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The preservation of quadratic integrals on approximate solutions of autonomous
systems of ordinary differential equations ̇𝑥 = 𝑓(𝑥), found by the trapezoidal scheme,
is investigated. For this purpose, a relation has been established between the
trapezoidal scheme and the midpoint scheme, which preserves all quadratic integrals
of motion by virtue of Cooper’s theorem. This relation allows considering the
trapezoidal scheme as dual to the midpoint scheme and to find a dual analogue
for Cooper’s theorem by analogy with the duality principle in projective geometry.
It is proved that on the approximate solution found by the trapezoidal scheme,
not the quadratic integral itself is preserved, but a more complicated expression,
which turns into an integral in the limit as Δ𝑡 → 0. Thus the concept of conjugate
difference schemes is investigated in pure algebraic way. The results are illustrated
by examples of linear and elliptic oscillators. In both cases, expressions preserved by
the trapezoidal scheme are presented explicitly.
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1. Introduction

Dynamical systems are the most important mathematical models in me-
chanics and physics. Only a few of these models are integrated in a closed
form [1], therefore, they have to be investigated using numerical methods, of
which the most important is the finite difference method.

Let 𝑥 be a point in an 𝑚-dimensional affine space. Any difference scheme
that approximates differential equation

𝑑𝑥
Δ𝑡

= 𝑓(𝑥) (1)

© YingY., Malykh M. D., 2021

This work is licensed under a Creative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/



64 DCM&ACS. 2021, 29 (1) 63–72

describes a transition from the value 𝑥 at some initial moment of time to the
value of ̂𝑥 at the moment of time shifted from the initial value by the quantity
Δ𝑡, called the step. We will consider algebraic schemes, i.e., those in which
the above correspondence is specified using a system of algebraic equations

𝐹(𝑥, ̂𝑥, Δ𝑡) = 0. (2)

If the original equation has an algebraic integral 𝑔(𝑥) = 𝐶, and it follows
from the equations (2) that

𝑔( ̂𝑥) = 𝑔(𝑥),

then this difference scheme is said to preserve this integral.
If we use explicit difference schemes for integrating dynamical systems,

then the values of the integrals of motion will change monotonically step by
step. At the turn of the 1980s and 1990s, the first difference schemes were
constructed that preserve exactly the algebraic integrals of dynamical systems.
For example, the scheme constructed by D. Greenspan preserves all classical
integrals of N-body problems [2]–[5], the symplectic Runge–Kutta schemes,
including the simplest of them, the midpoint scheme

̂𝑥 − 𝑥 = 𝑓 ( ̂𝑥 + 𝑥
2

) Δ𝑡, (3)

preserve linear and quadratic integrals in virtue Cooper’s theorem [6]–[9].
This circuit has a whole bunch of wonderful properties inherited from the
original differential equation [10].

This seems to be a simple consequence of the 𝑡-symmetry of the midpoint
circuit: the equation (3) is invariant under the transformation

Δ𝑡 → −Δ𝑡, ̂𝑥 → 𝑥, 𝑥 → ̂𝑥.

The trapezoidal scheme has the same property

̂𝑥 − 𝑥 = (𝑓( ̂𝑥) + 𝑓(𝑥)) Δ𝑡
2

, (4)

however, in experiments with an elliptic oscillator performed by Yu. A. Blinkov
for PCA’2019 [11], the quadratic integrals oscillated, although they did not
increase monotonically. The absence of monotonicity in the variation of
the values of the integrals of motion on approximate solutions is extremely
important from the physical point of view, since, on average, all fundamental
conservation laws are satisfied on solutions of this type.

The noted behavior of the approximate solutions found by the trapezoidal
scheme can be explained by the fact that it is conjugated to the midpoint
scheme and therefore some more complex expression is retained on it [9,
§VI.8.1-2].

The very concept of conjugate difference schemes [9, def 8.1] is formulated
locally in terms of power series. The implicit function theorem can be applied
to the system of algebraic equations (2) and, under certain conditions, we
can assert that
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̂𝑥 = 𝑥 + 𝑓(𝑥)Δ𝑡 + … = ΦΔ𝑡(𝑥),
where Φ is a series in powers of Δ𝑡, the coefficients of which are rational
functions of 𝑥. Difference schemes

̂𝑥 = ΦΔ𝑡(𝑥) and ̂𝑥 = ΨΔ𝑡(𝑥)

are referred to as mutually conjugate, if there exists a change of coordinates

𝑥 = 𝜒Δ𝑡(𝑦) = 𝑦 + … ,

such that
ΦΔ𝑡 = 𝜒−1

Δ𝑡 ∘ ΨΔ𝑡 ∘ 𝜒Δ𝑡.
It is clear from this definition that the exact preservation of the expression

of one of these schemes entails the preservation of some expression by the
other scheme. Say, if the scheme ΨΔ𝑡 preserves the integral 𝑔(𝑥) exactly, then
the scheme ΦΔ𝑡 preserves the expression

𝑔(𝜒Δ𝑡(𝑥)) = 𝑔(𝑥) + 𝑔1(𝑥)Δ𝑡 + … ,

depending on Δ𝑡 [9, §VI.8.2].
In this article, we will clarify the geometric meaning of the conjugacy of the

two above schemes and write down explicitly the expression that preserves
the trapezoidal scheme.

2. Relationship between trapezoidal and midpoint
schemes

The approximate solution of the system (1), found by the scheme (2) with
constant step Δ𝑡, is a finite or infinite sequence of points

𝑥0, 𝑥1, 𝑥2, … (5)

the first element of which is chosen in an arbitrary way, and all the others
are defined recursively: 𝑥𝑛+1 is the root ̂𝑥 of the equation

𝐹(𝑥𝑛, ̂𝑥, Δ𝑡) = 0,

tending to 𝑥𝑛 at Δ𝑡 → 0.

Theorem 1. Let 𝑥0, 𝑥1, 𝑥2, … be an approximate solutions of equation (1),
calculated using the midpoint scheme (3). Then coordinates 𝑥′

0, 𝑥′
1, 𝑥′

2, … of
middles of links of broken line 𝑥0𝑥1𝑥2 … (figure 1) yield another approximate
solution of the same equation, calculated by the trapezoidal scheme (4).

Proof. The middle of link 𝑥𝑛𝑥𝑛+1 of the solution found by the midpoint
scheme is given by the formula

𝑥′
𝑛 =

𝑥𝑛+1 + 𝑥𝑛
2

.
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Figure 1. The solutions 𝑥0, 𝑥1, 𝑥2, … and 𝑥′
0, 𝑥′

1, 𝑥′
2, … found by the midpoint schemes

and by the trapezoidal scheme

In this case, the ends of the link are unambiguously reconstructed from its
given midpoint:

𝑥𝑛+1 =
𝑥𝑛+1 + 𝑥𝑛

2
+

𝑥𝑛+1 − 𝑥𝑛
2

= 𝑥′
𝑛 + 𝑓(𝑥′

𝑛)Δ𝑡
2

and

𝑥𝑛 =
𝑥𝑛+1 + 𝑥𝑛

2
−

𝑥𝑛+1 − 𝑥𝑛
2

= 𝑥′
𝑛 − 𝑓(𝑥′

𝑛)Δ𝑡
2

.

Since 𝑥𝑛+1 belongs to two links 𝑥𝑛𝑥𝑛+1 and 𝑥𝑛+1𝑥𝑛+2, we have

𝑥𝑛+1 = 𝑥′
𝑛 + 𝑓(𝑥′

𝑛)Δ𝑡
2

= 𝑥′
𝑛+1 − 𝑓(𝑥′

𝑛+1)Δ𝑡
2

from where it immediately follows that

𝑥′
𝑛+1 − 𝑥′

𝑛 = (𝑓(𝑥′
𝑛+1) + 𝑓(𝑥′

𝑛)) Δ𝑡
2

.

Thus, the midpoints can be calculated using the trapezoidal difference
scheme (4). �

By virtue of the theorem 1, the solutions 𝑥0𝑥1𝑥2 … and 𝑥′
0𝑥′

1𝑥′
2 …, found

by the midpoint schemes (3) and by the trapezoidal scheme (4) turn out to be
coupled with each other. By analogy with the duality principle in projective
geometry [12] it is hoped that any statement about the midpoint scheme
should have a ’twin’ in the trapezoidal scheme.

One of the most interesting properties of the midpoint scheme is Cooper’s
theorem [9, th. 2.2], according to which this scheme preserves any quadratic
integral of motion.
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Equality
𝑔(𝑥𝑛) = 𝑔(𝑥𝑛+1)

is easily rewritten by expressing 𝑥𝑛 though 𝑥′
𝑛, and 𝑥𝑛+1 though 𝑥′

𝑛+1:

𝑔 (𝑥′
𝑛 − 𝑓(𝑥′

𝑛)Δ𝑡
2

) = 𝑔 (𝑥′
𝑛+1 − 𝑓(𝑥′

𝑛+1)Δ𝑡
2

) .

Therefore, for dual scheme (4) the conservation law takes the form

𝑔 ( ̂𝑥 − 𝑓( ̂𝑥)Δ𝑡
2

) = 𝑔 (𝑥 − 𝑓(𝑥)Δ𝑡
2

) . (6)

Thus, a quadratic integral is also inherited by the trapezoidal scheme (4),
but the expression for the conserved quantity coincides with 𝑔 only in the
limit Δ𝑡 → 0. This circumstance made complicated finding it.

Definition 1. Let us say that a difference scheme inherits the integral
𝑔(𝑥) = 𝐶 if there exists a rational function 𝐺(𝑥, Δ𝑡) such that

1) from the equations that specify the scheme it follows that

𝐺( ̂𝑥, Δ𝑡) = 𝐺(𝑥, Δ𝑡),

2) in the limit Δ𝑡 → 0 expression 𝐺(𝑥, Δ𝑡) turns into 𝑔(𝑥)
Function 𝐺 itself will be referred to as the difference analog of the integral 𝑔.

Theorem 2 (Cooper’s dual theorem). The trapezoidal scheme inherits
all linear and quadratic integrals of motion, and the difference analogue of the
integral 𝑔 will be

𝑔 (𝑥 − 𝑓(𝑥)Δ𝑡
2

) .

3. Examples

Consider several examples.

3.1. Linear oscillator

In the case of a linear dynamical system, the midpoint scheme and the
trapezoidal scheme are the same, so the midpoint scheme becomes self-
conjugate. This circumstance greatly simplifies the study of the midpoint
scheme for a linear oscillator.

Consider a dynamic system

̇𝑥 = −𝑦, ̇𝑦 = 𝑥 (7)

which has a quadratic integral

𝑥2 + 𝑦2 = 𝐶.
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The midpoint scheme will give points (𝑥0, 𝑦0), (𝑥1, 𝑦1), … lying on the circle

𝑥2 + 𝑦2 = 𝑅2,

the radius of which is determined by the initial point

𝑅 = √𝑥2
0 + 𝑦2

0 .

The midpoints of the links lying on the circle

𝑥2 + 𝑦2 = 𝑟2,

the radius of which can be determined by the first link

𝑟 = √(𝑥1 + 𝑥0
2

)
2

+ (𝑦1 + 𝑦0
2

)
2

= 𝑅

√1 + Δ𝑡2/4
.

Thus, the trajectory on the phase plane turns out to be a broken line, the
vertices of which lie on a circle of radius 𝑅, and the links touch a concentric

circle, the radius of which is √1 + Δ𝑡2/4 times less than 𝑅. In particular,

the trajectory will be closed, and the solution will be periodic if 𝑅 and 𝑟 are
the radii of the circumscribed and inscribed circle in the 𝑁-gon, that is, if

𝑟/𝑅 = cos
𝜋
𝑁

.

This immediately gives the formula for choosing a step

√1 + Δ𝑡2/4 = cos
𝜋
𝑁

.

This formula was previously obtained by us analytically [10].

3.2. Elliptic oscillator

By the definition of Jacobi functions [13],

𝑝 = sn 𝑡, 𝑞 = cn 𝑡, 𝑟 = dn 𝑡

is a particular solution of the autonomous system of differential equations

̇𝑝 = 𝑞𝑟, ̇𝑞 = −𝑝𝑟, ̇𝑟 = −𝑘2𝑝𝑞 (8)

with the initial conditions

𝑝 = 0, 𝑞 = 𝑟 = 1 at 𝑡 = 0.

The midpoint scheme preserves both intergals

𝑝2 + 𝑞2 = const and 𝑘2𝑝2 + 𝑟2 = const (9)
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of this system. Now the trapezoidal scheme

̂𝑝 − 𝑝 = ( ̂𝑞 ̂𝑟 + 𝑞𝑟) Δ𝑡
2

, …

does not coincide with the midpoint scheme and, therefore, its invariants are
more complicated.

Nevertheless, the integral

𝑝2 + 𝑞2 = const

corresponds to the integral

(𝑝 − 𝑞𝑟Δ𝑡
2

)
2

+ (𝑞 + 𝑝𝑟Δ𝑡
2

)
2

= 𝑝2 + 𝑞2 + 𝑞2𝑟2 Δ𝑡2

4
+ 𝑝2𝑟2 Δ𝑡2

4
or

(𝑝2 + 𝑞2) (1 + 𝑟2Δ𝑡2

4
) .

The integral
𝑘2𝑝2 + 𝑟2 = const

correspods to

𝑘2 (𝑝 − 𝑞𝑟Δ𝑡
2

)
2

+ (𝑟 + 𝑘2𝑝𝑞Δ𝑡
2

)
2

= 𝑘2𝑝2 + 𝑟2 + 𝑘2𝑞2𝑟2 Δ𝑡2

4
+ 𝑘4𝑝2𝑞2 Δ𝑡2

4
or

(𝑘2𝑝2 + 𝑟2) (1 + 𝑘2𝑞2 Δ𝑡2

4
) .

Thus, in the space 𝑝𝑞𝑟 the vertices of the trajectory lie on the elliptic curve
(9), and the midpoints of the links of the broken line lie on a more complex
curve

(𝑝2 + 𝑞2) (1 + 𝑟2Δ𝑡2

4
) = 𝐶1, (𝑘2𝑝2 + 𝑟2) (1 + 𝑘2𝑞2 Δ𝑡2

4
) = 𝐶2. (10)

This means that the trapezoidal scheme for an elliptic oscillator inherits both
quadratic integrals, and their difference counterparts are the expressions (10).

If we follow the change in 𝑝2 + 𝑞2 on the approximate solution found by
the trapezoidal scheme, then we will see a deviation from a constant value
equal to

(𝑝2 + 𝑞2)𝑟2Δ𝑡2

4
.

The exact solution is periodic, so in the plots these deviations appear as
periodic fluctuations.
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4. Conclusion

If you do not use specially developed difference schemes, discretization of
continuous models by the method of finite differences introduces completely
new properties into these models: calculations lead to a monotonic change in
quantities, which, from physical considerations, must remain constant. For
example, in computer experiments, dissipation appears even in those cases
when energy was conserved in the original continuous model. In calculations
for sufficiently long time intervals, this dissipation becomes very noticeable,
and the parameters of the dynamical system are significantly distorted.

The number of schemes that preserve algebraic integrals of motion exactly
is small and their drawbacks are well known. Difference schemes, in which
the integrals of motion fluctuate around their initial values, significantly
expand this set. However, the noted property is usually accepted without
explanation and even more rigorous proof. Theorem 2, which is dual to
Cooper’s theorem, allows us to fill in this gap for the trapezoidal scheme (4)
by explicitly specifying expressions that coincide in the limit Δ𝑡 → 0 with
exact integrals and at the same time are preserved on approximate solutions
exactly.

It would be very interesting to generalize this result to other schemes, the
use of which does not lead to a monotonic increment of the integrals of motion.
For such a generalization, in our opinion, it is necessary to investigate in more
detail the question of schemes that are, in a sense, dual to the symplectic
Runge-Kutta schemes.
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О сопряжённых разностных схемах: схема средней
точки и схема трапеций
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В статье исследован вопрос о сохранении квадратичных интегралов на при-
ближённых решениях автономных систем обыкновенных дифференциальных
уравнений ̇𝑥 = 𝑓(𝑥), найденных по схеме трапеций. Установлена связь между
схемой трапеции и схемой средней точки, которая сохраняет все квадратичные
интегралы движения в силу теоремы Купера. Эта связь позволяет рассмат-
ривать схему трапеций как двойственную к схеме средней точки и отыскать
двойственный аналог для теоремы Купера. Доказано, что на приближённом ре-
шении, найденном по симметрической схеме, сохраняется не сам квадратичный
интеграл, а более сложное выражение, которое переходит в интеграл в пределе
при Δ𝑡 → 0. Результаты проиллюстрированы примерами — линейным и эллип-
тическим осцилляторами. В обоих случаях в явном виде выписаны выражения,
которые сохраняет схема трапеций.

Ключевые слова: динамические системы, квадратичные интегралы, раз-
ностные схемы, законы сохранения, схема средней точки, схема трапеций


