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Abstract. The classical pseudospectral collocation method based on the expansion
of the solution in a basis of Chebyshev polynomials is considered. A new approach
to constructing systems of linear algebraic equations for solving ordinary differential
equations with variable coefficients and with initial (and/or boundary) conditions
makes possible a significant simplification of the structure of matrices, reducing
it to a diagonal form. The solution of the system is reduced to multiplying the
matrix of values of the Chebyshev polynomials on the selected collocation grid by
the vector of values of the function describing the given derivative at the collocation
points. The subsequent multiplication of the obtained vector by the two-diagonal
spectral matrix, ‘inverse’ with respect to the Chebyshev differentiation matrix, yields
all the expansion coefficients of the sought solution except for the first one. This
first coefficient is determined at the second stage based on a given initial (and/or
boundary) condition. The novelty of the approach is to first select a class (set) of
functions that satisfy the differential equation, using a stable and computationally
simple method of interpolation (collocation) of the derivative of the future solution.
Then the coefficients (except for the first one) of the expansion of the future solution
are determined in terms of the calculated expansion coefficients of the derivative
using the integration matrix. Finally, from this set of solutions only those that
correspond to the given initial conditions are selected.

Key words and phrases: initial value problems, pseudo spectral collocation method,
Chebyshev polynomials, Gauss–Lobatto sets, numerical stability

1. Introduction

Spectral methods are a class of methods used in applied mathematics and
scientific computing to solve many differential equations numerically [1]–
[4]. The main idea of the method is to represent the desired solution of
a differential equation as a sum of certain ‘basis functions’ [5] (e.g., as an
expansion into a sum in power functions — a Taylor series, or a sum of
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sinusoids, which is a Fourier series), and then calculate the coefficients in the
sum to satisfy the differential equation in the best possible way.

Spectral and finite element methods are closely related and are based on the
same ideas. The main difference between them is that spectral methods use
nonzero basis functions over the entire domain, while finite element methods
use nonzero basis functions only on small subdomains. In other words,
spectral methods use a global approach, while finite element methods use
a local approach. It is for this reason that spectral methods provide excellent
convergence, their ‘exponential convergence’ being the fastest possible when
the solution is smooth.

Spectral methods for the numerical solution of ordinary differential equa-
tions with given initial conditions are often reduced to solving a system of
linear algebraic equations (SLAE), which includes both the initial conditions
and conditions that ensure the fulfillment of differential relations [6]. How-
ever, a priori embedding of the initial (boundary) conditions into the system
of linear equations leads to a significant increase in the filling of the matri-
ces and, consequently, to the complication of the algorithm and method for
solving the problem [7].

A more interesting approach is to select a basis that automatically takes
into account the boundary conditions [1], [5], [6]. This is a frequently used
trick when formulating the SLAE of the initial problem, and it reduces to
taking into account the required initial/boundary conditions when creating
the basis (a set of good basis functions-orthogonal, etc.) in a natural way, i.e.,
a basis is selected in which each basis function satisfies the initial conditions.
The solution obtained using this approach is automatically sought in the class
of functions satisfying the initial conditions. However, in this case it becomes
much more difficult to work with new basis functions.

The novelty of the approach proposed by the authors is that first, a class
(set) of functions that satisfy the differential equation is selected using a stable
and computationally simple method of interpolation (collocation) of the
derivative of the future solution. Then the coefficients (except for some) of
the expansion of the future solution are determined in terms of the calculated
expansion coefficients of the derivative using the integration matrix. Only
after that, from this set of solutions those that correspond to the given initial
conditions are selected.

Here we propose to divide the main problem into independent subproblems
and to calculate the solution components in parts — separately those that
determine the behavior of the derivative of the solution, and separately those
that are determined by the boundary conditions. Thus, the problem is divided
into two independent subproblems, each allowing stable and simple solution.
The solution of the first problem in the simplest case is reduced to multiplying
the vector of the right-hand side by the matrix of the Chebyshev functions
values on the Gauss–Lobatto grid. At the next step, we solve the SLAE with
a diagonal positive definite matrix and, multiplying the resulting vector on
the left by the two-diagonal matrix, inverse (anti–derivative) with respect to
the spectral Chebyshev matrix of differentiation, we obtain all the expansion
coefficients of the desired solution, except for the first one. At the second,
‘most difficult’ stage, we determine the first coefficient of the expansion of the
solution in terms of basis polynomials, solving a linear algebraic equation of
the first order with respect to this coefficient.
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2. Numerical solution of ordinary differential equations

Exact solution of a trivial ordinary differential equation for a given initial
(boundary) condition

𝑦′ = 𝑓(𝑥), 𝑥 ⩾ 𝑥0, 𝑦(𝑥) = 𝑦0, (1)

the right–hand side of which is independent of 𝑦, can be presented in the form

𝑦0 + ∫𝑡
𝑡0

𝑓(𝜏)𝑑𝜏.
Since the numerical methods for integrating functions are well developed

from theoretical and practical points of view, it seems natural to apply them
to the numerical solution of ordinary differential equations of general form

𝑦′(𝑥) = 𝑓(𝑥, 𝑦(𝑥)), 𝑥 ⩾ 𝑥0, 𝑦(𝑥0) = 𝑦0, (2)

and this is exactly the fact that naturally explains the development and wide
use of the methods of the Runge–Kutta type.

Usually, the method implies obtaining the solution in the interval
[𝑥0, 𝑥0 + 𝑐𝑘ℎ]. The coefficients 0⩽𝑐1 < 𝑐2 < … < 𝑐𝑛⩽1 are chosen. Then, us-
ing the method of polynomial collocation, the solution is approximated by
a polynomial 𝑝 of the degree 𝑛, which satisfies two types of conditions

— the initial condition: 𝑝(𝑥0) = 𝑦0, and
— the differential equation, 𝑝′(𝑥𝑘) = 𝑓 (𝑥𝑘, 𝑝(𝑥𝑘)), at all the collocation

points [𝑥𝑘 = 𝑥0 + 𝑐𝑘ℎ], 𝑘 = 1, … , n.

Satisfying these (𝑛 + 1) conditions allows calculating (𝑛 + 1) coefficients of
the expansion of the sought polynomial 𝑝 of the degree 𝑛.

Thus, the collocation methods are actually implicit Runge–Kutta meth-
ods [8].

It is important to note that to solve the approximation problem, it is not
necessary to try solving Eq. (1) with simultaneous satisfaction of both the
initial condition and the differential equation at the collocation points. In
some cases, a fast and stable result can be achieved in two stages. First, to find
those coefficients of the sought solution expansion that satisfy the differential
equation at the collocation points. Then, to determine the deficient coefficients
of the sought function expansion using the initial (final or intermediate) value.

3. Approximation of derivative. Cauchy problem

First, consider the problem of determining (recovering) a function from
its derivative and some (one) additional condition. In this formulation, the
problem naturally splits into two sub-problems:

— polynomial interpolation of the derivative (calculating the coefficients of
the expansion of the derivative into a finite series in basis functions) and

— calculation of the coefficients of the required function by the initial
(boundary, etc.) condition and the coefficients of the derivative expansion.

Without loss of generality, we assume that the domain of definition of the
solution is the interval [−1, 1].
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Most often, the approximation of continuous functions is obtained by
discarding the terms of the Chebyshev series, the magnitude of which is
small [9], [10]. In contrast to the approximations obtained using other power
series, the approximation in Chebyshev polynomials (having the property of
being almost optimal) minimizes the number of terms required to approximate
a function by polynomials with a given accuracy. This is also related to the
property that the approximation based on the Chebyshev series turns out to
be close to the best uniform approximation (among polynomials of the same
degree), but easier to find. In addition, it allows avoiding the Gibbs effect
with a reasonable choice of interpolation points.

Let us consider in more detail the problem of finding the derivative of
the desired function, or rather the approximating polynomial 𝑝(𝑥), satisfy-
ing condition (1) at a given number of points in the interval [−1, 1]. The
pseudospectral (collocation) method [11] for solving the problem consists in
representing the desired approximating function in the form of an expansion
in a finite series in Chebyshev polynomials

𝑝(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥∈[−1, 1] (3)

using the basis of Chebyshev polynomials of the first kind {𝑇𝑘(𝑥)}∞
𝑘=0, defined

in the Hilbert space of functions on the segment [−1, 1].

Let us differentiate the function (3). The derivative is expressed as

𝑝′(𝑥) = 𝑑
𝑑𝑥

(
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥)) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇 ′
𝑘(𝑥) =

𝑛
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (4)

Using the recurrence relations, which are satisfied by the Chebyshev poly-
nomials of the first kind and their derivatives [3], [12] and equating the
coefficients at the same polynomials in (4), we come [3] to the following
dependence of the coefficients 𝑐𝑘 on 𝑏𝑘:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −1/2 0 … 0 0
0 1/4 0 −1/4 … 0 0
0 0 1/6 0 … 0 0
0 0 0 1/8 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1

2(𝑛 − 1)
0

0 0 0 0 … 0 1/(2𝑛)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
𝑏3
⋮

𝑏𝑛−2
𝑏𝑛−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐1
𝑐2
𝑐3
𝑐4
⋮

𝑐𝑛−1
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

That is, the vector calculation of the coefficients {𝑐1, 𝑐2, … , 𝑐𝑛} is the
result of multiplying a simple tridiagonal matrix by a vector and it can be
implemented by the following explicit formulas



K.P. Lovetskiy et al., Multistage pseudo-spectral method... 131

⎧{
⎨{⎩

𝑐1 = 𝑏0 − 𝑏2/2, 𝑘 = 1,
𝑐𝑘 = (𝑏𝑘−1 − 𝑏𝑘+1) /2𝑘, 𝑘 > 1, 𝑘 < 𝑛 − 1,
𝑐𝑘 = 𝑏𝑘−1/2𝑘, 𝑘 = 𝑛 − 1, 𝑛.

(6)

Thus, known the expansion coefficients 𝑏𝑘 of the function 𝑓(𝑥) of problem (1)
in Chebyshev polynomials of the first kind, we can recover the last 𝑁 expansion
coefficients of the sought function in the same basis functions by formulas
(2.1.3) from [3].

Therefore, the first part of the problem is to calculate the coefficients
{𝑏0, 𝑏1, … , 𝑏𝑛} of the representation of the right–hand side of (1) on the
interval [−1, 1]

𝑛−1
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥) = 𝑓(𝑥).

The collocation method consists in the selection of such coefficients
{𝑏0, 𝑏1, … , 𝑏𝑛} of the expansion of the interpolation polynomial 𝑝′(𝑥) that
the following equalities are satisfied for the desired coefficients 𝑏𝑘, 𝑘 =
0, 1, … , 𝑛 − 1.

𝑛−1
∑
𝑘=0

𝑏𝑘𝑇𝑘 (𝑥𝑗) = 𝑓 (𝑥𝑗) , 𝑗 = 0, … , 𝑛 − 1 (7)

at the collocation points {𝑥0, 𝑥1, … , 𝑥𝑛}.

The last statement is equivalent to the fact that the coefficients 𝑏𝑘, 𝑘 =
0, … , 𝑛 must be a solution to the system of linear algebraic equations (7) of
the collocation method. In matrix form, this can be written as

Tb = 𝑓. (8)

The choice of collocation points should ensure the nondegeneracy of the
system of Eqs. (7); for this it is sufficient that all grid points are different, and
otherwise their choice is arbitrary, that is, the solution of system (7) on an
arbitrary grid of the interval [−1, 1] determines the required approximation.
For an arbitrary grid, the matrix 𝑇 is completely filled and the solution of such
a system is rather laborious. To simplify the form of the matrix and speed
up the search for the vector 𝑏, we use the discrete orthogonality property
of the Chebyshev matrix 𝑇 on the Gauss–Lobatto grid. Consider the set
𝑥𝑗 = cos(j/𝑛), 𝑗 = 0, … , 𝑛 as collocation points. To further improve the

properties of the system of linear equations, the solution of which will be
the vector {𝑏0, 𝑏1, … , 𝑏𝑛}, we multiply the first and last equations (7) by the

factor 1/
√

2. We obtain an equivalent ‘modified’ system with a new matrix
̃𝑇 (instead of 𝑇) and a vector ̃𝑓 instead of 𝑓. The good thing about the new

system is that it has the property of discrete ‘orthogonality’ and multiplying

it on the left by the transposed ̃𝑇 𝑇 gives a diagonal matrix:
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̃𝑇 𝑇 ̃𝑇 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑛 0 0 … 0
0 𝑛/2 0 … 0
0 0 𝑛/2 … 0
… … … ⋱ …
0 0 0 … 𝑛

⎤
⎥
⎥
⎥
⎥
⎦

.

We transform system (8), multiplying it on the left by the transposed

matrix ̃𝑇 𝑇. As a result, we obtain a simple matrix equation with a diagonal
matrix to determine the required expansion coefficients {𝑏0, 𝑏1, … , 𝑏𝑛}:

⎡
⎢
⎢
⎢
⎢
⎣

𝑛 0 0 … 0
0 𝑛/2 0 … 0
0 0 𝑛/2 … 0
… … … ⋱ …
0 0 0 … 𝑛

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
…
𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎦

= ̃𝑇 𝑇

⎡
⎢
⎢
⎢
⎢
⎣

𝑓0/
√

2
𝑓1
𝑓2
…

𝑓𝑛/
√

2

⎤
⎥
⎥
⎥
⎥
⎦

. (9)

Denoting by ( ̃𝑓0, ̃𝑓1, … , ̃𝑓𝑛−1, ̃𝑓𝑛)
𝑇

the product of matrix ̃𝑇 𝑇 by vector

(𝑓0/
√

2, 𝑓1, … , 𝑓𝑛−1, 𝑓𝑛/
√

2)
𝑇

in the right–hand side of equation (9), we write

down the required expansion coefficients of the derivative of the solution –
the function 𝑓(𝑥) — in the explicit form

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

𝑏0 =
̃𝑓0

𝑛
,

𝑏1 = 2 ̃𝑓1
𝑛

,

𝑏2 = 2 ̃𝑓2
𝑛

,
…

𝑏𝑛 =
̃𝑓𝑛

𝑛
.

(10)

Consequently, relations (10), (6) uniquely determine the last n coefficients
{𝑐1, 𝑐2, … , 𝑐𝑛} of the expansion of the sought function 𝑝(𝑥), and to determine
one more coefficient 𝑐0 it is necessary to involve at least one more additional
condition. This can be both a boundary condition at the left or right end of
the interval of consideration of a function, or a condition for the passage of
the desired function through any given point within the interval of specifying
the function.

That is, the considered method makes it possible to solve, depending on
the type of the additional condition, both the Cauchy problem with initial
conditions and problems with boundary conditions of a general form, requiring,
for example, the use of the iterative shooting method [4].
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In the case when the boundary condition is specified at the left end of the
integration interval, the zero coefficient is determined from the equation

𝑐0 +
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘(−1) = 𝑦0 (11)

by the formula (taking into account that 𝑇𝑘(−1) = (−1)𝑘) for any Chebyshev
polynomial

𝑐0 = 𝑦0 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘(−1) = 𝑦0 −
𝑛

∑
𝑘=1

𝑐𝑘(−1)𝑘. (12)

If the additional ‘boundary’ condition is specified at an arbitrary point
of the integration interval, 𝑦𝑏 = 𝑦 (𝑥𝑏), 𝑥𝑏∈[−1, 1], then the coefficient 𝑐0 is
determined by the formula

𝑐0 = 𝑦𝑏 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘 (𝑥𝑏) . (13)

At the right–hand end of the integration interval 𝑦𝑟 = 𝑦(1), 𝑥𝑟 = 1, the
Chebyshev polynomials of any order take the value equal to 1 (𝑇𝑘(1) = 1).
Therefore, the coefficient 𝑐0 is determined by the formula

𝑐0 = 𝑦𝑟 −
𝑛

∑
𝑘=1

𝑐𝑘𝑇𝑘 (𝑥𝑟) = 𝑦𝑟 −
𝑛

∑
𝑘=1

𝑐𝑘. (14)

4. Examples with simplest differential equations

Reconstructing a function from its derivative and a boundary condition.
Comparison with the Runge–Kutta–Fehlberg method [13]

dy

dx
= 𝑓(𝑥), 𝑦(0) = 𝑦0, 𝑥∈[𝑎, 𝑏].

Let us compare the solutions obtained by the Runge–Kutta method (sub-
routine RKF45) and the solutions obtained as previously described.

Let us specify a grid in the interval [𝑎, 𝑏], calculated by the formula

𝑥𝑗 = 𝑏 − 𝑎
2

cos ( j

𝑁 − 1
) + 𝑏 + 𝑎

2
, 𝑗 = 0, 1, … , 𝑁 − 1,

and related to the chosen Gauss–Lobatto grid in the interval [−1, 1]. The
number of grid points equals 𝑁, i.e., to recover the function from the given
derivative and additional condition by our method, only 𝑁 calculations of
the function (the right–hand side) are needed, and the recalculation of these
values into the expansion coefficients in Chebyshev polynomials will require
only 2𝑁 divisions and 2𝑁 additions.

To solve the Cauchy problem by the Runge–Kutta–Fehlberg method, we
applied the RKF45 algorithm on each subinterval of the grid calculated above
on [𝑎, 𝑏].
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Algorithms are compared when looking for a solution to the simplest
problem

dy

dx
= cos(𝑥), 𝑦(0) = 0, 𝑥 ∈ [−𝜋, 𝜋].

The calculation carried out by the Runge–Kutta method with automatic
control of accuracy (not worse than 10−9) required about 800 calculations of
the function values over the entire interval.

For the two–stage method of separation of unknowns, the results of the
deviation of the calculated values from the exact ones at the grid points are
given in the table 1.

Table 1

Deviation of the calculated values from the exact ones

Number of grid points 11 13 15 30

Maximum deviation < 4 ⋅ 10−7 < 5 ⋅ 10−9 < 2 ⋅ 10−13 < 10−19

Consider a few more model examples of solving the Cauchy problem, i.e.,
recovering functions from given derivatives and an initial condition. Functions
from [14], in which the accuracy of calculating derivatives with the help
of Chebyshev matrices of differentiation in physical space, were studied as
model ones. The selected examples systematically illustrate the accuracy of
calculating derivatives as a function of the number of approximation points
(see the figure 1).

Four functions characterized by different smoothness are considered: |𝑥3|,
exp(−𝑥−2), 1/(1 + 𝑥2), and 𝑥10. The first function has the third derivative
of bounded variation, the second function is smooth, but not analytical, the
third one is analytical in the vicinity of [−1, 1], and the fourth function is
a polynomial. The accuracy of solutions obtained by us is by 1.5–3 orders of
magnitude better than Trefethen’s solutions [14] when using a similar number
of collocation points.

5. Discussion and conclusion

There are methods based mainly on the local approximation of the solution,
which primarily use the initial approximation (boundary conditions) when
solving differential equations. These are methods like Euler, Runge–Kutta
method, etc. Other methods based on the approximation of the solution
using global functions [global collocation methods — Mason, Boyd, Fornberg,
Iserles, Townsend] are based on the construction of such systems of equations
that simultaneously include both initial (boundary) conditions and conditions
specifying the behavior of the derivatives of the desired solution.

In our study (within the framework of the pseudospectral collocation
method), the problem is divided into two independent subproblems. The first
is to select a set of solutions that satisfies the differential equation. However,
it does not necessarily satisfy the initial (boundary) conditions. The choice
of suitable bases for representing the solution in the form of an expansion
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(a) 𝑢(𝑥) = ∣𝑥3∣ , 𝑢(−1) = 1 (b) 𝑢(𝑥) = exp (−𝑥−2) , 𝑢(−1) = 𝑒−1

(c) 𝑢(𝑥) = 1
1 + 𝑥2 , 𝑢 (−1) = 1

2 (d) 𝑢(𝑥) = 𝑥10, 𝑢(−1) = 1

Figure 1. The accuracy of derivative recovering for four functions with increasing

smoothness depending on the number of approximation points

in polynomials, e.g., Jacobi ones, and grids taking into account the discrete
orthogonality of the considered bases, makes it possible to use highly efficient
algorithms.

Perhaps, the most promising from the point of view of the application of
numerical methods is the use of a particular case of Jacobi polynomials —
Chebyshev polynomials, as specific basis functions [15]. The Chebyshev poly-
nomials provide an almost optimal approximation of the ODE solution, the
ease of calculating the Gauss–Lobatto grid for using the discrete orthogonal-
ity condition, and three-term relations determining the ease of constructing
differentiation and integration matrices of the sought solutions [16].

The initial (boundary) conditions are considered at the second stage of
solving the original problem, which is actually reduced to solving a linear
equation with one unknown coefficient.

The solution of the first problem is reduced to multiplying the matrix of
values of the Chebyshev functions on the Gauss–Lobatto grid by the vector of
values of the function that defines the right-hand side of the original differential
equation to determine the expansion coefficients of the solution derivative.
Further, the multiplication of the two-diagonal integration matrix [3] by the
vector of coefficients yields all the coefficients of the desired solution, except for
the first one. At the second stage, the use of the initial (boundary) condition
makes it possible to determine the first coefficient of the solution expansion.



136 DCM&ACS. 2022, 30 (2) 127–138

The approach based on dividing the problem of solving first–order ODEs
into two subproblems seems to be very promising. The authors will continue
to develop approaches and algorithms for the application of the multistage
pseudospectral method for solving initial and boundary value problems with
differential equations of higher orders.
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Многостадийный псевдоспектральный метод (метод
коллокаций) приближенного решения обыкновенного
дифференциального уравнения первого порядка
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Аннотация. Рассмотрен классический псевдоспектральный метод коллокации,
основанный на разложении решения по базису из полиномов Чебышева. Но-
вый подход к формированию систем линейных алгебраических уравнений для
решения обыкновенных дифференциальных уравнений с переменными коэффи-
циентами и с начальными (и/или граничными) условиями позволяет значительно
упростить структуру матриц, приводя её к диагональной форме. Решение систе-
мы сводится к умножению матрицы значений полиномов Чебышева на выбранной
сетке коллокации на вектор значений функции, описывающей заданную производ-
ную в точках коллокации. Следующее за этой операцией умножение полученного
вектора на двухдиагональную спектральную «обратную» по отношению к матри-
це дифференцирования Чебышева приводит к получению всех коэффициентов
разложения искомого решения за исключением первого. Этот первый коэффи-
циент определяется на втором этапе исходя из заданного начального (и/или
граничного) условия. Новизна подхода заключается в том, чтобы сначала вы-
делить класс (множество) функций, удовлетворяющих дифференциальному
уравнению, с помощью устойчивого и простого с вычислительной точки зре-
ния метода интерполяции (коллокации) производной будущего решения. Затем
рассчитать коэффициенты (кроме первого) разложения будущего решения по
вычисленным коэффициентам разложения производной с помощью матрицы ин-
тегрирования. И лишь после этого выделять из этого множества решений те,
которые соответствуют заданным начальным условиям.

Ключевые слова: начальные задачи, метод псевдоспектральных коллокаций,
многочлены Чебышева, множества Гаусса–Лобатто, численная устойчивость


