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The new algorithms and programs, implemented in Maple, for solving waveguide-type multi-
channel scattering and eigenvalue problems for systems of the second-order ODEs with N x N
matrix piecewise constant coefficients on the axis are proposed. New algorithm and program for
solving the boundary-value problems by method of matching the fundamental solutions (MMF'S)
of the system of ODEs at the points of discontinuity of potentials are elaborated. In each of the
subintervals of an axis the general solution of the system of ODEs are sought in the form of linear
combination of 2N fundamental solutions with unknown coefficients. Each fundamental solu-
tion explicitly dependent on spectral parameter and eigenvalues and eigenvectors of algebraic
eigenvalue problems with N x N matrix of constant potentials. From the condition of conti-
nuity for the solutions and their derivatives at the discontinuity points of the potentials, the
system of algebraic equations is followed. In the case of bound or metastable state problem the
obtained system of algebraic equations contains nonlinear dependence of unknown spectral pa-
rameter. For solving such nonlinear problem symbolic-numerical algorithm is formulated. The
benchmark calculations of bound, metastable and scattering states of BVPs for systems of the
second-order ODEs obtained using program of the MMFS are compared with those obtained
using program of the finite element method.
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1. Introduction

The boundary-value problems for systems of N second-order ordinary differential
equations (ODEs) of the waveguide type with the matrix of piecewise constant poten-
tials arise in mathematical modelling of quantum-dimensional nanostructures and optical
multilayer systems [1]. For example, application Kantorovich method to the solution of
Maxwell’s equations in an integrated optical waveguide with an irregular change of pa-
rameters along two horizontal directions is considered in Ref. [2]. In this paper the BVP
for a system of differential equations for the coefficient Kantorovich functions using com-
puter algebra system Maple was derived. For solving such type of the BVPs the method
of matching the fundamental solutions (MMFS) at each boundary between the adjacent
axis subintervals was applied for single second-order ODE, while application to system
of ODEs is required [3].

The generalization of MMFES and creation of effective algorithms and programs for
solving the BV Ps for N second order ODEs with piecewise constant potentials in axis is
the aim of the present paper. The efficiency of the algorithm and program is demonstrated
by the example of calculating the resonance and metastable states of the multichannel
scattering problem in the axis for the set of IV second order ODEs with piecewise constant
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potentials. The results of solving the boundary-value problem by program of the MMFS
in axis are compared with those obtained using program KANTBP 4M [4] of the finite
element method (FEM) in finite interval with appropriate boundary conditions.

The structure of the paper is following. In Section 2 we present the algorithm of
MMEFS for solving the BVPs for systems of IV second-order ordinary differential equations
with piecewise constant potentials and calculation of bound, metastable and scattering
states. In Section 3 we compare the benchmark calculations MMF'S of bound, metastable
and scattering states with results obtained with the program KANTBP 4M that realizes
the Finite Element Method (FEM).

2. Algorithm of matching the fundamental solutions

Let us consider the boundary-value problems for systems of N second-order ordinary
differential equations (ODEs) of the waveguide type

(-1 + Ve - BT) 85 =0, #() = @6 0@ ()

with the matrix of piecewise constant potentials V(z) = {Vji(2)}, i,j =1,..., N:
Vii(2) = {Vji, 2 < 21, Viisa, 2 < 22, ooy Vii—1, 2 < 2Z—1, Vjisk, 2>26—1}- (2)

Here we suppose that the matrix of potentials is symmetric Vj;(z) = Vj;(z) and real-
valued Im Vj;(z) = 0, the case of complex valued potentials is considered in [5].

Step 1. In each of the subintervals z € (2,,,-1, 2m), m = 1,..., k, the system of N
ODEs (1) is a system of ODEs with constant coefficients

d2
<_Idz2 +V.,— EI> ®,,(2)=0,
that has the general solution, explicitly depending upon the spectral parameter E

N
@m(z)zz(c om—2yn 41 F™ (B, —2) 8™ 4 C 1y v F (B, 2) W “”’). (3)

i=1
Here Fl(m) (E,z) =exp <\/)\§m)—Ez>, Comn+i are unknown coefficients, /\gm) and \Ilgm) =
{\Ilgn), W%)}T are the solutions of the algebraic eigenvalue problem

Vol Mg n

calculated numerically. For the symmetric real matrix V,, the eigenvectors \Ill(.m) obey

the condition of orthogonality and normalisation (\Il(m))T\Ilg»m) = 0y;.

Step 2.1. For bound states E<FE,.x= mm(/\(l) ...,/\S\}),/\gk), .. .,)\g\’f)) the asymp-
totic conditions at z — £oo describe the exponentially decreasing solutions ®,,(z) of

(3)
(2——00) ZcNﬂepr/ )—Ez>q:§1>, (5)
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N
P (z—+00)= Z C2k—2)N+i €XD (—\/ )\Z(»k) —Ez) lIlEk). (6)
i=1

The wave functions of bound states satisfy to the normalization conditions

“+o0

/ dz®1(2)®(2) = 1, (7)

— 00

where T means a Hermitian conjugation.

Step 2.2. For metastable states EM=Re EM44Im EM | Im EM <0 the asymptotic
conditions at z—oo describe outgoing waves in the open channels and exponentially
decreasing solutions in the closed ones

N ) CNyi exp< Agl)_EMZ)a Re BM < )\1(1)7
( (8)
(2

i=1 C; exp (—z EM—/\51)2> , ReEM > /\Z(»l),

N ) Cor—2)N4iexp| — Agk)—EMZ)» RGEM<)\EI€)7

®i(z = +00) = Z\Ill

(9)
i=1 Clok—1)N+4iexp| 2 \/EM—)\gk)z>, Re EM > )\Ek).

The wave functions of metastable states satisfy to the normalization conditions

®
i
|
3
Il
g
S

/ 1287 (2)®(2) = 1 (10)

where 7 means a transposition.

Step 2.3. For multichannel scattering problem with fixed energy F = Re E the
desired matrix of solutions ®(z) is calculated with the asymptotic form “incident wave
+ outgoing waves” (see Fig. 1)

Xad ()T, + X (2) T
B, (s 4o0) =4 T (2)T~ + X (2) o 2>0, a1
Xmin (Z) + Xmin (Z)R—> + an;in(z)Riv z < 07

Xk (2) + Xk ()R + XS (2)RE, 2 >0,
X (T + X ()T, 2 <0.

min min

P, (2> +o0) = { (12)
Here R_, and R are desired square matrices of reflection amplitudes with the dimen-
sion NEx NI and NP x NE and T_, and T are the rectangular matrices of transmission
amplitudes with the dimension N*x NX and N x N, where N and NF are the num-

bers of open channels in the asymptotic regions. Here the desired scattering matrix S
with the dimension N, x IV, is calculated

_ (R» Te s — sst —
S(Tﬁ RJ’ sts —ssf—T1, (13)

which is unitary and symmetric for real effective potentials.
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D, (z—> 1) @, (z — +o0)
X(+)(Z) X(_)(Z)
—» <—
4 - >

X7 (2R, | XP(2)T, XO)T,_ | XP(2)R_
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oven channels: Ng No No No

Figure 1. Left and right asymptotic solutions “incident wave + outgoing waves”
respectively

Let us write the expressions (11)—(12) in the explicit form
exp(z \/EMf)\El)z>
: gL+
\/EM—AEI) o
( ) Esx O, (19

(— (1)
(PZL z — —00) Z\IJ YR 7
o %/EMf)\il)

RS, exp(\/)\gl)—EM z>, E< Y,
ex K3 — (-k)Z

)

Tiif 4 )
\/EM*)V' (15)

N
(2 > +o0) =Y @
i=1 TC, exp(—\/)\gk)—EMz>, E <\,
el VET)

)

Tiin—; o
\/EM*Ai (16)

<I>(<_) (z = —0) Z\Il(l
Tfr exp(\/)\gl)—EMz) E< )\1(»1),

exp(—z \/EM—)\ER)Z>
(SiiR‘f'
Y A" °
N k2
(<) (k) exp| 1 \/EM )\Ek)z
@ (2 = +00) Z;xp Ry ( - ) EA®), (17)

i= EM )\

Rr eXp<— /\Ek)—EMz>, E<AP.

Step 3. From the condition of continuity for the solutions and their derivatives
. . i)’m—l (Z) Qm (Z)
1 D, —®,,(2) =0, 1 — =0, =2,...,k, (18
ol Bl B2 =0 TR T T " (%)
.,k of the potentials (2), the system of

at the discontinuity points z = 2,1, m = 2,
algebraic equations is followed.
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Step 3.1 In the case of a Inultichannel scattering problem for the wave incident
from the left (see Fig. 1), for each value il = 1,..., NI we have a system of 2N (k—1)
inhomogeneous linear equations with 2N(k 1) unknowns Cont1;ss - Can(r—1);s, and

Ry, i=1.NF, Rfy,i=1 + NS, N, Ty, i =1.NF, Tpn,i=1 + NE . N:
from condition of contlnuity for the solutions:

RLX(I)(E —12’1) E>)\(k)
l X( ) (E,121)0;0+ o ’ ’ ! g
Z(( 1) L RlCZLFz(l)(E’ 21)7 E< )\Ek) i

— ConiF (B, —2) ¥ —Cyn i FP(E, 21)1115.2)) =0, (19)

o

(Com-awsiF™ V(B =20 )@ 4 Com i F D (B, 2 0" =

=1

_C(2m72)N+iFi(m)(E —Zm—1)¥ —C(z “yN+iF, "B, 2 1)‘I’(m)> =0, (20)

M-

<C(2k 4B (B, =2 )TV gy BT (B, 2 )TV -

=1

o (k) (*)
T KO E ) B0 | o)
mLF(k) (E T Rk— 1) E < )\gk) 1

from condition of continuity for the derivatives of solutions:

N (1) (k)
- R“’LXi E,—1z), E>)‘i
Xz(l)(Eyzzl)(sng—"_ Co ” ( 1) " \I,El)_
— R“%Gi (E,Zl), E < /\i

(2

— ConiGP (B, —2) ¥ —Csn G2 (E, 2 )q;f)) =0, (22)

jp

(Com-awsiG" (B 2 )B4 Clom gy i GV (B, 2 ) B

=1

~Clom-n G (B, =2 1) 8™ =Clam 1w 4i G (B, 212 ) =0, (23)

i

<C(2k NG )(E Z’“_l)‘I’Ekil)+C(2k73)N+iG§kil)(E,Zk—1)‘1’gkil)—

= (k k
B T,LX( )(E 125-1), E>)‘z(' : ‘IJ(k) =0, (24)
T< G(k)( *Zkfl)v E < )\Ek) ’ 7

ik

=1
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where the following notations are used:

GU™(E, +2,) = £\/AN™ — EF"(E,+2,,), m=3,...k—1, (25)

XUNE, +izy) = F'™ (B, +izg)/\JE—A™, m =1k,

X"N(E, +izy) = F™(E, +izg)\VE =A™, m =1,k

In the case of multichannel scattering problem for the wave incident from the right
(see Fig. 1) for each value iff = 1,..., N* we have the system of 2N (k—1) inhomogeneous
linear equations with 2V (k—1) unknowns, Cant1;s, s Con(k—1);s, and Ryr, i = 1.NE
Rfp,i=1+ NE,..,N, Tyr,i=1.N}, Tin,i=1+ NE . N:
from condition of continuity for the solutions:

n Tiig,?Xi(l)(E,—zm)a E>)\z('1) o
TPV (Byzm),  B<AY [

—Con i FON (B, —2) @ —Con  FP(E, zl>\11§2>> =0, (26)

iM-

o

(C(2m74)N+in’(m71) (E, _Zm—l)‘IJEmil)+C(2m73)N+iFi(m71) (B, zn1) @D -

=1

_C(2m72)N+iFi(m)(E -z —1) —C(z 1)N+z (E < —1)‘1’( )> ) (27)

M-

<C(2k ol )(E Z’“—l)q’gkil)+C(2k73)N+iFi(kil)(E, Zk—1)‘11§k71)—

Rin XM (B 1ze_y), E>AW R
_{ R, FY(E,—z-1), E<AY U = XD B azn)dag | =0 (28)
il ) —-1) X N\

=1

from condition of continuity for the derivatives of solutions:

n Tiig?):(i(l)(Ea—zm)a E>)‘£1) o
TeG (B, z1),  E<AY

i+

—Con iGN (B, —21) ¥ ~Cyn G (B, 21)‘I’§2)> - @9

i

(C(2m—4)N+iG§m_1)(E —Zm— 1)‘I’(m Y +C(2m 3)N+iG (E Zm— 1)‘I’(m b_

=1

_C(2m—2)N+iGEm)( —Zm— 1)‘1’ —C(z —1)N+z (E Zm—1 )‘I’(m)> =0, (30)
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Z <C(2k4)N+z’G§kl) (E, _Zk—l)‘IJEkil)+C(2k73)N+iG@('kil) (E, Zk—1)‘1’gkil) -
i—1

{ R”(I)%)?Z(k) (E,ZZkfl), E>)\£k) }

k) _ (k) —
RCRG(k)(E 7Zk71) E < )\(k) AU — X’L (E,sz—l)(szzoR> _07 (31)

where the notations from (25) are used. Step 3.2 or Step 3.3 for the problem of bound
or metastable states the nonlinear system of 2N (k—1) + 1 equations with 2N (k—1) + 1
unknowns follows

N
Z (C(2m—4)N+in‘(m_1) (Ea _mel)‘Ilgm_l)‘FC(Zm—S)N-i-iFi(m_l) (E7 mel)‘I’gm_l) -

1=1

_C(2m—2)N+iF7j(m) (E7 _mel)‘]:’@(‘m) _C(2m—1)N+iFi(m) (E7 mel)‘I’Em)> =0, (32)

Z (C(2m—4)N+iG£m_l) <E7 *mel)l:[lgm_l) +C(2m—3)N+iG§m_l) (E7 mel)‘IIEm_l) -
i=1

—C(szz)NHGEm) (E, —Zm—1)‘1’§m) _C(mel)N%»iGgm) (E, Zm—1)‘1’gm)> =0, (33)

where GZ(-m)(E, +2,) = £/ /\gm) — EFi(m) (E,£2m), m = 2,..., k. The equation following
from the normalisation condition (7) or (10) will be taken into account in final steps.

Step 3.2 From the condition of exponential decay of the bound-state eigenfunctions
(5), for z — +o00 the limitation for the eigenvalues arises

E<Emaxy=min(A\{"”, . A0, A% AR (34)
and the system of equations (32) is completed with the additional conditions
C1=0,...Cy =0, Ciap_1yni1 =0, .., Copn = 0. (35)
The limitation of the parameter E from below
E>Emm=min(\?, ., A AR A (36)

follows from the condition of boundedness of the self-adjoint operator, corresponding to
the problem (1)—(2) in the inner subintervals z € (2,1, 2 ), where m takes the values
m=2,..k—1

Step 3.3 For metastable states the system of equations (32) instead of (35) is com-
pleted with the additional conditions

{ci =0, ReEM <M } {CN(%_I)i =0, ReEM < A§’“>} ,
) , 1

Moo ) YESNCT At
CN—H = O, Re E™ > /\i CN(Qk_Q)i = O, Re B > /\Z

g Ly aeny

N

?

that follow from the asymptotic conditions (8).
Step 4. Writing the system of equations (32) and (33) in the matrix form

M(E) =0
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and calculating the determinant detM(E) of the obtained matrix, we arrive at the secular
equation for the spectral parameter F,

detM(E) = 0. (37)

Remark 1. The determinant of the matrix detM(FE) in the analytical form as a
function of the unknown spectral parameter E can be calculated in Maple during the
reasonable time only for small number of subintervals £ and small number of equations
N, kN < 19. For example, for N = 3, kK = 4 one expansion of the determinant of the
matrix with the dimension 24 x 24 takes more than 3600 seconds, while the construction
of the matrix M(E) and the calculation of its determinant for one given value of E takes
about 0.6 second. Therefore, we calculate the determinant detM(E) numerically using
the appropriate grid E: Fnyin, ..., Fmax from the interval Eyy, < F < Fpax, where the
boundary values F,,;, and Ep.x are given by Eqgs. (34) and (36). One of the possible
ways of constructing the suitable grid is implemented using the following algorithm. In
the exponential functions are replaced with their truncated expansions in the vicinity of
the chosen value Ey, i.e., with the polynomials of the order ) with numerical coefficients

exp (:I:\/ )\Em)—Eoz>
exp (:i:\/)\gm)—Ez> = exp (:l:\/)\l(-m)—E()Z> F W
20/, —Ey

where AE = E—Fj. Substituting the obtained expressions into the determinant detM(E),
we get a polynomial of the order 2N (k—1)Q of the variable AE, which is again truncated
to the order @, i.e.,

AE+ .., (39

detM(E) = detM(Ey) + a1 (AE) + ... + ag(AE)©. (39)

This leads to the limitation of the grid step AFpa, < |edetM(FEy)/ag|'/? , where ¢ >
0 is the preassigned number, the accuracy of the determinant detM(FE) series expansion.
Similar expansion is used to correct the roots of Eq. (37), calculated using a certain
method which will be published in a more detail elsewhere.

Remark 2. Near the singular points E = )\Em), i=1,...N,m=2,...k—1, for
which the subradical expressions in the exponents in Eq. (38) turn into zero, the domain
of convergence of the expansions (38) and (39) is not large. In this case instead of Eq.
(38) the following expansion is used

exp <i\/ AE"”-&) =1+ /A™_E+ %ZQ(Agm)—E). (40)

After calculating the set of solutions Fj, ..., E} of the equation (37), i.e., all values of
the spectral parameter E for which detM(E) turns into zero, for each Es, s = 1,...,t
we get the degenerate algebraic system of equations (32), linear and homogeneous with
respect to the unknown coefficients Cy, ..., Conk:s. To calculate the desired eigenvectors
C; = (Cr.s, -, Cank:s) T, we add an additional condition, e.g., Con 1.5+ +CoN (k—2);s
=1. As a result, the inhomogeneous system of algebraic equations obtained for each Ej,
s = 1,...,t has the unique solution C, = (CA'l;s,...,CA'gNk;S)T. Substituting it into the
left-hand side of the normalisation condition (7) or (10), we get the expressions for the
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normalising coefficients B2, s = 1, ..., t:

E N Zm
R . 2
> / 02 [Coam-ayv s F™ (B, =2)+ Com 1y i F (B, 2)| = B2
m=1 i:lzm_1
for bound states and
k. N Pm . ) 2
Z Z / dz (C(2m72)N+i;sFi(m) (E7 _Z)+C(2m71)N+iFi(m) (E7 2’)) = BE
m=1 i:lzm_1
for metastable states.
Table 1

The eigenvalues of bound E; and metastable E} = Re EM +:Im EM, ImEM <0
states of the BVP (1) with effective potentials (43) at N = 4: (*) calculations by
algorithm of MMF'S. The same results are given using FEM with 3rd-type BC in
intervals z € (—2,2) and z € (—8,8). (I) and (II): the estimations 6E; = E} "™ — E; of
eigenvalues E; calculations using FEM in interval z € (—8,8) with Dirichlet (I) and
Neumann (II) boundary conditions

2 B> EM EM
(x) | —0.3260959460 0.6358528584 | 2.8027364541  3.7392597199
-0.0000002130;  —0.02633305051

(I) (*)+1.69¢-7  (*)+2.09¢4
(1I) (F)-1.69e-7  (¥)-2.10e—4

As a result, we calculate the desired coefficients C; : Cj.s = C’i;S/BS, i=1,...,2Nk,
s =1,...,t, providing the fulfilment of the normalisation condition (7) or (10) for the de-
sired orthogonal set of eigenfunctions, s =1, ..., ¢:

P, (2) = {@gl)(z),z < 21, @22),2' < 29, .., @gk_l),z < zk_l,égk),z>zk_1}. (41)

3. Benchmark Calculations of Bound, Metastable and
Scattering States

For example let us consider the problem of bound, metastable and scattering states
for the Schrodinger equation in the 2D domain ., = {y € (0,7), z € (—o0, +00)},

<_aay2 R (TE E) U(y,z) =0, 0(0,2) =¥(mz) =0, (42)

with piecewise constant potential
V(y,z) ={0,2 < =2;—y, |2 < 22,2 > 2},

presented in Fig. 2. We seek the solution of Eq. (42) in the form of expansion
U(y,z)=>_, Bi(y)®i(z) over the set of basis functions B; y):% sin(iy), which leads
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to the system of ODEs (1) with the matrix of effective potentials (2) given in the form

Vij = {i%0;j,2 < —2;i%5;; — /y\/\f; sin(iy)ﬁ sin(jy)dy, z < 2; (i* +2)d;5, 2 > 2}. (43)

0

[35]

Figure 2. 2D potential and some diagonal (solid curves) and nondiagonal (dashed
curves) effective potentials (44)

This system has two bound and a set of metastable states. The eigenvalues were
calculated at N = 4, with matrix of potentials

100 0
04 0 0
009 0] z< =2
00 0 16
-5 & 0 5
6 4 m 48 0
Vij(z)= 95 ﬁ2 9257T7r 96 | 2] <2, (44)
257 2 497
w0 qge 16-%
30 0 0
06 0 0
00 11 0]’ z>2,
00 0 18

using the algorithm implementing the MMFS in the Maple system, and presented in
Table 1.

So, the parameters A(™) and matrices o of general solutions (3) calculated by
Step 1 by solving algebraic eigenvalue problem (4) take the form

0 0

AV —diag( 1 4 9 16), ¢W = : (45)

o O O
= o O O

1 0
0 1
0 0
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A®) = diag ( —0.675679 2.459337 14.484720 7.448436 ), (46)

—0.983202  0.182314 —0.003169 —0.008059
0.181948  0.975788 —0.004632 —0.121288

(2 _
v = —0.013991 —0.120697 —0.088442 —0.988642 |’ (47)
0.003524 0.005598 —0.996065 —0.088372
1 0 0 0
(3) _ a3 (3) _ 01 0 O
A =diag(3 6 11 18 ), WY = 00 1 0 (48)
0 0 0 1

From here we have desirable restrictions of Step 3.2 for the bound-state eigenvalues
~0.675679 = min(A'?, . AP <E<min(A, AP AP APy =1 (49)

These values were used to test the algorithm and programm KANTBP 4M, imple-
menting the FEM in the Maple system [4]. The FEM calculations were performed with
the Hermite elements of the seventh order (p'=7, p=3, k™**=2) on the finite element grid
0, = {—8(4) —2(4)2(4)8}, where in the parentheses the number of elements is indicated.
The calculations of the bound states with the Neumann and Dirichlet conditions yield

the upper and lower estimates of 6 F; = EZFEM — E; with the accuracy 6F; ~ 1.7-107
and 6E5 =~ 2.1-10~*. Note, the results, obtained by MMFS and FEM with 3rd-type BC
(III) on both intervals z € (—2,2) and z € (—8,8) coincide with an accuracy of the order
10710, In this table we show also upper and lower estimations of eigenvalues of bound
states obtained by FEM on interval z € (—8,8) with Dirichlet (I) and Neumann (II) BC,
respectively.

The results of calculations of eigenvalues of bound and metastable states and the ma-
trix elements of reflection and transmission amplitudes for the multichannel scattering
problem, obtained by matching the fundamental solutions and using FEM on the grid
Y, = {—2(4)2} with the boundary conditions of the third kind and the asymptotic so-
lutions of Step 2, coincide with the accuracy to the order of 107!°. Eigenfunctions
U(y, z) of bound and metastable states of the 2D boundary-value problem and the com-
ponents of the eigenfunctions ®;(z) (the imaginary parts shown by dotted lines) of the
corresponding system of ODEs (1) are shown in Fig. 3.

DWN =

® v (9P ""H'-I v/l @

Figure 3. Eigenfunctions ¥(y, z) of bound and metastable states of the 2D
boundary-value problem and the components of the eigenfunctions ®;(z) (the
imaginary parts shown by dotted lines) of the corresponding system of ODEs (1)

The considered system has the set of threshold energies E: Eih;Lzl, Eih;R:?),

E;h;L:4, E;h;R:6, ... that are different for the left- and right-hand asymptotic re-
gions of axis. At given E € (1, 3] we have only one open channel N =1, N =0 and
we have only incident and reflected waves in left-hand side. The S matrix (13) contains
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only one element S = (Ri1). At given E € (3,4] and E € (4,6] for the wave incident
from the right there is one open channel N* = 1 and for wave incident from the left the
there are one and two open channels NOL =1 and NOL = 2, respectively. The dependence
of the elements of scattering S matrix (13) is shown in Fig. 4.

1,0 10
~.0,5 0,81
70,61

0,0 =
@ 0,4
45 0,2

10
1 2 3 4 5 e 90
E

Figure 4. The dependence of real and image parts, and the square of absolute
values of elements of S—matrix (13) versus the scattering energy E. The threshold

: th;R th;L
energies F;'"'=3 and E;""=4

For example at £ = 2.005, F = 3.305 and F = 4.805 the S-matrix takes form

—0.53—0.32i | —0.57—0.53i
S(E = 2.005) = (0.2140.98i), S(E = 3.305) = ( d ! ) :

—0.57-0.53¢ | 0.36+0.51¢

—0.14-0.17¢ 0.10—-0.287 | —0.884-0.291
S(E = 4.805) = 0.10-0.28: —0.724+0.52: 0.07+0.34¢
—0.88+4+0.29¢ 0.07+0.347 | —0.06—0.13¢

where the R_,, R, T_, and T, submatrices are separated by lines. Corresponding
typical wave functions of the multichannel scattering problems are presented in Fig. 5.

)

LR(1): E=2.005 LR(1): E=3.305 RL(1): E=3.305

A g .'5

Figure 5. The real (solid lines) and the imaginary (dotted lines) components of
the solution of the scattering problem for the wave incident from the right, RL(1),
and the waves, incident from the left from the first, LR(1), and the second LR(2)

open channels
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One can see from Fig. 4 we have the resonance behavior of transmission and reflection
amplitudes near F &~ 3.7 that corresponds to the resonance state at E = 3.748 presented
in Fig. 6 while the other resonance state with the energy in vicinity of £ = 2.803 is not
resolved in this scale. The scattering energy £ = 2.803 and E = 3.748 corresponds to
real part of energy Re EM = 2.803 and Re E}! = 3.739 of metastable states (see Table
1), while half-width of peaks corresponds to imaginary parts of the energy Im B =
—2.1-1077 and Im EM = —0.026 of these metastable states. So, the wave functions
of metastable states in Fig. 3 have similar behavior with wave functions of resonance
scattering states in Fig. 6.

LR(1): E=2.8027364541 LR(1): E=3.748 RL(1): E=3.748
250

2400

1500
000
5

-8 -6 -4 >0 4 6 8

z

Figure 6. The the same as Fig. 5 but for resonance solutions of multichannel
scattering problem that will be compared with the eigenfunctions of the
metastable states in Fig. 3 and Table 1

So, the elements of S-matrix at different values of energy F, obtained by MMFS and
FEM with 3rd-type BC (III) on both intervals z € (—2,2) and z € (—8,8) coincide with
an accuracy of the order 10710,

4. Conclusion

Effective Symbolic-Numerical Algorithms of Matching the Fundamental Solutions is
elaborated and implemented in Maple. At large number & of subintervals or large number
N of equations we have a cumbersome secular equation for bound and metastable states
solving by author’s algorithm, which will be published in a more detail elsewhere. It was
shown that the results of benchmark calculations obtained by algorithms of Matching
the Fundamental Solutions at each boundary between the adjacent axis subintervals and
Finite Element Method in finite interval with third type boundary conditions coincided
with an accuracy of the order of 107'°. The proposed algorithms and programs can
be applied for solving boundary-value problems for systems of N second-order ordinary
differential equations (ODEs) of the waveguide type with the matrix of piecewise constant
potentials arisen in mathematical modelling of optical multilayer systems and quantum-
dimensional nanostructures.
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VK 519.632.4
AJII‘OpI/ITMLI n ImporpamMmMbl pelieHnud KpaeBblIX 3a/Ja4 AJId CUCTeM
O,Zl;y BTOPOTO IIOpsAJKAa C KYCOYHO-IIOCTOAHHBIMMU ITOTEHIIAJIaMM:
MHOI'OKaHaJIbHasdA 3aJilada pacCesdHnd N 3aJa9a Ha CO6CTB€HHI)I€
3HaAYeHud

A. A. I'yces*, O. Yynyyu6aarap*, C. 1. Buaunkuii*',
JI. JI. Xaii*t, B. JI. dep6os®, A. T'yxmax>?
* O6sedunénnul uncmumym adeproux uccaedosanudl, 2. Jlybra
t Poccuticrkud yrusepcumem dpyocovl napodos, 2. Mockea
¥ Beazopodexuti 2ocydapemeennvidi yrnusepcumen, 2. Beazopod
§ Capamosckuti zocydapemeermoi ynusepcumem, 2. Capamos
32 Inemumym dusuru, yrusepcumem um. M. Kwopu-Craodoscka, 2. JTobaun, IToavwa

IIpensokeHbl HOBBIE AJTOPUTMBI M IIPOUPAMMBI, peaJn30oBaHHbIe B cucteMe Maple nis pe-
[IEHWs] MHOI'OKAHAJILHON 3a/1a9/ pacCesiHUs M 3a/1a9d Ha COOCTBEHHBIE 3HAYEHHS BOJIHOBOJIHO-
ro Tura njsi cucrem OJLY BTOpOro mopsika ¢ MaTpHIENl KyCOYHO-ITOCTOSHHBIX KO3 UIIIEH-
TOoB pa3dMmepHocTbio N X N Ha ocu. PazpaboTaHbl HOBble aJITOPUTM U IPOrpaMMa JJIsl pelre-
HUsSI KPaeBoil 3a/1aum MeTozioM cimBkU (yHIamenTanbubix pemennii (MCOP) cucremer OY
B TOYKAX pa3pbiBa MOTeHIUAJIOB. Ha KarXKI0OM M3 MOABIHTEPBAJIOB OCH ODIee PENeHne CUCTEMBI
OY wmmercs B Buje juHeiHoil koMmOuHaruu 2N dyHIaMeHTAJIbHBIE DEIIeHNH C HEeM3BECTHBI-
mu Koddbdurmentamu. Kaxxnoe dyHIaMeHTAIBLHOE PEIIEHNE sIBHO 3aBUCUT OT CIIEKTPAJIHBHOTO
mapamMeTpa UM COOCTBEHHBIX 3HAMEHUN M COOCTBEHHBIX BEKTOPOB AJTe€OPANTECKUX 3a71a9 HA COO-
CTBEHHBIE 3HAYEHUS C MATPHUIEH TOCTOAHHBIX HOTEHINAJIOB pa3MepHocThio N X N. U3 ycaoBus
HEMPEPBIBHOCTHU PEIIEeHN U UX MPOU3BOIHBIX B TOUYKAX PA3PBHIBOB MOTEHITUAJIOB CJIEIYEeT CUCTe-
Ma ajrebpamteckux ypaBHenwmii. B ciaydae 3amatun Ha CBS3aHHBIC MJIH METACTAOMIBHBIE COCTOSI-
HU¢ IIOJIYYEeHHAs] CUCTEMa ajIireOpanmvdecKuX ypaBHEHUN COAEPKUT HEJIUHEHHYIO 3aBUCHMOCTDb OT
HEM3BECTHOTO CIEKTPAJIBLHOTO TapamMerpa. Jljisa permenunst Takofl HeMWMHEHHON 3amadu cHopMmy-
JIUPOBAH CUMBOJILHO-IUCIEHHBIN agroputM. JlaHo cpaBHEHHE 3TaJOHHBIX PACUETOB CBI3AHHBIX,
MeTacTabUIbHBIX COCTOSIHUII U COCTOSHUN paccesiHusi KpaeBbIX 3agad s cucrtem OZLY Bropo-
T'0 TIOPSIJIKA, BBIITOJTHEHHBIX C TIOMOIIBIO TPOrpamMM, peanudyionux agroputmbl MCOP u meToma
KOHEYHBIX 3JIEMEHTOB.

KuroueBbie cjoBa: MHOTOKAHAJIbHAs 3aJada PACCEsSHUs, 3a7ada Ha COOCTBEHHBIE 3HATE-
uus, cucrema O/Y BTOporo mopsigaka, METOJOM CITUBKU (DYHIAMEHTAJIBHBIX PEIICHU
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