Contemporary Mathematics. Fundamental Directions.

ISSN 2413-3639 (print), 2949-0618 (online)

DOI 10.22363/2413-3639-2022-68-4-716-731 УДК 517.956.4+517.958

СУЩЕСТВОВАНИЕ РЕШЕНИЯ ЗАДАЧИ СО СВОБОДНОЙ ГРАНИЦЕЙ ДЛЯ СИСТЕМ «РЕАКЦИЯ-ДИФФУЗИЯ»

 Γ . А. Юнес^{1,2}, Н. Эль Хатив³, В. А. Вольперт⁴

¹Institut Camille Jordan, Виллербанн, Франция ² University Lyon 1, Виллербанн, Франция 3Lebanese American University, Библос, Ливан ⁴ Российский университет дружбы народов, Москва, Россия

В работе доказывается существование решения новой задачи со свободной границей для систем типа «реакция-диффузия», описывающих рост биологических тканей вследствие притока клеток и пролиферации. Для этого задача сводится к задаче с закрепленной границей через замену переменных. Полученная задача имеет зависящие от времени и положения в пространстве коэффициенты с нелинейными слагаемыми. Затем мы доказываем существование решения для соответствующей линейной задачи и с помощью теоремы о неподвижной точке получаем существование решения нелинейной задачи. Наконец, мы возвращаемся к задаче со свободной границей и делаем вывод о существовании ее решения.

Ключевые слова: задача со свободной границей, система реакция-диффузия, рост биологических тканей, существование решения

Для цитирования: Г. А. Юнес, Н. Эль Хатиб, В. А. Вольперт. Существование решения задачи со свободной границей для систем «реакция-диффузия»// Соврем. мат. Фундам. направл. 2022. T. 68, No. 4. C. 716-731. http://doi.org/10.22363/2413-3639-2022-68-4-716-731

1. Введение

Задачи со свободной границей используются для исследования различного рода феноменов, особенно в биологических процессах. Например, они применяются в моделях инвазии рака и терапии в микросредах. В [7] нелинейная система уравнений в частных производных со свободной границей моделирует лучевую терапию рака, где свободной границей является поверхность опухоли. Объем опухоли моделируется как несжимаемая жидкость, и популяция клеток приводит к колебаниям внутреннего давления, что вызывает движение опухолевых клеток. Авторы доказали существование и единственность решения этой системы, а также провели вычислительный эксперимент.

Далее, в моделировании роста и структуры растений задачи со свободной границей используется для описания механизмов ветвления, см. [1]. В этой работе авторы описывают рост и формирование растения как задачу со свободной границей, где растущее растение — это система интервалов, описывающая рост ветвей, чья длина зависит от времени. Система состоит из уравнений диффузии с конвективными слагаемыми, где краевые условия зависят от скорости роста.

[©] Г. А. Юнес, Н. Эль Хатиб, В. А. Вольперт, 2022

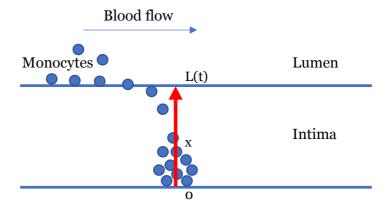


Рис. 1. Схематическое описание поперечного сечения артерии, показывающее проникновение клеток из крови в артериальную стенку и их накопление внутри интимы. Клетки в интиме формируют бляшку, которая растет в направлении, перпендикулярном сосуду, и сужает кровяной поток. Красная стрелка показывает область размера L(t), зависящего от времени. Заметим, что клетки внутри интимы могут разделяться, умирать или перемещаться, так что размеры области определяются комбинацией процессов проникновения клеток через стенку и их динамики внутри области.

FIG. 1. Schematic representation of the cross-section of an artery showing the penetration of cells from the blood towards the arterial wall and their accumulation in the intima. The cells in the intima form a plaque which grows in the direction perpendicular to the vessel and narrows the blood flow. The red arrow represents the domain with time-dependent size L(t). Note that cells inside the intima can divide, die or move away, such that the width of the domain is determined by the combination of cell influx through the wall and their dynamics inside the domain.

В некоторых других работах исследуются задачи со свободной границей для модели «хищник—жертва» при изучения пространственно-временной динамики экологических систем. В [8] свободная граница описывает фронт распространения хищников в одномерной среде обитания. Уравнения «реакция—диффузия» моделируют плотность популяций хищников и жертв, в которых таксис жертв варьируется от движения к еде до агрегации для выживания. Авторы доказывают существование и единственность решения, используя теорему о сжимающем отображении, и проводят вычислительный эксперимент для исследования поведения взаимодействующих видов и эволюции свободной границы.

Также много математических моделей со свободной границей было разработано для изучения атеросклероза — воспалительного заболевания, ведущего к формированию липидных бляшек на артериальной стенке. В таких моделях рост бляшки приводит к перемещению области. Отметим работу [2], в которой авторы рассматривают повреждение эндотелия и проницаемость для описания изменения радиуса просвета во времени. Анализ показывает, что повреждение эндотелия со временем увеличивается. В [6] область представляет собой артерию, а эндотелий моделируется как интерфейс между просветом и интимой. Авторы используют соответствующие условия передачи и граничные условия для моделирования концентрации изучаемых факторов с помощью УЧП типа «реакция—конвекция—диффузия» в интиме, на клеточной поверхности эндотелия и в просвете. В этой работе изменение проницаемости эндотелия обусловлено увеличением концентрации ЛПНП в эндотелии и воспалительным процессом. Более того, как показано в [3], концентрация различных элементов, скапливающихся под поврежденной частью слоя эндотелия, ведет к внутреннему и внешнему росту бляшки. Ее внешний рост обусловлен давлением крови на стенку и по принятому допущению имеет форму дуги окружности.

В настоящей работе мы изучаем системы «реакция—диффузия» со свободной границей в одномерном случае. Такие задачи возникают в различных ситуациях, особенно в биологии, где накопление клеток приводит к росту размера области. Интересным приложением таких задач является моделирование атеросклероза, характеризующегося проникновением липопротеинов низкой плотности и иммунных клеток в артериальную стенку через тонкий барьер, называемый эндотелием. Их накопление и взаимодействие в субэндотелиальном пространстве ведет к формированию бляшки. На рис. 1 показано движение области вследствие проникновения клеток через эндотелий и их накопления под интимой, слоем артериальной стенки.

Одной из важнейших характеристик задач со свободной границей являются уравнения, описывающие движение. Общепринятый подход, особенно в физических задачах (плавление, рост кристаллов) заключается в движении свободной границы вместе с потоком соответствующих величин через эту границу. Однако этот подход может быть неприменим для биологических тканей, поскольку клетки могут делиться, умирать и затем удаляться. Таким образом, движение свободной границы в случае с биологическими задачами определяется не только потоком клеток или субстанций через границу, но и их динамикой внутри области. В текучей среде движение свободной границы определяется разницей в давлении внутри и снаружи области. Биологические ткани имеют более сложную структуру, возможно, с вязкоупругими или вязкопластичными свойствами, адгезией «клетка—клетка», делением и смертью клеток, их движением и т. д. Движение свободной границы в этом случае определяется конкретными свойствами ткани, клеток и субстанций, которые ее формируют.

В этой работе рассматривается задача со свободной границей для биологической ткани, формируемой клетками, в предположении, что клетки не сжаты. Тогда размер области, которую формируют клетки, в одномерном случае определяется количеством клеток. Мы приведем формулировку задачи в следующем разделе. Наша задача состоит в том, чтобы доказать существование решения этой задачи.

2. Описание модели

2.1. Модель со свободной границей. Рассмотрим вектор-функции u, F и h, состоящие из m компонент, и следующую систему на интервале 0 < x < L(t), где L(t) зависит от времени:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + F(u), \tag{2.1}$$

где u — концентрация элементов, а D — диагональная матрица с положительными диагональными элементами D_j , $j=1,\ldots,m$. Граничные условия следующие:

$$x = 0 : \frac{\partial u}{\partial x} = 0, \quad x = L(t) : \frac{\partial u}{\partial x} = h(u),$$
 (2.2)

где h(u) определяет поток элементов через границу. Длина интервала L(t) определена как

$$L(t) = L_0 + \int_0^{L(t)} f(u)dx,$$
(2.3)

где L_0 — начальная длина, функция f принадлежит классу $C^2(\mathbb{R})$, а интеграл в правой части определяет увеличение длины. Везде ниже будем полагать, что $0 < \epsilon \leqslant f(u) < f_0 + f(u) < 1$ для всех $u \geqslant 0$ и некоторых положительных констант ϵ и f_0 , где неравенства между векторами понимаются в покомпонентном смысле. Более того, $F(0) \geqslant 0$ и $h(u) \geqslant 0$ для всех $u \geqslant 0$, так что решение задачи (2.1), (2.2) с неотрицательным начальным условием остается неотрицательным при всех $t \geqslant 0$. Другие условия на эти функции сформулированы ниже.

Дифференцируя уравнение (2.3) по t, получим:

$$L'(t) = f(u(L(t), t))L'(t) + \int_0^{L(t)} \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial u_j}(u(x, t)) \frac{\partial u_j(x, t)}{\partial t} \right) \right) dx =$$

$$= f(u(L(t),t))L'(t) + \int_0^{L(t)} \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial u_j(x,t)}(u(x,t)) \left(D_j \frac{\partial^2 u_j}{\partial x^2} + F_j(u(x,t)) \right) \right) \right) dx.$$

Отсюда получаем, что L'(t) определяется формулой:

$$L'(t) = \frac{\int_0^{L(t)} \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial u_j(x,t)} (u(x,t)) \left(D_j \frac{\partial^2 u_j}{\partial x^2} + F_j(u(x,t)) \right) \right) \right) dx}{1 - f(u(L(t),t))}. \tag{2.4}$$

Задача с закрепленной границей. Пробуя исследовать систему (2.1)-(2.3), сначала сведем ее к системе с закрепленной границей с помощью замены переменной, а затем докажем, что решение такой задачи существует. Это позволит нам доказать существование решения для исходной задачи с подвижной границей.

Сделаем следующую замену переменной:

$$y = \frac{x}{L(t)},$$

где $y \in [0,1]$. Положим u(x,t) = u(yL(t),t) = U(y,t). Используя правило дифференцирования сложной функции, имеем:

$$\frac{\partial u}{\partial x} = \frac{\partial U}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial U}{\partial t} \frac{\partial t}{\partial x} = \frac{\partial U}{\partial y} \frac{\partial y}{\partial x} = \frac{1}{L(t)} \frac{\partial U}{\partial y},$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{L^2(t)} \frac{\partial^2 U}{\partial y^2},$$

$$\frac{\partial u}{\partial t} = \frac{\partial U}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial U}{\partial t} = -\frac{yL'(t)}{L(t)} \frac{\partial U}{\partial y} + \frac{\partial U}{\partial t}.$$

Подставляя эти выражения в уравнения (2.1), (2.2) и (2.4), мы получаем следующую задачу:

яляя эти выражения в уравнения (2.1), (2.2) и (2.4), мы получаем следующую задачу:
$$\begin{cases} \frac{\partial U}{\partial t} = \frac{D}{L^2(t)} \frac{\partial^2 U}{\partial y^2} + \frac{yL'(t)}{L(t)} \frac{\partial U}{\partial y} + F(U), \\ y = 0 : \frac{\partial U}{\partial y} = 0, \quad y = 1 : \frac{\partial U}{\partial y} = L(t)h(U), \\ \int_0^1 \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial U_j(y,t)} (U(y,t)) \left(\frac{D_j}{L^2(t)} \frac{\partial^2 U_j}{\partial y^2} + F_j(U(y,t)) \right) \right) \right) L(t) dy \\ L'(t) = \frac{1}{U(1,t)} \left(\frac{D_j}{U_j(y,t)} \frac{\partial^2 U_j}{\partial y^2} + \frac{U(y,t)}{U(y,t)} \right) \right) L(t) dy \end{cases}$$

Существование решения задачи с закрепленной границей

В этом разделе мы докажем существование решения задачи с закрепленной границей, затем получим аналогичный результат для задачи со свободной границей. Рассмотрим следующую краевую задачу для $y \in [0, 1]$:

$$\begin{cases} \frac{\partial U}{\partial t} = \frac{D}{L^{2}(t)} \frac{\partial^{2}U}{\partial y^{2}} + \frac{yL'(t)}{L(t)} \frac{\partial U}{\partial y} + F(U), \\ y = 0 : \frac{\partial U}{\partial y} = 0, \quad y = 1 : \frac{\partial U}{\partial y} = L(t)h(U), \\ U(y,0) = 0, \\ L'(t) = \frac{\int_{0}^{1} \left(\sum_{j=1}^{m} \left(\frac{\partial f}{\partial U_{j}(y,t)}(U(y,t)) \left(\frac{D_{j}}{L^{2}(t)} \frac{\partial^{2}U_{j}}{\partial y^{2}} + F_{j}(U(y,t))\right)\right)\right) L(t)dy}{1 - f(U(1,t))}. \end{cases}$$

$$(3.1)$$

Введем функции N(t) и V(y,t) и рассмотрим следующую линейную задачу для $y \in [0,1]$, $t \in [0,T]$, где U_i , F_i и h_i — компоненты вектор-функций U, F и h, соответственно:

$$\begin{cases}
\frac{\partial U_{j}}{\partial t} = \frac{D_{j}}{N^{2}(t)} \frac{\partial^{2} U_{j}}{\partial y^{2}} + \frac{yN'(t)}{N(t)} \frac{\partial U}{\partial y} + F_{j}(V(y,t)), \\
y = 0 : \frac{\partial U_{j}}{\partial y} = 0, \quad y = 1 : \frac{\partial U_{j}}{\partial y} = N(t)h_{j}(V(1,t)), \\
U_{j}(y,0) = 0.
\end{cases}$$
(3.2)

Введем следующие обозначения: Q_T — цилиндр $Q_T = [0,1] \times (0,T)$, т. е. множество точек (y,t) из \mathbb{R}^2 таких, что $y \in [0,1]$ и $t \in (0,T)$, $S = \{0,1\}$; $S_T = S \times (0,T)$; Q — произвольное открытое подмножество Q_T ; l — нецелое число такое, что 0 < l < 1/2.

Теорема 3.1 (существование решения системы (3.2)). Если выполнены следующие условия:

- функия N принадлежит классу $H^{l/2+1}([0,T])$,
- ullet существует константа $N_0>0$ такая, что функция N ограничена числом N_0 снизу,
- функция F_j принадлежит классу $C^1(\mathbb{R})$,
- функция h_i принадлежит классу $C^1(\mathbb{R})$,
- функция V принадлежит классу $H^{(l+1)}([0,1] \times [0,T]),$
- $h_i(V(1,0)) = 0$,

то задача (3.2) имеет единственное решение $U_i \in H^{l+2,l/2+1}(\overline{Q_T})$, причем

$$|U_j|_Q^{(l+2)} \le c_j \left(\|h_j\|_{C^1(\mathbb{R})} + \|F_j\|_{C^1(\mathbb{R})} + |V|_{Q_T}^{(l+1)} \left(\|h_j\|_{C^1(\mathbb{R})} + c_V \|F_j\|_{C^1(\mathbb{R})} \right) \right), \tag{3.3}$$

 $\epsilon \partial e \ c_j \ u \ c_V - \kappa$ онстанты.

Доказательство. Определим оператор \mathcal{L}_i :

$$\mathcal{L}_{j}\left(y, t, \frac{\partial}{\partial y}, \frac{\partial}{\partial t}\right) = \frac{\partial U_{j}}{\partial t} - \frac{D_{j}}{N^{2}(t)} \frac{\partial^{2} U_{j}}{\partial y^{2}} - \frac{yN'(t)}{N(t)} \frac{\partial U_{j}}{\partial y},$$

функцию f_i :

$$f_j : \overline{Q_T} \longrightarrow \mathbb{R},$$

 $(y,t) \longmapsto f_j(y,t) = F_j(V(y,t)),$

функцию Φ_j :

$$\Phi_j \colon \overline{[0,T]} \longrightarrow \mathbb{R},$$

$$t \longmapsto \Phi_j(t) = h_j(V(1,t)),$$

и функцию b_1 :

$$b_1 \colon \overline{S_T} \longrightarrow \mathbb{R},$$

 $(y,t) \longmapsto b_1(y,t) = \frac{1}{N(t)}.$

Получим, что

$$\left| \frac{D_{j}}{N^{2}(t)} \right|_{(0,T)}^{(l/2)} = \left\langle \frac{D_{j}}{N^{2}(t)} \right\rangle_{(0,T)}^{(l/2)} + \left\langle \frac{D_{j}}{N^{2}(t)} \right\rangle_{(0,T)}^{(0)} = \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leqslant \rho_{0}}} \frac{D_{j} \left| N^{2}(t') - N^{2}(t) \right|}{|t-t'|^{l/2} |N^{2}(t)N^{2}(t')|} + \left| \frac{D_{j}}{N^{2}(t)} \right|_{(0,T)}^{(0)} \leqslant \left\{ \frac{D_{j}}{N^{4}_{0}} \left(\sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leqslant \rho_{0}}} \frac{\left| N(t') \right| \left| N(t') - N(t) \right|}{|t-t'|^{l/2}} + \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leqslant \rho_{0}}} \frac{\left| N(t) \right| \left| N(t') - N(t) \right|}{|t-t'|^{l/2}} \right\} + \frac{D_{j}}{N^{2}_{0}} = \left\{ \frac{2D_{j}}{N^{4}_{0}} \left(\left\langle N \right\rangle_{[0,T]}^{(0)} \left\langle N \right\rangle_{[0,T]}^{(l/2)} \right) + \frac{D_{j}}{N^{2}_{0}} \leqslant \frac{2D_{j}c_{N}}{N^{4}_{0}} \left(\left| N \right|_{[0,T]}^{(l/2+1)} \right)^{2} + \frac{D_{j}}{N^{2}_{0}} < \infty,$$

где c_N — константа, и

$$\left|\frac{N'}{N}\right|_{(0,T)}^{(l/2)} = \left\langle\frac{N'}{N}\right\rangle_{(0,T)}^{(l/2)} + \left\langle\frac{N'}{N}\right\rangle_{(0,T)}^{(0)} = \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leq \rho_0}} \frac{|N'(t)N(t') - N'(t')N(t)|}{|t-t'|^{l/2}|N(t)N(t')|} + \left|\frac{N'}{N}\right|_{(0,T)}^{(0)} \leq \left(\frac{1}{N_0^2} \left(\sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leq \rho_0}} \frac{|N'(t)||N(t') - N(t)|}{|t-t'|^{l/2}} + \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leq \rho_0}} \frac{|N(t)||N'(t) - N'(t')|}{|t-t'|^{l/2}} \right) + \frac{|N'|_{(0,T)}^{(0)}}{N_0} \leq \left(\frac{1}{N_0^2} |N|_{[0,T]}^{(l/2+1)} \left(\langle N \rangle_{[0,T]}^{(l/2)} + \langle N' \rangle_{[0,T]}^{(l/2)}\right) + \frac{|N'|_{(0,T)}^{(0)}}{N_0} \leq \left(\frac{1}{N_0^2} |N|_{[0,T]}^{(l/2+1)} \left((c_N+1)|N|_{[0,T]}^{(l/2+1)}\right) + \frac{|N|_{[0,T]}^{(l/2+1)}}{N_0} \leq \frac{|N|_{[0,T]}^{(l/2+1)}}{N_0} \left(\frac{(c_N+1)|N|_{[0,T]}^{(l/2+1)}}{N_0} + 1\right) < \infty.$$

Отсюда мы получаем, что коэффициенты оператора \mathcal{L}_j принадлежат классу $H^{l,l/2}(\overline{Q}_T)$.

Более того, поскольку функция N ограничена снизу и принадлежит классу $H^{l/2+1}([0,T]) \subset H^{(l+1)/2}([0,T])$, можно аналогично доказать, что функция b_1 принадлежит классу $H^{(l+1)/2}([0,T])$.

Далее, если Φ_j непрерывна и $|\Phi_j|_{(0,T)}^{(l+1)/2}$ финитна, тогда функция $\Phi_j(t)$ принадлежит классу $H^{(l+1)/2}([0,T])$. Имеем:

$$\begin{split} |\Phi_j|_{(0,T)}^{((l+1)/2)} &= \langle \Phi_j \rangle_{(0,T)}^{(l+1)/2} + \langle \Phi_j \rangle_{(0,T)}^{(0)} = \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leqslant \rho_0}} \frac{|\Phi_j(t) - \Phi_j(t')|}{|t-t'|^{(l+1)/2}} + \max_{t \in (0,T)} |\Phi_j(t)| = \\ &= \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leqslant \rho_0}} \frac{|h_j(V(1,t)) - h_j(V(1,t'))|}{|V(1,t) - V(1,t')|} \frac{|V(1,t) - V(1,t')|}{|t-t'|^{(l+1)/2}} + \max_{t \in (0,T)} |h_j(V(1,t))| \leqslant \\ &\leqslant \|h_j\|_{C^1(\mathbb{R})} |V|_{Q_T}^{(l+1)} + \|h_j\|_{C^1(\mathbb{R})} < \infty. \end{split}$$

Таким образом, из того, что функция h_j принадлежит классу $C^1(\mathbb{R})$, а функция V удовлетворяет условию Гельдера порядка (l+1)/2 на (0,T), мы заключаем, что функция $\Phi_j(t)$ принадлежит пространству $H^{(l+1)/2}([0,T])$.

Функция $\Phi_j(t)$ удовлетворяет условиям согласования порядка (l+1)/2, если

$$\frac{\partial^k U_j(y,t)}{\partial t^k}\big|_{t=0} = \frac{\partial^k \Phi_j}{\partial t^k}\big|_{t=0} \qquad (k=0,\dots,(l+1)/2 \quad \text{if} \quad y \in S).$$

Из равенства $h_j(V(1,0)) = U_j(1,0) = 0$ мы получаем, что функция $\Phi_j(t)$ удовлетворяет условиям согласования порядка (l+1)/2.

Поскольку F_j принадлежит классу $C^1(\mathbb{R})$, а V непрерывна и удовлетворяет условию Гельдера порядка l+1, то функция \mathbf{f}_j непрерывна и $|\mathbf{f}_j|_{Q_T}^{(l)}$ и финитна, поскольку:

$$\begin{split} |\mathbf{f}_{j}|_{Q_{T}}^{(l)} &= \langle \mathbf{f}_{j} \rangle_{y,Q_{T}}^{(l)} + \langle \mathbf{f}_{j} \rangle_{t,Q_{T}}^{(l/2)} + \langle \mathbf{f}_{j} \rangle_{Q_{T}}^{(0)} = \\ &= \sup_{\substack{y,y' \in (0,1) \\ |y-y'| \leq \rho_{0}}} \frac{|F_{j}(V(y,t)) - F_{j}(V(y',t))|}{|y-y'|^{l}} + \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leq \rho_{0}}} \frac{|F_{j}(V(y,t)) - F_{j}(V(y',t))|}{|t-t'|^{l/2}} + |\mathbf{f}_{j}|_{Q_{T}}^{(0)} = \\ &= \sup_{\substack{y,y' \in (0,1) \\ |y-y'| \leq \rho_{0}}} \frac{|F_{j}(V(y,t)) - F_{j}(V(y',t))|}{|V(y,t) - V(y',t)|} \frac{|V(y,t) - V(y',t)|}{|y-y'|^{l}} + \\ &+ \sup_{\substack{t,t' \in (0,T) \\ |t-t'| \leq \rho_{0}}} \frac{|F_{j}(V(y,t)) - F_{j}(V(y,t'))|}{|V(y,t) - V(y,t')|} \frac{|V(y,t) - V(y,t')|}{|t-t'|^{l/2}} + \max_{(y,t) \in Q_{T}} |F_{j}(V(y,t))| \leq \\ &\leq ||F_{j}||_{C^{1}(\mathbb{R})} |V|_{Q_{T}}^{(l)} + ||F_{j}||_{C^{1}(\mathbb{R})} \leq c_{V} ||F_{j}||_{C^{1}(\mathbb{R})} |V|_{Q_{T}}^{(l+1)} + ||F_{j}||_{C^{1}(\mathbb{R})}, \end{split} \tag{3.4}$$

где c_V — константа. Таким образом, функция $f_j(y,t)$ принадлежит классу $H^{l,l/2}(\overline{Q_T})$.

Следовательно, поскольку коэффициенты оператора \mathcal{L}_j принадлежат пространству $H^{l,l/2}(\overline{Q_T})$ и $b_1 \in H^{l+1,(l+1)/2}(\overline{S_T})$, то для любых функций $f_j \in H^{l,l/2}(\overline{Q_T})$ и $\Phi(t) \in H^{(l+1)/2}([0,T])$, удовлетворяющей условиям согласования порядка [(l+1)/2], т. е. $U_j(1,0) = \Phi_j(0)$, в силу [4, теорема 5.3], для всех $j=1,\ldots,m$ задача (3.2) имеет единственное решение $U_j(y,t)$ из класса $H^{l+2,l/2+1}(\overline{Q_T})$, причем

$$|U_j|_Q^{(l+2)} \leqslant c_j \left(|\mathbf{f}_j|_Q^{(l)} + |\Phi_j|_{(0,T)}^{(l+1)/2} \right) \leqslant c_j \left(\|h_j\|_{C^1(\mathbb{R})} + \|F_j\|_{C^1(\mathbb{R})} + |V|_{Q_T}^{(l+1)} \left(\|h_j\|_{C^1(\mathbb{R})} + c_V \|F_j\|_{C^1(\mathbb{R})} \right) \right),$$
 где c_j — константа.

Из последнего равенства задачи (3.1) определим L(t) как:

$$L(t) = \int_0^t \left(\frac{\int_0^1 \left(\sum_{j=1}^m \left(\frac{\partial f}{\partial U_j}(U(y,s)) \left(\frac{D_j}{N^2(s)} \frac{\partial^2 U_j}{\partial y^2} + F_j(U(y,s)) \right) \right) \right) N(s) dy}{1 - f(U(1,s))} \right) ds + L(0), \quad (3.5)$$

где U — решение задачи (3.2). Обозначим

$$\psi(y,s) = \left(\sum_{j=1}^{m} \left(\frac{\partial f}{\partial U_j}(U(y,s)) \left(\frac{D_j}{N^2(s)} \frac{\partial^2 U_j}{\partial y^2} + F_j(U(y,s))\right)\right)\right) N(s).$$

Интегрируя $\psi(y,s)$ по частям от 0 до 1 по переменной y, имеем:

$$\int_{0}^{1} \psi(y,s) dy = \sum_{j=1}^{m} \int_{0}^{1} \left(\frac{\partial f}{\partial U_{j}}(U(y,s)) \frac{D_{j}}{N(s)} \frac{\partial^{2} U_{j}}{\partial y^{2}} + \frac{\partial f}{\partial U_{j}}(U(y,s)) F_{j}(U(y,s)) N(s) \right) dy =$$

$$= \sum_{j=1}^{m} \left[\left[\frac{\partial f}{\partial U_{j}}(U(y,s)) \frac{D_{j}}{N(s)} \frac{\partial U_{j}}{\partial y} \right]_{0}^{1} - \int_{0}^{1} \sum_{k=1}^{m} \left(\frac{\partial^{2} f}{\partial U_{j} \partial U_{k}}(U(y,s)) \frac{\partial U_{k}}{\partial y} \frac{D_{j}}{N(s)} \frac{\partial U_{j}}{\partial y} \right) dy +$$

$$+ \int_{0}^{1} \left(\frac{\partial f}{\partial U_{j}}(U(y,s)) F_{j}(U(y,s)) N(s) \right) dy \right] =$$

$$= \sum_{j=1}^{m} \left[h_{j}(V(1,s)) \frac{\partial f}{\partial U_{j}}(U(y,s)) D_{j} - \int_{0}^{1} \sum_{k=1}^{m} \left(\frac{\partial^{2} f}{\partial U_{j} \partial U_{k}}(U(y,s)) \frac{\partial U_{k}}{\partial y} \frac{D_{j}}{N(s)} \frac{\partial U_{j}}{\partial y} \right) dy +$$

$$+ \int_{0}^{1} \left(\frac{\partial f}{\partial U_{j}}(U(y,s)) F_{j}(U(y,s)) N(s) \right) dy \right]. \tag{3.6}$$

Отсюда мы заключаем, что L принадлежит классу $H^{\frac{(l+3)}{2}}([0,T])$. Определим отображение A_j , действующее в $H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T])$:

$$A_j \colon H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T]) \longrightarrow H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T]),$$

$$(N(t), V(y,t)) \longmapsto A_j(N(t), V(y,t)) = (L(t) - L(0), U(y,t)),$$

где U_j — решение задачи (3.2), а L удовлетворяет уравнению (3.5).

Предложение 3.1. Пусть вектор-функция U с компонентами U_j является решением задачи (3.2). В условиях теоремы 3.1 при $t \in [0,T]$ оператор A_j является ограниченным и компактным.

Доказательство. Пусть B — любое ограниченное множество в $H^{(l+1)/2}([0,T]) \times H^{l+1}([0,1] \times [0,T])$. Для всех $(N, V) \in B$, U_i удовлетворяют неравенству (3.3). Более того, принимая во внимание, что:

$$|L(t) - L(0)|_{(0,T)}^{((l+3)/2)} = \left\langle D_t(L(t) - L(0)) \right\rangle_{(0,T)}^{(\frac{l+1}{2})} + |D_t(L(t) - L(0))|_{(0,T)}^{(0)} + |L(t) - L(0)|_{(0,T)}^{(0)},$$

имеем

$$\begin{split} & \left\langle D_{t}(L(t) - L(0)) \right\rangle_{(0,T)}^{\left(\frac{l+1}{2}\right)} = \left\langle \sum_{j=1}^{m} \frac{1}{1 - f(U(1,t))} \left[h_{j}(V(1,t)) \frac{\partial f}{\partial U_{j}}(U(y,t)) D_{j} - \right. \\ & \left. - \int_{0}^{1} \sum_{k=1}^{m} \left(\frac{\partial^{2} f}{\partial U_{j} \partial U_{k}}(U(y,t)) \frac{\partial U_{k}}{\partial y} \frac{D_{j}}{N(t)} \frac{\partial U_{j}}{\partial y} \right) dy + \int_{0}^{1} \left(\frac{\partial f}{\partial U_{j}}(U(y,t)) F_{j}(U(y,t)) N(t) \right) dy \right] \right\rangle_{[0,T]}^{\left(\frac{l+1}{2}\right)} \leq \\ & \leq \frac{m}{f_{0}} \left(D_{j} \| h_{j} \|_{C^{1}(\mathbb{R})} \| f \|_{C^{2}(\mathbb{R})} \langle V(1,t) \rangle_{[0,T]}^{\left(\frac{l+1}{2}\right)} + \frac{mD_{j}}{N_{0}} \| f \|_{C^{2}(\mathbb{R})} \max_{k=1,\ldots,m} \left\langle \frac{\partial U_{k}}{\partial y} \right\rangle_{t,Q_{T}}^{\left(\frac{l+1}{2}\right)} \left\langle \frac{\partial U_{j}}{\partial y} \right\rangle_{t,Q_{T}}^{\left(\frac{l+1}{2}\right)} + \\ & + \| f \|_{C^{2}(\mathbb{R})} \| F_{j} \|_{C^{1}(\mathbb{R})} \langle N \rangle_{[0,T]}^{\left(\frac{l+1}{2}\right)} \right) \leq \frac{m}{f_{0}} \left(D_{j} \| h_{j} \|_{C^{1}(\mathbb{R})} \| f \|_{C^{2}(\mathbb{R})} \| V(1,t) \|_{[0,T]}^{\left(\frac{l+1}{2}\right)} + \\ & + \frac{mD_{j}}{N_{0}} \| f \|_{C^{2}(\mathbb{R})} \max_{j=1,\ldots,m} \left(\left\langle \frac{\partial U_{j}}{\partial y} \right\rangle_{t,Q_{T}}^{\left(\frac{l+1}{2}\right)} \right)^{2} + \\ & + \| f \|_{C^{2}(\mathbb{R})} \| F_{j} \|_{C^{1}(\mathbb{R})} \| f \|_{C^{2}(\mathbb{R})} + \frac{mD_{j}}{N_{0}} \| f \|_{C^{2}(\mathbb{R})} \max_{j=1,\ldots,m} \left(\left\langle \frac{\partial U_{j}}{\partial y} \right\rangle_{t,Q_{T}}^{\left(\frac{l+1}{2}\right)} \right)^{2} + \\ & + \| f \|_{C^{2}(\mathbb{R})} \| F_{j} \|_{C^{1}(\mathbb{R})} \| N \|_{[0,T]}^{\left(\frac{l+1}{2}\right)} \right), \end{split}$$

Тогда $|L(t)-L(0)|_{(0,T)}^{((l+3)/2)}$ ограничено для всех $(N,V)\in B.$ Таким образом, мы заключаем, что

образ $A_j(B)$ множества B ограничен в $H^{l/2+2}([0,T])\times H^{l+2}([0,1]\times [0,T])$. Следовательно, оператор A_j , действующий из $H^{l/2+1}([0,T])\times H^{l+1}([0,1]\times [0,T])$ в $H^{l/2+2}([0,T])\times H^{l+2}([0,T])$ ограничен.

Так как $H^{l/2+2}([0,T]) \times H^{l+2}([0,1] \times [0,T])$ компактно вложено в $H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T])$ [0,T]) то $A_i(B)$ является компактным множеством в $H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T])$. Таким образом, оператор A_j компактен как оператор из $H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T])$ в $H^{l/2+2}([0,T]) \times H^{l+2}([0,1] \times [0,T]).$

Предложение 3.2. В условиях теоремы 3.1 оператор A_i имеет неподвижную точку.

Доказательство. Для доказательства мы разбиваем интервал [0,T] на n подынтервалов $[T_i,T_{i+1}]$, где $i=0,1,\ldots,n-1,\; T_0=0$ и $T_n=T.$ Наша задача — доказать, что для всех $j=1,\ldots,m,$ задача (3.2) имеет решение, а оператор A_i имеет неподвижную точку на каждом подынтервале, начиная с подынтервала $[0, T_1]$. Результат на подынтервале $[0, T_1]$ затем обобщается на оставшиеся подынтервалы. Наконец, доказательство существования неподвижной точки на всем интревале [0,T] следует из свойства полугрупп (см., например, [5]).

Начнем с рассмотрения задачи (3.2) при $t \in [0, T_1]$ и $j = 1, \ldots, m$. Поскольку условия теоремы 3.1 выполняются, для всех $j=1,\ldots,m$, существует единственное решение $U_{j_1}\in$ $H^{l+2,l/2+1}([0,1]\times[0,T_1])$ и неотрицательная константа c_{j_1} такие, что:

$$|U_{j_1}|_{((0,1)\times(0,T_1))}^{(l+2)} \leqslant c_{j_1} \left(\|h_j\|_{C^1(\mathbb{R})} + \|F_j\|_{C^1(\mathbb{R})} + |V|_{Q_T}^{(l+1)} \left(\|h_j\|_{C^1(\mathbb{R})} + c_V \|F_j\|_{C^1(\mathbb{R})} \right) \right).$$

Определим оператор A_{i_1} :

$$A_{j_1}\colon H^{l/2+1}([0,T_1])\times H^{l+1}([0,1]\times [0,T_1])\longrightarrow H^{l/2+1}([0,T_1])\times H^{l+1}([0,1]\times [0,T_1]),$$

$$(N(t), V(y,t)) \longmapsto A_{i_1}(N(t), V(y,t)) = (L_1(t) - L(0), U_{i_1}(y,t)),$$

где U_{j_1} — решение задачи (3.2) на $[0,T_1]$, а L_1 при $t\in[0,T_1]$ удовлетворяет уравнению

$$L_1(t) = \int_0^t \left(\frac{\int_0^1 \psi(y, s) dy}{1 - f(U(1, s))} \right) ds + L(0).$$
 (3.7)

Через \mathcal{B}_1 обозначим единичный шар в $H^{l/2+1}([0,T_1]) \times H^{l+1}([0,1] \times [0,T_1])$. Наша задача— доказать, что шар \mathcal{B}_1 строго отображается на себя оператором A_{j_1} на $[0,T_1]$.

В силу первого уравнения задачи (3.2) при $t \in [0, T_1]$ и уравнения (3.7) мы получаем, что для всех $(N, V) \in \mathcal{B}_1$:

$$\begin{split} |L_1(T_1) - L(0)| &= \left| \int_0^{T_1} \left(\frac{\int_0^1 \psi(y,s) dy}{1 - f(U(1,s))} \right) ds \right| \leqslant \frac{T_1 m}{f_0} \|f\|_{C^1(\mathbb{R})} |N|_{[0,T]}^{(l/2+1)} \left(\frac{D_j}{N_0} |U_j|_Q^{(l+2)} + \|F_j\|_{C^1(\mathbb{R})} \right) \leqslant \\ &\leqslant \frac{T_1 m}{f_0} \|f\|_{C^1(\mathbb{R})} \left(\frac{D_j c_{j_1}}{N_0} \left(2 \|h_j\|_{C^1(\mathbb{R})} + (1 + c_V) \|F_j\|_{C^1(\mathbb{R})} \right) + \|F_j\|_{C^1(\mathbb{R})} \right) = l_{j_1} T_1, \end{split}$$

$$\text{ Гиде } l_{j_1} &= \frac{m}{f_0} \|f\|_{C^1(\mathbb{R})} \left(\frac{D_j c_{j_1}}{N_0} \left(2 \|h_j\|_{C^1(\mathbb{R})} + (1 + c_V) \|F_j\|_{C^1(\mathbb{R})} \right) + \|F_j\|_{C^1(\mathbb{R})} \right), \text{ If } \\ &|U_{j_1}(y,T_1) - U_{j_1}(y,0)| \leqslant \int_0^1 \left| \frac{D}{N^2(t)} \frac{\partial^2 U_{j_1}}{\partial y^2} \right| + \left| \frac{yN'(t)}{N(t)} \frac{\partial U_{j_1}}{\partial y} \right| + |F_j(V(y,t))| dt \leqslant \\ &\leqslant \int_0^T \frac{D}{N_0^2} \left| \frac{\partial^2 U_{j_1}}{\partial y^2} \right| + \frac{|N|_{[0,T_1]}^{(l/2+1)}}{N_0} \left| \frac{\partial U_{j_1}}{\partial y} \right| + \|F_j\|_{C^1(\mathbb{R})} dt \leqslant \\ &\leqslant \left(\left(\frac{D}{N_0^2} + \frac{|N|_{[0,T_1]}^{(l/2+1)}}{N_0} \right) |U_{j_1}|_{((0,1)\times(0,T_1))}^{(l+2)} + \|F_j\|_{C^1(\mathbb{R})} \right) T_1 \leqslant \\ &\leqslant \left(c_{j_1} \left(\frac{D}{N_0^2} + \frac{|N|_{[0,T_1]}^{(l/2+1)}}{N_0} \right) \left(\|h_j\|_{C^1(\mathbb{R})} + \|F_j\|_{C^1(\mathbb{R})} \right) + \|F_j\|_{C^1(\mathbb{R})} \right) T_1 \leqslant \\ &\leqslant \left(c_{j_1} \left(\frac{D}{N_0^2} + \frac{1}{N_0} \right) \left(2 \|h_j\|_{C^1(\mathbb{R})} + (1 + c_V) \|F_j\|_{C^1(\mathbb{R})} \right) + \|F_j\|_{C^1(\mathbb{R})} \right) T_1 = m_{j_1} T_1, \end{aligned}$$

$$\text{Гие } m_{j_1} = \left(c_{j_1} \left(\frac{D}{N_0^2} + \frac{1}{N_0} \right) \left(2 \|h_j\|_{C^1(\mathbb{R})} + (1 + c_V) \|F_j\|_{C^1(\mathbb{R})} \right) + \|F_j\|_{C^1(\mathbb{R})} \right).$$

$$|U_{j_1}(y,t)|_{[0,1]\times[0,T_1]}^{(0)} \le m_{j_1}T_1, \qquad |L_1(T_1) - L(0)|_{[0,T_1]}^{(0)} \le l_{j_1}T_1.$$

Более того, $|U_{j_1}(y,t)|_{[0,1]\times[0,T_1]}^{(0)}$ и $|L_1(T_1)-L(0)|_{[0,T_1]}^{(0)}$ сходится к 0 при достаточно малом T_1 .

Полагая $1<\gamma_1<\frac{l+3}{2}$ и $2<\gamma_2< l+2$, рассмотрим $(N,V)\in\mathcal{B}_1$ и образ под действием оператора A_{j_1} точки $(L_1(t)-L(0),U_1)$.

Выберем достаточно малое T_1 . Тогда разность $L_1(t) - L(0)$ сходится к 0 в $C([0, T_1])$. Более того, она ограничена в $H^{\frac{l+3}{2}}([0, T_1])$. Таким образом, $L_1(t) - L(0)$ сходится к 0 в $H^{\gamma_1}([0, T_1])$.

Аналогично, решение U_{j_1} сходится к 0 в $C([0,1]\times[0,T_1])$, когда T_1 стремится к 0. Поэтому оно также ограничено в $H^{l+2,l/2+1}([0,1]\times[0,T_1])$. Таким образом, U_{j_1} сходится к 0 в $H^{\gamma_2,\gamma_2/2}([0,1]\times[0,T_1])$.

Отсюда мы заключаем, что если T_1 достаточно мало, то норма образа точки $(N,V) \in \mathcal{B}_1$ под действием оператора A_{j_1} строго меньше 1. Другими словами, единичный шар \mathcal{B}_1 строго отображается на себя оператором A_{j_1} на $[0,T_1]$ для всех $j=1,\ldots,m$ при достаточно малом T_1 .

Такой выбор T_1 позволяет нам сделать вывод, что оператор A_{j_1} , действующий в \mathcal{B}_1 , имеет неподвижную точку $U_{j_1}^*$ в \mathcal{B}_1 по теореме о неподвижной точке.

Аналогично мы докажем существование решений для задачи (3.2) на интервалах $[T_i, T_{i+1}]$ при $i = 1, \ldots, n-1$ и существование неподвижной точки для соответствующих операторов.

Для каждого $i=1,\ldots,n-1$ и $j=1,\ldots,m$ рассмотрим U_{j_i} — решение задачи (3.2) на интервале $[T_{i-1},T_i]$ таком, что

$$\left(\int_0^t \left(\frac{\int_0^1 \psi(y,s)dy}{1-f(U(1,s))}\right)ds, \quad U_{j_i}^*(y,t)\right)$$

— неподвижная точка оператора A_{j_i} . Мы хотим найти решение $U_{j_{i+1}}$ задачи (3.2) на интервале $[T_i, T_{i+1}]$ с начальным условием $U_{j_{i+1}}(y, T_i) = U_{j_i}^*(y, t)$. Однако, поскольку начальное условие ненулевое, для применения теоремы 3.1 рассмотрим новую функцию $\mu_j = U_j - U_{j_i}^*(y, T_i)$ и следующую задачу на интервале $[T_i, T_{i+1}]$:

$$\begin{cases}
\frac{\partial \mu_{j}}{\partial t} = \frac{D}{N^{2}(t)} \frac{\partial^{2} \mu_{j}}{\partial y^{2}} + \frac{yN'(t)}{N(t)} \frac{\partial \mu_{j}}{\partial y} + \mathcal{F}_{j}(y, t), \\
y = 0 : \frac{\partial \mu_{j}}{\partial y} = 0, \quad y = 1 : \frac{\partial \mu_{j}}{\partial y} = N(t)h_{j}(V(1, t)) - N(t)h_{j}(V(1, T_{i})), \\
\mu_{j}(y, T_{i}) = 0,
\end{cases}$$
(3.8)

где
$$\mathcal{F}_j(y,t) = F_j(V(y,t)) - \frac{D}{N^2(t)} \frac{\partial^2 U_{j_i}^*}{\partial y^2}(y,T_i) - \frac{yN'(t)}{N(t)} \frac{\partial U_{j_i}^*}{\partial y}(y,T_i).$$

Чтобы доказать существование решения задачи (3.8), мы используем теорему 3.1. Проверим, выполняются ли ее условия.

Поскольку $U_{j_i}^*(x,T_i)\in H^{l+2}([0,1]),\ F_j\in C^1(\mathbb{R}),\ V\in H^{(l+1)}([0,1]\times[0,T]),\ N\in H^{l/2+1}([0,T])$ и функция N ограничена снизу числом N_0 , получаем, что $\mathcal{F}_j\in H^{l,l/2}([0,1]\times[T_i,T_{i+1}])).$ Более того, так как $h_j\in C^1(\mathbb{R})$ и $V(1,t)\in H^{(l+1)/2}([T_i,T_{i+1}]),$ то $N(t)h_j(V(1,t))-N(t)h_j(V(1,T_i))\in H^{(l+1)/2}([T_i,T_{i+1}]).$ Наконец, условия согласования выполнены, поскольку $\frac{\partial \mu_j}{\partial y}(1,T_i)=\mu_j(1,T_i)=0.$ Таким образом, по теореме 3.1 задача (3.8) имеет единственное решение $U_{j_{i+1}}\in H^{l+2,(l+2)/2}([0,1]\times[T_i,T_{i+1}])$ и существует константа $c_{j_{i+1}}$ такая, что для произвольных открытых подмножеств Q_{i+1} из $[0,1]\times[T_i,T_{i+1}]$ и Q_i из $[0,1]\times[T_{i-1},T_i]$ выполнено

$$\begin{split} \left| U_{j_{i+1}} \right|_{Q_{i+1}}^{(l+2)} & \leqslant c_{j_{i+1}} \left(|\mathcal{F}_j|_{Q_{i+1}}^{(l)} + |h_j(V(1,t)) - h_j(V(1,T_i)|_{(T_i,T_{i+1})}^{(l+1)/2} \right) \leqslant \\ & \leqslant c_{j_{i+1}} \left(\left| F_j(V(y,t)) - \frac{D}{N^2(t)} \frac{\partial^2 U_{j_i}^*}{\partial y^2}(y,T_i) - \frac{yN'(t)}{N(t)} \frac{\partial U_{j_i}^*}{\partial y}(y,T_i) \right|_{Q_{i+1}}^{(l)} + \right. \\ & + \left. \left| h_j(V(1,t)) - h_j(V(1,T_i)|_{(T_i,T_{i+1})}^{(l+1)/2} \right) \leqslant \\ & \leqslant c_{j_{i+1}} \left(|F_j(V(y,t))|_{Q_{i+1}}^{(l)} + \left| \frac{D}{N^2(t)} \frac{\partial^2 U_{j_i}^*}{\partial y^2}(y,T_i) \right|_{Q}^{(l)} + \left| \frac{yN'(t)}{N(t)} \frac{\partial U_{j_i}^*}{\partial y}(y,T_i) \right|_{Q_{i+1}}^{(l)} + \right. \end{split}$$

$$\begin{split} &+ |h_{j}(V(1,t)) - h_{j}(V(1,T_{i})|_{(T_{i},T_{i+1})}^{(l+1)/2}) \leqslant \\ &\leqslant c_{j_{i+1}} \left(c_{V} \|F_{j}\|_{C^{1}(\mathbb{R})} |V|_{[0,1] \times [0,T_{i}]}^{(l+1)} + \|F_{j}\|_{C^{1}(\mathbb{R})} + \left(\frac{D}{N_{0}^{2}} + \frac{|N|_{[T_{i},T_{i+1}]}^{(l/2+1)}}{N_{0}} \right) |U_{j_{i}}^{*}|_{Q_{i}}^{(l+2)} + \\ &+ \|h_{j}\|_{C^{1}(\mathbb{R})} |V|_{Q_{T}}^{(l+1)} + \|h_{j}\|_{C^{1}(\mathbb{R})} + |h_{j}(V(1,T_{i})|_{(T_{i},T_{i+1})}^{(l+1)/2}) \leqslant \\ &\leqslant c_{j_{i+1}} \left(\|F_{j}\|_{C^{1}(\mathbb{R})} \left(c_{V} |V|_{Q_{T}}^{(l+1)} + 1 \right) + \|h_{j}\|_{C^{1}(\mathbb{R})} \left(|V|_{Q_{T}}^{(l+1)} + 1 \right) + \\ &+ \left(\frac{D}{N_{0}^{2}} + \frac{|N|_{[T_{i},T_{i+1}]}^{(l/2+1)}}{N_{0}} \right) |U_{j_{i}}^{*}|_{Q_{i}}^{(l+2)} + |U_{j_{i}}^{*}(1,T_{i})| \right) \leqslant \\ &\leqslant c_{j_{i+1}} \left(\|F_{j}\|_{C^{1}(\mathbb{R})} \left(c_{V} |V|_{Q_{T}}^{(l+1)} + 1 \right) + \|h_{j}\|_{C^{1}(\mathbb{R})} \left(|V|_{Q_{T}}^{(l+1)} + 1 \right) + \\ &+ \left(\frac{D}{N_{0}^{2}} + \frac{|N|_{[T_{i},T_{i+1}]}^{(l/2+1)}}{N_{0}} + 1 \right) |U_{j_{i}}^{*}|_{Q_{i}}^{(l+2)} \right) \leqslant \\ &\leqslant c_{j_{i+1}} \left(\|F_{j}\|_{C^{1}(\mathbb{R})} \left(c_{V} |V|_{Q_{T}}^{(l+1)} + 1 \right) + \|h_{j}\|_{C^{1}(\mathbb{R})} \left(|V|_{Q_{T}}^{(l+1)} + 1 \right) + \left(\frac{D}{N_{0}^{2}} + \frac{|N|_{[T_{i},T_{i+1}]}^{(l/2+1)}}{N_{0}} + 1 \right) \right). \end{split}$$

Аналогично доказательству для интервала $[0, T_1]$ определим оператор $A_{j_{i+1}}$:

$$A_{j_{i+1}} \colon H^{l/2+1}([T_i, T_{i+1}]) \times H^{l+1}([0, 1] \times [T_i, T_{i+1}]) \longrightarrow H^{l/2+1}([T_i, T_{i+1}]) \times H^{l+1}([0, 1] \times [T_i, T_{i+1}]),$$

$$(N(t), V(y, t)) \longmapsto A_{j_{i+1}}(N(t), V(y, t)) = (L_{i+1}(t) - L_{i+1}(T_{i+1}), U_{j_{i+1}}(y, t)),$$

где $U_{j_{i+1}}$ — решение задачи (3.2) на $[T_i, T_{i+1}], L_{i+1}(T_i) = L_i(T_i),$ а L_{i+1} удовлетворяет уравнению

$$L_{i+1}(t) = \int_0^t \left(\frac{\int_0^1 \psi(y, s) dy}{1 - f(U(1, s))} \right) ds + L(0)$$

при $t \in [T_i, T_{i+1}].$

Так же, как и для интервала $[0,T_1]$, мы можем доказать, что для всех (N,V) из единичного шара в $H^{l/2+1}([T_i,T_{i+1}])\times H^{l+1}([0,1]\times [T_i,T_{i+1}])$:

$$|L_{i+1}(T_{i+1}) - L_{i+1}(T_i)| \le l_{j_{i+1}}(T_{i+1} - T_i),$$

где

$$\begin{split} &l_{j_{i+1}} = \frac{m}{f_0} \|f\|_{C^1(\mathbb{R})} \left(\frac{D_j c_{j_{i+1}}}{N_0} \left(\|F_j\|_{C^1(\mathbb{R})} \left(c_V + 1 \right) + 2 \|h_j\|_{C^1(\mathbb{R})} + \left(\frac{D}{N_0^2} + \frac{1}{N_0} + 1 \right) \right) + \|F_j\|_{C^1(\mathbb{R})} \right), \\ &|U_{j_{i+1}}(y, T_{i+1}) - U_{j_{i+1}}(y, T_i)| = \left| U_{j_{i+1}}(y, T_{i+1}) \right| \leqslant \\ &\leqslant \int\limits_{T_i}^{T_{i+1}} \left(\left| \frac{D}{N^2(t)} \frac{\partial^2 U_{j_{i+1}}}{\partial y^2} \right| + \left| \frac{yN'(t)}{N(t)} \frac{\partial U_{j_{i+1}}}{\partial y} \right| + |F_j(y, t)| \right) dt \leqslant \\ &\leqslant \int\limits_{T_i}^{T_{i+1}} \left(\left| \frac{D}{N^2(t)} \frac{\partial^2 U_{j_{i+1}}}{\partial y^2} \right| + \left| \frac{yN'(t)}{N(t)} \frac{\partial U_{j_{i+1}}}{\partial y} \right| + |F_j(V(y, t))| + \left| \frac{D}{N^2(t)} \frac{\partial^2 U_{j_i}^*}{\partial y^2} \right| + \left| \frac{yN'(t)}{N(t)} \frac{\partial U_{j_i}^*}{\partial y} \right| \right) dt \leqslant \end{split}$$

$$\leq \left(\left(\frac{D}{N_0^2} + \frac{|N|_{[T_i, T_{i+1}]}^{(l/2+1)}}{N_0} \right) \left(|U_{j_{i+1}}|_{((0,1) \times (T_i, T_{i+1}))}^{(l+2)} + |U_{j_i}^*|_{((0,1) \times (T_{i-1}, T_i))}^{(l+2)} \right) + |F_j|_{C^1(\mathbb{R})} \right) (T_{i+1} - T_i) \leq$$

$$\leq \left(\left(\frac{D}{N_0^2} + \frac{|N|_{[T_i, T_{i+1}]}^{(l/2+1)}}{N_0} \right) \left(c_{j_{i+1}} \left(|F_j|_{C^1(\mathbb{R})} \left(c_V |V|_{Q_T}^{(l+1)} + 1 \right) + \right) + \right. \\
\left. + ||h_j||_{C^1(\mathbb{R})} \left(|V|_{Q_T}^{(l+1)} + 1 \right) + \frac{D}{N_0^2} + \frac{|N|_{[T_i, T_{i+1}]}^{(l/2+1)}}{N_0} + 1 \right) + 1 \right) + ||F_j||_{C^1(\mathbb{R})} \right) (T_{i+1} - T_i) \leq$$

$$\leq \left(\left(\frac{D}{N_0^2} + \frac{1}{N_0} \right) \left(c_{j_{i+1}} \left(||F_j||_{C^1(\mathbb{R})} (c_V + 1) + 2||h_j||_{C^1(\mathbb{R})} + \right. \\
\left. + \frac{D}{N_0^2} + \frac{1}{N_0} + 1 \right) + 1 \right) + ||F_j||_{C^1(\mathbb{R})} \right) (T_{i+1} - T_i) = m_{j_{i+1}} (T_{i+1} - T_i).$$

Выберем $T_{i+1}-T_i$ достаточно малым, тогда $L_{i+1}(t)-L_{i+1}(T_i)$ сходится к нулю 0 на $C([T_i,T_{i+1}])$, и так как разность ограничена в $H^{\frac{l+3}{2}}([T_i,T_{i+1}])$, то $L_{i+1}(t)-L_{i+1}(T_i)$ сходится к 0 в $H^{\gamma_1}([T_i,T_{i+1}])$. Аналогично, если $T_{i+1}-T_i$ достаточно мало, то $U_{j_{i+1}}$ сходится к 0 в $C([0,1]\times[T_i,T_{i+1}])$. Более того, последовательность ограничена в $H^{l+2,l/2+1}([0,1]\times[T_i,T_{i+1}])$. Таким образом, $U_{j_{i+1}}$ сходится к 0 в $H^{\gamma_2,\gamma_2/2}([0,1]\times[T_i,T_{i+1}])$.

Чтобы убедиться, что $A_{j_{i+1}}$ на $[T_i,T_{i+1}]$ имеет неподвижную точку, достаточно выбрать $T_{i+1}-T_i$ так, чтобы норма $L_{i+1}(t)-L_{i+1}(T_i)$ в $H^{\gamma_1}([T_i,T_{i+1}])$ и норма $U_{j_{i+1}}$ в $H^{\gamma_2,\gamma_2/2}([0,1]\times[T_i,T_{i+1}])$ были строго меньше 1.

Теорема 3.2. Если функции F_j и h_j принадлежат классу $C^1(\mathbb{R})$ при $j=1,\ldots,m,$ тогда задача (3.1) имеет решение $U^* \in H^{l+2,l/2+1}(\overline{Q_T})$. Соответственно, система (2.1), (2.2), (2.3) с начальными условием u(x,0)=0 имеет решение $U^* \in H^{l+2,l/2+1}([0,L(t)]\times[0,T])$.

Доказательство. Поскольку для всех $j=1,\ldots,m$ оператор A_{j_1} имеет неподвижную точку и условия предложения 3.1 выполнены, то мы получаем, что система (3.1), определенная на $[0,T_1]$, имеет решение $U_1^*=\left(U_{1_1}^*,U_{2_1}^*,\ldots,U_{m_1}^*\right)$ на единичном шаре в $\left(H^{l+2,(l+2)/2}([0,1]\times[0,T_1])\right)^m$. Поскольку для всех $j=1,\ldots,m$ оператор $A_{j_{i+1}}$ имеет неподвижную точку и условия пред-

Поскольку для всех $j=1,\ldots,m$ оператор $A_{j_{i+1}}$ имеет неподвижную точку и условия предложения 3.1 выполнены, то мы получаем, что система (3.1), определенная на $[T_i,T_{i+1}]$, имеет решение $U_{i+1}^* = \left(U_{1_{i+1}}^*,U_{2_{i+1}}^*,\ldots,U_{m_{i+1}}^*\right)$ на единичном шаре в $\left(H^{l+2,(l+2)/2}([0,1]\times[T_i,T_{i+1}])\right)^m$.

По полугрупповому свойству мы заключаем, что система (3.1) имеет решение U^* , определенное на интервале [0,T] такое, что при $i=0,\ldots,n-1$ и $t\in [T_i,T_{i+1}]$ выполнено $U^*(y,t)=U^*_{i+1}(y,t)$. \square

4. Заключение

В работе дано доказательство существования решения для системы уравнений «реакция—диффузия» со свободной границей в одномерном случае. В этой системе общего вида мы определяем движение границы как поток элементов через границу, их накопление и взаимодействие в области как функции времени. Доказательство состоит из нескольких последовательных шагов. Замена переменной ведет к переходу от модели со свободной границей к модели с закрепленной границей. Однако новая модель содержит коэффициенты, зависящие от времени и пространства, а также нелинейные члены. На втором шаге исследуется существование решения такой модели с линейными слагаемыми, вводя новые переменные. Затем вводятся операторы, сопоставляющие новым переменным решение системы и размер области. Используя теорему о неподвижной точке и полугрупповое свойство, мы доказываем существование решения для системы с нелинейными слагаемыми и закрепленной границей. Для этой цели мы разбиваем временной интервал на достаточно малые подынтервалы, и длина каждого подынтервала выбирается так, чтобы выполнялись условия теоремы о неподвижной точке. Наконец, существование решения для модели со свободной границей получается непосредственно из результата для случая фиксированной границы.

Заметим, что анализ, проведенный в этой работе, не может быть непосредственно распространен на многомерный пространственный случай по ряду причин. Прежде всего, постановка задачи усложняется для многомерного случая. Например, в двумерном случае граница представляет собой одномерную кривую, и если ее рассматривать как упругую среду, то на эту границу действуют дополнительные силы упругости. Кроме того, доказательства в одномерном случае основаны на теореме вложения, которая зависит от размерности пространства. Поэтому обобщение результата этой статьи на более высокие размерности требует дальнейших исследований.

ПРИЛОЖЕНИЕ 1. ТЕОРЕМА СУЩЕСТВОВАНИЯ

В этом приложении напомним теорему 5.3 из [4].

Пусть E_n-n -мерное евклидово пространство, Ω — область в E_n и Q_T — цилиндр $\Omega \times (0,T)$, т. е. множество точек (x,t) из E_{n+1} , для которых $x \in \Omega$ и $t \in (0,T)$. Обозначим через S_T боковую поверхность Q_T , или, точнее, множество точек (x,t) из E_{n+1} , для которых $x \in S$, $t \in [0,T]$.

Рассмотрим линейный параболический дифференциальный оператор с вещественными коэффициентами \mathcal{L} :

$$\mathcal{L}(x,t,\frac{\partial}{\partial x},\frac{\partial}{\partial t})u = \frac{\partial u}{\partial t} - \sum_{i,j=1}^{n} a_{i,j}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} a_{i}(x,t) \frac{\partial u}{\partial x_{i}} + a(x,t)u.$$

Предположим, что коэффициенты оператора \mathcal{L} определены в слое $D_{n+1}^{(T)} = E_n \times [0,T]$. В цилиндрической области Q_T с боковой поверхностью S_T рассмотрим следующую задачу:

$$\begin{cases}
\mathcal{L}(x,t,\frac{\partial}{\partial x},\frac{\partial}{\partial t})u(x,t) = f(x,t), \\
u_{|t=0} = \phi(x), \\
\mathcal{B}(x,t,\frac{\partial}{\partial x})u_{|S_T} = \sum_{i=1}^n b_i(x,t)\frac{\partial u}{\partial x_i} + b(x,t)u_{|S_T} = \Phi(x).
\end{cases}$$
(4.1)

Предположим, что вектор b элементов функций $b_i(x,t)$ ни в какой точке не лежит в касательной плоскости к S.

Пусть l>0— нецелое число, $S\in H^{l+2}$, коэффициенты оператора $\mathcal L$ принадлежат классу $H^{l,l/2}(\overline{Q}_T)$ и, наконец, $b_i,b\in H^{l+1,l/2+1/2}(\overline{S}_T)$. Тогда для любых $f\in H^{l,l/2}(\overline{Q}_T)$, $\phi\in H^{l+2}(\overline{\Omega})$, $\Phi\in H^{l+1,l/2+1/2}(\overline{S}_T)$, удовлетворяющих условиям согласования порядка [(l+1)/2], задача (4.1) имеет единственное решение из класса $H^{l+2,l/2+1}(\overline{Q}_T)$, для которого

$$|u|_Q^{(l+2)} \leqslant c \left(|f|_Q^{(l)} + |\phi|_\Omega^{(l+2)} + |\Phi|_{S_T}^{(l+1)} \right).$$

Приложение 2. Определения функциональных пространств и операторов

В этом разделе мы определим функциональные пространства, нормы и операторы, использованные в статье. Чтобы определить пространства Гельдера и их нормы, будем считать, что E_n-n -мерное евклидово пространство, $\Omega-$ область в E_n , а Q_T- цилиндр $\Omega\times(0,T)$, т. е. множество точек (x,t) из E_{n+1} таких, что $x\in\Omega$ и $t\in(0,T)$. Обозначим через S_T боковую поверхность Q_T , или, точнее, множество точек (x,t) из E_{n+1} таких, что $x\in S$ и $t\in[0,T]$.

• Функция u(x), определенная в $\overline{\Omega}$, удовлетворяет условию Гельдера по x с показателем α , $\alpha \in (0,1)$, и константой Гельдера $\langle u \rangle_{\Omega}^{(\alpha)}$ в области $\overline{\Omega}$, если

$$\langle u \rangle_{\Omega}^{(\alpha)} = \sup_{\substack{x,x' \in \Omega \\ |x-x'| \leq \rho_0}} \frac{|u(x) - u(x')|}{|x-x'|^{\alpha}} < \infty.$$

• $H^l(\overline{\Omega})$ — банахово пространство, элементами которого являются непрерывные в $\overline{\Omega}$ функции u(x), имеющие в $\overline{\Omega}$ непрерывные производные вплоть до порядка [l] включительно, для которых конечна величина

$$|u|_{\Omega}^{(l)} = \langle u \rangle_{\Omega}^{(l)} + \sum_{j=0}^{[l]} \langle u \rangle_{\Omega}^{(j)}, \tag{4.2}$$

где

$$\langle u \rangle_{\Omega}^{(0)} = |u|_{\Omega}^{(0)} = \max_{\Omega} |u|, \qquad \langle u \rangle_{\Omega}^{(j)} = \sum_{(j)} \left| D_x^j u \right|_{\Omega}^{(0)}, \qquad \langle u \rangle_{\Omega}^{(l)} = \sum_{([l])} \langle D_x^{[l]} u \rangle_{\Omega}^{(l-[l])}.$$

Формула (4.2) задает норму $|u|_{\Omega}^{(l)}$ в $H^l(\overline{\Omega}).$

• $H^{l,l/2}(\overline{\Omega})$ — банахово пространство функций u(x,t), непрерывных в $\overline{Q_T}$ вместе со всеми производными вида $D_t^r D_x^s$ при 2r+s < l и имеющих конечную норму:

$$|u|_{Q_T}^{(l)} = \langle u \rangle_{Q_T}^{(l)} + \sum_{j=0}^{[l]} \langle u \rangle_{Q_T}^{(j)},$$
 (4.3)

где

$$\langle u \rangle_{QT}^{(0)} = |u|_{QT}^{(0)} = \max_{Q_T} |u|, \qquad \langle u \rangle_{QT}^{(j)} = \sum_{(2r+s=j)} |D_t^r D_x^s u|_{Q_T}^{(0)},$$

$$\langle u \rangle_{QT}^{(l)} = \langle u \rangle_{x,Q_T}^{(l)} + \langle u \rangle_{t,Q_T}^{(l/2)}, \qquad \langle u \rangle_{x,Q_T}^{(l)} = \sum_{(2r+s=[l])} \langle D_t^r D_x^s u \rangle_{x,Q_T}^{(l-[l])},$$

$$\langle u \rangle_{t,Q_T}^{(l/2)} = \sum_{0 < l-2r-s < 2} \langle D_t^r D_x^s u \rangle_{t,Q_T}^{\left(\frac{l-2r-s}{2}\right)}, \qquad \langle u \rangle_{x,Q_T}^{(\alpha)} = \sup_{\substack{(x,t),(x',t) \in \overline{Q}_T \\ |x-x'| \leqslant \rho_0}} \frac{|u(x,t) - u(x',t)|}{|x-x'|^{\alpha}}, \quad 0 < \alpha < 1,$$

$$\langle u \rangle_{t,Q_T}^{(\alpha)} = \sup_{\substack{(x,t),(x,t') \in \overline{Q}_T \\ |t-t'| \leqslant \rho_0}} \frac{|u(x,t) - u(x,t')|}{|t-t'|^{\alpha}}, \quad 0 < \alpha < 1.$$

Приведем список операторов, определенных в этой статье:

• оператор \mathcal{L}_j :

$$\mathcal{L}_{j}(y, t, \frac{\partial}{\partial y}, \frac{\partial}{\partial t})U_{j} = \frac{\partial U_{j}}{\partial t} - \frac{D_{j}}{N^{2}(t)} \frac{\partial^{2} U_{j}}{\partial y^{2}} - \frac{yN'(t)}{N(t)} \frac{\partial U_{j}}{\partial y};$$

• оператор A_i :

$$A_j \colon H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T]) \longrightarrow H^{l/2+1}([0,T]) \times H^{l+1}([0,1] \times [0,T]),$$

$$(N(t), V(y,t)) \longmapsto A_j(N(t), V(y,t)) = (L(t) - L(0), U(y,t));$$

• оператор A_{i_1} :

$$A_{j_1}: H^{l/2+1}([0,T_1]) \times H^{l+1}([0,1] \times [0,T_1]) \longrightarrow H^{l/2+1}([0,T_1]) \times H^{l+1}([0,1] \times [0,T_1]),$$

$$(N(t), V(y,t)) \longmapsto A_{j_1}(N(t), V(y,t)) = (L_1(t) - L(0), U_{j_1}(y,t));$$

• оператор $A_{j_{i+1}}$:

$$H^{l/2+1}([T_i,T_{i+1}]) \times H^{l+1}([0,1] \times [T_i,T_{i+1}]) \longrightarrow H^{l/2+1}([T_i,T_{i+1}]) \times H^{l+1}([0,1] \times [T_i,T_{i+1}]),$$

$$(N(t),V(y,t)) \longmapsto A_{i+1}(N(t),V(y,t)) = (L_{i+1}(t)-L_{i+1}(T_{i+1}),U_{i+1}(y,t)).$$

Благодарности. В. А. Вольперт благодарит за финансовую поддержку Министерство науки и высшего образования Российской Федерации (Мегагрант, соглашение № 075-15-2022-1115).

СПИСОК ЛИТЕРАТУРЫ

- 1. Bessonov N., Morozova N., Volpert V. Modeling of branching patterns in plants// Bull. Math. Biol. 2008.-70.-C. 868-893.
- 2. Fok P.-W. Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem // J. Theor. Biol. -2012.-314.-C. 23-33.
- 3. Islam H., Johnston P. R. A mathematical model for atherosclerotic plaque formation and arterial wall remodelling// ANZIAM J. -2016.-57.-C. C320–C345.
- 4. Ladyzenskaja O. A., Solonnikov V. A., Ural'tseva N. N. Linear and Quasi-linear Equations of Parabolic Type. Providence: Am. Math. Soc., 1968.
- 5. $Lunardi\ A.$ Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel etc.: Springer, 1995.

- 6. Silva T., Jäger W., Neuss-Radu M., Sequeira A. Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability // J. Theor. Biol. -2020.-496.-110229.
- 7. Tao Y., Guo Q. A free boundary problem modelling cancer radiovirotherapy// Math. Models Methods Appl. Sci. -2007. -17, N 8. - C. 1241–1259.
- 8. Yousefnezhad M., Mohammadi S. A., Bozorgnia F. A free boundary problem for a predator-prey model with nonlinear prey-taxis// Appl. Math. -2018. -63. -C. 125–147.

Ghada Abi Younes

Institut Camille Jordan, Виллербанн, Франция;

University Lyon 1, Виллербанн, Франция

Nader El Khatib

Lebanese American University, Библос, Ливан

Vitaly Volpert

Российский университет дружбы народов, Москва, Россия

E-mail: volpert@math.univ-lyon1.fr

DOI 10.22363/2413-3639-2022-68-4-716-731

UDC 517.956.4+517.958

Existence of solution of a free boundary problem for reaction-diffusion systems

G. A. Younes^{1,2}, N. El Khatib³, and V. A. Volpert⁴

¹Institut Camille Jordan, Villeurbanne, France ² University Lyon 1, Villeurbanne, France ³Lebanese American University, Byblos, Lebanon ⁴Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

In this paper, we prove the existence of solution of a novel free boundary problem for reaction-diffusion systems describing growth of biological tissues due to cell influx and proliferation. For this aim, we transform it into a problem with fixed boundary, through a change of variables. The new problem thus obtained has space and time dependent coefficients with nonlinear terms. We then prove the existence of solution for the corresponding linear problem, and deduce the existence of solution for the nonlinear problem using the fixed point theorem. Finally, we return to the problem with free boundary to conclude the existence of its solution.

Keywords: free boundary problem, reaction-diffusion system, growth of biological tissues, existence of solution

For citation: G. A. Younes, N. El Khatib, V. A. Volpert, "Existence of solution of a free boundary problem for reaction-diffusion systems," Sovrem. Mat. Fundam. Napravl., 2022, vol. 68, No. 4, 716–731. http://doi.org/10.22363/2413-3639-2022-68-4-716-731

REFERENCES

- 1. N. Bessonov, N. Morozova, and V. Volpert, "Modeling of branching patterns in plants," Bull. Math. Biol., 2008, **70**, 868–893.
- 2. P.-W. Fok, "Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem," J. Theor. Biol., 2012, **314**, 23–33.

- 3. H. Islam and P. R. Johnston, "A mathematical model for atherosclerotic plaque formation and arterial wall remodelling," *ANZIAM J.*, 2016, **57**, C320–C345.
- 4. O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural'tseva, *Linear and Quasi-linear Equations of Parabolic Type*, Am. Math. Soc., Providence, 1968.
- 5. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer, Basel etc., 1995.
- 6. T. Silva, W. Jäger, M. Neuss-Radu, and A. Sequeira, "Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability," J. Theor. Biol., 2020, 496, 110229.
- 7. Y. Tao and Q. Guo, "A free boundary problem modelling cancer radiovirotherapy," *Math. Models Methods Appl. Sci.*, 2007, **17**, No. 8, 1241–1259.
- 8. M. Yousefnezhad, S. A. Mohammadi, and F. Bozorgnia, "A free boundary problem for a predator-prey model with nonlinear prey-taxis," *Appl. Math.*, 2018, **63**, 125–147.

Ghada Abi Younes

Institut Camille Jordan, Villeurbanne, France;

University Lyon 1, Villeurbanne, France

Nader El Khatib

Lebanese American University, Byblos, Lebanon

Vitaly Volpert

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia

E-mail: volpert@math.univ-lyon1.fr