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1. Introduction

Analytical approach to the solution of an optimal control problem and method
of determining control actions providing stable programmed motion of a rocket are
considered [1]. Practical value of the problem is associated with the design and real-
ization of a best autonomous space guidance, one of the prioritized problems of space
flight and depends on the characteristics of the trajectory solutions [2,3]. Numeri-
cally integrated trajectory solutions used in guidance problem are very sensitive to
the initial conditions and do not always allow for the design of simple and reliable
laws of autonomous guidance due to existence of convergence problems, unknown ini-
tial Lagrange multipliers and unknown sequence of thrust arcs on the trajectory [4].
Therefore, for the successful solution of the guidance problem, it is suggested to de-
velop an analytical approach to the optimal control problem which would allow us to
design a nominal trajectory without the convergence problems and the uncertainties
mentioned above. In this paper, the optimal control problem is formulated, the first
and second differentials of the performance index are analyzed, the condition of finite-
ness of the solutions to the Riccati equation and Jacobi condition on conjugate points
are considered [5]. The classes of optimal thrust arcs are determined by the Legendre
condition tests. The presented analytical method can serve as a tool of extracting the
reference trajectories for the guidance problem.

Ref. [6] contains the solution to the problem of determining the mass law for a
point which corresponds to a motion according to a given law or trajectory. Various
statements for the inverse problems of dynamics of mechanical systems and methods
of stabilization of constraints have been investigated in Ref. [7-11]. Reactive forces
generated due to the change of rocket’s mass and exhaust velocity allow us to realize
its motion corresponding to the solution of Mayer’s variation problem and to provide
stability of motion with respect to the trajectory or law of motion [8].
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2. Optimal Control Problem

Let the center of mass (CM) of a spacecraft at any time can be determined by
vector-function x = (1, x2,...,x,), x(t) € R, the components of which are as-
sumed continuous and absolutely differentiable on a time interval [to,¢1], but their
derivatives may have discontinuities. Here ¢ty and ¢; are the initial and final times of
motion. Then the equations of motion are given as

jjz-:fi(l‘171‘2,...,In,U1,u27-~~7uk)7 (1)

The vector-function u = (uy,...,ux), u(t) € R* is called as control vector, and its
components u,. (r = 1, ..., k) are defined on [tg, ¢;] and considered piecewise continuous
functions [12]. The functions f; possess continuous partial derivatives of sufficiently
high order with respect to all components of x and u. Assume that the following
equations are satisfied:

U (zo1, 202, -, Ton) =0, 1=1,...,q1, q <n. (2)
Fm(xu,xlg,...,mln,tl) :0, m = 1,...,(]2, qo <n-+1. (3)
D (U1, U, ooy U, 1, Ay ey g) =0, s=1,...p<k d<k, (4)

where a = (ay, as, ..., aq) and a € @ are considered as auxiliary controls. Here and
below the subscripts “0” and “1” will mean initial and final values of the variables. It
is required to find x(¢) and u(t) so, that (1-4) are satisfied, and the functional

ty

J(a:17q2+1,:(:17q2+2,...,xlm,tl)+/g(x,u,t)dt. (5)

to

is minimized. All functions ¥;, F,,, ®,, J and g are continuous and possess continuous
partial derivatives of sufficiently high order with respect to all their components.

3. Differentials of Extended Functional

Consider the extended functional of the form:

t1

K(xg,x1,u, p, v, v, a,t1) = G+ / [H — ATx]dt. (6)
to
where
H(x,u,\, a,v,t) = A+ ~4T® 4 ¢, (7)
G<X07X17H’7V7t1) :J+I‘LT‘II+VTF7 (8)

u= (u17u27"'7uk+d)7 o = (0417042,...706(1),
= (U, Uy, U,), F=(F,F..F,), ®=(,,,..0,)

M= (leu%"'nu!h)a V:(V17V27"'>qu)7 7:(717727~-37p)1

the vectors pu, v and ~ are considered as unknown multipliers, and pu and v are
assumed to be constants.

It can be shown that by accepting the notation % = (+)z, the first and second
differentials of the extended functional (6) are of the form:

dK = (Gpy + Al)dzo + (Gy, — AD)d2y 4 (Gy, + Hy)dt +
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ty

/ (H, + AT)ox + Hydu + (Hy — %7)SAJdE. ()
to
GIll’l Qg 6X1
@K =lox{ dn] | ¢y [ o } + 6xT Gy 60+

ty

+ /[5x du’] H,, H,, su | (10)
to
where
Q=G +g+7"®+ G, f, U =Q, + T, %

Analysis of the condition, dK = 0 allow us to obtain the first-order necessary condi-
tions of optimality for weak extremals:

' =H,, A'=-H,, (11)

H,=0, H,=0, (12)
=0 F=0, XN=-GI X=GL, H =-G. (13)

zo? x1?

These conditions can be used to determine 2n + k + d unknowns z;, \;,u, (r =
1,...,k+d) together with 2n constants. 2n constants, ¢; variables y; (I =1,...,q1), g2
variables v,,(m =1, ..., ¢2) and the time ¢; can be determined using ¢; conditions (2),
g2 conditions (3) and 2n + 1 conditions (13). Besides that, if x, u represent an opti-
mal trajectory, then the Weierstrass and Legendre—Clebsch conditions are satisfied on
this trajectory [13]:

H(x,0,A,v,t) < H(x,u,\,7v,t), Hyy > q0, (14)

where 1 is an admissible control vector [1].

Using the analysis of the auxiliary optimization problem, it can be shown that d? K
is positive definite if the conditions (11), (12), (13), Hyy, > 0 and D > 0 are satisfied,
and the matrix R is finite on [to,?1). Here

D= [dab]v [dz]] = [E}i,ja [dqr] = [R + Gacoxo]q,rv
ow ow
1= ) 2 = 5
8(]5‘ 8Qk

a, b=1,2,..,n; 1, j=1,...q1; ¢, r=q+1,...,n; s=q+1,...n; k=1,...,q1. The
elements of the matrix R(Q) are the known functions of the elements of R:

p— p—
— — =) =) =)
— — e

(1]

det[EQ] 7’5 O,

R=R-VTQ'PT,
where R, V and Q satisfy the Riccati equation and the two conditions [13]:
R=C—-ATR—RA+RBR, V=(RB-ATYWT Q=vBVT. (15)
Here H,, > 0, and
A= fo— f H HT

U Tu?

B=fH T C=(Hu,H,}]H., — H,.).

uu Ju U
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4. Conjugate Points

Let 0xg = 0 and H,, > 0. Then at some time instance, t = 7, (7 € (to,t1])
the matrix R is not finite, then from dx = R™'§ it follows that dx(7) = 0. The
corresponding trajectory point at 7 is said to be conjugate to the trajectory point at
to [5,13]. It was shown that the finiteness of the matrix R on [t,t;] means absence
of the conjugate points on (to,¢1] with respect to the initial point at to. The absence
of the conjugate points on (to,t1) is known as the classical condition of Jacobi. When
H,, > 0, the condition 0x # 0 (or A # 0) allows us to determine the presence of the
conjugate points on thrust arcs using the analytical solutions, if such solutions exist.

Let the equation of an extremal, (12) contain m( < 2n) constants of integration.
If ¢ is one of the constants, then its variation provides the family of solutions, x =
x(t,c), A= A(t,c), u=u(t,c). By varying x = f(x,u), it can be shown that

~ Oc’ ~ Oc’
As the necessary conditions of optimality, (11), (12) and (13) are linear and of the

order 2n, their solutions on the optimal trajectory can be written by employing the
principle of superposition in the following form:

2n O 2n O\ 2n ou
=1 Jj=1 J=1

where ¢j, (j = 1, ...,m) are the constants of integration in the solutions to the problem
described in the equations (1)—(5), and N;, Lj, U; are the constants. If the constants
¢; are defined in the solution process, then dz;(cj,t), dAi(cj,t) and du,(cj,t) will
represent the analytical solutions of the auxiliary optimization problem, which can
satisfy the necessary conditions of optimality. This in turn means that the first two
equalities of (17) can be used to determine the presence of the conjugate points on the
extremals.

5. On Satisfaction of Legendre—Clebsch Condition

The problem of optimizing the trajectory with limited power may be formulated
in the context of the optimal control problem stated above [12]:

2P 2P
e, F=v, m=-—— (18)
Ispmgo Ispgo

v =g(r)+

@126%-’—8%4—6%—1:0, CI)QZP(Pmax_P)_’VQZ()?
(I)S = (Isp,max - Isp)(lsp - Isp,min) - 772 = 07 (19)

where g(r) and gy are the vector of gravitational acceleration and its magnitude mea-
sured on a sea level, r, v, m are the radius-vector, velocity vector and mass respec-
tively, n and v auxiliary control variables, I, is the specific impulse, P is the power,
which can be determined by the formulae, P = %B[ Eng, [ is the mass-flow rate. The
control vector is given as u = [P, I, e1, €2, €3,7, n]T

As it was shown above, one of the sufficient conditions for d2K > 0 is expressed by
the conditions of strict positiveness of all main minors of the matrix H,,. Consider the
elements of the matrix Hy,. If po =0, pg #0, or o #0, pg =0, then Hy, =0
or Hy, = 0. This will mean that all main minors of H,, are equal to zero, indicating
the extremality of the trajectories for the cases v #0, n=0and v=0, n#0.
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If uo =0, wps # 0, then v # 0, n = 0, which corresponds to the case with
0 < P < Puax: Lsp = Ispmin Or Iy, = Igp max, that is the motion with constant I,
and variable power. If po # 0, p3 = 0, then it can be shown that v =0, n # 0,
meaning that P = Pyax or P =0 and I min < Isp < Isp max, that is the motion with
variable I, and Ppax. In both cases Hy, =0

If o # 0, ps # 0, then the strict positiveness of all main minors of H,,, is
provided by appropriate determination of the multipliers g, A and e. It should be
noted that the complete solutions of the canonical system of equations corresponding
to this case are remaining unknown. From H, = 0 it follows that v = 0, n = 0, which
mean a motion with P = Ppax, Isp = Ispmin O Isp = Isp max [14]. Consequently, in
the optimal control problem given by (2),(3), (5), (18) and (19) with constraints on
power and specific impulse, the optimal thrust arcs are those on which P = Pp,,x and

sp — dsp,min OF Isp = Isp,max-

In the case of motion with P = Prax, Isp = Lspmin O Isp = Lsp max, the following
conditions are true: S = const and m = mqg — St. It follows from these analysis that
the satisfaction of the Legendre—Clebsch condition allows us to obtain optimal thrust
arcs, but at the same time, it shrinks the domain of the problem parameters.

6. Class of Extremals with Free Time

The case of motion with P = Pyax and Isp = Isp min (0F Isp = Isp max) corresponds
to a case of a maximum thrust arc. It was shown that the newtonian field can be
approximated by a linear central field (g(r) = —k?r), if ¢ ~ 0 and (r —7g) /70 < 1 [3].
Here k% = p1/r3, where p is the gravitational parameter, rg is the radius of a reference
orbit and r is the radius vector of a center of mass. Assume that these conditions

are satisfied. Then it can be shown that if the final time is not fixed (C' = 0) and

J = mg — my, then from the transversality condition it follows that A\g; = —g—‘gl =0,

where the subscript “1” means the final time. The analysis of the equations (18) show
that the condition A\g; = 0 is associated with the cases of motion, where ¢ = 0 and
¢ # 0.

The first case, where (¢ = 0) corresponds to a motion with tangential thrust, and
although it represents a practical interest, it is not considered in this paper. It can
be shown that in the second case, ¥ = 1o, A = asin(kt + «), where 1)y, a, o are the
constants. The equality » = 0 means that the hodograph of the basis-vector is the
straight line and the thrust direction is inertially fixed.

In the case of a free flight time and it is required to minimize the final mass, the
analytical solutions of (18) for the given case are written in the form [3]:

v1 =r[kcot(kt + o) + ptan |,

Ok sin ¢ xB 2 cos? ¢
vy = —aCok———— + &=
2 *Meos(kt + o) | ak aCysin2(kt + o)’
sin(kt
r:a@w, 0=p+1o— =, m=mo—pt, (20)
CoS 2

A1 = asin(kt + a)sing, A2 = asin(kt + «) cos ¢,
sin(kt + «)
mo — ,Bt

A = —akcos(kt + a)sing, XNg=0, A\, = acmg { ] —x+ Amo,

where L L .
r = mo_kt, Lo = 2105 Qg =+ moa

B
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tan o — tanatanypy X8 1 n cs
Y7 tan(kt + @) | ak aCok | aCak tan(kt + a)’
akc .
X = —?[Fl (2o, x) sin(ag) + Fo(xo, x) cos(ag)],

F1 = Fl(fl'}o,l') == Sl(l‘) - SZ($0)7 F2 == FQ(.’L’Q,.Z‘) = CZ(LL') - CZ(Q’JU)

oo _1)i+1,.2i—1 1.2
(-1)""x 1)

Si(z) = Z CEnCE Ci(x) = Cy + In(x) + Z )(20)!”

Co = 0.577216 is the Euler-Maskeroni constant, Si(z) and Cz(m) are the integral sinus
and cosinus, and ¢g is a new constant of integration. Note that these solutions are
true in the case of a limited mass-flow rate and consequently, they do not describe an
instantaneous change of velocity. As it was mentioned in Ref. [3], the assumption about
the instantaneous change of velocity is not adequate to a real flight conditions in solving
the guidance problem. The last expression (20) can be investigated for description of
an approximate guidance law (thrust program) in a realistic gravitational field. This
approach to a guidance law is the development of the idea of application of the linear-
tangential law which is a consequence of the analysis of motion in a constant gravity
field.

Let’s test the presence of the conjugate points on MT arcs found above. The
constants are ¢; = a, c3 = a, c3 =Yg, C4 = Yy, €5 = Mg, C¢ = Amo, ¢7 = Co. It can
be shown that

00 00
0z Z Oc; 303 . Z Oc; 805 =1

The equalities show that the solutions for the MT arcs do not satisfy the conditions
5$2(t0) = 51’2(#) = O, (51’5(t0) = (5%5(#) = 0, th 2 to

Consequently, the MT arcs do not contain the conjugate points.

7. Stability of Programmed Motion

Dynamics of a rocket with variable mass, m in the central Newtonian field, where
g = —u/r3r, in spherical coordinates, r* = r, r? = 6, 73> = §, is described by the
equations:

=0, 0 =a'+Bbe;, 0,5 =1,2,3,1m =0,
at =r <02 cos? § + 52) — 2, o1
a? = 2951&95 —270r~, a® = —6%sindcosd — 27ér 1, 2!

W =cem™t, %2 = c(mrcos 5)_1 , BB =em Tl b =0,i # j,
where p is the gravitational parameter, 3 is the mass-flow rate, c is the exhaust velocity,
€1 = e, €2 = ey, ez = e5 are the components of the unit thrust vector e. In Egs. (21)

it is assumed the summation operations over the same indices. By considering e and
B as control variables, one can represent the program of the motion by the constraint

equations: ' ' o
(i) =0, fR4fF=0, fr(r',t)=0, (22)

ofr orfr
flﬁ:%7 fr= f’ k=1,..,k p=k+1,...,55<3.
/r’L
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In a particular case, Egs. (22) can describe a law of motion of the rocket’s center of
mass which would correspond to the solution of the optimal control problem. The
controls must be determined such that Eqs. (22) are satisfied for all ¢ > ¢, if they are
satisfied at initial time, t:

rt (to) =5, v' (to) = vp- (23)

Obviously, the exact satisfaction of Egs. (22) in the numerical solution process of
Egs. (21) may not be possible and the functions m and e; must be determined in
compliance with the conditions of stability of the constraints, Egs. (22) [9,11]. For the
stabilization of the constraints, the auxiliary variables, =¥, y*, yP, which represent
deviations from Egs. (22), are introduced:

:Lﬁ:fﬁ (Tivt)’ yK:fzﬁvi+ffa yp:fp (Tizvjat)a (24)
the change of which is determined by the system of equations of the perturbed con-
straints: - du?

x Y
1 = yﬁ’ E = ]{gZL’V + ngn, (25)
]g';:k;’;(ri,vj,t), kb =0, cgzc”(ri,vj,t),

n
v=1,..,k, o, n=1,..s.

The trivial solution z¥ = 0, y” = 0 of Eqgs. (25) corresponds to Egs. (22). For the
constraint stabilization it is necessary to determine such controls 8 and e;, which
provide asymptotic stability of the trivial solution of Egs. (25). For description of
the corresponding conditions as the Lyapunov functions, one can use positive-definite
quadratic form with constant coefficients:

2V = a2 4 2biex"y’ + cony’y", v=1,..,k o, n=1,.,s.
The derivative V of V, computed using Eqs. (25), is also of a quadratic form:
V = a2 z" +2b a"y7 + o, y7y",
Ay = buokl, .o = auo + bunCl + conkll,  ax, =0,
Cry = byo + CooChys bpe =0,
k,v=1,..,k p=k+1,..,s o, n 0=1,..,s.
The trivial solution of Egs. (25) is asymptotically stable, if the function V is positive
definite function with respect to x*, 37, and its derivative is negative definite, and
the functions ¥, y°, determined by Egs. (24) and the function V admit infinitely
small supreme limit. The conditions of asymptotic stability can be satisfied by an
appropriate selection of the coefficients of the quadratic form V' and the right hand
sides of Egs. (25). In particular, they can be considered constants. The existence of

infinitely small supreme limit of the functions in Eqgs. (24) depends on the functions
in Egs. (22) which provide the program of motion.

8. Determination of Control Actions

If the coefficients k7, ¢j of Egs. (25) are determined, then for e; and 5 one can
differentiate y = ¢° (1%, v/, ) taking into account Eqs. (21) and (25), and the expres-

sions o ) o S
PR (rt vl ) = frot + fE, P (rt 07 t) = fP(rt 0 t). (26)
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The computations yield the system of linear algebraic equations with respect to Se;:

s7Bei =7, T =T0, T =kjx" + gy — (90" +Td +¢f), (27)
K _ g of°
1/)]' =Jj» 1/’? = E

'Z'K:f‘Li (Ti,t), yH:fiKvi+ftH7 yp:fp (Ti7vj7t)a (28)

| of A o8
k k
¥Yi = i};vj + 57 ;7 W? Pt = i}ivz + fti? pr = E

The solution to Egs. (27) is determined depending on the number s of constraint
equations. The following cases may take place:
1. s =1. Egs. (27) can be satisfied by the solution:

B = (s“iei)_l s7

This means that the stable motion can be provided only by the change of £ for
any admissible components of the thrust vector e.
2. s = 2. The general solution of Eqgs. (27) takes the form:

Be; = epsi + 8ig57,

where ey is an arbitrary quantity, s; is computed as a determinant
s; = det(d;, s, s%%), consisting of the unit vector &; and rows of the matrix of
coefficients S = (5‘”) of Egs. (27). The multipliers s;, represent the elements of

the matrix St = ST(5ST)~1, pseudoinverse to the matrix S. The control law de-
pends on two parameters, for which the law of mass change 8 and one parameter
determining the thrust direction can be selected.

3. s =3. Egs. (27) have the solution:

ﬁei = 81‘0807 (Sicr) == S_l-

The control law depends on three parameters, one of which can be selected as f.

9. Conclusions

The optimal control problem of determining optimal trajectories of rocket center of
mass and the stability of trajectories are considered. By testing the Legendre—Clebsch
conditions, the classes of active arcs which can be optimal. It has been shown that
the formulas for determining the existence of conjugate points on thrust arcs can be
driven using the analytical solutions for these arcs. The proposed method can serve
as an instrument of extraction of extremal trajectories for the guidance problem. The
laws for mass-flow rate, corresponding to a stable programmed motion in the central
newtonian field, have been determined.
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AHaJII/ITI/I‘-IeCKI/Iﬁ CHHTE3 3KCTpEeMaJIbHbIX TpaeKTOpI/Iﬁ n
YCTOﬁqHBOCTb IIpOorpaMMHOI'o IBU2KEHUA

.M. Azumos, P.I'. MyxapJjsimoB
* Hnotcenepro-mexanuveckuts garxyasvmem
Tasatickuti ynusepcumem Maroa
2540 loya-cmpum, Xoamc Xoan 202A, Tonoayay, Lasatiu, CIITA 96822
T Kaedpa meopemuseckoti mezanuky
Poccutickuti ynusepcumem dpyotcovl Hapodos
Poccuasa, 117198, Mocksa, ya. Muxasyxo-Maxaas, 6

PaccmarpuBarorcs 3aa4u aHAJIUTAYECKOTO IIOCTPOEHUS ONTHUMAJIbHBIX TPAEKTOPUI paKe-
THI U COOTBETCTBYIOIIUX YIIPABJAIOMMX BO3JACHCTBHIl, 00ECIIEUNBAIOIMINX YCTOWIMBOE IIPO-
rpaMMHOe JaBU2KeHHe. J[0Ka3hIBaeTCsi BO3MOXKHOCTH HCIIOJIb30BAHUS AHAJUTUYECKOrO pellle-
HUS JJIs1 OIIPEJIEJIEHUS CONIPSI?KEHHBIX TOYEK SKCTPEMAaJIbHBIX TpaeKTopuil. lIpuBomurca ana-
JIN3 3aKOHOB YIIPaBJIeHUs yCTOWYUBBIM JIBUKEHUEM.

KuroueBbie cJjoBa: BapHalMOHHAs 33/a9a, aBTOHOMHOE YIIPAaBJIEHHE B TPOCTPAHCTBE,

pakera, MHOXKHUTe M JlarpaHn»Ka, ypaBHeHrne Pukkaru, yciioBus SkoOu, CONpsizKeHHbIE TOYKH,
YCTONYMBOE IBUMKEHNE, TPOrPAMMHOE JIBU2KEHUE, YIIPpABJICHHUE.





