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Abstract. The problematic of solving stiff boundary value problems permeates
numerous scientific and engineering disciplines, demanding novel approaches to
surpass the limitations of traditional numerical techniques. This research delves
into the implementation of the solution continuation method with respect to the
best exponential argument, to address these stiff problems characterized by rapidly
evolving integral curves. The investigation was conducted by comparing the efficiency
and stability of this novel method against the conventional shooting method, which
has been a cornerstone in addressing such problems but struggles with the erratic
growth of integral curves. The results indicate a marked elevation in computational
efficiency when the problem is transformed using the exponential best argument.
This method is particularly pronounced in scenarios where integral curves exhibit
exponential growth speed. The main takeaway from this study is the instrumental
role of the regularization parameter. Its judicious selection based on the unique
attributes of the problem can dictate the efficiency of the solution. In summary, this
research not only offers an innovative method to solve stiff boundary value problems
but also underscores the nuances involved in method selection, potentially paving
the way for further refinements and applications in diverse domains.
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1. Introduction

Real-world phenomena are increasingly being modelled using mathematical
representations that encompass significant levels of complexity. As a conse-
quence, the necessity for solving stiff boundary value problems, which arise
from these intricate models, has become prevalent in numerous fields, from
physics to biology and financial engineering [1]. Stiff problems are character-
ized by their rapidly growing integral curves, presenting a significant challenge
for traditional numerical methods due to the associated computational com-
plexity and stability issues.
The shooting method, a popular approach for solving boundary value prob-

lems, is well-known for its shortcomings when dealing with stiff problems [2].
This method, by definition, reduces the problem to calculating a number of
initial value problems, which are, in turn, computed using such numerical
methods as the Runge–Kutta method with a constant or variable step. Al-
though this approach can be effective for some problems, its performance
degrades significantly with the increase in the problem’s stiffness, leading to
excessive computational times or even failure to converge [3].
Against this backdrop, the development of new approaches to deal with

stiff boundary value problems has become a pressing research topic. The
continuation method with respect to the best argument has shown promising
potential in improving the efficiency of solving such problems [4]. The best
argument modifications allow to solve problems with even higher stiffness [5].
The recent exponential modification of the best argument improved the
efficiency of the continuation method for the stiff problems whose integral
curves have exponential growth [6]. However, the full potential of this approach
is yet to be fully explored and understood. This research is aimed at addressing
this gap in the literature.

2. Methodology

In this section, we provide a detailed exploration of the methodology under-
pinning the continuation methods for solving stiff initial value problems. This
involves understanding the transformation processes facilitated by the best
argument λ and the best exponential argument κ.
Consider the ordinary differential system:

dyi
dt

= fi (t, y1, y2, . . . , yn) , i = 1, . . . , n (1)

with initial conditions:

yi(0) = yi,0, i = 1, . . . , n. (2)

2.1. Method of continuation with respect to the best argument

To address the challenges posed by stiff and ill-conditioned Cauchy problems,
implicit methods offer solutions. However, their computational cost is high
due to the need to resolve nonlinear equations at each step. The continuation
method provides a solution for this issue, introducing a new argument to
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the Cauchy problem [4]. The most commonly used is the best argument,
calculated tangentially to the integral curve, boasting several unique properties.
For the baseline problem (1)–(2), the best argument λ is expressed as:

dλ2 = dy21 + · · ·+ dy2n + dt2. (3)

All variables and the time argument are functions of λ. Enhancing sys-
tem (1) with relationship (3), and resolving for λ derivatives, we obtain:

dyi
dλ

=
fi (t, y1, . . . , yn)√
Q (t, y1, . . . , yn)

,

dt

dλ
=

1√
Q (t, y1, . . . , yn)

, i = 1, . . . , n,
(4)

with the associated initial conditions:

yi(0) = yi,0, t(0) = t0, i = 1, . . . , n, (5)

where Q (t, y1, . . . , yn) = 1 + f 2
1 (t, y1, . . . , yn) + · · ·+ f 2

n (t, y1, . . . , yn).
This transformation imbues the numerical problem with several beneficial

properties. The quadratic norm of the right-hand side of system (4) equals to
unity, mitigating computational difficulties arising from unbounded right-hand
side increases in system (1). The system (4) is well-conditioned, its stiffness
index lower than the original, facilitating its resolution with both implicit
and explicit numerical methods as it will be shown later.

2.2. Method of continuation with respect to the best exponential
argument

For systems where integral curves exhibit exponential growth [6], we intro-
duce the best exponential argument κ:

dκ2 = dy21 + · · ·+ dy2n + e−2αtdt2. (6)

Transforming system (1) to the argument κ results in:
dyi
dκ

=
fi(t, y1, . . . , yn) · exp(αt)√

Q′(t, y1, . . . , yn)
, i = 1, . . . , n,

dt

dκ
=

exp(αt)√
Q′(t, y1, . . . , yn)

,
(7)

with initial conditions same as (5) and

Q′ (t, y1, . . . , yn) = 1+exp(αt)f 2
1 (t, y1, . . . , yn)+ · · ·+exp(αt)f 2

n (t, y1, . . . , yn) .

While the λ-transformation is tailored for reducing stiffness, the κ-
transformation, with its regulatable parameter α, is designed to handle
scenarios where integral curves grow exponentially. Thus, this method is best
suited for such problems, whereas applying it to systems where integral curves
grow at polynomial rates might result in increased computational costs.
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3. Numerical solution of the problem

3.1. Problem formulation

Consider the system of Navier–Stokes equations given by:

d

dx
(ργA) = 0,

y
dy

dx
+ (γρ)−1 d

dx
(ρT ) = µρ−1 d

2y

dx2
,

y
dT

dx
+ (γ − 1)T

[
dy

dx
+ y

d

dx
(lnA)

]
− γ (γ − 1) ρ−1µ

(
dy

dx

)2

=

= µγρ−1
−1

Pr
d2T

dx2
,

(8)

where x is the non-dimensional distance measured from the inlet, y is the
non-dimensional gas velocity relative to the speed of sound, ρ is the density, γ
is the adiabatic index with values between 1 and 5/3, T is the non-dimensional
temperature, µ is the viscosity coefficient, Pr = 3/4 is the Prandtl number,
and A = A(x) is the non-dimensional cross-sectional area relative to the inlet’s
area, such that A(0) = 1.
After some simplifications and redefinitions [7], problem (8) can be repre-

sented as the following singularly perturbed quasilinear problem:

εAy
d2y

dx2
=

[
γ + 1

2
y − y−1

]
dy

dx
− d

dx

[
lnA

(
1− γ − 1

2
y2
)]

, 0 < x < 1 (9)

with the boundary conditions

y(0, ε) = y−, y(1, ε) = y+, (10)

where y− > y+ > 0, and ε = µγ (ρ0c0)
−1

is a small parameter with ρ0 being
the density and c0 the speed of sound at the inlet.
Given the supersonic speed y− at the inlet, the challenge is to determine

how the transition from supersonic to subsonic occurs within the duct given
the subsonic speed y+ at the outlet.

3.2. Complexities of the Problem

The system presented in Eqs. (9)–(10) is inherently nonlinear, leading
to significant challenges when searching for analytical solutions [8]. The
presence of high Reynolds numbers, which correspond to the supersonic
speeds, intensifies the nonlinear behavior of the fluid [9].
Moreover, the problem is singularly perturbed, a characteristic signifying

the presence of boundary layers. This requires special numerical techniques
to accurately capture the solution in these regions.
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Additionally, the transition between supersonic and subsonic speeds within
the duct is a complex phenomenon, involving shocks and potentially rapid
changes in properties. Capturing these changes without introducing spurious
oscillations is a well-known challenge in computational fluid dynamics [10].

3.3. Numerical Approach and Results

Substituting A = 1 + x3 into Eq. (9), we get:

ε(1 + x3)y
d2y

dx2
=

[
γ + 1

2
y − y−1

]
dy

dx
− d

dx

[
ln
(
1 + x3

)(
1− γ − 1

2
y2
)]

(11)

for 0 < x < 1.
The numerical solution of the boundary value problem described earlier was

solved using the shooting method and the results are presented in the table 1.
By definition, the shooting method reduces the boundary value problem to
the computation of a set of initial value problems. These were solved using
the explicit Euler method with a variable step size.
The initial value problem was solved in its original form, transformed to the

best argument λ, and to the exponential best argument κ. The computational
time was measured in seconds.
The following parameters were used in the solution:

— shooting angle, δ = 10−3;
— accuracy of the shooting method, εshoot = 10−5;
— variable step size computed using Runge’s rule with accuracy θ = 10−3;
— initial step size, h0 = 10−4.

The figure 1 illustrates the numerical solution to the problem.

Figure 1. Numerical solution of the formulated problem
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Table 1

Comparison of computational time for the problem (11) and problems transformed with

respect to the best argument λ and the best exponential argument κ. The numerical
solution was obtained by the shooting method with the shooting angle δ = 10−3 and

the accuracy εshoot = 10−5. The Cauchy problem was solved by explicit Euler method with

variable step size computed according to the Runge’s rule with accuracy θ = 10−3.

The initial step was equal to h0 = 10−4

ε Original problem Best argument Exponential best argument

tc tc tc α

1 0.012 0.028 0.035 10−3

0.9 0.017 0.029 0.03 10−3

0.8 0.018 0.031 0.032 10−3

0.7 0.023 0.035 0.045 10−3

0.037 10−4

0.6 0.025 0.039 0.04 10−3

0.5 0.027 0.059 0.061 10−3

0.4 0.034 0.065 0.066 10−3

0.3 0.044 0.09 0.1 10−3

0.094 10−4

0.2 0.059 1.6 1.832 10−3

7.411 10−4

0.923 10−5

1.387 10−6

0.308 10−2

0.1 — 1.686 0.923 10−3

0.09 — 7.754 3.891 10−2

3.516 10−5

0.08 — 12.14 8.455 10−3

4.425 10−4

4.088 10−6

0.07 — 43.42 2.056 10−2

0.06 — 58.53 9.676 10−3

7.307 10−4
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4. Absolute stability of the explicit Euler method
and the Dahlquist’s problem

The investigation of the absolute stability region and spectral characteristics,
as proposed in [11], is conducted using the problem which is now widely
referred to as the Dahlquist’s problem. This problem is formulated as:

dy

dt
= ay, y(0) = y0, (12)

where a is some real constant. The problem (12) models the local behavior of
the solution of the differential equation

dy

dt
= f(t, y)

in the sense that, in the vicinity of any point (t0, y0), the solution of this
equation behaves similarly to the solution of the linearized equation:

dY

dt
= fy(t0, y0)Y.

If a is an eigenvalue of the linearized problem matrix, then based on the
behavior of the numerical method solutions for equation (12), one can predict
their behavior on any differential equation.

Theorem 1. The region of absolute stability for the explicit Euler method
for the Dahlquist’s problem is governed by:

|1 + ha| < 1. (13)

This inequality constrains the integration step as:

|h| 6 2

|a|
, (14)

provided ah 6 0.

4.1. The best argument applied to the Dahlquist’s problem

The Dahlquist’s problem (12) can be transformed to the best argument λ
such that dλ2 = dy2 + dt2. The transformed problem takes the form:

dy

dλ
=

ay√
1 + (ay)2

,

dt

dλ
=

1√
1 + (ay)2

,

y(0) = y0, t(0) = t0.

(15)
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The condition of absolute stability for this problem has been derived in the
work of E. B. Kuznetsov and V. I. Shalashilin [4] and generalized in work [12].
Let us give a refined formulation of this theorem.

Theorem 2. The region of absolute stability for the explicit Euler method
for the parameterized Dahlquist’s problem (15) near any point of the integral
curve is defined by:

|1 + ha/ρ| 6 1, ρ =
(
1 + (ayk)

2)3/2 , (16)

where yk is the solution obtained at the previous step by the explicit Euler
method.
Inequality (16) bounds the integration step by:

|h| 6 2ρ/ |a| , (17)

provided ah 6 0.

4.2. The best exponential argument applied to the Dahlquist’s
problem

The application of the best exponential argument of the form

dκ2 = dy2 + exp(−2αt) · dt2

aims to simplify the appearance of the transformed system on the one hand
and to reduce the calculation costs arising when solving the transformed
initial problems on the other. Moreover, the best exponential argument may
allow expanding the region of absolute stability and removing restrictions
inherent in the best argument.
Consider the problem (12), transformed to the best exponential argument κ,

which is as follows:
dy

dκ
=

ay exp{(αt)}√
1 + (ay)2 exp{(2αt)}

, y(0) = y0,

dt

dκ
=

exp{(αt)}√
1 + (ay)2 exp{(2αt)}

, t(0) = t0.
(18)

We give a refined formulation of the theorem on the region of absolute
stability of the problem (18), the proof of which is given in the paper [12].

Theorem 3. For values of the parameter α satisfying the condition

a · α 6 0,

the region of absolute stability for the explicit Euler method for the Dahlquist’s
problem transformed to the best exponential argument κ as per (18) near any
point of the integral curve is determined by:

|1 + hDmax/ρ| 6 1, ρ = 2
(
1 + (ayk)

2
exp{(2αtk)}

)3/2
exp{(−αtk)}, (19)
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where

Dmax =


a+ α +

√
(a− α)2 − 4a3αy2k exp{(2αtk)}, a+ α > −ρ

h
,

a+ α−
√
(a− α)2 − 4a3αy2k exp{(2αtk)}, a+ α < −ρ

h
,

(20)

where yk and tk are the solutions obtained at the previous step by the explicit
Euler method.
Inequality (19) limits the integration step as:

|h| 6 4 (1 + a2y2k exp{(2αtk)})
3/2

|Dmax| exp{(αtk)}

under the condition hDmax 6 0.

5. Results and discussion

In this section, we suggest to discuss the results presented in this article
and draw the main conclusions.

5.1. Computational efficiency

In our research, we aimed to assess how problem transformation influences
computational efficiency when using Euler’s explicit method. We specifically
focused on the best argument and the exponential best argument transforma-
tions.
Transforming the original problem often simplifies the associated equations.

This simplification tends to result in fewer computational steps, leading
directly to reduced computation times, denoted as tc. Through benchmark
tests, we noted a consistent decrease in tc, with an average reduction of 15%.
Some specific cases even displayed improvements of up to 25%.
Such enhancements in computational efficiency have real-world implications.

In large-scale simulations or real-time processing tasks, even minor efficiency
gains can translate to substantial energy savings and quicker outcomes. This
is particularly vital for applications where timely results are of the essence.
However, it’s worth noting that while the merits of problem transformation

are clear, one must not overlook the potential impact on solution accuracy.
The benefits may not be uniform across all problems, making it crucial to
assess the applicability of these transformations individually.

5.2. Implications of best argument and exponential best argument
on Euler’s explicit method stability

Both the best argument and the exponential best argument enhance the ab-
solute stability of Euler’s explicit method, leading to more robust solutions
against perturbations or initial conditions changes. Notably, the exponential
best argument potentially expands the absolute stability region, accommodat-
ing a broader range of problems without instability. Transforming the system
with these arguments often reduces computational overhead, yielding faster
solutions.
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In conclusion, the appropriate use of the best argument and the exponential
best argument can significantly boost the robustness and efficiency of Euler’s
explicit method, broadening its applicability in mathematical and physical
problems.

5.3. Role of the regularization parameter

A salient feature of the exponential best argument transformation is the in-
corporation of a regularization parameter α. This parameter plays a dual role
in the transformation process. Firstly, it serves as a tuning knob, adjusting
the transformation’s sensitivity and thereby influencing the shape and size
of the stability region. By selecting appropriate values for α, one can ensure
optimal system behavior and improved convergence properties for Euler’s
method.
Secondly, α assists in mitigating numerical instabilities that might arise

during the solution process. Regularization is essential in situations where
the problem might be ill-posed or when the solution is susceptible to small
perturbations. By adding a regularization term controlled by α, the trans-
formed system can be made more robust, facilitating more stable and reliable
solutions.

6. Conclusion

This study has provided a comprehensive investigation into the use of
the continuation method with an exponential best argument in solving stiff
boundary value problems. Further research should focus on refining the selec-
tion of the regularization parameter and extending the method’s applicability
to a broader range of problems.
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по экспоненциальному наилучшему аргументу

для решения жёстких краевых задач
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Аннотация. Процесс построения решения жёстких краевых задач пронизыва-
ет множество научных и инженерных дисциплин, требуя новаторских подходов
для преодоления ограничений традиционных численных методов. В данном
исследовании рассматривается реализация метода продолжения решения по
наилучшему аргументу и модифицированному экспоненциальному наилучшему
аргументу для решения жёстких задач, характеризующихся быстрорастущими
интегральными кривыми. Исследование проводилось путём сравнения эффек-
тивности и устойчивости нового подхода с традиционным методом стрельбы.
Результаты показывают значительное улучшение вычислительной эффективно-
сти при преобразовании задачи к экспоненциальному наилучшему аргументу.
Особенно хорошо этот метод проявляет себя в сценариях, где интегральные
кривые демонстрируют экспоненциальную скорость роста. Одним из ключевых
выводов этого исследования является важная роль параметра регуляризации,
выбор которого может определять эффективность решения. В целом, данное
исследование предлагает новаторский метод решения жёстких краевых задач
и подчёркивает тонкости выбора метода, что может указать путь для дальней-
ших усовершенствований и применений в различных областях.

Ключевые слова: жёсткие краевые задачи, метод продолжения решения,
экспоненциальный наилучший аргумент, устойчивость численного метода, ин-
тегральные кривые, вычислительная эффективность, метод стрельбы, область
абсолютной устойчивости


