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This article is devoted to some aspects of using the renovation mechanism (different
types of renovation are considered, definitions and brief overview are also given) with
one or several thresholds as the mathematical models of active queue management
mechanisms.

The attention is paid to the queuing systems in which a threshold mechanism
with renovation is implemented. This mechanism allows to adjust the number of
packets in the system by dropping (resetting) them from the queue depending on the
ratio of a certain control parameter with specified thresholds at the moment of the
end of service on the device (server) (in contrast to standard RED-like algorithms,
when a possible drop of a packet occurs at the time of arrivals of next packets in the
system).

The models with one, two and three thresholds with different types of renovation
are under consideration. It is worth noting that the thresholds determine not only
from which place in the buffer the packets are dropped, but also to which the reset
of packets occurs. For some of the models certain analytical and numerical results
are obtained (the references are given), some of them are only under investigation,
so only the mathematical model and current results may be considered.

Some results of comparing classic RED algorithm with renovation mechanism are
presented.
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1. Introduction

In modern communication networks the problem of congestion avoidance
does not have a satisfying solution [1] and the development of active queue
management (AQM) algorithms appears to be the actual task for researches
and practitioners.
A numerous number of AQM schemes have been proposed [2], some of

them were investigated and standardised by IETF working group on “Active
Queue Management and Packet Scheduling” [3].
For the most AQM algorithms models the performance analysis is performed

by simulation (for example, [2]) and that is why the bridges between the
available use-case results and the available analytic results are very few (see,
for example, [4]–[7]).
In this paper the mathematical models of RED-like ( in contrast to standard

RED algorithm, when a possible reset occurs at the time of the next packet
arrival and the control parameter is an exponentially weighted average queue
length [8]–[10], in our models the decision about a possible packet drop is
made at the momemnts of service completions) algorithms with renovation
and one or several thresholds (which determine not only the place in the
buffer from which the packets are dropped, but also the place to which the
reset of packets occurs).
The structure of the article is following. The section 2 gives the brief

description active queue algorithms, especially of the classic RED algorithm.
The section 3 consists of foyr subsections: in 3.1 the definitions of different
types of renovation are given as well as a brief overview of queueing systems
with renovation; in 3.2 the models with renovation and a single thresholds
are described; the subsectionn 3.3 is devoted to models with renovation and
two thresholds (for one of these models some analitycal results are presented);
the last subsection 3.3 describes renovation models with three thresholds. In
section 4 the comparison of results for RED algorithm and some renovation
models is presented, based on experimental results from [11]–[13]. These
results confirm assumptions that the use of the renovation mechanism in
the single server queues under heavy overload conditions and some other
constraints allows one to achieve at least the same performance level as by
the classical random early detection algorithm. The last section 5 concludes
the paper with the short discussion.

2. Active queue management algorithms. The brief
description of RED algorithm module

According to RFC 7567 [1] active queue management (AQM) is considered
as a best practice of network congestion avoidance (reducing) in Internet
routers. The active queue management is the policy of dropping packets
inside a buffer associated with a network interface controller (NIC) before
that buffer becomes full (or gets close to becoming full) and this policy is
based on some rules (algorithms ) such as:

— Random Early Detection (random early discard or random early drop)
(RED) [8]–[10], [14] — is a queuing discipline for a network scheduler
suited for congestion avoidance by pre-emptively dropping packets before
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the buffer becomes completely full based on predictive models to decide
which packets to drop;

— Explicit Congestion Notification (ECN) [9], [15] and its modifications [16]–
[19] — allows end-to-end notification of network congestion without
dropping packets (opposed to RED);

— controlled delay (CoDel) [20] and its modifications [21], [22] — a schedul-
ing algorithm for the network scheduler, designed to overcome bufferbloat
in networking hardware by setting limits on the delay network packets
experience as they pass through buffers in this equipment;

— BLUE [23] and its modifications [24]–[26] — operates by randomly
dropping or marking packet with explicit congestion notification mark
before the transmit buffer of the network interface controller overflows
and it requires little or no tuning to be performed by the network
administrator;

— CAKE (Common Applications Kept Enhanced)[27], [28] — is a shaping-
capable queue discipline which uses both AQM and FQ, itcombines
COBALT, which is an AQM algorithm combining Codel and BLUE

Early AQM disciplines (notably RED and SRED) require careful tuning of
their parameters in order to provide good performance, but modern AQM
disciplines (Blue, CoDel, CAKE and new modifications of RED— the overview
may be seen in [29], [30]) are self-tuning, so they can be run with their default
parameters.
The classic RED [8] is an active queue management algorithm with two

thresholds (𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥), which monitors the average queue size and
drops packets (or marks packets when it used in conjunction with ECN) based

on statistical probabilities 𝑝(𝑄̂) [8]:

𝑝(𝑄̂) =

⎧
{{
⎨
{{
⎩

0, 0 ⩽ 𝑄̂ ⩽ 𝑄min,
𝑄̂ − 𝑄min

𝑄max − 𝑄min

𝑝max, 𝑄min < 𝑄̂ ⩽ 𝑄max,

1, 𝑄̂ > 𝑄max,

where 𝑝max is the maximum of dropped probability (probability of marking),

and 𝑄̂ is the queue length control parameter (low-pass filter) calculated by
formula:

𝑄̂𝑘+1 = (1 − 𝑤𝑞)𝑄̂𝑘 + 𝑤𝑞𝑄̂𝑘, 𝑘 = 0, 1, 2, … ,
here 𝑤𝑞 (0 < 𝑤𝑞 < 1) is a weight coefficient of the exponentially weighted
moving-average.

3. Renovation mechanism with thresholds

3.1. The definition of renovation mechanism

The renovation mechanism was introduced in [31]: at the moment of the end
of its service the packet on the server may either just leave the system with
some non-zero probability 𝑝, or may empty the buffer with the renovation
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probability 𝑞 = 1 − 𝑝. In [31] the steady-state probability distributions for
several types of queueing systems were presented.
Later the model of renovation with feedback (or repeated service) was

introduced in 2007 by professor P. P. Bocharov in [32]. The renovation with
feedback means that after emptying the buffer with probability 𝑞 the served
packet starts another round of service. The main characteristics in matrix-
analytical form were obtained. Another system with renovation and feedback
was studied in [33], [34], where the retrial queueing system with renovation
and recurrent input flow was investigated.
The generalisation of renovation mechanism was proposed in 2008 by

professor A. V. Pechinkin [35]: at the moment of the end of service the packet
may drop from the buffer with probability 𝑞(𝑖) exactly 𝑖 (𝑖 ⩾ 1) other packets
and leaves the system or may just just leave the system without any effect on
it with the complementary probability 𝑝 = 1 − ∑𝑟

𝑖=1 𝑞(𝑖).
In [12], [13], [35]–[39] queueing systems with different types of renovation and

service disciplines were presented. It was proved that for 𝐺𝑖/𝑀/𝑛/∞ systems
with general renovation (or just renovation) the steady-state probability
distribution has the geometric form and sojourn time distribution of a served
(lossed) packet has an exponential form.
The study of queueing systems with renovation mechanism and thresholds

was started in [12], [13].

3.2. The mathematical model with renovation and one threshold

The simplest mathematical models of renovation mechanism with thresholds
are the models with one threshold 𝑄1 for queue length.
If the current queue length ̂𝑞 is larger than 𝑄1 ( ̂𝑞 > 𝑄1) then a packet on

the server at the moment of the end of its service may either leave the system
with probability 𝑝 or may drop a packet (packets) from the buffer and leave
(renovation mechanism).
The next types of renovation may be considered:

— the “simple” renovation of the first type — the fixed size group of 𝑘
(𝑘 ⩾ 1) packets will be dropped with fixed probability 𝑞𝑘;

— the “simple” renovation of the second type — the fixed size group of 𝑘
(𝑘 ⩾ 1) packets will be dropped with fixed probability 𝑞𝑘 (but 𝑄1 will
remain anyhow)

— the “complete” (“full”) renovation (or just renovation) — all packets from
the buffer will be dropped with probability 𝑞 = 1 − 𝑝, the system will be
empty;

— the “incomplete” renovation — all packets (that are after the threshold)
willbe dropped with probability 𝑞 = 1 − 𝑝, 𝑄1 packets will remain in the
system;

— the general renovation of the first type — exactly 𝑘 (𝑘 ⩾ 1) packets from
the buffer will be dropped with probability 𝑞(𝑘) if in the buffer there are
more then 𝑘 packets or the system will be empty if in the buffer were
were less (or equal) then 𝑘 packets;

— the general renovation of the second type — exactly 𝑘 (𝑘 ⩾ 1) packets
from the buffer may be dropped with probability 𝑞(𝑘) if there were more
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then 𝑘+𝑄1 packets in the buffer, or 𝑄1 packets will remain in the system
if in the buffer were less (or equal) then 𝑘 + 𝑄1 packets.

For the last two cases of general renovation the following condition on
probabilies 𝑝 and 𝑞(𝑘) (𝑘 ⩾ 1) must be met:

𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

𝑝 is the probability, that a served packet will just leave the system without
dropping other packets.

The minus of the first, the third and the fifth drop mechanism is that too
many packets may be dropped, the minus of the second, the fourth and the
sixth drop mechanism is that the buffer may remain overflowed. Models with
two thresholds allow to get rid of these minuses.

3.3. The mathematical model with renovation and two thresholds

In this part of the article we will discuss models of RED-like algorithm based
on queueing systems with renovation and two thresholds.

The thresholds of the first type: the first threshold 𝑄1 determines when
packets start to be dropped, the second threshold 𝑄2(𝑄2 > 𝑄1) sets the
maximum value of drop probability.

The types of renovation policy. At the moment of the end of a packet
service the current queue length ̂𝑞 is compared with thresholds and if ̂𝑞 ⩽ 𝑄1
then no one of the packets from the buffer is dropped.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will
be dropped with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max(𝑞𝑘 < 𝑞max ⩽ 1.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞), 0 < 𝑞𝑘( ̂𝑞) < 𝑞max. If ̂𝑞 ⩾ 𝑄2 +1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max (this model was considered in [12] for 𝑘 = 1 (the last packet is
dropped) and the steady-state probability distribution of packets in
the system(for imbedded Markov chain) as well as some probabilistic
(the probability that the arriving packet will be dropped or served) and
sojourn time characteristics for served packets were obtained).

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first
𝑄1 will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄1 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞). If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first 𝑄1
will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the arbitrary size group of 𝑘 packets will be
dropped with given probability 𝑞(𝑘) (0 < 𝑞(𝑘) < 1). If ̂𝑞 ⩾ 𝑄2 + 1 then
all packets except the first 𝑄1 will be dropped with probability 𝑞.
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For all types of renovation policy the following condition on probabilies 𝑞𝑘,
𝑞𝑘( ̂𝑞), 𝑞(𝑘) , 𝑞max, 𝑞 (𝑘 ⩾ 1) must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝𝑘( ̂𝑞) + 𝑞𝑘( ̂𝑞) = 1, 𝑘 ⩾ 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

where 𝑝𝑘, 𝑝𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑝 are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if

𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2), and 𝑝(2)
max + 𝑞max = 1, 𝑝(2) + 𝑞 = 1, 𝑝(2)

max and 𝑝(2) are the
probabilities that the served packet will leave the system without dropping
any other packets from the buffer (if ̂𝑞 ⩾ 𝑄2 + 1).
The thresholds of the second type: the first threshold 𝑄1 determines when

packets start to be dropped, the second threshold 𝑄2 determines the place
to which packets will be dropped from the queue (𝑄1 ⩾ 𝑄2). If the current
queue size ̂𝑞 is less than 𝑄1, then a served packet just leave the system. But
if ̂𝑞 ⩾ 𝑄1 + 1 then the following types of renovation (dropping) mechanism
may be applied:

— the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will be dropped with fixed
probability 𝑞𝑘 (anyhow 𝑄2 packets will remain in system);

— with probability 𝑞 only 𝑄2 packets will remain in system, all others
packets will be dropped;

— the arbitrary size group of 𝑘 packets will be dropped with given probability
𝑞(𝑘) (0 < 𝑞(𝑘) < 1) (anyhow 𝑄2 packets will remain in system).

For all types of renovation policy the following condition on probabilies 𝑞𝑘,
𝑞𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑞 must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1, 𝑝(2) + 𝑞 = 1,

where 𝑝𝑘 (𝑘 ⩾ 1), 𝑝 and 𝑝(2) are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if
𝑄1 + 1 ⩽ ̂𝑞).
The minus of these policies is that the drop probability ceases to depend

on the queue length and it is impossible to set the maximum drop probability.
Models with three thresholds allow to get rid of this minus.

For the third model in [13] the steady-state probability distribution of pack-
ets 𝑝𝑖 (𝑖 ⩾ 0) in the system(for imbedded Markov chain), some probabilities
were obtained and represented by geometric form (when the threshold 𝑄1 is
overcomed):

𝑝𝑖 =
𝑄1

∑
𝑗=𝑖−1

𝑝𝑗(−𝜇)𝑗+1−𝑖𝛼(𝑗+1−𝑖)(𝜇)+

+ 𝑝𝑄1+1𝑔𝑖−𝑄1−2 ⎛⎜
⎝

𝑔 − 𝛼(𝜇) −
∞

∫
0

𝐴(𝑔, 𝑥)𝑒−𝜇𝑥𝑑𝐴(𝑥)⎞⎟
⎠

, 𝑖 = 1, 𝑄1 + 1,
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𝑝𝑖 = 𝑝𝑄1+1𝑔𝑖−(𝑄1+1), 𝑖 > 𝑄1 + 1,
where 𝑔 is the unique solution of the equation 𝑔 = 𝛼 (𝜇(1 − 𝑔𝑄(𝑔))), and
belongs to interval (0; 1), 𝛼(𝑠) is the Laplase–Stieltjes transformation of
interrarrival time distribution function𝐴(𝑥), 𝑄(𝑔) is the probability generating
function for probabilities 𝜋(𝑙, 𝑘) that 𝑙 packets will be served and 𝑘 packets
will be dropped from the buffer,

𝐴(𝑔, 𝑥) =
𝑄1+1−𝑖

∑
𝑙=1

(𝜇𝑥𝑔)𝑙

𝑙!

𝑄1+1−𝑖−𝑙

∑
𝑗=0

𝜋(𝑙, 𝑗)𝑔𝑗.

Also the probability that the arriving packet will be dropped and sojourn
time characteristics for dropped packets were obtained in form of integral
equations.

3.4. The mathematical model with renovation and tree thresholds

In this part of the article models with renovation and three thresholds (𝑄1, 𝑄2
and 𝑄3) will be formulated. The first threshold 𝑄1 determines when packets
start to be dropped, the second threshold 𝑄2(𝑄2 > 𝑄1) sets the maximum
value of drop probability, the third threshold 𝑄3(𝑄3 < 𝑄1) determines the
place to which packets may be dropped from the queue.

The following types of renovation mechanism may be defined. At the
moment of the end of a packet service the current queue length ̂𝑞 is compared
with thresholds and if ̂𝑞 ⩽ 𝑄1 then no one of the packets from the buffer is
dropped.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 (𝑘 ⩾ 1) packets will
be dropped with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max(𝑞𝑘 < 𝑞max ⩽ 1, but 𝑄3 packeta anyhow will remain in the system.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞), 0 < 𝑞𝑘( ̂𝑞) < 𝑞max. If ̂𝑞 ⩾ 𝑄2 +1 then the fixed size
group of 𝑘 packets in the buffer will be dropped with maximal probability
𝑞max, but 𝑄3 packeta anyhow will remain in the system.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with fixed probability 𝑞𝑘. If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first
𝑄1 will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the fixed size group of 𝑘 packets will be dropped
with probability 𝑞𝑘( ̂𝑞). If ̂𝑞 ⩾ 𝑄2 + 1 then all packets except the first 𝑄1
will be dropped with probability 𝑞.

— If 𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2 then the arbitrary size group of 𝑘 packets will be
dropped with given probability 𝑞(𝑘) (0 < 𝑞(𝑘) < 1). If ̂𝑞 ⩾ 𝑄2 + 1 then
all packets except the first 𝑄1 will be dropped with probability 𝑞.
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For all types of renovation policy the following condition on probabilies 𝑞1,
𝑞𝑘, 𝑞( ̂𝑞), 𝑞𝑘( ̂𝑞), 𝑞(𝑘) , 𝑞max, 𝑞 (𝑘 ⩾ 1) must be met:

𝑝𝑘 + 𝑞𝑘 = 1, 𝑝𝑘( ̂𝑞) + 𝑞𝑘( ̂𝑞) = 1, 𝑘 ⩾ 1, 𝑝 +
∞

∑
𝑘=1

𝑞(𝑘) = 1,

where 𝑝𝑘, 𝑝𝑘( ̂𝑞) (𝑘 ⩾ 1) and 𝑝 are the probabilities that the served packet
will leave the system without dropping any other packets from the buffer (if

𝑄1 + 1 ⩽ ̂𝑞 ⩽ 𝑄2), and 𝑝(2)
max + 𝑞max = 1, 𝑝(2) + 𝑞 = 1, 𝑝(2)

max and 𝑝(2) are the
probabilities that the served packet will leave the system without dropping
any other packets from the buffer (if ̂𝑞 ⩾ 𝑄2 + 1).

4. The comparison of some renovation models
with RED algorithm

In this section we will compare values of the probability of packet being

dropped from the system 𝑝loss for RED and TailDrop algorithms [4], [6], [7]
and values of the probability 𝑝loss, obtained by formulas derived for queueing
system with general renovation [11], queueing system with general renovation
and feedback [33], [34] and queueing system with general renovation and two
thresholds [12].

As can be see from the table 1, according to the values of the 𝑝loss, renovation
mechanism can perform as good as RED in the wide range of the offered
load 𝜌.

Table 1

The value of the loss probability for Taildrop, RED, general renovation, general renovation

with feedback, general renovation with two thresholds

Loss probability

Taildrop RED renov. ren-fd. ren-thr.

𝜌 = 0.5
0 0.002 0.002 0.002 0.003

𝜌 = 1
0.051 0.091 0.104 0.11 0.109

𝜌 = 2
0.500 0.500 0.502 0.54 0.524

𝜌 = 3
0.667 0.667 0.667 0.71 0.0.679
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5. Conclusion

The main task of the authors in this work was to formulate different types
of models with various renovation policies and one or more threshold values in
a buffer of a system. These thresholds allows to control the drop probability
of renovation mechanism. Some of the described models have already been
researched or are in the process of research (links to scientific publications
are provided)
The presented numerical experiments show that the results remain qualita-

tively the same for RED-type AQM with other dropping functions. Being
defined by 𝑁 parameters, the renovation mechanism is very flexible and this
constitutes its strength and weakness. By varying the values of the renova-
tion probabilities 𝑞(𝑖), it is possible to carry out conditional optimisation, but
good searching procedures are required here.
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Системы массового обслуживания с различными
видами обновления и порогами как математические
модели алгоритмов активного управления очередями

Илкиаш Виана Карвалью Кравид1, Иван С. Зарядов1, 2,
Татьяна А. Милованова1

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Институт проблем информатики
Федеральный исследовательский центр «Информатика и управление» РАН

ул. Вавилова, д. 44, корп. 2, Москва, 119333, Россия

Работа посвящена некоторым аспектам использования механизма обновления
(различные варианты обновления рассмотрены, определения и краткий обзор
представлены) с одним или несколькими порогами в качестве математических
моделей механизмов активного управления очередями.
Описаны системы массового обслуживания, в которых реализован механизм

обновления с порогами, позволяющий управлять числом заявок в системе путем
их сброса из накопителя в зависимости от значения некоторого управляюще-
го параметра и пороговых значений. Сброс заявок из накопителя происходит
в момент окончания обслуживания заявки на приборе, что отличает данный
механизм сброса от RED-подобных алгоритмов, для которых сброс возможен
в момент поступления в систему.
Представлены модели с одним, двумя или тремя порогами. В этих моделях

пороговые значения определяют не только место, с которого в накопителе начи-
нается сброс заявок, но и до какой позиции заявки могут быть сброшены. Для
некоторых из описываемых моделей уже получены аналитические и численные
результаты (ссылки на работы представлены), но большая часть моделей нахо-
дится в процессе изучения, поэтому представлены только описания и некоторые
текущие данные.
Приведены некоторые результаты сравнения классического алгоритма RED

с механизмом обновления.

Ключевые слова: система массового обслуживания, активное управление
очередью, обновление, обобщенное обновление, функция сброса, пороговый
механизм, контроль перегрузок сети




