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An operational model of quantum measurements was presented befor. In order to obtain
constructive theoretical results from this model there is a need to define previously not
described properties of Wigner distribution functions. The report contains the proof of these
properties. Multidimensional generalization and relationships with different conventions of
the Fourier transform were described.
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1. Introduction

Most of the works on quantum mechanics describes fundamental researches and
update parameters of the many-particle systems. One of the important problems in
this domain is the quantum measurement problem. There are significant works made
by the experimenters like Braginskiy [1,2] and others. Significant contribution to
theoretical justification of the problem was made by Holevo [3], Helstrom [4], and by
others. This report does not contain the discussion of a philosophical aspect of the
problem.

The report is based on the operational model of a quantum-mechanical measure-
ment of observables [5-7]. Practical realization of the model is possible according to the
works of Kuryshkin [8] and Wodkiewicz [9]. According to this model, we can describe
qunatum measurement procedure as an interaction of a quantum object presented by
the Wigner distribution function [10] and the measurement instrument with the associ-
ated Wigner distribution function. Results of the quantum measurement is convolution
of this two functions - a positively defined functions corresponding to the physical pic-
ture of the world. This brings us to the formulation of the Kuryshkin-Wodkiewicz [7]
quantization rule. Formulation of this new quantization rule requires existence of some
previously unmentioned certain mathematical properties of the Wigner distribution
functions.

2. Properties of Wigner Distribution Functions Applied to
Quantum Mechanics

We define the Wigner distribution functions (WDF) in the form they were first
introduced in the original work of Wigner [10]. In the simplest case the wave function
in the coordinate representation of the physical system in configuration space with
only one degree of freedom can be described by the WDF

2ipg’

Ww(q,p)Z%/w*(Q+q’)s@(qfq’)6 nodq (1)
R

where ¢* (¢) — complex conjugated function of ¢ (¢). In case of generalization of the
formula (1) for the physical systems with n degrees of freedom we can define WDF as
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Ww(q,p)=(Fﬁ)*"/--./sO*(QHQQ+---+qn+q;)><

2i(py q1+ 4pnaj)

xelp—di+...+an—q,)e dg; ... dq,. (2)

We can introduce the WDF not only in the coordinate representation, but in the
momentum representation as well:

W, (q,p) = h/cp (p+p)e(p—p)e " dp (3)

It can be shown that the two definitions (1) and (3) are equivalent up to the
constant multiplier depending on the form of the Fourier transform.

Proposition 1. If the Fourier transform is defined in the form

w(p)I\/%/w(q)e’

then

Proof. We define the Wigner distribution function as follows:

(¢,p) h/so (¢+4q") q)e mdq, (6)

here )
e (q+4q) = f /95* (p)y e~ (a+d) hgyy, (7)
¢lqg—q) F / 3 (p) e (a=0) hgy, (8)

Let’s substitute equations (7) and (8) into the equation (6):

vetan= (g )

" (\/217 [owner @Dy g o)
s

After changing the order of integration in the equation (9):

= [ 07

x @ (p") e PP Ry gy (10)

the integral — /e_iq,(p”ﬂ’l_zp)/hdq’ is equal to the delta function:

2mh

1

ﬁ 6*iq,(p//+p/72p)/hdq/ =4 (p// +p/ _ 2p) )

Thus we can rewrite the equation (10) in the form

W (g, p) / ¢ (v') / e 1P 0/ (" -y — 2p) @ (p”) dp”dp.
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Using the convolution property of the delta function:

1

g [ €T (0 6 (0" — (2p ) dp” = T HITDNG (2p — ).

We can see that
(a:p) h/ ') (2mh) e 29w /M (2p — p') dp (11)
After changing the variables p”” = p’ — p (dp’ — dp”’) in the equation (11):
Wi (q,p) = 2mh <7T1h / & (p+p") @ (p—p")e "/ hdp"')

finally, we can see that W, (q,p) = 2wh- Wy (p, q). 0

There are other popular forms of the Fourier transform and we can define this
property for them as well:

Proposition 2. If the Fourier transform is defined in the form

= [ot@e Fa (12)
then
W (¢:p) = W (p,q) .- (13)
Proposition 3. If the Fourier transform is defined in the form
= / v (q) e7*m' P dg, (14)
then
W, (¢,p) = W5 (p.q). (15)

We can easily modify this proposition for the case of the physical systems with n
degrees of freedom in configuration space R":

Proposition 4. If the Fourier transform is defined in the form
50 = 7 [ (@ Fag (16)
(%h)"/QRn

then
W, (¢,p) = 27h)" - W3 (p, q) - (17)

Proof. For the n-dimensional physical systems we can write down WDF in the
form:

- 1 s>, = o o\ 2ipd -
We (0,0) = —= | @ (T+d ) o (T—d)e " dd, (18)
(mh)
Rn
where
« (>, 3 1 e (2N —in' (Gat -
@ (Q+Q’) —(%h)n/g/sﬁ (p’)e v(@+d) gt (19)

o (1-0) = G | 2 () T g (20)
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Let’s substitute (19) and (20) into the equation (18), then

o 1
W, (7.5) = (m)"/ o m/ i (740 /gy |
R’Il

q/

(2% [ () ) g o
™
Rn

Changing the order of integration in the equation (21), we can see that
—iq’ (p”+p’ —2p) /h
W, (q,p) = 7rh /‘P /(2hn/2/6 dq’
X @ (p//) e—Z(—p +ﬁ)q/hdp7’dﬁ. (22)

Here the integral ——= @r h) /e*iq/(p”*p’*%)/hdq_; can be replaced with the delta function:
Rn

1 (T o - - -
@) / T2 Mg — 5 (5 4+ - 2)

R

So the equation (22) will be
| =k (7 —ig(—p"'4+p') /h <7/ o ) ~( //) T
R R
After using the convolution property of the delta function:
Rn

This will lead us to the equation
n o —2iq(p'—p)/h b
Wy (4,D 7rh / (2mh) (2p p) dp’. (23)
Changing of the variables p/” = p/ — j (d];’ — dpn’) in the equation (23):
. a1 ol BN (e N\ e
WAO (Qaﬁ) = (27Th) W /90 <p —|—p"’) @ (p _p///> e—2idp /ﬁdp///
]Rn
finally, we can see, that W, (¢,p) = (2nh)" - W5 (p, q). o

Considering physical systems with n degrees of freedom we can also define similar
equalities for the other forms of the Fourier transform:
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Proposition 5. If the Fourier transform is defined in the form

2 = [o@e Fag (24)

then
Wy (¢,p) = W5 (p,q) - (25)

Proposition 6. If the Fourier transform is defined in the form
) = [o@e g, (26)
R

then
W, (q,p) = 2h)" - W (p,q) . (27)

There is a theorem introduced in [7] which states, that quantization rule of Kuryshkin-
Wodkiewicz corresponds a continuous linear operator of the form O, (4) = O, (A« W,,) :
S(Q) — S (Q) to the distribution A € S’ (T x Q). For this theorem to be true we
need to define another property of the WDF.

Proposition 7. For the Wigner distribution function the statement is true

We (—=q,p) = W, (¢,p) - (28)

Proof. Consider left part of the equality (28):

W, (=q,p) = /so (—q¢+d)e(—q— Q)eﬁdq

after changing the variable ¢ — —q”":

1 " _ 2ipg”’
W (—a.p) = —— /%0 (—a—d")p(—q+q") e * dg". (29)
Here the Fourier transform is used as follow:
" (—q—q") /¢*(p ' (ma=d) /gy (30)
o(—q+4q") \/7 /(p e?" (=atd") /By, (31)

Let’s substitute equations (30) and (31) into the equation (29), then

1 1 % —in'(—g—qg"’
Wy, (q,p) = _ﬁ/<\/ﬁ /80 ) e P’ (—a—q )/hdp/> X
1 - ip”(qurq”)/h ”> _ 2ipq’ ,
X | — e d e "k dq =
(F/@(p ) p q

_ —iq" (—p"" —p'+2p) /h g 1 ~ i(p"” =p")a/h g 1t 1l —
= / /M/ dq"¢ (p") e” dp”dp" =

= [ (p)/ T (" p = 2p) @ (") dpdp’ =

1 -
=——= ¢ (p") (27h) e 2iq(p'—p) /5 @(2p—p)dp. (32)




Gorbachev A.V. Properties of Wigner Distribution Functions Applied to. .. 83

If we change the variables p”” = p' — p (dp’ — dp’”) in the equation (32), then:

1 ~ % - ian'!’
W(p (_q’p) = —927h (ﬂ'h /90 (p_|_p/l/) 90(1) _p///) 62 qp /ﬁdp///> .

Finally, we can see that W, (—q,p) = —2nh-W; (p,q) = —W, (¢, p). O

We used Fourier transform in the form (4). It is easy to proof that the equality (28)
will be the same no matter what form of the Fourier transform is used. Using the
same scheme of proof we can proof more important properties of the WDF:

Proposition 8. For the Wigner distribution function the statement is true

Proposition 9. For the Wigner distribution function the statement is true
We (=¢,—p) = W, (¢,p) - (34)

Generalization of the WDF properties (28), (33) and (34) for the systems with
n degrees of freedom can be done easily: W (—q,p) = (=1)"W (¢,p), W (¢, —p) =
(=1)"W(g,p), W (=q,—p) = W (g, p).

3. Conclusion

For the first time the Wigner distribution functions were proposed in physics in
1932, and up to now they are used to study quantum corrections to classical statistical
mechanics. According to the Weyl quantization procedure [11], the WDF determines
quantum expectation values of the observables of an isolated quantum object. However
this function fails to satisfy the property of the real distribution functions due to
possible negative probability values. Though these probabilities are supposed to be
responsible for the “non-classical” states, it is obvious, that they are not in common
with the real process of quantum measurements.

Kuryshkin and Wodkiewicz proposed an alternative approach, which uses a positive-
definite convolution of two WDEF to describe the behavior of the composite system
“object+measurement instrument”. This corresponds to the operational model of
quantum measurements which associates the continuous linear pseudo-differential op-
erators in the rigged Hilbert space to a classical observable from the class of tempered
distributions. The which were made first calculations [12] for the hydrogen, lithium
and sodium atoms based on this model showed good correspondence between the ob-
served experimental data from NIST and modeled values.

4. Appendix

In the course of the discussion of the Wigner distribution function’s properties we
applied several theorems from the mathematical physics. They describe connections
between the Fourier transform and the inverse Fourier transform of different types.
This section contain the proofs of these theorems according to [13]. Assume that ¢

is a function from space of tempered distributions: ¢ € S (R): sup |2P¢® (z)] < oo
xT
Vp, k. Then the theorem is true:

Theorem 1. If we define the Fourier transform so, that:

+oo
b == [ ela)e /s, (35)
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then Vz € R is an inverse Fourier transform:

+oo
1 ~ YT
o@) == | ¢w)eray (36)

Proof. To prove the existence of the inverse Fourier transform we can use a mod-
ified method of L. Fejér (1904) used to describe Fourier series. Let’s look at the right
side of the equation (36):

_ —zym'/h 1| iyx/h |y|
_n%or /¢ dr' | e < >dy (37)

We can see that absolute value of the element of integration is integrable on the
specified interval and that the result of integration is finite. Thus we can change the
order of integration in (37):

+oo n | |
. 1 (o Y 1

lim / / wy(e—al)/h dy dz’ 38
Jim o e e (@) (38)

Equation (38) can be modified using the formula

1ol ! ly| 1 —cos (n(x —z'))

= iy(z—a')/h _ 9 —

orh | € (1 n ) dy = nr(x — ') (39)

The substitution (39) into (38) will result in

“+o0

1 . l—cos(n(zx—2x")) 1 N oo
2mh 1 dx’. 40
V2rh e nr(x — a')? onh ' (z) da (40)
1 —cosnz

We know that — 6 (x) if n — oo, and that’s why we can modify (40):

) e @) do /M—x ) (@) da’ = p ().

Other forms of the Fourier transform can be obtained by simple substitution of the

argument. For example, if we use the substitution ¢ (y) — v27h- ¢ (y), the following
theorem will be true:

Theorem 2. If we define the Fourier transform so, that:

/ o () e e, (41)
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then Vz € R is an inverse Fourier transform:

+oo
o)== [ pweriiay (42

If we modify the Fourier transform using the substitution ¢ (y) — v27h- ¢ (27y),

then

Theorem 3. If we define the Fourier transform so, that:

+oo
o) = [ el)e s, (43)

— 00

then Vx € R is an inverse Fourier transform:

10.
11.
12.

13.

+o0o
p@) = [ oweay (44)
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YIK 519.62; 530.145; 539.18
CBoiicTBa KBaHTOBOI (byHKIIUU pacnpenesienusi Burauepa B
NpUMEHEHUN K KBAHTOBOI MeXaHUKe

A.B. TI'opbauen

Kagedpa meopemuneckoti pusuru
Poccutickuti yrnusepcumem dpyotcho. Hapodos
Poccusa, 117198, Mocksa, ya. Muxayxo-Maxaas, 6

B mporiecce mocTpoenus onepanuoHaaIbHON MOIEM KBAHTOBBIX U3MEPEHUI BOZHUKJIIA, HEOO-
XOJIMMOCTh YCTAHOBUTDL PsIJT PAHEe He OMMCAHHBIX CBOMCTB KBAHTOBON (DyHKIIMM pacupeie-
senusi Burnepa. [lanHasi pabora IOCBsIIEHA JOKA3aTEJIbCTBY ITUX CBOWCTB, TAK KaK OHU
HEOOXOMMMBI JIJTsT TTOJIYUIEeHUsT Psifia KOHCTPYKTUBHBIX TEOPETHYECKUX pe3yabTaToB. Caemano
00001TIeHe Ha, MHOTOMEPHBIN Caydall M MOKa3aHa 3aBHCHMOCTbL OT BbIOOpa (DOPMBI 3aIucu
npeobpazoBanuss Pypsbe.

KuroueBrbie cjoBa: KBaHTOBas (DYHKIUS pacupejeseHns Burmepa, omepannoHabHA
MOJIe/Ib KBAaHTOBBIX U3MEPEHUil, KBaHTOBasI (DYHKIUS PACIpeIeIeHNUs.





