ-

ential and algebraic) describing adiabatic guided modes are formulated. The
problem of describing the single-mode propagation of adiabatic guided modes
is also formulated with emphasis on the adiabatic nature of the described
approximate solution of Maxwell’s equations.
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Appendix. Normal modes of a regular planar optical
waveguide

“Plane” guided modes

The monographic literature [15]–[19] widely describes normal modes of a reg-
ular planar dielectric waveguide propagating along the axis 𝑂𝑧 from −∞
to ∞ (and/or back). In the vertical direction (along the 𝑂𝑥 axis) they
have the structure of standing waves, while in the horizontal direction along
the waveguide they are travelling waves and are considered (not quite cor-
rectly) steady-state (‘invariant’) in the direction transverse with respect to
the propagation direction (along the axis 𝑂𝑦).
The vertical distribution of the electromagnetic field of a 𝑇 𝐸mode expressed

in terms of the ‘leading’ transverse component of the electric field 𝐸𝑦 is given
by the equation

𝑑2𝐸𝑦

𝑑𝑥2 (𝑥) + (𝜀𝜇 − 𝛽2)𝐸𝑦(𝑥) = 0. (35)

Two other components of the electromagnetic field of the 𝑇 𝐸 mode are
expressed in terms of the leading one by the formulas

𝐻𝑥 = −𝛽
𝜇

𝐸𝑦, 𝐻𝑧 = 1
𝑖𝑘0𝜇

𝑑𝐸𝑦

𝑑𝑥
. (36)

These three relations can be derived from Maxwell’s equations in the
form (4).

For 𝑇 𝑀 modes analogous relations that follow from Maxwell’s equations
have the form

𝜀 𝑑
𝑑𝑥

(1
𝜀

𝑑𝐻𝑦

𝑑𝑥
) (𝑥) + (𝜀𝜇 − 𝛽2) 𝐻𝑦(𝑥) = 0, (37)

𝐸𝑥 = 𝛽
𝜀

𝐻𝑦, 𝐸𝑧 = − 1
𝑖𝑘0𝜀

𝑑𝐻𝑦

𝑑𝑥
. (38)

Equations (35) and (37) in multilayer waveguides composed of uniform reg-
ular dielectric layers, in each subdomain of the real axis (at the intersection
of each layer with the vertical axis) take the form of second-order linear or-
dinary differential equations with constant coefficients. Therefore, the most
common form of solutions to these equations is obtained using a fundamen-
tal system of solutions. Consequently, the distributions of the corresponding
leading components of the electromagnetic field are written in the form of ex-
pansions of general solutions in terms of (sin(𝜒𝑥), cos(𝜒𝑥)) or (exp {±𝑖(𝜒𝑥)})
and the expansion coefficients of the particular solution are determined from
the boundary conditions (22)–(23).

These solutions, in particular, can be obtained according to the following
algorithm.
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For guided 𝑇 𝐸 modes we get a homogeneous system of linear algebraic equa-
tions (SLAE) with matrix M⊥4

𝑇 𝐸(𝛽) with respect to variables 𝐴+
𝑠 , 𝐴+

1 , 𝐴+
1 , 𝐴−

𝑐

𝐴+
𝑠 exp{𝛾𝑗

𝑠𝑎1} = 𝐴+
1 exp{𝑖𝜒𝑗

1𝑎1} + 𝐴−
1 exp{−𝑖𝜒𝑗

1𝑎1} ,

𝛾𝑗
𝑠

𝑖𝑘0
𝐴+

𝑠 exp{𝛾𝑗
𝑠𝑎1} = 𝜒𝑗

1
𝑘0

(𝐴+
1 exp{𝑖𝜒𝑗

1𝑎1} − 𝐴−
1 exp{−𝑖𝜒𝑗

1𝑎1}) ,

𝐴+
1 exp{𝑖𝜒𝑗

1𝑎2} + 𝐴−
1 exp{−𝑖𝜒𝑗

1𝑎2} = 𝐴−
𝑐 exp{−𝛾𝑗

𝑐𝑎2} ,

𝜒𝑗
1

𝑘0
(𝐴+

1 exp{𝑖𝜒𝑗
1𝑎2} − 𝐴−

1 exp{−𝑖𝜒𝑗
1𝑎2}) = − 𝛾𝑗

𝑐

𝑖𝑘0
𝐴−

𝑐 exp{−𝛾𝑗
𝑐𝑎2} .

The homogeneous SLAE (�̂�𝐸) ⃗𝐴 = ⃗0 is nontrivially solvable if and only if
its determinant is zero,

det (�̂�𝐸) = 0. (39)

For guided 𝑇 𝑀 modes a system of homogeneous linear algebraic equations

is obtained with the matrix M⊥4
𝑇 𝑀(𝛽) for unknowns 𝐵+

𝑠 , 𝐵+
1 ,𝐵+

1 ,𝐵−
𝑐 , the

solutions of which yield the values of the unknown amplitude coefficients

𝐵+
𝑠 exp{𝛾𝑗

𝑠𝑎1} = 𝐵+
1 exp{𝑖𝜒𝑗

1𝑎1} + 𝐵−
1 exp{−𝑖𝜒𝑗

1𝑎1} ,

𝛾𝑗
𝑠

𝑖𝑘0𝜀𝑠
𝐵+

𝑠 exp{𝛾𝑗
𝑠𝑎1} = 𝜒𝑗

1
𝑘0𝜀1

(𝐵+
1 exp{𝑖𝜒𝑗

1𝑎1} − 𝐵−
1 exp{−𝑖𝜒𝑗

1𝑎1}) ,

𝐵+
1 exp{𝑖𝜒𝑗

1𝑎2} + 𝐵−
1 exp{−𝑖𝜒𝑗

1𝑎2} = 𝐵−
𝑐 exp{−𝛾𝑗

𝑐𝑎2} ,

𝜒𝑗
1

𝑘0𝜀1
(𝐵+

1 exp{𝑖𝜒𝑗
1𝑎2} − 𝐵−

1 exp{−𝑖𝜒𝑗
1𝑎2}) = − 𝛾𝑗

𝑐

𝑖𝑘0𝜀𝑐
𝐵−

𝑐 exp{−𝛾𝑗
𝑐𝑎2} .

The homogeneous SLAE (�̂�𝐻) �⃗� = ⃗0 is nontrivially solvable if its deter-
minant equals zero

det (�̂�𝐻) = 0. (40)

Here 𝐴 and 𝐵 are the coefficients of expansion of 𝑇 𝐸 and 𝑇 𝑀 modes in
terms of the fundamental system of solutions, respectively.

Equations (39) and (40) are equivalent to the dispersion relations in the
trigonometric form

𝜒𝑓𝑑 = arctg(𝛾𝑚
𝑐

𝜒𝑚
1

) + arctg(𝛾𝑚
𝑠

𝜒𝑚
1

) + 𝑚𝜋 (41)

for guided 𝑇 𝐸 modes and

𝜒𝑓𝑑 = arctg(𝜀1𝛾𝑚
𝑐

𝜀𝑐𝜒𝑚
1

) + arctg(𝜀1𝛾𝑚
𝑠

𝜀𝑠𝜒𝑚
1

) + 𝑚𝜋 (42)

for guided 𝑇 𝑀 modes.



A.L. Sevastianov, Asymptotic method for constructing a model… 269

If the expressions for the electromagnetic field strength are presented in
complex form with the described dependence on the rest coordinates and
time taken into account, i.e., in the form

(𝐸𝑦, 𝐻𝑥, 𝐻𝑧)𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝐴1, 𝐴2, 𝐴3)𝑇(𝑥, 𝑦, 𝑧) exp {𝑖𝜔𝑡 − 𝑖𝜀𝐸(𝑥, 𝑦, 𝑧)} ,

(𝐻𝑦, 𝐸𝑥, 𝐸𝑧)𝑇 (𝑥, 𝑦, 𝑧, 𝑡) = (𝐵1, 𝐵2, 𝐵3)𝑇(𝑥, 𝑦, 𝑧) exp {𝑖𝜔𝑡 − 𝑖𝜀𝐻(𝑥, 𝑦, 𝑧)}

with real-valued amplitude 𝐴(𝐵) and phase 𝜑𝐸(𝜑𝐻), then the phase remains
constant in time along 𝑥, defines a travelling wave along 𝑧, and is constant
along 𝑦. In other words, the phase front of the described solution to Maxwell’s
equations is “planar” (i.e., linear in the 𝑦𝑂𝑧-plane) and defines a “plane” ( i.e.,
linear in the 𝑦𝑂𝑧-plane) wave. There exist “forward” and “backward” waves
travelling in opposite directions along the 𝑧-axis. The can be identified with
the “plane” (in the 𝑦𝑂𝑧-plane) waves emitted by infinitely remote sources.

“Cylindrical” guided modes

Now let us proceed to the guided modes of a regular planar dielectric waveg-
uide, excited by a source linear along the 𝑂𝑥-axis and point-like in the
𝑦𝑂𝑧-plane, localized at the point (0, 𝑧0). The structure of the modes along
the 𝑂𝑥-axis completely coincides with that of “plane” guided and leaky 𝑇 𝐸
and 𝑇 𝑀 modes. Let us analyze the structure of cylindrical guided modes
propagating in the 𝑦𝑂𝑧-plane

(
⃗𝐸

�⃗�
) (𝑥, 𝑦, 𝑧, 𝑡) = (

⃗𝐸
�⃗�

)
𝐸,𝐻

𝛽

(𝑥) exp {𝑖𝜔𝑡 − 𝑖𝑘0𝛽𝑟} ,

where 𝑟2 = 𝑦2 + (𝑧 − 𝑧0)2; 𝑦 = 𝑟 sin 𝜃, 𝑧 = 𝑧0 + 𝑟 cos 𝜃. In the 𝑦𝑂𝑧-plane
circular fronts propagate from the origin of polar coordinates 𝑦 = 𝑟 sin 𝜃,
𝑧 = 𝑧0 + 𝑟 cos 𝜃.
Thus, in both cases the solutions for the normal modes are written as

(
⃗𝐸

�⃗�
) (𝑥, 𝑦, 𝑧, 𝑡) = (

⃗𝐸
�⃗�

)
𝐸,𝐻

𝛽

(𝑥)exp {𝑖𝜔𝑡 − 𝑖𝑘0𝜑(𝑦, 𝑧)}
√𝛽𝐸,𝐻

,

where:

— 𝜑(𝑦, 𝑧) = 𝛽𝑧 for the modes from an infinitely remote source and
— 𝜑(𝑦, 𝑧) = 𝛽√𝑦2 + (𝑧 − 𝑧0)2 for the modes from a localized source.
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Асимптотический метод построения модели
адиабатических волноводных мод

плавно-нерегулярных интегрально-оптических
волноводов

А. Л. Севастьянов

Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В работе рассмотрен класс плавно нерегулярных интегрально-оптических
многослойных волноводов, свойства которых определяют характерные черты
волноводного распространения в них монохроматического поляризованного
света. Предложен асимптотический подход к описанию данного вида элек-
тромагнитного излучения, в результате которого решения системы уравнений
Максвелла редуцируется к такому виду, который выражается через решения
системы четырёх обыкновенных дифференциальных уравнений и двух алгеб-
раических уравнений для шести компонент электромагнитного поля в нулевом
приближении. Градиент фазового фронта адиабатической волноводной моды
удовлетворяет уравнению эйконала относительно эффективного показателя
преломления волновода относительно данной моды.
Многослойная структура волноводов позволяет произвести ещё один этап

редукции системы уравнений модели к однородной системе линейных алгебраи-
ческих уравнений, условие нетривиальной разрешимости которой задаёт связь
градиента фазового фронта излучения с градиентами поверхностей раздела
между тонкими однородными слоями.
В завершающей части работы сформулированы задачи (дифференциальная

и алгебраическая) на собственные значения и собственные векторы для описа-
ния адиабатических волноводных мод. Приведена также формулировка задачи
описания одномодового режима распространения адиабатических волноводных
мод, подчёркивающая адиабатический характер описываемого приближенного
решения уравнений Максвелла.
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