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The article discusses the kinematic support, which allows reducing the horizontal
dynamic effects on the building during earthquakes. The model of a seismic isolation
support is considered from the point of view of classical mechanics, that is, we
assume that the support is absolutely solid, oscillating in a vertical plane above
a fixed horizontal solid plate. This approach allows a more adequate description
of the interaction of the support with the soil and the base plate of the building.
The paper describes the procedure for reducing the complete system of equations
of motion of a massive rigid body on a fixed horizontal perfectly smooth plane to
a form suitable for applying the finite difference method and its implementation in
the Sage computer algebra system.
The numerical calculations by the Euler method for grids with different number

of elements are carried out and a mathematical model of the support as a perfectly
rigid body in the Sage computer algebra system is implemented. The article presents
the intermediate results of numerical experiments performed in Sage and gives a brief
analysis (description) of the results.

Key words and phrases: kinematic support, seismic isolation support, mathe-
matical model, finite difference method, computer algebra system, Sage, numerical
calculations

1. Introduction

As one of the types of seismic protection of buildings in seismically active
regions of the Earth, among others, auxiliary “seismic suppression” supports
are used. A large number of standards of such supports are known with a high
level of reliability of operation and a high ability to damp seismic waves of
high magnitude. They are high-tech in manufacturing, are sold at high prices
and, thanks to efficiency and reliability, are in high demand among large
construction companies and in areas with a high standard of living.
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At the same time, in poor areas of developing countries, citizens and mu-
nicipalities cannot afford to use them. However, it is precisely in such regions
that residents most often suffer from the devastating effects of earthquakes.
The Soviet, and then the Russian school of seismic protection architecture
was able to offer inexpensive and effective solutions in the form of so-called
kinematic supports.

In our country and abroad, a large number of active seismic protection sys-
tems for buildings have been proposed, developed and applied. Among them
are those proposed by A. Kurzanov, S.Yu. Semenov [1], [2], Yu. P. Cherepin-
sky [3], V.V. Nazina, etc. Some of these systems were practically implemented
in real buildings [1], [2], [4], [5], making it possible to assess their workability
for building industry. Vibration tests were carried out at many facilities [6],
[7], which provided experimental data on the behavior of these systems under
dynamic impacts. However, essentially all developed systems need additional
analysis under full-scale conditions. Therefore, many aspects of the real be-
havior of seismic protection systems are difficult to study theoretically or on
models due to the very large number of factors affecting the behavior of the
structure during an intense earthquake.

Kinematic supports are vertically placed cylinders on which the building
rests. Neither the place of entry of the support into the ground or concrete
slab, nor the contact with the horizontal slab of the building placed on such
supports, are fixed rigidly. Supports can be made in the form of short concrete
pillars with an outer cage of steel pipe or a reinforcing cage of carbon composite
or basalt composite nets. It is promising to use in the construction of concrete
racks with dispersed reinforcement basalt fiber, since such concretes have
increased resistance to cracking and tensile strength during bending.

The essence of the kinematic support is that when the base is displaced
by a certain design value, the building slightly rises, receiving some addi-
tional kinetic energy. In this case, a returning torque arises, bringing the
”base-building” system to its original state (position before the earthquake).
Residential buildings constructed using seismic isolating supports have full-
scale confirmation of the reliability of the structure and have proven themselves
successful in experimental studies [1], [2].

The aim of our work is to create an adequate mathematical model of the
support and its interface with the building, which will help to design kinematic
supports taking into account the operational requirements of customers.

The solution to this problem can be approached from two sides. First,
it is possible to create a model of elastic support in the Ansys, system [8].
With this approach, the main difficulty is the selection of adequate boundary
conditions for the place where the support is in contact with the soil and base
plate of the building.

The second approach proposes to consider the support from the point of
view of classical mechanics, assuming it to be a perfectly rigid body, oscillating
in a vertical plane above a fixed horizontal absolutely smooth plate, but more
adequately describe the interaction of the support with the ground and the
building plate.

From the point of view of analytical mechanics, the motion of kinematic sup-
ports is the motion of a complex system of bodies with non-holding bonds [9].
The mathematical basis of the dynamics of such systems was developed
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by outstanding mathematicians J. Dalamber, S. Poisson, Yu.A. Arkhangel-
sky, V.V. Kozlov, A.P. Markeev and others. In our work, we will follow
the formalism developed by A.P. Markeev.
Models of rigid body mechanics are systems of a large number of ordinary

differential equations (ODEs) that are not resolved with respect to derivatives
[10], [11]. They, as a rule, do not allow an analytical solution. Therefore, we
are going to use the finite difference method. For its successful application,
it is important to solve the equations for derivatives by increasing the order.
Due to the large number of equations, this procedure turns out to be rather
complicated. Therefore, it seems natural to execute it in a computer algebra
system (CAS). Computer-aided study of such models is carried out in two
stages:

1) symbolic transformations reducing the system to normal form, used in
the standard formulation of the Cauchy theorem;

2) numerical solution of this system using the finite difference method (rk4).

We chose the Sage system [12], because it can execute both the first and
second stages. To test the described approach, we took the simplest model
that describes the complete system of equations of motion of a massive rigid
body along a fixed horizontal perfectly smooth plane [10], [11].

2. Description of the mathematical model

Let the seismic isolation support be a rigid body and have the shape of
a cylinder, in which one of the bases has a spherical shape. The support is
installed between the foundation of the building (a horizontal rigid plate)
and the building itself. The support touches the foundation of the building
always with a spherical end [13]. We assume that when oscillating or when
horizontal forces act on the foundation of the structure, the point of contact
of the support and the base plate always lies in the plane 𝑂𝑥𝑦.
To describe the vibration of the support, we will use the model of motion

of a rigid body on the surface [10], [11] and adapt this model to our task.

The motion of the body will be considered relative to the fixed laboratory
coordinate frame 𝑂𝑥𝑦 with the origin 𝑂 at a certain point of the plane. The
axis 𝑂𝑧 is directed vertically, 𝑛 is the unit vector of inner normal to the body
surface at point of the axis 𝑧. Let 𝐺𝜉𝜂𝜁 denote the moving coordinate frame
rigidly coupled to the body with the origin at its center of gravity 𝐺 and
the axes directed along the principal axes of inertia 1. The orientation of
the body with respect to the fixed laboratory frame is specified by the Euler
angles 𝜙, 𝜓, 𝜃 or by the matrix of direction cosines 𝑎𝑖𝑗. The unit vector of the
𝑧-axis in the frame 𝐺𝜉𝜂𝜁 is specified by the components 𝑎31, 𝑎32, 𝑎33:

𝑎31 = sin 𝜃 sin𝜙, 𝑎32 = sin 𝜃 cos𝜙, 𝑎33 = cos 𝜃.

Assume 𝜉, 𝜂, 𝜁 to be the principal axes of inertia with respect to the gravity
center. Let 𝑀 be the point of contact between the horizontal plane 𝑂𝑥𝑦 and
the support (see Figure 1). Its coordinates 𝜉, 𝜂, 𝜁 in the frame 𝐺𝜉𝜂𝜁 will be
functions of angles 𝜙, 𝜃, determined from the form of equation 𝐹(𝜉, 𝜂, 𝜁) = 0
that specifies the shape of the body surface [10], [11]. The sign of function 𝐹
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is chosen such that 𝑛 = − ∇𝐹
|∇𝐹|

. Then the quantities 𝑎𝑖𝑗 for the axis 𝑧 are

expressed in terms of the Euler angles as

⎧
{
{
{
⎨
{
{
{
⎩

𝑎31 = sin 𝜃 sin𝜙 = − 1
|∇𝐹|

𝐹
∇𝜉

,

𝑎32 = sin 𝜃 cos𝜙 = − 1
|∇𝐹|

𝐹
∇𝜂

,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝐹
∇𝜁

.

(1)

Figure 1. Motion of a perfectly rigid body above the perfectly smooth horizontal plane

Following the studies presented in Refs. [10], [11], [14], [15], let us consider
the full system of equations of motion for a massive rigid body on a fixed
horizontal perfectly smooth plane and introduce the following unknown
functions of time 𝑡: center of gravity coordinates 𝑥, 𝑦, 𝑧 of the body in
the laboratory frame; Euler angles 𝜙, 𝜓, 𝜃; components 𝜉, 𝜂, 𝜁 of radius vector
𝜌 of point 𝑀 of contact of the support and the plane (base plate) relative to
the gravity center, and magnitude 𝑁 of the normal reaction of the plane.
To determine the unknowns listed above the following equations and rela-

tions will be used:
a) The equations that represent the theorem of momentum variation. The

external forces are the reaction of the plane 𝑅 = 𝑁 ⋅ 𝑛 directed vertically
(𝑁 ⩾ 0) and the gravity force. The equations are:

⎧{
⎨{⎩

𝑚 ̈𝑥 = 0,
𝑚 ̈𝑦 = 0,
𝑚 ̈𝑧 = −𝑚𝑔 + 𝑁,

(2)

where 𝑚 is the body mass, 𝑔 is the free fall acceleration.
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b) The equations that represent the theorem of angular momentum varia-
tion:

⎧{{{
⎨{{{⎩

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁 (𝜂𝑎33 − 𝜁𝑎32) ,

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁 (𝜁𝑎31 − 𝜉𝑎33) ,

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁 (𝜉𝑎32 − 𝜂𝑎31) ,

(3)

where 𝑝, 𝑞, 𝑟 are the projections of the angular velocity vector 𝜔 on the axes
of the coordinate system 𝐺𝜉, 𝐺𝜂, 𝐺𝜁 rigidly bound to the body; 𝐴, 𝐵, 𝐶 are

the principal moments of inertia with respect to these axes.

c) The relations represented by the Euler kinematic equations:

⎧{
⎨{⎩

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 𝑠𝑖𝑛 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(4)

d) The Poisson equations:

⎧{
⎨{⎩

̇𝑎31 = 𝑎32𝑟 − 𝑎33𝑞,
̇𝑎32 = 𝑎33𝑝 − 𝑎31𝑟,
̇𝑎33 = 𝑎31𝑞 − 𝑎32𝑝

(5)

indicating the fact that vector 𝑛 defines an invariable direction in the fixed
coordinate frame 𝑂𝑥𝑦𝑧;

e) The equation of the body surface in the coordinate frame rigidly bound
to the body and having the origin at its center of gravity:

𝐹(𝜉, 𝜂, 𝜁) = 0. (6)

In our case, the body surface equation is the equation of a sphere (the
support has spherical shape at the point of contact with the plate):

𝜉2 + 𝜂2 + (𝜁 + 𝑎)2 = 𝑅2. (7)

f) The constraint equation

𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁) (8)

means that the support moves contacting with the plate all the time. Equa-
tions and relations (1)–(8) determine a complete system of equations of motion
of a massive rigid body on a fixed horizontal perfectly smooth plane that can
be written in the following form:
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⎧
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎩

𝑚 ̈𝑥 = 0,
𝑚 ̈𝑦 = 0,
𝑚 ̈𝑧 = −𝑚𝑔 + 𝑁,

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁(𝜂𝑎33 − 𝜁𝑎32),

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁(𝜁𝑎31 − 𝜉𝑎33),

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁(𝜉𝑎32 − 𝜂𝑎31),
̇𝑎31 = 𝑎32𝑟 − 𝑎33𝑞,
̇𝑎32 = 𝑎33𝑝 − 𝑎31𝑟,
̇𝑎33 = 𝑎31𝑞 − 𝑎32𝑝,

𝐹(𝜉, 𝜂, 𝜁) = 0,
𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁),

𝑎31 = sin 𝜃 sin 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

,

𝑎32 = sin 𝜃 cos 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

,

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 sin 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(9)

From relation (1) and equation (7), we get explicit expressions of 𝑎𝑖𝑗 for
the spherical base of a kinematic support:

⎧{{{{
⎨{{{{⎩

𝑎31 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜉 = − 1
𝑅

𝜉,

𝑎32 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜂 = − 1
𝑅

𝜂,

𝑎33 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

= − 1
√4𝜉2 + 4𝜂2 + 4(𝜁 + 𝑎)2

⋅ 2𝜁 = − 1
𝑅

(𝜁 + 𝑎).

(10)

Using the formulae (10), is it easy to express the components 𝜉, 𝜂, 𝜁,
therefore, we can get rid of the Poisson equations in the system (9), since the
values of 𝑎𝑖𝑗 and components 𝜉, 𝜂, 𝜁 are already known. According to the two
first equations of (9), the center of gravity moves so that its projection on
the base horizontal plane moves rectilinearly. Hence, it is obvious that the
appropriate equations can be disregarded, too.
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After a number of executed transformations and assumptions, the system
(9) takes the form

⎧
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎨
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
⎩

𝑁 = 𝑚 ̈𝑧 + 𝑚𝑔,

𝐴𝑑𝑝
𝑑𝑡

+ (𝐶 − 𝐵)𝑞𝑟 = 𝑁(𝜂𝑎33 − 𝜁𝑎32),

𝐵𝑑𝑞
𝑑𝑡

+ (𝐴 − 𝐶)𝑟𝑝 = 𝑁(𝜁𝑎31 − 𝜉𝑎33),

𝐶𝑑𝑟
𝑑𝑡

+ (𝐵 − 𝐴)𝑝𝑞 = 𝑁(𝜉𝑎32 − 𝜂𝑎31),

𝜉2 + 𝜂2 + (𝜁 + 𝑎)2 = 𝑅2,
𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁),

𝑎31 = sin 𝜃 sin 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜉

= − 1
𝑅

𝜉,

𝑎32 = sin 𝜃 cos 𝜙 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜂

= − 1
𝑅

𝜂,

𝑎33 = cos 𝜃 = − 1
|∇𝐹|

𝜕𝐹
𝜕𝜁

= − 1
𝑅

(𝜁 + 𝑎),

𝑝 = ̇𝜓 sin 𝜃 sin 𝜙 + ̇𝜃 cos 𝜙,
𝑞 = ̇𝜓 sin 𝜃 cos 𝜙 − ̇𝜃 sin 𝜙,
𝑟 = ̇𝜓 cos 𝜃 + ̇𝜙.

(11)

Equations (11) are reduced to the form convenient for using the computer
algebra system Sage, so that further simplifications and the solution of these
equations will be carried out in this CAS. In the next section we investigate
the solubility of this system of equations in Sage.

3. Resolving the system with respect to derivatives

The system (11) includes both differential equations and algebraic ones
(relations). Let us use Sage to reduce it to a simper form. It is obvious that
from the system (11) via the values of the direction cosines 𝑎31, 𝑎32, 𝑎33, we
can explicitly express variables 𝜉, 𝜂, 𝜁 as follows:

⎧{
⎨{⎩

𝜉 = −𝑅 ⋅ 𝑎31 = −𝑅 ⋅ sin 𝜃 sin 𝜙,
𝜂 = −𝑅 ⋅ 𝑎32 = −𝑅 ⋅ sin 𝜃 cos 𝜙,
𝜁 = −𝑅 ⋅ 𝑎33 − 𝑎 = −𝑅 ⋅ cos 𝜃 − 𝑎.

(12)

Provided that 𝜉, 𝜂, 𝜁 (12) and 𝑎31, 𝑎32, 𝑎33, are known, it is possible to
express the values of the function 𝑧.
Let us write in Sage the equation

𝑧 = −𝜌 ⋅ 𝑛 = −(𝑎31𝜉 + 𝑎32𝜂 + 𝑎33𝜁)
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from system (11) and substitute into it the expressions for 𝜉, 𝜂, 𝜁 and 𝑎31, 𝑎32,
𝑎33, then function 𝑧 will be represented by the following symbolic expression:

𝑧 = 𝑅 ⋅ cos𝜙2 ⋅ sin 𝜃2 + 𝑅 ⋅ sin𝜙2 ⋅ sin 𝜃2 + (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ cos 𝜃.

We substitute the obtained expression of 𝑧 into equation 𝑁 = 𝑚 ̈𝑧 + 𝑚𝑔
and calculate the normal reaction of the plane:

𝑁 = (2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ cos 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ cos 𝜃2 ⋅ sin𝜙2 ⋅ ̇𝜃2 − 2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ sin 𝜃2⋅
⋅ 𝜃2 − 2 ⋅ 𝑅 ⋅ sin𝜙2 ⋅ sin 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ cos𝜙2 ⋅ cos 𝜃 ⋅ sin 𝜃 ⋅ ̈𝜃 + 2 ⋅ 𝑅 ⋅ cos 𝜃⋅
⋅ sin𝜙2 ⋅ sin 𝜃 ⋅ ̈𝜃 − 𝑅 ⋅ cos 𝜃2 ⋅ ̇𝜃2 + 2 ⋅ 𝑅 ⋅ sin 𝜃2 ⋅ ̇𝜃2 − (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ cos 𝜃⋅

⋅ 𝜃2 − 𝑅 ⋅ cos 𝜃 ⋅ sin 𝜃 ⋅ ̈𝜃 − (𝑅 ⋅ cos 𝜃 + 𝑎) ⋅ sin 𝜃 ⋅ ̈𝜃) ⋅ 𝑚 + 𝑔 ⋅ 𝑚.

As soon as all quantities 𝜉, 𝜂, 𝜁, 𝑎31, 𝑎32, 𝑎33, 𝑁, and 𝑝, 𝑞, 𝑟 are explicitly
expresses, we substitute them into equations 2–4 of the system (11) and of
the form

⎧{
⎨{⎩

Φ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0,
Ψ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0,
Θ(𝜙, 𝜓, 𝜃, ̇𝜙, … ̈𝜃) = 0.

(13)

Explicit expressions for Φ, Ψ, Θ were be found in Sage [12].

The system (13) is linear with respect to ̈𝜙, ̈𝜓, ̈𝜃. Now we resolve the
obtained system of differential equations with respect to higher derivatives
using the function solve (). Ultimately, we arrive at the system of differential
equations of the 6-th order resolved with respect to higher derivatives. The
system incorporates three equations of the second order with respect to Euler
angles. For further solution of the problem we have to decrease the order of
the differential equations to the first one.
To reduce the order of the system of differential equations, we perform the

changes ̇𝜙 = 𝑢, ̇𝜓 = 𝑣, ̇𝜃 = 𝑤. As a result, we get a system of six first-order
differential equations.

4. Numerical experiments in SAGE

Let us implement explicit Euler method, in order to confirm the absence of
errors related to transformation of data types.
The calculations by the Euler method will be performed using the grids with

𝑁 = 400, 800, 1600 under the following initial conditions: 𝜙0 = 0.1, 𝜓0 = 0.1,
𝜃0 = 𝜋 +0.5, 𝑢0 = 1.5, 𝑣0 = 1.5, 𝑤0 = 0, ℎ = 2𝜋/𝑁, 𝑡 = 0, 𝐴 = 304, 𝐵 = 304,
𝐶 = 400, 𝑅 = 1.5, 𝑎 = 0.2, 𝑚 = 500, 𝑔 = 9.8 where 𝑁 is the number of
steps; ℎ is the step; 𝜙0, 𝜓0, 𝜃0 are the Euler angles at the initial moment of
time; 𝑢0, 𝑣0, 𝑤0 are the initial velocities; 𝐴, 𝐵, 𝐶 are the moments of inertia.
The results obtained by the Euler method are presented in Figures 2–7. For
𝑁 = 400 the results are plotted by dash lines, for 𝑁 = 800 by dash-dot
lines, and for 𝑁 = 1600 by dot lines. The accuracy of the obtained results is
estimated using the Richardson method (see Figures 9, 10).
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Figure 8 shows graphs. The distance between the center of mass and the
plane ground oscillates as it shown on Figure 8.

Figure 2. The angle 𝜓 as a function of time

for the grids with 𝑁 = 400, 800, 1600
Figure 3. The angle 𝜙 as a function of time

for the grids with 𝑁 = 400, 800, 1600

Figure 4. The angle 𝜃 as a function of time

for the grids with 𝑁 = 400, 800, 1600
Figure 5. Rate of angle 𝜓 change with time

for the grids with 𝑁 = 400, 800, 1600

Figure 6. Rate of angle 𝜙 change with time

for the grids with 𝑁 = 400, 800, 1600
Figure 7. Rate of angle 𝜃 change with time

for the grids with 𝑁 = 400, 800, 1600
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Figure 8. The center of mass height above the plane for the grids with 𝑁 = 400, 800, 1600

Figure 9. Accuracy of Euler solution

estimated by Richardson method

for the grids with 𝑁 = 400, 800, 1600

Figure 10. Accuracy of Euler solution

estimated by Richardson method

for the grids with 𝑁 = 400, 800, 1600

The results obtained by the Euler method for the assumed boundary
conditions show that the angles 𝜓, 𝜙 linearly increase with time (see Figures 2
and 3), while the angle 𝜃 experiences harmonic-like oscillations with growing
amplitude (see Figure 4).
Figures 5–7 show that the rates of change of the Euler angles vary according

to a harmonic-like law, the amplitude of oscillations increasing with time.

5. Conclusions

A crude mathematical model of a kinematic support is constructed, in which
the support is considered as a perfectly rigid body oscillating in a vertical
plane above a fixed horizontal perfectly smooth plate. The approximate model
is rigid and does not take friction into account.
A procedure for reducing the system of differential equations of the model

to a form suitable for applying the finite difference method is described and
implemented in the Sage computer algebra system.
An explicit Euler method is implemented for grids with the number of

partitions 400, 800, 1600 and the accuracy of the solution is estimated by the
Richardson method.
For the initial and boundary conditions specified by us, the time dependence

of Euler angles and their rates is determined. The results of numerical
experiments are consistent with the general idea that small deviations lead to
small oscillations of the support.
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The problems and lines of study that will be addressed at further stages of
the research are identified as follows. First, to solve the problem, we have to
to determine the correct additional conditions under which the construction
is stable or loses stability, i.e., when at strong ground vibrations the center
of gravity horizontally shifts beyond the limits of return movement of the
support and the support begins to tip over [16]. After finding the correct
initial and boundary conditions, to create an adequate mathematical model
of the support, we will take friction into account, specifying the reaction of
the plane (base plate), and the effect of earthquakes on the movement of the
supports.
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Моделирование кинематических опор в Sage
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Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

В статье рассмотрена кинематическая опора, которая позволяет снижать
горизонтальные динамические воздействия на здание во время землетрясений.
Модель сейсмоизолирующей опоры рассматривается с точки зрения классиче-

ской механики, то есть предполагается, что опора — абсолютно твёрдое тело,
колеблющееся в вертикальной плоскости над неподвижной горизонтальной твёр-
дой плитой. Данный подход позволяет более адекватно описать взаимодействие
опоры с грунтом и плитой здания.
В работе описана процедура сведения полной системы уравнений движения

тяжёлого твёрдого тела по неподвижной горизонтальной абсолютно гладкой
плоскости к виду, пригодному для применения метода конечных разностей, и её
реализация в системе компьютерной алгебры Sage.
Проведены численные расчёты методом Эйлера для сеток с разным количе-

ством разбиений и реализована математической модель опоры как абсолютно
твёрдого тела в системе компьютерной алгебры Sage. В статье представлены про-
межуточные результаты численных экспериментов, полученных в Sage, и дан
краткий анализ (описание) результатов.

Ключевые слова: кинематическая опора, сейсмоизолирующая опора, мате-
матическая модель, МКР, система компьютерной алгебры, Sage, численные
расчёты


